code
stringlengths 1
13.8M
|
---|
vpc_cens <- function(sim = NULL,
obs = NULL,
psn_folder = NULL,
bins = "jenks",
n_bins = 8,
bin_mid = "mean",
obs_cols = NULL,
sim_cols = NULL,
software = "auto",
show = NULL,
stratify = NULL,
stratify_color = NULL,
ci = c(0.05, 0.95),
uloq = NULL,
lloq = NULL,
plot = FALSE,
xlab = "Time",
ylab = "Probability of <LOQ",
title = NULL,
smooth = TRUE,
vpc_theme = NULL,
facet = "wrap",
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE) {
if(is.null(uloq) & is.null(lloq)) {
stop("You have to specify either a lower limit of quantification (lloq=...) or an upper limit (uloq=...).")
}
if(!is.null(uloq) & !is.null(lloq)) {
stop("You have to specify either a lower limit of quantification (lloq=...) or an upper limit (uloq=...), but you can't specify both.")
}
if(is.null(lloq)) {
type <- "right-censored"
}
if(is.null(uloq)) {
type <- "left-censored"
}
if(is.null(obs) & is.null(sim)) {
stop("At least a simulation or an observation dataset are required to create a plot!")
}
if(!is.null(psn_folder)) {
if(!is.null(obs)) {
obs <- read_table_nm(paste0(psn_folder, "/m1/", dir(paste0(psn_folder, "/m1"), pattern="original.npctab")[1]))
}
if(!is.null(sim)) {
sim <- read_table_nm(paste0(psn_folder, "/m1/", dir(paste0(psn_folder, "/m1"), pattern="simulation.1.npctab")[1]))
}
software = "nonmem"
}
if (!is.null(obs)) {
software_type <- guess_software(software, obs)
} else {
software_type <- guess_software(software, sim)
}
if(!is.null(stratify)) {
if(!is.null(obs)) {
check_stratification_columns_available(obs, stratify, "observation")
}
if(!is.null(sim)) {
check_stratification_columns_available(sim, stratify, "simulation")
}
}
if(!is.null(stratify_color)) {
if(!is.null(obs)) {
check_stratification_columns_available(obs, stratify_color, "observation")
}
if(!is.null(obs)) {
check_stratification_columns_available(sim, stratify_color, "simulation")
}
}
show <- replace_list_elements(show_default, show)
cols <- define_data_columns(sim, obs, sim_cols, obs_cols, software_type)
if(!is.null(obs)) {
old_class <- class(obs)
class(obs) <- c(software_type, old_class)
}
if(!is.null(sim)) {
old_class <- class(sim)
class(sim) <- c(software_type, old_class)
}
if(!is.null(obs)) {
obs <- filter_dv(obs, verbose)
obs <- format_vpc_input_data(obs, cols$obs, lloq, uloq, stratify, bins, FALSE, 0, "observed", verbose)
}
if(!is.null(sim)) {
sim <- filter_dv(sim, verbose)
sim <- format_vpc_input_data(sim, cols$sim, NULL, NULL, stratify, bins, FALSE, 0, "simulated", verbose)
sim$sim <- add_sim_index_number(sim)
}
stratify_original <- stratify
if(!is.null(stratify_color)) {
if (is.null(stratify)) {
stratify <- stratify_color
}
if (length(stratify_color) > 1) {
stop("Error: please specify only 1 stratification variable for color!")
}
if (!stratify_color %in% stratify) {
stratify_original <- stratify
stratify <- c(stratify, stratify_color)
}
}
if (class(bins) != "numeric") {
if(!is.null(obs)) {
bins <- auto_bin(obs, type = bins, n_bins = n_bins)
} else {
bins <- auto_bin(sim, type = bins, n_bins = n_bins)
}
if (is.null(bins)) {
msg("Automatic binning unsuccessful, try increasing the number of bins, or specify vector of bin separators manually.", verbose)
}
}
bins <- unique(bins)
if(!is.null(obs)) {
obs <- bin_data(obs, bins, "idv")
}
if(!is.null(sim)) {
sim <- bin_data(sim, bins, "idv")
}
if(!is.null(lloq)) {
cens <- "left"
limit <- lloq
} else {
cens <- "right"
limit <- uloq
}
if (!is.null(sim)) {
tmp1 <- sim %>%
dplyr::group_by(strat, sim, bin)
vpc_dat <- tmp1 %>%
dplyr::summarise(ploq = loq_perc(dv, limit = limit, cens = cens),
mn_idv = mean(idv)) %>%
dplyr::group_by(strat, bin) %>%
dplyr::summarise(q50.low = quantile(ploq, ci[1]),
q50.med = quantile(ploq, 0.5),
q50.up = quantile(ploq, ci[2]),
bin_mid = mean(mn_idv)) %>%
dplyr::ungroup()
vpc_dat$bin_min <- rep(bins[1:(length(bins)-1)], length(unique(vpc_dat$strat)))[vpc_dat$bin]
vpc_dat$bin_max <- rep(bins[2:length(bins)], length(unique(vpc_dat$strat)))[vpc_dat$bin]
if(bin_mid == "middle") {
vpc_dat$bin_mid <- apply(dplyr::bind_cols(vpc_dat$bin_min, vpc_dat$bin_max), 1, mean)
}
} else {
vpc_dat <- NULL
}
if(!is.null(obs)) {
tmp <- obs %>%
dplyr::group_by(strat,bin)
aggr_obs <- tmp %>%
dplyr::summarise(obs50 = loq_perc(dv, limit = lloq, cens = cens),
bin_mid = mean(idv)) %>%
dplyr::ungroup()
aggr_obs$bin_min <- rep(bins[1:(length(bins)-1)], length(unique(aggr_obs$strat)) )[aggr_obs$bin]
aggr_obs$bin_max <- rep(bins[2:length(bins)], length(unique(aggr_obs$strat)) )[aggr_obs$bin]
if(bin_mid == "middle") {
aggr_obs$bin_mid <- apply(dplyr::bind_cols(aggr_obs$bin_min, aggr_obs$bin_max), 1, mean)
}
} else {
aggr_obs <- NULL
}
if (!is.null(stratify_original)) {
if (length(stratify) == 2) {
vpc_dat$strat1 <- unlist(strsplit(as.character(vpc_dat$strat), ", "))[(1:length(vpc_dat$strat)*2)-1]
vpc_dat$strat2 <- unlist(strsplit(as.character(vpc_dat$strat), ", "))[(1:length(vpc_dat$strat)*2)]
aggr_obs$strat1 <- unlist(strsplit(as.character(aggr_obs$strat), ", "))[(1:length(aggr_obs$strat)*2)-1]
aggr_obs$strat2 <- unlist(strsplit(as.character(aggr_obs$strat), ", "))[(1:length(aggr_obs$strat)*2)]
}
}
show$obs_dv = FALSE
show$obs_ci = FALSE
show$obs_median = TRUE
show$sim_median = FALSE
show$sim_median_ci = TRUE
show$pi_as_area = FALSE
show$pi_ci = FALSE
show$pi = FALSE
vpc_db <- list(sim = sim,
vpc_dat = vpc_dat,
stratify = stratify,
stratify_original = stratify_original,
stratify_color = stratify_color,
aggr_obs = aggr_obs,
obs = obs,
bins = bins,
facet = facet,
labeller = labeller,
type = "censored",
xlab = xlab,
ylab = ylab)
if(vpcdb) {
return(vpc_db)
} else {
pl <- plot_vpc(db = vpc_db,
show = show,
vpc_theme = vpc_theme,
smooth = smooth,
log_y = FALSE,
title = title)
return(pl)
}
} |
PV_pre_triang_dis=function(data,years=10){
app=rep(NA,years)
for(i in 1:years) app[i]=triangular_moments_dis_U(data,i)
PV=1+sum(app[1:years-1])
return(PV)
} |
do.dne <- function(X, label, ndim=2, numk=max(ceiling(nrow(X)/10),2),
preprocess=c("center","scale","cscale","decorrelate","whiten")){
aux.typecheck(X)
n = nrow(X)
p = ncol(X)
ndim = as.integer(ndim)
if (!check_ndim(ndim,p)){stop("* do.dne : 'ndim' is a positive integer in [1,
numk = as.integer(numk)
if (!check_NumMM(numk,1,n/2,compact=FALSE)){stop("* do.dne : 'numk' should be an integer in [2,nrow(X)/2).")}
if (missing(preprocess)){ algpreprocess = "center" }
else { algpreprocess = match.arg(preprocess) }
label = check_label(label, n)
ulabel = unique(label)
if (any(is.na(label))||(any(is.infinite(label)))){stop("* Supervised Learning : any element of 'label' as NA or Inf will simply be considered as a class, not missing entries.") }
tmplist = aux.preprocess.hidden(X,type=algpreprocess,algtype="linear")
trfinfo = tmplist$info
pX = tmplist$pX
nbdtype = c("knn",numk)
nbdsymmetric = "union"
nbdstruct = aux.graphnbd(pX,method="euclidean",
type=nbdtype,symmetric=nbdsymmetric)
nbdmask = nbdstruct$mask
matF = array(0,c(n,n))
for (i in 1:(n-1)){
for (j in (i+1):n){
if (nbdmask[i,j]==TRUE){
if (label[i]==label[j]){
matF[i,j] = 1.0
matF[j,i] = 1.0
} else {
matF[i,j] = -1.0
matF[j,i] = -1.0
}
}
}
}
matS = diag(rowSums(matF))-matF
costobj = t(pX)%*%(matS-matF)%*%pX
projection = aux.adjprojection(RSpectra::eigs(costobj, ndim, which="SR")$vectors)
result = list()
result$Y = pX%*%projection
result$trfinfo = trfinfo
result$projection = projection
return(result)
} |
structure <- function (.Data, ...)
{
if(is.null(.Data))
warning("Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.\n Consider 'structure(list(), *)' instead.")
attrib <- list(...)
if(length(attrib)) {
specials <- c(".Dim", ".Dimnames", ".Names", ".Tsp", ".Label")
attrnames <- names(attrib)
m <- match(attrnames, specials)
ok <- !is.na(m)
if(any(ok)) {
replace <- c("dim", "dimnames", "names", "tsp", "levels")
names(attrib)[ok] <- replace[m[ok]]
}
if(any(attrib[["class", exact = TRUE]] == "factor")
&& typeof(.Data) == "double")
storage.mode(.Data) <- "integer"
attributes(.Data) <- c(attributes(.Data), attrib)
}
.Data
} |
library(bmp)
posey <- c(30, 167, 332, 457, 822, 1016, 1199,
1437, 1621, 1770, 1924, 2101, 2251, 2442, 2594,
2757, 2918, 3072, 3205, 3356, 3526, 3685,
4068, 4217)
susac <- c(751, 1286, 1485, 1666, 2030,
2187)
v <- list.files("buster_posey_catching/")
v <- v[order(as.numeric(unlist(lapply(strsplit(v, split="i"), "[[", 1))))]
setwd("buster_posey_catching/")
full <- list()
for(i in 1:length(v))
{
full[[i]] <- read.bmp(v[i])
}
setwd("../")
posz <- vector()
for(i in 2:length(full))
{
posz[i] <- sum(abs(full[[i]][1:250,1:250,2:4]-full[[i-1]][1:250,1:250,2:4])>1)
print(i)
}
posm <- list()
for(i in 1:length(posey))
{
posm[[i]] <- posz[posey[i]:(posey[i]+100)]
}
v <- list.files("andrew_susac_catching/")
v <- v[order(as.numeric(unlist(lapply(strsplit(v, split="i"), "[[", 1))))]
setwd("andrew_susac_catching/")
full <- list()
for(i in 1:length(v))
{
full[[i]] <- read.bmp(v[i])
}
setwd("../")
susz <- vector()
for(i in 2:length(full))
{
susz[i] <- sum(abs(full[[i]][1:250,1:250,2:4]-full[[i-1]][1:250,1:250,2:4])>1)
print(i)
}
susm <- list()
for(i in 1:length(susac))
{
susm[[i]] <- susz[susac[i]:(susac[i]+100)]
}
posv <- vector()
susv <- vector()
for(i in 1:100)
{
posv[i] <- mean(unlist(lapply(posm, "[[", i)))
}
for(i in 1:100)
{
susv[i] <- mean(unlist(lapply(susm, "[[", i)))
}
plot(posv[1:20], type="l", col="red", lwd=3,
ylim=c(80000, 120000), xlab="Time", xaxt="no",
ylab="Total Pixel Movement")
lines(susv[1:20], type="l", col="blue", lwd=3)
axis(side=1, at=c(0,5,10,15,20),
labels=as.character(c(0,5,10,15,20)*.05)) |
QA_Results <- data.table::CJ(
Group = c(0, 1, 2, 3),
xregs = c(0, 1, 2, 3),
Trans = c(TRUE, FALSE),
Training = "Failure",
Forecast = "Failure"
)
for (run in seq_len(QA_Results[, .N])) {
if (QA_Results[run, Group] == 0) {
groupvars <- NULL
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
} else if (QA_Results[run, Group] == 1) {
groupvars <- "MarketingSegments"
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
} else if (QA_Results[run, Group] == 2) {
groupvars <- c("MarketingSegments", "MarketingSegments2")
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
} else if (QA_Results[run, Group] == 3) {
groupvars <- c("MarketingSegments", "MarketingSegments2", "MarketingSegments3")
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
}
keep <- names(LeadsData)
keep <- keep[!keep %in% c(groupvars, "CalendarDateColumn")]
ModelData[LeadsData, paste0(keep) := mget(paste0("i.", keep))]
setwd("C:/Users/Bizon/Documents/GitHub")
TestModel <- tryCatch(
{
RemixAutoML::AutoLightGBMFunnelCARMA(
data = ModelData,
GroupVariables = groupvars,
BaseFunnelMeasure = keep,
ConversionMeasure = "Appointments",
ConversionRateMeasure = NULL,
CohortPeriodsVariable = "CohortDays",
CalendarDate = "CalendarDateColumn",
CohortDate = "CohortDateColumn",
PartitionRatios = c(0.70, 0.20, 0.10),
TruncateDate = NULL,
TimeUnit = "days",
TransformTargetVariable = QA_Results[run, Trans],
TransformMethods = c("Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit"),
AnomalyDetection = list(tstat_high = 3, tstat_low = -2),
Jobs = c("eval", "train"),
SaveModelObjects = FALSE,
ModelID = "ModelTest",
ModelPath = getwd(),
MetaDataPath = NULL,
DebugMode = TRUE,
NumOfParDepPlots = 1L,
EncodingMethod = "credibility",
NThreads = parallel::detectCores() / 2,
CalendarTimeGroups = c("days", "weeks", "months"),
CohortTimeGroups = c("days", "weeks"),
CalendarVariables = c("wday", "mday", "yday", "week", "month", "quarter", "year"),
HolidayGroups = c("USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts"),
HolidayLookback = NULL,
CohortHolidayLags = c(1L, 2L, 7L),
CohortHolidayMovingAverages = c(3L, 7L),
CalendarHolidayLags = c(1L, 2L, 7L),
CalendarHolidayMovingAverages = c(3L, 7L),
ImputeRollStats = -0.001,
CalendarLags = list("day" = c(1L, 2L, 7L, 35L, 42L), "week" = c(5L, 6L, 10L, 12L, 25L, 26L)),
CalendarMovingAverages = list("day" = c(7L, 14L, 35L, 42L), "week" = c(5L, 6L, 10L, 12L, 20L, 24L), "month" = c(6L, 12L)),
CalendarStandardDeviations = NULL,
CalendarSkews = NULL,
CalendarKurts = NULL,
CalendarQuantiles = NULL,
CalendarQuantilesSelected = "q50",
CohortLags = list("day" = c(1L, 2L, 7L, 35L, 42L), "week" = c(5L, 6L)),
CohortMovingAverages = list("day" = c(7L, 14L, 35L, 42L), "week" = c(5L, 6L), "month" = c(1L, 2L)),
CohortStandardDeviations = NULL,
CohortSkews = NULL,
CohortKurts = NULL,
CohortQuantiles = NULL,
CohortQuantilesSelected = "q50",
PassInGrid = NULL,
GridTune = FALSE,
BaselineComparison = "default",
MaxModelsInGrid = 25L,
MaxRunMinutes = 180L,
MaxRunsWithoutNewWinner = 10L,
LossFunction = "regression",
EvalMetric = "mae",
GridEvalMetric = "mae",
Device_Type = "CPU",
Input_Model = NULL,
Task = "train",
Boosting = "gbdt",
LinearTree = FALSE,
Trees = 50,
ETA = 0.10,
Num_Leaves = 31,
Deterministic = TRUE,
Force_Col_Wise = FALSE,
Force_Row_Wise = FALSE,
Max_Depth = 6,
Min_Data_In_Leaf = 20,
Min_Sum_Hessian_In_Leaf = 0.001,
Bagging_Freq = 1.0,
Bagging_Fraction = 1.0,
Feature_Fraction = 1.0,
Feature_Fraction_Bynode = 1.0,
Lambda_L1 = 0.0,
Lambda_L2 = 0.0,
Extra_Trees = FALSE,
Early_Stopping_Round = 10,
First_Metric_Only = TRUE,
Max_Delta_Step = 0.0,
Linear_Lambda = 0.0,
Min_Gain_To_Split = 0,
Drop_Rate_Dart = 0.10,
Max_Drop_Dart = 50,
Skip_Drop_Dart = 0.50,
Uniform_Drop_Dart = FALSE,
Top_Rate_Goss = FALSE,
Other_Rate_Goss = FALSE,
Monotone_Constraints = NULL,
Monotone_Constraints_method = "advanced",
Monotone_Penalty = 0.0,
Forcedsplits_Filename = NULL,
Refit_Decay_Rate = 0.90,
Path_Smooth = 0.0,
Max_Bin = 255,
Min_Data_In_Bin = 3,
Data_Random_Seed = 1,
Is_Enable_Sparse = TRUE,
Enable_Bundle = TRUE,
Use_Missing = TRUE,
Zero_As_Missing = FALSE,
Two_Round = FALSE,
Convert_Model = NULL,
Convert_Model_Language = "cpp",
Boost_From_Average = TRUE,
Alpha = 0.90,
Fair_C = 1.0,
Poisson_Max_Delta_Step = 0.70,
Tweedie_Variance_Power = 1.5,
Lambdarank_Truncation_Level = 30,
Is_Provide_Training_Metric = TRUE,
Eval_At = c(1, 2, 3, 4, 5),
Num_Machines = 1,
Gpu_Platform_Id = -1,
Gpu_Device_Id = -1,
Gpu_Use_Dp = TRUE,
Num_Gpu = 1
)
},
error = function(x) NULL
)
if (!is.null(TestModel)) QA_Results[run, Training := "Success"]
data.table::fwrite(QA_Results, file = "C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/Testing_Data/AutoLightGBMFunnel_QA.csv")
if (!is.null(TestModel)) {
if (QA_Results[run, Group] == 0) {
groupvars <- NULL
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
} else if (QA_Results[run, Group] == 1) {
groupvars <- "MarketingSegments"
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
} else if (QA_Results[run, Group] == 2) {
groupvars <- c("MarketingSegments", "MarketingSegments2")
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
} else if (QA_Results[run, Group] == 3) {
groupvars <- c("MarketingSegments", "MarketingSegments2", "MarketingSegments3")
ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn"))
if (QA_Results[run, xregs] == 0) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 1) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 2) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn"))
} else if (QA_Results[run, xregs] == 3) {
LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn"))
}
}
LeadsData <- LeadsData[CalendarDateColumn < "2020-01-05"]
Test <- tryCatch(
{
RemixAutoML::AutoLightGBMFunnelCARMAScoring(
TrainData = ModelData,
ForwardLookingData = LeadsData,
TrainEndDate = ModelData[, max(CalendarDateColumn)],
ForecastEndDate = LeadsData[, max(CalendarDateColumn)],
TrainOutput = TestModel$ModelOutput,
ArgsList = TestModel$ArgsList,
ModelPath = NULL,
MaxCohortPeriod = 15,
DebugMode = TRUE
)
},
error = function(x) NULL
)
} else {
Test <- NULL
}
if (!is.null(Test)) QA_Results[run, Forecast := "Success"]
rm(TestModel, Test)
data.table::fwrite(QA_Results, file = "C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/Testing_Data/AutoLightGBMFunnel_QA.csv")
Sys.sleep(5)
} |
catEffectBootAdaptor<-function (df, index, testFnc = sumSqCat, useResp = TRUE, ...) {
if (useResp) respVal <- df$resp
else respVal <- df$bkg
testFnc(respVal[index], df$cat, ...)
} |
count_levels_num <- function(x) {
.Call('_inspectdf_count_levels_num', PACKAGE = 'inspectdf', x)
}
count_levels_char <- function(x) {
.Call('_inspectdf_count_levels_char', PACKAGE = 'inspectdf', x)
}
na_numeric <- function(x) {
.Call('_inspectdf_na_numeric', PACKAGE = 'inspectdf', x)
}
na_character <- function(x) {
.Call('_inspectdf_na_character', PACKAGE = 'inspectdf', x)
}
na_logical <- function(x) {
.Call('_inspectdf_na_logical', PACKAGE = 'inspectdf', x)
}
na_integer <- function(x) {
.Call('_inspectdf_na_integer', PACKAGE = 'inspectdf', x)
} |
T <- 50
m <- 10
P <- 5
H <- 2
N_min <- 20
X <- rnorm(T)
mspe <- MSPE(X, m1 = T - m + 1, m2 = T, P = P, H = H, N = c(0, N_min:(T-m-H)))
N <- mspe$N
M <- mspe$mspe
h <- 1
plot(mspe, h, N_min = N_min, legend = (h == 1))
idx1_s <- which(M[h, , N == 0] == min(M[h, , N == 0]), arr.ind = TRUE)[1]
abline(h = M[h, idx1_s, N == 0], col = idx1_s, lty="dashed", lwd = 2)
for (p in 1:p_max) {
idx1_ls <- which(M[h, , N != 0] == min(M[h, , N != 0]), arr.ind = TRUE)[1,]
idx1_ls_p <- which(M[h, p, N != 0] == min(M[h, p, N != 0]), arr.ind = TRUE)[1]
abline(v = N[idx1_ls_p], col = p, lty = "dotted")
} |
bhl_getunpublisheditems <- function(...) {
.Defunct(package = "rbhl", msg = "API method removed")
} |
if (requiet("testthat") &&
requiet("insight") &&
requiet("robustbase")) {
data(mtcars)
m1 <- lmrob(mpg ~ gear + wt + cyl, data = mtcars)
test_that("model_info", {
expect_true(model_info(m1)$is_linear)
})
test_that("find_predictors", {
expect_identical(find_predictors(m1), list(conditional = c("gear", "wt", "cyl")))
expect_identical(find_predictors(m1, flatten = TRUE), c("gear", "wt", "cyl"))
expect_null(find_predictors(m1, effects = "random"))
})
test_that("find_random", {
expect_null(find_random(m1))
})
test_that("get_random", {
expect_warning(get_random(m1))
})
test_that("find_response", {
expect_identical(find_response(m1), "mpg")
})
test_that("get_response", {
expect_equal(get_response(m1), mtcars$mpg)
})
test_that("get_predictors", {
expect_equal(colnames(get_predictors(m1)), c("gear", "wt", "cyl"))
})
test_that("get_data", {
expect_equal(nrow(get_data(m1)), 32)
expect_equal(colnames(get_data(m1)), c("mpg", "gear", "wt", "cyl"))
})
test_that("find_formula", {
expect_length(find_formula(m1), 1)
expect_equal(
find_formula(m1),
list(conditional = as.formula("mpg ~ gear + wt + cyl")),
ignore_attr = TRUE
)
})
test_that("find_terms", {
expect_equal(find_terms(m1), list(
response = "mpg",
conditional = c("gear", "wt", "cyl")
))
expect_equal(find_terms(m1, flatten = TRUE), c("mpg", "gear", "wt", "cyl"))
})
test_that("n_obs", {
expect_equal(n_obs(m1), 32)
})
test_that("link_function", {
expect_equal(link_function(m1)(.2), .2, tolerance = 1e-5)
})
test_that("link_inverse", {
expect_equal(link_inverse(m1)(.2), .2, tolerance = 1e-5)
})
test_that("find_parameters", {
expect_equal(
find_parameters(m1),
list(conditional = c("(Intercept)", "gear", "wt", "cyl"))
)
expect_equal(nrow(get_parameters(m1)), 4)
expect_equal(
get_parameters(m1)$Parameter,
c("(Intercept)", "gear", "wt", "cyl")
)
})
test_that("is_multivariate", {
expect_false(is_multivariate(m1))
})
test_that("find_algorithm", {
expect_equal(find_algorithm(m1), list(algorithm = "SM"))
})
test_that("find_statistic", {
expect_identical(find_statistic(m1), "t-statistic")
})
} |
fit_clutter <- function(df, age, dh, basal_area, volume, site, plot, .groups=NA, model = "full", keep_model = FALSE){
basal_area2<-basal_area1<-I1<-I2<-volume2<-.<-Reg<-NULL
if( missing(df) ){
stop("df not set", call. = F)
}else if(!is.data.frame(df)){
stop("df must be a dataframe", call.=F)
}else if(length(df)<=1 | nrow(df)<=1){
stop("Length and number of rows of 'df' must be greater than 1", call.=F)
}
if( missing(age) ){
stop("age not set", call. = F)
}else if( !is.character(age) ){
stop("'age' must be a character containing a variable name", call.=F)
}else if(length(age)!=1){
stop("Length of 'age' must be 1", call.=F)
}else if(forestmangr::check_names(df, age)==F){
stop(forestmangr::check_names(df, age, boolean=F), call.=F)
}
if( missing(dh) ){
stop("dh not set", call. = F)
}else if( !is.character(dh) ){
stop("'dh' must be a character containing a variable name", call.=F)
}else if(length(dh)!=1){
stop("Length of 'dh' must be 1", call.=F)
}else if(forestmangr::check_names(df, dh)==F){
stop(forestmangr::check_names(df, dh, boolean=F), call.=F)
}
if( missing(basal_area) ){
stop("basal_area not set", call. = F)
}else if( !is.character(basal_area) ){
stop("'basal_area' must be a character containing a variable name", call.=F)
}else if(length(basal_area)!=1){
stop("Length of 'basal_area' must be 1", call.=F)
}else if(forestmangr::check_names(df, basal_area)==F){
stop(forestmangr::check_names(df, basal_area, boolean=F), call.=F)
}
if( missing(volume) ){
stop("volume not set", call. = F)
}else if( !is.character(volume) ){
stop("'volume' must be a character containing a variable name", call.=F)
}else if(length(volume)!=1){
stop("Length of 'volume' must be 1", call.=F)
}else if(forestmangr::check_names(df, volume)==F){
stop(forestmangr::check_names(df, volume, boolean=F), call.=F)
}
if( missing(site) ){
stop("site not set", call. = F)
}else if( !is.character(site) ){
stop("'site' must be a character containing a variable name", call.=F)
}else if(length(site)!=1){
stop("Length of 'site' must be 1", call.=F)
}else if(forestmangr::check_names(df, site)==F){
stop(forestmangr::check_names(df, site, boolean=F), call.=F)
}
if(missing(plot) && is.null(dplyr::groups(df)) ){
stop("plot not set. plot must be set if data doesn't have any groups", call. = F)
}else if(missing(plot) && !is.null(dplyr::groups(df)) ){
plot_syms <- rlang::syms(dplyr::groups(df))
}else if(!is.character(plot)){
stop("plot must be a character", call. = F)
}else if(! length(plot)%in% 1:10){
stop("Length of 'plot' must be between 1 and 10", call.=F)
}else if(forestmangr::check_names(df,plot)==F){
stop(forestmangr::check_names(df,plot, boolean=F), call.=F)
}else{
plot_syms <- rlang::syms(plot)
}
if(missing(.groups)||any(is.null(.groups))||any(is.na(.groups))||any(.groups==F)||any(.groups=="") ){
.groups_syms <- character()
}else if(!is.character(.groups)){
stop(".groups must be a character", call. = F)
}else if(! length(.groups)%in% 1:10){
stop("Length of '.groups' must be between 1 and 10", call.=F)
}else if(forestmangr::check_names(df,.groups)==F){
stop(forestmangr::check_names(df,.groups, boolean=F), call.=F)
}else{
.groups_syms <- rlang::syms(.groups)
}
if(!is.character( model )){
stop( "'model' must be character", call.=F)
}else if(length(model)!=1){
stop("Length of 'model' must be 1", call.=F)
}else if(! model %in% c('full', 'mod') ){
stop("'model' must be equal to 'full' or 'mod' ", call. = F)
}
if(! keep_model %in% c(TRUE, FALSE) ){
stop("keep_model must be equal to TRUE or FALSE", call. = F)
}
age_sym <- rlang::sym(age)
dh_sym <- rlang::sym(dh)
basal_area_sym <- rlang::sym(basal_area)
volume_sym <- rlang::sym(volume)
site_sym <- rlang::sym(site)
suppressMessages(
struct_form_data <- df %>%
dplyr::group_by(!!!.groups_syms, !!!plot_syms, .add=T ) %>%
dplyr::transmute(
I1 = !!age_sym, I2 = dplyr::lead(!!age_sym),
dh = !!dh_sym, dh2 = dplyr::lead(!!dh_sym),
basal_area1 = !!basal_area_sym, basal_area2 = dplyr::lead(!!basal_area_sym),
volume1 = !!volume_sym, volume2 = dplyr::lead(!!volume_sym),
site = !!site_sym ) %>%
stats::na.omit() %>%
dplyr::mutate(
Y1 = log(basal_area2) ,
X1 = log(basal_area1) * (I1/I2),
X2 = 1 - I1/I2 ,
X3 = (1 - I1/I2) * site ,
Y2 = log(volume2) ,
X4 = 1 / I2 ,
X5 = site
) %>%
dplyr::ungroup()
)
if(model == "full"){
eq1 <- Y2 ~ X4 + X5 + Y1
eq2 <- Y1 ~ X1 + X2 + X3
system <- list(Volume = eq1, AreaBasal = eq2)
inst <- ~ X4 + X5 + X1 + X2 + X3
restrict <- matrix(0, nrow=2, ncol=8)
restrict[1,5] <- 1
restrict[2,6] <- 1
restrict.rhs <- c(0, 1)
model_fit <- struct_form_data %>%
dplyr::group_by( !!!.groups_syms, .add=T ) %>%
dplyr::do(Reg = systemfit::systemfit(system, "2SLS", inst = inst, data = .,
restrict.matrix = restrict,
restrict.rhs = restrict.rhs)) %>%
dplyr::rowwise() %>%
dplyr::mutate(
b0 = stats::coef(Reg)[[1]],
b1 = stats::coef(Reg)[[2]],
b2 = stats::coef(Reg)[[3]],
b3 = stats::coef(Reg)[[4]],
a0 = stats::coef(Reg)[[7]],
a1 = stats::coef(Reg)[[8]] ) %>%
dplyr:: ungroup()
}else if(model == "mod" ){
eq1 <- Y2 ~ X4 + X5 + Y1
eq2 <- Y1 ~ X1 + X2
system <- list(Volume = eq1, AreaBasal = eq2)
inst <- ~ X4 + X5 + X1 + X2
restrict <- matrix(0, nrow=2, ncol=7)
restrict[1,5] <- 1
restrict[2,6] <- 1
restrict.rhs <- c(0, 1)
model_fit <- struct_form_data %>%
dplyr::group_by( !!!.groups_syms, .add=T ) %>%
dplyr::do(Reg = systemfit::systemfit(system, "2SLS", inst = inst, data = .,
restrict.matrix = restrict,
restrict.rhs = restrict.rhs)) %>%
dplyr::rowwise() %>%
dplyr::mutate(
b0 = stats::coef(Reg)[[1]],
b1 = stats::coef(Reg)[[2]],
b2 = stats::coef(Reg)[[3]],
b3 = stats::coef(Reg)[[4]],
a0 = stats::coef(Reg)[[7]] ) %>%
dplyr::ungroup()
}
if(keep_model == F){
model_fit <- as.data.frame(model_fit)
model_fit$Reg <- NULL
}
model_fit$A <- NULL
return(model_fit)
} |
wait_slurm <- function(x, ...) UseMethod("wait_slurm")
wait_slurm.slurm_job <- function(x, ...) {
wait_slurm.integer(get_job_id(x), ...)
}
wait_slurm.integer <- function(x, timeout = -1, freq = 0.1, force = TRUE, ...) {
if (opts_slurmR$get_debug()) {
warning("waiting is not available in debug mode.", call. = FALSE)
return()
} else if (!slurm_available())
stopifnot_slurm()
if (!is.finite(x))
stop("The job ID is not an integer: ", x, ". Can't wait for non-integer job ids.", call. = FALSE)
time0 <- Sys.time()
while(TRUE) {
Sys.sleep(freq)
s <- status(x)
if (force && s == -1L) {
next
} else if (!force && s == -1L) {
print(s)
break
}
njobs <- attr(s, "njobs")
if (njobs > 1L) {
ncompleted <- length(attr(s, "failed")) + length(attr(s, "done"))
if (ncompleted == njobs)
break
} else if (s %in% c(0L, 99L))
break
if (timeout > 0) {
seconds <- difftime(Sys.time(), time0, units = "secs")
if (seconds > timeout) {
warning("Timeout after ", seconds, " seconds.", call. = FALSE, immediate. = TRUE)
return(invisible(NULL))
}
}
}
invisible(NULL)
} |
test_that("compare state works correctly", {
loc <- tempfile("watcher")
dir.create(loc)
empty <- dir_state(loc)
expect_equal(length(empty), 0)
file.create(file.path(loc, "test-1.txt"))
one <- dir_state(loc)
expect_equal(length(one), 1)
expect_equal(basename(names(one)), "test-1.txt")
diff <- compare_state(empty, one)
expect_equal(diff$n, 1)
expect_equal(basename(diff$added), "test-1.txt")
write.table(mtcars, file.path(loc, "test-1.txt"))
diff <- compare_state(one, dir_state(loc))
expect_equal(diff$n, 1)
expect_equal(basename(diff$modified), "test-1.txt")
file.rename(file.path(loc, "test-1.txt"), file.path(loc, "test-2.txt"))
diff <- compare_state(one, dir_state(loc))
expect_equal(diff$n, 2)
expect_equal(basename(diff$deleted), "test-1.txt")
expect_equal(basename(diff$added), "test-2.txt")
diff <- compare_state(
c(file1 = "62da2", file2 = "e14a6", file3 = "6e6dd"),
c(file1 = "62da2", file2 = "e14a6", file21 = "532fa", file3 = "3f4sa")
)
expect_equal(diff$n, 2)
expect_equal(basename(diff$added), "file21")
expect_equal(basename(diff$modified), "file3")
})
test_that("watcher works correctly", {
skip_on_ci()
skip_on_os("windows")
skip_on_cran()
if (Sys.which("bash") == "") {
skip("bash not available")
}
if (system("bash -c 'which touch'", ignore.stdout = TRUE) != 0L) {
skip("touch (or which) not available")
}
loc <- tempfile("watcher")
dir.create(loc)
code_path <- file.path(loc, "R")
test_path <- file.path(loc, "tests")
dir.create(code_path)
dir.create(test_path)
delayed.bash.cmd <- function(command) {
system(paste0("bash -c 'sleep 1;", command, "'"), wait = FALSE)
}
add.code.file <- function(file.name) {
delayed.bash.cmd(paste0("touch ", file.path(code_path, file.name)))
}
remove.code.file <- function(file.name) {
delayed.bash.cmd(paste0("rm ", file.path(code_path, file.name)))
}
test.added <- function(added, deleted, modified) {
expect_equal(length(added), 1)
expect_equal(grepl("test1.R", added), TRUE)
expect_equal(length(deleted), 0)
expect_equal(length(modified), 0)
FALSE
}
test.removed <- function(added, deleted, modified) {
expect_equal(length(added), 0)
expect_equal(length(deleted), 1)
expect_equal(grepl("test1.R", deleted), TRUE)
expect_equal(length(modified), 0)
FALSE
}
add.code.file("test1.R")
watch(c(code_path, test_path), test.added)
remove.code.file("test1.R")
watch(c(code_path, test_path), test.removed)
}) |
AutoLightGBMClassifier <- function(
data = NULL,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = NULL,
FeatureColNames = NULL,
PrimaryDateColumn = NULL,
IDcols = NULL,
WeightsColumnName = NULL,
CostMatrixWeights = c(1,0,0,1),
EncodingMethod = 'credibility',
OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'),
model_path = NULL,
metadata_path = NULL,
DebugMode = FALSE,
SaveInfoToPDF = FALSE,
ModelID = 'TestModel',
ReturnFactorLevels = TRUE,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
NumOfParDepPlots = 3L,
Verbose = 0L,
GridTune = FALSE,
grid_eval_metric = 'Utility',
BaselineComparison = 'default',
MaxModelsInGrid = 10L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 24L*60L,
PassInGrid = NULL,
input_model = NULL,
task = 'train',
device_type = 'CPU',
NThreads = parallel::detectCores() / 2,
objective = 'binary',
metric = 'binary_logloss',
boosting = 'gbdt',
LinearTree = FALSE,
Trees = 50L,
eta = NULL,
num_leaves = 31,
deterministic = TRUE,
force_col_wise = FALSE,
force_row_wise = FALSE,
max_depth = NULL,
min_data_in_leaf = 20,
min_sum_hessian_in_leaf = 0.001,
bagging_freq = 0,
bagging_fraction = 1.0,
feature_fraction = 1.0,
feature_fraction_bynode = 1.0,
extra_trees = FALSE,
early_stopping_round = 10,
first_metric_only = TRUE,
max_delta_step = 0.0,
lambda_l1 = 0.0,
lambda_l2 = 0.0,
linear_lambda = 0.0,
min_gain_to_split = 0,
drop_rate_dart = 0.10,
max_drop_dart = 50,
skip_drop_dart = 0.50,
uniform_drop_dart = FALSE,
top_rate_goss = FALSE,
other_rate_goss = FALSE,
monotone_constraints = NULL,
monotone_constraints_method = 'advanced',
monotone_penalty = 0.0,
forcedsplits_filename = NULL,
refit_decay_rate = 0.90,
path_smooth = 0.0,
max_bin = 255,
min_data_in_bin = 3,
data_random_seed = 1,
is_enable_sparse = TRUE,
enable_bundle = TRUE,
use_missing = TRUE,
zero_as_missing = FALSE,
two_round = FALSE,
convert_model = NULL,
convert_model_language = "cpp",
boost_from_average = TRUE,
is_unbalance = FALSE,
scale_pos_weight = 1.0,
is_provide_training_metric = TRUE,
eval_at = c(1,2,3,4,5),
num_machines = 1,
gpu_platform_id = -1,
gpu_device_id = -1,
gpu_use_dp = TRUE,
num_gpu = 1) {
options(warn = -1)
params <- LightGBMArgs(input_model.=input_model, task.=tolower(task), objective.=objective, boosting.=boosting, LinearTree.=LinearTree, Trees.=Trees, eta.=eta, num_leaves.=num_leaves, NThreads.=NThreads, device_type.=tolower(device_type), deterministic.=deterministic, force_col_wise.=force_col_wise, force_row_wise.=force_row_wise, max_depth.=max_depth, min_data_in_leaf.=min_data_in_leaf, min_sum_hessian_in_leaf.=min_sum_hessian_in_leaf, bagging_freq.=bagging_freq, bagging_fraction.=bagging_fraction, feature_fraction.=feature_fraction, feature_fraction_bynode.=feature_fraction_bynode, extra_trees.=extra_trees, early_stopping_round.=early_stopping_round, first_metric_only.=first_metric_only, max_delta_step.=max_delta_step, lambda_l1.=lambda_l1, lambda_l2.=lambda_l2, linear_lambda.=linear_lambda, min_gain_to_split.=min_gain_to_split, drop_rate_dart.=drop_rate_dart, max_drop_dart.=max_drop_dart, skip_drop_dart.=skip_drop_dart, uniform_drop_dart.=uniform_drop_dart, top_rate_goss.=top_rate_goss, other_rate_goss.=other_rate_goss, monotone_constraints.=monotone_constraints, monotone_constraints_method.=monotone_constraints_method, monotone_penalty.=monotone_penalty, forcedsplits_filename.=forcedsplits_filename, refit_decay_rate.=refit_decay_rate, path_smooth.=path_smooth, max_bin.=max_bin, min_data_in_bin.=min_data_in_bin, data_random_seed.=data_random_seed, is_enable_sparse.=is_enable_sparse, enable_bundle.=enable_bundle, use_missing.=use_missing, zero_as_missing.=zero_as_missing, two_round.=two_round, convert_model.=convert_model, convert_model_language.=convert_model_language, boost_from_average.=boost_from_average, alpha.=NULL, fair_c.=NULL, poisson_max_delta_step.=NULL, tweedie_variance_power.=NULL, lambdarank_truncation_level.=NULL, is_unbalance.=is_unbalance, scale_pos_weight.=scale_pos_weight, multi_error_top_k.=NULL, is_provide_training_metric.=is_provide_training_metric, eval_at.=eval_at, gpu_platform_id.=gpu_platform_id, gpu_device_id.=gpu_device_id, gpu_use_dp.=gpu_use_dp, num_gpu.=num_gpu)
ArgsList <- c(as.list(environment()))
ArgsList[['data']] <- NULL
ArgsList[['ValidationData']] <- NULL
ArgsList[['TestData']] <- NULL
if(SaveModelObjects) {
if(!is.null(metadata_path)) {
save(ArgsList, file = file.path(metadata_path, paste0(ModelID, "_ArgsList.Rdata")))
} else if(!is.null(model_path)) {
save(ArgsList, file = file.path(model_path, paste0(ModelID, "_ArgsList.Rdata")))
}
}
if(DebugMode) print("Data prep ----")
Output <- XGBoostDataPrep(Algo="lightgbm", ModelType="classification", data.=data, ValidationData.=ValidationData, TestData.=TestData, TargetColumnName.=TargetColumnName, FeatureColNames.=FeatureColNames, WeightsColumnName.=WeightsColumnName, IDcols.=IDcols, TransformNumericColumns.=NULL, Methods.=NULL, ModelID.=ModelID, model_path.=model_path, TrainOnFull.=TrainOnFull, SaveModelObjects.=SaveModelObjects, ReturnFactorLevels.=ReturnFactorLevels, EncodingMethod.=EncodingMethod)
TransformNumericColumns <- Output$TransformNumericColumns; Output$TransformNumericColumns <- NULL
TransformationResults <- Output$TransformationResults; Output$TransformationResults <- NULL
FactorLevelsList <- Output$FactorLevelsList; Output$FactorLevelsList <- NULL
FinalTestTarget <- Output$FinalTestTarget; Output$FinalTestTarget <- NULL
WeightsVector <- Output$WeightsVector; Output$WeightsVector <- NULL
datavalidate <- Output$datavalidate; Output$datavalidate <- NULL
TargetLevels <- Output$TargetLevels; Output$TargetLevels <- NULL
TrainTarget <- Output$TrainTarget; Output$TrainTarget <- NULL
TrainMerge <- Output$TrainMerge; Output$TrainMerge <- NULL
ValidMerge <- Output$ValidMerge; Output$ValidMerge <- NULL
TestTarget <- Output$TestTarget; Output$TestTarget <- NULL
datatrain <- Output$datatrain; Output$datatrain <- NULL
dataTrain <- Output$dataTrain; Output$dataTrain <- NULL
TestMerge <- Output$TestMerge; Output$TestMerge <- NULL
TestData <- Output$TestData; Output$TestData <- NULL
datatest <- Output$datatest; Output$datatest <- NULL
EvalSets <- Output$EvalSets; Output$EvalSets <- NULL
dataTest <- Output$dataTest; Output$dataTest <- NULL
IDcols <- Output$IDcols; Output$IDcols <- NULL
Names <- Output$Names; rm(Output)
if(!is.null(WeightsColumnName)) {
params[["weight_column"]] <- which(WeightsColumnName %chin% names(dataTrain)) - 1L
}
ExperimentalGrid <- NULL; BestGrid <- NULL
if(DebugMode) print("Grid tuning ----")
if(GridTune) {
Output <- LightGBMGridTuner(ModelType="classification", TrainOnFull.=TrainOnFull, DebugMode.=DebugMode, params.=params, num_iterations.=params$num_iterations, max_depth.=params$max_depth, eta.=params$eta, num_leaves.=params$num_leaves, min_data_in_leaf.=params$min_data_in_leaf, bagging_freq.=params$bagging_freq, bagging_fraction.=params$bagging_fraction, feature_fraction.=params$feature_fraction, feature_fraction_bynode.=params$feature_fraction_bynode, lambda_l1.=params$lambda_l1, lambda_l2.=params$lambda_l2, LossFunction=NULL, EvalMetric=eval_metric, grid_eval_metric.=grid_eval_metric, CostMatrixWeights=CostMatrixWeights, TargetColumnName.=TargetColumnName, datatrain.=datatrain, dataTest.=dataTest, TestData.=TestData, EvalSets.=EvalSets, TestTarget.=TestTarget, FinalTestTarget.=FinalTestTarget, TargetLevels.=NULL, MaxRunsWithoutNewWinner=MaxRunsWithoutNewWinner, MaxModelsInGrid=MaxModelsInGrid, MaxRunMinutes=MaxRunMinutes, BaselineComparison.=BaselineComparison, SaveModelObjects=SaveModelObjects, metadata_path=metadata_path, model_path=model_path, ModelID=ModelID, NumLevels.=NULL)
ExperimentalGrid <- Output$ExperimentalGrid
BestGrid <- Output$BestGrid
}
if(DebugMode) print("Final Params ----")
params <- LightGBMFinalParams(params.=params, GridTune.=GridTune, PassInGrid.=PassInGrid, TrainOnFull.=TrainOnFull, BestGrid.=BestGrid, Trees.=params[["Trees"]], eta.=params[["eta"]], num_leaves.=params[["num_leaves"]], max_depth.=params[["max_depth"]], min_data_in_leaf.=params[["min_data_in_leaf"]], bagging_freq.=params[["bagging_freq"]], bagging_fraction.=params[["bagging_fraction"]], feature_fraction.=params[["feature_fraction"]], feature_fraction_bynode.=params[["feature_fraction_bynode"]])
if(DebugMode) print("Build model ----")
model <- lightgbm::lgb.train(params=params, data=datatrain, valids=EvalSets, nrounds = 5L)
if(DebugMode) print("Save Model ----")
if(SaveModelObjects) lightgbm::lgb.save(booster=model, filename=file.path(model_path, paste0(ModelID, ".txt")))
if(DebugMode) print("TrainData + ValidationData Scoring + Shap ----")
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
predict <- data.table::as.data.table(predict(model, as.matrix(dataTrain)))
if(!is.null(datavalidate)) {
predict_validate <- data.table::as.data.table(predict(model, as.matrix(dataTest)))
predict <- data.table::rbindlist(list(predict, predict_validate))
data.table::setnames(predict, names(predict), "Predict")
rm(predict_validate)
}
Output <- XGBoostValidationData(model.=model, TestData.=NULL, ModelType="classification", TrainOnFull.=TRUE, TestDataCheck=FALSE, FinalTestTarget.=FinalTestTarget, TestTarget.=TestTarget, TrainTarget.=TrainTarget, TrainMerge.=TrainMerge, TestMerge.=TestMerge, dataTest.=dataTest, data.=dataTrain, predict.=predict, TargetColumnName.=TargetColumnName, SaveModelObjects. = SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID, LossFunction.=NULL, TransformNumericColumns.=TransformNumericColumns, GridTune.=GridTune, TransformationResults.=TransformationResults, TargetLevels.=NULL)
TrainData <- Output$ValidationData; rm(Output)
if(!"Predict" %chin% names(TrainData)) data.table::setnames(TrainData, "V1", "Predict")
} else {
TrainData <- NULL
}
if(DebugMode) print("Grid Score Model ----")
predict <- predict(object = model, if(!is.null(TestData)) as.matrix(TestData) else if(!is.null(ValidationData) && !TrainOnFull) as.matrix(dataTest) else as.matrix(dataTrain))
if(DebugMode) print("Validation, Importance, Shap data ----")
Output <- XGBoostValidationData(ModelType="classification", TestDataCheck=!is.null(TestData), TrainOnFull.=TrainOnFull, model.=model, TargetColumnName.=TargetColumnName, SaveModelObjects.=SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID, TestData.=TestData, TestTarget.=TestTarget, FinalTestTarget.=FinalTestTarget, TestMerge.=TestMerge, dataTest.=dataTest, TrainTarget.=TrainTarget, predict.=predict, TransformNumericColumns.=TransformNumericColumns, TransformationResults.=TransformationResults, GridTune.=GridTune, data.=dataTrain)
VariableImportance <- Output$VariableImportance; Output$VariableImportance <- NULL
ValidationData <- Output$ValidationData; rm(Output)
if(DebugMode) print("Running BinaryMetrics()")
EvalMetricsList <- list()
EvalMetrics2List <- list()
if("evalmetrics" %chin% tolower(OutputSelection)) {
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
EvalMetricsList[["TrainData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=TrainData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "threshold")
EvalMetrics2List[["TrainData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=TrainData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "bins")
if(SaveModelObjects) {
if(!is.null(metadata_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(metadata_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
} else if(!is.null(model_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(model_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
}
}
}
EvalMetricsList[["TestData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=ValidationData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "threshold")
EvalMetrics2List[["TestData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=ValidationData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "bins")
if(SaveModelObjects) {
if(!is.null(metadata_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(metadata_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
} else if(!is.null(model_path)) {
data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(model_path, paste0(ModelID, "_Test_EvaluationMetrics.csv")))
}
}
}
if(DebugMode) print("Running ML_EvalPlots()")
PlotList <- list()
if("evalplots" %chin% tolower(OutputSelection)) {
if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) {
Output <- ML_EvalPlots(ModelType="classification", DataType = 'Train', TrainOnFull.=TrainOnFull, ValidationData.=TrainData, NumOfParDepPlots.=NumOfParDepPlots, VariableImportance.=VariableImportance, TargetColumnName.=TargetColumnName, FeatureColNames.=FeatureColNames, SaveModelObjects.=SaveModelObjects, ModelID.=ModelID, metadata_path.=metadata_path, model_path.=model_path, LossFunction.=NULL, EvalMetric.=NULL, EvaluationMetrics.=NULL, predict.=NULL)
PlotList[["Train_EvaluationPlot"]] <- Output$EvaluationPlot; Output$EvaluationPlot <- NULL
PlotList[["Train_ParDepPlots"]] <- Output$ParDepPlots; Output$ParDepPlots <- NULL
PlotList[["Train_GainsPlot"]] <- Output$GainsPlot; Output$GainsPlot <- NULL
PlotList[["Train_LiftPlot"]] <- Output$LiftPlot; Output$LiftPlot <- NULL
PlotList[["Train_ROC_Plot"]] <- Output$ROC_Plot; rm(Output)
}
Output <- ML_EvalPlots(ModelType="classification", DataType = 'Test', TrainOnFull.=TrainOnFull, ValidationData.=ValidationData, NumOfParDepPlots.=NumOfParDepPlots, VariableImportance.=VariableImportance, TargetColumnName.=TargetColumnName, FeatureColNames.=FeatureColNames, SaveModelObjects.=SaveModelObjects, ModelID.=ModelID, metadata_path.=metadata_path, model_path.=model_path, LossFunction.=NULL, EvalMetric.=NULL, EvaluationMetrics.=NULL, predict.=NULL)
PlotList[["Test_EvaluationPlot"]] <- Output$EvaluationPlot; Output$EvaluationPlot <- NULL
PlotList[["Test_ParDepPlots"]] <- Output$ParDepPlots; Output$ParDepPlots <- NULL
PlotList[["Test_GainsPlot"]] <- Output$GainsPlot; Output$GainsPlot <- NULL
PlotList[["Test_LiftPlot"]] <- Output$LiftPlot; Output$LiftPlot <- NULL
PlotList[["Test_ROC_Plot"]] <- Output$ROC_Plot; rm(Output)
if(!is.null(VariableImportance) && "plotly" %chin% installed.packages()) PlotList[["Train_VariableImportance"]] <- plotly::ggplotly(VI_Plot(Type = "xgboost", VariableImportance)) else if(!is.null(VariableImportance)) PlotList[["Train_VariableImportance"]] <- VI_Plot(Type = "xgboost", VariableImportance)
}
if(DebugMode) print("Save PDF of model information ----")
if("pdfs" %chin% tolower(OutputSelection) && SaveModelObjects) {
CatBoostPDF(ModelType="regression", TrainOnFull.=TrainOnFull, SaveInfoToPDF.=SaveInfoToPDF, VariableImportance.=VariableImportance, Interaction.=NULL, model_path.=model_path, metadata_path.=metadata_path)
}
if(!exists("FactorLevelsList")) FactorLevelsList <- NULL
options(warn = 1)
if(DebugMode) print("Return objects ----")
if(ReturnModelObjects) {
return(list(
Model = model,
TrainData = if(exists("TrainData")) TrainData else NULL,
TestData = if(exists("ValidationData")) ValidationData else NULL,
PlotList = if(exists("PlotList")) PlotList else NULL,
EvaluationMetrics = if(exists("EvalMetricsList")) EvalMetricsList else NULL,
EvaluationMetrics2 = if(exists("EvalMetrics2List")) EvalMetrics2List else NULL,
VariableImportance = if(exists("VariableImportance")) VariableImportance else NULL,
GridMetrics = if(exists("ExperimentalGrid") && !is.null(ExperimentalGrid)) data.table::setorderv(ExperimentalGrid, cols = "EvalMetric", order = -1L, na.last = TRUE) else NULL,
ColNames = if(exists("Names")) Names else NULL,
FactorLevelsList = if(exists("FactorLevelsList")) FactorLevelsList else NULL,
ArgsList = ArgsList))
}
} |
.build_client <-
function(api,
encode,
version = NULL,
progress = NULL,
pat = getOption("osfr.pat")) {
api <- match.arg(api, c("osf", "wb"))
encode <- match.arg(encode, c("form", "multipart", "json", "raw"))
server <- Sys.getenv("OSF_SERVER")
url <- switch(api,
osf = ifelse(nzchar(server), "api.%s.osf.io", "api.osf.io"),
wb = ifelse(nzchar(server), "files.us.%s.osf.io", "files.osf.io")
)
if (nzchar(server)) url <- sprintf(url, server)
headers <- list(`User-Agent` = user_agent())
if (!is.null(pat)) {
headers$Authorization <- sprintf("Bearer %s", pat)
}
if (api == "osf") {
headers$`Accept-Header` <- sprintf(
"application/vnd.api+json;version=%s",
version)
}
crul::HttpClient$new(
url = paste0("https://", url),
opts = list(
encode = encode
),
headers = headers,
hooks = list(
request = log_request,
response = log_response
),
progress = progress
)
} |
BLOSUM62<-function(seqs,label=c(),outFormat="mat",outputFileDist=""){
path.pack=system.file("extdata",package="ftrCOOL")
if(length(seqs)==1&&file.exists(seqs)){
seqs<-fa.read(seqs,alphabet="aa")
seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else if(is.vector(seqs)){
seqs<-sapply(seqs,toupper)
seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else {
stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.")
}
lenSeqs<-sapply(seqs, nchar)
numSeqs<-length(seqs)
featureMatrix<-matrix(0, nrow = numSeqs, ncol = (lenSeqs[1]*23))
adBlosum<-paste0(path.pack,"/BLOSUM62.csv")
Blosum<-read.csv(adBlosum)
row.names(Blosum)<-Blosum[,1]
Blosum<-Blosum[,-1]
Blosum<-as.matrix(Blosum)
Blosum<-type.convert(Blosum)
nameP1<-rep((1:(lenSeqs[1])),each=23)
nameP1<-paste0("aa",nameP1)
aaVect<-c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y","B","Z","X")
if(outFormat=="mat"){
if(length(unique(lenSeqs))>1){
stop("ERROR: All sequences should have the same length in 'mat' mode. For sequences with different lengths, please use 'txt' for outFormat parameter")
}
nameP2<-paste("d",rep(aaVect,lenSeqs[1]),sep = "")
colnames(featureMatrix)<-paste(nameP1,nameP2)
for(n in 1:numSeqs){
seq=seqs[n]
chars=unlist(strsplit(seq,""))
featureVector<-Blosum[,chars]
featureVector<-as.vector(featureVector)
featureMatrix[n,]<-featureVector
}
if(length(label)==numSeqs){
featureMatrix<-as.data.frame(featureMatrix)
featureMatrix<-cbind(featureMatrix,label)
}
row.names(featureMatrix)<-names(seqs)
return(featureMatrix)
}
else{
nameSeq<-names(seqs)
for(n in 1:numSeqs){
seq<-seqs[n]
chars<-unlist(strsplit(seq,split = ""))
featureVector<-Blosum[,chars]
vect<-as.vector(featureVector)
temp<-c(nameSeq[n],vect)
temp<-paste(temp,collapse = "\t")
write(temp,outputFileDist,append = TRUE)
}
}
} |
list2matrix.bas <- function(x, what, which.models = NULL) {
namesx <- x$namesx
if (is.null(which.models)) which.models <- 1:x$n.models
listobj <- x[[what]][which.models]
which <- x$which[which.models]
n.models <- length(which.models)
p <- length(namesx)
mat <- matrix(0, nrow = n.models, ncol = p)
for (i in 1:n.models) {
mat[i, which[[i]] + 1] <- listobj[[i]]
}
colnames(mat) <- namesx
return(mat)
}
list2matrix.which <- function(x, which.models = NULL) {
namesx <- x$namesx
listobj <- x$which
if (!is.null(which.models)) {
listobj <- listobj[which.models]
}
p <- length(namesx)
mat <- t(sapply(
listobj,
function(x, dimp) {
xx <- rep(0, dimp)
xx[x + 1] <- 1
xx
},
p
))
colnames(mat) <- namesx
mat
}
which.matrix <- function(which, n.vars) {
mat <- t(sapply(
which,
function(x, dimp) {
xx <- rep(0, dimp)
xx[x + 1] <- 1
xx
},
n.vars
))
mat
} |
context("elevation utils")
testthat::skip_on_cran()
raster_poa <- system.file("extdata/poa/poa_elevation.tif", package = "r5r")
data_path <- system.file("extdata/poa", package = "r5r")
r5r_core <- setup_r5(data_path = data_path, temp_dir = TRUE)
test_that("tobler_hiking", {
expect_error( tobler_hiking('bananas') )
expect_error( tobler_hiking() )
expect_identical( round( r5r:::tobler_hiking(1)), 33)
})
test_that("apply_elevation", {
if (requireNamespace("rgdal", quietly = TRUE)) {
expect_silent( r5r:::apply_elevation(r5r_core, raster_poa) )
expect_silent( r5r:::apply_elevation(r5r_core, c(raster_poa,raster_poa)) )
}
expect_error( r5r:::apply_elevation('bananas', raster_poa) )
expect_error( r5r:::apply_elevation(r5r_core, 'bananas') )
})
stop_r5(r5r_core) |
bbase.os <-
function(x, K, bdeg = 3, eps = 1e-5, intercept = TRUE) {
B <- bs(x, degree = bdeg, df = K + bdeg, intercept = intercept)
B
} |
tcplot <- function (data, u.range, cmax = FALSE, r = 1,
ulow = -Inf, rlow = 1, nt = 25, which = 1:npar, conf = 0.95,
lty = 1, lwd = 1, type = "b", cilty = 1, ask = nb.fig < length(which) &&
dev.interactive(), ...){
n <- length(data)
data <- sort(data)
if (missing(u.range)) {
u.range <- c(data[1], data[n - 4])
u.range <- u.range - .Machine$double.eps^0.5
}
u <- seq(u.range[1], u.range[2], length = nt)
locs <- scls <- shps <- matrix(NA, nrow = nt, ncol = 3)
dimnames(locs) <- list(round(u, 2), c("lower", "loc", "upper"))
dimnames(shps) <- list(round(u, 2), c("lower", "shape", "upper"))
pname <- "mscale"
npar <- 2
dimnames(scls) <- list(round(u, 2), c("lower", pname, "upper"))
z <- gpdmle(data, u[1], corr = TRUE, ...)
stvals <- as.list(round(fitted(z), 3))
for (i in 1:nt) {
z <- gpdmle(data, u[i], corr = TRUE, ...)
stvals <- as.list(fitted(z))
mles <- fitted(z)
stderrs <- z$std.err
cnst <- qnorm((1 + conf)/2)
shp <- mles["shape"]
scl <- mles["scale"]
shpse <- stderrs["shape"]
sclse <- stderrs["scale"]
scl <- scl - shp * u[i]
covar <- z$corr[1, 2] * prod(stderrs)
sclse <- sqrt(sclse^2 - 2 * u[i] * covar + (u[i] *
shpse)^2)
scls[i, ] <- c(scl - cnst * sclse, scl, scl + cnst *
sclse)
shps[i, ] <- c(shp - cnst * shpse, shp, shp + cnst *
shpse)
}
show <- rep(FALSE, npar)
show[which] <- TRUE
nb.fig <- prod(par("mfcol"))
if (ask) {
op <- par(ask = TRUE)
on.exit(par(op))
}
if (show[1]) {
matplot(u, scls, type = "n", xlab = "Threshold",
ylab = "Modified Scale")
lines(u, scls[, 2], lty = lty, lwd = lwd, type = type)
segments(u, scls[, 1], u, scls[, 3], lty = cilty)
}
if (show[2]) {
matplot(u, shps, type = "n", xlab = "Threshold",
ylab = "Shape")
lines(u, shps[, 2], lty = lty, lwd = lwd, type = type)
segments(u, shps[, 1], u, shps[, 3], lty = cilty)
}
rtlist <- list(scales = scls, shapes = shps)
invisible(rtlist)
} |
library(plyr)
suppressPackageStartupMessages(library(dplyr))
library(ggplot2)
library(readr)
gap_dat <- read_tsv("05_gap-merged-with-china-1952.tsv") %>%
mutate(country = factor(country),
continent = factor(continent))
gap_dat %>% str()
gap_dat %>%
sapply(function(x) x %>% is.na() %>% sum())
gap_dat$year %>% summary()
all.equal(gap_dat$year %>% unique() %>% sort(), 1950:2007)
ggplot(gap_dat, aes(x = year)) + geom_histogram(binwidth = 1)
gap_dat$country %>% str()
country_freq <- gap_dat %>%
count(country)
ggplot(country_freq, aes(x = country, y = n)) +
geom_bar(stat = "identity")
(p <- ggplot(country_freq, aes(x = n)) + geom_histogram(binwidth = 1))
p + xlim(c(1, 16))
country_freq$n %>% table()
gap_dat$continent %>% levels()
gap_dat$continent %>% summary()
tmp <- gap_dat %>%
group_by(country) %>%
summarize(n_continent = n_distinct(continent))
tmp$n_continent %>% table()
gap_dat$pop %>% summary(digits = 10)
gap_dat[which.min(gap_dat$pop),]
gap_dat[which.max(gap_dat$pop),]
ggplot(gap_dat,aes(x = pop)) + geom_density() + scale_x_log10()
gap_dat$lifeExp %>% summary()
ggplot(gap_dat,aes(x = lifeExp)) + geom_density()
gap_dat$gdpPercap %>% summary()
gap_dat[which.max(gap_dat$gdpPercap),]
ggplot(gap_dat,aes(x = gdpPercap)) + geom_density() |
"sdtm_ae"
"sdtm_cm"
"sdtm_dm"
"sdtm_ds"
"sdtm_ex"
"sdtm_lb"
"sdtm_mh"
"sdtm_qs"
"sdtm_relrec"
"sdtm_sc"
"sdtm_se"
"sdtm_suppae"
"sdtm_suppdm"
"sdtm_suppds"
"sdtm_supplb"
"sdtm_sv"
"sdtm_ta"
"sdtm_te"
"sdtm_ti"
"sdtm_ts"
"sdtm_tv"
"sdtm_vs" |
tree_add_dates <- function(dated_tree = NULL,
missing_taxa = NULL,
dating_method = "mrbayes",
adding_criterion = "random",
mrbayes_output_file = "mrbayes_tree_add_dates.nexus") {
dated_tree <- tree_check(tree = dated_tree, dated = TRUE)
missing_taxa <- missing_taxa_check(missing_taxa = missing_taxa, dated_tree = dated_tree)
dating_method <- match.arg(dating_method, c("bladj", "mrbayes"))
adding_criterion <- tryCatch(match.arg(adding_criterion, c("random", "taxonomy", "tree")), error = function(e) "random")
if (dating_method == "bladj") {
if (inherits(missing_taxa, "phylo")) {
missing_taxa_phy <- missing_taxa
} else {
if (is.data.frame(missing_taxa)) {
all_taxa <- unique(c(dated_tree$tip.label, levels(missing_taxa$taxon)))
}
if (is.vector(missing_taxa)) {
all_taxa <- unique(c(dated_tree$tip.label, missing_taxa))
}
missing_taxa_phy <- get_otol_synthetic_tree(input = all_taxa)
}
constraint_tree <- suppressWarnings(geiger::congruify.phylo(
reference = phylo_tiplabel_space_to_underscore(dated_tree),
target = phylo_tiplabel_space_to_underscore(missing_taxa_phy), scale = NA,
ncores = 1
))
dated_tree_nodes <- sapply(seq(nrow(constraint_tree$calibrations)), function(i) {
phytools::findMRCA(
tree = constraint_tree$target,
tips = as.character(constraint_tree$calibrations[i, c("taxonA", "taxonB")]),
type = "node"
)
})
dated_tree_nodes <- dated_tree_nodes - ape::Ntip(constraint_tree$target)
missing_taxa_phy$node.label[dated_tree_nodes] <- paste0("cong", seq(nrow(constraint_tree$calibrations)))
missing_taxa_phy <- tree_add_nodelabels(tree = missing_taxa_phy)
new.phy <- make_bladj_tree(tree = missing_taxa_phy, nodenames = missing_taxa_phy$node.label[dated_tree_nodes], nodeages = sapply(seq(nrow(constraint_tree$calibrations)), function(i) sum(constraint_tree$calibrations[i, c("MinAge", "MaxAge")]) / 2))
}
if (dating_method == "mrbayes") {
dated_tree <- tree_add_outgroup(tree = dated_tree, outgroup = "an_outgroup")
ncalibration <- tree_get_node_data(tree = dated_tree, node_data = c("node_age", "descendant_tips_label"))
new.phy <- make_mrbayes_tree(constraint = dated_tree, ncalibration = ncalibration, missing_taxa = missing_taxa, mrbayes_output_file = mrbayes_output_file)
new.phy <- ape::drop.tip(new.phy, "an_outgroup")
}
return(new.phy)
}
missing_taxa_check <- function(missing_taxa = NULL, dated_tree = NULL) {
badformat <- TRUE
if (is.data.frame(missing_taxa)) {
if ("taxon" %in% names(missing_taxa)) {
badformat <- FALSE
if (length(missing_taxa) > 1 & !"clade" %in% names(missing_taxa)) {
badformat <- TRUE
}
}
} else {
missing_taxa_phy <- input_process(missing_taxa)
if (inherits(missing_taxa_phy, "phylo")) {
phylo_check(phy = dated_tree, dated = TRUE)
dtINmt <- dated_tree$tip.labels %in% missing_taxa$tip.labels
mtINdt <- missing_taxa$tip.labels %in% dated_tree$tip.labels
if (!all(dtINmt)) {
warning("not all taxa from dated_tree are in missing_taxa tree")
}
missing_taxa_pruned <- ape::drop.tip(missing_taxa, missing_taxa$tip.labels[mtINdt])
missing_taxa <- missing_taxa_phy
badformat <- FALSE
} else {
missing_taxa <- as.character(missing_taxa)
missing_taxa[which(is.na(missing_taxa))] <- "NA"
badformat <- FALSE
}
}
if (length(missing_taxa) == 0) {
missing_taxa <- NULL
badformat <- FALSE
}
if (badformat) {
stop("missing_taxa must be a character vector with species names,
a data frame with taxonomic assignations, a newick character string, a phylo object, or NULL")
}
return(missing_taxa)
} |
"dataAGGR" |
library(amt)
data(amt_fisher)
set.seed(123)
tr <- make_trast(amt_fisher[1:50, ], res = 5)
mini_fisher <- amt_fisher[1:40, ]
mcp <- hr_mcp(mini_fisher)
loc <- hr_locoh(mini_fisher)
kde <- hr_kde(mini_fisher)
mini_fisher1 <- amt_fisher[11:50, ]
mcp1 <- hr_mcp(mini_fisher1)
loc1 <- hr_locoh(mini_fisher1)
kde1 <- hr_kde(mini_fisher1, tr = tr)
expect_inherits(hr_overlap(mcp, mcp1), "tbl_df")
expect_inherits(hr_overlap(list(mcp, mcp1)), "tbl_df")
expect_inherits(hr_overlap(kde, kde1), "tbl_df")
expect_inherits(hr_overlap(list(kde, kde1)), "tbl_df")
expect_error(hr_overlap(kde, kde1, type = "vi"))
expect_error(hr_overlap(list(kde, kde1), type = "vi")) |
brute_IDs <- function(total.length, redundancy, alphabet, num.tries = 10, available.colors = NULL) {
if (missing(alphabet)) {
stop("Error: you need to enter an 'alphabet size,' e.g. the number of paint colors you have")
}
if (missing(total.length)) {
stop("Error: you need to enter the total length of the ID, e.g. how many color bands or paint drops on each organism")
}
if (missing(redundancy)) {
stop("Error: you need specify to how many erasure events the IDs should be robust. Note, an increase in robustness requires an increase in the total length of the ID. ")
}
if (redundancy >= total.length || redundancy == 0) {
stop("Error: the code must be robust to at least one erasure. It also cannot be robust to a number of positions equal to or greater than the total length.")
}
if (!is(num.tries, "numeric")) {
stop(paste0("Error: the variable 'num.tries' must be of the class 'numeric,' not '", class(num.tries),".'"))
}
tester <- function(total.length, redundancy, alphabet) {
perms <- rep(list(seq_len(alphabet)),total.length)
combos <- as.matrix(expand.grid(perms)) - 1
combo.list <- split(combos, 1:nrow(combos))
names(combo.list) <- NULL
x <- sample(1:length(combo.list), 1)
new.combs <- combo.list[x]
names(new.combs) <- NULL
combo.list <- combo.list[stringdist::seq_distmatrix(combo.list, new.combs, method = "hamming")[, length(new.combs)] > redundancy]
names(combo.list) <- 1:length(combo.list)
while (length(combo.list) > 0) {
x <- sample(1:length(combo.list), 1)
new.combs[length(new.combs) + 1] <- (combo.list[x])
combo.list <- combo.list[stringdist::seq_distmatrix(combo.list, new.combs, method = "hamming")[, length(new.combs)] > redundancy]
if (length(combo.list) != 0) {
names(combo.list) <- 1:length(combo.list)
}
}
return(new.combs)
}
temp1 <- NULL
temp2 <- 0
for (i in 1:num.tries) {
temp1 <- invisible(tester(total.length, redundancy, alphabet))
if (length(temp1) > length(temp2))
temp2 <- temp1
}
temp2 <- codes_to_colors(temp2, available.colors)
return(temp2)
} |
context("ashr with half-uniform mixture priors")
test_that("mixcompdist=+uniform gives all non-negative values for b and zero for a", {
set.seed(1); z=rnorm(10); z.ash=ash(z,1,mixcompdist="+uniform")
k = length(z.ash$fitted_g$pi)
expect_true(all(z.ash$fitted_g$b >= rep(0,k)))
expect_equal(z.ash$fitted_g$a,rep(0,k))
})
test_that("mixcompdist=-uniform gives all non-positive values for a and zero for b", {
set.seed(1); z=rnorm(10); z.ash=ash(z,1,mixcompdist="-uniform")
k = length(z.ash$fitted_g$pi)
expect_equal(z.ash$fitted_g$b,rep(0,k))
expect_true(all(z.ash$fitted_g$a <= 0))
}) |
women
names(women)
height
attach(women)
height
weight
women$height
g <- "My First List"
h <- c(25, 26, 18, 39)
j <- matrix(1:10, nrow=5)
k <- c("one", "two", "three")
mylist <- list(title=g, ages=h, j, k, women)
mylist
mylist[[2]]
mylist[[5]]
plot(x=height, y=weight, type='b', lty=5, pch=11, fg='red', bg='green', col.axis='purple', cex=1.5, cex.axis=2)
title(main='Henry Harvin', sub=' MA Course') |
stratsamp <- function(n, distribution, parameters, p) {
lims <- find_strata(p, distribution, parameters)
outmat <- matrix(data = NA, nrow = n, ncol = length(p)-1)
counts <- rep(0, length(lims)-1)
while (any(counts < n)) {
r <- distribution_sampling(1, distribution, parameters)
intvl <- findInterval(r, lims)
if (counts[intvl] < n) {
counts[intvl] <- counts[intvl] + 1
outmat[counts[intvl], intvl] <- r
}
}
outmat
} |
context("mlc")
suppressPackageStartupMessages(library(caret))
set.seed(1)
mat <- matrix(rnorm(300), ncol = 3, nrow = 100)
colnames(mat) <- letters[1:3]
y <- sample(factor(c("a", "b")), 100, replace = TRUE)
test_that("fit mlc",{
expect_is( mr <- mlc(mat,y), "list")
expect_equal(names(mr), c("a", "b", "levels"))
expect_equal(vapply(mr$a, length, numeric(1)), c(m=3,D=1,I=9))
})
test_that("predict mlc",{
mod <- train( mat, y, method = mlcCaret, trControl = trainControl(method = "none"))
expect_is(pred <- predict.mlc(mod, mat), "factor")
expect_equal(length(pred), nrow(mat))
expect_equal(levels(pred), c("a", "b"))
expect_is(prob <- predict.mlc.prob(mod, mat), "matrix")
expect_equal(nrow(prob), nrow(mat))
expect_equal(ncol(prob), 2)
})
|
semprobit <- function(formula, W, data, subset, ...) {
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
y <- model.response(mf, "numeric")
if (!is.null(W) && !is.numeric(W) && !inherits(W, "sparseMatrix") && nrow(W) != NROW(y))
stop(gettextf("'W' must be a numeric square matrix, dimension %d should equal %d (number of observations)",
NROW(W), NROW(y)), domain = NA)
X <- model.matrix(mt, mf, contrasts)
sem_probit_mcmc(y, X, W, ...)
}
sem_probit_mcmc <- function(y, X, W, ndraw=1000, burn.in=100, thinning=1,
prior=list(a1=1, a2=1, c=rep(0, ncol(X)), T=diag(ncol(X))*1e12,
nu=0, d0=0, lflag = 0),
start=list(rho=0.75, beta=rep(0, ncol(X)), sige=1),
m=10, showProgress=FALSE, univariateConditionals=TRUE){
timet <- Sys.time()
n <- nrow( X )
n1 <- nrow( X )
n2 <- nrow( W )
k <- ncol( X )
I_n <- sparseMatrix(i=1:n, j=1:n, x=1)
if (is.null(colnames(X))) colnames(X) <- paste("x",1:k,sep="")
if( length(c(which(y == 0 ),which(y == 1))) != length( y ) ){
stop("semprobit: not all y-values are 0 or 1")
}
if( n1 != n2 && n1 != n ){
stop("semprobit: wrong size of spatial weight matrix W")
}
if (!inherits(W, "sparseMatrix") || any(diag(W) != 0)) {
stop('sarprobit: spatial weights matrix W must be a sparse matrix with zeros in the main diagonal')
}
ind <- match( n, apply(X,2,sum))
if( is.na(ind) ){
cflag <- 0
p <- k
}else if( ind == 1 ){
cflag <- 1
p <- k - 1
}else{
stop("semprobit: intercept term must be in first column of the X-matrix")
}
rho <- start$rho
beta <- start$beta
sige <- start$sige
c <- rep(0, k)
if (is.matrix(prior$T) && ncol(prior$T) == k && isSymmetric(prior$T) && det(prior$T) > 0) {
T <- prior$T
} else {
T <- diag(k)*1e12
}
if (is.numeric(prior$nu)) {
nu <- prior$nu
} else {
nu <- 0
}
if (is.numeric(prior$d0)) {
d0 <- prior$d0
} else {
d0 <- 0
}
TI <- solve(T)
TIc <- TI%*%c
S <- I_n - rho * W
H <- t(S) %*% S / sige
lower <- ifelse(y > 0, 0, -Inf)
upper <- ifelse(y > 0, Inf, 0)
rmin <- -1
rmax <- 1
ldetflag <- 0
tmp <- sar_lndet(ldetflag, W, rmin, rmax)
detval <- tmp$detval
a1 <- 1.0
a2 <- 1.0
if(is.numeric(prior$a1)) a1 <- prior$a1
if(is.numeric(prior$a2)) a2 <- prior$a2
u <- runif(thinning * ndraw + burn.in)
nrho <- nrow(detval)
nmk <- (n-k)/2
detval1 <- detval[,1]
detval2 <- detval[,2]
B <- matrix(NA, ndraw, k+2)
colnames(B) <- c(colnames(X), "sige", "rho")
cc <- 0.2
acc <- 0
acc_rate <- rep(NA, thinning * ndraw + burn.in)
if (showProgress) {
pb <- txtProgressBar(min=0, max=(thinning * ndraw + burn.in), initial=0, style=3)
}
if(cflag == 0) {
namesNonConstantParams <- colnames(X)
} else {
namesNonConstantParams <- colnames(X)[-1]
}
z <- y
ones <- rep(1, n)
W2diag <- diag(t(W)%*%W)
ind0 <- which(y == 0)
ind1 <- which(y == 1)
for (i in (1 - burn.in):(ndraw * thinning)) {
SX <- S %*% X
tSX <- t(SX)
tSXSX <- as.matrix(tSX %*% SX)
AI <- solve(tSXSX + sige * TI)
Sz <- as.double(S %*% z)
b <- as.double(tSX %*% Sz + sige * TIc)
b0 <- AI %*% b
beta <- as.double(rmvnorm(n=1, mean=b0, sigma=sige*AI))
nu1 <- n + 2*nu
e <- as.double(S %*% (z - X %*% beta))
d1 <- 2*d0 + crossprod(e)
chi <- rchisq(n=1,df=nu1)
sige <- as.double(d1/chi)
H <- t(S) %*% S / sige
if (univariateConditionals) {
dsig <- 1/sige * (ones - rho * rho * W2diag)
zvar <- ones/dsig;
mu <- X %*% beta
zmu <- z - mu
A <- (1/sige)* S %*% zmu
B2 <- t(S) %*% A
Cz <- zmu - zvar*B2
zm <- mu + Cz;
z[zvar < 0] <- 0
z[ind0] <- rtnorm(mu=zm[ind0], sd=sqrt(zvar[ind0]), a=-Inf, b=0)
z[ind1] <- rtnorm(mu=zm[ind1], sd=sqrt(zvar[ind1]), a=0, b=Inf)
z[is.infinite(z) | zvar < 0] <- 0
}
if (!univariateConditionals) {
mu <- X %*% beta
H <- (1/sige)*t(S)%*%S
if (m==1) {
z <- as.double(rtmvnorm.sparseMatrix(n=1, mean=mu, H=H,
lower=lower, upper=upper, burn.in=m, start.value=z))
} else {
z <- as.double(rtmvnorm.sparseMatrix(n=1, mean=mu, H=H,
lower=lower, upper=upper, burn.in=m))
}
}
rhox <- c_sem(rho,z,X,beta,sige,I_n,W,detval1,detval2,ones,a1,a2)
accept <- 0
rho2 <- rho + cc * rnorm(1)
while(accept == 0) {
if ((rho2 > rmin) & (rho2 < rmax)) {
accept <- 1
}
else {
rho2 <- rho + cc * rnorm(1)
}
}
rhoy <- c_sem(rho2,z,X,beta,sige,I_n,W,detval1,detval2,ones,a1,a2)
ru <- runif(1,0,1)
if ((rhoy - rhox) > exp(1)) {
p <- 1
} else {
ratio <- exp(rhoy-rhox)
p <- min(1,ratio)
}
if (ru < p) {
rho <- rho2
acc <- acc + 1
}
iter <- i + burn.in
acc_rate[iter] <- acc/iter
if (acc_rate[iter] < 0.4) {
cc <- cc/1.1;
}
if (acc_rate[iter] > 0.6) {
cc <- cc*1.1;
}
S <- I_n - rho * W
H <- t(S) %*% S / sige
if (i > 0) {
if (thinning == 1) {
ind <- i
}
else if (i%%thinning == 0) {
ind <- i%/%thinning
} else {
next
}
B[ind,] <- c(beta, sige, rho)
}
if (showProgress) setTxtProgressBar(pb, i + burn.in)
}
if (showProgress) close(pb)
beta <- colMeans(B)[1:k]
sige <- colMeans(B)[k+1]
rho <- colMeans(B)[k+2]
S <- (I_n - rho * W)
fitted.values <- X %*% beta
fitted.response <- as.numeric(fitted.values >= 0)
results <- NULL
results$time <- Sys.time() - timet
results$nobs <- n
results$nvar <- k
results$y <- y
results$zip <- n - sum(y)
results$beta <- colMeans(B)[1:k]
results$sige <- sige
results$rho <- colMeans(B)[k+2]
results$coefficients <- colMeans(B)
results$fitted.values <- fitted.values
results$fitted.response <- fitted.response
results$ndraw <- ndraw
results$nomit <- burn.in
results$a1 <- a1
results$a2 <- a2
results$nu <- nu
results$d0 <- d0
results$rmax <- rmax
results$rmin <- rmin
results$tflag <- "plevel"
results$lflag <- ldetflag
results$cflag <- cflag
results$lndet <- detval
results$names <- c(colnames(X), "sige", "rho")
results$B <- B
results$bdraw <- B[,1:k]
results$sdraw <- B[,k+1]
results$pdraw <- B[,k+2]
results$W <- W
results$X <- X
class(results) <- "semprobit"
return(results)
}
c_sem <- function(rho,y,X,b,sige,I_n,W,detval1,detval2,vi,a1,a2) {
i <- findInterval(rho,detval1)
if (i == 0) index=1
else index=i
detm = detval2[index]
z = I_n - rho*W;
e = as.double(z %*% (y - X %*% b))
ev = e * sqrt(vi)
epe = (crossprod(ev))/(2*sige)
cout = as.double(detm - epe)
return(cout)
}
coef.semprobit <- function(object, ...) {
if (!inherits(object, "semprobit"))
stop("use only with \"semprobit\" objects")
return(object$coefficients)
}
coefficients.semprobit <- function(object, ...) {
UseMethod("coef", object)
}
summary.semprobit <- function(object, var_names=NULL, file=NULL, digits = max(3, getOption("digits")-3), ...){
if (!inherits(object, "semprobit"))
stop("use only with \"semprobit\" objects")
nobs <- object$nobs
nvar <- object$nvar
ndraw <- object$ndraw
nomit <- object$nomit
draws <- object$B
bout_mean <- object$coefficients
bout_sd <- apply(draws, 2, sd)
bout_sig <- 1 - apply(draws, 2, function(x) { ifelse (mean(x) > 0, sum(x > 0), sum(x < 0)) }) / ndraw
bout_t <- bout_mean / bout_sd
bout_tPval<- (1 - pt( abs(bout_t), nobs ))*2
if( is.null(var_names)){
bout_names<- as.matrix(object$names)
}else{
bout_names<- as.matrix(var_names)
}
if(is.null(file)){file <- ""}
write(sprintf("--------MCMC probit with spatial errors ---------"), file, append=T)
write(sprintf("Execution time = %6.3f %s", object$time, attr(object$time, "units")) , file, append=T)
write(sprintf("N steps for TMVN= %6d" , object$nsteps), file, append=T)
write(sprintf("N draws = %6d, N omit (burn-in)= %6d", ndraw, nomit), file, append=T)
write(sprintf("N observations = %6d, K covariates = %6d", nobs, nvar) , file, append=T)
write(sprintf("
write(sprintf("Min rho = % 6.3f, Max rho = % 6.3f", object$rmin, object$rmax), file, append=T)
write(sprintf("--------------------------------------------------"), file, append=T)
write(sprintf(""), file, append=T)
coefficients <- cbind(bout_mean, bout_sd, bout_sig, bout_t, bout_tPval)
dimnames(coefficients) <- list(bout_names,
c("Estimate", "Std. Dev", "Bayes p-level", "t-value", "Pr(>|z|)"))
printCoefmat(coefficients, digits = digits,
signif.stars = getOption("show.signif.stars"))
return(invisible(coefficients))
}
plot.semprobit <- function(x, which=c(1, 2, 3),
ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., trueparam=NULL) {
if (!inherits(x, "semprobit"))
stop("use only with \"semprobit\" objects")
if (!is.numeric(which) || any(which < 1) || any(which > 3))
stop("'which' must be in 1:3")
names <- x$names
B <- x$B
k <- ncol(B)
show <- rep(FALSE, 3)
show[which] <- TRUE
if (ask) {
oask <- devAskNewPage(TRUE)
on.exit(devAskNewPage(oask))
}
if (show[1L]) {
for (i in 1:k) {
plot(1:nrow(B), B[,i], type="l", xlab="iteration", ylab=names[i], main=substitute("Trace plot of "*x, list(x=names[i])), ...)
if (!is.null(trueparam)) abline(h=trueparam[i], col="red", lty=2)
}
}
if (show[2L]) {
for (i in 1:k) {
acf(B[,i], main=substitute("ACF of "*x, list(x=names[i])), ...)
}
}
if (show[3L]) {
for (i in 1:k) {
plot(density(B[,i]), main=substitute("Posterior distribution of "*x, list(x=names[i])), ...)
if (!is.null(trueparam)) abline(v=trueparam[i], col="red", lty=2)
}
}
}
logLik.semprobit <- function(object, ...) {
X <- object$X
y <- object$y
n <- nrow(X)
k <- ncol(X)
W <- object$W
beta <- object$beta
rho <- object$rho
sige <- object$sige
I_n <- sparseMatrix(i=1:n, j=1:n, x=1)
S <- I_n - rho * W
D <- diag(1/sqrt(sige*diag(S %*% t(S))))
Xs <- D %*% X
F <- pnorm(as.double(Xs %*% beta))
lnL <- sum(log(F[y == 1])) + sum(log((1 - F[y == 0])))
out <- lnL
class(out) <- "logLik"
attr(out,"df") <- k+2
return(out)
}
fitted.semprobit <- function(object, ...) {
object$fitted.value
} |
tar_resources_url <- function(
handle = NULL
) {
out <- resources_url_init(
handle = handle
)
resources_validate(out)
out
} |
export_amira.path<-function(vertices,filename,Lines=c(1:(dim(vertices)[1]-1)-1,-1),path)
{
while(tolower(paste(filename,".am",sep=""))%in%list.files(path)!=FALSE){
i<-1
filename<-paste(filename,"(",i,")",sep="")
i<-i+1
}
cat(paste("
file = paste(path, "/", filename, ".am", sep = ""),
append = TRUE, sep = "",eol="\n")
cat(paste("define Lines ", length(Lines), "\n",
sep = ""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("nVertices ", dim(vertices)[1], "\n\n",
sep = ""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("Parameters {","\n",sep=""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste(' ContentType "HxLineSet"',"\n",sep=""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("}", "\n\n", sep = ""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("Lines { int LineIdx } @1","\n",sep=""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("Vertices { float[3] Coordinates } @2", "\n\n", sep = ""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("
sep = ""), append = TRUE, sep = "")
cat(paste(Lines,"\n",sep=" "), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
cat(paste("\n","@2","\n",sep=""), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
write.table(format(vertices, scientific = F, trim = T),
file = paste(path, "/", filename, ".am", sep = ""),
sep = " ", append = TRUE, quote = FALSE, row.names = FALSE,
col.names = FALSE, na = "")
cat(paste("\n",sep=" "), file = paste(path, "/", filename, ".am",
sep = ""), append = TRUE, sep = "")
} |
test_that("translations", {
expect_identical(pow(5, 2), 25)
expect_identical(phi(0), 0.5)
expect_equal(phi(2), 0.9772499, tolerance = 0.0000001)
x <- NA
log(x) <- log(5)
expect_equal(x, 5)
expect_equal(logit(0.5), 0)
expect_equal(logit(1), Inf)
x <- NA
logit(x) <- logit(0.75)
expect_equal(x, 0.75)
expect_equal(ilogit(logit(0.67)), 0.67)
expect_equal(invlogit(logit(0.67)), 0.67)
})
test_that("translations2", {
x <- seq(0, 1, by = 0.25)
expect_identical(logit(x), qlogis(x))
expect_identical(ilogit(logit(x)), x)
expect_identical(invlogit(logit(x)), x)
logit(x) <- c(0.5, 1)
expect_identical(x, ilogit(c(0.5, 1)))
log(x) <- c(0.5, 1)
expect_identical(x, exp(c(0.5, 1)))
expect_identical(pow(3, 4), 3^4)
expect_equal(phi(0:2), c(0.5, 0.8413447, 0.9772499), tolerance = 0.0000001)
}) |
read.cross.csv <-
function(dir, file, na.strings=c("-","NA"),
genotypes=c("A","H","B","D","C"),
estimate.map=TRUE, rotate=FALSE, ...)
{
if(missing(file)) file <- "data.csv"
if(!missing(dir) && dir != "") {
file <- file.path(dir, file)
}
args <- list(...)
if("" %in% na.strings) {
na.strings <- na.strings[na.strings != ""]
warning("Including \"\" in na.strings will cause problems; omitted.")
}
if(length(args) > 0 && "dec" %in% names(args)) {
dec <- args[["dec"]]
}
else dec <- "."
if(length(args) < 1 || !("sep" %in% names(args))) {
if(length(args) < 1 || !("comment.char" %in% names(args)))
data <- read.table(file, sep=",", na.strings=na.strings,
colClasses="character", fill=TRUE,
stringsAsFactors=TRUE,
blank.lines.skip=TRUE, comment.char="", ...)
else
data <- read.table(file, sep=",", na.strings=na.strings,
colClasses="character", fill=TRUE,
stringsAsFactors=TRUE,
blank.lines.skip=TRUE, ...)
}
else {
if(length(args) < 1 || !("comment.char" %in% names(args)))
data <- read.table(file, na.strings=na.strings,
colClasses="character", fill=TRUE,
stringsAsFactors=TRUE,
blank.lines.skip=TRUE, comment.char="", ...)
else
data <- read.table(file, na.strings=na.strings,
colClasses="character", fill=TRUE,
stringsAsFactors=TRUE,
blank.lines.skip=TRUE, ...)
}
if(rotate)
data <- as.data.frame(t(data), stringsAsFactors=FALSE)
empty <- grep("^\\s*$", data[2, ])
if( ! 1 %in% empty)
stop("You must include at least one phenotype (e.g., an index). ",
"There was this value in the first column of the second row '",
data[2,1],"' where was supposed to be nothing.",sep="")
if(length(empty)==ncol(data))
stop("Second row has all blank cells; you need to include chromosome IDs for the markers.")
n.phe <- min((1:ncol(data))[-empty])-1
empty <- rep(FALSE, n.phe)
empty[grep("^\\s*$", data[3,1:n.phe])] <- TRUE
if(all(empty)) {
map.included <- TRUE
map <- asnumericwithdec(unlist(data[3,-(1:n.phe)]), dec=dec)
if(any(is.na(map))) {
temp <- unique(unlist(data[3,-(1:n.phe)])[is.na(map)])
stop("There are missing marker positions.\n",
" In particular, we see these value(s): ",
paste("\"",paste(temp,collapse="\",\"",sep=""),"\"",collapse=" ",sep=""),
" at position(s): ",
paste(which(is.na(map)),colapse=",",sep=""),sep="")
}
nondatrow <- 3
}
else {
map.included <- FALSE
map <- rep(0,ncol(data)-n.phe)
nondatrow <- 2
}
data <- sapply(data,function(a) { a[!is.na(a) & a==""] <- NA; a })
pheno <- as.data.frame(data[-(1:nondatrow),1:n.phe,drop=FALSE], stringsAsFactors=TRUE)
colnames(pheno) <- data[1,1:n.phe]
mnames <- data[1,-(1:n.phe)]
if(any(is.na(mnames)))
stop("There are missing marker names. Check column(s) ",paste(which(is.na(mnames))+1+n.phe,collapse=","),sep="")
chr <- data[2,-(1:n.phe)]
if(any(is.na(chr)))
stop("There are missing chromosome IDs. Check column(s) ",paste(which(is.na(chr))+1+n.phe,collapse=","),sep="")
if(length(genotypes) > 0) {
temp <- unique(as.character(data[-(1:nondatrow),-(1:n.phe),drop=FALSE]))
temp <- temp[!is.na(temp)]
wh <- !(temp %in% genotypes)
if(any(wh)) {
warn <- "The following unexpected genotype codes were treated as missing.\n "
ge <- paste("|", paste(temp[wh],collapse="|"),"|",sep="")
warn <- paste(warn,ge,"\n",sep="")
warning(warn)
}
allgeno <- matrix(match(data[-(1:nondatrow),-(1:n.phe)],genotypes),
ncol=ncol(data)-n.phe)
}
else
allgeno <- matrix(as.numeric(data[-(1:nondatrow),-(1:n.phe)]),
ncol=ncol(data)-n.phe)
oldpheno <- pheno
pheno <- data.frame(lapply(pheno, sw2numeric, dec=dec), stringsAsFactors=TRUE)
if(all(chr %in% c(1:999,"X","x"))) {
tempchr <- chr
tempchr[chr=="X" | chr=="x"] <- 1000
tempchr <- as.numeric(tempchr)
if(map.included) neworder <- order(tempchr, map)
else neworder <- order(tempchr)
}
else {
tempchr <- factor(chr, levels=unique(chr))
if(map.included) neworder <- order(tempchr, map)
else neworder <- order(tempchr)
}
chr <- chr[neworder]
map <- map[neworder]
allgeno <- allgeno[,neworder,drop=FALSE]
mnames <- mnames[neworder]
if(!map.included) {
map <- split(rep(0,length(chr)),chr)[unique(chr)]
map <- unlist(lapply(map,function(a) seq(0,length=length(a),by=5)))
names(map) <- NULL
}
uchr <- unique(chr)
n.chr <- length(uchr)
geno <- vector("list",n.chr)
names(geno) <- uchr
min.mar <- 1
allautogeno <- NULL
for(i in 1:n.chr) {
temp.map <- map[chr==uchr[i]]
names(temp.map) <- mnames[chr==uchr[i]]
data <- allgeno[,min.mar:(length(temp.map)+min.mar-1),drop=FALSE]
min.mar <- min.mar + length(temp.map)
colnames(data) <- names(temp.map)
geno[[i]] <- list(data=data,map=temp.map)
if(uchr[i] == "X" || uchr[i] == "x")
class(geno[[i]]) <- "X"
else {
class(geno[[i]]) <- "A"
if(is.null(allautogeno)) allautogeno <- data
else allautogeno <- cbind(allautogeno,data)
}
}
if(is.null(allautogeno)) allautogeno <- allgeno
n.mar1 <- sapply(geno,function(a) ncol(a$data))
n.mar2 <- sapply(geno,function(a) length(a$map))
n.phe <- ncol(pheno)
n.ind1 <- nrow(pheno)
n.ind2 <- sapply(geno,function(a) nrow(a$data))
if(any(n.ind1 != n.ind2)) {
cat(n.ind1,n.ind2,"\n")
stop("Number of individuals in genotypes and phenotypes do not match.")
}
if(any(n.mar1 != n.mar2)) {
cat(n.mar1,n.mar2,"\n")
stop("Numbers of markers in genotypes and marker names files do not match.")
}
cat(" --Read the following data:\n")
cat("\t",n.ind1," individuals\n")
cat("\t",sum(n.mar1)," markers\n")
cat("\t",n.phe," phenotypes\n")
if(all(is.na(allgeno))) warning("There is no genotype data!\n")
if(all(is.na(allautogeno)) || max(allautogeno,na.rm=TRUE)<=2) type <- "bc"
else if(max(allautogeno,na.rm=TRUE)<=5) type <- "f2"
else type <- "4way"
cross <- list(geno=geno,pheno=pheno)
class(cross) <- c(type,"cross")
if(type=="f2") max.gen <- 5
else if(type=="bc") max.gen <- 2
else max.gen <- 14
for(i in 1:n.chr) {
if(any(diff(cross$geno[[i]]$map)<0)) {
o <- order(cross$geno[[i]]$map)
cross$geno[[i]]$map <- cross$geno[[i]]$map[o]
cross$geno[[i]]$data <- cross$geno[[i]]$data[,o,drop=FALSE]
}
}
if(estimate.map && !map.included) estmap <- TRUE
else estmap <- FALSE
list(cross,estmap)
} |
gbm.perf <- function(object,
plot.it=TRUE,
oobag.curve=FALSE,
overlay=TRUE,
method,
main="") {
if(!is.logical(plot.it) || (length(plot.it)) > 1 || is.na(plot.it))
stop("plot.it must be a logical - excluding NA")
performance <- gbmt_performance(object, method)
if (plot.it) {
plot(performance,
out_of_bag_curve=oobag.curve,
overlay=overlay,
main=main)
}
as.numeric(performance)
}
gbmt_performance <- function(gbm_fit_obj, method) {
check_if_gbm_fit(gbm_fit_obj)
if (missing(method)) {
method <- guess_error_method(gbm_fit_obj)
message("Using ", method, " method...")
}
result <-
switch(method,
OOB=best_iter_out_of_bag(gbm_fit_obj),
cv=best_iter_cv(gbm_fit_obj),
test=best_iter_test(gbm_fit_obj),
stop("method must be cv, test, or OOB"))
attr(result, 'decoration') <-
list(method=method,
gbm_fit_obj=gbm_fit_obj)
class(result) <- "GBMTPerformance"
result
}
as.double.GBMTPerformance <- function(x, ...) {
as.double(unclass(x))
}
print.GBMTPerformance <- function(x, ...) {
decoration <- attr(x, 'decoration')
method_descriptor <-
switch(decoration$method,
cv="cross-validation",
test="test-set",
OOB="out-of-bag",
stop("Unknown method."))
cat("The best ", method_descriptor, " iteration was ", x, ".\n",
sep="")
invisible(x)
}
plot.GBMTPerformance <- function(x,
out_of_bag_curve=FALSE,
overlay=TRUE,
main="", ...) {
decoration <- attr(x, 'decoration')
perf_plot(decoration$gbm_fit_obj, x,
out_of_bag_curve, overlay,
decoration$method,
main)
}
best_iter_test <- function(gbm_fit_obj) {
check_if_gbm_fit(gbm_fit_obj)
best_iter_test <- which.min(iteration_error(gbm_fit_obj, 'valid'))
return(best_iter_test)
}
best_iter_cv <- function(gbm_fit_obj) {
check_if_gbm_fit(gbm_fit_obj)
if(!has_cross_validation(gbm_fit_obj)) {
stop('In order to use method="cv" gbm must be called with cv_folds>1.')
}
best_iter_cv <- which.min(iteration_error(gbm_fit_obj, 'cv'))
return(best_iter_cv)
}
best_iter_out_of_bag <- function(gbm_fit_obj) {
check_if_gbm_fit(gbm_fit_obj)
if(gbm_fit_obj$params$bag_fraction==1)
stop("Cannot compute OOB estimate or the OOB curve when bag_fraction=1")
if(all(!is.finite(gbm_fit_obj$oobag.improve)))
stop("Cannot compute OOB estimate or the OOB curve. No finite OOB estimates of improvement")
message("OOB generally underestimates the optimal number of iterations although predictive performance is reasonably competitive.
Using cv_folds>1 when calling gbm usually results in improved predictive performance.")
smoother <- generate_smoother_oobag(gbm_fit_obj)
best_iter_oob <- smoother$x[which.min(-cumsum(smoother$y))]
return(best_iter_oob)
}
generate_smoother_oobag <- function(gbm_fit_obj) {
check_if_gbm_fit(gbm_fit_obj)
smoother <- NULL
x <- seq_len(gbm_fit_obj$params$num_trees)
smoother <- loess(gbm_fit_obj$oobag.improve~x,
enp.target=min(max(4,length(x)/10),50))
smoother$y <- smoother$fitted
smoother$x <- x
return(smoother)
}
guess_error_method <- function(gbm_fit_obj) {
if (has_train_test_split(gbm_fit_obj)) {
"test"
} else if (has_cross_validation(gbm_fit_obj)) {
"cv"
} else {
"OOB"
}
} |
test_that("gives warning markers are not correct", {
expect_warning(style_text(c(
"1+1",
"
"
)))
})
test_that("trailing spaces are stripped when checking marker and written back", {
expect_equal(
style_text(c(
"
"1+1",
"
)) %>%
as.character(),
c("
)
})
test_that("last stopping marker can be omitted", {
expect_equal(
style_text(c(
"
"1+1"
)) %>%
as.character(),
c("
)
})
test_that("last stopping marker can be omitted", {
expect_equal(
style_text(c(
"
"call( 1)",
"
"call(2 +0)",
"
"x=2"
)) %>%
as.character(),
c(
"
"
)
)
})
test_that("works for one line", {
expect_equal(
style_text(c(
"1+1",
"1+1
"1+1"
)) %>%
as.character(),
c("1 + 1", "1+1
)
})
test_that("works with other markers", {
expect_equal(
withr::with_options(
list(styler.ignore_start = "
{
style_text(c(
"1+1",
"1+1
"1+1"
)) %>%
as.character()
}
),
c("1 + 1", "1+1
)
})
test_that("works for multiple markers inline", {
withr::local_options(styler.ignore_start = "
expect_equal(
style_text(c(
"1+1",
"1+1
"1+1"
)) %>%
as.character(),
c("1 + 1", "1+1
)
})
test_that("works for multiple markers inline on one line", {
withr::local_options(styler.ignore_start = "nolint start|styler: off")
expect_equal(
style_text(c(
"1+1",
"1+1
"1+1"
)) %>%
as.character(),
c("1 + 1", "1+1
)
})
test_that("works with other markers", {
expect_warning(
withr::with_options(
list(styler.ignore_start = "
{
style_text(c(
"1+1",
"
"1+1",
"1+1",
"
)) %>%
as.character()
}
),
"Invalid stylerignore sequence"
)
})
test_that("Simple example works", {
expect_warning(test_collection("stylerignore", "simple",
transformer = style_text
), NA)
})
test_that("stylerignore does not need coincidence with top-level expressions", {
expect_warning(test_collection("stylerignore", "crossing",
transformer = style_text
), NA)
})
test_that("token adding or removing works in stylerignore", {
expect_warning(test_collection("stylerignore", "adding-removing",
transformer = style_text
), NA)
})
test_that("no token added or removed in complex case", {
expect_warning(test_collection("stylerignore", "braces",
transformer = style_text
), NA)
})
test_that("stylerignore sequences are respected in alignment detection", {
expect_warning(test_collection("stylerignore", "alignment",
transformer = style_text
), NA)
}) |
genscorestat<-function(scores,group,correct=0){
N<-length(group); MV<-table(group)
refg<-names(MV)[1]
if(is.numeric(group)) refg<-as.numeric(refg)
if(length(MV)!=2){
message("genscorestat works only for two groups")
out<-NA
}else{
abar<-mean(scores)
ahat<-mean(scores^2)
vv<-MV[2]*MV[1]*(ahat-abar^2)/(N-1)
ee<-MV[1]*abar
stat<-structure(sum(scores[group==refg]),.Names= "Gaussian")
correct<-abs(correct)*sign(stat-ee)
parameters<-structure(c(ee,vv),.Names=c("mean","variance"))
out<-list(null.value=structure(0, .Names = "median difference"),
alternative="two-sided",method="General Score Test",data.name=NULL,
statistic=stat,parameters=parameters,
p.value=2*pnorm(-abs(stat-ee-correct)/sqrt(vv)))
class(out)<-"htest"
}
return(out)
} |
"dccm.nma" <-
function(x, nmodes=NULL, ncore=NULL, progress = NULL, ...) {
nma <- x
if (missing(nma))
stop("dccm.nma: must supply a 'nma' object, i.e. from 'nma'")
if(!"nma" %in% class(nma))
stop("dccm.nma: must supply 'nma' object, i.e. from 'nma'")
ncore <- setup.ncore(ncore, bigmem = FALSE)
if(ncore > 1) {
mcparallel <- get("mcparallel", envir = getNamespace("parallel"))
mccollect <- get("mccollect", envir = getNamespace("parallel"))
}
cross.inner.prod <- function(a, b) {
mat <- apply(a, 1, "%*%", t(b))
return(mat)
}
corrmats <- function(r.inds, core.id, nma, corr.mat, freqs, progress) {
for ( i in r.inds ) {
mode <- matrix(nma$U[,i], ncol=3, byrow=TRUE)
corr.mat <- corr.mat + (cross.inner.prod(mode, mode) / (freqs[i]**2))
if(core.id==1) {
setTxtProgressBar(pb, i)
}
if(!is.null(progress)) {
if(i %% 20 == 0) {
progress$set(i)
}
}
}
return(corr.mat)
}
if(!is.null(nma$frequencies)) {
freqs <- nma$frequencies
}
else {
freqs <- nma$force.constants
}
if(is.null(nmodes))
nmodes <- length(nma$L)
else {
nmodes <- nmodes + nma$triv.modes
if(nmodes>length(nma$L)) {
warning("'nmodes' larger than the number of modes")
nmodes <- length(nma$L)
}
}
pbmax <- nmodes + nma$natoms
pb <- txtProgressBar(min=(nma$triv.modes+1), max=pbmax, style=3)
corr.mat <- matrix(0, nma$natoms, nma$natoms)
mode.inds <- (nma$triv.modes+1):nmodes
core.ids <- rep(1:ncore, length.out=length( mode.inds ))
if(ncore>1)
jobs <- list()
for ( i in 1:ncore ) {
rinds <- mode.inds[ which(core.ids==i) ]
if(ncore>1) {
q <- mcparallel(corrmats(rinds, i, nma, corr.mat, freqs, progress))
jobs[[i]] <- q
}
else
corr.mat <- corrmats(rinds, i, nma, corr.mat, freqs, progress)
}
if(ncore>1) {
res <- mccollect(jobs, wait=TRUE)
for ( job in res ) {
corr.mat <- corr.mat + job
}
}
a <- vector('numeric', length=nrow(corr.mat))
k <- length(mode.inds)
inds <- rep(1:nrow(corr.mat), each=3)
for ( j in (nma$triv.modes+1):nmodes ) {
v <- nma$U[, j] * nma$U[, j]
a <- a + ( tapply( v, inds, sum) / (freqs[j]**2))
k <- k+1
setTxtProgressBar(pb, k)
if(!is.null(progress)) {
if(j %% 20 == 0) {
progress$set(k)
}
}
}
close(pb)
a <- sqrt(a)
bn <- a%o%a
corr.mat <- corr.mat / bn
class(corr.mat) <- c("dccm", "matrix")
return(corr.mat)
} |
stat.entropyFunction = function(bitString) {
pT = sum(bitString)/length(bitString)
pF = 1-pT
if (pT==1 || pT==0) {
e = 0
} else {
e = -pT*log2(pT)-pF*log2(pF)
}
return(e)
} |
"ChickWeight" <-
structure(list(
weight = c(42, 51, 59, 64, 76, 93, 106, 125, 149,
171, 199, 205, 40, 49, 58, 72, 84, 103, 122, 138, 162, 187, 209,
215, 43, 39, 55, 67, 84, 99, 115, 138, 163, 187, 198, 202, 42,
49, 56, 67, 74, 87, 102, 108, 136, 154, 160, 157, 41, 42, 48,
60, 79, 106, 141, 164, 197, 199, 220, 223, 41, 49, 59, 74, 97,
124, 141, 148, 155, 160, 160, 157, 41, 49, 57, 71, 89, 112, 146,
174, 218, 250, 288, 305, 42, 50, 61, 71, 84, 93, 110, 116, 126,
134, 125, 42, 51, 59, 68, 85, 96, 90, 92, 93, 100, 100, 98, 41,
44, 52, 63, 74, 81, 89, 96, 101, 112, 120, 124, 43, 51, 63, 84,
112, 139, 168, 177, 182, 184, 181, 175, 41, 49, 56, 62, 72, 88,
119, 135, 162, 185, 195, 205, 41, 48, 53, 60, 65, 67, 71, 70,
71, 81, 91, 96, 41, 49, 62, 79, 101, 128, 164, 192, 227, 248,
259, 266, 41, 49, 56, 64, 68, 68, 67, 68, 41, 45, 49, 51, 57,
51, 54, 42, 51, 61, 72, 83, 89, 98, 103, 113, 123, 133, 142,
39, 35, 43, 48, 55, 62, 65, 71, 82, 88, 106, 120, 144, 157, 41,
47, 54, 58, 65, 73, 77, 89, 98, 107, 115, 117, 40, 50, 62, 86,
125, 163, 217, 240, 275, 307, 318, 331, 41, 55, 64, 77, 90, 95,
108, 111, 131, 148, 164, 167, 43, 52, 61, 73, 90, 103, 127, 135,
145, 163, 170, 175, 42, 52, 58, 74, 66, 68, 70, 71, 72, 72, 76,
74, 40, 49, 62, 78, 102, 124, 146, 164, 197, 231, 259, 265, 42,
48, 57, 74, 93, 114, 136, 147, 169, 205, 236, 251, 39, 46, 58,
73, 87, 100, 115, 123, 144, 163, 185, 192, 39, 46, 58, 73, 92,
114, 145, 156, 184, 207, 212, 233, 39, 48, 59, 74, 87, 106, 134,
150, 187, 230, 279, 309, 42, 48, 59, 72, 85, 98, 115, 122, 143,
151, 157, 150, 42, 53, 62, 73, 85, 102, 123, 138, 170, 204, 235,
256, 41, 49, 65, 82, 107, 129, 159, 179, 221, 263, 291, 305,
39, 50, 63, 77, 96, 111, 137, 144, 151, 146, 156, 147, 41, 49,
63, 85, 107, 134, 164, 186, 235, 294, 327, 341, 41, 53, 64, 87,
123, 158, 201, 238, 287, 332, 361, 373, 39, 48, 61, 76, 98, 116,
145, 166, 198, 227, 225, 220, 41, 48, 56, 68, 80, 83, 103, 112,
135, 157, 169, 178, 41, 49, 61, 74, 98, 109, 128, 154, 192, 232,
280, 290, 42, 50, 61, 78, 89, 109, 130, 146, 170, 214, 250, 272,
41, 55, 66, 79, 101, 120, 154, 182, 215, 262, 295, 321, 42, 51,
66, 85, 103, 124, 155, 153, 175, 184, 199, 204, 42, 49, 63, 84,
103, 126, 160, 174, 204, 234, 269, 281, 42, 55, 69, 96, 131,
157, 184, 188, 197, 198, 199, 200, 42, 51, 65, 86, 103, 118,
127, 138, 145, 146, 41, 50, 61, 78, 98, 117, 135, 141, 147, 174,
197, 196, 40, 52, 62, 82, 101, 120, 144, 156, 173, 210, 231,
238, 41, 53, 66, 79, 100, 123, 148, 157, 168, 185, 210, 205,
39, 50, 62, 80, 104, 125, 154, 170, 222, 261, 303, 322, 40, 53,
64, 85, 108, 128, 152, 166, 184, 203, 233, 237, 41, 54, 67, 84,
105, 122, 155, 175, 205, 234, 264, 264),
Time = c(0, 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2,
4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6,
8, 10, 12, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8,
10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2,
4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8,
10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8,
10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21),
Chick = ordered(c(15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 19,
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 3, 3, 3, 3, 3, 3,
3, 3, 2, 2, 2, 2, 2, 2, 2, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 34,
34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 38, 38, 38, 38, 38,
38, 38, 38, 38, 38, 38, 38, 44, 44, 44, 44, 44, 44, 44, 44, 44,
44, 44, 44, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 43,
43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 41, 41, 41, 41, 41,
41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 45, 45, 45,
45, 45, 45, 45, 45, 45, 45, 45, 45, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,
46, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48), levels=1:50,
labels = c("18", "16", "15", "13", "9", "20", "10",
"8", "17", "19", "4", "6", "11", "3", "1", "12", "2", "5", "14",
"7", "24", "30", "22", "23", "27", "28", "26", "25", "29", "21",
"33", "37", "36", "31", "39", "38", "32", "40", "34", "35", "44",
"45", "43", "41", "47", "49", "46", "50", "42", "48")),
Diet = factor(c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4), levels=1:4,
labels = c("1", "2", "3", "4"))),
row.names = 1:578,
class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"),
formula = weight ~ Time | Chick,
outer = ~ Diet,
labels = list(x = "Time", y = "Body weight"),
units = list(x = "(days)", y = "(gm)"))
environment(attr(ChickWeight, "formula")) <- emptyenv()
environment(attr(ChickWeight, "outer")) <- emptyenv() |
NULL
dcmp = function(x, lambda, nu, log = FALSE)
{
prep = prep.zicmp(length(x), lambda, nu)
dcmp_cpp(x, prep$lambda, prep$nu, take_log = log)
}
rcmp = function(n, lambda, nu)
{
prep = prep.zicmp(n, lambda, nu)
ymax = getOption("COMPoissonReg.ymax")
rcmp_cpp(n, prep$lambda, prep$nu, ymax = ymax)
}
pcmp = function(x, lambda, nu)
{
prep = prep.zicmp(length(x), lambda, nu)
pcmp_cpp(x, prep$lambda, prep$nu)
}
qcmp = function(q, lambda, nu, log.p = FALSE)
{
prep = prep.zicmp(length(q), lambda, nu)
if (log.p) {
log.q = q
} else {
log.q = log(q)
}
ymax = getOption("COMPoissonReg.ymax")
qcmp_cpp(log.q, prep$lambda, prep$nu, ymax = ymax)
}
cmp.expected.value = function(lambda, nu)
{
n = max(length(lambda), length(nu))
prep = prep.zicmp(n, lambda, nu)
res = numeric(n)
for (i in 1:n) {
res[i] = prep$lambda[i] * grad.fwd(z_hybrid, prep$lambda[i], nu = prep$nu[i], take_log = TRUE)
}
return(res)
} |
groupAndRename <- function(obj, var, before, after, addNA=FALSE) {
groupAndRenameX(obj=obj, var=var, before=before, after=after, addNA=addNA)
}
setGeneric("groupAndRenameX", function(obj, var, before, after, addNA=FALSE) {
standardGeneric("groupAndRenameX")
})
setMethod(f="groupAndRenameX", signature=c("factor"),
definition=function(obj, var, before, after, addNA=FALSE) {
if (!all(before %in% levels(obj))) {
stop("some elements of 'before' are not valid levels in the input factor!\n")
}
if (any(duplicated(before))) {
stop("each level from the original factor must be listed only once in argument 'before'!")
}
ll <- levels(obj)
ll[ll %in% before] <- after
levels(obj) <- ll
if (addNA) {
obj[is.na(obj)] <- after
}
obj
})
setMethod(f="groupAndRenameX", signature=c("data.frame"),
definition=function(obj, var, before, after, addNA=FALSE) {
if (length(var) != 1) {
stop("length of input 'var' != 1!\n")
}
if (!var %in% colnames(obj)) {
stop("variable specified in 'var' is not available in 'obj'!\n")
}
fac <- obj[[var]]
if (!is.factor(obj[[var]]) ) {
stop("check input, we do not have a factor here!\n")
}
obj[[var]] <- groupAndRename(obj[[var]], var=NULL, before=before, after=after, addNA=addNA)
obj
})
setMethod(f="groupAndRenameX", signature=c("sdcMicroObj"),
definition=function(obj, var, before, after, addNA=FALSE) {
obj <- nextSdcObj(obj)
manipKey <- get.sdcMicroObj(obj, type="manipKeyVars")
if (!var %in% colnames(manipKey)) {
stop("variable specified in 'var' is not available in 'obj'!\n")
}
manipKey[[var]] <- groupAndRename(manipKey[[var]], var=var, before=before, after=after, addNA=addNA)
obj <- set.sdcMicroObj(obj, type="manipKeyVars", input=list(manipKey))
obj <- calcRisks(obj)
obj
}) |
ans <- pl(amount = c(1, -1),
timestamp = c(2, 3),
price = c(1, 2),
along.timestamp = 3:1,
vprice = 1:3)
expect_equal(ans[[1]]$timestamp , 1:3)
expect_equal(unname(ans[[1]]$pl), c(0,1,1)) |
REND <- function(TPDc = NULL, TPDs = NULL){
if (is.null(TPDc) & is.null(TPDs)) {
stop("At least one of 'TPDc' or 'TPDs' must be supplied")
}
if (!is.null(TPDc) & class(TPDc) != "TPDcomm"){
stop("The class of one object do not match the expectations,
Please, specify if your object is a TPDc or a TPDs")
}
if (!is.null(TPDs) & class(TPDs) != "TPDsp"){
stop("The class of one object do not match the expectations,
Please, specify if your object is a TPDc or a TPDs")
}
results <- list()
Calc_FRich <- function(x) {
results_FR <- numeric()
if (class(x) == "TPDcomm") {
TPD <- x$TPDc$TPDc
names_aux <- names(x$TPDc$TPDc)
cell_volume <- x$data$cell_volume
}
if (class(x) == "TPDsp") {
TPD <- x$TPDs
names_aux <- names(x$TPDs)
cell_volume <- x$data$cell_volume
}
for (i in 1:length(TPD)) {
TPD_aux <- TPD[[i]]
TPD_aux[TPD_aux > 0] <- cell_volume
results_FR[i] <- sum(TPD_aux)
}
names(results_FR) <- names_aux
return(results_FR)
}
Calc_FEve <- function(x) {
results_FE <- numeric()
if (class(x) == "TPDcomm") {
TPD <- x$TPDc$TPDc
names_aux <- names(x$TPDc$TPDc)
cell_volume <- x$data$cell_volume
}
if (class(x) == "TPDsp") {
TPD <- x$TPDs
names_aux <- names(x$TPDs)
cell_volume <- x$data$cell_volume
}
for (i in 1:length(TPD)) {
TPD_aux <- TPD[[i]][TPD[[i]] > 0]
TPD_eve <- rep((1 / length(TPD_aux)), times = length(TPD_aux))
results_FE[i] <- sum(pmin(TPD_aux, TPD_eve))
}
names(results_FE) <- names_aux
return(results_FE)
}
Calc_FDiv <- function(x) {
results_FD <- numeric()
if (class(x) == "TPDcomm") {
TPD <- x$TPDc$TPDc
evaluation_grid<-x$data$evaluation_grid
names_aux <- names(x$TPDc$TPDc)
cell_volume <- x$data$cell_volume
}
if (class(x) == "TPDsp") {
TPD <- x$TPDs
evaluation_grid<-x$data$evaluation_grid
names_aux <- names(x$TPDs)
cell_volume <- x$data$cell_volume
}
for (i in 1:length(TPD)) {
functional_volume <- evaluation_grid[TPD[[i]]>0 , , drop=F]
for (j in 1:ncol(functional_volume)){
functional_volume[, j] <-
(functional_volume[, j] - min(functional_volume[, j])) /
(max(functional_volume[, j]) - min(functional_volume[, j]))
}
TPD_aux <- TPD[[i]][TPD[[i]] > 0]
COG <- colMeans(functional_volume, na.rm=T)
dist_COG <- function(x, COG) {
result_aux<-stats::dist(rbind(x, COG))
return(result_aux)
}
COGDist <- apply(functional_volume, 1, dist_COG, COG)
meanCOGDist <- mean(COGDist)
distDeviances <- COGDist-meanCOGDist
AWdistDeviances <- sum(TPD_aux * distDeviances)
absdistDeviances <- abs(COGDist-meanCOGDist)
AWabsdistDeviances <- sum(TPD_aux * absdistDeviances)
results_FD[i] <- (AWdistDeviances + meanCOGDist) /
( AWabsdistDeviances + meanCOGDist)
}
names(results_FD) <- names_aux
return(results_FD)
}
if (!is.null(TPDc)) {
results$communities <- list()
message("Calculating FRichness of communities")
results$communities$FRichness <- Calc_FRich(TPDc)
message("Calculating FEvenness of communities")
results$communities$FEvenness <- Calc_FEve(TPDc)
message("Calculating FDivergence of communities")
results$communities$FDivergence <- Calc_FDiv(TPDc)
}
if (!is.null(TPDs)) {
if (TPDs$data$type == "One population_One species" |
TPDs$data$type == "One population_Multiple species") {
results$species <- list()
message("Calculating FRichness of species")
results$species$FRichness <- Calc_FRich(TPDs)
message("Calculating FEvenness of species")
results$species$FEvenness <- Calc_FEve(TPDs)
message("Calculating FDivergence of species")
results$species$FDivergence <- Calc_FDiv(TPDs)
} else {
results$populations <- list()
message("Calculating FRichness of populations")
results$populations$FRichness <- Calc_FRich(TPDs)
message("Calculating FEvenness of populations")
results$populations$FEvenness <- Calc_FEve(TPDs)
message("Calculating FDivergence of populations")
results$populations$FDivergence <- Calc_FDiv(TPDs)
}
if (TPDs$data$method == "mean") {
message("WARNING: When TPDs are calculated using the TPDsMean function, Evenness
and Divergence are meaningless!!")
}
}
return(results)
} |
r1sd <- function(x, na = TRUE) {
return((x - mean(x, na.rm = na)) / (1 * sd(x, na.rm = na)))
} |
QRSimul <-
function(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam){
dim = length(subj)
X = matrix(X, nrow=dim)
H = length(tau)
px = ncol(X)
n = length(unique(subj))
if(px != length(VecX))
stop("the length of VecX and the number of covariate(s) must match")
XX = as.matrix(X)
if(all(X[,1]==1)) VecX[1]=1 else VecX[1] = (VecX[1] - min(X[,1]))/(max(X[,1])-min(X[,1]))
if(all(X[,1]==1)) X[,1]=X[,1] else X[,1] = (X[,1] - min(X[,1]))/(max(X[,1])-min(X[,1]))
for(k in 2:px){
VecX[k] = (VecX[k] - min(X[,k]))/(max(X[,k])-min(X[,k]))
X[,k] = (X[,k] - min(X[,k]))/(max(X[,k])-min(X[,k]))
}
lambda_all = lambdak_simul(times, subj, X, y, d, tau, kn, degree, lambda, gam)
lambdasicr = lambda_all$lambdasicr
lambdasic = lambda_all$lambdasic
simul = ncqr_simul(times, subj, y, X, tau, kn, degree, lambda=lambdasicr, lambcross=lambdasic, d)
W = simul$W
alpha = simul$alpha
hat_bt = simul$hat_bt
Hpx = rep(seq(1,px), H)
Xbeta = matrix(NA, dim, H*px)
for(h in 1:(H*px))
{
Xbeta[,h]=hat_bt[,h]*VecX[Hpx[h]]
}
qhat_h = matrix(NA, dim, H)
for(h in 1:H){
qhat_h[,h] = rowSums(Xbeta[,((h-1)*px+1):(px*h)])
}
HpxB = rep(px,H)
cum_HpxB = cumsum(HpxB)
cum_HpxA = c(1, c(cum_HpxB[seq(1:(H-1))]+1))
hat_bt0_ori = hat_bt[,cum_HpxA]
hat_btk_ori = hat_bt[,seq(2,px)]
hat_btk = matrix(NA, dim, (px-1))
hat_btk0 = matrix(0, dim, (px-1))
for(k in 1:(px-1)){
hat_btk[,k] = hat_btk_ori[,k]/(max(XX[,(k+1)])-min(XX[,(k+1)]))
hat_btk0[,k] = hat_btk_ori[,k]*min(XX[,(k+1)])/(max(XX[,(k+1)])-min(XX[,(k+1)]))
}
hat_bt0 = hat_bt0_ori - rowSums(hat_btk0)
out = list(W=W, alpha=alpha, hat_bt0=hat_bt0, hat_btk=hat_btk, qhat_h = qhat_h)
return(out)
} |
writeEnvelope <- function(obj, centerfun = mean) {
if(inherits(obj, c("SpatialPoints", "SpatialPointsDataFrame"), which = FALSE)) {
SpatialPointsEnvelope(obj)
} else if(inherits(obj, "list") && length(obj) > 0 &&
all(vapply(
X = obj,
FUN = inherits,
FUN.VALUE = logical(1),
c("SpatialPoints", "SpatialPointsDataFrame"))
)
) {
ListOfSpatialPointsEnvelope(obj, centerfun = mean)
} else if(inherits(obj, c("SpatialLines", "SpatialLinesDataFrame"), which = FALSE)) {
SpatialLinesEnvelope(obj, centerfun = mean)
} else if(inherits(obj, c("SpatialPolygons", "SpatialPolygonsDataFrame"), which = FALSE)) {
SpatialPolygonsEnvelope(obj)
} else {
stop("obj must be an object of class SpatialPoints, SpatialPointsDataFrame, ",
"SpatialLines, SpatialLinesDataFrame, SpatialPolygons, ",
"or SpatialPolygonsDataFrame, or a list of objects of class ",
"SpatialPoints or SpatialPointsDataFrame")
}
} |
session <- function(url, ...) {
session <- structure(
list(
handle = httr::handle(url),
config = c(..., httr::config(autoreferer = 1L)),
response = NULL,
url = NULL,
back = character(),
forward = character(),
cache = new_environment()
),
class = "rvest_session"
)
session_get(session, url)
}
is.session <- function(x) inherits(x, "rvest_session")
print.rvest_session <- function(x, ...) {
cat("<session> ", x$url, "\n", sep = "")
cat(" Status: ", httr::status_code(x), "\n", sep = "")
cat(" Type: ", httr::headers(x)$`Content-Type`, "\n", sep = "")
cat(" Size: ", length(x$response$content), "\n", sep = "")
invisible(x)
}
session_get <- function(x, url, ...) {
resp <- httr::GET(url, x$config, ..., handle = x$handle)
session_set_response(x, resp)
}
session_set_response <- function(x, response) {
httr::warn_for_status(response)
x$response <- response
x$url <- response$url
x$cache <- new_environment()
x
}
session_jump_to <- function(x, url, ...) {
check_session(x)
url <- xml2::url_absolute(url, x$url)
last_url <- x$url
x <- session_get(x, url, ...)
x$back <- c(last_url, x$back)
x$forward <- character()
x
}
session_follow_link <- function(x, i, css, xpath, ...) {
check_session(x)
url <- find_href(x, i = i, css = css, xpath = xpath)
inform(paste0("Navigating to ", url))
session_jump_to(x, url, ...)
}
find_href <- function(x, i, css, xpath) {
if (sum(!missing(i), !missing(css), !missing(xpath)) != 1) {
abort("Must supply exactly one of `i`, `css`, or `xpath`")
}
if (!missing(i)) {
stopifnot(length(i) == 1)
a <- html_elements(x, "a")
if (is.numeric(i)) {
out <- a[[i]]
} else if (is.character(i)) {
text <- html_text(a)
match <- grepl(i, text, fixed = TRUE)
if (!any(match)) {
stop("No links have text '", i, "'", call. = FALSE)
}
out <- a[[which(match)[[1]]]]
} else {
abort("`i` must a string or integer")
}
} else {
a <- html_elements(x, css = css, xpath = xpath)
if (length(a) == 0) {
abort("No links matched `css`/`xpath`")
}
out <- a[[1]]
}
html_attr(out, "href")
}
session_back <- function(x) {
check_session(x)
if (length(x$back) == 0) {
abort("Can't go back any further")
}
url <- x$back[[1]]
x$back <- x$back[-1]
old_url <- x$url
x <- session_get(x, url)
x$forward <- c(old_url, x$forward)
x
}
session_forward <- function(x) {
check_session(x)
if (length(x$forward) == 0) {
abort("Can't go forward any further")
}
url <- x$forward[[1]]
old_url <- x$url
x <- session_get(x, url)
x$forward <- x$forward[-1]
x$back <- c(old_url, x$back)
x
}
session_history <- function(x) {
check_session(x)
urls <- c(rev(x$back), x$url, x$forward)
prefix <- rep(c(" ", "- ", " "), c(length(x$back), 1, length(x$forward)))
cat_line(prefix, urls)
}
session_submit <- function(x, form, submit = NULL, ...) {
check_session(x)
check_form(form)
subm <- submission_build(form, submit)
resp <- submission_submit(subm, x$config, ..., handle = x$handle)
session_set_response(x, resp)
}
read_html.rvest_session <- function(x, ...) {
if (!is_html(x$response)) {
abort("Page doesn't appear to be html.")
}
env_cache(x$cache, "html", read_html(x$response, ..., base_url = x$url))
}
is_html <- function(x) {
type <- httr::headers(x)$`Content-Type`
if (is.null(type)) return(FALSE)
parsed <- httr::parse_media(type)
parsed$complete %in% c("text/html", "application/xhtml+xml")
}
html_form.rvest_session <- function(x, base_url = NULL) {
html_form(read_html(x), base_url = base_url)
}
html_table.rvest_session <- function(x,
header = NA,
trim = TRUE,
fill = deprecated(),
dec = ".",
na.strings = "NA",
convert = TRUE) {
html_table(
read_html(x),
header = header,
trim = trim,
fill = fill,
dec = dec,
na.strings = na.strings,
convert = convert
)
}
html_element.rvest_session <- function(x, css, xpath) {
html_element(read_html(x), css, xpath)
}
html_elements.rvest_session <- function(x, css, xpath) {
html_elements(read_html(x), css, xpath)
}
status_code.rvest_session <- function(x) {
status_code(x$response)
}
headers.rvest_session <- function(x) {
headers(x$response)
}
cookies.rvest_session <- function(x) {
cookies(x$response)
}
check_form <- function(x) {
if (!inherits(x, "rvest_form")) {
abort("`form` must be a single form produced by html_form()")
}
}
check_session <- function(x) {
if (!inherits(x, "rvest_session")) {
abort("`x` must be produced by session()")
}
} |
context('Test the creation of custom indicators')
data(forestgap)
data(serengeti)
datasets <- list(forestgap[3:4],
forestgap[1:2])
test_methods <- function(teststring, datalength, obj) {
ok_print <- any(grepl(teststring, capture.output(print(obj))))
expect_true(ok_print)
ok_summary <- any(grepl(teststring, capture.output(summary(obj))))
expect_true(ok_summary)
ok_as_df <- nrow(as.data.frame(obj)) == datalength
expect_true(ok_as_df)
return(TRUE)
}
test_that('Custom indicators work', {
skip_on_cran()
for (dataset in datasets) {
testindic <- function(mat) {
mat[1, 1]
}
indicator_mp <- create_indicator(testindic)
a <- indicator_mp(dataset)
test_methods("Spatial Early-Warning:", length(dataset), a)
test_methods("Spatial Early-Warning:", 1, a[[1]])
if ( length(dataset) > 1 ) {
suppressWarnings( plot(a) )
}
indictest(a[[1]], nulln = 9)
b <- indictest(a, nulln = 9)
test_methods("Spatial Early-Warning:", length(dataset), b)
test_methods("Spatial Early-Warning:", 1, b[[1]])
if (length(dataset) > 1) {
suppressWarnings( plot(b) )
}
}
indicator_mp <- create_indicator(testindic)
a <- indicator_mp(dataset)
expect_true({
all.equal(a, compute_indicator(dataset, fun = testindic))
})
})
test_that('Custom indicators handles anonymous functions correctly', {
expect_warning(
anon_fun_indic <- create_indicator(function(mat) mean(mat))
)
expect_true({
anon_fun_indic <- create_indicator(function(mat) mean(mat),
taskname = "TestTask")
TRUE
})
}) |
testthat::context("H2O AUTOML TEST")
test_that("Fire up H2O", {
testthat::skip_on_cran()
h2o.init(
nthreads = -1,
ip = 'localhost',
port = 54321
)
model_spec <<- automl_reg(mode = 'regression') %>%
set_engine(
engine = 'h2o',
max_runtime_secs = 5,
max_runtime_secs_per_model = 4,
nfolds = 5,
max_models = 3,
exclude_algos = c("DeepLearning"),
seed = 786
)
})
test_that("automl_reg: Parsnip Test", {
testthat::skip_on_cran()
model_fit <<- model_spec %>%
fit(value ~ ., data = training(m750_splits))
predictions_tbl <- model_fit %>%
modeltime_calibrate(testing(m750_splits)) %>%
modeltime_forecast(new_data = testing(m750_splits))
testthat::expect_s3_class(model_fit$fit, "automl_fit_impl")
testthat::expect_s3_class(model_fit$fit$data, "tbl_df")
testthat::expect_equal(names(model_fit$fit$data)[1], "date")
testthat::expect_equal(model_fit$preproc$y_var, "value")
testthat::expect_identical(nrow(testing(m750_splits)), nrow(predictions_tbl))
testthat::expect_identical(testing(m750_splits)$date, predictions_tbl$.index)
resid <- testing(m750_splits)$value - predictions_tbl$.value
testthat::expect_lte(max(abs(resid)), 5000)
testthat::expect_lte(mean(abs(resid)), 2500)
})
test_that("automl_reg: Workflow Test", {
testthat::skip_on_cran()
recipe_spec <- recipe(value ~ date, data = training(m750_splits)) %>%
step_log(value, skip = FALSE) %>%
step_date(date, features = "month") %>%
step_mutate(date_num = as.numeric(date))
wflw <- workflow() %>%
add_recipe(recipe_spec) %>%
add_model(model_spec)
wflw_fit <<- wflw %>%
fit(training(m750_splits))
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(testing(m750_splits)) %>%
modeltime_forecast(
new_data = testing(m750_splits),
actual_data = training(m750_splits)
) %>%
mutate_at(vars(.value), exp)
testthat::expect_s3_class(wflw_fit$fit$fit$fit, "automl_fit_impl")
testthat::expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
testthat::expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
mld <- wflw_fit %>% workflows::pull_workflow_mold()
testthat::expect_equal(names(mld$outcomes), "value")
full_data <- bind_rows(training(m750_splits), testing(m750_splits))
testthat::expect_identical(nrow(full_data), nrow(predictions_tbl))
testthat::expect_identical(full_data$date, predictions_tbl$.index)
predictions_tbl <- predictions_tbl %>% filter(.key == "prediction")
resid <- testing(m750_splits)$value - predictions_tbl$.value
testthat::expect_lte(max(abs(resid)), 10000)
testthat::expect_lte(mean(abs(resid)), 5000)
})
test_that("automl_leaderboard() works.", {
testthat::skip_on_cran()
expect_s3_class(automl_leaderboard(model_fit), "tbl_df")
expect_s3_class(automl_leaderboard(wflw_fit), "tbl_df")
expect_error(
automl_leaderboard(workflow())
)
expect_error(
workflow() %>%
add_model(automl_reg() %>% set_engine("h2o")) %>%
automl_leaderboard()
)
expect_error(
automl_leaderboard(automl_reg())
)
expect_error(
automl_leaderboard("a")
)
})
test_that("automl_update_model() works.", {
testthat::skip_on_cran()
model_ids <- automl_leaderboard(model_fit) %>% pull(model_id)
model_id_1 <- model_ids[1]
model_id_2 <- model_ids[2]
model_fit_swapped <- automl_update_model(model_fit, model_id_2)
model_2 <- h2o.getModel(model_id_2)
expect_equal(model_fit_swapped$fit$models$model_1, model_2)
expect_equal(
model_fit_swapped$fit$desc,
stringr::str_glue('H2O AutoML - {stringr::str_to_title(model_2@algorithm)}')
)
model_ids <- automl_leaderboard(wflw_fit) %>% pull(model_id)
model_id_1 <- model_ids[1]
model_id_2 <- model_ids[2]
model_fit_swapped <- automl_update_model(wflw_fit, model_id_2)
model_2 <- h2o.getModel(model_id_2)
expect_equal(model_fit_swapped$fit$fit$fit$models$model_1, model_2)
expect_equal(
model_fit_swapped$fit$fit$fit$desc,
stringr::str_glue('H2O AutoML - {stringr::str_to_title(model_2@algorithm)}')
)
expect_error(
automl_update_model()
)
expect_error(
automl_update_model("a")
)
expect_error(
automl_update_model(wflw_fit, "A")
)
})
testthat::test_that("Shutdown H2O", {
testthat::skip_on_cran()
h2o.shutdown(prompt = FALSE)
}) |
library(pcalg)
amat1 <- t(cbind(c(0,1,0,1,0),c(0,0,1,0,1),c(0,0,0,1,1),c(0,0,0,0,1),c(0,0,0,0,0)))
amat2 <- t(cbind(c(0,1,0,1,1),c(0,0,0,0,1),c(0,0,0,0,1),c(0,0,0,0,1),c(0,0,0,0,0)))
g1 <- as(amat1,"graphNEL")
g2 <- as(amat2,"graphNEL")
res <- compareGraphs(g1,g2)
if ((round(res["tpr"],5)!=0.83333) | (round(res["fpr"],5)!=0.5) | (round(res["tdr"],5)!=0.71429)) {
stop("Test of compareGraphs: Theoretical values not matched!")
} |
skip_tests_for_cran <- TRUE
skip_maxnet <- FALSE
skip_maxent.jar <- TRUE
skip_bioclim <- TRUE
skip_simDiff <- TRUE
library(dplyr)
options(warn=-1)
set.seed(48)
occs <- read.csv(file.path(system.file(package="dismo"), "/ex/bradypus.csv"))[,2:3]
envs.orig <- raster::stack(list.files(path=paste(system.file(package='dismo'), '/ex', sep=''),
pattern='grd', full.names=TRUE))
occs.z <- cbind(occs, raster::extract(envs.orig, occs))
occs.z$biome <- factor(occs.z$biome)
bg <- as.data.frame(dismo::randomPoints(envs.orig, 1000))
names(bg) <- names(occs)
bg.z <- cbind(bg, raster::extract(envs.orig, bg))
bg.z$biome <- factor(bg.z$biome)
algorithms <- c("maxnet", "maxent.jar", "bioclim")
no.iter <- 5
for(alg in algorithms) {
if(alg == "maxnet" & skip_maxnet == TRUE) next
if(alg == "maxent.jar" & skip_maxent.jar == TRUE) next
if(alg == "bioclim" & skip_bioclim == TRUE) next
if(alg == "bioclim") {
envs <- envs.orig[[-9]]
cats1 <- NULL
occs.z$biome <- NULL
bg.z$biome <- NULL
extrap <- FALSE
}else{
envs <- envs.orig
cats1 <- "biome"
extrap <- TRUE
}
if(alg == "bioclim") tune.args <- list(tails = c("low", "high", "both"))
if(alg %in% c("maxnet", "maxent.jar")) tune.args <- list(fc = c("L"), rm = 2:3)
mset <- lapply(tune.args, function(x) x[1])
context(paste("Testing ENMevaluate for", alg, "with block partitions..."))
e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "block", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "block", tune.args, 4, 4)
context(paste("Testing evalplot.stats for", alg, "with block partitions..."))
test_evalplot.stats(e)
grps <- get.block(occs, bg)
context(paste("Testing evalplot.envSim.hist for", alg, "with block partitions..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp)
context(paste("Testing evalplot.envSim.map for", alg, "with block partitions..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with block partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "block", mset, 4, 4)
context(paste("Testing evalplot.nulls for", alg, "with block partitions..."))
test_evalplot.nulls(ns)
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with checkerboard1 partitions..."))
e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "checkerboard1", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "checkerboard1", tune.args, 2, 2)
context(paste("Testing evalplot.stats for", alg, "with checkerboard1 partitions..."))
test_evalplot.stats(e)
grps <- get.checkerboard1(occs, envs, bg, aggregation.factor = 2)
context(paste("Testing evalplot.envSim.hist for", alg, "with checkerboard1 partitions..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp)
context(paste("Testing evalplot.envSim.map for", alg, "with checkerboard1 partitions..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with checkerboard1 partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "checkerboard1", mset, 2, 2)
context(paste("Testing ENMnulls plotting function for", alg, "with checkerboard1 partitions..."))
test_evalplot.nulls(ns)
}
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with checkerboard2 partitions..."))
e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "checkerboard2", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "checkerboard2", tune.args, 4, 4)
context(paste("Testing evalplot.stats for", alg, "with checkerboard2 partitions..."))
test_evalplot.stats(e)
grps <- get.checkerboard2(occs, envs, bg, aggregation.factor = 2)
context(paste("Testing evalplot.envSim.hist for", alg, "with checkerboard2 partitions..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp)
context(paste("Testing evalplot.envSim.map for", alg, "with checkerboard2 partitions..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with checkerboard2 partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "checkerboard2", mset, 4, 4)
context(paste("Testing ENMnulls plotting function for", alg, "with checkerboard2 partitions..."))
test_evalplot.nulls(ns)
}
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions..."))
e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "randomkfold", tune.args, 5, 1)
context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions..."))
test_evalplot.stats(e)
grps <- get.randomkfold(occs, bg, kfolds = 5)
context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0)
context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "randomkfold", mset, 5, 1)
context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions..."))
test_evalplot.nulls(ns)
}
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with jackknife partitions..."))
e <- ENMevaluate(occs[1:10,], envs, bg, tune.args = tune.args, partitions = "jackknife", algorithm = alg, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "jackknife", tune.args, nrow(e@occs), 1)
context(paste("Testing evalplot.stats for", alg, "with testing partition..."))
test_evalplot.stats(e)
context(paste("Testing ENMnulls for", alg, "with jackknife partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "jackknife", mset, nrow(e@occs), 1)
context(paste("Testing ENMnulls plotting function for", alg, "with jackknife partitions..."))
test_evalplot.nulls(ns)
}
context(paste("Testing ENMevaluate for", alg, "with testing partition..."))
e <- ENMevaluate(occs[1:100,], envs, bg, tune.args = tune.args, partitions = "testing", algorithm = alg, categoricals = cats1, occs.testing = occs[101:nrow(occs),], overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "testing", tune.args, 1, 1)
context(paste("Testing evalplot.stats for", alg, "with testing partition..."))
test_evalplot.stats(e)
grps <- list(occs.grp = rep(0, nrow(occs)), bg.grp = rep(0, nrow(bg)))
context(paste("Testing evalplot.envSim.hist for", alg, "with testing partition..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, occs.testing.z = e@occs.testing)
context(paste("Testing evalplot.envSim.map for", alg, "with testing partition..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, occs.testing.z = e@occs.testing, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with testing partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "testing", mset, 1, 1)
context(paste("Testing ENMnulls plotting function for", alg, "with testing partition..."))
test_evalplot.nulls(ns)
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with no partitions..."))
e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "none", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "none", tune.args, 1, 1)
context(paste("Testing ENMnulls for", alg, "with no partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "none", mset, 1, 1)
context(paste("Testing ENMnulls plotting function for", alg, "with no partitions..."))
test_evalplot.nulls(ns)
}
context(paste("Testing ENMevaluate for", alg, "with user partitions..."))
user.grp <- list(occs.grp = round(runif(nrow(occs), 1, 4)), bg.grp = round(runif(nrow(bg), 1, 4)))
e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "user", algorithm = alg, categoricals = cats1, user.grp = user.grp, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "user", tune.args, 4, 4)
context(paste("Testing evalplot.stats for", alg, "with user partitions..."))
test_evalplot.stats(e)
context(paste("Testing evalplot.envSim.hist for", alg, "with user partitions..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, user.grp$occs.grp, user.grp$bg.grp)
context(paste("Testing evalplot.envSim.map for", alg, "with user partitions..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, user.grp$occs.grp, user.grp$bg.grp, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with user partitions..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, user.eval.type = "kspatial", quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "user", mset, 4, 4)
context(paste("Testing ENMnulls plotting function for", alg, "with user partitions..."))
test_evalplot.nulls(ns)
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and no raster environmental variables..."))
e <- ENMevaluate(occs.z, bg = bg.z, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, categoricals = cats1, quiet = TRUE)
test_ENMevaluation(e, alg, "randomkfold", tune.args, 5, 1, type = "swd")
context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions and no raster environmental variables..."))
test_evalplot.stats(e)
grps <- get.randomkfold(occs, bg, kfolds = 5)
context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions and no raster environmental variables..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, categoricals = cats1)
context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions and no raster environmental variables..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions and no raster environmental variables..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "randomkfold", mset, 5, 1)
context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions and no raster environmental variables..."))
test_evalplot.nulls(ns)
}
if(skip_tests_for_cran == FALSE) {
context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and no input background data..."))
e <- ENMevaluate(occs, envs, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, n.bg = 1000, categoricals = cats1, overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e, alg, "randomkfold", tune.args, 5, 1)
context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions and no input background data..."))
test_evalplot.stats(e)
grps <- get.randomkfold(occs, bg, kfolds = 5)
context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions and no input background data..."))
test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0)
context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions and no input background data..."))
test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions and no input background data..."))
ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e, ns, no.iter, alg, "randomkfold", mset, 5, 1)
context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions and no input background data..."))
test_evalplot.nulls(ns)
}
if(skip_tests_for_cran == FALSE | alg != "bioclim") {
envs.2cat <- raster::addLayer(envs, envs$biome * round(runif(raster::ncell(envs), min = 0, max = 5)))
occs.z.2cat <- cbind(occs, raster::extract(envs.2cat, occs))
occs.z.2cat$biome.1 <- factor(occs.z.2cat$biome.1)
occs.z.2cat$biome.2 <- factor(occs.z.2cat$biome.2)
bg.z.2cat <- cbind(bg, raster::extract(envs.2cat, bg))
bg.z.2cat$biome.1 <- factor(bg.z.2cat$biome.1)
bg.z.2cat$biome.2 <- factor(bg.z.2cat$biome.2)
context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and two categorical variables..."))
e.2cat <- ENMevaluate(occs, envs.2cat, bg, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, n.bg = 1000, categoricals = c("biome.1", "biome.2"), overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e.2cat, alg, "randomkfold", tune.args, 5, 1)
context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and two categorical variables and no env data..."))
e.2cat.z <- ENMevaluate(occs.z.2cat, bg = bg.z.2cat, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, n.bg = 1000, categoricals = c("biome.1", "biome.2"), overlap = TRUE, quiet = TRUE)
test_ENMevaluation(e.2cat.z, alg, "randomkfold", tune.args, 5, 1, type = "swd")
context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions and two categorical variables..."))
test_evalplot.stats(e.2cat)
grps <- get.randomkfold(occs, bg, kfolds = 5)
context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions and two categorical variables..."))
test_evalplot.envSim.hist(e.2cat, occs.z.2cat, bg.z.2cat, grps$occs.grp, grps$bg.grp, bg.sel = 0, categoricals = c("biome.1", "biome.2"))
context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions and two categorical variables..."))
test_evalplot.envSim.map(e.2cat, envs.2cat, occs.z.2cat, bg.z.2cat, grps$occs.grp, grps$bg.grp, bg.sel = 0, categoricals = c("biome.1", "biome.2"), skip_simDiff = skip_simDiff)
context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions and two categorical variables..."))
ns <- ENMnulls(e.2cat, mod.settings = mset, no.iter = no.iter, quiet = TRUE)
test_ENMnulls(e.2cat, ns, no.iter, alg, "randomkfold", mset, 5, 1)
context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions and two categorical variables..."))
test_evalplot.nulls(ns)
}
context(paste("Testing clamping function for", alg, "with..."))
test_clamp(e, envs, occs.z, bg.z, categoricals = cats1, canExtrapolate = extrap)
context(paste("Testing clamping function for", alg, "with two categorical variables..."))
if(skip_tests_for_cran == FALSE | alg != "bioclim") test_clamp(e.2cat, envs.2cat, occs.z.2cat, bg.z.2cat, categoricals = c("biome.1", "biome.2"))
} |
MCpriorIntFun <-
function(Nsim=200,
prior,
Hpar,
dimData,
FUN=function(par,...){as.vector(par)},
store=TRUE,
show.progress = floor(seq(1, Nsim, length.out = 20 ) ),
Nsim.min=Nsim,
precision = 0,
...)
{
start.time=proc.time()
not.finite=0
param = prior(type = "r", n=1, Hpar=Hpar, dimData=dimData)
temp.res=FUN(param,...)
dim.res=dim(temp.res)
if(is.null(dim.res) || (sum(dim.res!=1) ==1) )
{
emp.mean=rep(0,length(temp.res))
}
else
{
store=FALSE
emp.mean=array(0,dim=dim.res)
}
emp.variance= emp.mean
emp.variance.unNorm=emp.variance
if(store)
{
stored.vals=matrix(0,nrow=Nsim,ncol=length(emp.mean))
}
nsim=1
while((nsim<=Nsim) &&
( (nsim<=Nsim.min) ||
(max( sqrt(emp.variance/(nsim-1)) /
abs(emp.mean) ) > precision) )
)
{
if(any(nsim==show.progress))
{
cat(paste((nsim-1), "iterations done", "\n", sep = " " ))
}
flag=TRUE
count = 0
while(flag & (count<=50))
{
param = prior(type = "r", n=1, Hpar=Hpar, dimData=dimData)
temp.res=FUN(param,...)
flag = (any(sapply(as.vector(temp.res),
function(x){ ! is.finite(x) } ) ) )
if(flag)
{
not.finite = not.finite+1
}
count = count+1
}
if(flag)
stop("more than 50 non finite values produced in a row")
cur.res=temp.res
new.emp.mean=emp.mean+1/nsim*(cur.res-emp.mean)
emp.variance.unNorm=emp.variance.unNorm +
(cur.res-new.emp.mean)* (cur.res- emp.mean)
emp.variance = emp.variance.unNorm/(nsim-1)
emp.mean = new.emp.mean
if(store)
{
stored.vals[nsim,]= as.vector(cur.res)
}
nsim=nsim+1
}
end.time = proc.time()
elapsed=end.time-start.time
print(elapsed)
if(store)
{
returned.vals=stored.vals[1:(nsim-1),]
}
else
{
returned.vals=0
}
return(list( stored.vals= returned.vals,
elapsed=elapsed,
nsim = nsim-1,
emp.mean=emp.mean,
emp.stdev=sqrt(emp.variance),
est.error=sqrt(emp.variance/(nsim-1)),
not.finite = not.finite))
} |
NULL
"ghp100k" |
kkmeans <- function(K, parameters) {
state <- list()
state$time <- system.time({
H <- eigen(K, symmetric = TRUE)$vectors[, 1:parameters$cluster_count]
objective <- sum(diag(t(H) %*% K %*% H)) - sum(diag(K))
H_normalized <- H/matrix(sqrt(rowSums(H^2, 2)),
nrow(H),
parameters$cluster_count,
byrow = FALSE)
H_normalized[sqrt(rowSums(H^2, 2)) == 0, ] <- 0
set.seed(NULL)
state$clustering <- stats::kmeans(H_normalized,
centers = parameters$cluster_count,
iter.max = 1000,
nstart = 10)$cluster
state$objective <- objective
state$parameters <- parameters
})
state
} |
translogEla <- function( xNames, data, coef, coefCov = NULL,
dataLogged = FALSE ) {
checkNames( c( xNames ), names( data ) )
nExog <- length( xNames )
nCoef <- 1 + nExog + nExog * ( nExog + 1 ) / 2
if( nCoef > length( coef ) ) {
stop( "a translog function with ", nExog, " exogenous variables",
" must have at least ", nCoef, " coefficients" )
}
if( dataLogged ) {
logData <- data
} else {
logData <- logDataSet( data = data,
varNames = xNames )
}
result <- quadFuncDeriv( xNames = xNames, data = logData, coef = coef,
coefCov = coefCov )
return( result )
} |
.init_base_test_templ <- function() {
templ_dir <- file.path(get_templ_dir(), "BaseTestProjectTemplate")
if (dir.exists(templ_dir)) {
return(templ_dir)
}
unzip(file.path("data", "BaseTestProjectTemplate.zip"), exdir = get_templ_dir())
build_prj <- RSuite::prj_start("BaseTestProjectBuild", skip_rc = TRUE, path = templ_dir, tmpl = templ_dir)
params <- build_prj$load_params()
on.exit({
unlink(params$prj_path, recursive = TRUE, force = TRUE)
},
add = TRUE)
dst_rmgr <- RSuite::repo_mng_start("Dir",
path = normalizePath(file.path(templ_dir, "project", "repository")),
rver = params$r_ver,
types = params$bin_pkgs_type)
RSuite::repo_upload_ext_packages(dst_rmgr,
pkgs = c("logging"),
prj = build_prj,
pkg_type = params$bin_pkgs_type)
RSuite::repo_mng_stop(dst_rmgr)
return(templ_dir)
}
.templ_env <- new.env()
assign("templates", list(), envir = .templ_env)
register_project_templ <- function(templ_name, init_f) {
eval_managed(sprintf("Registering project template %s", templ_name), {
.init_base_test_templ()
base_dir <- get_templ_dir()
templ_dir <- file.path(base_dir, templ_name)
if (!dir.exists(templ_dir)) {
RSuite::tmpl_start(templ_name, path = base_dir, add_pkg = FALSE,
base_tmpl = file.path(base_dir, "BaseTestProjectTemplate"))
prj <- RSuite::prj_start(paste0(templ_name, "_Build"), skip_rc = T, path = base_dir, tmpl = templ_dir)
on.exit({
unlink(prj$path, recursive = TRUE, force = TRUE)
},
add = TRUE)
init_f(prj)
unlink(file.path(templ_dir, "project", "repository"), recursive = TRUE, force = TRUE)
file.rename(file.path(prj$path, "repository"), file.path(templ_dir, "project", "repository"))
}
templs <- get("templates", envir = .templ_env)
templs[[templ_name]] <- templ_dir
assign("templates", templs, envir = .templ_env)
})
}
get_project_templ <- function(templ_name) {
templs <- get("templates", envir = .templ_env)
if (!(templ_name %in% names(templs))) {
stop(sprintf("Requested non registered project template: %s", templ_name))
}
return(templs[[templ_name]])
}
init_test_project <- function(repo_adapters = c("Dir"), name = "TestProject", tmpl = NULL,
skip_rc = T) {
if (is.null(tmpl)) {
tmpl <- .init_base_test_templ()
}
RSuite::prj_load()
prj <- RSuite::prj_start(name, skip_rc = skip_rc, path = get_wspace_dir(), tmpl = tmpl)
RSuite::prj_config_set_repo_adapters(repos = repo_adapters, prj = prj)
unlink(file.path(prj$path, "deployment", "libs", "logging"),
recursive = T, force = T)
params_path <- file.path(prj$path, "PARAMETERS")
params_df <- data.frame(read.dcf(file = params_path))
params_df$SnapshotDate <- NULL
write.dcf(params_df, file = params_path)
on_test_exit(function() {
unlink(prj$path, recursive = T, force = T)
})
return(prj)
}
remove_package_from_lrepo <- function(pkg_file, prj, type = .Platform$pkgType) {
loc_repo <- .get_local_repo_path(prj, type)
unlink(file.path(loc_repo, pkg_file), force = T, recursive = T)
RSuite:::rsuite_write_PACKAGES(loc_repo, type = type)
}
create_test_package <- function(name, prj, ver = "1.0", deps = "",
imps = "", sysreqs = "", tmpl = "builtin",
skip_rc = T) {
RSuite::prj_start_package(name, prj = prj, skip_rc = skip_rc, tmpl = tmpl)
pkg_path <- file.path(prj$path, "packages", name)
pkg_desc_fname <- file.path(pkg_path, "DESCRIPTION")
if (file.exists(pkg_desc_fname)) {
pkg_desc <- data.frame(read.dcf(file = pkg_desc_fname))
pkg_desc$Version <- ver
deps <- trimws(deps)
if (sum(nchar(deps))) {
pkg_desc$Depends <- paste(deps, collapse = ", ")
}
imps <- trimws(imps)
if (sum(nchar(imps))) {
pkg_desc$Imports <- paste(imps, collapse = ", ")
}
sysreqs <- trimws(sysreqs)
if (sum(nchar(sysreqs))) {
pkg_desc$SystemRequirements <- sysreqs
}
write.dcf(pkg_desc, file = pkg_desc_fname)
}
invisible(pkg_path)
}
set_test_package_ns_imports <- function(name, prj, imps) {
imp_path <- file.path(prj$path, "packages", name, "R", "packages_import.R")
writeLines(c(sprintf("
}
create_test_master_script <- function(code, prj) {
fn <- tempfile(pattern = "test_", fileext = ".R", tmpdir = file.path(prj$path, "R"))
f <- file(fn, "w")
writeLines(code, con = f)
close(f)
invisible(fn)
}
create_package_deploy_to_lrepo <- function(name, prj, ver = "1.0", type = .Platform$pkgType,
deps = "", sysreqs = "", imps = "logging") {
pkg_path <- create_test_package(name, prj, ver, deps = deps, imps = imps, sysreqs = sysreqs)
set_test_package_ns_imports(name, prj, unlist(strsplit(imps, ",")))
params <- prj$load_params()
on.exit({
unlink(pkg_path, recursive = T, force = T)
unlink(file.path(params$lib_path, "*"), recursive = T, force = T)
}, add = T)
loc_repo <- .get_local_repo_path(prj, type)
prj_install_deps(prj, clean = T)
prj_build(prj, type = type)
int_path <- RSuite:::rsuite_contrib_url(repos = params$get_intern_repo_path(), type = type)
avails <- data.frame(available.packages(sprintf("file:///%s", int_path), type = type),
stringsAsFactors = F)
pkg_file <- avails[avails$Package == name, "File"]
file.copy(from = file.path(int_path, pkg_file), to = loc_repo)
RSuite:::rsuite_write_PACKAGES(loc_repo, type = type)
}
remove_test_packages <- function(prj) {
unlink(file.path(prj$path, "packages", "*"), recursive = T, force = T)
}
set_test_package_deps <- function(name, prj, deps = NULL, sugs = NULL) {
params <- prj$load_params()
pkg_desc_fname <- file.path(params$pkgs_path, name, "DESCRIPTION")
if (file.exists(pkg_desc_fname)) {
pkg_desc <- data.frame(read.dcf(file = pkg_desc_fname))
if (!is.null(deps)) {
pkg_desc$Depends <- paste(deps, collapse = ", ")
}
if (!is.null(sugs)) {
pkg_desc$Suggests <- paste(sugs, collapse = ", ")
}
}
write.dcf(pkg_desc, file = pkg_desc_fname)
}
.get_local_repo_path <- function(prj, type) {
path <- RSuite:::rsuite_contrib_url(repos = file.path(prj$path, "repository"), type = type)
stopifnot(dir.exists(path))
path <- normalizePath(path)
return(path)
}
expect_that_packages_installed <- function(names, prj, versions = NULL, supports = FALSE) {
stopifnot(is.null(versions) || length(names) == length(versions))
if (supports) {
lib_path <- file.path(prj$path, "deployment", "sbox")
} else {
lib_path <- file.path(prj$path, "deployment", "libs")
}
installed <- installed.packages(lib.loc = lib_path, noCache = T)[, "Package"]
pass <- setequal(installed, names)
if (pass) {
msg <- ""
} else if (length(setdiff(names, installed)) > 0) {
msg <- sprintf("Package(s) %s failed to install", paste(setdiff(names, installed), collapse = ", "))
} else if (length(setdiff(installed, names)) > 0) {
msg <- sprintf("Unexpected package(s) %s installed", paste(setdiff(installed, names), collapse = ", "))
} else {
stop(sprintf("Unexpected condition occured: %s != %s!!!", paste(names, collapse = ", "), paste(installed, collapse = ", ")))
}
if (pass && !is.null(versions)) {
inst_vers <- as.data.frame(installed.packages(lib.loc = lib_path, noCache = T), stringsAsFactors = F)[, c("Package", "Version")]
expt_vers <- data.frame(Package = names, Expected = versions)
failed_vers <- merge(x = inst_vers, y = expt_vers, by.x = "Package", by.y = "Package")
failed_vers <- failed_vers[!is.na(failed_vers$Expected) & failed_vers$Version != failed_vers$Expected, ]
pass <- nrow(failed_vers) == 0
if (!pass) {
msg <- sprintf("Unexpected versions installed ([pkg]ver!=exp): %s",
paste(sprintf("[%s]%s!=%s", failed_vers$Package, failed_vers$Version, failed_vers$Expected),
collapse = ", "))
}
}
expect(pass, msg)
invisible(installed)
}
expect_that_has_docs <- function(topics, pkg_name, prj) {
doc_path <- file.path(prj$path, "deployment", "libs", pkg_name, "help", "AnIndex")
if (!file.exists(doc_path)) {
pass <- F
msg <- sprintf("No documentation index found for %s", pkg_name)
} else {
lines <- readLines(doc_path)
all_topics <- unlist(lapply(strsplit(lines, "\t"), function(ent) { ent[1] }))
pass <- all(topics %in% all_topics)
if (!pass) {
msg <- sprintf("Documetation topics not found in %s: %s",
pkg_name, paste(setdiff(topics, all_topics), collapse = ", "))
} else {
msg <- ""
}
}
expect(pass, msg)
}
expect_that_packages_locked <- function(expects, params) {
lock_data <- data.frame(read.dcf(params$lock_path), stringsAsFactors = FALSE)
expected_data <- data.frame(Package = names(expects), Expected = expects)
locked <- lock_data$Package
pass <- setequal(locked, expected_data$Package)
if (pass) {
msg <- ""
} else if (length(setdiff(expected_data$Package, locked)) > 0) {
msg <- sprintf("Package(s) %s failed to lock", paste(setdiff(expected_data$Package, locked), collapse = ", "))
} else if (length(setdiff(locked, expected_data$Package)) > 0) {
msg <- sprintf("Unexpected package(s) %s locked", paste(setdiff(locked, expected_data$Package), collapse = ", "))
} else {
stop(sprintf("Unexpected condition occured: %s != %s!!!", paste(expected_data$Package, collapse = ", "), paste(locked, collapse = ", ")))
}
if (pass) {
failed_vers <- merge(x = lock_data, y = expected_data, by.x = "Package", by.y = "Package")
failed_vers <- failed_vers[!is.na(failed_vers$Expected) & failed_vers$Version != failed_vers$Expected, ]
pass <- nrow(failed_vers) == 0
msg <- sprintf("Unexpected versions locked ([pkg]ver!=exp): %s",
paste(sprintf("[%s]%s!=%s", failed_vers$Package, failed_vers$Version, failed_vers$Expected),
collapse = ", "))
}
expect(pass, msg)
} |
getGVGenotype <- function(ped) {
if (hasGenotype(ped)) {
genotype <- ped[ , c("id", "first", "second")]
} else {
genotype <- NULL
}
genotype
} |
NULL
kernel <- setClass('kernel',
representation(type='character', kernel='matrix',
pathway='pathway'))
setValidity('kernel', function(object){
msg <- NULL
valid <- TRUE
if( !isSymmetric(round(object@kernel),10) ){
valid <- FALSE
msg <- c(msg, "kernel matrix has to be symmetric")
}
lambda <- min(eigen(object@kernel, only.values=TRUE, symmetric=TRUE)$values)
if(lambda < -1e-6){
valid <- FALSE
msg <- c(msg, "kernel matrix has to be positive semi-definite")
}
if(valid) TRUE else msg
})
lowrank_kernel <- setClass('lowrank_kernel',
slots=c(type='character', kernel='matrix', pathway='pathway'))
setValidity('lowrank_kernel', function(object){
msg <- NULL
valid <- TRUE
if( sum(is.na(object@kernel))>0 ){
valid <- FALSE
msg <- c(msg, "kernel matrix has missing values")
}
if(valid) TRUE else msg
})
setGeneric('calc_kernel', function(object, ...) standardGeneric('calc_kernel'))
setMethod('calc_kernel', signature(object = 'GWASdata'),
definition = function(object, pathway, knots = NULL,
type = c('lin', 'sia', 'net'),
calculation = c('cpu', 'gpu'), ...) {
type <- match.arg(type)
calculation <- match.arg(calculation)
if(!inherits(object, "GWASdata")){
stop("GWASdata must inherit from class 'GWASdata'")
}
if(!inherits(pathway, "pathway")){
stop("GWASdata must inherit from class 'pathway'")
}
if(!is.null(knots) && !inherits(knots, "GWASdata")){
stop("knots must inherit from class 'GWASdata'")
}
pwIdTest <- try(unique(object@anno$snp[which(object@anno$pathway == pathway@id)]))
if(class(pwIdTest) == "try-error"){
print(setdiff(pathway@id, object@anno$pathway))
stop("The above-mentioned pathways cannot be found in the annotation file. \n")
}
k <- eval(parse(text=paste(type, "_kernel(
object = object, pathway = pathway,
knots = knots, calculation = calculation, ...)",sep='')))
return(k)
})
setGeneric('lin_kernel', function(object, ...) standardGeneric('lin_kernel'))
setMethod('lin_kernel', signature(object = 'GWASdata'),
definition = function(object, pathway, knots=NULL,
calculation = c('cpu', 'gpu'), ...) {
calculation <- match.arg(calculation)
lowrank <- !is.null(knots)
SNPset <- unique(object@anno$snp[which(object@anno$pathway == pathway@id)])
Z1 <- as(object@geno[,as.character(SNPset)],'matrix')
if(any(is.na(Z1)))
stop("genotype information contains missing values")
if(lowrank){
Z2 <- knots@geno
Z2 <- as(Z2[,as.character(SNPset)],'matrix')
k <- Z1 %*% t(Z2)
return(new('lowrank_kernel', type='lin', kernel=k, pathway=pathway))
}else{
if(calculation=='cpu'){
k <- tcrossprod(Z1)
}
if(calculation=='gpu'){
if(require(gputools)){
Z <- as.numeric(Z1)
k <- gputools::gpuMatMult(Z1,t(Z1))
}else{
stop("Please install package 'gputools' to run matrix multiplication on GPU")
}
}
return(new('kernel', type='lin', kernel=k, pathway=pathway))
}
})
setGeneric('sia_kernel', function(object, ...) standardGeneric('sia_kernel'))
setMethod('sia_kernel', signature(object = 'GWASdata'),
definition = function(object, pathway, knots=NULL,
calculation = c('cpu', 'gpu'), ...) {
calculation <- match.arg(calculation)
if(calculation=='gpu'){
stop("GPU calculation is not available for SIA kernel")
}
SNPset <- unique(object@anno$snp[which(object@anno$pathway==pathway@id)])
z1 <- as(object@geno[,as.character(SNPset)],'matrix')
if(any(is.na(z1)))
stop("genotype information contains missing values")
lowrank <- !is.null(knots)
if(lowrank){
z2 <- knots@geno
z2 <- as(z2[,as.character(SNPset)],'matrix')
if(any(is.na(z2)))
stop("genotype information for new observations contains missing values")
anno <- object@anno[object@anno[,"pathway"]==pathway@id, c("gene","snp")]
genes <- as.character(anno[,"gene"])
gene.counts <- table(genes)
max.length <- max(gene.counts)
EffectiveNumberSNPs <- function(gene.ids){
effectivesnps <- cbind(as.character(gene.ids),rep(NA, length(gene.ids)))
for(g in gene.ids){
snps <- as.matrix(anno[anno$gene==g,"snp"])
ev <- eigen(stats::cor(z1), symmetric=T)$values
effectivesnps[effectivesnps[,1]==g,2] <-
length(ev)*(1-(length(ev)-1)*stats::var(ev)/(length(ev)^2))
}
return(effectivesnps)
}
gene.ids <- names(gene.counts[gene.counts >= 2])
effSNPs <- EffectiveNumberSNPs(gene.ids)
max.eff.length <- max(as.numeric(effSNPs[,2]), na.rm=T)
kerneltimes <- matrix(rep(0,nrow(z2)*nrow(z1)),nrow=nrow(z2))
for(g in gene.ids){
g.z1 <- as(z1[,unique(anno[anno[,"gene"]==g,"snp"])],"matrix")
g.z2 <- as(z2[,unique(anno[anno[,"gene"]==g,"snp"])],"matrix")
n1 <- nrow(g.z1)
n2 <- nrow(g.z2)
distances <- matrix(rep(rowSums(g.z2^2),n1), nrow=n2) - 2*g.z2%*%t(g.z1)
+ matrix(rep(rowSums(g.z1^2),n2), nrow=n2, byrow=TRUE)
distances <- round(distances, digits=3)
length.gene <- as.numeric(ncol(g.z1))
eff.length.g <- as.numeric(effSNPs[which(effSNPs[,1]==g),2])
delta <- sqrt(eff.length.g/max.eff.length)
roh <- mean(c(distances))^(-delta)*(eff.length.g/length.gene)^(-delta)
kerneltimes <- kerneltimes - roh*(distances/length.gene)^(delta)
}
k <- exp( sqrt(1/(length(unique(anno[,"gene"])))) * kerneltimes )
return(lowrank_kernel(type='size-adjusted', kernel=k, pathway=pathway))
}else{
genemat <- function(g, object){
z <- z1
z <- z[, apply(z,2,sum)/(2*nrow(z)) >= 0.001 & apply(z,2,sum)/(2*nrow(z)) < 1]
e.val <- eigen(stats::cor(z), symmetric=TRUE, only.values=TRUE)$values
nn <- length(e.val)
a <- matrix( rep(rowSums(z*z),nrow(z)),nrow=nrow(z))
distances <- a -2*tcrossprod(z) + t(a)
distances <- round(distances, digits=3)
return( list(distances, (nn*(1-(nn-1)*stats::var(e.val)/(nn^2))), ncol(z)) )
}
genemat2 <- function(l, max.eff){
delta <- sqrt(l[[2]]/max.eff)
roh <- (mean(c(l[[1]])))^(-delta)*(l[[2]]/l[[3]])^(-delta)
return(-roh*(l[[1]]/l[[3]])^(delta))
}
anno <- object@anno[object@anno[,"pathway"]==pathway@id, c("gene","snp")]
gene.counts <- table(anno[,"gene"])
g.10 <- names(gene.counts[gene.counts >= 2])
liste <- lapply(g.10, genemat, object)
get2 <- function(l){ return(l[[2]]) }
max.eff <- max( unlist( lapply(liste, get2) ) )
kerneltimes <- matrix( rep(0,(dim(object@pheno)[1])^2), nrow=dim(object@pheno)[1])
kerneltimes <- Reduce('+', lapply(liste,genemat2,max.eff))
k <- exp( sqrt(1/(length(unique(anno[,"gene"])))) * kerneltimes )
return(kernel(type='size-adjusted',kernel=k,pathway=pathway))
}
})
setGeneric('net_kernel', function(object, ...) standardGeneric('net_kernel'))
setMethod('net_kernel', signature(object = 'GWASdata'),
definition = function(object, pathway, knots=NULL,
calculation = c('cpu', 'gpu'), ...) {
calculation <- match.arg(calculation)
lowrank <- !is.null(knots)
SNPset <- unique(object@anno$snp[which(object@anno$pathway==pathway@id)])
Z1 <- as(object@geno[,as.character(SNPset)],'matrix')
if (any(is.na(Z1)))
stop("genotype information contains missing values")
ANA <- get_ana(object@anno, SNPset, pathway)
if(lowrank){
Z2 <- knots@geno
Z2 <- as(Z2[,as.character(SNPset)],'matrix')
K <- Z1 %*% ANA %*% t(Z2)
return(lowrank_kernel(type='network', kernel=K, pathway=pathway))
}
if(calculation=='cpu'){
K <- Z1 %*% ANA %*% t(Z1)
}
if(calculation=='gpu'){
K1 <- gputools::gpuMatMult(Z1,ANA)
K <- gputools::gpuMatMult(K1,t(Z1))
}
return(kernel(type='network',kernel=K,pathway=pathway))
})
setGeneric('rewire_network', function(object, ...) standardGeneric('rewire_network'))
setMethod('rewire_network', signature(object = 'pathway'),
definition = function(object, x) {
remov <- x
if(length(remov)==0){ return(object) }
N <- as.matrix(object@adj)
N[N!=0] <- object@sign
if(any(is.na(N)))
stop("network information contains missing values")
a <- (N[remov,]!=0)
if(is.null(dim(a))){
a <- rbind(rep(0,length(a)),a)
}
ind_sub <- which(colSums(a)!= 0)
Nsub <- N[ind_sub, ind_sub]
if(is.null(dim(Nsub))){
N <- N[!(colnames(N)%in%colnames(N)[remov]),!(colnames(N)%in%colnames(N)[remov])]
object@adj <- abs(N)
object@sign <- as.vector(N[N!=0])
return(object)
}
diag(Nsub) <- 0
if(sum(Nsub!=0)==0){
N <- N[!(colnames(N)%in%colnames(N)[remov]),!(colnames(N)%in%colnames(N)[remov])]
object@adj <- abs(N)
object@sign <- as.vector(N[N!=0])
return(object)
}
Nsub2step <- Nsub %*% Nsub
Nsub2step[Nsub2step>0] <- 1
Nsub2step[Nsub2step<0] <- -1
check_contradicts <- ((Nsub != 0) & (Nsub + Nsub2step == 0))
if(any(check_contradicts)){
Nsub2step[(Nsub != 0) & (Nsub + Nsub2step == 0)] <- 0
message('Interaction types contradict after rewiring: Edges removed.')
}
N[ind_sub,ind_sub] <- Nsub2step
N <- N[!(colnames(N)%in%colnames(N)[remov]),!(rownames(N)%in%rownames(N)[remov])]
object@adj <- abs(N)
object@sign <- as.vector(N[N!=0])
return(object)
})
setGeneric('get_ana', function(x, ...) standardGeneric('get_ana'))
setMethod('get_ana', signature = 'data.frame',
definition = function(x, SNPset, pathway){
net_genes <- get_genes(pathway)
anno_sub <- x[x$pathway==pathway@id,]
anno_genes <- unique(anno_sub$gene)
remov <- which(! net_genes %in% anno_genes)
pathway <- rewire_network(pathway, remov)
N <- as.matrix(pathway@adj)
N[N!=0] <- pathway@sign
if(any(is.na(N)))
stop("network information contains missing values")
diag(N) <- 1
N <- make_psd(N)
Atab <- table(anno_sub[c('snp','gene')])
Amat <- as(Atab, 'matrix')
A <- Amat[SNPset,rownames(N)]
A.star <- t(t(A) / sqrt(colSums(A)))
return(A.star %*% N %*% t(A.star))
})
setGeneric('make_psd', function(x, ...) standardGeneric('make_psd'))
setMethod('make_psd', signature = 'matrix',
definition = function(x, eps = sqrt(.Machine$double.eps)) {
lambda <- min(eigen(x, only.values = TRUE, symmetric = TRUE)$values)
lambda <- lambda - sqrt(.Machine$double.eps)
if (lambda < -1e-10) {
rho <- 1/(1-lambda)
x <- rho * x + (1-rho) * diag(dim(x)[1])
x <- make_psd(x)
}
return(x)
})
setMethod('show', signature('kernel'),
definition = function(object){
cat('An object of class ', class(object), ' of type ', object@type,' for pathway ', object@pathway@id, '\n\n',sep='')
print(object@kernel)
invisible(NULL)
})
setGeneric('summary', function(object) standardGeneric('summary'))
setMethod('summary', signature='kernel',
definition = function(object){
cat('An object of class ', class(object), ' of type ', object@type,' for pathway ', object@pathway@id, ' with values: \n',sep='')
print(summary(as.vector(object@kernel)))
cat(paste('\nNumber of Individuals:',dim(object@kernel)[1]),'\n')
cat(paste('The pathway contains',dim(object@pathway@adj)[1],'genes.\n'))
invisible(NULL)
})
if (!isGeneric("plot")) setGeneric('plot')
setMethod('plot', signature(x='kernel',y='missing'),
function(x, y=NA, hclust=FALSE, ...){
if(hclust) {
stats::heatmap(x@kernel, symm=TRUE, col=rev(grDevices::heat.colors(n=20)), Colv=NA,labRow=NA,labCol=NA, main=list(paste('Genetic Similarity Kernel Matrix for Pathway',x@pathway@id), cex=1.4), ...)
}else{
print(lattice::levelplot(x@kernel, col.regions=rev(grDevices::heat.colors(n=20)), drop.unused.levels=FALSE, scales=list(alternating=0), main=paste('Genetic Similarity Kernel Matrix for Pathway',x@pathway@id)), ...)
}
invisible(NULL)
}) |
LModularity <- function(cor.matrix, method = optimal.community, ...){
if(any(cor.matrix < 0)){
warning("Some correlations are negative. Using squared correlations.")
cor.matrix = cor.matrix^2
}
g = graph.adjacency(cor.matrix, weighted = TRUE, mode = 'undirected')
comm = method(g, ...)
modules = unique(comm$membership)
mod_hypothesis = matrix(0, dim(cor.matrix)[1], length(modules))
for (mod in modules){
mod_hypothesis[comm$membership == mod, mod] = 1
}
output = list("LModularity" = comm$modularity, "Modularity_hypothesis" = mod_hypothesis)
return(output)
} |
LBRecap.custom.part=function(
data,
last.column.count=FALSE,
partition,
neval=1000,
by.incr=1,
output=c("base","complete")){
output=match.arg(output)
if(!(any(c("data.frame","matrix","array","table") %in% class(data)))){
stop("input data must be a data.frame or a matrix object or an array")
}
data.matrix=data
if( !("matrix" %in% class(data)) & any(c("array","table") %in% class(data))){
n.occ=length(dim(data))
mm=matrix(ncol=n.occ,nrow=2^n.occ)
for(i in 1:2^n.occ){
mm[i,]=as.numeric(intToBits(i-1)>0)[1:n.occ]
}
data.vec=c(data)
data[1]=0
dd=c()
for(i in 1:length(data)){
dd=c(dd,rep(mm[i,],data.vec[i]))
}
data.matrix=matrix(dd,ncol=length(dim(data)),byrow=T)
}
if(!("matrix" %in% class(data))){
data.matrix=as.matrix(data)
}
if(last.column.count){
if (any(data[,ncol(data)]<0)){
stop("Last column must contain non negative frequencies/counts")
}
data=as.matrix(data)
data.matrix=matrix(ncol=(ncol(data)-1))
for(i in 1:nrow(data)){
d=rep(data[i,1:(ncol(data)-1)],(data[i,ncol(data)]))
dd=matrix(d,ncol=(ncol(data)-1),byrow=T)
data.matrix=rbind(data.matrix,dd)
}
data.matrix=data.matrix[-1,]
}
if(any(data.matrix!=0 & data.matrix!=1)) stop("data must be a binary matrix")
if(sum(apply(data.matrix,1,sum)==0)){
warning("input data argument contains rows with all zeros: these rows will be removed and ignored")
data.matrix=data.matrix[apply(data.matrix,1,sum)!=0,]
}
t=ncol(data.matrix)
M=nrow(data.matrix)
p.p=c()
for(r in 1:length(partition)){
pp=unique(partition[[r]])
p.p=c(p.p,pp)
}
p.p=sort(unique(p.p))
cond1=!all(sort(unlist(list.historylabels(ncol(data.matrix))))==p.p)
cond2=max(table(unlist(partition)))>1
if(cond1 | cond2)
stop("The input argument 'partition' does not represent a partition of the set of all partial capture histories")
partial=pch(data.matrix)
mm1=matrix(NA,ncol=ncol(data.matrix),nrow=nrow(data.matrix))
mm0=matrix(NA,ncol=ncol(data.matrix),nrow=nrow(data.matrix))
cc=c()
n.obs.1=c()
n.obs.0=c()
n.unobs=c()
p.1=matrix(ncol = length(partition), nrow = neval)
log.lik=c()
for(k in 1:length(partition)){
for(i in 1:nrow(data.matrix)){
for(j in 1:ncol(data.matrix)){
mm1[i,j]=any(partition[[k]]==partial[i,j]) & data.matrix[i,j]==1
mm0[i,j]=any(partition[[k]]==partial[i,j]) & data.matrix[i,j]==0
}
}
n.obs.0[k]=sum(mm0)
n.obs.1[k]=sum(mm1)
}
for(k in 1:length(partition)){
for(j in 1:ncol(data.matrix)){
cc[j]=any(partition[[k]]==pch(matrix(rep(0,ncol(data.matrix)),nrow=1))[j])
}
n.unobs[k]=sum(cc)
}
failure.conditions=F
if(sum(as.logical(n.unobs))==1){failure.conditions=T}
for(l in 1:neval){
val=seq(M,((M+(neval-1)*by.incr)),by=by.incr)
nn.0=n.obs.0+(n.unobs*(l-1)*by.incr)
nn.1=n.obs.1
p.1[l,]=nn.1/(nn.0+nn.1)
n.00=nn.0[nn.0>0]
n.10=nn.1[nn.0>0]
n.01=nn.0[nn.1>0]
n.11=nn.1[nn.1>0]
log.lik[l]=lchoose((sum(nn.1)+sum(nn.0))/t,M)+(sum(n.11*log(n.11/(n.11+n.01)))+(sum(n.00*log(n.00/(n.10+n.00)))))
}
AIC=-2*max(log.lik)+2*(length(partition)+1)
u=which(log.lik==max(log.lik))-1
N.hat=M+(u*by.incr)
pH.hat=p.1[which(log.lik==max(log.lik)),]
names(pH.hat)=paste("pH",1:length(pH.hat),sep="")
z2=(qnorm(0.975))^2
Nplus=N.hat
if(N.hat<(M+neval*(by.incr))){
i=1
while((2*(max(log.lik)-log.lik[(which(log.lik==(max(log.lik)))+i)])<z2 & (N.hat+i*(by.incr))< M+neval*(by.incr)))
{
i=i+1
}
Nplus=N.hat+i*by.incr
}
Nminus=N.hat
if(N.hat>M){
i=1
while(2*(max(log.lik)-log.lik[(which(log.lik==(max(log.lik)))-i)])<z2 &(N.hat-i*(by.incr))>M){
i=i+1
}
Nminus=N.hat-i*by.incr
}
out=switch(output,
base=list(N.hat=N.hat,CI=c(Nminus,Nplus),AIC=AIC,L.Failure=FALSE),
complete=list(N.hat=N.hat,CI=c(Nminus,Nplus),pH.hat=pH.hat,AIC=AIC,L.Failure=FALSE,log.lik=log.lik,N=seq(M,neval*by.incr+M,by=by.incr)[-neval+1],Partition=partition))
if(failure.conditions==T){
n1=n.obs.1[which(n.unobs!=0)]
n0=n.obs.0[which(n.unobs!=0)]
if((M*(t-1)-n0<=((M-1)*(t-1))/2-1) & n1==M) {
out=switch(output,
base=list(N.hat=NA,CI=c(NA,NA),AIC=-Inf,L.Failure=TRUE),
complete=list(N.hat=NA,CI=c(NA,NA),AIC=-Inf,L.Failure=TRUE,log.lik=log.lik,N=seq(M,neval*by.incr+M,by=by.incr)[-neval+1],Partition=partition))
}
}
return(out)
} |
plot.ref.grid = function(x, ...) {
plot(x = as(x, "emmGrid"), ...)
}
ref.grid = function(...) {
.Deprecated(new = "ref_grid", old = "ref.grid", package = "emmeans")
ref_grid(...)
}
recover.data = function(object, ...)
UseMethod("recover.data")
recover.data.call = function(...)
recover_data.call(...)
.chk_recover_data = function(object, ...) {
has.old.meth = paste0("recover.data.",
class(object)[1]) %in% methods("recover.data")
if (has.old.meth) {
recover.data(object, ...)
}
else
recover_data(object, ...)
}
lsm.basis = function(object, ...)
UseMethod("lsm.basis")
.chk_emm_basis = function(object, ...) {
has.old.meth = paste0("lsm.basis.",
class(object)[1]) %in% methods("lsm.basis")
if (has.old.meth) {
lsm.basis(object, ...)
}
else
emm_basis(object, ...)
}
NULL |
distNumeric <- function(x, y, method = "mrw", xyequal = TRUE) {
if((is.matrix(x)&&is.matrix(x))==FALSE)
stop("x and y must be a matrix object!")
if(ncol(x)!=ncol(y))
stop(sQuote("x")," and ",sQuote("y"),
" must have the same number of columns")
if (xyequal == TRUE) {
span <- apply(x, 2, function(x) max(x)-min(x))
variance <- apply(x, 2, var)
} else {
span <- apply(rbind(x,y), 2, function(x) max(x)-min(x))
variance <- apply(rbind(x,y), 2, var)
}
span.2 <- span^2
num_distance <- c("mrw", "sev", "ser", "ser.2", "se")
method <- match.arg(method, num_distance)
result <- switch(method,
mrw = weightedNum(x, y, p = 1, alpha = span),
ser = weightedNum(x, y, p = 2, alpha = span),
ser.2 = weightedNum(x, y, p = 2, alpha = span.2),
sev = weightedNum(x, y, p = 2, alpha = variance),
se = weightedNum(x, y, p = 2, alpha = 1))
return(result)
} |
hullArea <- function (x,y) {
ne <- length(x)
harea <- abs (0.5 * ( (x[1:(ne-1)] %*% y[2:ne]) - ( y[1:(ne-1)] %*% x[2:ne]) ) )
harea
} |
loadNamespace("fields")
loadNamespace("graphics")
loadNamespace("ggplot2")
loadNamespace("hash")
map.build <- function(data,
labels=NULL,
xdim=10,
ydim=5,
alpha=.3,
train=1000,
normalize=FALSE,
seed=NULL,
minimal=FALSE)
{
if (alpha <= 0 || alpha > 1)
stop("invalid value for alpha")
if (xdim < 5 || ydim < 5)
stop("map is too small.")
if (!is.data.frame(data))
stop("training data has to be a data frame")
if (!all(sapply(data,is.numeric)))
stop("only numeric data can be used for training")
if (!is.null(labels) && !is.data.frame(labels))
labels <- data.frame(labels)
if (normalize)
data <- map.normalize(data)
if (!is.null(seed) && seed <= 0)
stop("seed value has to be a positive integer value")
if (!is.null(seed) && !test.integer(seed))
stop("seed value has to be a positive integer value")
if (!test.integer(train))
stop("train value has to be a positive integer value")
neurons <- vsom.f(data,
xdim=xdim,
ydim=ydim,
alpha=alpha,
train=train,
seed=seed)
neurons <- data.frame(neurons)
names(neurons) <- names(data)
map <- list(data=data,
labels=labels,
xdim=xdim,
ydim=ydim,
alpha=alpha,
train=train,
normalize=normalize,
seed=seed,
neurons=neurons)
if (minimal)
{
class(map) <- "map.minimal"
return(map)
}
else
{
class(map) <- "map"
}
map$heat <- compute.heat(map)
map$fitted.obs <- map.fitted.obs(map)
map$centroids <- compute.centroids(map)
map$unique.centroids <- get.unique.centroids(map)
map$centroid.labels <- majority.labels(map)
map$label.to.centroid <- compute.label.to.centroid(map)
map$centroid.obs <- compute.centroid.obs(map)
map$convergence <- map.convergence(map,verb=FALSE)
map$wcss <- compute.wcss(map)
map$bcss <- compute.bcss(map)
return(map)
}
map.summary <- function(map, verb=TRUE)
{
if (class(map) != "map")
stop("first argument is not a map object.")
value <- list()
header <- c("xdim",
"ydim",
"alpha",
"train",
"normalize",
"seed",
"instances",
"columns")
v <- c(map$xdim,
map$ydim,
map$alpha,
map$train,
if (map$normalize) "TRUE" else "FALSE",
if (is.null(map$seed)) "NULL" else map$seed,
nrow(map$data),
ncol(map$data))
df <- data.frame(t(v))
names(df) <- header
row.names(df) <- " "
value$training.parameters <- df
header <- c("convergence","separation","clusters")
v <- c(map$convergence,
1.0 - map$wcss/map$bcss,
length(map$unique.centroids))
df <- data.frame(t(v))
names(df) <- header
row.names(df) <- " "
value$quality.assessments <- df
class(value) <- "summary.map"
if (verb)
{
cat("\n")
cat("Training Parameters:\n")
print(value$training.parameters)
cat("\n")
cat("Quality Assessments:\n")
print(format(value$quality.assessments,digits=2))
cat("\n")
}
else
{
value
}
}
map.starburst <- function(map)
{
if (class(map) != "map")
stop("first argument is not a map object.")
plot.heat(map)
}
map.significance <- function(map,graphics=TRUE,feature.labels=TRUE)
{
if (class(map) != "map")
stop("first argument is not a map object.")
data.df <- data.frame(map$data)
nfeatures <- ncol(data.df)
var.v <- array(data=1,dim=nfeatures)
for (i in 1:nfeatures)
{
var.v[i] <- var(data.df[[i]])
}
var.sum <- sum(var.v)
prob.v <- var.v/var.sum
if (graphics)
{
par.v <- map.graphics.set()
y <- max(prob.v)
plot.new()
plot.window(xlim=c(1,nfeatures),ylim=c(0,y))
box()
title(xlab="Features",ylab="Significance")
xticks <- seq(1,nfeatures,1)
yticks <- seq(0,y,y/4)
if (feature.labels)
xlabels <- names(data.df)
else
xlabels <- seq(1,nfeatures,1)
ylabels <- formatC(seq(0,y,y/4),digits=2)
axis(1,at=xticks,labels=xlabels)
axis(2,at=yticks,labels=ylabels)
points(1:nfeatures,prob.v,type="h")
map.graphics.reset(par.v)
}
else
{
prob.v
}
}
map.marginal <- function(map,marginal)
{
if (class(map) != "map")
stop("first argument is not a map object.")
if (!typeof(marginal) == "character")
{
train <- data.frame(points = map$data[[marginal]])
neurons <- data.frame(points = map$neurons[[marginal]])
train$legend <- 'training data'
neurons$legend <- 'neurons'
hist <- rbind(train,neurons)
ggplot(hist, aes(points, fill = legend)) +
geom_density(alpha = 0.2) +
xlab(names(map$data)[marginal])
}
else if (marginal %in% names(map$data))
{
train <- data.frame(points = map$data[names(map$data) == marginal])
colnames(train) <- c("points")
neurons <- data.frame(points = map$neurons[names(map$neurons) == marginal])
colnames(neurons) <- c("points")
train$legend <- 'training data'
neurons$legend <- 'neurons'
hist <- rbind(train,neurons)
ggplot(hist, aes(points, fill = legend)) +
geom_density(alpha = 0.2) +
xlab(marginal)
}
else
{
stop("second argument is not a data dimension or index")
}
}
map.fitted <- function(map)
{
if (class(map) != "map")
stop("first argument is not a map object.")
nobs <- length(map$fitted.obs)
labels <- c()
for (i in 1:nobs)
{
nix <- map$fitted.obs[[i]]
coord <- coordinate(map,nix)
x <- coord$x
y <- coord$y
c.x <- map$centroids[[x,y]]$x
c.y <- map$centroids[[x,y]]$y
l <- map$centroid.labels[[c.x,c.y]]
labels <- c(labels,l)
}
labels
}
map.predict<- function (map,points)
{
predict.point <- function (x)
{
if (!is.vector(x))
stop("argument has to be a vector.")
if (length(x) != ncol(map$data))
stop("predict vector dimensionality is incompatible")
if (map$normalize)
x <- as.vector(map.normalize(x))
nix <- best.match(map,x)
coord <- coordinate(map,nix)
ix <- coord$x
iy <- coord$y
c.xy <- map$centroids[[ix,iy]]
c.nix <- rowix(map,c.xy)
label <- map$centroid.labels[[c.xy$x,c.xy$y]]
c.ix <- find.centroidix(map,c.xy)
vectors <- rbind(map$neurons[c.nix,],x)
x.to.c.distance <- max(as.matrix(dist(vectors))[1,])
vectors <- map$neurons[c.nix,]
for (i in 1:length(map$centroid.obs[[c.ix]]))
{
obs.ix <- map$centroid.obs[[c.ix]][i]
vectors <- rbind(vectors,map$data[obs.ix,])
}
max.o.to.c.distance <- max(as.matrix(dist(vectors))[1,])
max.o.to.c.distance <- max.o.to.c.distance + 0.05*max.o.to.c.distance
conf <- 1.0 - (x.to.c.distance/max.o.to.c.distance)
return (c(label,conf))
}
if (is.vector(points))
points <- t(data.frame(points))
m <- data.frame(t(apply(points,1,predict.point)))
names(m) <- c("Label", "Confidence")
m
}
map.position <- function (map,points)
{
position.point <- function(x)
{
if (!is.vector(x))
stop("argument has to be a vector.")
if (length(x) != ncol(map$data))
stop("vector dimensionality is incompatible")
if (map$normalize)
x <- as.vector(map.normalize(x))
nix <- best.match(map,x)
coord <- coordinate(map,nix)
return (c(coord$x,coord$y))
}
if (is.vector(points))
points <- t(data.frame(points))
m <- data.frame(t(apply(points,1,position.point)))
names(m) <- c("x-dim", "y-dim")
m
}
map.convergence <- function(map,conf.int=.95,k=50,verb=TRUE,ks = TRUE)
{
if (ks)
embed <- map.embed.ks(map,conf.int,verb=FALSE)
else
embed <- map.embed.vm(map,conf.int,verb=FALSE)
topo <- map.topo(map,k,conf.int,verb=FALSE,interval=FALSE)
if (verb)
return (list(embed=embed,topo=topo))
else
return (0.5*embed + 0.5*topo)
}
test.integer <- function(x)
{
all.equal(x, as.integer(x), check.attributes = FALSE)
}
find.centroidix <- function (map,cd)
{
for (i in 1:length(map$unique.centroids))
{
if (cd$x == map$unique.centroids[[i]]$x &&
cd$y == map$unique.centroids[[i]]$y)
{
return (i)
}
}
stop("coordinate not a centroid")
}
compute.centroid.obs <- function (map)
{
centroid.obs <- array(list(),dim=length(map$unique.centroids))
for (cluster.ix in 1:length(map$unique.centroids))
{
c.nix <- rowix(map,map$unique.centroids[[cluster.ix]])
for (i in 1:nrow(map$data))
{
coord <- coordinate(map,map$fitted.obs[i])
c.obj.nix <- rowix(map,map$centroids[[coord$x,coord$y]])
if (c.obj.nix == c.nix)
{
centroid.obs[[cluster.ix]] <- append(centroid.obs[[cluster.ix]],i)
}
}
}
as.vector(centroid.obs)
}
compute.wcss <- function (map)
{
clusters.ss <- c()
for (cluster.ix in 1:length(map$unique.centroids))
{
c.nix <- rowix(map,map$unique.centroids[[cluster.ix]])
vectors <- map$neurons[c.nix,]
for (i in 1:length(map$centroid.obs[[cluster.ix]]))
{
obs.ix <- map$centroid.obs[[cluster.ix]][i]
vectors <- rbind(vectors,map$data[obs.ix,])
}
distances <- as.matrix(dist(vectors))[1,]
distances.sqd <- sapply(distances,function(x){x*x})
c.ss <- sum(distances.sqd)/(length(distances.sqd)-1)
clusters.ss <- c(clusters.ss,c.ss)
}
wcss <- sum(clusters.ss)/length(clusters.ss)
wcss
}
compute.bcss <- function (map)
{
all.bc.ss <- c()
c.nix <- rowix(map,map$unique.centroids[[1]])
cluster.vectors <- map$neurons[c.nix,]
if (length(map$unique.centroids) > 1)
{
for (cluster.ix in 2:length(map$unique.centroids))
{
c.nix <- rowix(map,map$unique.centroids[[cluster.ix]])
c.vector <- map$neurons[c.nix,]
cluster.vectors <- rbind(cluster.vectors,c.vector)
}
}
for (cluster.ix in 1:length(map$unique.centroids))
{
c.nix <- rowix(map,map$unique.centroids[[cluster.ix]])
c.vector <- map$neurons[c.nix,]
compute.vectors <- rbind(c.vector,cluster.vectors)
bc.distances <- as.matrix(dist(compute.vectors))[1,]
bc.distances.sqd <- sapply(bc.distances,function(x){x*x})
bc.ss <- sum(bc.distances.sqd)/(length(bc.distances.sqd)-2)
all.bc.ss <- c(all.bc.ss,bc.ss)
}
stopifnot(length(all.bc.ss)==length(map$unique.centroids))
bcss <- sum(all.bc.ss)/length(all.bc.ss)
bcss
}
compute.label.to.centroid <- function (map)
{
conv <- hash()
for (i in 1:length(map$unique.centroids))
{
x <- map$unique.centroids[[i]]$x
y <- map$unique.centroids[[i]]$y
l <- map$centroid.labels[[x,y]]
if (is.null(conv[[l]]))
{
conv[[l]] <- list(i)
}
else
{
conv[[l]] <- append(conv[[l]],i)
}
}
conv
}
map.fitted.obs <- function(map)
{
fitted.obs <- c()
for (i in 1:nrow(map$data))
{
b <- best.match(map,map$data[i,])
fitted.obs <- c(fitted.obs,b)
}
fitted.obs
}
map.topo <- function(map,k=50,conf.int=.95,verb=FALSE,interval=TRUE)
{
if (class(map) != "map")
stop("first argument is not a map object.")
data.df <- as.matrix(map$data)
k <- min(k,nrow(data.df))
data.sample.ix <- sample(1:nrow(data.df),size=k,replace=FALSE)
acc.v <- c()
for (i in 1:k)
{
acc.v <- c(acc.v,
accuracy(map,
data.df[data.sample.ix[i],],
data.sample.ix[i]))
}
if (interval)
bval <- bootstrap(map,conf.int,data.df,k,acc.v)
if (verb)
{
acc.v
}
else
{
val <- sum(acc.v)/k
if (interval)
list(val=val,lo=bval$lo,hi=bval$hi)
else
val
}
}
map.embed.vm <- function(map,conf.int=.95,verb=FALSE)
{
if (class(map) != "map")
stop("first argument is not a map object.")
map.df <- data.frame(map$neurons)
data.df <- data.frame(map$data)
vl <- df.var.test(map.df,data.df,conf=conf.int)
ml <- df.mean.test(map.df,data.df,conf=conf.int)
nfeatures <- ncol(map.df)
prob.v <- map.significance(map,graphics=FALSE)
var.sum <- 0
for (i in 1:nfeatures)
{
if (vl$conf.int.lo[i] <= 1.0
&& vl$conf.int.hi[i] >= 1.0
&& ml$conf.int.lo[i] <= 0.0
&& ml$conf.int.hi[i] >= 0.0)
{
var.sum <- var.sum + prob.v[i]
}
else
{
prob.v[i] <- 0
}
}
if (verb)
prob.v
else
var.sum
}
map.embed.ks <- function(map,conf.int=.95,verb=FALSE)
{
if (class(map) != "map")
{
stop("first argument is not a map object.")
}
map.df <- data.frame(map$neurons)
data.df <- data.frame(map$data)
nfeatures <- ncol(map.df)
ks.vector <- NULL
for(i in 1:nfeatures){
ks.vector[[i]] <- suppressWarnings(ks.test(map.df[[i]], data.df[[i]]))
}
prob.v <- map.significance(map,graphics=FALSE)
var.sum <- 0
for (i in 1:nfeatures)
{
if (ks.vector[[i]][[2]] > (1 - conf.int)) {
var.sum <- var.sum + prob.v[i]
} else {
prob.v[i] <- 0
}
}
if (verb)
prob.v
else
var.sum
}
map.normalize <- function (x)
{
if (is.vector(x))
{
return (scale(x))
}
else if (is.data.frame(x))
{
df <- data.frame(t(apply(x,1,scale)))
names(df) <- names(x)
return (df)
}
else
{
stop("'x' is not a vector or dataframe.\n")
}
}
bootstrap <- function(map,conf.int,data.df,k,sample.acc.v)
{
ix <- as.integer(100 - conf.int*100)
bn <- 200
bootstrap.acc.v <- c(sum(sample.acc.v)/k)
for (i in 2:bn)
{
bs.v <- sample(1:k,size=k,replace=TRUE)
a <- sum(sample.acc.v[bs.v])/k
bootstrap.acc.v <- c(bootstrap.acc.v,a)
}
bootstrap.acc.sort.v <- sort(bootstrap.acc.v)
lo.val <- bootstrap.acc.sort.v[ix]
hi.val <- bootstrap.acc.sort.v[bn-ix]
list(lo=lo.val,hi=hi.val)
}
best.match <- function(map,obs,full=FALSE)
{
obs.m <- matrix(as.numeric(obs),
nrow(map$neurons),
ncol(map$neurons),
byrow=TRUE)
diff <- map$neurons - obs.m
squ <- diff * diff
s <- rowSums(squ)
d <- sqrt(s)
o <- order(d)
if (full)
o
else
o[1]
}
accuracy <- function(map,sample,data.ix)
{
o <- best.match(map,sample,full=TRUE)
best.ix <- o[1]
second.best.ix <- o[2]
coord <- coordinate(map,best.ix)
coord.x <- coord$x
coord.y <- coord$y
map.ix <- map$fitted.obs[data.ix]
coord <- coordinate(map,map.ix)
map.x <- coord$x
map.y <- coord$y
if (coord.x != map.x || coord.y != map.y || best.ix != map.ix)
{
cat("best.ix: ",best.ix," map.rix: ",map.ix,"\n")
stop("problems with coordinates")
}
best.xy <- coordinate(map,best.ix)
second.best.xy <- coordinate(map,second.best.ix)
diff.map <- c(best.xy$x,best.xy$y) - c(second.best.xy$x,second.best.xy$y)
diff.map.sq <- diff.map * diff.map
sum.map <- sum(diff.map.sq)
dist.map <- sqrt(sum.map)
if (dist.map < 2)
1
else
0
}
coord <- function (x=-1,y=-1)
{
l <- list(x=x,y=y)
class(l) <- "coord"
l
}
coordinate <- function(map,rowix)
{
x <- (rowix-1) %% map$xdim + 1
y <- (rowix-1) %/% map$xdim + 1
coord(x,y)
}
rowix <- function(map,cd)
{
if (class(cd) != "coord")
stop("expected a coord object")
rix <- cd$x + (cd$y-1)*map$xdim
rix
}
map.graphics.set <- function()
{
par.v <- par()
par(ps=6)
par.v
}
map.graphics.reset <- function(par.vector)
{
par(ps=par.vector$ps)
}
plot.heat <- function(map)
{
x <- map$xdim
y <- map$ydim
centroids <- map$centroids
if (x <= 1 || y <= 1)
{
stop("map dimensions too small")
}
heat.v <- as.vector(map$heat)
heat.v <- cut(heat.v,breaks=100,labels=FALSE)
heat <- array(data=heat.v,dim=c(x,y))
colors<- heat.colors(100)
par.v <- map.graphics.set()
plot.new()
plot.window(xlim=c(0,x),ylim=c(0,y))
box()
title(xlab="x",ylab="y")
xticks <- seq(0.5,x-0.5,1)
yticks <- seq(0.5,y-0.5,1)
xlabels <- seq(1,x,1)
ylabels <- seq(1,y,1)
axis(1,at=xticks,labels=xlabels)
axis(3,at=xticks,labels=xlabels)
axis(2,at=yticks,labels=ylabels)
axis(4,at=yticks,labels=ylabels)
for (ix in 1:x)
{
for (iy in 1:y)
{
rect(ix-1,iy-1,ix,iy,col=colors[100 - heat[ix,iy] + 1],border=NA)
}
}
for(ix in 1:x)
{
for (iy in 1:y)
{
cx <- centroids[[ix,iy]]$x
cy <- centroids[[ix,iy]]$y
points(c(ix,cx)-.5,c(iy,cy)-.5,type="l",col="grey")
}
}
centroid.labels <- majority.labels(map)
for(ix in 1:x)
{
for (iy in 1:y)
{
lab <- centroid.labels[[ix,iy]]
if (lab != none.label)
{
text(ix-.5,iy-.5,labels=lab)
}
}
}
map.graphics.reset(par.v)
}
compute.centroids <- function(map)
{
heat <- map$heat
xdim <- map$xdim
ydim <- map$ydim
max.val <- max(heat)
centroids <- array(data=list(coord()),dim=c(xdim,ydim))
compute.centroid <- function(ix,iy)
{
if ((centroids[[ix,iy]])$x > -1 && (centroids[[ix,iy]])$y > -1)
{
centroids[[ix,iy]]
}
min.val <- heat[ix,iy]
min.x <- ix
min.y <- iy
if (ix > 1 && ix < xdim && iy > 1 && iy < ydim)
{
if (heat[ix-1,iy-1] < min.val)
{
min.val <- heat[ix-1,iy-1]
min.x <- ix-1
min.y <- iy-1
}
if (heat[ix,iy-1] < min.val)
{
min.val <- heat[ix,iy-1]
min.x <- ix
min.y <- iy-1
}
if (heat[ix+1,iy-1] < min.val)
{
min.val <- heat[ix+1,iy-1]
min.x <- ix+1
min.y <- iy-1
}
if (heat[ix+1,iy] < min.val)
{
min.val <- heat[ix+1,iy]
min.x <- ix+1
min.y <- iy
}
if (heat[ix+1,iy+1] < min.val)
{
min.val <- heat[ix+1,iy+1]
min.x <- ix+1
min.y <- iy+1
}
if (heat[ix,iy+1] < min.val)
{
min.val <- heat[ix,iy+1]
min.x <- ix
min.y <- iy+1
}
if (heat[ix-1,iy+1] < min.val)
{
min.val <- heat[ix-1,iy+1]
min.x <- ix-1
min.y <- iy+1
}
if (heat[ix-1,iy] < min.val)
{
min.val <- heat[ix-1,iy]
min.x <- ix-1
min.y <- iy
}
}
else if (ix == 1 && iy == 1)
{
if (heat[ix+1,iy] < min.val)
{
min.val <- heat[ix+1,iy]
min.x <- ix+1
min.y <- iy
}
if (heat[ix+1,iy+1] < min.val)
{
min.val <- heat[ix+1,iy+1]
min.x <- ix+1
min.y <- iy+1
}
if (heat[ix,iy+1] < min.val)
{
min.val <- heat[ix,iy+1]
min.x <- ix
min.y <- iy+1
}
}
else if (ix == xdim && iy == 1)
{
if (heat[ix,iy+1] < min.val)
{
min.val <- heat[ix,iy+1]
min.x <- ix
min.y <- iy+1
}
if (heat[ix-1,iy+1] < min.val)
{
min.val <- heat[ix-1,iy+1]
min.x <- ix-1
min.y <- iy+1
}
if (heat[ix-1,iy] < min.val)
{
min.val <- heat[ix-1,iy]
min.x <- ix-1
min.y <- iy
}
}
else if (ix == xdim && iy == ydim)
{
if (heat[ix-1,iy-1] < min.val)
{
min.val <- heat[ix-1,iy-1]
min.x <- ix-1
min.y <- iy-1
}
if (heat[ix,iy-1] < min.val)
{
min.val <- heat[ix,iy-1]
min.x <- ix
min.y <- iy-1
}
if (heat[ix-1,iy] < min.val)
{
min.val <- heat[ix-1,iy]
min.x <- ix-1
min.y <- iy
}
}
else if (ix == 1 && iy == ydim)
{
if (heat[ix,iy-1] < min.val)
{
min.val <- heat[ix,iy-1]
min.x <- ix
min.y <- iy-1
}
if (heat[ix+1,iy-1] < min.val)
{
min.val <- heat[ix+1,iy-1]
min.x <- ix+1
min.y <- iy-1
}
if (heat[ix+1,iy] < min.val)
{
min.val <- heat[ix+1,iy]
min.x <- ix+1
min.y <- iy
}
}
else if (ix == 1 && iy > 1 && iy < ydim)
{
if (heat[ix,iy-1] < min.val)
{
min.val <- heat[ix,iy-1]
min.x <- ix
min.y <- iy-1
}
if (heat[ix+1,iy-1] < min.val)
{
min.val <- heat[ix+1,iy-1]
min.x <- ix+1
min.y <- iy-1
}
if (heat[ix+1,iy] < min.val)
{
min.val <- heat[ix+1,iy]
min.x <- ix+1
min.y <- iy
}
if (heat[ix+1,iy+1] < min.val)
{
min.val <- heat[ix+1,iy+1]
min.x <- ix+1
min.y <- iy+1
}
if (heat[ix,iy+1] < min.val)
{
min.val <- heat[ix,iy+1]
min.x <- ix
min.y <- iy+1
}
}
else if (ix > 1 && ix < xdim && iy == 1 )
{
if (heat[ix+1,iy] < min.val)
{
min.val <- heat[ix+1,iy]
min.x <- ix+1
min.y <- iy
}
if (heat[ix+1,iy+1] < min.val)
{
min.val <- heat[ix+1,iy+1]
min.x <- ix+1
min.y <- iy+1
}
if (heat[ix,iy+1] < min.val)
{
min.val <- heat[ix,iy+1]
min.x <- ix
min.y <- iy+1
}
if (heat[ix-1,iy+1] < min.val)
{
min.val <- heat[ix-1,iy+1]
min.x <- ix-1
min.y <- iy+1
}
if (heat[ix-1,iy] < min.val)
{
min.val <- heat[ix-1,iy]
min.x <- ix-1
min.y <- iy
}
}
else if (ix == xdim && iy > 1 && iy < ydim)
{
if (heat[ix-1,iy-1] < min.val)
{
min.val <- heat[ix-1,iy-1]
min.x <- ix-1
min.y <- iy-1
}
if (heat[ix,iy-1] < min.val)
{
min.val <- heat[ix,iy-1]
min.x <- ix
min.y <- iy-1
}
if (heat[ix,iy+1] < min.val)
{
min.val <- heat[ix,iy+1]
min.x <- ix
min.y <- iy+1
}
if (heat[ix-1,iy+1] < min.val)
{
min.val <- heat[ix-1,iy+1]
min.x <- ix-1
min.y <- iy+1
}
if (heat[ix-1,iy] < min.val)
{
min.val <- heat[ix-1,iy]
min.x <- ix-1
min.y <- iy
}
}
else if (ix > 1 && ix < xdim && iy == ydim)
{
if (heat[ix-1,iy-1] < min.val)
{
min.val <- heat[ix-1,iy-1]
min.x <- ix-1
min.y <- iy-1
}
if (heat[ix,iy-1] < min.val)
{
min.val <- heat[ix,iy-1]
min.x <- ix
min.y <- iy-1
}
if (heat[ix+1,iy-1] < min.val)
{
min.val <- heat[ix+1,iy-1]
min.x <- ix+1
min.y <- iy-1
}
if (heat[ix+1,iy] < min.val)
{
min.val <- heat[ix+1,iy]
min.x <- ix+1
min.y <- iy
}
if (heat[ix-1,iy] < min.val)
{
min.val <- heat[ix-1,iy]
min.x <- ix-1
min.y <- iy
}
}
if (min.x != ix || min.y != iy)
{
compute.centroid(min.x,min.y)
}
else
{
coord(ix,iy)
}
}
for (i in 1:xdim)
{
for (j in 1:ydim)
{
centroids[[i,j]] <- compute.centroid(i,j)
}
}
centroids
}
compute.heat <- function(map)
{
d <- as.matrix(dist(data.frame(map$neurons)))
x <- map$xdim
y <- map$ydim
heat <- array(data=0,dim=c(x,y))
if (x == 1 || y == 1)
stop("heat map cannot be computed for a map of dimension 1")
xl <- function(ix,iy)
{
rowix(map,coord(ix,iy))
}
if (x > 2 && y > 2)
{
for (ix in 2:(x-1))
{
for (iy in 2:(y-1))
{
sum <-
d[xl(ix,iy),xl(ix-1,iy-1)] +
d[xl(ix,iy),xl(ix,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy)] +
d[xl(ix,iy),xl(ix+1,iy+1)] +
d[xl(ix,iy),xl(ix,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy)]
heat[ix,iy] <- sum/8
}
}
for (ix in 2:(x-1))
{
iy <- 1
sum <-
d[xl(ix,iy),xl(ix+1,iy)] +
d[xl(ix,iy),xl(ix+1,iy+1)] +
d[xl(ix,iy),xl(ix,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy)]
heat[ix,iy] <- sum/5
}
for (ix in 2:(x-1))
{
iy <- y
sum <-
d[xl(ix,iy),xl(ix-1,iy-1)] +
d[xl(ix,iy),xl(ix,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy)] +
d[xl(ix,iy),xl(ix-1,iy)]
heat[ix,iy] <- sum/5
}
for (iy in 2:(y-1))
{
ix <- 1
sum <-
d[xl(ix,iy),xl(ix,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy)] +
d[xl(ix,iy),xl(ix+1,iy+1)] +
d[xl(ix,iy),xl(ix,iy+1)]
heat[ix,iy] <- sum/5
}
for (iy in 2:(y-1))
{
ix <- x
sum <-
d[xl(ix,iy),xl(ix-1,iy-1)] +
d[xl(ix,iy),xl(ix,iy-1)] +
d[xl(ix,iy),xl(ix,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy)]
heat[ix,iy] <- sum/5
}
}
if (x >= 2 && y >= 2)
{
ix <- 1
iy <- 1
sum <-
d[xl(ix,iy),xl(ix+1,iy)] +
d[xl(ix,iy),xl(ix+1,iy+1)] +
d[xl(ix,iy),xl(ix,iy+1)]
heat[ix,iy] <- sum/3
ix <- x
iy <- 1
sum <-
d[xl(ix,iy),xl(ix,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy+1)] +
d[xl(ix,iy),xl(ix-1,iy)]
heat[ix,iy] <- sum/3
ix <- 1
iy <- y
sum <-
d[xl(ix,iy),xl(ix,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy-1)] +
d[xl(ix,iy),xl(ix+1,iy)]
heat[ix,iy] <- sum/3
ix <- x
iy <- y
sum <-
d[xl(ix,iy),xl(ix-1,iy-1)] +
d[xl(ix,iy),xl(ix,iy-1)] +
d[xl(ix,iy),xl(ix-1,iy)]
heat[ix,iy] <- sum/3
}
xcoords <- c()
ycoords <- c()
for (i in 1:y)
{
for (j in 1:x)
{
ycoords <- c(ycoords, i)
xcoords <- c(xcoords, j)
}
}
xycoords <- data.frame(xcoords,ycoords)
heat <- smooth.2d(as.vector(heat),
x=as.matrix(xycoords),
nrow=x,ncol=y,
surface=FALSE,
theta=2)
heat
}
df.var.test <- function(df1,df2,conf = .95)
{
if (length(df1) != length(df2))
stop("cannot compare variances of data frames")
var.ratio.v <- array(data=1,dim=length(df1))
var.confintlo.v <- array(data=1,dim=length(df1))
var.confinthi.v <- array(data=1,dim=length(df1))
for (i in 1:length(df1))
{
t <- var.test(df1[[i]],df2[[i]],conf.level=conf)
var.ratio.v[i] <- t$estimate
var.confintlo.v[i] <- t$conf.int[1]
var.confinthi.v[i] <- t$conf.int[2]
}
list(ratio=var.ratio.v,
conf.int.lo=var.confintlo.v,
conf.int.hi=var.confinthi.v)
}
df.mean.test <- function(df1,df2,conf = .95)
{
if (ncol(df1) != ncol(df2))
stop("cannot compare means of data frames")
mean.diff.v <- array(data=1,dim=ncol(df1))
mean.confintlo.v <- array(data=1,dim=ncol(df1))
mean.confinthi.v <- array(data=1,dim=ncol(df1))
for (i in 1:ncol(df1)) {
t <- t.test(x=df1[[i]],y=df2[[i]],conf.level=conf)
mean.diff.v[i] <- t$estimate[1] - t$estimate[2]
mean.confintlo.v[i] <- t$conf.int[1]
mean.confinthi.v[i] <- t$conf.int[2]
}
list(diff=mean.diff.v,
conf.int.lo=mean.confintlo.v,
conf.int.hi=mean.confinthi.v)
}
vsom.f <- function(data,xdim,ydim,alpha,train,seed)
{
dr <- nrow(data)
dc <- ncol(data)
nr <- xdim*ydim
nc <- dc
if (!is.null(seed))
{
set.seed(seed)
}
else
{
seed <- -1
}
cells <- nr * nc
v <- runif(cells,-1,1)
neurons <- matrix(v,nrow=nr,ncol=nc)
result <- .Fortran("vsom",
as.single(neurons),
as.single(data.matrix(data)),
as.integer(dr),
as.integer(dc),
as.integer(xdim),
as.integer(ydim),
as.single(alpha),
as.integer(train),
as.integer(seed),
PACKAGE="popsom")
v <- result[1]
neurons <- matrix(v[[1]],nrow=nr,ncol=nc,byrow=FALSE)
neurons
}
get.unique.centroids <- function(map)
{
centroids <- map$centroids
xdim <- map$xdim
ydim <- map$ydim
cd.list <- c()
for(ix in 1:xdim)
{
for(iy in 1:ydim)
{
c.xy <- centroids[[ix, iy]]
b <- sapply(cd.list, function (x) {x$x == c.xy$x && x$y == c.xy$y})
if (!any(b))
{
cd.list <- c(cd.list,list(c.xy))
}
}
}
as.vector(cd.list)
}
none.label <- "<None>"
majority.labels <- function(map)
{
if (is.null(map$labels))
{
return (numerical.labels(map))
}
x <- map$xdim
y <- map$ydim
centroids <- map$centroids
nobs <- nrow(map$data)
centroid.labels <- array(data=list(),dim=c(x,y))
majority.labels <- array(data=none.label,dim=c(x,y))
for(i in 1:nobs)
{
lab <- as.character(map$labels[i,1])
nix <- map$fitted.obs[i]
c <- coordinate(map,nix)
ix <- c$x
iy <- c$y
cx <- centroids[[ix,iy]]$x
cy <- centroids[[ix,iy]]$y
centroid.labels[[cx,cy]] <- append(centroid.labels[[cx,cy]],lab)
}
for (ix in 1:x)
{
for (iy in 1:y)
{
label.v <- centroid.labels[[ix,iy]]
if (length(label.v)!=0)
{
majority <- data.frame(sort(table(label.v),decreasing=TRUE))
if (nrow(majority) == 1)
{
majority.labels[[ix,iy]] <- label.v[1]
}
else
{
majority.labels[[ix,iy]] <- levels(majority[1,1])[1]
}
}
}
}
majority.labels
}
numerical.labels <- function(map)
{
label_cnt <- 1
centroids <- map$centroids
unique.centroids <- map$unique.centroids
centroid.labels <- array(data=none.label,dim=c(map$xdim,map$ydim))
for (i in 1:length(unique.centroids))
{
label <- paste("centroid",label_cnt,sep=" ")
label_cnt <- label_cnt+1
ix <- unique.centroids[[i]]$x
iy <- unique.centroids[[i]]$y
centroid.labels[[ix,iy]] <- label
}
centroid.labels
}
compute.nwcss <- function (map)
{
clusters.ss <- c()
for (cluster.ix in 1:length(map$unique.centroids))
{
c.nix <- rowix(map,map$unique.centroids[[cluster.ix]])
vectors <- map$neurons[c.nix,]
for (i in 1:length(map$centroid.obs[[cluster.ix]]))
{
obs.ix <- map$centroid.obs[[cluster.ix]][i]
obs.nix <- map$fitted[[obs.ix]]
obs.coord <- coordinate(map,obs.nix)
centroid.coord <- map$centroids[[obs.coord$x,obs.coord$y]]
centroid.nix <- rowix(map,centroid.coord)
if (centroid.nix == c.nix){
vectors <- rbind(vectors,map$neurons[obs.nix,])
}
}
distances <- as.matrix(dist(vectors))[1,]
distances.sqd <- sapply(distances,function(x){x*x})
c.ss <- sum(distances.sqd)/(length(distances.sqd)-1)
clusters.ss <- c(clusters.ss,c.ss)
}
wcss <- sum(clusters.ss)/length(clusters.ss)
wcss
}
avg.homogeneity <- function(map)
{
if (is.null(map$labels))
{
stop("you need to attach labels to the map")
}
if (map$xdim <= 1 || map$ydim <= 1)
{
stop("map dimensions too small")
}
x <- map$xdim
y <- map$ydim
centroids <- map$centroids
nobs <- nrow(map$data)
centroid.labels <- array(data=list(),dim=c(x,y))
for(i in 1:nobs)
{
lab <- as.character(map$labels[i,1])
nix <- map$fitted.obs[i]
c <- coordinate(map,nix)
ix <- c$x
iy <- c$y
cx <- centroids[[ix,iy]]$x
cy <- centroids[[ix,iy]]$y
centroid.labels[[cx,cy]] <- append(centroid.labels[[cx,cy]],lab)
}
sum.majority <- 0
n.centroids <- 0
for (ix in 1:x)
{
for (iy in 1:y)
{
label.v <- centroid.labels[[ix,iy]]
if (length(label.v)!=0)
{
n.centroids <- n.centroids + 1
majority <- data.frame(sort(table(label.v),decreasing=TRUE))
if (nrow(majority) == 1)
{
m.val <- length(label.v)
}
else
{
m.val <- majority[1,2]
}
sum.majority <- sum.majority + m.val
}
}
}
list(homog=sum.majority/nobs, nclust=n.centroids)
} |
roc_aunu <- function(data, ...) {
UseMethod("roc_aunu")
}
roc_aunu <- new_prob_metric(
roc_aunu,
direction = "maximize"
)
roc_aunu.data.frame <- function(data,
truth,
...,
options = list(),
na_rm = TRUE) {
estimate <- dots_to_estimate(data, !!! enquos(...))
metric_summarizer(
metric_nm = "roc_aunu",
metric_fn = roc_aunu_vec,
data = data,
truth = !!enquo(truth),
estimate = !!estimate,
estimator = NULL,
na_rm = na_rm,
event_level = NULL,
metric_fn_options = list(options = options)
)
}
roc_aunu_vec <- function(truth,
estimate,
options = list(),
na_rm = TRUE,
...) {
estimator <- "macro"
roc_aunu_impl <- function(truth, estimate) {
roc_auc_vec(
truth = truth,
estimate = estimate,
options = options,
estimator = estimator,
na_rm = FALSE,
event_level = "first"
)
}
metric_vec_template(
metric_impl = roc_aunu_impl,
truth = truth,
estimate = estimate,
estimator = estimator,
na_rm = na_rm,
cls = c("factor", "numeric")
)
} |
getAlbumInfo<-function(album_id,token){
req<-httr::GET(paste0("https://api.spotify.com/v1/albums/",album_id),httr::config(token = token))
json1<-httr::content(req)
json2<-jsonlite::fromJSON(jsonlite::toJSON(json1))
df <- data.frame("id" = json2$id, "artist" = as.character(json2$artists$name),"name" = json2$name, "label" = json2$label, "popularity" = json2$popularity, "release_date" = json2$release_date, "album_type" = json2$album_type, "track_total" = json2$tracks$total)
return(df)
} |
lsv <- function(data,k1,p = 6,q = 0,interval = c(0.001,0.999)) {
n <- length(data)
k <- 1:k1
sdrunning <- function(kscale) {
sd(running(data,fun = sum,width = kscale,by = kscale))
}
s <- sapply(k,sdrunning)
d1 <- sum((s^4)/(k^p))
g2 <- function(H) {
ckH <- ((n/k) - (n/k)^(2*H - 1))/(n/k - 1)
a1H <- sum(((ckH^2) * (k^(4 * H)))/(k^p))
a2H <- sum((ckH * (k^(2 * H)) * (s^2))/(k^p))
d1 - (a2H^2)/a1H
}
g3 <- function(H) {g2(H) + (H^(q+1))/(q+1)}
Hest <- ifelse(q == 0,optimize(g2,interval = interval),
optimize(g3,interval = interval))[[1]]
ckHest <- ((n/k) - (n/k)^(2*Hest - 1))/(n/k - 1)
a1Hest <- sum(((ckHest^2) * (k^(4 * Hest)))/(k^p))
a2Hest <- sum((ckHest * (k^(2 * Hest)) * (s^2))/(k^p))
sigmaest <- sqrt(a2Hest/a1Hest)
return(setNames(c(sigmaest,Hest),c("sigma_estimate","H_estimate")))
} |
add.column <- function(lprec, x, indices)
{
if(missing(indices)) {
if(length(x) != dim(lprec)[1])
stop("the length of ", sQuote("x"), " is not equal to the number of ",
"constraints in the model")
epsel <- .Call(RlpSolve_get_epsel, lprec)
indices <- which(abs(x) > epsel)
x <- x[indices]
}
if(length(x) != length(indices))
stop(sQuote("x"), " and ", sQuote("indices"), " are not the same length")
.Call(RlpSolve_add_columnex, lprec, as.double(x), as.integer(indices))
invisible()
} |
higherMomentsIV <- function(formula, data, verbose=TRUE){
cl <- match.call()
check_err_msg(checkinput_highermomentsiv_formula(formula=formula))
check_err_msg(checkinput_highermomentsiv_data(data=data))
check_err_msg(checkinput_highermomentsiv_formulaVSdata(formula=formula, data=data))
check_err_msg(checkinput_highermomentsiv_verbose(verbose=verbose))
F.formula <- as.Formula(formula)
l.IIV.args <- formula_readout_special(F.formula = F.formula, name.special = "IIV",
from.rhs = 3, params.as.chars.only = FALSE)
check_err_msg(checkinput_highermomentsiv_docalllist(l.args = l.IIV.args))
l.res.IIVs <- lapply(l.IIV.args, function(iiv.args){
do.call(what = higherMomentsIV_IIV,
args = c(alist(data=data, F.formula=F.formula),
iiv.args))})
l.data.IIVs <- lapply(l.res.IIVs, "[[","df.IIV")
vec.desc.IIVs <- unique(unlist(lapply(l.res.IIVs, "[[","desc.IIV")))
df.data.IIVs <- do.call(cbind, l.data.IIVs)
l.F <- formula_build_ivreg(F.formula=F.formula, df.data.iv=df.data.IIVs, vec.desc.IVs = vec.desc.IIVs)
F.ivreg <- l.F[["F.ivreg"]]
model.desc <- l.F[["model.desc"]]
df.data.ivreg <- cbind(data, df.data.IIVs)
if(verbose){
message("The following internal instruments were built: ", paste0(vec.desc.IIVs, collapse = ", "),".")
message("Fitting an instrumental variable regression with model ", model.desc,".")
}
res.ivreg <- ivreg(formula = F.ivreg, data = df.data.ivreg)
return(new_rendo_ivreg(F.formula = F.formula,
res.ivreg = res.ivreg,
call = cl))
} |
NULL
fclust_read <- function(filename = "") {
if (nchar(filename) == 0) stop("'filename' cannot be an empty string")
tmp <- c("nbElt", "nbAss", "nbXpr",
"opt.method", "opt.mean", "opt.model",
"opt.jack", "jack",
"opt.na", "opt.repeat", "affectElt",
"fobs", "mOccur", "xpr",
"tree.I", "tree.II", "nbOpt",
"mCal", "mPrd", "mMotifs", "mStats",
"tCal", "tPrd", "tNbcl", "tStats")
fres <- vector(mode = "list", length = length(tmp))
names(fres) <- tmp
tmp <- read_foptions(filename)
fres$nbElt <- tmp$nbElt
fres$nbAss <- tmp$nbAss
fres$nbXpr <- tmp$nbXpr
fres$opt.method <- tmp$opt.method
fres$opt.mean <- tmp$opt.mean
fres$opt.model <- tmp$opt.model
fres$opt.jack <- tmp$opt.jack
fres$jack <- tmp$jack
fres$opt.na <- tmp$opt.na
fres$opt.repeat <- tmp$opt.repeat
fres$affectElt <- tmp$affectElt
tmp <- read_finputs(filename, fres$nbElt)
fres$fobs <- tmp$fobs
fres$mOccur <- tmp$mOccur
fres$xpr <- tmp$xpr
tmp <- read_ftrees(filename, fres$nbElt)
fres$tree.I <- tmp$tree.I
fres$tree.II <- tmp$tree.II
fres$nbOpt <- tmp$nbOpt
tmp1 <- read_fmatrices(filename, fres$nbElt)
tmp2 <- read_fstats(filename, fres$nbElt)
fres$mCal <- tmp1$mCal
fres$mPrd <- tmp1$mPrd
fres$mMotifs <- tmp1$mMotifs
fres$mStats <- tmp2$mStats
fres$tCal <- tmp1$tCal
fres$tPrd <- tmp1$tPrd
fres$tNbcl <- tmp1$tNbcl
fres$tStats <- tmp2$tStats
attributes(fres)$class <- "list"
return(fres)
}
fclust_write <- function(fres = NULL, filename = "") {
if (nchar(filename) == 0) stop("'filename' cannot be an empty string")
if (length(fres) == 0) stop("'fres' cannot be NULL")
tmp <- cbind(fres$nbElt, fres$nbAss, fres$nbXpr,
fres$opt.method, fres$opt.mean, fres$opt.model,
fres$opt.jack, fres$jack[1], fres$jack[2],
fres$opt.na, fres$opt.repeat,
matrix(fres$affectElt, nrow = 1))
colnames(tmp) <- c("nbElt", "nbAss", "nbXpr",
"opt.method", "opt.mean", "opt.model",
"opt.jack", "jack.1", "jack.2",
"opt.na", "opt.repeat", names(fres$affectElt))
utils::write.table(x = tmp,
file = paste(filename, "options", "csv", sep = "."),
append = FALSE, col.names = TRUE, row.names = FALSE,
sep = ",")
tmp <- cbind(names(fres$fobs), fres$fobs,
names(fres$xpr), fres$xpr, fres$mOccur)
colnames(tmp) <- c("names.fobs", "fobs", "names.xpr", "xpr",
colnames(fres$mOccur))
utils::write.table(x = tmp,
file = paste(filename, "inputs", "csv", sep = "."),
append = FALSE, col.names = TRUE, row.names = FALSE,
sep = ",")
tmp <- cbind(fres$nbOpt, seq_len(fres$nbElt),
fres$tree.I$aff, fres$tree.I$cor,
fres$tree.II$aff, fres$tree.II$cor)
colnames(tmp) <- c("nbOpt", "nbClu",
paste0(colnames(fres$tree.I$aff), ".I"), "R2.I",
paste0(colnames(fres$tree.II$aff), ".II"), "R2.II")
utils::write.table(x = tmp,
file = paste(filename, "trees", "csv", sep = "."),
append = FALSE, col.names = TRUE, row.names = FALSE,
sep = ",")
tmp <- cbind(c(rep("mCal", fres$nbElt), rep("mPrd", fres$nbElt),
rep("mMotifs", fres$nbElt), rep("tCal", fres$nbElt),
rep("tPrd", fres$nbElt), rep("tNbcl", fres$nbElt)),
c(rep(seq_len(fres$nbElt), 6)),
rbind(fres$mCal, fres$mPrd, fres$mMotifs,
fres$tCal, fres$tPrd, fres$tNbcl))
colnames(tmp) <- c("mat", "nbClu", names(fres$fobs))
utils::write.table(x = tmp,
file = paste(filename, "matrices", "csv", sep = "."),
append = FALSE, col.names = TRUE, row.names = FALSE,
sep = ",")
tmp <- cbind(c(rep("mStats", fres$nbElt), rep("tStats", fres$nbElt)),
rep(seq_len(fres$nbElt), 2),
rbind(fres$mStats, fres$tStats) )
colnames(tmp)[c(1, 2)] <- c("mat", "nbClu")
utils::write.table(x = tmp,
file = paste(filename, "stats", "csv", sep = "."),
append = FALSE, col.names = TRUE, row.names = FALSE,
sep = ",")
}
fclust_plot <- function(fres,
nbcl = 0,
main = "Title",
opt.tree = NULL,
opt.perf = NULL,
opt.ass = NULL,
opt.motif = NULL,
opt.comp = NULL,
opt.all = NULL ) {
if ( is.null(opt.tree) & is.null(opt.perf) &
is.null(opt.ass) & is.null(opt.motif) &
is.null(opt.comp) & is.null(opt.all) ) {
opt.tree <- list("prd", window = Inf, "leg")
opt.perf <- list("prd", "pub")
opt.motif <- list("obs", "hor", "leg")
}
if (!is.null(opt.all))
if ((opt.all == "all") | (opt.all == TRUE)) {
opt.tree <- list("all")
opt.perf <- list("all")
opt.motif <- list("all")
opt.comp <- list("all")
}
if (!is.null(opt.tree)) plot_ftrees(fres, nbcl, main, opt.tree)
if (!is.null(opt.perf)) plot_fperf( fres, nbcl, main, opt.perf)
if (!is.null(opt.ass)) plot_fass( fres, nbcl, main, opt.ass)
if (!is.null(opt.motif)) plot_fmotif(fres, nbcl, main, opt.motif)
if (!is.null(opt.comp)) plot_fcomp( fres, nbcl, main, opt.comp)
}
fclust <- function(dat, nbElt,
weight = rep(1, dim(dat)[2] - nbElt - 1),
opt.na = FALSE,
opt.repeat = FALSE,
opt.method = "divisive",
affectElt = rep(1, nbElt),
opt.mean = "amean",
opt.model = "byelt",
opt.jack = FALSE, jack = c(3,4) ) {
dat <- format_fclust(dat, nbElt, weight, opt.na, opt.repeat)
tree.I <- fit_ftree(dat$fobs, dat$mOccur, dat$xpr,
affectElt, opt.method, opt.mean, opt.model)
res <- validate_ftree(tree.I,
dat$fobs, dat$mOccur, dat$xpr,
opt.method, opt.mean, opt.model,
opt.jack, jack)
fres <- make_fclust(res, opt.na, opt.repeat, affectElt)
return(fres)
}
ftest_read <- function(filename,
opt.var = c("components", "assemblages", "performances")) {
all.var <- c("components", "assemblages", "performances")
if (is.na(pmatch(opt.var, all.var)))
stop("'opt.var' should be ", list_in_quote(all.var))
opt.var <- match.arg(opt.var, all.var)
file <- paste(filename, "test", opt.var, "csv", sep = ".")
if (!file.exists(file)) stop("file '", file, "' does not exist.")
tmp <- utils::read.table(file = file, header = TRUE, sep = ",",
check.names = FALSE, stringsAsFactors = FALSE)
lnames <- unique(tmp[ , 1])
index <- c(1:2)
rtest <- vector(mode = "list", length = length(lnames))
names(rtest) <- lnames
for (i in seq_along(lnames)) {
rtest[[i]] <- as.matrix(tmp[tmp$mat == lnames[i], -index])
rownames(rtest[[i]]) <- seq_len(dim(rtest[[i]])[1])
}
return(rtest)
}
ftest_write <- function(fres, rtest, filename,
opt.var = c("components", "assemblages", "performances")) {
all.var <- c("components", "assemblages", "performances")
if (is.na(pmatch(opt.var, all.var)))
stop("'opt.var' should be ", list_in_quote(all.var))
opt.var <- match.arg(opt.var, all.var)
col1 <- NULL
for (i in seq_along(names(rtest)))
col1 <- c(col1, rep(names(rtest)[i], fres$nbElt))
col2 <- rep(seq_len(fres$nbElt), length(names(rtest)))
col3 <- NULL
for (i in seq_along(names(rtest))) col3 <- rbind(col3, rtest[[i]])
tmp <- cbind(col1, col2, col3)
ttt <- switch(opt.var,
components = colnames(fres$mOccur),
assemblages = unique(rownames(fres$mOccur)),
performances = unique(names(fres$xpr)) )
colnames(tmp) <- c("mat", "nbClu", ttt)
rownames(tmp) <- as.character(seq_len(length(col1)))
utils::write.table(x = tmp,
file = paste(filename, "test", opt.var, "csv", sep = "."),
append = FALSE, col.names = TRUE, row.names = FALSE,
sep = ",")
}
ftest_plot <- function(fres, rtest,
main = "Title",
opt.var = c("components", "assemblages", "performances"),
opt.crit = "Jaccard",
opt.comp = NULL, opt.ass = NULL, opt.perf = NULL ) {
if (is.null(opt.var)) {
if (is.null(opt.comp) & is.null(opt.ass) & is.null(opt.perf))
stop("'opt.var' or other options should be non-null")
if (!is.null(opt.comp)) {
option <- "components"
} else {
if (!is.null(opt.ass)) {
option <- "assemblages"
} else {
option <- "performances"
}
}
} else {
all <- c("components", "assemblages", "performances")
option <- check_foption(opt.var, all)
}
if (option == "components") {
if (is.null(opt.comp))
opt.comp <- list("all.together", "sorted.tree", "sorted.leg")
ftest_plot_components(fres, rtest, main, opt.crit, opt.comp)
}
if (option == "assemblages") {
if (is.null(opt.ass)) opt.ass <- list("all.together", "sorted.leg")
ftest_plot_assemblages(fres, rtest, main, opt.crit, opt.ass)
}
if (option == "performances") {
if (is.null(opt.perf)) opt.perf <- list("all.together", "sorted.leg")
ftest_plot_performances(fres, rtest, main, opt.crit, opt.perf)
}
}
ftest <- function(fres,
opt.var = c("components", "assemblages", "performances"),
opt.nbMax = fres$nbOpt, opt.R2 = FALSE, opt.plot = FALSE ) {
option <- check_foption(opt.var,
c("components", "assemblages", "performances"))
rtest <-
switch(option,
components = ftest_components( fres, opt.nbMax, opt.R2, opt.plot),
assemblages = ftest_assemblages( fres, opt.nbMax, opt.R2, opt.plot),
performances = ftest_performances(fres, opt.nbMax, opt.R2, opt.plot)
)
return(rtest)
}
fboot_read <- function(filename,
opt.var = c("assemblages", "performances")) {
i <- 1
while (file.exists(
paste(filename, "boot", opt.var, i, "csv", sep = "."))) i <- i + 1
j <- i - 1
lboot <- vector(mode = "list", length = j)
for (i in seq_len(j)) {
file <- paste(filename, "boot", opt.var, i, "csv", sep = ".")
lboot[[i]] <- fboot_read_one_point(filename = file)
}
return(lboot)
}
fboot_write <- function(fres, lboot, filename,
opt.var = c("assemblages", "performances")) {
all.var <- c("assemblages", "performances")
if (is.na(pmatch(opt.var, all.var)))
stop("'opt.var' should be ", list_in_quote(all.var))
opt.var <- match.arg(opt.var, all.var)
i <- 1
for (i in seq_along(lboot)) {
file <- paste(filename, "boot", opt.var, i, "csv", sep = ".")
fboot_write_one_point(fres, lboot[[i]], filename = file)
}
}
fboot_plot <- function(fres, lboot, main = "",
opt.crit = "Jaccard",
opt.var = c("assemblages", "performances")) {
opt.var <- check_foption(opt.var,
c("assemblages", "performances"))
if (opt.var == "assemblages") nbItem <- fres$nbAss
if (opt.var == "performances") nbItem <- fres$nbXpr
rboot <- lboot[[1]]
setCrit <- names(rboot)[names(rboot) %in% opt.crit]
nrows <- dim(rboot$Jaccard)[1]
ncols <- dim(rboot$Jaccard)[2]
cols <- extend_vector(fcolours(), nbItem)
pchs <- extend_vector(fsymbols(), nbItem)
matPlot <- matrix(NA, nrow = ncols, ncol = (nbItem - 1))
crit <- 1
for (crit in seq_along(setCrit)) {
main <- paste0(setCrit[crit], " index")
for (j in 1:fres$nbOpt) {
for (i in 1:(nbItem - 1)) {
mat <- matrix(as.numeric(unlist(lboot[[i]][setCrit[crit]])),
ncol = ncols, nrow = nrows, byrow = FALSE)
matPlot[1:ncols, i] <- mat[j, ]
}
matPlot[matPlot == 0] <- NA
boxplot(matPlot,
main = paste(main, paste0("nbcl=", j), sep = " / "),
ylim = c(0, 1), xlim = c(1, (nbItem - 1)),
ylab = "Jaccard index",
xlab = paste("number of", opt.var, "removed", sep = " "))
}
for (j in 1:fres$nbOpt) {
for (i in 1:(nbItem - 1)) {
mat <- matrix(as.numeric(unlist(lboot[[i]][setCrit[crit]])),
ncol = ncols, nrow = nrows, byrow = FALSE)
matPlot[1:ncols, i] <- mat[j, ]
}
matPlot[matPlot == 0] <- NA
plot(y = apply(matPlot, 2, median, na.rm = TRUE),
ylab = "median Jaccard index",
x = 1:(nbItem - 1),
xlab = paste("number of", opt.var, "removed", sep = " "),
main = paste(main, paste0("nbcl=", j), sep = " / "),
ylim = c(0, 1), xlim = c(1, (nbItem - 1)),
cex = 4, pch = fsymbols()[j], type = "b", bg = "white")
}
}
}
fboot <- function(fres,
opt.var = c("assemblages", "performances"), nbIter = 1,
opt.nbMax = fres$nbOpt, opt.R2 = FALSE, opt.plot = FALSE,
filename = "") {
opt.var <- check_foption(opt.var, c("assemblages", "performances"))
if (nbIter < 1) stop("'nbIter' should be higher than 1")
if (opt.var == "assemblages") dimMat <- fres$nbAss - 1
if (opt.var == "performances") dimMat <- fres$nbXpr - 1
rboot <- vector(mode = "list", length = dimMat)
for (i in seq_len(dimMat)) {
rboot[[i]] <- fboot_one_point(fres, opt.var, nbIter,
rm.number = i, seed = i,
opt.plot = opt.plot, opt.nbMax = opt.nbMax)
if (filename != "") {
file <- paste(filename, "boot", opt.var, i, "csv", sep = ".")
fboot_write_one_point(fres, rboot[[i]], filename = file)
}
}
return(rboot)
} |
gh_whoami <- function(.token = NULL, .api_url = NULL, .send_headers = NULL) {
.token <- .token %||% gh_token(.api_url)
if (isTRUE(.token == "")) {
message("No personal access token (PAT) available.\n",
"Obtain a PAT from here:\n",
"https://github.com/settings/tokens\n",
"For more on what to do with the PAT, see ?gh_whoami.")
return(invisible(NULL))
}
res <- gh(endpoint = "/user", .token = .token,
.api_url = .api_url, .send_headers = .send_headers)
scopes <- attr(res, "response")[["x-oauth-scopes"]]
res <- res[c("name", "login", "html_url")]
res$scopes <- scopes
res$token <- format(gh_pat(.token))
class(res) <- c("gh_response", "list")
res
} |
.viridisOpts <- function (n, alpha = 1, begin = 0, end = 1, option = "D",...)
{
if (begin < 0 | end < 0 | begin > 1 | end > 1) {
stop("begin and end must be in [0,1]")
}
option <- switch(option, A = "A", magma = "A", B = "B", inferno = "B",
C = "C", plasma = "C", D = "D", viridis = "D", {
warning(paste0("Option '", option, "' does not exist. Defaulting to 'viridis'."))
"D"
})
map <- viridis::viridis.map[viridis::viridis.map$opt == option, ]
map_cols <- grDevices::rgb(map$R, map$G, map$B)
fn_cols <- grDevices::colorRamp(map_cols, space = "Lab",
interpolate = "spline",...)
cols <- fn_cols(seq(begin, end, length.out = n))/255
grDevices::rgb(cols[, 1], cols[, 2], cols[, 3], alpha = alpha)
}
.gridfn <- function(values, gridsteps=40, margefrac=NULL) {
if (is.null(margefrac)) margefrac <- 1/(2*(gridsteps-1))
if(margefrac>=0.5) stop("'margefrac' argument too large")
.range <- range(values)
marge <- margefrac*diff(.range)
Grid <- seq(.range[1L]+marge, .range[2L]-marge, length.out=gridsteps)
return(Grid)
}
plot.SLik <-function(x,y,filled=FALSE,
decorations=NULL,
color.palette=NULL,
plot.axes=NULL, plot.title=NULL,
...) {
object <- x
fittedPars <- object$colTypes$fittedPars
maxlogL <- object$MSL$maxlogL
if (is.null(maxlogL)) stop("plot.SLik plots likelihood ratios, hence it requires the ML to have been computed by MSL(.)\n")
Ztransf <- function(Z) {exp(Z-maxlogL)}
np <- length(fittedPars)
has_CI_info <- ( ( ! is.null(object$CIobject)) && is.null(object$CIobject$warn))
if (np==1L) {
xf <- object$obspred[,fittedPars]
yf <- Ztransf(object$obspred[,attr(object$obspred,"fittedName")])
x <- object$logLs[,fittedPars]
y <- Ztransf(object$logLs[,object$colTypes$logLname])
ylim <- max(1,y)
if (is.infinite(ylim)) {
ylim <- NULL
} else {ylim <- c(0,ylim)}
plot(xf,yf,main="Summary Likelihood Ratio",xlab=fittedPars,ylab="SL ratio",
xlim=range(x),
ylim=ylim)
points(x=x,y=y,pch=20,cex=0.5,col="red")
points(object$MSL$MSLE,1,pch="+")
if (has_CI_info) {
yci <- rep(exp(-qchisq(0.95,1)/2),NROW(object$CIobject$bounds))
points(object$CIobject$bounds,y=yci,pch="+")
}
} else if (np==2L) {
if (inherits(object$fit,"HLfit")) {
if (is.null(plot.title)) {
plot.title <- substitute(title(main="Summary-likelihood-ratio surface",
xlab=xlabv,ylab=ylabv),list(xlabv=fittedPars[1],ylabv=fittedPars[2]))
}
if (filled) {
decos <- quote({if (!is.null(object$latestPoints)) points(object$logLs[object$latestPoints,fittedPars],pch=".",cex=2);
points(object$logLs[ ! object$logLs[,"isValid"],fittedPars],pch=20,cex=0.8);
eval(decorations);
if (has_CI_info) points(object$CIobject$bounds,pch=19,col="red",cex=1.50);
if (has_CI_info) points(object$CIobject$bounds,pch=20,col="white",cex=0.75);
points(t(object$MSL$MSLE),pch=19,cex=1.50,col="cyan");
points(t(object$MSL$MSLE),pch=20,cex=0.75,col="white");
}
)
if(is.null(plot.axes)) {
plot.axes <- quote({axis(1);axis(2);
contour(x=xGrid,y=yGrid,z=Zvalues,add=TRUE, nlevels=1, levels=c(0.05))})
}
if (is.null(color.palette)) {
color.palette <- function(n){adjustcolor(.viridisOpts(n,bias=2),offset = c(0.5, 0.5, 0.3, 0))}
}
decosf <- substitute({x;y},list(x=quote(points(object$logLs[,fittedPars],cex=0.8)),
y=decos))
filled.mapMM(object$fit,Ztransf=Ztransf,
color.palette=color.palette,nlevels=50,
plot.title=plot.title,
plot.axes=plot.axes,
decorations=eval(decosf),
...)
} else {
decos <- quote({if (!is.null(object$latestPoints)) points(object$logLs[object$latestPoints,fittedPars],pch=".",cex=2);
points(object$logLs[ ! object$logLs[,"isValid"],fittedPars],pch=20,cex=0.8);
eval(decorations);
if (has_CI_info) points(object$CIobject$bounds,pch="+",col="black",cex=1.50);
points(t(object$MSL$MSLE),pch=3,cex=1.5,lwd=3);
points(t(object$MSL$MSLE),pch=3,col="white",cex=1.25);
}
)
if(is.null(plot.axes)) {
plot.axes <- quote({axis(1);axis(2)})
}
if (is.null(color.palette)) {
color.palette <- function(n){spaMM.colors(n,redshift=3)}
}
mapMM(object$fit,Ztransf=Ztransf,
color.palette=color.palette,nlevels=50,
plot.axes=plot.axes,
plot.title=plot.title,
decorations=decos,
...)
}
}
} else if (np>2L) {.calc_all_slices(object,fittedPars,color.palette,plot.axes=plot.axes)}
invisible(object)
} |
get_committee_by_name <- function(NAME, cycle=2018, page = 1, myAPI_Key){
API = 'campaign-finance'
if(!validate_cycle(cycle))
stop("Incorrect cycle")
if(is.character(NAME)){
NAME <- gsub(' ', '%20', NAME)
query <- sprintf("%s/committees/search.json?query=%s", cycle, NAME)
pp_query(query, API, page = page, myAPI_Key = myAPI_Key)
} else {stop("The NAME of the committee has to be character")}
} |
activity_id <- function(x) {
UseMethod("activity_id")
}
activity_id.eventlog <- function(x){
return(attr(x, "activity_id"))
}
activity_id.eventlog_mapping <- function(x) {
return(x$activity_identifier)
}
activity_id.activitylog <- function(x){
return(attr(x, "activity_id"))
}
activity_id.activitylog_mapping <- function(x) {
return(x$activity_identifier)
} |
SHASH <- function (mu.link="identity", sigma.link="log", nu.link ="log", tau.link="log")
{
mstats <- checklink( "mu.link", "Sinh-Arcsinh", substitute(mu.link),
c("inverse", "log", "identity", "own"))
dstats <- checklink("sigma.link", "Sinh-Arcsinh", substitute(sigma.link),
c("inverse", "log", "identity", "own"))
vstats <- checklink( "nu.link", "Sinh-Arcsinh", substitute(nu.link),
c("inverse", "log", "identity", "own"))
tstats <- checklink( "tau.link", "Sinh-Arcsinh", substitute(tau.link),
c("inverse", "log", "identity", "own"))
structure(
list(family = c("SHASH", "Sinh-Arcsinh"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar = 4,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdm <- -1/sigma
dldm <- (1/sigma)*((1+(z^2))^(-1/2))*((-h/c)+(r*c)+z*((1+(z^2))^(-1/2)))
dldm <- (dldr*drdz+dldc*dcdz+dldz)*dzdm
dldm
},
d2ldm2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdm <- -1/sigma
dldm <- (1/sigma)*((1+(z^2))^(-1/2))*((-h/c)+(r*c)+z*((1+(z^2))^(-1/2)))
dldm <- (dldr*drdz+dldc*dcdz+dldz)*dzdm
d2ldm2 <- -dldm*dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdd <- -z/sigma
dldd <- (dldr*drdz+dldc*dcdz+dldz)*dzdd-1/sigma
dldd
} ,
d2ldd2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdd <- -z/sigma
dldd <- (dldr*drdz+dldc*dcdz+dldz)*dzdd-1/sigma
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2
},
dldv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
dldr <- -r
dldc <- 1/c
drdv <- (1/2)*asinh(z)*exp(-nu*asinh(z))
dcdv <- (1/2)*(1-nu*asinh(z))*exp(-nu*asinh(z))
dldv <- dldr*drdv+dldc*dcdv
dldv
} ,
d2ldv2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
dldr <- -r
dldc <- 1/c
drdv <- (1/2)*asinh(z)*exp(-nu*asinh(z))
dcdv <- (1/2)*(1-nu*asinh(z))*exp(-nu*asinh(z))
dldv <- dldr*drdv+dldc*dcdv
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
d2ldv2
},
dldt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
dldr <- -r
dldc <- 1/c
drdt <- (1/2)*asinh(z)*exp(tau*asinh(z))
dcdt <- (1/2)*(1+tau*asinh(z))*exp(tau*asinh(z))
dldt <- dldr*drdt+dldc*dcdt
dldt
} ,
d2ldt2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
dldr <- -r
dldc <- 1/c
drdt <- (1/2)*asinh(z)*exp(tau*asinh(z))
dcdt <- (1/2)*(1+tau*asinh(z))*exp(tau*asinh(z))
dldt <- dldr*drdt+dldc*dcdt
d2ldt2 <- -dldt*dldt
d2ldt2 <- ifelse(d2ldt2 < -1e-15, d2ldt2,-1e-15)
d2ldt2
} ,
d2ldmdd = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdm <- -1/sigma
dldm <- (1/sigma)*((1+(z^2))^(-1/2))*((-h/c)+(r*c)+z*((1+(z^2))^(-1/2)))
dldm <- (dldr*drdz+dldc*dcdz+dldz)*dzdm
dzdd <- -z/sigma
dldd <- (dldr*drdz+dldc*dcdz+dldz)*dzdd-1/sigma
d2ldmdd <- -(dldm*dldd)
d2ldmdd
},
d2ldmdv = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdm <- -1/sigma
dldm <- (1/sigma)*((1+(z^2))^(-1/2))*((-h/c)+(r*c)+z*((1+(z^2))^(-1/2)))
dldm <- (dldr*drdz+dldc*dcdz+dldz)*dzdm
drdv <- (1/2)*asinh(z)*exp(-nu*asinh(z))
dcdv <- (1/2)*(1-nu*asinh(z))*exp(-nu*asinh(z))
dldv <- dldr*drdv+dldc*dcdv
d2ldmdv <- -(dldm*dldv)
d2ldmdv
},
d2ldmdt = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdm <- -1/sigma
dldm <- (1/sigma)*((1+(z^2))^(-1/2))*((-h/c)+(r*c)+z*((1+(z^2))^(-1/2)))
dldm <- (dldr*drdz+dldc*dcdz+dldz)*dzdm
drdt <- (1/2)*asinh(z)*exp(tau*asinh(z))
dcdt <- (1/2)*(1+tau*asinh(z))*exp(tau*asinh(z))
dldt <- dldr*drdt+dldc*dcdt
d2ldmdt <- -(dldm*dldt)
d2ldmdt
},
d2ldddv = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdd <- -z/sigma
dldd <- (dldr*drdz+dldc*dcdz+dldz)*dzdd-1/sigma
drdv <- (1/2)*asinh(z)*exp(-nu*asinh(z))
dcdv <- (1/2)*(1-nu*asinh(z))*exp(-nu*asinh(z))
dldv <- dldr*drdv+dldc*dcdv
d2ldddv <- -(dldd*dldv)
d2ldddv
},
d2ldddt = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
h <- (1/2)*((tau^2)*exp(tau*asinh(z))-(nu^2)*exp(-nu*asinh(z)))
dldz <- -z/(1+(z^2))
dldr <- -r
dldc <- 1/c
dcdz <- h*((1+(z^2))^(-1/2))
drdz <- c*((1+(z^2))^(-1/2))
dzdd <- -z/sigma
dldd <- (dldr*drdz+dldc*dcdz+dldz)*dzdd-1/sigma
drdt <- (1/2)*asinh(z)*exp(tau*asinh(z))
dcdt <- (1/2)*(1+tau*asinh(z))*exp(tau*asinh(z))
dldt <- dldr*drdt+dldc*dcdt
d2ldddt <- -(dldd*dldt)
d2ldddt
},
d2ldvdt = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
dldr <- -r
dldc <- 1/c
drdv <- (1/2)*asinh(z)*exp(-nu*asinh(z))
dcdv <- (1/2)*(1-nu*asinh(z))*exp(-nu*asinh(z))
dldv <- dldr*drdv+dldc*dcdv
drdt <- (1/2)*asinh(z)*exp(tau*asinh(z))
dcdt <- (1/2)*(1+tau*asinh(z))*exp(tau*asinh(z))
dldt <- dldr*drdt+dldc*dcdt
d2ldvdt <- -(dldv*dldt)
d2ldvdt
},
G.dev.incr = function(y,mu,sigma,nu,tau,...) -2*dSHASH(y,mu,sigma,nu,tau,log=TRUE),
rqres = expression(
rqres(pfun="pSHASH", type="Continuous", y=y, mu=mu, sigma=sigma, nu=nu, tau=tau)
),
mu.initial = expression(mu <- (y+mean(y))/2),
sigma.initial = expression(sigma<- rep(sd(y)/5, length(y))),
nu.initial = expression(nu <- rep(.5, length(y))),
tau.initial = expression(tau <-rep(.5, length(y))),
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) TRUE ,
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) TRUE
),
class = c("gamlss.family","family"))
}
dSHASH <- function(x, mu = 0, sigma = 1, nu = .5, tau = .5, log = FALSE)
{
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
if (any(nu < 0)) stop(paste("nu must be positive", "\n", ""))
z <- (x-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
c <- (1/2)*(tau*exp(tau*asinh(z))+nu*exp(-nu*asinh(z)))
loglik <- -log(sigma)-log(2*pi)/2-log(1+(z^2))/2+log(c)-(r^2)/2
if(log==FALSE) ft <- exp(loglik) else ft <- loglik
ft
}
pSHASH <- function(q, mu = 0, sigma = 1, nu = .5, tau = .5, lower.tail = TRUE, log.p = FALSE)
{
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
if (any(nu < 0)) stop(paste("nu must be positive", "\n", ""))
z <- (q-mu)/sigma
r <- (1/2)*(exp(tau*asinh(z))-exp(-nu*asinh(z)))
p <- pNO(r)
if(lower.tail==TRUE) p <- p else p <- 1-p
if(log.p==FALSE) p <- p else p <- log(p)
p
}
qSHASH <- function(p, mu=0, sigma=1, nu=.5, tau=.5, lower.tail = TRUE, log.p = FALSE)
{
h1 <- function(q)
{
pSHASH(q , mu = mu[i], sigma = sigma[i], nu = nu[i], tau = tau[i]) - p[i]
}
h <- function(q)
{
pSHASH(q , mu = mu[i], sigma = sigma[i], nu = nu[i], tau = tau[i])
}
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
if (any(p < 0)|any(p > 1)) stop(paste("p must be between 0 and 1", "\n", ""))
lp <- max(length(p),length(mu),length(sigma),length(nu), length(tau))
p <- rep(p, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
tau <- rep(tau, length = lp)
q <- rep(0,lp)
for (i in 1:lp)
{
if (h(mu[i])<p[i])
{
interval <- c(mu[i], mu[i]+sigma[i])
j <-2
while (h(interval[2]) < p[i])
{interval[2]<- mu[i]+j*sigma[i]
j<-j+1
}
}
else
{
interval <- c(mu[i]-sigma[i], mu[i])
j <-2
while (h(interval[1]) > p[i])
{interval[1]<- mu[i]-j*sigma[i]
j<-j+1
}
}
q[i] <- uniroot(h1, interval)$root
}
q
}
rSHASH <- function(n, mu=0, sigma=1, nu=.5, tau=.5)
{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qSHASH(p,mu=mu,sigma=sigma,nu=nu,tau=tau)
r
} |
proximity_builder <- function(im.res, neighborhood = "ar1",
type = c("sparse", "full"),
weight = "binary", phi = 1,
r = NULL, h = NULL, w = NULL,
include.coords = FALSE,
print.im = FALSE) {
nb.y <- c()
J = prod(im.res)
row.id <-rep(1, im.res[2])
for (i in 2:im.res[1]) {
row.id <- c(row.id, rep(i, im.res[2]))
}
coords <- data.frame(index = 1:J,
row.id = row.id,
col.id = rep(c(1:im.res[2]), im.res[1]) )
sparse.adj <- matrix(0, nrow = 4 * 2 +
3 * (2 * im.res[1] + 2 * im.res[2]) +
4 * (J - 4 + 2 * im.res[1] + 2 * im.res[2]),
ncol = 2)
for (x in 1:im.res[1]) {
for (y in 1:im.res[2]) {
if (neighborhood == "ar1") {
nb.xy <- data.frame(nb.x = c(x - 1, x + 1, x , x),
nb.y = c(y, y, y - 1, y + 1))
}
if (neighborhood == "rectangle") {
xn <- seq(x - w, x + w)
yn <- seq(y - h, y + h)
nb.x <- rep(xn[1], length(yn))
for (i in 2:length(xn)) {
nb.x <- c(nb.x, rep(xn[i], length(yn)))
}
nb.xy <- data.frame(cbind(nb.x, nb.y = rep(yn, length(xn))))
nb.xy <- dplyr::filter(nb.xy, !(nb.x == x & nb.y == y))
}
if (neighborhood == "round") {
nb.xy <- neighbors_by_dist(x = x, y = y, r = r,
coords = coords,
im.res = im.res)
nb.xy <- nb.xy[, -3]
}
nb.xy <- dplyr::filter(nb.xy, dplyr::between(nb.x, 1, im.res[1]) & dplyr::between(nb.y, 1, im.res[2]))
nb.index <- coords$index[coords$row.id == nb.xy$nb.x[1] & coords$col.id == nb.xy$nb.y[1]]
for (i in 2:nrow(nb.xy)) {
nb.index <- c(nb.index, coords$index[coords$row.id == nb.xy$nb.x[i] & coords$col.id == nb.xy$nb.y[i]])
}
nb.xy <- cbind(location.index = rep(coords$index[coords$row.id == x & coords$col.id == y], nrow(nb.xy)),
x = x, y = y,
nb.xy, nb.index)
if (x == 1 & y == 1) {
nb.xy.old <- nb.xy
} else {
nb.xy.old <- rbind(nb.xy.old, nb.xy)
}
}
}
if (weight == "distance") {
nb.xy.old <- dplyr::mutate(nb.xy.old,
weights = phi / sqrt((x - nb.x) ^ 2 + (y - nb.y) ^ 2)
)
} else {
nb.xy.old$weights <- 1
}
if (type == "sparse") {
if (include.coords == FALSE) {
nb.xy.old <- nb.xy.old[ , -c(2:5)]
}
return(nb.xy.old)
} else {
adj.mat <- matrix(0, nrow = J, ncol = J)
for (i in 1:nrow(nb.xy.old)) {
adj.mat[nb.xy.old$location.index[i], nb.xy.old$nb.index[i]] <- nb.xy.old$weights[i]
}
return(adj.mat)
}
if (print.im == TRUE) {
im <- matrix(1:J, byrow = TRUE,
nrow = im.res[1], ncol = im.res[2])
print(im)
}
} |
.getPQ <- function(X, V, Lambda, Sigma, Psi) {
p <- NA
q <- NA
if(!.minu(X)) {
if(is.vector(X)) {
p <- 1
q <- 1
} else {
p <- dim(X)[1]
q <- dim(X)[2]
}
}
if(!.minu(V)) {
if(is.na(q)) {
q <- ifelse(is.vector(V), 1, dim(V)[1])
}
}
if(!.minu(Lambda)) {
if(is.na(p)) p <- ifelse(is.vector(Lambda), 1, dim(Lambda)[1])
if(is.na(q)) q <- ifelse(is.vector(Lambda), 1, dim(Lambda)[2])
}
if(!.minu(Sigma)) {
if(is.na(p)) p <- ifelse(is.vector(Sigma), 1, dim(Sigma)[1])
}
if(!.minu(Psi)) {
if(is.na(q)) q <- ifelse(is.vector(Psi), 1, dim(Psi)[1])
}
as.numeric(c(p, q))
}
.minu <- function(x) missing(x) || is.null(x)
.setDims <- function(X, p, q) {
var.X <- missing(p) || missing(q)
if(var.X) {
if(missing(p)) p <- q
if(missing(q)) q <- p
}
if(.minu(X)) {
if(!var.X) {
X <- matrix(0,p,q)
} else {
X <- diag(p)
}
}
if(is.vector(X)) X <- array(X, dim = c(1,1,length(X)))
if(!all(dim(X)[1:2] == c(p,q))) {
X <- NA
} else {
X <- matrix(X,p)
}
X
}
.getN <- function(p, q, X, V, Lambda, Sigma, Psi, nu) {
N <- NULL
if(!.minu(X)) N <- c(N, ncol(X)/q)
if(!.minu(V)) N <- c(N, ncol(V)/q)
if(!.minu(Lambda)) N <- c(N, ncol(Lambda)/q)
if(!.minu(Sigma)) N <- c(N, ncol(Sigma)/p)
if(!.minu(Psi)) N <- c(N, ncol(Psi)/q)
if(!.minu(nu)) N <- c(N, length(nu))
N <- unique(sort(N))
c(1, N[N>1])
}
.vec2mn <- function(x) {
if(is.vector(x)) {
x <- matrix(x, ncol = 1)
} else {
x <- t(x)
x <- array(x, dim = c(dim(x)[1], 1, dim(x)[2]))
}
x
} |
round_df_char <- function(df, digits, pad = " ", na_vals = NA) {
nas <- is.na(df)
if (!is.data.frame(df)) {
df <- as.data.frame.matrix(df, stringsAsFactors = FALSE)
}
rn <- rownames(df)
cn <- colnames(df)
df <- as.data.frame(lapply(df, function(col) {
if (suppressWarnings(all(!is.na(as.numeric(as.character(col)))))) {
as.numeric(as.character(col))
} else {
col
}
}), stringsAsFactors = FALSE)
nums <- vapply(df, is.numeric, FUN.VALUE = logical(1))
df <- as.data.frame(lapply(df, num_print, digits = digits),
stringsAsFactors = FALSE)
if (any(nas)) {
df[nas] <- ""
}
for (i in which(nums)) {
if (any(grepl(".", df[[i]], fixed = TRUE))) {
s <- strsplit(df[[i]], ".", fixed = TRUE)
lengths <- lengths(s)
digits.r.of.. <- sapply(seq_along(s), function(x) {
if (lengths[x] > 1) {
nchar(s[[x]][lengths[x]])
} else {
0
}
})
df[[i]] <- sapply(seq_along(df[[i]]), function(x) {
if (df[[i]][x] == "") {
""
} else if (lengths[x] <= 1) {
paste0(c(df[[i]][x],
rep(".", pad == 0),
rep(pad, max(digits.r.of..) -
digits.r.of..[x] + as.numeric(pad != 0))),
collapse = "")
} else {
paste0(c(df[[i]][x], rep(pad, max(digits.r.of..) - digits.r.of..[x])),
collapse = "")
}
})
}
}
if (length(rn) > 0) rownames(df) <- rn
if (length(cn) > 0) names(df) <- cn
df[df == ""] <- na_vals
return(df)
}
get_robust_se <- function(model, type = "HC3", cluster = NULL,
data = model.frame(model), vcov = NULL) {
if (!requireNamespace("sandwich", quietly = TRUE)) {
stop_wrap("When using robust SEs you need to have the \'sandwich\'
package.", call. = FALSE)
}
if (type == TRUE) {
type <- "HC3"
}
if (is.character(cluster)) {
call <- getCall(model)
if (is.null(data)) {
d <- eval(call$data, envir = environment(formula(model)))
} else {
d <- data
}
cluster <- d[[cluster]]
use_cluster <- TRUE
} else if (length(cluster) > 1) {
if (!is.factor(cluster) & !is.numeric(cluster)) {
warn_wrap("Invalid cluster input. Either use the name of the variable
in the input data frame or provide a numeric/factor vector.
Cluster is not being used in the reported SEs.")
cluster <- NULL
use_cluster <- FALSE
} else {
use_cluster <- TRUE
}
} else {
use_cluster <- FALSE
}
if (is.null(vcov) & type %in% c("HC4", "HC4m", "HC5") & is.null(cluster)) {
coefs <- sandwich::vcovHC(model, type = type)
} else if (is.null(vcov) & type %in% c("HC4", "HC4m", "HC5") &
!is.null(cluster)) {
stop_wrap("If using cluster-robust SEs, robust.type must be HC3 or lower.")
} else if (is.null(vcov)) {
coefs <- sandwich::vcovCL(model, cluster = cluster, type = type)
} else {coefs <- vcov}
vcov <- coefs
coefs <- coeftest(model, coefs)
ses <- coefs[,2]
ts <- coefs[,3]
ps <- coefs[,4]
out <- list(coefs = coefs, ses = ses, ts = ts, ps = ps,
use_cluster = use_cluster, type = type, cluster = cluster,
vcov = vcov)
class(out) <- "robust_info"
return(out)
}
print.robust_info <- function(x, ...) {
print(md_table(x$coefs))
}
do_robust <- function(model, robust, cluster, data, vcov = NULL) {
out <-
get_robust_se(model = model, type = robust, cluster = cluster, data = data,
vcov = vcov)
names(out)[names(out) == "type"] <- "robust"
return(out)
}
create_table <- function(params, which.cols, ivs) {
if (any(which.cols %nin% names(params))) {
stop_wrap("One of the requested columns does not exist.")
}
coefs <- params[["Est."]]
params <- params[unlist(which.cols)]
mat <- matrix(nrow = length(ivs), ncol = length(which.cols))
rownames(mat) <- ivs
colnames(mat) <- which.cols
for (i in seq_along(params)) {
if (length(coefs) > length(params[[i]])) {
temp_vec <- rep(NA, times = length(coefs))
temp_vec[which(!is.na(coefs))] <- params[[i]]
params[[i]] <- temp_vec
}
mat[,i] <- params[[i]]
}
return(mat)
}
which_columns <- function(which.cols, margins = FALSE,
confint, ci.labs, vifs, pvals, t.col,
exp = NULL, df = FALSE, others = NULL) {
if (!is.null(which.cols)) {
return(which.cols)
} else {
if (is.null(exp) || exp == FALSE) {
cols <- c("Est.")
} else {
cols <- c("exp(Est.)")
}
if (confint == TRUE) {
cols <- c(cols, ci.labs)
} else {
cols <- c(cols, "S.E.")
}
if (margins == TRUE) {
cols <- c(cols, "A.M.E.")
}
cols <- c(cols, t.col)
if (df == TRUE) {cols <- c(cols, "d.f.")}
if (pvals == TRUE) {cols <- c(cols, "p")}
if (vifs == TRUE) {cols <- c(cols, "VIF")}
if (!is.null(others)) {cols <- c(cols, others)}
return(cols)
}
}
part_corr <- function(ts, df.int, rsq, robust, n) {
p.df <- length(ts) - df.int
df.resid <- n - p.df - 1
partial_corrs <- ts / sqrt(ts^2 + df.resid)
if (df.int == 1) {
partial_corrs[1] <- NA
}
semipart_corrs <- (ts * sqrt(1 - rsq))/sqrt(df.resid)
if (df.int == 1) {
semipart_corrs[1] <- NA
}
if (!identical(FALSE, robust)) {
warning("Partial/semipartial correlations calculated based on robust",
" t-statistics.\n See summ.lm documentation for cautions on",
" \ninterpreting partial and semipartial correlations alongside",
" robust standard errors.")
}
list(partial_corrs = partial_corrs, semipart_corrs = semipart_corrs)
}
dep_checks <- function(dots) {
scale <- transform.response <- robust <- odds.ratio <- NULL
if ("standardize" %in% names(dots)) {
warn_wrap("The standardize argument is deprecated. Please use 'scale'
instead.", call. = FALSE)
scale <- dots$standardize
}
if ("standardize.response" %in% names(dots)) {
warn_wrap("The standardize.response argument is deprecated. Please use
'transform.response' instead.", call. = FALSE)
transform.response <- dots$standardize.response
}
if ("scale.response" %in% names(dots)) {
warn_wrap("The scale.response argument is deprecated. Please use
'transform.response' instead.", call. = FALSE)
transform.response <- dots$scale.response
}
if ("center.response" %in% names(dots)) {
warn_wrap("The center.response argument is deprecated. Please use
'transform.response' instead.", call. = FALSE)
transform.response <- dots$center.response
}
if ("robust.type" %in% names(dots)) {
warn_wrap("The robust.type argument is deprecated. Please specify the type
as the value for the 'robust' argument instead.", call. = FALSE)
robust <- dots$robust.type
}
if ("odds.ratio" %in% names(dots)) {
warn_wrap("The odds.ratio argument is deprecated. Use 'exp' instead.",
call. = FALSE)
exp <- dots$odds.ratio
}
if ("model.check" %in% names(dots)) {
warn_wrap("The model.check argument is deprecated and has been removed.",
call. = FALSE)
}
if ("stars" %in% names(dots)) {
warn_wrap("The 'stars' argument is deprecated and has been removed.")
}
list(scale = scale, transform.response = transform.response, robust = robust,
exp = odds.ratio)
}
scale_statement <- function(scale, center, transform.response, n.sd) {
part_1 <- "Continuous "
part_2 <- ifelse(transform.response, "variables", "predictors")
part_3 <- " are mean-centered"
part_4 <- if (scale) { " and scaled by " } else { NULL }
part_5 <- if (scale) { paste(n.sd, "s.d") } else { NULL }
if (scale == FALSE & center == FALSE) {
return(NULL)
} else {
paste0(part_1, part_2, part_3, part_4, part_5, ".")
}
}
vif <- function(mod, vcov = NULL, mod.matrix = NULL, ...) {
if (any(is.na(coef(mod)))) {
stop_wrap("VIFs cannot be calculated because there are aliased
coefficients in the model.")
}
if (is.null(vcov)) {
v <- vcov(mod)
} else {v <- vcov}
assign <- if (is.null(mod.matrix)) {
attr(model.matrix(mod), "assign")
} else {
attr(mod.matrix, "assign")
}
if ("(Intercept)" %in% names(coefficients(mod))) {
v <- v[-1, -1]
assign <- assign[-1]
} else {
warning("No intercept: VIFs may not be sensible.")
}
terms <- labels(terms(mod))
n.terms <- length(terms)
if (n.terms < 2) {
stop_wrap("VIFS cannot be calculated because the model contains fewer
than 2 terms.")
}
R <- cov2cor(v)
detR <- det(R)
result <- matrix(0, n.terms, 3)
rownames(result) <- terms
colnames(result) <- c("GVIF", "Df", "GVIF^(1/(2*Df))")
for (term in 1:n.terms) {
subs <- which(assign == term)
result[term, 1] <- det(as.matrix(R[subs, subs])) *
det(as.matrix(R[-subs, -subs])) / detR
result[term, 2] <- length(subs)
}
if (all(result[, 2] == 1)) {
result <- result[, 1]
} else {
result[, 3] <- result[, 1]^(1/(2 * result[, 2]))
expand_fun <- function(x) {
if ("(Intercept)" %in% names(coefficients(mod))) {
rep(x, times = table(attr(model.matrix(mod), "assign")[-1]))
} else {
rep(x, times = table(attr(model.matrix(mod), "assign")))
}
}
result <- apply(result, MARGIN = 2, FUN = expand_fun)
}
return(result)
}
print_mod_info <- function(missing, n, dv, type) {
if (is.null(missing) || missing == 0) {
cat(underline("MODEL INFO:"), "\n",
italic("Observations:"), " ", n, "\n",
italic("Dependent Variable:"), " ", dv, "\n", sep = "")
} else {
cat(underline("MODEL INFO:"), "\n",
italic("Observations:"), " ", n, " (", missing,
" missing obs. deleted)", "\n",
italic("Dependent Variable:"), " ", dv, "\n", sep = "")
}
cat(italic("Type:"), type, "\n\n")
}
mod_info_list <- function(missing, n, dv, type) {
out <- list(dv = dv, n = n, type = type)
if (!is.null(missing) && missing != 0) {
out$missing <- missing
}
return(out)
}
print_mod_fit <- function(stats) {
cat(underline("MODEL FIT:"), "\n", sep = "")
cat(stats, "\n\n")
}
print_se_info <- function(robust, use_cluster, manual = NULL, vcov = NULL, ...) {
if (identical(FALSE, robust) & is.null(vcov)) {
cat(italic("Standard errors:", ifelse(is.null(manual),
no = manual, yes = "MLE")),
"\n", sep = "")
} else if (is.null(vcov)) {
if (robust == TRUE) {robust <- "HC3"}
cat(italic("Standard errors:"), sep = "")
if (use_cluster == FALSE) {
cat(" Robust, ", italic("type = "), robust, "\n", sep = "")
} else if (use_cluster == TRUE) {
cat(" Cluster-robust, ", italic("type = "), robust, "\n", sep = "")
}
} else {
"User-specified"
}
}
get_se_info <- function(robust, use_cluster, manual = NULL, vcov = NULL, ...) {
if (identical(FALSE, robust) & is.null(vcov)) {
ifelse(is.null(manual), no = manual, yes = "MLE")
} else if (is.null(vcov)) {
if (robust == TRUE) {robust <- "HC3"}
if (use_cluster == FALSE) {
paste0("Robust, type = ", robust)
} else if (use_cluster == TRUE) {
paste0("Cluster-robust, type = ", robust)
}
} else {
"User-specified"
}
}
make_ci_labs <- function(ci.width) {
alpha <- (1 - ci.width) / 2
lci_lab <- 0 + alpha
lci_lab <- paste(round(lci_lab * 100, 1), "%", sep = "")
uci_lab <- 1 - alpha
uci_lab <- paste(round(uci_lab * 100, 1), "%", sep = "")
list(lci = lci_lab, uci = uci_lab)
}
format_percentiles <- function(probs, digits) {
paste0(format(100 * probs, trim = TRUE, scientific = FALSE, digits = digits),
"%")
}
confint_linear <- function (object, parm, level = 0.95, cov = NULL,
df.residual = NULL, ...) {
cf <- coef(object)
pnames <- names(cf)
if (missing(parm))
parm <- pnames
else if (is.numeric(parm))
parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
pct <- format_percentiles(a, 3)
if (is.null(df.residual)) {
fac <- qnorm(a)
} else {
fac <- qt(a, df.residual)
}
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm,
pct))
if (is.null(vcov)) {
ses <- sqrt(diag(vcov(object)))[parm]
} else {
ses <- sqrt(diag(cov))[parm]
}
ci[] <- cf[parm] + ses %o% fac
ci
}
mod_rank <- function(model) {
preds <- length(attr(terms(model), "order"))
int <- attr(terms(model), "intercept")
return(preds + int)
}
to_kable <- function(t, html = !knitr::is_latex_output(), caption = NULL,
cols = NULL, footnote = NULL, row.names = FALSE,
col.names = NA, escape = knitr::is_latex_output(),
format = NULL) {
if (row.names == TRUE) {
numerics <- names(t) %nin% ""
align <- ifelse(numerics, yes = "r", no = "l")
} else if (ncol(t) == 2) {
align <- c("l", "r")
} else {
align <- NULL
}
t %<>% knitr::kable(format = format, row.names = row.names,
col.names = col.names, escape = escape,
booktabs = TRUE, align = align)
if (length(caption) > 0) {
head <- cols
names(head) <- caption
t %<>% kableExtra::add_header_above(header = head)
}
t %<>%
kableExtra::kable_styling(
bootstrap_options = c("striped", "hover", "condensed", "responsive"),
full_width = FALSE,
position = "center",
latex_options = c("hold_position", "striped")
)
if (html == TRUE) {
t %<>% kableExtra::column_spec(1, bold = TRUE)
}
if (length(footnote) > 0) {
t %<>% kableExtra::footnote(general = footnote,
general_title = "",
threeparttable = TRUE)
}
return(t)
}
kableExtra_latex_deps <- list(
list(name = "booktabs"),
list(name = "longtable"),
list(name = "array"),
list(name = "multirow"),
list(name = "xcolor", options = "table"),
list(name = "wrapfig"),
list(name = "float"),
list(name = "colortbl"),
list(name = "pdflscape"),
list(name = "tabu"),
list(name = "threeparttable"),
list(name = "threeparttablex"),
list(name = "ulem", options = "ulem"),
list(name = "makecell")
)
escape_stars <- function(t) {
if (any(colnames(t) == "")) {
t[,which(colnames(t) == "")] <-
gsub("^\\*$", "\\\\*", t[,which(colnames(t) =="")])
}
return(t)
} |
Qstat.reg.sb = function(DATA1, DATA2, vecA, Psize, gamma, Bsize, sigLev)
{
Tsize = nrow(DATA1)
Nsize = Tsize - Psize
vecQ.BP = matrix(0,Psize,1)
vecQ.LB = matrix(0,Psize,1)
vecCRQ = crossqreg.max(DATA1, DATA2, vecA, Psize)
for (k in 1:Psize){
RES = Qstat(vecCRQ[1:k], Tsize)
vecQ.BP[k] = RES$Q.BP
vecQ.LB[k] = RES$Q.LB
}
matD1 = DATA1[(Psize+1):Tsize,]
matCRQ = matrix(0,Bsize,Psize)
matQ.BP = matrix(0,Bsize,Psize)
matQ.LB = matrix(0,Bsize,Psize)
for (b in 1:Bsize){
vecI = sb.index(Nsize, gamma)
matD1.SB = matD1[vecI,]
for (k in 1:Psize){
matD2 = DATA2[(Psize-k+1):(Tsize-k),]
matD2.SB = matD2[vecI,]
matCRQ[b,k] = crossqreg(matD1.SB, matD2.SB, vecA, k)
}
vecTest = matCRQ[b,] - vecCRQ
for (k in 1:Psize){
Res1 = Qstat(vecTest[1:k], Tsize)
matQ.BP[b,k] = Res1$Q.BP
matQ.LB[b,k] = Res1$Q.LB
}
}
vecCV.BP = matrix(0, Psize, 1)
vecCV.LB = matrix(0, Psize, 1)
for (k in 1:Psize){
vecCV.BP[k] = quantile(matQ.BP[,k], probs = (1 - sigLev) )
vecCV.LB[k] = quantile(matQ.LB[,k], probs = (1 - sigLev) )
}
list(vecQ.BP = vecQ.BP, vecCV.BP=vecCV.BP, vecQ.LB=vecQ.LB, vecCV.LB=vecCV.LB)
} |
plots <- function(...,
n_rows = NULL,
n_columns = NULL,
guides = NULL,
tags = FALSE,
tag_prefix = NULL,
tag_suffix = NULL,
tag_sep = NULL,
title = NULL,
subtitle = NULL,
caption = NULL,
theme = NULL) {
insight::check_if_installed("patchwork")
if (!is.null(tags)) {
if (length(tags) == 1) {
if (isTRUE(tags)) {
tags <- "A"
} else if (isFALSE(tags) || is.na(tags)) {
tags <- NULL
} else if (!tags %in% c("1", "A", "a", "I", "i")) {
tags <- list(tags)
}
} else {
tags <- list(tags)
}
}
pw <- patchwork::wrap_plots(..., nrow = n_rows, ncol = n_columns, guides = guides) +
patchwork::plot_annotation(
tag_levels = tags,
tag_prefix = tag_prefix,
tag_suffix = tag_suffix,
tag_sep = tag_sep,
title = title,
subtitle = subtitle,
caption = caption,
theme = theme
)
return(pw)
} |
"model.comp.bayes.parobs" <- function(object, type="lpml", verbose=FALSE, ncores=NULL) {
nkeep <- object$mcmc$nkeep
Sigmahat <- apply(object$mcmc.draws$Sigma, c(1,2), mean)
Omegahat <- apply(object$mcmc.draws$Omega, c(1,2), mean)
thetahat <- rowMeans(object$mcmc.draws$theta)
if (!is.null(ncores)) {
ncores_ <- parallel::detectCores()
if (ncores > ncores_) {
stop(paste0("The number of cores must not exceed ", ncores_))
}
} else {
ncores <- min(2, parallel::detectCores())
}
if (is.null(object$group)) {
second <- numeric(1)
} else {
second <- object$group
}
if (type == "dic") {
gof <- .Call(`_metapack_dic_parcov`,
as.matrix(object$Outcome),
as.matrix(object$XCovariate),
as.matrix(object$WCovariate),
as.vector(object$Npt),
as.array(object$mcmc.draws$Sigma),
as.array(object$mcmc.draws$Omega),
as.matrix(object$mcmc.draws$theta),
as.double(thetahat),
as.matrix(Sigmahat),
as.matrix(Omegahat),
as.integer(object$fmodel),
as.integer(nkeep),
as.logical(verbose),
as.logical(!is.null(object$group)),
as.integer(second),
as.integer(ncores))
} else if (type == "lpml") {
gof <- .Call(`_metapack_lpml_parcov`,
as.matrix(object$Outcome),
as.matrix(object$XCovariate),
as.matrix(object$WCovariate),
as.vector(object$Npt),
as.array(object$mcmc.draws$Sigma),
as.array(object$mcmc.draws$Omega),
as.matrix(object$mcmc.draws$theta),
as.double(thetahat),
as.matrix(Sigmahat),
as.matrix(Omegahat),
as.integer(object$fmodel),
as.integer(nkeep),
as.logical(verbose),
as.logical(!is.null(object$group)),
as.integer(second),
as.integer(ncores))
} else if (type == "pearson") {
gof <- .Call(`_metapack_pearson_parcov`,
as.array(object$mcmc.draws$resid),
as.vector(object$Npt),
as.array(object$mcmc.draws$Sigma),
as.integer(object$fmodel),
as.integer(nkeep),
as.logical(verbose))
}
class(gof) <- "gofparobs"
gof
} |
copy_filt <- function(abund,threshold){
if(is.null(dim(abund)) == FALSE){
sapply(1:ncol(abund), function(colnum){temp = abund[,colnum]
if(threshold == round(threshold)){
rownums = which(temp < threshold)
}else{
rownums = which(temp < sum(temp)*threshold)
}
abund[rownums, colnum] <<- 0})
}else{
if(threshold == round(threshold)){
abund[abund < threshold] <- 0
}else{
abund[abund < sum(abund)*threshold] <- 0
}
}
return(abund)
} |
shiftid <- function (e_ij1, e_ij2, e_i1, e_i2, time1, time2,
industry.names = NULL,
shift.method = "Dunn",
gerfin.shifts = "mean",
print.results = TRUE,
plot.results = FALSE, plot.colours = NULL, plot.title = NULL,
plot.portfolio = FALSE, ...)
{
no_years <- time2-time1
industries <- length(e_ij1)
if (is.null(industry.names)) {
industry.names <- as.character(1:industries)
}
e_j1 <- sum(e_ij1)
e_j2 <- sum(e_ij2[,ncol(e_ij2)])
e1 <- sum(e_i1)
e2 <- sum(e_i2[,ncol(e_i2)])
growth <- shift.growth(e_ij1 = e_ij1, e_ij2 = e_ij2, e_i1 = e_i1, e_i2 = e_i2, industry.names = industry.names)
shift_all <- shiftd (e_ij1, e_ij2, e_i1, e_i2, time1, time2, shift.method = shift.method, gerfin.shifts = gerfin.shifts, print.results = FALSE)
components.industry <- matrix(ncol = industries, nrow = nrow(shift_all$components))
i <- 0
for (i in 1:industries) {
shift_industry <- shiftd ((e_ij1[i]), (e_ij2[i,]), (e_i1[i]), (e_i2[i,]), time1, time2,
shift.method = shift.method, gerfin.shifts = gerfin.shifts,
print.results = FALSE)
components.industry[,i] <- shift_industry$components[,1]
}
colnames(components.industry) <- industry.names
rownames(components.industry) <- rownames(shift_industry$components)
components.industry <- components.industry[rownames(components.industry) != "Industrial mix",]
if (print.results == TRUE) {
cat ("\n")
cat ("Dynamic Shift-Share Analysis", "\n")
cat ("Method:", shift.method, "\n")
cat ("\n")
cat ("Shift-share components", "\n")
print(as.data.frame(components.industry))
cat ("\n")
cat ("Calculation for", industries, "industries", "\n")
cat ("Regional employment at time t: ", e_j1, ", at time t+1: ", e_j2, " (", growth(e_j1, e_j2, growth.type = "abs"), " / ", growth(e_j1, e_j2, growth.type = "rate", rate.perc = TRUE), " %)", sep="", "\n")
cat ("National employment at time t: ", e1, ", at time t+1: ", e2, " (", growth(e1, e2, growth.type = "abs"), " / ", growth(e1, e2, growth.type = "rate", rate.perc = TRUE), " %)", sep="", "\n")
cat ("\n")
}
if (plot.results == TRUE) {
if (is.null(plot.colours)) {
plot.colours <- sample(colours(), ncol(components.industry))
}
if (is.null(plot.title)) {
plot.title <- "Shift-share analysis"
}
shiftplot <- barplot (components.industry, names.arg = NULL, col = plot.colours, legend = NULL, main = plot.title, beside = TRUE)
legend("topright", legend = rownames(components.industry), fill = plot.colours, cex = 0.5)
text(shiftplot, components.industry/2, labels = round(components.industry, 2), cex = 0.8)
}
if (plot.portfolio == TRUE) {
portfolio (e_ij1, e_ij2, e_i1, e_i2, industry.names = industry.names, ...)
}
results <- list (components = shift_all$components, components.industry = components.industry, growth = growth, method = shift.method)
invisible(results)
} |
do.findmain <- function (
ramclustObj = NULL,
cmpd = NULL,
mode = "positive",
mzabs.error = 0.005,
ppm.error = 10,
ads = NULL,
nls = NULL,
scoring = "auto",
plot.findmain = TRUE,
writeMat = TRUE,
writeMS = TRUE,
use.z = TRUE)
{
if(is.null(ramclustObj)) {
stop("must supply ramclustObj as input. i.e. ramclustObj = RC", '\n')
}
score.options <- c("auto", "imss", "ramclustr")
if (!any(scoring == score.options)) {
stop("scoring must be set to one of 'auto', 'imss', or 'ramclustr' ")
}
if (use.z & any(names(ramclustObj) == "fm")) {
use.mass <- "fm"
} else {
use.mass <- "fmz"
}
if (is.null(ads)) {
if (grepl("p", mode)) {
ads <- c("[M+H]+", "[M+Na]+", "[M+K]+", "[M+NH4]+",
"[2M+H]+", "[2M+Na]+", "[2M+K]+", "[2M+NH4]+",
"[3M+H]+", "[3M+Na]+", "[3M+K]+", "[3M+NH4]+")
}
if (grepl("n", mode)) {
ads <- c("[M-H]-", "[M+Na-2H]-", "[M+K-2H]-", "[M+CH2O2-H]-",
"[2M-H]-", "[2M+Na-2H]-", "[2M+K-2H]-", "[2M+CH2O2- H]-",
"[3M-H]-", "[3M+Na-2H]-", "[3M+K-2H]-", "[3M+CH2O2- H]-")
}
if (is.null(ads)) {
stop("please define adducts using 'ads' or set mode to either'positive' or 'negative'")
}
}
if (is.null(nls)) {
if (grepl("p", mode)) {
nls <- c("[M+H-COCH2]+", "[M+H-C2H3NO]+", "[M+H-H2O]+",
"[M+H-NH3]+", "[M+H-CO2]+", "[M+H-NH3-CO2]+",
"[M+H-NH3-HCOOH]+", "[M+H-NH3-H2O]+", "[M+H-NH3-COCH2]+",
"[M+H-S]+", "[M+H-S-NH3-HCOOH]+", "[M+H-H4O2]+",
"[M+H-CH2]+", "[M+H-CH4O3]+", "[M+H-O]+", "[M+H-C2H2]+",
"[M+H-C2H4]+", "[M+H-CO]+", "[M+H-C3H6]+", "[M+H-C2H4O]+",
"[M+H-C4H6]+", "[M+H-C3H4O]+", "[M+H-C4H8]+",
"[M+H-C5H8]+", "[M+H-C4H6O]+", "[M+H-C5H10]+",
"[M+H-C6H12]+", "[M+H-C4H8O2]+", "[M+H-H2O-HCOOH]+",
"[M+H-CH4]+", "[M+H-CH2O]+", "[M+H-C2H6]+",
"[M+H-CH3OH]+", "[M+H-C3H4]+", "[M+H-C3H6O]+",
"[M+H-CO2-C3H6]+", "[M+H-SO3]+", "[M+H-SO3-H2O]+",
"[M+H-SO3-H2O-NH3]+", "[M+H-NH3-C3H4]+", "[M+H-H2O-CO2]+",
"[M+H-H2O-H2O-C2H4O]+", "[M+H-NH3-CO-CO]+",
"[M+H-NH3-CO-C2OH2]+", "[M+H-C8H6O]+", "[M+H-C8H6O-NH3]+",
"[M+H-C8H6O-H2O]+", "[M+H-C2H2O2]+", "[M+H-C2H4O2]+",
"[M+H-C5H8O]+", "[M+H-NH3-CO2-CH2O]+", "[M+H-N2H6-CO2-H2O]+",
"[M+H-NH3-CO2-C3H4O]+", "[M+H-NH3-CO2-C5H8]+",
"[M+H-C2O4H4]+", "[M+H-C2H4-CO2]+", "[M+H-C2H4-HCOOH]+",
"[M+H-NH3-H4O2]+", "[M+H-H2O-C2H2O2]+", "[M+H-COCH2-C4H8]+",
"[M+H-NH3-NH3-C3H4]+", "[M+H-C2H4O2-CH3OH]+",
"[M+H-C3H6O-CH3OH]+", "[M+H-NH3-CO-COCH2-C4H6O]+",
"[M+H-C4H6-H2O]+", "[M+H-C4H6-C2H4]+", "[M+H-C4H6-NH3-H2O]+",
"[M+H-C4H6-COCH2]+", "[M+H-C8H12O]+", "[M+H-C3H4O-C4H6]+",
"[M+H-C3H4O-C4H8O2]+", "[M+H-C4H8-C4H6]+", "[M+H-NH3-HCOOH-CH3OH]+",
"[M+H-NH3-C2H6]+", "[M+H-NH3-C8H6O-CH2]+", "[M+H-NH3-C3H4-COCH2]+",
"[M+H-C3H9N]+", "[M+H-C3H9N-C2H4O2]+", "[M+H-C6H10O7]+",
"[M+H-C6H10O7+H2O]+", "[M+H-C6H10O7-H4O2]+",
"[M+H-C6H12O6]+", "[M+H-C6H12O6+H2O]+", "[M+H-C6H12O6-H2O]+",
"[M+H-C5H10O5]+", "[M+H- C5H10O5+H2O]+", "[M+H- C5H10O5-H2O]+",
"[M+H-C2H8NO4P]+", "[M+H-H6O3-CO]+", "[M+H-C6H13NO2]+",
"[M+H-C5H11NO2]+", "[M+H-CH3S]+", "[M+H-C8H8O2]+",
"[M+H-C12H22O11]+", "[M+H-C12H24O12]+", "[M+H-C12H20O10]+")
}
if (grepl("n", mode)) {
nls <- c("[M-H-NH3]-", "[M-H-H2O]-", "[M-H-COCH2]-",
"[M-H-CO2]-", "[M-H-NH3-CO2]-", "[M-H-NH3-HCOOH]-",
"[M-H-NH3-H2O]-", "[M-H-NH3-C2OH2]-", "[M-H-S]-",
"[M-H-S-NH3-HCOOH]-", "[M-H-H4O2]-", "[M-H-CH2]-",
"[M-H-O]-", "[M-H-C2H2]-", "[M-H-C2H4]-", "[M-H-CO]-",
"[M-H-C3H6]-", "[M-H-C2H4O]-", "[M-H-C4H6]-",
"[M-H-C3H4O]-", "[M-H-C4H8]-", "[M-H-C5H8]-",
"[M-H-C4H6O]-", "[M-H-C5H10]-", "[M-H-C6H12]-",
"[M-H-C4H8O2]-", "[M-H-H2O-HCOOH]-", "[M-H-CH4]-",
"[M-H-CH2O]-", "[M-H-C2H6]-", "[M-H-CH3OH]-",
"[M-H-C3H4]-", "[M-H-C3H6O]-", "[M-H-CO2-C3H6]-",
"[M-H-SO3]-", "[M-H-SO3-H2O]-", "[M-H-SO3-H2O-NH3]-",
"[M-H-NH3-C3H4]-", "[M-H-H2O-CO2]-", "[M-H-H2O-H2O-C2H4O]-",
"[M-H-NH3-CO-CO]-", "[M-H-NH3-CO-COCH2]-", "[M-H-C8H6O]-",
"[M-H-C8H6O-NH3]-", "[M-H-C8H6O-H2O]-", "[M-H-C2H2O2]-",
"[M-H-C2H4O2]-", "[M-H-C5H8O]-", "[M-H-NH3-CO2-CH2O]-",
"[M-H-NH3-CO2-NH3-H2O]-", "[M-H-NH3-CO2-C3H4O]-",
"[M-H-NH3-CO2-C5H8]-", "[M-H-HCOOH-HCOOH]-",
"[M-H-C2H4-CO2]-", "[M-H-C2H4-HCOOH]-", "[M-H-NH3-H2O-H2O]-",
"[M-H-H2O-C2H2O2]-", "[M-H-C2OH2-C4H8]-", "[M-H-NH3-NH3-C3H4]-",
"[M-H-C2H4O2-CH3OH]-", "[M-H-C3H6O-CH3OH]-",
"[M-H-NH3-CO-COCH2-C4H6O]-", "[M-H-C4H6-H2O]-",
"[M-H-C4H6-C2H4]-", "[M-H-C4H6-NH3-H2O]-", "[M-H-C4H6-COCH2]-",
"[M-H-C4H6-C4H6O]-", "[M-H-C3H4O-C4H6]-", "[M-H-C3H4O-C4H8O2]-",
"[M-H-C4H8-C4H6]-", "[M-H-NH3-HCOOH-CH3OH]-",
"[M-H-NH3-C2H6]-", "[M-H-NH3-C8H6O-CH2]-", "[M-H-NH3-C3H4-COCH2]-",
"[M-H-C3H9N]-", "[M-H-C3H9N-C2H4O2]-", "[M-H-C6H10O7]-",
"[M-H-C6H10O7+H2O]-", "[M-H-C6H10O7-H4O2]-",
"[M-H-C6H12O6]-", "[M-H-C6H12O6+H2O]-", "[M-H-C6H12O6-H2O]-",
"[M-H-C5H10O5]-", "[M-H-C5H10O5+H2O]-", "[M-H-C5H10O5-H2O]-",
"[M-H-C2H8NO4P]-", "[M-H-CH6O4]-", "[M-H-C6H13NO2]-",
"[M-H-C5H11NO2]-", "[M-H-CH3S]-", "[M-H-C8H8O2]-",
"[M-H-C12H22O11]-", "[M-H-C12H24O12]-", "[M-H-C12H20O10]-")
}
if (is.null(nls)) {
stop("please define neutral losses using 'nls' or set mode to either'positive' or 'negative'")
}
}
M.findmain <- rep(NA, max(ramclustObj$featclus))
M.ppm.findmain <- rep(NA, max(ramclustObj$featclus))
M.ann.findmain <- as.list(rep(NA, max(ramclustObj$featclus)))
M.nann.findmain <- rep(NA, max(ramclustObj$featclus))
M.space.findmain <- rep(NA, max(ramclustObj$featclus))
M.ramclustr <- rep(NA, max(ramclustObj$featclus))
M.ppm.ramclustr <- rep(NA, max(ramclustObj$featclus))
M.rank.ramclustr <- rep(NA, max(ramclustObj$featclus))
M.ann.ramclustr <- as.list(rep(NA, max(ramclustObj$featclus)))
M.nann.ramclustr <- rep(NA, max(ramclustObj$featclus))
M.space.ramclustr <- rep(NA, max(ramclustObj$featclus))
if (is.null(cmpd)) {
cmpd <- (1:max(ramclustObj$featclus))
}
for (cl in cmpd) {
s <- data.frame(mz = ramclustObj[[use.mass]][which(ramclustObj$featclus ==
cl)], int = ramclustObj$msint[which(ramclustObj$featclus ==
cl)])
s <- s[order(s$mz),]
out <- InterpretMSSpectrum::findMAIN(
s,
rules = c(ads),
adducthyp = ads[grep("[M",ads, fixed = TRUE)],
ionmode = mode,
mzabs = mzabs.error,
ppm = ppm.error
)
summarytable <- summary(out)
M.findmain[cl] <- summarytable[1, "neutral_mass"]
M.ppm.findmain[cl] <- summarytable[1, "medppm"]
M.ann.findmain[[cl]] <- out[[1]]
M.nann.findmain[cl] <- summarytable[1, "adducts_explained"]
M.space.findmain[cl] <- summarytable[1, "total_score"]/summarytable[2, "total_score"]
out <- InterpretMSSpectrum::findMAIN(
s,
adductmz = NULL,
ionmode = mode,
rules = c(ads, nls),
adducthyp = ads[grep("[M", ads, fixed = TRUE)],
ms2spec = NULL,
mzabs = mzabs.error,
ppm = ppm.error,
mainpkthr = 0.1,
collapseResults = FALSE)
summarytable <- summary(out)
summaryscores <- sapply(1:length(out), FUN = function(x) {
is.adduct <- which(out[[x]][, "adduct"] %in% ads)
det.adducts <- out[[x]][is.adduct, "adduct"]
is.nl <- which(out[[x]][, "adduct"] %in% nls)
keep <- is.adduct
int <- sum(out[[x]][is.adduct, "int"])
if (length(is.nl) > 0) {
int <- sum(int, sum(0.5 * (out[[x]][is.nl, "int"])))
keep <- c(keep, is.nl)
}
int <- int/sum(out[[x]][, "int"]) * length(is.adduct)
if (any(grepl("[M+H-NH3]+", det.adducts)) & length(det.adducts ==
1)) {
int <- int/2
}
mzerr <- (1/summarytable[x, "medppm"])^0.5
return(int * mzerr)
})
best <- which.max(summaryscores)
if (length(best) == 0) {
best <- 1
}
M.space.ramclustr[cl] <- {
sort(summaryscores, decreasing = TRUE)[1]/sort(summaryscores,
decreasing = TRUE)[2]
}
if(is.na(M.space.ramclustr[cl])) {M.space.ramclustr[cl] <- 1}
M.ramclustr[cl] <- summarytable[best, "neutral_mass"]
M.ppm.ramclustr[cl] <- summarytable[best, "medppm"]
M.rank.ramclustr[cl] <- best
M.ann.ramclustr[[cl]] <- out[[best]]
M.nann.ramclustr[cl] <- summarytable[best, "adducts_explained"]
if (10 * round(cl/10, digits = 0) == cl) {
cat(cl, "of", max(ramclustObj$featclus), "\n")
}
}
ramclustObj$M.ramclustr <- M.ramclustr
ramclustObj$M.ppm.ramclustr <- M.ppm.ramclustr
ramclustObj$M.rank.ramclustr <- M.rank.ramclustr
ramclustObj$M.ann.ramclustr <- M.ann.ramclustr
ramclustObj$M.nann.ramclustr <- M.nann.ramclustr
ramclustObj$M.space.ramclustr <- M.space.ramclustr
ramclustObj$M.findmain <- M.findmain
ramclustObj$M.ppm.findmain <- M.ppm.findmain
ramclustObj$M.ppm.findmain[which(is.na(ramclustObj$M.ppm.findmain))] <- {
ppm.error * 2}
ramclustObj$M.ann.findmain <- M.ann.findmain
ramclustObj$M.nann.findmain <- M.nann.findmain
ramclustObj$use.findmain <- rep(FALSE, length(M.ppm.findmain))
ramclustObj$M.space.findmain <- M.space.findmain
if (scoring == "ramclustr") {
ramclustObj$use.findmain <- rep(FALSE, length(ramclustObj$use.findmain))
}
if (scoring == "imss") {
ramclustObj$use.findmain <- rep(TRUE, length(ramclustObj$use.findmain))
}
if (scoring == "auto") {
resolve <- which(abs(ramclustObj$M.ramclustr - ramclustObj$M.findmain) >
(2 * mzabs.error))
for (i in resolve) {
ppm.rat <- (ramclustObj$M.ppm.ramclustr[i]^0.5/ramclustObj$M.ppm.findmain[i]^0.5)
if(is.na(ppm.rat)) {ppm.rat <-1}
ppm.rat <- 1/ppm.rat
sel.rat <- (ramclustObj$M.space.ramclustr[i]/ramclustObj$M.space.findmain[i])
nann.rat <- (ramclustObj$M.nann.ramclustr[i]/ramclustObj$M.nann.findmain[i])
master.rat <- ppm.rat * sel.rat * nann.rat
if (master.rat < 1) {
ramclustObj$use.findmain[i] <- TRUE
}
}
}
ramclustObj$M.ann <- ramclustObj$M.ann.ramclustr
ramclustObj$precursor.mz <- rep(NA, length(ramclustObj$M.ann))
ramclustObj$precursor.type <- rep(NA, length(ramclustObj$M.ann))
ramclustObj$M <- ramclustObj$M.ramclustr
change <- which(ramclustObj$use.findmain)
ramclustObj$M[change] <- ramclustObj$M.findmain[change]
if(length(change) > 0) {
for (i in change) {
ramclustObj$M.ann[[i]] <- ramclustObj$M.ann.findmain[[i]]
}
}
for(i in 1:length(ramclustObj$precursor.mz)) {
if(is.vector(ramclustObj$M.ann[[i]])) next
for(j in 1:length(ads)) {
m <- which(ramclustObj$M.ann[[i]]$label == ads[[j]])
if(length(m) == 0) next
ramclustObj$precursor.mz[i] <- ramclustObj$M.ann[[i]][m, "mz"]
ramclustObj$precursor.type[i] <- ads[j]
}
}
if (plot.findmain) {
cat("plotting findmain annotation results", "\n")
if(!dir.exists('spectra')) {
dir.create('spectra')
}
pdf("spectra/findmainPlots.pdf", width = 15, height = 7)
par(mfrow = c(1, 2))
par(xpd = TRUE)
for (cl in cmpd) {
InterpretMSSpectrum::PlotSpec(x = ramclustObj$M.ann.ramclustr[[cl]],
txt = ramclustObj$M.ann.ramclustr[[cl]][, c("mz", "adduct")],
cutoff = 0, masslab = 0,
ylim = c(0, 1.1 * max(ramclustObj$M.ann.ramclustr[[cl]][, 2]))
)
title(main = list(
paste(
cl, ":", "M.ramclustr =",
round(ramclustObj$M.ramclustr[cl], digits = 4),
"( +/-", round(ramclustObj$M.ppm.ramclustr[cl],
digits = 1), "ppm )"), font = if (ramclustObj$use.findmain[cl]) {
1
} else {
2
},
col = if (ramclustObj$use.findmain[cl]) {
1
} else {
2
})
)
InterpretMSSpectrum::PlotSpec(x = ramclustObj$M.ann.findmain[[cl]], txt = ramclustObj$M.ann.findmain[[cl]][,
c("mz", "adduct")], cutoff = 0, masslab = 0,
ylim = c(0, 1.1 * max(ramclustObj$M.ann.ramclustr[[cl]][,
2])))
title(main = list(paste(cl, ":", "M.findmain =",
round(ramclustObj$M.findmain[cl], digits = 4),
"( +/-", round(ramclustObj$M.ppm.findmain[cl],
digits = 1), "ppm )"), font = if (ramclustObj$use.findmain[cl]) {
2
} else {
1
}, col = if (ramclustObj$use.findmain[cl]) {
2
} else {
1
}))
}
dev.off()
}
if (writeMat) {
if (!dir.exists("spectra")) {
dir.create("spectra")
}
dir.create("spectra/mat")
for (cl in cmpd) {
ms <- ramclustObj$M.ann[[cl]]
prcr <- which(ms[, "adduct"] %in% ads)
prcr <- prcr[which.max(ms[prcr, "int"])]
prcmz <- ms[prcr, "mz"]
prctype <- ms[prcr, "adduct"]
out <- paste("NAME: ", ramclustObj$cmpd[cl], "\n",
"RETENTIONTIME: ", round(ramclustObj$clrt[cl],
digits = 2), "\n", "PRECURSORMZ: ", prcmz,
"\n", "PRECURSORTYPE: ", prctype, "\n", "IONTYPE: ",
mode, "\n", "SPECTRUMTYPE: Centroid", "\n",
if ((!is.null(ramclustObj$msmsint))) {
paste("COLLISIONENERGY: ", as.character(ramclustObj$ExpDes[[2]][which(row.names(ramclustObj$ExpDes[[2]]) ==
"CE2"), 1]), "\n", sep = "")
}, "MSTYPE: ", "MS1", "\n", "Num Peaks: ", nrow(ms),
"\n", sep = "")
for (i in 1:nrow(ms)) {
out <- paste(out, ms[i, 1], " ", ms[i, 2], "\n",
sep = "")
}
if (!is.null(ramclustObj$msmsint)) {
do <- which(ramclustObj$featclus == cl)
if (length(do) > 0) {
msms <- cbind(mz = ramclustObj[[use.mass]][do],
int = ramclustObj$msmsint[do])
msms <- msms[which(msms[, "mz"] <= (prcmz +
3)), , drop = FALSE]
msms <- msms[order(msms[, "int"], decreasing = TRUE),
, drop = FALSE]
if (nrow(msms) > 0) {
out <- paste(out, "MSTYPE:", "MS2", "\n",
"Num Peaks: ", nrow(msms), "\n", sep = "")
for (i in 1:nrow(msms)) {
out <- paste(out, msms[i, 1], " ", msms[i,
2], "\n", sep = "")
}
}
}
}
else {
do <- which(ramclustObj$featclus == cl)
if (length(do) > 0) {
msms <- cbind(mz = ramclustObj[[use.mass]][do],
int = ramclustObj$msint[do])
msms <- msms[which(msms[, "mz"] <= (prcmz +
3)), , drop = FALSE]
msms <- msms[order(msms[, "int"], decreasing = TRUE),
, drop = FALSE]
if (nrow(msms) > 0) {
out <- paste(out, "MSTYPE:", "MS2", "\n",
"Num Peaks: ", nrow(msms), "\n", sep = "")
for (i in 1:nrow(msms)) {
out <- paste(out, msms[i, 1], " ", msms[i,
2], "\n", sep = "")
}
}
}
}
write(out, file = paste0("spectra/mat/", ramclustObj$cmpd[cl],
".mat"))
}
}
if (writeMS) {
if (!dir.exists("spectra")) {
dir.create("spectra")
}
dir.create("spectra/ms")
for (cl in cmpd) {
ms <- ramclustObj$M.ann[[cl]]
m1ads <- ads[grep("[M", ads, fixed = TRUE)]
if (length(m1ads) == 0) {
next
}
else {
prcr <- which(ms[, "adduct"] %in% m1ads)
}
prcr <- prcr[which.max(ms[prcr, "int"])]
prcmz <- ms[prcr, "mz"]
prctype <- ms[prcr, "adduct"]
out <- paste(">compound ", ramclustObj$cmpd[cl],
"\n", ">parentmass ", prcmz, "\n", ">ionization ",
prctype, "\n", "\n", sep = "")
ms <- ms[which((abs(ms[, "mz"] - prcmz) < 5.5) |
(abs(prcmz - ms[, "mz"]) < 0.2)), ]
out <- paste(out, ">ms1peaks", "\n", sep = "")
for (i in 1:nrow(ms)) {
out <- paste(out, ms[i, 1], " ", ms[i, 2], "\n",
sep = "")
}
if (!is.null(ramclustObj$msmsint)) {
do <- which(ramclustObj$featclus == cl)
if (length(do) > 0) {
msms <- cbind(mz = ramclustObj[[use.mass]][do],
int = ramclustObj$msmsint[do])
msms <- msms[which(msms[, "mz"] <= (prcmz +
3)), , drop = FALSE]
msms <- msms[order(msms[, "int"], decreasing = TRUE),
, drop = FALSE]
if (nrow(msms) > 0) {
out <- paste(out, "\n", ">collision ", ramclustObj$ExpDes$instrument[which(dimnames(ramclustObj$ExpDes$instrument)[[1]] ==
"CE2"), 1], "\n", sep = "")
for (i in 1:nrow(msms)) {
out <- paste(out, msms[i, 1], " ", msms[i,
2], "\n", sep = "")
}
}
}
}
else {
do <- which(ramclustObj$featclus == cl)
if (length(do) > 0) {
msms <- cbind(mz = ramclustObj[[use.mass]][do],
int = ramclustObj$msint[do])
msms <- msms[which(msms[, "mz"] <= (prcmz +
3)), , drop = FALSE]
msms <- msms[order(msms[, "int"], decreasing = TRUE),
, drop = FALSE]
if (nrow(msms) > 0) {
out <- paste(out, "\n", ">collision ", ramclustObj$ExpDes$instrument[which(dimnames(ramclustObj$ExpDes$instrument)[[1]] ==
"CE1"), 1], "\n", sep = "")
for (i in 1:nrow(msms)) {
out <- paste(out, msms[i, 1], " ", msms[i,
2], "\n", sep = "")
}
}
}
}
write(out, file = paste0("spectra/ms/", ramclustObj$cmpd[cl],
".ms"))
}
}
ramclustObj$history$do.findmain <- paste(
" Molecular weight was inferred from in-source spectra (Broeckling 2016) using the do.findmain function, which calls the ",
"interpretMSSpectrum package (Jaeger 2016). ",
"Parameters for do.findmain were set to: ",
"mode = ", mode, ", mzabs.error = ", mzabs.error, ", ppm.error = ",
ppm.error, ", ads = ", paste(ads, collapse = " "), ", nls = ",
paste(nls, collapse = " "), ", scoring = ", scoring,
", and use.z = ", use.z, ".", sep = "")
cat("finished", "\n")
return(ramclustObj)
} |
PrintToPDF <- function(Path,
OutputName,
ObjectList = NULL,
Tables = FALSE,
MaxPages = 500,
Title = "Model Output",
Width = 12,
Height = 7,
Paper = "USr",
BackgroundColor = "transparent",
ForegroundColor = "black") {
if("grDevices" %chin% installed.packages()) {
if(is.null(ObjectList) ||
is.null(Path) ||
!is.list(ObjectList)) {
print("Nothing to print")
stop()
}
if(!Tables) {
grDevices::pdf(file = file.path(Path, paste0(OutputName,".pdf")),
onefile = TRUE,
title = Title,
width = Width,
height = Height,
fonts = NULL,
paper = Paper,
bg = BackgroundColor,
fg = ForegroundColor,
compress = TRUE)
for(i in seq_along(ObjectList)) for(j in seq_along(ObjectList[[i]])) multiplot(plotlist = list(ObjectList[[i]][[j]]))
while(grDevices::dev.cur() > 1) grDevices::dev.off()
} else {
for(i in seq_along(ObjectList)) {
grDevices::pdf(file = file.path(normalizePath(Path), paste0(OutputName,"_",i,".pdf")),
onefile = TRUE,
title = Title,
width = Width,
height = Height,
fonts = NULL,
paper = Paper,
bg = BackgroundColor,
fg = ForegroundColor,
compress = TRUE)
tryCatch({
for(j in seq_along(ObjectList[[i]])) {
counter <- 1L
repeat{
temp <- ObjectList[[i]][[j]][counter:(counter + 14L)]
temp <- temp[!is.na(temp[[eval(names(temp)[1])]])]
counter <- counter + 15L
if(temp[,.N] < 15 || counter == MaxPages+1L) break
print(gridExtra::grid.table(temp, rows = NULL))
grid::grid.newpage()
}
}}, error = function(x) NULL)
while(grDevices::dev.cur() > 1) grDevices::dev.off()
}
}
} else {
warning("Need to install the package grDevices in order to run this function")
}
}
DeleteFile <- function(File = NULL) {
if(is.null(File)) {
shell(paste0("del ", file.choose()))
} else {
shell(paste0("del ", File))
}
}
Logger <- function(x) {
function(...) {
warn <- err <- NULL
res <- withCallingHandlers(
tryCatch(x(...), error = function(e) {
err <<- conditionMessage(e)
NULL
}), warning = function(w) {
warn <<- append(warn, conditionMessage(w))
invokeRestart("muffleWarning")
})
list(res, warn = warn, err = err)
}
}
LB <- function(TimeAgg) {
if(tolower(TimeAgg) %chin% c("hour","hours",
"1min","1mins","1minute","1minutes",
"5min","5mins","5minute","5minutes",
"10min","10mins","10minute","10minutes",
"15min","15mins","15minute","15minutes",
"30min","30mins","30minute","30minutes",
"day","days")) {
return(1)
} else if(tolower(TimeAgg) %chin% c("week","weeks")) {
return(7)
} else if(tolower(TimeAgg) %chin% c("month","months")) {
return(30)
} else if(tolower(TimeAgg) %chin% c("quarter","quarters")) {
return(120)
} else if(tolower(TimeAgg) %chin% c("years","year")) {
return(365)
}
}
BuildBinary <- function(Root = NULL) {
x <- getwd()
if(!is.null(Root)) {
setwd(Root)
devtools::install(pkg = "RemixAutoML", dependencies = FALSE)
} else {
setwd("C:/Users/Bizon/Documents/GitHub")
devtools::build(pkg = "RemixAutoML")
}
setwd(x)
}
Install <- function(Root = NULL) {
x <- getwd()
if(!is.null(Root)) {
setwd(Root)
devtools::install(pkg = "RemixAutoML", dependencies = FALSE)
} else {
setwd("C:/Users/Bizon/Documents/GitHub")
devtools::install(pkg = "RemixAutoML", dependencies = FALSE)
}
setwd(x)
}
UpdateDocs <- function(BuildVignette = FALSE, Root = NULL) {
x <- getwd()
if(!is.null(Root)) {
setwd(Root)
devtools::document()
if(BuildVignette) devtools::build_manual()
} else {
setwd("C:/Users/Bizon/Documents/GitHub/RemixAutoML")
devtools::document()
if(BuildVignette) devtools::build_manual()
}
setwd(x)
}
ParseOptParse <- function(x) {
if(!is.null(x)) {
return(as.character(if(is.list(strsplit(x, ","))) unlist(strsplit(x, ",")) else x))
} else {
return(x)
}
}
ColTypes <- function(data) {
CT <- c()
for(Col in names(data)) CT <- c(CT, class(data[[Col]])[[1L]])
CT
}
LoadAssign <- function(FilePath) {
load(FilePath, envir = .GlobalEnv)
get(ls()[ls() != "FilePath"])
}
ColNameFilter <- function(data, Types = 'all') {
if(Types == 'all') return(names(data))
nam <- c()
for(t in Types) {
if(tolower(t) == 'numeric') {
nam <- c(nam, NumericColNames(data))
} else if(tolower(t) == 'character') {
nam <- c(nam, CharacterColNames(data))
} else if(tolower(t) == 'factor') {
nam <- c(nam, FactorColNames(data))
} else if(tolower(t) == 'logical') {
nam <- c(nam, LogicalColNames(data))
}
}
return(unique(nam))
}
NumericColNames <- function(data) {
x <- names(data)[which(sapply(data, is.numeric))]
if(!identical(x, character(0))) return(x) else return(NULL)
}
CharacterColNames <- function(data) {
x <- names(data)[which(sapply(data, is.character))]
if(!identical(x, character(0))) return(x) else return(NULL)
}
FactorColNames <- function(data) {
x <- names(data)[which(sapply(data, is.factor))]
if(!identical(x, character(0))) return(x) else return(NULL)
}
LogicalColNames <- function(data) {
x <- names(data)[which(sapply(data, is.logical))]
if(!identical(x, character(0))) return(x) else return(NULL)
} |
library(testthat)
test_that("it returns correct data", {
r <- ptd_spc_options(
value_field = "value_field",
date_field = "date_field",
facet_field = "facet_field",
rebase = as.Date("2020-01-01"),
fix_after_n_points = NULL,
improvement_direction = "increase",
target = 1,
trajectory = "trajectory",
screen_outliers = TRUE
)
expect_equal(r$value_field, "value_field")
expect_equal(r$date_field, "date_field")
expect_equal(r$facet_field, "facet_field")
expect_equal(r$rebase, as.Date("2020-01-01"))
expect_equal(r$fix_after_n_points, NULL)
expect_equal(r$improvement_direction, "increase")
expect_equal(r$target, 1)
expect_equal(r$trajectory, "trajectory")
expect_equal(r$screen_outliers, TRUE)
expect_s3_class(r, "ptd_spc_options")
})
test_that("value_field can only be a scalar character", {
expect_error(ptd_spc_options(1), "value_field argument must be a 'character' of length 1.")
expect_error(ptd_spc_options(c("a", "b")), "value_field argument must be a 'character' of length 1.")
})
test_that("date_field can only be a scalar character", {
expect_error(ptd_spc_options("a", 1), "date_field argument must be a 'character' of length 1.")
expect_error(ptd_spc_options("a", c("a", "b")), "date_field argument must be a 'character' of length 1.")
})
test_that("facet_field is either null, or a scalar character", {
ptd_spc_options("a", "b", facet_field = NULL)
expect_error(
ptd_spc_options("a", "b",
facet_field = 1
),
"facet_field argument must be a 'character' of length 1."
)
expect_error(
ptd_spc_options("a", "b",
facet_field = c("a", "b")
),
"facet_field argument must be a 'character' of length 1."
)
})
test_that("rebase is either null, a date, or a named list of dates", {
ptd_spc_options("a", "b", rebase = NULL)
ptd_spc_options("a", "b", rebase = as.Date("2020-01-01"))
ptd_spc_options("a", "b", rebase = list("a" = as.Date("2020-01-01")), facet_field = "a")
em <- "rebase argument must be a date vector, or a named list of date vectors."
expect_error(ptd_spc_options("a", "b", rebase = 1), em)
expect_error(ptd_spc_options("a", "b", rebase = c("a", "b")), em)
expect_error(ptd_spc_options("a", "b", rebase = list("a" = as.Date("2020-01-01"), b = "a")), em)
expect_error(ptd_spc_options("a", "b", rebase = list(as.Date("2020-01-01"))), em)
})
test_that("rebase must be a date vector if facet_field is not set", {
em <- "rebase must be a date vector if facet_field is not set"
expect_error(ptd_spc_options("a", "b", rebase = list("a" = Sys.Date())), em)
})
test_that("fix_after_n_points must be a single numeric that is greater than or equal to 12.", {
expect_error(
ptd_spc_options("a", "b", fix_after_n_points = "a"),
"fix_after_n_points must be a single numeric that is greater than or equal to 12."
)
expect_error(
ptd_spc_options("a", "b", fix_after_n_points = c(15, 20)),
"fix_after_n_points must be a single numeric that is greater than or equal to 12."
)
expect_error(
ptd_spc_options("a", "b", fix_after_n_points = 11),
"fix_after_n_points must be a single numeric that is greater than or equal to 12."
)
ptd_spc_options("a", "b", fix_after_n_points = 12)
})
test_that("improvement_direction defaults to increase", {
o <- ptd_spc_options("a", "b")
expect_equal(o$improvement_direction, "increase")
})
test_that("improvement_direction must be one of increase, neutral, or decrease", {
ptd_spc_options("a", "b", improvement_direction = "increase")
ptd_spc_options("a", "b", improvement_direction = "neutral")
ptd_spc_options("a", "b", improvement_direction = "decrease")
expect_error(
ptd_spc_options("a", "b", improvement_direction = "a"),
"'arg' should be one of \"increase\", \"neutral\", \"decrease\""
)
})
test_that("target is either null, a scalar numeric, or a named list of numerics", {
ptd_spc_options("a", "b", target = NULL)
ptd_spc_options("a", "b", target = 1)
ptd_spc_options("a", "b", target = list("a" = 1))
em <- "target argument must be a single numeric, or a named list of numerics."
expect_error(ptd_spc_options("a", "b", target = "a"), em, fixed = TRUE)
expect_error(ptd_spc_options("a", "b", target = c(0, 1)), em, fixed = TRUE)
})
test_that("trajectory is either null, or a scalar character", {
ptd_spc_options("a", "b", trajectory = NULL)
expect_error(
ptd_spc_options("a", "b", trajectory = 1),
"trajectory argument must be a 'character' of length 1."
)
expect_error(
ptd_spc_options("a", "b", trajectory = c("a", "b")),
"trajectory argument must be a 'character' of length 1."
)
})
test_that("screen_outliers must be a scalar logical", {
ptd_spc_options("a", "b", screen_outliers = TRUE)
ptd_spc_options("a", "b", screen_outliers = FALSE)
em <- "screen_outliers must either `TRUE` or `FALSE`."
expect_error(
ptd_spc_options("a", "b", screen_outliers = c(TRUE, FALSE)),
em
)
expect_error(
ptd_spc_options("a", "b", screen_outliers = "TRUE"),
em
)
})
test_that("printing output", {
r <- ptd_spc_options("hello", "world")
expect_output(print(r), "Plot the Dots SPC options:")
expect_output(print(r), "================================")
expect_output(print(r), "value_field:.*'hello'")
expect_output(print(r), "date_field:.*'world'")
expect_output(print(r), "facet_field:.*not set")
expect_output(print(r), "rebase:.*not set")
expect_output(print(r), "fix_after_n_points:.*not set")
expect_output(print(r), "improvement_direction:.*not set")
expect_output(print(r), "target:.*not set")
expect_output(print(r), "trajectory:.*not set")
expect_output(print(r), "screen_outliers:.*'TRUE'")
expect_output(print(r), "--------------------------------")
}) |
ergm.estimate<-function(init, model, statsmatrices, statsmatrices.obs=NULL,
epsilon=1e-10, nr.maxit=1000, nr.reltol=sqrt(.Machine$double.eps),
metric="lognormal",
method="Nelder-Mead",
calc.mcmc.se=TRUE, hessianflag=TRUE,
verbose=FALSE, trace=6*verbose,
dampening=FALSE,
dampening.min.ess=100,
dampening.level=0.1,
steplen=1, steplen.point.exp=1,
cov.type="normal",
estimateonly=FALSE, ...) {
estimateonly <- estimateonly & !calc.mcmc.se
obsprocess <- !is.null(statsmatrices.obs)
etamap <- model$etamap
etamap.no <- deoffset.etamap(etamap, init)
eta0 <- ergm.eta(init[!etamap$offsettheta], etamap.no)
statsmatrices.orig <- statsmatrices
statsmatrices.orig.obs <- statsmatrices.obs
statsmean <- colMeans.mcmc.list(statsmatrices.orig)
if(!is.null(statsmatrices.orig.obs)){
statsmatrices.obs <- lapply.mcmc.list(statsmatrices.orig.obs, .shift_scale_points, statsmean, steplen, steplen^steplen.point.exp)
}else{
statsmatrices <- lapply.mcmc.list(statsmatrices.orig,sweep,2,(1-steplen)*statsmean,"-")
}
statsmatrix <- as.matrix(statsmatrices)
if(obsprocess) statsmatrix.obs <- as.matrix(statsmatrices.obs)
statsmatrix.orig <- as.matrix(statsmatrices.orig)
if(obsprocess) statsmatrix.orig.obs <- as.matrix(statsmatrices.orig.obs)
xsim <- compress_rows(as.logwmatrix(statsmatrix[,!etamap$offsetmap, drop=FALSE]))
lrowweights(xsim) <- -log_sum_exp(lrowweights(xsim))
xsim.orig <- compress_rows(as.logwmatrix(statsmatrix.orig[,!etamap$offsetmap, drop=FALSE]))
lrowweights(xsim.orig) <- -log_sum_exp(lrowweights(xsim.orig))
if(obsprocess){
xsim.obs <- compress_rows(as.logwmatrix(statsmatrix.obs[,!etamap$offsetmap, drop=FALSE]))
lrowweights(xsim.obs) <- -log_sum_exp(lrowweights(xsim.obs))
xsim.orig.obs <- compress_rows(as.logwmatrix(statsmatrix.orig.obs[,!etamap$offsetmap, drop=FALSE]))
lrowweights(xsim.orig.obs) <- -log_sum_exp(lrowweights(xsim.orig.obs))
}else{
xsim.obs <- NULL
xsim.orig.obs <- NULL
}
if(cov.type=="robust"){
tmp <- covMcd(decompress_rows(xsim, target.nrows=nrow(statsmatrix)))
av <- tmp$center
V <- tmp$cov
}else{
av <- lweighted.mean(xsim, lrowweights(xsim))
V <- lweighted.var(xsim, lrowweights(xsim))
}
xobs <- -av
if(obsprocess) {
if(cov.type=="robust"){
tmp <- covMcd(decompress_rows(xsim.obs, target.nrows=nrow(statsmatrix.obs)))
av.obs <- tmp$center
V.obs <- tmp$cov
}else{
av.obs <- lweighted.mean(xsim.obs, lrowweights(xsim.obs))
V.obs <- lweighted.var(xsim.obs, lrowweights(xsim.obs))
}
xobs <- av.obs - av
}
varweight <- 0.5
if (verbose) { message("Using ", metric, " metric (see control.ergm function).") }
if (obsprocess) {
loglikelihoodfn <- switch(metric,
Likelihood=llik.fun.obs.lognormal,
lognormal=llik.fun.obs.lognormal,
logtaylor=llik.fun.obs.lognormal,
Median.Likelihood=llik.fun.obs.robust,
EF.Likelihood=llik.fun.obs.lognormal,
llik.fun.obs.IS)
gradientfn <- switch(metric,
Likelihood=llik.grad.obs.IS,
lognormal=llik.grad.obs.IS,
logtaylor=llik.grad.obs.IS,
Median.Likelihood=llik.grad.obs.IS,
EF.Likelihood=llik.grad.obs.IS,
llik.grad.obs.IS)
Hessianfn <- switch(metric,
Likelihood=llik.hessian.obs.IS,
lognormal=llik.hessian.obs.IS,
logtaylor=llik.hessian.obs.IS,
Median.Likelihood=llik.hessian.obs.IS,
EF.Likelihood=llik.hessian.obs.IS,
llik.hessian.obs.IS)
} else {
loglikelihoodfn <- switch(metric,
Likelihood=llik.fun.lognormal,
lognormal=llik.fun.lognormal,
logtaylor=llik.fun.logtaylor,
Median.Likelihood=llik.fun.median,
EF.Likelihood=llik.fun.EF,
llik.fun.IS)
gradientfn <- switch(metric,
Likelihood=llik.grad.IS,
lognormal=llik.grad.IS,
logtaylor=llik.grad.IS,
Median.Likelihood=llik.grad.IS,
EF.Likelihood=llik.grad.IS,
llik.grad.IS)
Hessianfn <- switch(metric,
Likelihood=llik.hessian.IS,
lognormal=llik.hessian.IS,
logtaylor=llik.hessian.IS,
Median.Likelihood=llik.hessian.IS,
EF.Likelihood=llik.hessian.IS,
llik.hessian.IS)
}
if (!is.curved(model) &&
(metric=="lognormal" || metric=="Likelihood") &&
all(model$etamap$mintheta==-Inf) &&
all(model$etamap$maxtheta==+Inf)) {
if (obsprocess) {
if (verbose) { message("Using log-normal approx with missing (no optim)") }
Lout <- list(hessian = -as.matrix(nearPD(V-V.obs,posd.tol=0)$mat))
} else {
if (verbose) { message("Using log-normal approx (no optim)") }
Lout <- list(hessian = -V)
}
Lout$par <- try(eta0
- solve(Lout$hessian, xobs),
silent=TRUE)
if(inherits(Lout$par,"try-error")){
Lout$par <- try(eta0
- ginv(Lout$hessian) %*%
xobs,
silent=TRUE)
}
if(inherits(Lout$par,"try-error")){
if (obsprocess) {
Lout <- list(hessian = -(as.matrix(nearPD(V-V.obs)$mat)))
}else{
Lout <- list(hessian = -(as.matrix(nearPD(V)$mat)))
}
Lout$par <- eta0 - solve(Lout$hessian, xobs)
}
Lout$convergence <- 0
Lout$value <- 0.5*crossprod(xobs,
Lout$par - eta0)
hessianflag <- TRUE
} else {
guess <- init[!model$etamap$offsettheta]
loglikelihoodfn.trust<-function(theta, ...){
if(anyNA(theta) ||
any(theta < model$etamap$mintheta[!model$etamap$offsettheta]) ||
any(theta > model$etamap$maxtheta[!model$etamap$offsettheta]))
return(list(value=-Inf))
value<-loglikelihoodfn(theta, ...)
grad<-gradientfn(theta, ...)
hess<-Hessianfn(theta, ...)
hess[upper.tri(hess)]<-t(hess)[upper.tri(hess)]
list(value=value,gradient=as.vector(grad),hessian=hess)
}
if (verbose) { message("Optimizing loglikelihood") }
Lout <- try(trust(objfun=loglikelihoodfn.trust, parinit=guess,
rinit=1,
rmax=100,
parscale=rep(1,length(guess)), minimize=FALSE,
xsim=xsim,
xsim.obs=xsim.obs,
varweight=varweight,
dampening=dampening,
dampening.min.ess=dampening.min.ess,
dampening.level=dampening.level,
eta0=eta0, etamap=etamap.no),
silent=FALSE)
Lout$par<-Lout$argument
if(inherits(Lout,"try-error")) {
message("MLE could not be found. Trying Nelder-Mead...")
Lout <- try(optim(par=guess,
fn=llik.fun.median,
hessian=hessianflag,
method="Nelder-Mead",
control=list(trace=trace,fnscale=-1,maxit=100*nr.maxit,
reltol=nr.reltol),
xsim=xsim,
xsim.obs=xsim.obs,
varweight=varweight,
dampening=dampening,
dampening.min.ess=dampening.min.ess,
dampening.level=dampening.level,
eta0=eta0, etamap=etamap.no),
silent=FALSE)
if(inherits(Lout,"try-error")){
message(paste("No direct MLE exists!"))
}
if(Lout$convergence != 0 ){
message("Non-convergence after ", nr.maxit, " iterations.")
}
message("Nelder-Mead Log-likelihood ratio is ", Lout$value," ")
}
}
theta <- init
theta[!model$etamap$offsettheta] <- Lout$par
names(theta) <- names(init)
if (estimateonly) {
return(structure(list(coefficients = setNames(theta, names(init)),
MCMCtheta = init,
samplesize = nrow(statsmatrix),
loglikelihood = Lout$value,
failure = FALSE),
class = "ergm"))
} else {
gradienttheta <- llik.grad.IS(theta=Lout$par,
xsim=xsim,
xsim.obs=xsim.obs,
varweight=varweight,
eta0=eta0, etamap=etamap.no)
gradient <- rep(NA, length=length(init))
gradient[!model$etamap$offsettheta] <- gradienttheta
mc.se <- rep(NA, length=length(theta))
mc.cov <- matrix(NA, length(theta), length(theta))
covar <- NA
if(!hessianflag || steplen!=1){
Lout$hessian <- Hessianfn(theta=Lout$par,
xsim=xsim.orig,
xsim.obs=xsim.orig.obs,
varweight=varweight,
eta0=eta0, etamap=etamap.no
)
}
covar <- matrix(NA, ncol=length(theta), nrow=length(theta))
covar[!model$etamap$offsettheta,!model$etamap$offsettheta ] <- ginv(-Lout$hessian)
dimnames(covar) <- list(names(theta),names(theta))
He <- matrix(NA, ncol=length(theta), nrow=length(theta))
He[!model$etamap$offsettheta,!model$etamap$offsettheta ] <- Lout$hessian
dimnames(He) <- list(names(theta),names(theta))
Lout$hessian <- He
if(calc.mcmc.se){
if (verbose) message("Starting MCMC s.e. computation.")
mcse.metric <-
if ((metric == "lognormal" || metric == "Likelihood") && length(model$etamap$curved) == 0) "lognormal"
else "IS"
mc.cov <- ergm.MCMCse(model = model, theta = theta, init = init,
statsmatrices = statsmatrices,
statsmatrices.obs = statsmatrices.obs,
H = V, H.obs = V.obs,
metric = mcse.metric)
}
return(structure(list(
coefficients = setNames(theta, names(init)),
sample = statsmatrices, sample.obs = statsmatrices.obs,
iterations = Lout$counts[1], MCMCtheta = init,
loglikelihood = Lout$value, gradient = gradient, hessian = Lout$hessian,
covar = covar, failure = FALSE, mc.cov = mc.cov
), class = "ergm"))
}
} |
1:4 %*% 1:4
sum(1:4 * 1:4) |
wod_4hist_k_p <- function( obs_index, surv.object, covariate.data , nruns , m ) {
actual_data <- cbind( covariate.data , surv.object[,1], surv.object[,2] )
time_index <- ncol(actual_data) - 1
status_index <- ncol(actual_data)
data_length <- nrow(actual_data)
obs_influences <- rep(x = 0 , data_length)
obs_max_influences <- rep(x= 0 , data_length)
concs_vector <- rep(x = 0, nruns )
cox_object <- coxph( survival::Surv(actual_data[,time_index], as.integer(actual_data[,status_index]) ) ~ . , data = data.frame(actual_data[,-c(time_index,status_index)]) )
baseline_concordance <- cox_object$concordance[1]/(cox_object$concordance[1] + cox_object$concordance[2] )
cat("baseline:" , baseline_concordance )
concordance_sum <- 0
for ( i in 1:nruns ){
boot_datax <- getBootstrap_K(data = actual_data[-obs_index,], )
actual_conc <- coxph.call(boot_data = boot_datax , time_index = time_index, status_index = status_index )
if (is.null(actual_conc)) {
for( ix in 1:10) {
cat('Error: ', ix)
boot_datax <- getBootstrap_K(data = actual_data[-obs_index,], )
actual_conc <- coxph.call(boot_data = boot_datax , time_index = time_index, status_index = status_index )
if (!is.null(actual_conc)) {
break
}
}
}
if (is.null(actual_conc)) {
next
}
concordance_run <- actual_conc - baseline_concordance
concs_vector[i] <- concordance_run
}
return(concs_vector)
} |
summarizeadd2 <-
function(abo,probe.effects){
inds.all = indexProbes(abo,which="pm")
if(dim(Biobase::exprs(abo))[2] != 1) stop("\n error: to many chips \n\n")
if(sum( names(inds.all) == names(probe.effects)) != length(probe.effects)) {
reorderind <- as.numeric(factor(names(probe.effects), levels=names(inds.all)))
inds.all <- inds.all[reorderind]
if(sum( names(inds.all) == names(probe.effects)) != length(probe.effects))
stop("\n error: names of the probe effects do not match the abo \n\n")
}
inds = unlist(inds.all)
Biobase::exprs(abo) = log2(Biobase::exprs(abo))
Biobase::exprs(abo)[inds,] = Biobase::exprs(abo)[inds,]-unlist(probe.effects)
chipfu = function(x) median(Biobase::exprs(abo)[x,])
resfu = function(x) Biobase::exprs(abo)[x,] - median(Biobase::exprs(abo)[x,])
chip.effects = unlist(lapply(inds.all,chipfu))
residuals = unlist(lapply(inds.all,resfu ))
eset = abo
Biobase::exprs(eset) = as.matrix(chip.effects)
eset@experimentData@preprocessing$val= list(residuals=residuals)
return(eset)
} |
library(buildmer)
library(testthat)
test_that('build.formula',{
form1 <- Reaction ~ Days + (Days|Subject)
terms <- tabulate.formula(form1)
form2 <- build.formula(dep='Reaction',terms)
library(lme4)
check <- function (f) resid(lmer(f,sleepstudy))
expect_equal(check(form1),check(form2))
}) |
make_true_parameter_MRMC <- function(StanS4class) {
f <- StanS4class
z <- extract_EAP_CI(f,"z",f@dataList$C )$z.EAP
dz <- extract_EAP_CI(f,"dz",f@dataList$C-1 )$dz.EAP
mu <- extract_EAP_by_array(f,mu)
v <- extract_EAP_by_array(f,v)
} |
predictLKrigFixedFunction <- function(object, xnew=NULL, Znew = NULL,
drop.Z = FALSE,
collapseFixedEffect = FALSE){
if( is.null(xnew)){
xnew<- object$x
}
nt<- object$nt
nZ<- object$nZ
ind.drift<- c( rep( TRUE, (nt-nZ) ), rep( FALSE, nZ))
distance.type<- object$LKinfo$distance.type
T.matrix<- do.call(object$LKinfo$fixedFunction,
c( list(x = xnew, Z = Znew,
distance.type = distance.type),
object$LKinfo$fixedFunctionArgs))
if( !drop.Z){
temp1<- T.matrix%*%object$d.coef}
else{
temp1<- T.matrix%*%object$d.coef[ind.drift, ]
}
return( temp1)
} |
setMethodS3("segmentByHaarSeg", "RawGenomicSignals", function(this, ..., cache=FALSE, force=FALSE, verbose=FALSE) {
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "Segmenting")
verbose && cat(verbose, "Chromosomes: ", hpaste(getChromosomes(this)))
assertOneChromosome(this)
verbose && enter(verbose, "Retrieving the fit function")
pkgName <- "HaarSeg"
isPackageInstalled(pkgName) || throw("Package is not installed: ", pkgName)
pkg <- packageDescription(pkgName)
pkgVer <- pkg$Version
pkgDetails <- sprintf("%s v%s", pkgName, pkgVer)
methodName <- "haarSeg"
verbose && cat(verbose, "Method: ", methodName)
verbose && cat(verbose, "Package: ", pkgDetails)
require(pkgName, character.only=TRUE) || throw("Package not loaded: ", pkgName)
envir <- as.environment(sprintf("package:%s", pkgName))
fitFcn <- get(methodName, mode="function", envir=envir)
verbose && str(verbose, "Function: ", fitFcn)
formals <- formals(fitFcn)
verbose && cat(verbose, "Formals:")
verbose && str(verbose, formals)
verbose && exit(verbose)
signatures <- list()
signatures$fitFcn <- list(
pkgName=pkgName,
methodName=methodName,
formals=formals,
pkgDetails=pkgDetails
)
verbose && enter(verbose, "Extracting data of interest")
data <- extractDataForSegmentation(this, ..., verbose=less(verbose, 5))
verbose && str(verbose, data)
verbose && exit(verbose)
sampleName <- attr(data, "sampleName")
chromosome <- data$chromosome[1]
nbrOfLoci <- nrow(data)
hasWeights <- !is.null(data$w)
verbose && cat(verbose, "Sample name: ", sampleName)
verbose && cat(verbose, "Chromosome: ", chromosome)
verbose && cat(verbose, "Number of loci: ", nbrOfLoci)
if (hasWeights) {
if (!is.element("W", names(formals))) {
hasWeights <- FALSE
msg <- paste("Weights detected but ignored, because the available segmentation function ('", methodName, "()') does not support weights. Check with a more recent version of the package: ", pkgDetails, sep="")
verbose && cat(verbose, "WARNING: ", msg)
warning(msg)
}
}
verbose && enter(verbose, "Setting up method arguments")
verbose && enter(verbose, "Setting up ", pkgName, " data structure")
cnData <- data$y
verbose && str(verbose, cnData)
verbose && exit(verbose)
params <- list()
if (hasWeights) {
params$W <- data$w
verbose && cat(verbose, "Additional segmentation arguments:")
verbose && str(verbose, params)
}
userArgs <- list(...)
if (length(userArgs) > 0) {
verbose && cat(verbose, "User and segmentation arguments:")
verbose && str(verbose, userArgs)
for (ff in names(userArgs)) {
params[[ff]] <- userArgs[[ff]]
}
}
if (!any(names(formals) == "...")) {
keep <- (names(params) %in% names(formals))
params <- params[keep]
}
signatures$data <- cnData
signatures$params <- params
args <- c(list(I=cnData), params)
verbose && cat(verbose, "Final arguments:")
verbose && str(verbose, args)
verbose && exit(verbose)
verbose && enter(verbose, "Looking for cached results")
key <- list(method="segmentByHaarSeg", class=class(this)[1],
signatures=signatures)
dirs <- c("aroma.cn", class(this)[1])
if (!force) {
res <- loadCache(key, dirs=dirs)
if (!is.null(res)) {
verbose && cat(verbose, "Found cached results.")
verbose && exit(verbose)
return(res)
}
}
verbose && exit(verbose)
verbose && enter(verbose, sprintf("Calling %s() of %s", methodName, pkgName))
stdout <- capture.output({
t <- system.time({
fit <- do.call(methodName, args)
}, gcFirst = FALSE)
attr(fit, "processingTime") <- t
attr(fit, "pkgDetails") <- pkgDetails
})
verbose && cat(verbose, "Captured output that was sent to stdout:")
stdout <- paste(stdout, collapse="\n")
verbose && cat(verbose, stdout)
verbose && cat(verbose, "Fitting time (in seconds):")
verbose && print(verbose, t)
verbose && cat(verbose, "Fitting time per 1000 loci (in seconds):")
verbose && print(verbose, 1000*t/nbrOfLoci)
verbose && cat(verbose, "Results object:")
verbose && str(verbose, fit)
verbose && enter(verbose, "Setting up return HaarSeg object")
fit <- list(
output = fit,
data = list(M=data$y, x=data$x, chromosome=chromosome)
)
class(fit) <- "HaarSeg"
attr(fit, "processingTime") <- t
attr(fit, "pkgDetails") <- pkgDetails
verbose && exit(verbose)
verbose && enter(verbose, "Estimating aroma parameters")
sigma <- estimateStandardDeviation(this)
cnr <- extractCopyNumberRegions(fit)
cnrData <- as.data.frame(cnr)
regions <- as.matrix(cnrData[,c("start", "stop")])
nbrOfRegions <- nrow(regions)
cnr <- cnrData <- NULL
x <- data$x
y <- data$y
naValue <- NA_real_
sigmas <- rep(naValue, times=nbrOfRegions)
for (kk in seq_len(nbrOfRegions)) {
keep <- which(regions[kk,1] < x & x <= regions[kk,2])
t <- y[keep]
t <- diff(t)
t <- median(t, na.rm=TRUE)/sqrt(2)
sigmas[kk] <- t
}
x <- y <- t <- keep <- NULL
aromaEstimates <- list(
stddevAll = sigma,
stddevRegions = sigmas
)
attr(fit, "aromaEstimates") <- aromaEstimates
verbose && exit(verbose)
verbose && cat(verbose, "Results object:")
verbose && str(verbose, fit)
verbose && exit(verbose)
if (cache) {
saveCache(fit, key=key, dirs=dirs)
}
verbose && exit(verbose)
fit
}) |
options(shiny.trace = F)
require(shiny)
require(shinysky)
shinyServer(function(input, output, session) {
observe({
if (input$id_blank == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "blank"))
})
observe({
if (input$id_primary == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "primary"),
styleclass = "primary")
})
observe({
if (input$id_info == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "info"), styleclass = "info")
})
observe({
if (input$id_success == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "success"),
styleclass = "success")
})
observe({
if (input$id_warning == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "warning"),
styleclass = "warning")
})
observe({
if (input$id_danger == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "danger", "<button type='button' class='btn btn-danger'>Danger</button>"),
styleclass = "danger")
})
observe({
if (input$id_inverse == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "inverse"),
styleclass = "inverse")
})
observe({
if (input$id_link == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "link"), styleclass = "link")
})
observe({
if (input$id_inverse2 == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "inverse2"),
styleclass = "inverse")
})
observe({
if (input$id_warning2 == 0)
return()
showshinyalert(session, "shinyalert1", paste("You have clicked", "warning2"),
styleclass = "warning")
})
observe({
if (is.null(input$id_double_click_event)) {
return()
}
print(input$id_double_click_event)
if (input$id_double_click_event$event == "dblclick") {
showshinyalert(session, "shinyalert2", "You have double clicked! Event button can handle doubleclicks")
} else if (input$id_double_click_event$event == "mouseenter") {
showshinyalert(session, "shinyalert2", "You came in! Single click won't change me",
styleclass = "info")
}
})
observe({
input$thti
showshinyalert(session, "shinyalert3", sprintf("Typeahead Text Input Value: '%s'",
input$thti), "error")
})
observe({
if (input$updateselect2 == 0)
return()
updateSelect2Input(session, "select2Input1", choices = c("d", "e", "f"), selected = c("f",
"d"), label = "hello")
updateSelectInput(session, "select2Input2", choices = c("d", "e", "f"), selected = c("f",
"d"), label = "hello")
updateSelectInput(session, "select2Input3", choices = c("d", "e", "f"), selected = "f",
label = "hello")
})
observe({
showshinyalert(session, "shinyalert4", paste(input$select2Input1, collapse = ","),
"info")
})
observe({
showshinyalert(session, "shinyalert5", paste(input$select2Input2, collapse = ","),
"info")
})
observe({
showshinyalert(session, "shinyalert6", paste(input$select2Input3, collapse = ","),
"info")
})
output$plot1 <- renderPlot({
if (input$busyBtn == 0)
return()
Sys.sleep(3)
hist(rnorm(10^3))
})
observe({
if (input$update_typeahead_btn == 0) {
return()
}
dataset <- data.frame(firstname = c("ZJ", "Mitchell"), lastname = c("Dai", "Joblin"))
valueKey <- "lastname"
tokens <- c("zd", "mj", dataset$firstname)
template <- HTML("First Name: <em>{{firstname}}</em> Last Name: <em>{{lastname}}</em>")
updateTextInput.typeahead(session, "thti", dataset, valueKey, tokens, template,
placeholder = "type 'm' or 'z' to see the updated table")
})
output$hotable1 <- renderHotable({
head(iris)
}, readOnly = FALSE)
observe({
df <- hot.to.df(input$hotable1)
print(head(df))
})
}) |
hidden_paths <- function(model){
if(!inherits(model, c("hmm", "mhmm")))
stop("Argument model must be an object of class 'hmm' or 'mhmm.")
if(inherits(model,"mhmm")){
model <- combine_models(model)
mix <- TRUE
} else mix <- FALSE
if(model$n_channels == 1){
model$observations <- list(model$observations)
model$emission_probs <- list(model$emission_probs)
}
model$initial_probs <- log(model$initial_probs)
model$transition_probs <- log(model$transition_probs)
obsArray <- array(0,c(model$n_sequences,model$length_of_sequences,model$n_channels))
for(i in 1:model$n_channels){
obsArray[,,i] <- sapply(model$observations[[i]], as.integer) - 1L
obsArray[,,i][obsArray[,,i]>model$n_symbols[i]] <- model$n_symbols[i]
}
obsArray <- aperm(obsArray)
emissionArray <- array(0,c(model$n_states,max(model$n_symbols)+1,model$n_channels))
for(i in 1:model$n_channels)
emissionArray[,1:model$n_symbols[i],i] <- log(model$emission_probs[[i]])
if(mix){
out <- viterbix(model$transition_probs, emissionArray,
model$initial_probs, obsArray, model$coefficients,
model$X, model$n_states_in_clusters)
} else{
out <- viterbi(model$transition_probs, emissionArray,
model$initial_probs, obsArray)
}
if(model$n_sequences==1){
mpp <- t(model$state_names[out$q+1])
}else{
mpp <- apply(out$q+1,2,function(x) model$state_names[x])
}
mpp <- suppressWarnings(
suppressMessages(
seqdef(
mpp,alphabet=model$state_names, id=rownames(model$obs[[1]]),
start=attr(model$obs[[1]],"start"), xtstep=attr(model$obs[[1]],"xtstep")
)
)
)
if (sum(model$n_states) <= 200) {
attr(mpp, "cpal") <- seqHMM::colorpalette[[sum(model$n_states)]]
} else {
cp <- NULL
k <- 200
p <- 0
while(sum(model$n_states) - p > 0){
cp <- c(cp, seqHMM::colorpalette[[k]])
p <- p + k
k <- k - 1
}
attr(mpp, "cpal") <- cp[1:sum(model$n_states)]
}
attr(mpp, "log_prob") <- c(out$logp)
mpp
} |
fitSpliced=function(cell, body, tail, method,thresh=NULL){
if(method == "BestFit"){
return(fitSplicedBestFit(cell, body, tail, thresh0 = 0.7, thresh.max = 0.98))
} else {
if(method != "Fixed"){
thresh<-fitThreshold(cell, body, tail, method)
}
pars=fitSplicedPar(cell, thresh, body, tail)
weight=fitWeights(cell,thresh)
sevdist=buildSplicedSevdist(body, pars[[1]], tail, pars[[2]], thresh, weight)
return(sevdist)
}
} |