state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case a.mk R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F r : ↥(reesAlgebra I) f : PolynomialModule R M hf : f ∈ { toAddSubsemigroup := { carrier := {f | ∀ (i : ℕ), f i ∈ N F i}, add_mem' := (_ : ∀ {a b : PolynomialModule R M}, a ∈ {f | ∀ (i : ℕ), f i ∈ N F i} → b ∈ {f | ∀ (i : ℕ), f i ∈ N F i} → ∀ (i : ℕ), a i + b i ∈ N F i) }, zero_mem' := (_ : ∀ (i : ℕ), 0 ∈ N F i) }.toAddSubsemigroup.carrier j k : ℕ ⊢ coeff ↑r (j, k).1 • f (j, k).2 ∈ N F ((j, k).1 + (j, k).2)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e
Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ Filtration.submodule (F ⊓ F') = Filtration.submodule F ⊓ Filtration.submodule F'
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
Mathlib.RingTheory.Filtration.282_0.wQ6WBws0g3n9213
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F x✝ : PolynomialModule R M ⊢ x✝ ∈ Filtration.submodule (F ⊓ F') ↔ x✝ ∈ Filtration.submodule F ⊓ Filtration.submodule F'
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext
exact forall_and
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext
Mathlib.RingTheory.Filtration.282_0.wQ6WBws0g3n9213
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) = (Filtration.submodule F).toAddSubmonoid
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) ≤ (Filtration.submodule F).toAddSubmonoid
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm ·
rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm ·
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Filtration.submodule F).toAddSubmonoid
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F i : ℕ m : M hm : m ∈ ↑(N F i) j : ℕ ⊢ ((single R i) m) j ∈ N F j
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F i : ℕ m : M hm : m ∈ ↑(N F i) j : ℕ ⊢ (if i = j then m else 0) ∈ N F j
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply]
split_ifs with h
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply]
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case pos R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ : Stable F i : ℕ m : M hm : m ∈ ↑(N F i) j : ℕ h : i = j ⊢ m ∈ N F j
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h ·
rwa [← h]
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h ·
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case neg R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ : Stable F i : ℕ m : M hm : m ∈ ↑(N F i) j : ℕ h : ¬i = j ⊢ 0 ∈ N F j
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] ·
exact (F.N j).zero_mem
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] ·
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ (Filtration.submodule F).toAddSubmonoid ≤ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem ·
intro f hf
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem ·
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F f : PolynomialModule R M hf : f ∈ (Filtration.submodule F).toAddSubmonoid ⊢ f ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf
rw [← f.sum_single]
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
case a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F f : PolynomialModule R M hf : f ∈ (Filtration.submodule F).toAddSubmonoid ⊢ Finsupp.sum f Finsupp.single ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single]
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F f : PolynomialModule R M hf : f ∈ (Filtration.submodule F).toAddSubmonoid ⊢ ∀ c ∈ f.support, (fun₀ | c => f c) ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _
rintro c -
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F f : PolynomialModule R M hf : f ∈ (Filtration.submodule F).toAddSubmonoid c : ℕ ⊢ (fun₀ | c => f c) ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c -
Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213
theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i)) = Filtration.submodule F
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
Mathlib.RingTheory.Filtration.314_0.wQ6WBws0g3n9213
theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊢ Submodule.span ↥(reesAlgebra I) ↑(Filtration.submodule F) = Filtration.submodule F
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
Mathlib.RingTheory.Filtration.314_0.wQ6WBws0g3n9213
theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ↔ ∀ n ≥ n₀, I • N F n = N F (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ (∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))) ↔ ∀ n ≥ n₀, I • N F n = N F (n + 1) R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ≤ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ≤ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; ·
exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ (∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))) ↔ ∀ n ≥ n₀, I • N F n = N F (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ (∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))) → ∀ n ≥ n₀, I • N F n = N F (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor ·
intro H n hn
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ ⊢ I • N F n = N F (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn
refine' (F.smul_le n).antisymm _
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ ⊢ N F (n + 1) ≤ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _
intro x hx
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) ⊢ x ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : (Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l = (single R (n + 1)) x ⊢ x ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : (fun f => f (n + 1)) ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) = (fun f => f (n + 1)) ((single R (n + 1)) x) ⊢ x ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = ((single R (n + 1)) x) (n + 1) ⊢ x ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl
erw [Finsupp.single_eq_same] at hl
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x ⊢ x ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mp.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x ⊢ (Finsupp.sum l fun a₁ b => (b • ↑a₁) (n + 1)) ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x ⊢ ∀ c ∈ l.support, (fun a₁ b => (b • ↑a₁) (n + 1)) c (l c) ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mk.intro.intro.intro.intro.intro.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') ⊢ (fun a₁ b => (b • ↑a₁) (n + 1)) { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) } (l { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }) ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mk.intro.intro.intro.intro.intro.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') ⊢ (l { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) } • (single R n') m) (n + 1) ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk]
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') ⊢ n' ≤ n + 1
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by
linarith
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mk.intro.intro.intro.intro.intro.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') ⊢ coeff (↑(l { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) })) (n + 1 - n') • m ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') ⊢ n' ≤ n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by
linarith
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mk.intro.intro.intro.intro.intro.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') e : n' ≤ n ⊢ coeff (↑(l { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) })) (n + 1 - n') • m ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mk.intro.intro.intro.intro.intro.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') e : n' ≤ n this : I ^ (n - n' + 1) • N F n' ≤ I ^ 1 • N F (n - n' + n') ⊢ coeff (↑(l { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) })) (n + 1 - n') • m ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mk.intro.intro.intro.intro.intro.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ H : ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n : ℕ hn : n ≥ n₀ x : M hx : x ∈ N F (n + 1) l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I) hl : ((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I)) Subtype.val) l) (n + 1) = x n' : ℕ hn' : n' ≤ n₀ m : M hm : m ∈ ↑(N F n') e : n' ≤ n this : I ^ (n + 1 - n') • N F n' ≤ I • N F n ⊢ coeff (↑(l { val := (single R n') m, property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) })) (n + 1 - n') • m ∈ I • N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mpr R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F n₀ : ℕ ⊢ (∀ n ≥ n₀, I • N F n = N F (n + 1)) → ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) ·
let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mpr R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ⊢ (∀ n ≥ n₀, I • N F n = N F (n + 1)) → ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mpr R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) i : ℕ ⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) i : ℕ ⊢ ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) i✝ i : ℕ hi : i ≤ n₀ ⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) i✝ i : ℕ hi : i ≤ n₀ ⊢ ⇑(single R i) '' ↑(N F i) ⊆ ⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) i✝ i : ℕ hi : i ≤ n₀ ⊢ i ≤ n₀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mpr R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) i : ℕ this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' ⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi
induction' i with j hj
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mpr.zero R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' ⊢ ⇑(single R Nat.zero) '' ↑(N F Nat.zero) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj ·
exact this _ (zero_le _)
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case mpr.succ R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) ⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _)
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case pos R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : Nat.succ j ≤ n₀ ⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ ·
exact this _ hj'
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : ¬Nat.succ j ≤ n₀ ⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj'
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j ⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj'
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j ⊢ ⇑(single R (j + 1)) '' ↑(I • N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj']
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j m : M hm : m ∈ ↑(I • N F j) ⊢ (single R (j + 1)) m ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg.intro.intro.refine'_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j m : M hm : m ∈ ↑(I • N F j) r : R hr : r ∈ I m' : M hm' : m' ∈ N F j ⊢ (single R (j + 1)) (r • m') ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) ·
rw [add_comm, ← monomial_smul_single]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg.intro.intro.refine'_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j m : M hm : m ∈ ↑(I • N F j) r : R hr : r ∈ I m' : M hm' : m' ∈ N F j ⊢ (monomial 1) r • (single R j) m' ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single]
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j m : M hm : m ∈ ↑(I • N F j) r : R hr : r ∈ I m' : M hm' : m' ∈ N F j ⊢ r ∈ I ^ 1
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by
rwa [pow_one]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg.intro.intro.refine'_2 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j m : M hm : m ∈ ↑(I • N F j) x y : M hx : (single R (j + 1)) x ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hy : (single R (j + 1)) y ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) ⊢ (single R (j + 1)) (x + y) ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') ·
rw [map_add]
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') ·
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
case neg.intro.intro.refine'_2 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) hF : ∀ n ≥ n₀, I • N F n = N F (n + 1) this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' j : ℕ hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hj' : n₀ ≤ j m : M hm : m ∈ ↑(I • N F j) x y : M hx : (single R (j + 1)) x ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) hy : (single R (j + 1)) y ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) ⊢ (single R (j + 1)) x + (single R (j + 1)) y ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add]
exact F'.add_mem hx hy
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add]
Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) ⊢ Submodule.FG (Filtration.submodule F) ↔ Stable F
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) ⊢ Submodule.FG (Filtration.submodule F) ↔ Stable F
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical
delta Ideal.Filtration.Stable
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) ⊢ Submodule.FG (Filtration.submodule F) ↔ ∃ n₀, ∀ n ≥ n₀, I • N F n = N F (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) ⊢ Submodule.FG (Filtration.submodule F) ↔ ∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) ⊢ Submodule.FG (Filtration.submodule F) → ∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor ·
rintro H
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor ·
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) ⊢ ∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H
refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) ⊢ Monotone fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ ·
intro n m e
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ ·
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) n m : ℕ e : n ≤ m ⊢ (fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n ≤ (fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) n m : ℕ e : n ≤ m ⊢ ∀ i ≤ n, ⇑(single R i) '' ↑(N F i) ⊆ ↑((fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff]
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) n m : ℕ e : n ≤ m i : ℕ hi : i ≤ n ⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑((fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) n m : ℕ e : n ≤ m i : ℕ hi : i ≤ n ⊢ ⇑(single R i) '' ↑(N F i) ⊆ ⋃ i, ⋃ (_ : i ≤ m), ⇑(single R i) '' ↑(N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) n m : ℕ e : n ≤ m i : ℕ hi : i ≤ n ⊢ i ≤ m
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) ⊢ iSup ⇑{ toFun := fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)), monotone' := (_ : ∀ ⦃n m : ℕ⦄, n ≤ m → (fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n ≤ (fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m) } = Filtration.submodule F
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e ·
dsimp
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e ·
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) ⊢ ⨆ n₀, Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) = Filtration.submodule F
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) ⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ i_1, ⋃ (_ : i_1 ≤ i), ⇑(single R i_1) '' ↑(N F i_1)) = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single]
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) ⊢ ⋃ i, ⋃ i_1, ⋃ (_ : i_1 ≤ i), ⇑(single R i_1) '' ↑(N F i_1) = ⋃ i, ⇑(single R i) '' ↑(N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1
ext
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s.h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) x✝ : PolynomialModule R M ⊢ x✝ ∈ ⋃ i, ⋃ i_1, ⋃ (_ : i_1 ≤ i), ⇑(single R i_1) '' ↑(N F i_1) ↔ x✝ ∈ ⋃ i, ⇑(single R i) '' ↑(N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s.h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) x✝ : PolynomialModule R M ⊢ (∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝) ↔ ∃ i, ∃ x ∈ N F i, (single R i) x = x✝
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s.h.mp R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) x✝ : PolynomialModule R M ⊢ (∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝) → ∃ i, ∃ x ∈ N F i, (single R i) x = x✝
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor ·
rintro ⟨-, i, -, e⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor ·
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s.h.mp.intro.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) x✝ : PolynomialModule R M i : ℕ e : ∃ x ∈ N F i, (single R i) x = x✝ ⊢ ∃ i, ∃ x ∈ N F i, (single R i) x = x✝
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩;
exact ⟨i, e⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩;
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s.h.mpr R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) x✝ : PolynomialModule R M ⊢ (∃ i, ∃ x ∈ N F i, (single R i) x = x✝) → ∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ ·
rintro ⟨i, e⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ ·
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mp.refine_2.e_s.h.mpr.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) H : Submodule.FG (Filtration.submodule F) x✝ : PolynomialModule R M i : ℕ e : ∃ x ∈ N F i, (single R i) x = x✝ ⊢ ∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩;
exact ⟨i, i, le_refl i, e⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩;
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) ⊢ (∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) → Submodule.FG (Filtration.submodule F)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ ·
rintro ⟨n, hn⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ ·
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) ⊢ Submodule.FG (Filtration.submodule F)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩
rw [hn]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) ⊢ Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn]
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) ⊢ Submodule.FG (⨆ x, Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑x) '' ↑(N F ↑x)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro.h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) ⊢ ∀ (i : { i // i ∈ Finset.range (Nat.succ n) }), Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑i) '' ↑(N F ↑i)))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup
rintro ⟨i, hi⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro.h.mk R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) i : ℕ hi : i ∈ Finset.range (Nat.succ n) ⊢ Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑{ val := i, property := hi }) '' ↑(N F ↑{ val := i, property := hi })))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro.h.mk.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) i : ℕ hi : i ∈ Finset.range (Nat.succ n) s : Finset M hs : Submodule.span R ↑s = N F i ⊢ Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑{ val := i, property := hi }) '' ↑(N F ↑{ val := i, property := hi })))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) i : ℕ hi : i ∈ Finset.range (Nat.succ n) s : Finset M hs : Submodule.span R ↑s = N F i ⊢ Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) = Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) i : ℕ hi : i ∈ Finset.range (Nat.succ n) s : Finset M hs : Submodule.span R ↑s = N F i ⊢ Submodule.span ↥(reesAlgebra I) ↑(Submodule.map (lsingle R i) (N F i)) = Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs];
rfl
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs];
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro.h.mk.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) i : ℕ hi : i ∈ Finset.range (Nat.succ n) s : Finset M hs : Submodule.span R ↑s = N F i this : Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) = Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i)) ⊢ Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑{ val := i, property := hi }) '' ↑(N F ↑{ val := i, property := hi })))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
case mpr.intro.h.mk.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F hF' : ∀ (i : ℕ), Submodule.FG (N F i) n : ℕ hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i)) i : ℕ hi : i ∈ Finset.range (Nat.succ n) s : Finset M hs : Submodule.span R ↑s = N F i this : Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) = Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i)) ⊢ Submodule.FG (Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s))
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this]
Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213
/-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Stable F F' : Filtration I M hf : F' ≤ F ⊢ Stable F'
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≤ F ⊢ Submodule.FG (Filtration.submodule F') case hF' R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≤ F ⊢ ∀ (i : ℕ), Submodule.FG (N F' i) case hF' R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Stable F F' : Filtration I M hf : F' ≤ F ⊢ ∀ (i : ℕ), Submodule.FG (N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; exact IsNoetherian.noetherian _
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≤ F ⊢ Submodule.FG (Filtration.submodule F')
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals
intro i
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
case hF' R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≤ F ⊢ ∀ (i : ℕ), Submodule.FG (N F' i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals
intro i
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
case hF' R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≤ F i : ℕ ⊢ Submodule.FG (N F' i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals intro i;
exact IsNoetherian.noetherian _
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals intro i;
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
case hF' R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Stable F F' : Filtration I M hf : F' ≤ F ⊢ ∀ (i : ℕ), Submodule.FG (N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals
intro i
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
case hF' R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Stable F F' : Filtration I M hf : F' ≤ F i : ℕ ⊢ Submodule.FG (N F i)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals intro i;
exact IsNoetherian.noetherian _
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals intro i;
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≤ F ⊢ Submodule.FG (Filtration.submodule F')
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≤ F`, then `F.Stable → F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : ℕ → Submodule R M mono : ∀ i, N (i + 1) ≤ N i smul_le : ∀ i, I • N i ≤ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by induction' i with _ ih · simp · rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊤⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration ⊥⟩ @[simp] theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊤ : I.Filtration M).N = ⊤ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (⊥ : I.Filtration M).N = ⊥ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨⊥⟩ /-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := ∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i • N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by obtain ⟨n₀, hn⟩ := h use n₀ intro k induction' k with _ ih · simp · rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq use n₀ intro n hn convert hn₀ (n - n₀) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by obtain ⟨n₀, hF⟩ := h use n₀ intro n induction' n with n hn · refine' (F.antitone _).trans e; simp · rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : ∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e) obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm) use max n₁ n₂ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | ∀ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm · rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h · rwa [← h] · exact (F.N j).zero_mem · intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) constructor · intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] have e : n' ≤ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) · let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) intro hF i have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj · exact this _ (zero_le _) by_cases hj' : j.succ ≤ n₀ · exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) · rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') · rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor · rintro H refine H.stablizes_of_iSup_eq ⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ · intro n m e rw [Submodule.span_le, Set.iUnion₂_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e · dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor · rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ · rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ · rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals intro i; exact IsNoetherian.noetherian _
have := isNoetherian_of_fg_of_noetherian _ hF
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊢ any_goals intro i; exact IsNoetherian.noetherian _
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable
Mathlib_RingTheory_Filtration