state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case a.mk
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
r : ↥(reesAlgebra I)
f : PolynomialModule R M
hf :
f ∈
{
toAddSubsemigroup :=
{ carrier := {f | ∀ (i : ℕ), f i ∈ N F i},
add_mem' :=
(_ :
∀ {a b : PolynomialModule R M},
a ∈ {f | ∀ (i : ℕ), f i ∈ N F i} →
b ∈ {f | ∀ (i : ℕ), f i ∈ N F i} → ∀ (i : ℕ), a i + b i ∈ N F i) },
zero_mem' := (_ : ∀ (i : ℕ), 0 ∈ N F i) }.toAddSubsemigroup.carrier
j k : ℕ
⊢ coeff ↑r (j, k).1 • f (j, k).2 ∈ N F ((j, k).1 + (j, k).2) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
| exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) | /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
| Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213 | /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ Filtration.submodule (F ⊓ F') = Filtration.submodule F ⊓ Filtration.submodule F' | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
| ext | theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
| Mathlib.RingTheory.Filtration.282_0.wQ6WBws0g3n9213 | theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule | Mathlib_RingTheory_Filtration |
case h
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
x✝ : PolynomialModule R M
⊢ x✝ ∈ Filtration.submodule (F ⊓ F') ↔ x✝ ∈ Filtration.submodule F ⊓ Filtration.submodule F' | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
| exact forall_and | theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
| Mathlib.RingTheory.Filtration.282_0.wQ6WBws0g3n9213 | theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) = (Filtration.submodule F).toAddSubmonoid | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
| apply le_antisymm | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) ≤ (Filtration.submodule F).toAddSubmonoid | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· | rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· | Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ ∀ (i : ℕ), ⇑(single R i) '' ↑(N F i) ⊆ ↑(Filtration.submodule F).toAddSubmonoid | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
| rintro i _ ⟨m, hm, rfl⟩ j | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
i : ℕ
m : M
hm : m ∈ ↑(N F i)
j : ℕ
⊢ ((single R i) m) j ∈ N F j | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
| rw [single_apply] | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
i : ℕ
m : M
hm : m ∈ ↑(N F i)
j : ℕ
⊢ (if i = j then m else 0) ∈ N F j | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
| split_ifs with h | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case pos
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h✝ : Stable F
i : ℕ
m : M
hm : m ∈ ↑(N F i)
j : ℕ
h : i = j
⊢ m ∈ N F j | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· | rwa [← h] | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· | Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case neg
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h✝ : Stable F
i : ℕ
m : M
hm : m ∈ ↑(N F i)
j : ℕ
h : ¬i = j
⊢ 0 ∈ N F j | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· | exact (F.N j).zero_mem | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· | Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ (Filtration.submodule F).toAddSubmonoid ≤ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· | intro f hf | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· | Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
f : PolynomialModule R M
hf : f ∈ (Filtration.submodule F).toAddSubmonoid
⊢ f ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
| rw [← f.sum_single] | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
case a
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
f : PolynomialModule R M
hf : f ∈ (Filtration.submodule F).toAddSubmonoid
⊢ Finsupp.sum f Finsupp.single ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
| apply AddSubmonoid.sum_mem _ _ | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
f : PolynomialModule R M
hf : f ∈ (Filtration.submodule F).toAddSubmonoid
⊢ ∀ c ∈ f.support, (fun₀ | c => f c) ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
| rintro c - | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
f : PolynomialModule R M
hf : f ∈ (Filtration.submodule F).toAddSubmonoid
c : ℕ
⊢ (fun₀ | c => f c) ∈ AddSubmonoid.closure (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
| exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
| Mathlib.RingTheory.Filtration.298_0.wQ6WBws0g3n9213 | theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i)) = Filtration.submodule F | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
| rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] | theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
| Mathlib.RingTheory.Filtration.314_0.wQ6WBws0g3n9213 | theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
⊢ Submodule.span ↥(reesAlgebra I) ↑(Filtration.submodule F) = Filtration.submodule F | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
| exact Submodule.span_eq (Filtration.submodule F) | theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
| Mathlib.RingTheory.Filtration.314_0.wQ6WBws0g3n9213 | theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ↔
∀ n ≥ n₀, I • N F n = N F (n + 1) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
| rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ (∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))) ↔
∀ n ≥ n₀, I • N F n = N F (n + 1)
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ≤
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
| swap | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) ≤
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · | exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _) | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ (∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))) ↔
∀ n ≥ n₀, I • N F n = N F (n + 1) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
| constructor | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ (∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))) →
∀ n ≥ n₀, I • N F n = N F (n + 1) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· | intro H n hn | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
⊢ I • N F n = N F (n + 1) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
| refine' (F.smul_le n).antisymm _ | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
⊢ N F (n + 1) ≤ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
| intro x hx | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
⊢ x ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
| obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
(Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l =
(single R (n + 1)) x
⊢ x ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
| replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
(fun f => f (n + 1))
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l) =
(fun f => f (n + 1)) ((single R (n + 1)) x)
⊢ x ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
| dsimp only at hl | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
((single R (n + 1)) x) (n + 1)
⊢ x ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
| erw [Finsupp.single_eq_same] at hl | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
⊢ x ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
| rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mp.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
⊢ (Finsupp.sum l fun a₁ b => (b • ↑a₁) (n + 1)) ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
| apply Submodule.sum_mem _ _ | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
⊢ ∀ c ∈ l.support, (fun a₁ b => (b • ↑a₁) (n + 1)) c (l c) ∈ I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
| rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mk.intro.intro.intro.intro.intro.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
⊢ (fun a₁ b => (b • ↑a₁) (n + 1))
{ val := (single R n') m,
property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }
(l
{ val := (single R n') m,
property := (_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }) ∈
I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
| dsimp only [Subtype.coe_mk] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mk.intro.intro.intro.intro.intro.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
⊢ (l
{ val := (single R n') m,
property :=
(_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) } •
(single R n') m)
(n + 1) ∈
I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
| rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
⊢ n' ≤ n + 1 | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by | linarith | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mk.intro.intro.intro.intro.intro.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
⊢ coeff
(↑(l
{ val := (single R n') m,
property :=
(_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }))
(n + 1 - n') •
m ∈
I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
| have e : n' ≤ n := by linarith | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
⊢ n' ≤ n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by | linarith | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mk.intro.intro.intro.intro.intro.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
e : n' ≤ n
⊢ coeff
(↑(l
{ val := (single R n') m,
property :=
(_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }))
(n + 1 - n') •
m ∈
I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
| have := F.pow_smul_le_pow_smul (n - n') n' 1 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mk.intro.intro.intro.intro.intro.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
e : n' ≤ n
this : I ^ (n - n' + 1) • N F n' ≤ I ^ 1 • N F (n - n' + n')
⊢ coeff
(↑(l
{ val := (single R n') m,
property :=
(_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }))
(n + 1 - n') •
m ∈
I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
| rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mk.intro.intro.intro.intro.intro.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
H :
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
n : ℕ
hn : n ≥ n₀
x : M
hx : x ∈ N F (n + 1)
l : ↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) →₀ ↥(reesAlgebra I)
hl :
((Finsupp.total (↑(⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) (PolynomialModule R M) (↥(reesAlgebra I))
Subtype.val)
l)
(n + 1) =
x
n' : ℕ
hn' : n' ≤ n₀
m : M
hm : m ∈ ↑(N F n')
e : n' ≤ n
this : I ^ (n + 1 - n') • N F n' ≤ I • N F n
⊢ coeff
(↑(l
{ val := (single R n') m,
property :=
(_ : ∃ t ∈ Set.range fun i => ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i), (single R n') m ∈ t) }))
(n + 1 - n') •
m ∈
I • N F n | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
| exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mpr
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
n₀ : ℕ
⊢ (∀ n ≥ n₀, I • N F n = N F (n + 1)) →
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· | let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mpr
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
⊢ (∀ n ≥ n₀, I • N F n = N F (n + 1)) →
∀ (i : ℕ),
⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
| intro hF i | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mpr
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
i : ℕ
⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
| have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
i : ℕ
⊢ ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F' | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
| intro i hi | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
i✝ i : ℕ
hi : i ≤ n₀
⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑F' | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
| refine Set.Subset.trans ?_ Submodule.subset_span | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
i✝ i : ℕ
hi : i ≤ n₀
⊢ ⇑(single R i) '' ↑(N F i) ⊆ ⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
| refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
i✝ i : ℕ
hi : i ≤ n₀
⊢ i ≤ n₀ | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
| exact hi | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mpr
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
i : ℕ
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
⊢ ⇑(single R i) '' ↑(N F i) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
| induction' i with j hj | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mpr.zero
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
⊢ ⇑(single R Nat.zero) '' ↑(N F Nat.zero) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· | exact this _ (zero_le _) | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case mpr.succ
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
| by_cases hj' : j.succ ≤ n₀ | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case pos
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : Nat.succ j ≤ n₀
⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· | exact this _ hj' | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : ¬Nat.succ j ≤ n₀
⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
| simp only [not_le, Nat.lt_succ_iff] at hj' | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
⊢ ⇑(single R (Nat.succ j)) '' ↑(N F (Nat.succ j)) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
| rw [Nat.succ_eq_add_one, ← hF _ hj'] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
⊢ ⇑(single R (j + 1)) '' ↑(I • N F j) ⊆
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
| rintro _ ⟨m, hm, rfl⟩ | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
m : M
hm : m ∈ ↑(I • N F j)
⊢ (single R (j + 1)) m ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
| refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg.intro.intro.refine'_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
m : M
hm : m ∈ ↑(I • N F j)
r : R
hr : r ∈ I
m' : M
hm' : m' ∈ N F j
⊢ (single R (j + 1)) (r • m') ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· | rw [add_comm, ← monomial_smul_single] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg.intro.intro.refine'_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
m : M
hm : m ∈ ↑(I • N F j)
r : R
hr : r ∈ I
m' : M
hm' : m' ∈ N F j
⊢ (monomial 1) r • (single R j) m' ∈
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
| exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
m : M
hm : m ∈ ↑(I • N F j)
r : R
hr : r ∈ I
m' : M
hm' : m' ∈ N F j
⊢ r ∈ I ^ 1 | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by | rwa [pow_one] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg.intro.intro.refine'_2
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
m : M
hm : m ∈ ↑(I • N F j)
x y : M
hx : (single R (j + 1)) x ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hy : (single R (j + 1)) y ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
⊢ (single R (j + 1)) (x + y) ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· | rw [map_add] | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· | Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
case neg.intro.intro.refine'_2
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
n₀ : ℕ
F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) :=
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))
hF : ∀ n ≥ n₀, I • N F n = N F (n + 1)
this : ∀ i ≤ n₀, ⇑(single R i) '' ↑(N F i) ⊆ ↑F'
j : ℕ
hj : ⇑(single R j) '' ↑(N F j) ⊆ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hj' : n₀ ≤ j
m : M
hm : m ∈ ↑(I • N F j)
x y : M
hx : (single R (j + 1)) x ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
hy : (single R (j + 1)) y ∈ ↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
⊢ (single R (j + 1)) x + (single R (j + 1)) y ∈
↑(Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
| exact F'.add_mem hx hy | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
| Mathlib.RingTheory.Filtration.320_0.wQ6WBws0g3n9213 | theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
⊢ Submodule.FG (Filtration.submodule F) ↔ Stable F | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
| classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
⊢ Submodule.FG (Filtration.submodule F) ↔ Stable F | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
| delta Ideal.Filtration.Stable | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
⊢ Submodule.FG (Filtration.submodule F) ↔ ∃ n₀, ∀ n ≥ n₀, I • N F n = N F (n + 1) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
| simp_rw [← F.submodule_eq_span_le_iff_stable_ge] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
⊢ Submodule.FG (Filtration.submodule F) ↔
∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
| constructor | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
⊢ Submodule.FG (Filtration.submodule F) →
∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· | rintro H | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
⊢ ∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
| refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
⊢ Monotone fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· | intro n m e | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
n m : ℕ
e : n ≤ m
⊢ (fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n ≤
(fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
| rw [Submodule.span_le, Set.iUnion₂_subset_iff] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
n m : ℕ
e : n ≤ m
⊢ ∀ i ≤ n,
⇑(single R i) '' ↑(N F i) ⊆
↑((fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
| intro i hi | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
n m : ℕ
e : n ≤ m
i : ℕ
hi : i ≤ n
⊢ ⇑(single R i) '' ↑(N F i) ⊆
↑((fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) m) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
| refine Set.Subset.trans ?_ Submodule.subset_span | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
n m : ℕ
e : n ≤ m
i : ℕ
hi : i ≤ n
⊢ ⇑(single R i) '' ↑(N F i) ⊆ ⋃ i, ⋃ (_ : i ≤ m), ⇑(single R i) '' ↑(N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
| refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_1
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
n m : ℕ
e : n ≤ m
i : ℕ
hi : i ≤ n
⊢ i ≤ m | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
| exact hi.trans e | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
⊢ iSup
⇑{ toFun := fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)),
monotone' :=
(_ :
∀ ⦃n m : ℕ⦄,
n ≤ m →
(fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) n ≤
(fun n₀ => Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)))
m) } =
Filtration.submodule F | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· | dsimp | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
⊢ ⨆ n₀, Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i)) = Filtration.submodule F | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
| rw [← Submodule.span_iUnion, ← submodule_span_single] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
⊢ Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ i_1, ⋃ (_ : i_1 ≤ i), ⇑(single R i_1) '' ↑(N F i_1)) =
Submodule.span (↥(reesAlgebra I)) (⋃ i, ⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
| congr 1 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
⊢ ⋃ i, ⋃ i_1, ⋃ (_ : i_1 ≤ i), ⇑(single R i_1) '' ↑(N F i_1) = ⋃ i, ⇑(single R i) '' ↑(N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
| ext | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s.h
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
x✝ : PolynomialModule R M
⊢ x✝ ∈ ⋃ i, ⋃ i_1, ⋃ (_ : i_1 ≤ i), ⇑(single R i_1) '' ↑(N F i_1) ↔ x✝ ∈ ⋃ i, ⇑(single R i) '' ↑(N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
| simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s.h
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
x✝ : PolynomialModule R M
⊢ (∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝) ↔ ∃ i, ∃ x ∈ N F i, (single R i) x = x✝ | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
| constructor | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s.h.mp
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
x✝ : PolynomialModule R M
⊢ (∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝) → ∃ i, ∃ x ∈ N F i, (single R i) x = x✝ | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· | rintro ⟨-, i, -, e⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s.h.mp.intro.intro.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
x✝ : PolynomialModule R M
i : ℕ
e : ∃ x ∈ N F i, (single R i) x = x✝
⊢ ∃ i, ∃ x ∈ N F i, (single R i) x = x✝ | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; | exact ⟨i, e⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s.h.mpr
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
x✝ : PolynomialModule R M
⊢ (∃ i, ∃ x ∈ N F i, (single R i) x = x✝) → ∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝ | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· | rintro ⟨i, e⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mp.refine_2.e_s.h.mpr.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
H : Submodule.FG (Filtration.submodule F)
x✝ : PolynomialModule R M
i : ℕ
e : ∃ x ∈ N F i, (single R i) x = x✝
⊢ ∃ i, ∃ i_1 ≤ i, ∃ x ∈ N F i_1, (single R i_1) x = x✝ | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; | exact ⟨i, i, le_refl i, e⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
⊢ (∃ n₀, Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(N F i))) →
Submodule.FG (Filtration.submodule F) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· | rintro ⟨n, hn⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
⊢ Submodule.FG (Filtration.submodule F) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
| rw [hn] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
⊢ Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
| simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype'] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
⊢ Submodule.FG (⨆ x, Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑x) '' ↑(N F ↑x))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
| apply Submodule.fg_iSup | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro.h
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
⊢ ∀ (i : { i // i ∈ Finset.range (Nat.succ n) }),
Submodule.FG (Submodule.span (↥(reesAlgebra I)) (⇑(single R ↑i) '' ↑(N F ↑i))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
| rintro ⟨i, hi⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro.h.mk
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
i : ℕ
hi : i ∈ Finset.range (Nat.succ n)
⊢ Submodule.FG
(Submodule.span (↥(reesAlgebra I))
(⇑(single R ↑{ val := i, property := hi }) '' ↑(N F ↑{ val := i, property := hi }))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
| obtain ⟨s, hs⟩ := hF' i | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro.h.mk.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
i : ℕ
hi : i ∈ Finset.range (Nat.succ n)
s : Finset M
hs : Submodule.span R ↑s = N F i
⊢ Submodule.FG
(Submodule.span (↥(reesAlgebra I))
(⇑(single R ↑{ val := i, property := hi }) '' ↑(N F ↑{ val := i, property := hi }))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
| have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
i : ℕ
hi : i ∈ Finset.range (Nat.succ n)
s : Finset M
hs : Submodule.span R ↑s = N F i
⊢ Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) =
Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
| rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
i : ℕ
hi : i ∈ Finset.range (Nat.succ n)
s : Finset M
hs : Submodule.span R ↑s = N F i
⊢ Submodule.span ↥(reesAlgebra I) ↑(Submodule.map (lsingle R i) (N F i)) =
Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; | rfl | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; | Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro.h.mk.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
i : ℕ
hi : i ∈ Finset.range (Nat.succ n)
s : Finset M
hs : Submodule.span R ↑s = N F i
this :
Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) =
Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i))
⊢ Submodule.FG
(Submodule.span (↥(reesAlgebra I))
(⇑(single R ↑{ val := i, property := hi }) '' ↑(N F ↑{ val := i, property := hi }))) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
| rw [Subtype.coe_mk, ← this] | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
case mpr.intro.h.mk.intro
R M : Type u
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
I : Ideal R
F F' : Filtration I M
h : Stable F
hF' : ∀ (i : ℕ), Submodule.FG (N F i)
n : ℕ
hn : Filtration.submodule F = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(N F i))
i : ℕ
hi : i ∈ Finset.range (Nat.succ n)
s : Finset M
hs : Submodule.span R ↑s = N F i
this :
Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) =
Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(N F i))
⊢ Submodule.FG (Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s)) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
| exact ⟨_, rfl⟩ | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
| Mathlib.RingTheory.Filtration.366_0.wQ6WBws0g3n9213 | /-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Stable F
F' : Filtration I M
hf : F' ≤ F
⊢ Stable F' | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
| rw [← submodule_fg_iff_stable] at hF ⊢ | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
| Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Submodule.FG (Filtration.submodule F)
F' : Filtration I M
hf : F' ≤ F
⊢ Submodule.FG (Filtration.submodule F')
case hF'
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Submodule.FG (Filtration.submodule F)
F' : Filtration I M
hf : F' ≤ F
⊢ ∀ (i : ℕ), Submodule.FG (N F' i)
case hF'
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Stable F
F' : Filtration I M
hf : F' ≤ F
⊢ ∀ (i : ℕ), Submodule.FG (N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
| any_goals intro i; exact IsNoetherian.noetherian _ | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
| Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Submodule.FG (Filtration.submodule F)
F' : Filtration I M
hf : F' ≤ F
⊢ Submodule.FG (Filtration.submodule F') | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals | intro i | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals | Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
case hF'
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Submodule.FG (Filtration.submodule F)
F' : Filtration I M
hf : F' ≤ F
⊢ ∀ (i : ℕ), Submodule.FG (N F' i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals | intro i | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals | Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
case hF'
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Submodule.FG (Filtration.submodule F)
F' : Filtration I M
hf : F' ≤ F
i : ℕ
⊢ Submodule.FG (N F' i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; | exact IsNoetherian.noetherian _ | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; | Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
case hF'
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Stable F
F' : Filtration I M
hf : F' ≤ F
⊢ ∀ (i : ℕ), Submodule.FG (N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals | intro i | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals | Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
case hF'
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Stable F
F' : Filtration I M
hf : F' ≤ F
i : ℕ
⊢ Submodule.FG (N F i) | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; | exact IsNoetherian.noetherian _ | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; | Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |
R M : Type u
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
I : Ideal R
F F'✝ : Filtration I M
h : Stable F
inst✝¹ : IsNoetherianRing R
inst✝ : Module.Finite R M
hF : Submodule.FG (Filtration.submodule F)
F' : Filtration I M
hf : F' ≤ F
⊢ Submodule.FG (Filtration.submodule F') | /-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.ReesAlgebra
import Mathlib.RingTheory.Finiteness
import Mathlib.Data.Polynomial.Module
import Mathlib.Order.Hom.Lattice
#align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a"
/-!
# `I`-filtrations of modules
This file contains the definitions and basic results around (stable) `I`-filtrations of modules.
## Main results
- `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules
`N i` such that `I • N ≤ I (i + 1)`. Note that we do not require the filtration to start from `⊤`.
- `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I • (N i) = N (i + 1)` for large
enough `i`.
- `Ideal.Filtration.submodule`: The associated module `⨁ Nᵢ` of a filtration, implemented as a
submodule of `M[X]`.
- `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then
`F.Stable` iff `F.submodule.FG`.
- `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring,
if `F' ≤ F`, then `F.Stable → F'.Stable`.
- `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**.
given `N ≤ M`, there exists a `k` such that `IⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)` for all `n ≥ k`.
- `Ideal.iInf_pow_eq_bot_of_localRing`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian local rings.
- `Ideal.iInf_pow_eq_bot_of_isDomain`:
**Krull's intersection theorem** (`⨅ i, I ^ i = ⊥`) for noetherian domains.
-/
universe u v
variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R)
open Polynomial
open scoped Polynomial BigOperators
/-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that
`I • (N i) ≤ N (i + 1)`. Note that we do not require the filtration to start from `⊤`. -/
@[ext]
structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where
N : ℕ → Submodule R M
mono : ∀ i, N (i + 1) ≤ N i
smul_le : ∀ i, I • N i ≤ N (i + 1)
#align ideal.filtration Ideal.Filtration
variable (F F' : I.Filtration M) {I}
namespace Ideal.Filtration
theorem pow_smul_le (i j : ℕ) : I ^ i • F.N j ≤ F.N (i + j) := by
induction' i with _ ih
· simp
· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
#align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le
theorem pow_smul_le_pow_smul (i j k : ℕ) : I ^ (i + k) • F.N j ≤ I ^ k • F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
#align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul
protected theorem antitone : Antitone F.N :=
antitone_nat_of_succ_le F.mono
#align ideal.filtration.antitone Ideal.Filtration.antitone
/-- The trivial `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N _ := N
mono _ := le_of_eq rfl
smul_le _ := Submodule.smul_le_right
#align ideal.trivial_filtration Ideal.trivialFiltration
/-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Sup (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊔ F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i =>
(le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : SupSet (I.Filtration M) :=
⟨fun S =>
{ N := sSup (Ideal.Filtration.N '' S)
mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
/-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/
instance : Inf (I.Filtration M) :=
⟨fun F F' =>
⟨F.N ⊓ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i =>
(Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/
instance : InfSet (I.Filtration M) :=
⟨fun S =>
{ N := sInf (Ideal.Filtration.N '' S)
mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i }⟩
instance : Top (I.Filtration M) :=
⟨I.trivialFiltration ⊤⟩
instance : Bot (I.Filtration M) :=
⟨I.trivialFiltration ⊥⟩
@[simp]
theorem sup_N : (F ⊔ F').N = F.N ⊔ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.sup_N Ideal.Filtration.sup_N
@[simp]
theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Sup_N Ideal.Filtration.sSup_N
@[simp]
theorem inf_N : (F ⊓ F').N = F.N ⊓ F'.N :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.inf_N Ideal.Filtration.inf_N
@[simp]
theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.Inf_N Ideal.Filtration.sInf_N
@[simp]
theorem top_N : (⊤ : I.Filtration M).N = ⊤ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.top_N Ideal.Filtration.top_N
@[simp]
theorem bot_N : (⊥ : I.Filtration M).N = ⊥ :=
rfl
set_option linter.uppercaseLean3 false in
#align ideal.filtration.bot_N Ideal.Filtration.bot_N
@[simp]
theorem iSup_N {ι : Sort*} (f : ι → I.Filtration M) : (iSup f).N = ⨆ i, (f i).N :=
congr_arg sSup (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.supr_N Ideal.Filtration.iSup_N
@[simp]
theorem iInf_N {ι : Sort*} (f : ι → I.Filtration M) : (iInf f).N = ⨅ i, (f i).N :=
congr_arg sInf (Set.range_comp _ _).symm
set_option linter.uppercaseLean3 false in
#align ideal.filtration.infi_N Ideal.Filtration.iInf_N
instance : CompleteLattice (I.Filtration M) :=
Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N
(fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N
instance : Inhabited (I.Filtration M) :=
⟨⊥⟩
/-- An `I` filtration is stable if `I • F.N n = F.N (n+1)` for large enough `n`. -/
def Stable : Prop :=
∃ n₀, ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
#align ideal.filtration.stable Ideal.Filtration.Stable
/-- The trivial stable `I`-filtration of `N`. -/
@[simps]
def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where
N i := I ^ i • N
mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right
smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration Ideal.stableFiltration
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) :
(I.stableFiltration N).Stable := by
use 0
intro n _
dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
#align ideal.stable_filtration_stable Ideal.stableFiltration_stable
variable {F F'} (h : F.Stable)
theorem Stable.exists_pow_smul_eq : ∃ n₀, ∀ k, F.N (n₀ + k) = I ^ k • F.N n₀ := by
obtain ⟨n₀, hn⟩ := h
use n₀
intro k
induction' k with _ ih
· simp
· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
#align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
obtain ⟨n₀, hn₀⟩ := h.exists_pow_smul_eq
use n₀
intro n hn
convert hn₀ (n - n₀)
rw [add_comm, tsub_add_cancel_of_le hn]
#align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
theorem stable_iff_exists_pow_smul_eq_of_ge :
F.Stable ↔ ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ,
tsub_add_eq_add_tsub hn]
#align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≤ F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n := by
obtain ⟨n₀, hF⟩ := h
use n₀
intro n
induction' n with n hn
· refine' (F.antitone _).trans e; simp
· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
#align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) :
∃ n₀, ∀ n, F.N (n + n₀) ≤ F'.N n ∧ F'.N (n + n₀) ≤ F.N n := by
obtain ⟨n₁, h₁⟩ := h.exists_forall_le (le_of_eq e)
obtain ⟨n₂, h₂⟩ := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ n₂
intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (h₂ n)⟩ <;> simp
#align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference
open PolynomialModule
variable (F F')
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/
protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where
carrier := { f | ∀ i, f i ∈ F.N i }
add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i)
zero_mem' i := Submodule.zero_mem _
smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
subst e
exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k))
#align ideal.filtration.submodule Ideal.Filtration.submodule
@[simp]
theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ ∀ i, f i ∈ F.N i :=
Iff.rfl
#align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule
theorem inf_submodule : (F ⊓ F').submodule = F.submodule ⊓ F'.submodule := by
ext
exact forall_and
#align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule
variable (I M)
/-- `Ideal.Filtration.submodule` as an `InfHom`. -/
def submoduleInfHom :
InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where
toFun := Ideal.Filtration.submodule
map_inf' := inf_submodule
#align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom
variable {I M}
theorem submodule_closure_single :
AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by
apply le_antisymm
· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff]
rintro i _ ⟨m, hm, rfl⟩ j
rw [single_apply]
split_ifs with h
· rwa [← h]
· exact (F.N j).zero_mem
· intro f hf
rw [← f.sum_single]
apply AddSubmonoid.sum_mem _ _
rintro c -
exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c))
#align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single
theorem submodule_span_single :
Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by
rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid]
exact Submodule.span_eq (Filtration.submodule F)
#align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) :
F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔
∀ n ≥ n₀, I • F.N n = F.N (n + 1) := by
rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff]
swap; · exact Submodule.span_mono (Set.iUnion₂_subset_iUnion _ _)
constructor
· intro H n hn
refine' (F.smul_le n).antisymm _
intro x hx
obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩)
replace hl := congr_arg (fun f : ℕ →₀ M => f (n + 1)) hl
dsimp only at hl
erw [Finsupp.single_eq_same] at hl
rw [← hl, Finsupp.total_apply, Finsupp.sum_apply]
apply Submodule.sum_mem _ _
rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ -
dsimp only [Subtype.coe_mk]
rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≤ n + 1 by linarith)]
have e : n' ≤ n := by linarith
have := F.pow_smul_le_pow_smul (n - n') n' 1
rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this
exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm)
· let F' := Submodule.span (reesAlgebra I) (⋃ i ≤ n₀, single R i '' (F.N i : Set M))
intro hF i
have : ∀ i ≤ n₀, single R i '' (F.N i : Set M) ⊆ F' := by
-- Porting note: Original proof was
-- `fun i hi => Set.Subset.trans (Set.subset_iUnion₂ i hi) Submodule.subset_span`
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi
induction' i with j hj
· exact this _ (zero_le _)
by_cases hj' : j.succ ≤ n₀
· exact this _ hj'
simp only [not_le, Nat.lt_succ_iff] at hj'
rw [Nat.succ_eq_add_one, ← hF _ hj']
rintro _ ⟨m, hm, rfl⟩
refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _)
· rw [add_comm, ← monomial_smul_single]
exact F'.smul_mem
⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm')
· rw [map_add]
exact F'.add_mem hx hy
#align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
/-- If the components of a filtration are finitely generated, then the filtration is stable iff
its associated submodule of is finitely generated. -/
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by
classical
delta Ideal.Filtration.Stable
simp_rw [← F.submodule_eq_span_le_iff_stable_ge]
constructor
· rintro H
refine H.stablizes_of_iSup_eq
⟨fun n₀ => Submodule.span _ (⋃ (i : ℕ) (_ : i ≤ n₀), single R i '' ↑(F.N i)), ?_⟩ ?_
· intro n m e
rw [Submodule.span_le, Set.iUnion₂_subset_iff]
intro i hi
refine Set.Subset.trans ?_ Submodule.subset_span
refine @Set.subset_iUnion₂ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_
exact hi.trans e
· dsimp
rw [← Submodule.span_iUnion, ← submodule_span_single]
congr 1
ext
simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop]
constructor
· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩
· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩
· rintro ⟨n, hn⟩
rw [hn]
simp_rw [Submodule.span_iUnion₂, ← Finset.mem_range_succ_iff, iSup_subtype']
apply Submodule.fg_iSup
rintro ⟨i, hi⟩
obtain ⟨s, hs⟩ := hF' i
have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) =
Submodule.span _ (single R i '' (F.N i : Set M)) := by
rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl
rw [Subtype.coe_mk, ← this]
exact ⟨_, rfl⟩
#align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable
variable {F}
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; exact IsNoetherian.noetherian _
| have := isNoetherian_of_fg_of_noetherian _ hF | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable := by
rw [← submodule_fg_iff_stable] at hF ⊢
any_goals intro i; exact IsNoetherian.noetherian _
| Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213 | theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable)
{F' : I.Filtration M} (hf : F' ≤ F) : F'.Stable | Mathlib_RingTheory_Filtration |