code
stringlengths
1
13.8M
vpc_cens <- function(sim = NULL, obs = NULL, psn_folder = NULL, bins = "jenks", n_bins = 8, bin_mid = "mean", obs_cols = NULL, sim_cols = NULL, software = "auto", show = NULL, stratify = NULL, stratify_color = NULL, ci = c(0.05, 0.95), uloq = NULL, lloq = NULL, plot = FALSE, xlab = "Time", ylab = "Probability of <LOQ", title = NULL, smooth = TRUE, vpc_theme = NULL, facet = "wrap", labeller = NULL, vpcdb = FALSE, verbose = FALSE) { if(is.null(uloq) & is.null(lloq)) { stop("You have to specify either a lower limit of quantification (lloq=...) or an upper limit (uloq=...).") } if(!is.null(uloq) & !is.null(lloq)) { stop("You have to specify either a lower limit of quantification (lloq=...) or an upper limit (uloq=...), but you can't specify both.") } if(is.null(lloq)) { type <- "right-censored" } if(is.null(uloq)) { type <- "left-censored" } if(is.null(obs) & is.null(sim)) { stop("At least a simulation or an observation dataset are required to create a plot!") } if(!is.null(psn_folder)) { if(!is.null(obs)) { obs <- read_table_nm(paste0(psn_folder, "/m1/", dir(paste0(psn_folder, "/m1"), pattern="original.npctab")[1])) } if(!is.null(sim)) { sim <- read_table_nm(paste0(psn_folder, "/m1/", dir(paste0(psn_folder, "/m1"), pattern="simulation.1.npctab")[1])) } software = "nonmem" } if (!is.null(obs)) { software_type <- guess_software(software, obs) } else { software_type <- guess_software(software, sim) } if(!is.null(stratify)) { if(!is.null(obs)) { check_stratification_columns_available(obs, stratify, "observation") } if(!is.null(sim)) { check_stratification_columns_available(sim, stratify, "simulation") } } if(!is.null(stratify_color)) { if(!is.null(obs)) { check_stratification_columns_available(obs, stratify_color, "observation") } if(!is.null(obs)) { check_stratification_columns_available(sim, stratify_color, "simulation") } } show <- replace_list_elements(show_default, show) cols <- define_data_columns(sim, obs, sim_cols, obs_cols, software_type) if(!is.null(obs)) { old_class <- class(obs) class(obs) <- c(software_type, old_class) } if(!is.null(sim)) { old_class <- class(sim) class(sim) <- c(software_type, old_class) } if(!is.null(obs)) { obs <- filter_dv(obs, verbose) obs <- format_vpc_input_data(obs, cols$obs, lloq, uloq, stratify, bins, FALSE, 0, "observed", verbose) } if(!is.null(sim)) { sim <- filter_dv(sim, verbose) sim <- format_vpc_input_data(sim, cols$sim, NULL, NULL, stratify, bins, FALSE, 0, "simulated", verbose) sim$sim <- add_sim_index_number(sim) } stratify_original <- stratify if(!is.null(stratify_color)) { if (is.null(stratify)) { stratify <- stratify_color } if (length(stratify_color) > 1) { stop("Error: please specify only 1 stratification variable for color!") } if (!stratify_color %in% stratify) { stratify_original <- stratify stratify <- c(stratify, stratify_color) } } if (class(bins) != "numeric") { if(!is.null(obs)) { bins <- auto_bin(obs, type = bins, n_bins = n_bins) } else { bins <- auto_bin(sim, type = bins, n_bins = n_bins) } if (is.null(bins)) { msg("Automatic binning unsuccessful, try increasing the number of bins, or specify vector of bin separators manually.", verbose) } } bins <- unique(bins) if(!is.null(obs)) { obs <- bin_data(obs, bins, "idv") } if(!is.null(sim)) { sim <- bin_data(sim, bins, "idv") } if(!is.null(lloq)) { cens <- "left" limit <- lloq } else { cens <- "right" limit <- uloq } if (!is.null(sim)) { tmp1 <- sim %>% dplyr::group_by(strat, sim, bin) vpc_dat <- tmp1 %>% dplyr::summarise(ploq = loq_perc(dv, limit = limit, cens = cens), mn_idv = mean(idv)) %>% dplyr::group_by(strat, bin) %>% dplyr::summarise(q50.low = quantile(ploq, ci[1]), q50.med = quantile(ploq, 0.5), q50.up = quantile(ploq, ci[2]), bin_mid = mean(mn_idv)) %>% dplyr::ungroup() vpc_dat$bin_min <- rep(bins[1:(length(bins)-1)], length(unique(vpc_dat$strat)))[vpc_dat$bin] vpc_dat$bin_max <- rep(bins[2:length(bins)], length(unique(vpc_dat$strat)))[vpc_dat$bin] if(bin_mid == "middle") { vpc_dat$bin_mid <- apply(dplyr::bind_cols(vpc_dat$bin_min, vpc_dat$bin_max), 1, mean) } } else { vpc_dat <- NULL } if(!is.null(obs)) { tmp <- obs %>% dplyr::group_by(strat,bin) aggr_obs <- tmp %>% dplyr::summarise(obs50 = loq_perc(dv, limit = lloq, cens = cens), bin_mid = mean(idv)) %>% dplyr::ungroup() aggr_obs$bin_min <- rep(bins[1:(length(bins)-1)], length(unique(aggr_obs$strat)) )[aggr_obs$bin] aggr_obs$bin_max <- rep(bins[2:length(bins)], length(unique(aggr_obs$strat)) )[aggr_obs$bin] if(bin_mid == "middle") { aggr_obs$bin_mid <- apply(dplyr::bind_cols(aggr_obs$bin_min, aggr_obs$bin_max), 1, mean) } } else { aggr_obs <- NULL } if (!is.null(stratify_original)) { if (length(stratify) == 2) { vpc_dat$strat1 <- unlist(strsplit(as.character(vpc_dat$strat), ", "))[(1:length(vpc_dat$strat)*2)-1] vpc_dat$strat2 <- unlist(strsplit(as.character(vpc_dat$strat), ", "))[(1:length(vpc_dat$strat)*2)] aggr_obs$strat1 <- unlist(strsplit(as.character(aggr_obs$strat), ", "))[(1:length(aggr_obs$strat)*2)-1] aggr_obs$strat2 <- unlist(strsplit(as.character(aggr_obs$strat), ", "))[(1:length(aggr_obs$strat)*2)] } } show$obs_dv = FALSE show$obs_ci = FALSE show$obs_median = TRUE show$sim_median = FALSE show$sim_median_ci = TRUE show$pi_as_area = FALSE show$pi_ci = FALSE show$pi = FALSE vpc_db <- list(sim = sim, vpc_dat = vpc_dat, stratify = stratify, stratify_original = stratify_original, stratify_color = stratify_color, aggr_obs = aggr_obs, obs = obs, bins = bins, facet = facet, labeller = labeller, type = "censored", xlab = xlab, ylab = ylab) if(vpcdb) { return(vpc_db) } else { pl <- plot_vpc(db = vpc_db, show = show, vpc_theme = vpc_theme, smooth = smooth, log_y = FALSE, title = title) return(pl) } }
PV_pre_triang_dis=function(data,years=10){ app=rep(NA,years) for(i in 1:years) app[i]=triangular_moments_dis_U(data,i) PV=1+sum(app[1:years-1]) return(PV) }
do.dne <- function(X, label, ndim=2, numk=max(ceiling(nrow(X)/10),2), preprocess=c("center","scale","cscale","decorrelate","whiten")){ aux.typecheck(X) n = nrow(X) p = ncol(X) ndim = as.integer(ndim) if (!check_ndim(ndim,p)){stop("* do.dne : 'ndim' is a positive integer in [1, numk = as.integer(numk) if (!check_NumMM(numk,1,n/2,compact=FALSE)){stop("* do.dne : 'numk' should be an integer in [2,nrow(X)/2).")} if (missing(preprocess)){ algpreprocess = "center" } else { algpreprocess = match.arg(preprocess) } label = check_label(label, n) ulabel = unique(label) if (any(is.na(label))||(any(is.infinite(label)))){stop("* Supervised Learning : any element of 'label' as NA or Inf will simply be considered as a class, not missing entries.") } tmplist = aux.preprocess.hidden(X,type=algpreprocess,algtype="linear") trfinfo = tmplist$info pX = tmplist$pX nbdtype = c("knn",numk) nbdsymmetric = "union" nbdstruct = aux.graphnbd(pX,method="euclidean", type=nbdtype,symmetric=nbdsymmetric) nbdmask = nbdstruct$mask matF = array(0,c(n,n)) for (i in 1:(n-1)){ for (j in (i+1):n){ if (nbdmask[i,j]==TRUE){ if (label[i]==label[j]){ matF[i,j] = 1.0 matF[j,i] = 1.0 } else { matF[i,j] = -1.0 matF[j,i] = -1.0 } } } } matS = diag(rowSums(matF))-matF costobj = t(pX)%*%(matS-matF)%*%pX projection = aux.adjprojection(RSpectra::eigs(costobj, ndim, which="SR")$vectors) result = list() result$Y = pX%*%projection result$trfinfo = trfinfo result$projection = projection return(result) }
structure <- function (.Data, ...) { if(is.null(.Data)) warning("Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.\n Consider 'structure(list(), *)' instead.") attrib <- list(...) if(length(attrib)) { specials <- c(".Dim", ".Dimnames", ".Names", ".Tsp", ".Label") attrnames <- names(attrib) m <- match(attrnames, specials) ok <- !is.na(m) if(any(ok)) { replace <- c("dim", "dimnames", "names", "tsp", "levels") names(attrib)[ok] <- replace[m[ok]] } if(any(attrib[["class", exact = TRUE]] == "factor") && typeof(.Data) == "double") storage.mode(.Data) <- "integer" attributes(.Data) <- c(attributes(.Data), attrib) } .Data }
library(bmp) posey <- c(30, 167, 332, 457, 822, 1016, 1199, 1437, 1621, 1770, 1924, 2101, 2251, 2442, 2594, 2757, 2918, 3072, 3205, 3356, 3526, 3685, 4068, 4217) susac <- c(751, 1286, 1485, 1666, 2030, 2187) v <- list.files("buster_posey_catching/") v <- v[order(as.numeric(unlist(lapply(strsplit(v, split="i"), "[[", 1))))] setwd("buster_posey_catching/") full <- list() for(i in 1:length(v)) { full[[i]] <- read.bmp(v[i]) } setwd("../") posz <- vector() for(i in 2:length(full)) { posz[i] <- sum(abs(full[[i]][1:250,1:250,2:4]-full[[i-1]][1:250,1:250,2:4])>1) print(i) } posm <- list() for(i in 1:length(posey)) { posm[[i]] <- posz[posey[i]:(posey[i]+100)] } v <- list.files("andrew_susac_catching/") v <- v[order(as.numeric(unlist(lapply(strsplit(v, split="i"), "[[", 1))))] setwd("andrew_susac_catching/") full <- list() for(i in 1:length(v)) { full[[i]] <- read.bmp(v[i]) } setwd("../") susz <- vector() for(i in 2:length(full)) { susz[i] <- sum(abs(full[[i]][1:250,1:250,2:4]-full[[i-1]][1:250,1:250,2:4])>1) print(i) } susm <- list() for(i in 1:length(susac)) { susm[[i]] <- susz[susac[i]:(susac[i]+100)] } posv <- vector() susv <- vector() for(i in 1:100) { posv[i] <- mean(unlist(lapply(posm, "[[", i))) } for(i in 1:100) { susv[i] <- mean(unlist(lapply(susm, "[[", i))) } plot(posv[1:20], type="l", col="red", lwd=3, ylim=c(80000, 120000), xlab="Time", xaxt="no", ylab="Total Pixel Movement") lines(susv[1:20], type="l", col="blue", lwd=3) axis(side=1, at=c(0,5,10,15,20), labels=as.character(c(0,5,10,15,20)*.05))
QA_Results <- data.table::CJ( Group = c(0, 1, 2, 3), xregs = c(0, 1, 2, 3), Trans = c(TRUE, FALSE), Training = "Failure", Forecast = "Failure" ) for (run in seq_len(QA_Results[, .N])) { if (QA_Results[run, Group] == 0) { groupvars <- NULL ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } else if (QA_Results[run, Group] == 1) { groupvars <- "MarketingSegments" ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } else if (QA_Results[run, Group] == 2) { groupvars <- c("MarketingSegments", "MarketingSegments2") ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } else if (QA_Results[run, Group] == 3) { groupvars <- c("MarketingSegments", "MarketingSegments2", "MarketingSegments3") ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } keep <- names(LeadsData) keep <- keep[!keep %in% c(groupvars, "CalendarDateColumn")] ModelData[LeadsData, paste0(keep) := mget(paste0("i.", keep))] setwd("C:/Users/Bizon/Documents/GitHub") TestModel <- tryCatch( { RemixAutoML::AutoLightGBMFunnelCARMA( data = ModelData, GroupVariables = groupvars, BaseFunnelMeasure = keep, ConversionMeasure = "Appointments", ConversionRateMeasure = NULL, CohortPeriodsVariable = "CohortDays", CalendarDate = "CalendarDateColumn", CohortDate = "CohortDateColumn", PartitionRatios = c(0.70, 0.20, 0.10), TruncateDate = NULL, TimeUnit = "days", TransformTargetVariable = QA_Results[run, Trans], TransformMethods = c("Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit"), AnomalyDetection = list(tstat_high = 3, tstat_low = -2), Jobs = c("eval", "train"), SaveModelObjects = FALSE, ModelID = "ModelTest", ModelPath = getwd(), MetaDataPath = NULL, DebugMode = TRUE, NumOfParDepPlots = 1L, EncodingMethod = "credibility", NThreads = parallel::detectCores() / 2, CalendarTimeGroups = c("days", "weeks", "months"), CohortTimeGroups = c("days", "weeks"), CalendarVariables = c("wday", "mday", "yday", "week", "month", "quarter", "year"), HolidayGroups = c("USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts"), HolidayLookback = NULL, CohortHolidayLags = c(1L, 2L, 7L), CohortHolidayMovingAverages = c(3L, 7L), CalendarHolidayLags = c(1L, 2L, 7L), CalendarHolidayMovingAverages = c(3L, 7L), ImputeRollStats = -0.001, CalendarLags = list("day" = c(1L, 2L, 7L, 35L, 42L), "week" = c(5L, 6L, 10L, 12L, 25L, 26L)), CalendarMovingAverages = list("day" = c(7L, 14L, 35L, 42L), "week" = c(5L, 6L, 10L, 12L, 20L, 24L), "month" = c(6L, 12L)), CalendarStandardDeviations = NULL, CalendarSkews = NULL, CalendarKurts = NULL, CalendarQuantiles = NULL, CalendarQuantilesSelected = "q50", CohortLags = list("day" = c(1L, 2L, 7L, 35L, 42L), "week" = c(5L, 6L)), CohortMovingAverages = list("day" = c(7L, 14L, 35L, 42L), "week" = c(5L, 6L), "month" = c(1L, 2L)), CohortStandardDeviations = NULL, CohortSkews = NULL, CohortKurts = NULL, CohortQuantiles = NULL, CohortQuantilesSelected = "q50", PassInGrid = NULL, GridTune = FALSE, BaselineComparison = "default", MaxModelsInGrid = 25L, MaxRunMinutes = 180L, MaxRunsWithoutNewWinner = 10L, LossFunction = "regression", EvalMetric = "mae", GridEvalMetric = "mae", Device_Type = "CPU", Input_Model = NULL, Task = "train", Boosting = "gbdt", LinearTree = FALSE, Trees = 50, ETA = 0.10, Num_Leaves = 31, Deterministic = TRUE, Force_Col_Wise = FALSE, Force_Row_Wise = FALSE, Max_Depth = 6, Min_Data_In_Leaf = 20, Min_Sum_Hessian_In_Leaf = 0.001, Bagging_Freq = 1.0, Bagging_Fraction = 1.0, Feature_Fraction = 1.0, Feature_Fraction_Bynode = 1.0, Lambda_L1 = 0.0, Lambda_L2 = 0.0, Extra_Trees = FALSE, Early_Stopping_Round = 10, First_Metric_Only = TRUE, Max_Delta_Step = 0.0, Linear_Lambda = 0.0, Min_Gain_To_Split = 0, Drop_Rate_Dart = 0.10, Max_Drop_Dart = 50, Skip_Drop_Dart = 0.50, Uniform_Drop_Dart = FALSE, Top_Rate_Goss = FALSE, Other_Rate_Goss = FALSE, Monotone_Constraints = NULL, Monotone_Constraints_method = "advanced", Monotone_Penalty = 0.0, Forcedsplits_Filename = NULL, Refit_Decay_Rate = 0.90, Path_Smooth = 0.0, Max_Bin = 255, Min_Data_In_Bin = 3, Data_Random_Seed = 1, Is_Enable_Sparse = TRUE, Enable_Bundle = TRUE, Use_Missing = TRUE, Zero_As_Missing = FALSE, Two_Round = FALSE, Convert_Model = NULL, Convert_Model_Language = "cpp", Boost_From_Average = TRUE, Alpha = 0.90, Fair_C = 1.0, Poisson_Max_Delta_Step = 0.70, Tweedie_Variance_Power = 1.5, Lambdarank_Truncation_Level = 30, Is_Provide_Training_Metric = TRUE, Eval_At = c(1, 2, 3, 4, 5), Num_Machines = 1, Gpu_Platform_Id = -1, Gpu_Device_Id = -1, Gpu_Use_Dp = TRUE, Num_Gpu = 1 ) }, error = function(x) NULL ) if (!is.null(TestModel)) QA_Results[run, Training := "Success"] data.table::fwrite(QA_Results, file = "C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/Testing_Data/AutoLightGBMFunnel_QA.csv") if (!is.null(TestModel)) { if (QA_Results[run, Group] == 0) { groupvars <- NULL ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-NoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } else if (QA_Results[run, Group] == 1) { groupvars <- "MarketingSegments" ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-OneGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } else if (QA_Results[run, Group] == 2) { groupvars <- c("MarketingSegments", "MarketingSegments2") ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-TwoGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } else if (QA_Results[run, Group] == 3) { groupvars <- c("MarketingSegments", "MarketingSegments2", "MarketingSegments3") ModelData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-ModelData.csv"), key = c(groupvars, "CalendarDateColumn")) if (QA_Results[run, xregs] == 0) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 1) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS1.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 2) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS2.csv"), key = c(groupvars, "CalendarDateColumn")) } else if (QA_Results[run, xregs] == 3) { LeadsData <- data.table::fread(file = file.path("C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/QA_DataSets/ChainLadder-ThreeGroup-LeadsData-XREGS3.csv"), key = c(groupvars, "CalendarDateColumn")) } } LeadsData <- LeadsData[CalendarDateColumn < "2020-01-05"] Test <- tryCatch( { RemixAutoML::AutoLightGBMFunnelCARMAScoring( TrainData = ModelData, ForwardLookingData = LeadsData, TrainEndDate = ModelData[, max(CalendarDateColumn)], ForecastEndDate = LeadsData[, max(CalendarDateColumn)], TrainOutput = TestModel$ModelOutput, ArgsList = TestModel$ArgsList, ModelPath = NULL, MaxCohortPeriod = 15, DebugMode = TRUE ) }, error = function(x) NULL ) } else { Test <- NULL } if (!is.null(Test)) QA_Results[run, Forecast := "Success"] rm(TestModel, Test) data.table::fwrite(QA_Results, file = "C:/Users/Bizon/Documents/GitHub/RemixAutoML/tests/Testing_Data/AutoLightGBMFunnel_QA.csv") Sys.sleep(5) }
catEffectBootAdaptor<-function (df, index, testFnc = sumSqCat, useResp = TRUE, ...) { if (useResp) respVal <- df$resp else respVal <- df$bkg testFnc(respVal[index], df$cat, ...) }
count_levels_num <- function(x) { .Call('_inspectdf_count_levels_num', PACKAGE = 'inspectdf', x) } count_levels_char <- function(x) { .Call('_inspectdf_count_levels_char', PACKAGE = 'inspectdf', x) } na_numeric <- function(x) { .Call('_inspectdf_na_numeric', PACKAGE = 'inspectdf', x) } na_character <- function(x) { .Call('_inspectdf_na_character', PACKAGE = 'inspectdf', x) } na_logical <- function(x) { .Call('_inspectdf_na_logical', PACKAGE = 'inspectdf', x) } na_integer <- function(x) { .Call('_inspectdf_na_integer', PACKAGE = 'inspectdf', x) }
T <- 50 m <- 10 P <- 5 H <- 2 N_min <- 20 X <- rnorm(T) mspe <- MSPE(X, m1 = T - m + 1, m2 = T, P = P, H = H, N = c(0, N_min:(T-m-H))) N <- mspe$N M <- mspe$mspe h <- 1 plot(mspe, h, N_min = N_min, legend = (h == 1)) idx1_s <- which(M[h, , N == 0] == min(M[h, , N == 0]), arr.ind = TRUE)[1] abline(h = M[h, idx1_s, N == 0], col = idx1_s, lty="dashed", lwd = 2) for (p in 1:p_max) { idx1_ls <- which(M[h, , N != 0] == min(M[h, , N != 0]), arr.ind = TRUE)[1,] idx1_ls_p <- which(M[h, p, N != 0] == min(M[h, p, N != 0]), arr.ind = TRUE)[1] abline(v = N[idx1_ls_p], col = p, lty = "dotted") }
bhl_getunpublisheditems <- function(...) { .Defunct(package = "rbhl", msg = "API method removed") }
if (requiet("testthat") && requiet("insight") && requiet("robustbase")) { data(mtcars) m1 <- lmrob(mpg ~ gear + wt + cyl, data = mtcars) test_that("model_info", { expect_true(model_info(m1)$is_linear) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("gear", "wt", "cyl"))) expect_identical(find_predictors(m1, flatten = TRUE), c("gear", "wt", "cyl")) expect_null(find_predictors(m1, effects = "random")) }) test_that("find_random", { expect_null(find_random(m1)) }) test_that("get_random", { expect_warning(get_random(m1)) }) test_that("find_response", { expect_identical(find_response(m1), "mpg") }) test_that("get_response", { expect_equal(get_response(m1), mtcars$mpg) }) test_that("get_predictors", { expect_equal(colnames(get_predictors(m1)), c("gear", "wt", "cyl")) }) test_that("get_data", { expect_equal(nrow(get_data(m1)), 32) expect_equal(colnames(get_data(m1)), c("mpg", "gear", "wt", "cyl")) }) test_that("find_formula", { expect_length(find_formula(m1), 1) expect_equal( find_formula(m1), list(conditional = as.formula("mpg ~ gear + wt + cyl")), ignore_attr = TRUE ) }) test_that("find_terms", { expect_equal(find_terms(m1), list( response = "mpg", conditional = c("gear", "wt", "cyl") )) expect_equal(find_terms(m1, flatten = TRUE), c("mpg", "gear", "wt", "cyl")) }) test_that("n_obs", { expect_equal(n_obs(m1), 32) }) test_that("link_function", { expect_equal(link_function(m1)(.2), .2, tolerance = 1e-5) }) test_that("link_inverse", { expect_equal(link_inverse(m1)(.2), .2, tolerance = 1e-5) }) test_that("find_parameters", { expect_equal( find_parameters(m1), list(conditional = c("(Intercept)", "gear", "wt", "cyl")) ) expect_equal(nrow(get_parameters(m1)), 4) expect_equal( get_parameters(m1)$Parameter, c("(Intercept)", "gear", "wt", "cyl") ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) }) test_that("find_algorithm", { expect_equal(find_algorithm(m1), list(algorithm = "SM")) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "t-statistic") }) }
fit_clutter <- function(df, age, dh, basal_area, volume, site, plot, .groups=NA, model = "full", keep_model = FALSE){ basal_area2<-basal_area1<-I1<-I2<-volume2<-.<-Reg<-NULL if( missing(df) ){ stop("df not set", call. = F) }else if(!is.data.frame(df)){ stop("df must be a dataframe", call.=F) }else if(length(df)<=1 | nrow(df)<=1){ stop("Length and number of rows of 'df' must be greater than 1", call.=F) } if( missing(age) ){ stop("age not set", call. = F) }else if( !is.character(age) ){ stop("'age' must be a character containing a variable name", call.=F) }else if(length(age)!=1){ stop("Length of 'age' must be 1", call.=F) }else if(forestmangr::check_names(df, age)==F){ stop(forestmangr::check_names(df, age, boolean=F), call.=F) } if( missing(dh) ){ stop("dh not set", call. = F) }else if( !is.character(dh) ){ stop("'dh' must be a character containing a variable name", call.=F) }else if(length(dh)!=1){ stop("Length of 'dh' must be 1", call.=F) }else if(forestmangr::check_names(df, dh)==F){ stop(forestmangr::check_names(df, dh, boolean=F), call.=F) } if( missing(basal_area) ){ stop("basal_area not set", call. = F) }else if( !is.character(basal_area) ){ stop("'basal_area' must be a character containing a variable name", call.=F) }else if(length(basal_area)!=1){ stop("Length of 'basal_area' must be 1", call.=F) }else if(forestmangr::check_names(df, basal_area)==F){ stop(forestmangr::check_names(df, basal_area, boolean=F), call.=F) } if( missing(volume) ){ stop("volume not set", call. = F) }else if( !is.character(volume) ){ stop("'volume' must be a character containing a variable name", call.=F) }else if(length(volume)!=1){ stop("Length of 'volume' must be 1", call.=F) }else if(forestmangr::check_names(df, volume)==F){ stop(forestmangr::check_names(df, volume, boolean=F), call.=F) } if( missing(site) ){ stop("site not set", call. = F) }else if( !is.character(site) ){ stop("'site' must be a character containing a variable name", call.=F) }else if(length(site)!=1){ stop("Length of 'site' must be 1", call.=F) }else if(forestmangr::check_names(df, site)==F){ stop(forestmangr::check_names(df, site, boolean=F), call.=F) } if(missing(plot) && is.null(dplyr::groups(df)) ){ stop("plot not set. plot must be set if data doesn't have any groups", call. = F) }else if(missing(plot) && !is.null(dplyr::groups(df)) ){ plot_syms <- rlang::syms(dplyr::groups(df)) }else if(!is.character(plot)){ stop("plot must be a character", call. = F) }else if(! length(plot)%in% 1:10){ stop("Length of 'plot' must be between 1 and 10", call.=F) }else if(forestmangr::check_names(df,plot)==F){ stop(forestmangr::check_names(df,plot, boolean=F), call.=F) }else{ plot_syms <- rlang::syms(plot) } if(missing(.groups)||any(is.null(.groups))||any(is.na(.groups))||any(.groups==F)||any(.groups=="") ){ .groups_syms <- character() }else if(!is.character(.groups)){ stop(".groups must be a character", call. = F) }else if(! length(.groups)%in% 1:10){ stop("Length of '.groups' must be between 1 and 10", call.=F) }else if(forestmangr::check_names(df,.groups)==F){ stop(forestmangr::check_names(df,.groups, boolean=F), call.=F) }else{ .groups_syms <- rlang::syms(.groups) } if(!is.character( model )){ stop( "'model' must be character", call.=F) }else if(length(model)!=1){ stop("Length of 'model' must be 1", call.=F) }else if(! model %in% c('full', 'mod') ){ stop("'model' must be equal to 'full' or 'mod' ", call. = F) } if(! keep_model %in% c(TRUE, FALSE) ){ stop("keep_model must be equal to TRUE or FALSE", call. = F) } age_sym <- rlang::sym(age) dh_sym <- rlang::sym(dh) basal_area_sym <- rlang::sym(basal_area) volume_sym <- rlang::sym(volume) site_sym <- rlang::sym(site) suppressMessages( struct_form_data <- df %>% dplyr::group_by(!!!.groups_syms, !!!plot_syms, .add=T ) %>% dplyr::transmute( I1 = !!age_sym, I2 = dplyr::lead(!!age_sym), dh = !!dh_sym, dh2 = dplyr::lead(!!dh_sym), basal_area1 = !!basal_area_sym, basal_area2 = dplyr::lead(!!basal_area_sym), volume1 = !!volume_sym, volume2 = dplyr::lead(!!volume_sym), site = !!site_sym ) %>% stats::na.omit() %>% dplyr::mutate( Y1 = log(basal_area2) , X1 = log(basal_area1) * (I1/I2), X2 = 1 - I1/I2 , X3 = (1 - I1/I2) * site , Y2 = log(volume2) , X4 = 1 / I2 , X5 = site ) %>% dplyr::ungroup() ) if(model == "full"){ eq1 <- Y2 ~ X4 + X5 + Y1 eq2 <- Y1 ~ X1 + X2 + X3 system <- list(Volume = eq1, AreaBasal = eq2) inst <- ~ X4 + X5 + X1 + X2 + X3 restrict <- matrix(0, nrow=2, ncol=8) restrict[1,5] <- 1 restrict[2,6] <- 1 restrict.rhs <- c(0, 1) model_fit <- struct_form_data %>% dplyr::group_by( !!!.groups_syms, .add=T ) %>% dplyr::do(Reg = systemfit::systemfit(system, "2SLS", inst = inst, data = ., restrict.matrix = restrict, restrict.rhs = restrict.rhs)) %>% dplyr::rowwise() %>% dplyr::mutate( b0 = stats::coef(Reg)[[1]], b1 = stats::coef(Reg)[[2]], b2 = stats::coef(Reg)[[3]], b3 = stats::coef(Reg)[[4]], a0 = stats::coef(Reg)[[7]], a1 = stats::coef(Reg)[[8]] ) %>% dplyr:: ungroup() }else if(model == "mod" ){ eq1 <- Y2 ~ X4 + X5 + Y1 eq2 <- Y1 ~ X1 + X2 system <- list(Volume = eq1, AreaBasal = eq2) inst <- ~ X4 + X5 + X1 + X2 restrict <- matrix(0, nrow=2, ncol=7) restrict[1,5] <- 1 restrict[2,6] <- 1 restrict.rhs <- c(0, 1) model_fit <- struct_form_data %>% dplyr::group_by( !!!.groups_syms, .add=T ) %>% dplyr::do(Reg = systemfit::systemfit(system, "2SLS", inst = inst, data = ., restrict.matrix = restrict, restrict.rhs = restrict.rhs)) %>% dplyr::rowwise() %>% dplyr::mutate( b0 = stats::coef(Reg)[[1]], b1 = stats::coef(Reg)[[2]], b2 = stats::coef(Reg)[[3]], b3 = stats::coef(Reg)[[4]], a0 = stats::coef(Reg)[[7]] ) %>% dplyr::ungroup() } if(keep_model == F){ model_fit <- as.data.frame(model_fit) model_fit$Reg <- NULL } model_fit$A <- NULL return(model_fit) }
wait_slurm <- function(x, ...) UseMethod("wait_slurm") wait_slurm.slurm_job <- function(x, ...) { wait_slurm.integer(get_job_id(x), ...) } wait_slurm.integer <- function(x, timeout = -1, freq = 0.1, force = TRUE, ...) { if (opts_slurmR$get_debug()) { warning("waiting is not available in debug mode.", call. = FALSE) return() } else if (!slurm_available()) stopifnot_slurm() if (!is.finite(x)) stop("The job ID is not an integer: ", x, ". Can't wait for non-integer job ids.", call. = FALSE) time0 <- Sys.time() while(TRUE) { Sys.sleep(freq) s <- status(x) if (force && s == -1L) { next } else if (!force && s == -1L) { print(s) break } njobs <- attr(s, "njobs") if (njobs > 1L) { ncompleted <- length(attr(s, "failed")) + length(attr(s, "done")) if (ncompleted == njobs) break } else if (s %in% c(0L, 99L)) break if (timeout > 0) { seconds <- difftime(Sys.time(), time0, units = "secs") if (seconds > timeout) { warning("Timeout after ", seconds, " seconds.", call. = FALSE, immediate. = TRUE) return(invisible(NULL)) } } } invisible(NULL) }
test_that("compare state works correctly", { loc <- tempfile("watcher") dir.create(loc) empty <- dir_state(loc) expect_equal(length(empty), 0) file.create(file.path(loc, "test-1.txt")) one <- dir_state(loc) expect_equal(length(one), 1) expect_equal(basename(names(one)), "test-1.txt") diff <- compare_state(empty, one) expect_equal(diff$n, 1) expect_equal(basename(diff$added), "test-1.txt") write.table(mtcars, file.path(loc, "test-1.txt")) diff <- compare_state(one, dir_state(loc)) expect_equal(diff$n, 1) expect_equal(basename(diff$modified), "test-1.txt") file.rename(file.path(loc, "test-1.txt"), file.path(loc, "test-2.txt")) diff <- compare_state(one, dir_state(loc)) expect_equal(diff$n, 2) expect_equal(basename(diff$deleted), "test-1.txt") expect_equal(basename(diff$added), "test-2.txt") diff <- compare_state( c(file1 = "62da2", file2 = "e14a6", file3 = "6e6dd"), c(file1 = "62da2", file2 = "e14a6", file21 = "532fa", file3 = "3f4sa") ) expect_equal(diff$n, 2) expect_equal(basename(diff$added), "file21") expect_equal(basename(diff$modified), "file3") }) test_that("watcher works correctly", { skip_on_ci() skip_on_os("windows") skip_on_cran() if (Sys.which("bash") == "") { skip("bash not available") } if (system("bash -c 'which touch'", ignore.stdout = TRUE) != 0L) { skip("touch (or which) not available") } loc <- tempfile("watcher") dir.create(loc) code_path <- file.path(loc, "R") test_path <- file.path(loc, "tests") dir.create(code_path) dir.create(test_path) delayed.bash.cmd <- function(command) { system(paste0("bash -c 'sleep 1;", command, "'"), wait = FALSE) } add.code.file <- function(file.name) { delayed.bash.cmd(paste0("touch ", file.path(code_path, file.name))) } remove.code.file <- function(file.name) { delayed.bash.cmd(paste0("rm ", file.path(code_path, file.name))) } test.added <- function(added, deleted, modified) { expect_equal(length(added), 1) expect_equal(grepl("test1.R", added), TRUE) expect_equal(length(deleted), 0) expect_equal(length(modified), 0) FALSE } test.removed <- function(added, deleted, modified) { expect_equal(length(added), 0) expect_equal(length(deleted), 1) expect_equal(grepl("test1.R", deleted), TRUE) expect_equal(length(modified), 0) FALSE } add.code.file("test1.R") watch(c(code_path, test_path), test.added) remove.code.file("test1.R") watch(c(code_path, test_path), test.removed) })
AutoLightGBMClassifier <- function( data = NULL, TrainOnFull = FALSE, ValidationData = NULL, TestData = NULL, TargetColumnName = NULL, FeatureColNames = NULL, PrimaryDateColumn = NULL, IDcols = NULL, WeightsColumnName = NULL, CostMatrixWeights = c(1,0,0,1), EncodingMethod = 'credibility', OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'), model_path = NULL, metadata_path = NULL, DebugMode = FALSE, SaveInfoToPDF = FALSE, ModelID = 'TestModel', ReturnFactorLevels = TRUE, ReturnModelObjects = TRUE, SaveModelObjects = FALSE, NumOfParDepPlots = 3L, Verbose = 0L, GridTune = FALSE, grid_eval_metric = 'Utility', BaselineComparison = 'default', MaxModelsInGrid = 10L, MaxRunsWithoutNewWinner = 20L, MaxRunMinutes = 24L*60L, PassInGrid = NULL, input_model = NULL, task = 'train', device_type = 'CPU', NThreads = parallel::detectCores() / 2, objective = 'binary', metric = 'binary_logloss', boosting = 'gbdt', LinearTree = FALSE, Trees = 50L, eta = NULL, num_leaves = 31, deterministic = TRUE, force_col_wise = FALSE, force_row_wise = FALSE, max_depth = NULL, min_data_in_leaf = 20, min_sum_hessian_in_leaf = 0.001, bagging_freq = 0, bagging_fraction = 1.0, feature_fraction = 1.0, feature_fraction_bynode = 1.0, extra_trees = FALSE, early_stopping_round = 10, first_metric_only = TRUE, max_delta_step = 0.0, lambda_l1 = 0.0, lambda_l2 = 0.0, linear_lambda = 0.0, min_gain_to_split = 0, drop_rate_dart = 0.10, max_drop_dart = 50, skip_drop_dart = 0.50, uniform_drop_dart = FALSE, top_rate_goss = FALSE, other_rate_goss = FALSE, monotone_constraints = NULL, monotone_constraints_method = 'advanced', monotone_penalty = 0.0, forcedsplits_filename = NULL, refit_decay_rate = 0.90, path_smooth = 0.0, max_bin = 255, min_data_in_bin = 3, data_random_seed = 1, is_enable_sparse = TRUE, enable_bundle = TRUE, use_missing = TRUE, zero_as_missing = FALSE, two_round = FALSE, convert_model = NULL, convert_model_language = "cpp", boost_from_average = TRUE, is_unbalance = FALSE, scale_pos_weight = 1.0, is_provide_training_metric = TRUE, eval_at = c(1,2,3,4,5), num_machines = 1, gpu_platform_id = -1, gpu_device_id = -1, gpu_use_dp = TRUE, num_gpu = 1) { options(warn = -1) params <- LightGBMArgs(input_model.=input_model, task.=tolower(task), objective.=objective, boosting.=boosting, LinearTree.=LinearTree, Trees.=Trees, eta.=eta, num_leaves.=num_leaves, NThreads.=NThreads, device_type.=tolower(device_type), deterministic.=deterministic, force_col_wise.=force_col_wise, force_row_wise.=force_row_wise, max_depth.=max_depth, min_data_in_leaf.=min_data_in_leaf, min_sum_hessian_in_leaf.=min_sum_hessian_in_leaf, bagging_freq.=bagging_freq, bagging_fraction.=bagging_fraction, feature_fraction.=feature_fraction, feature_fraction_bynode.=feature_fraction_bynode, extra_trees.=extra_trees, early_stopping_round.=early_stopping_round, first_metric_only.=first_metric_only, max_delta_step.=max_delta_step, lambda_l1.=lambda_l1, lambda_l2.=lambda_l2, linear_lambda.=linear_lambda, min_gain_to_split.=min_gain_to_split, drop_rate_dart.=drop_rate_dart, max_drop_dart.=max_drop_dart, skip_drop_dart.=skip_drop_dart, uniform_drop_dart.=uniform_drop_dart, top_rate_goss.=top_rate_goss, other_rate_goss.=other_rate_goss, monotone_constraints.=monotone_constraints, monotone_constraints_method.=monotone_constraints_method, monotone_penalty.=monotone_penalty, forcedsplits_filename.=forcedsplits_filename, refit_decay_rate.=refit_decay_rate, path_smooth.=path_smooth, max_bin.=max_bin, min_data_in_bin.=min_data_in_bin, data_random_seed.=data_random_seed, is_enable_sparse.=is_enable_sparse, enable_bundle.=enable_bundle, use_missing.=use_missing, zero_as_missing.=zero_as_missing, two_round.=two_round, convert_model.=convert_model, convert_model_language.=convert_model_language, boost_from_average.=boost_from_average, alpha.=NULL, fair_c.=NULL, poisson_max_delta_step.=NULL, tweedie_variance_power.=NULL, lambdarank_truncation_level.=NULL, is_unbalance.=is_unbalance, scale_pos_weight.=scale_pos_weight, multi_error_top_k.=NULL, is_provide_training_metric.=is_provide_training_metric, eval_at.=eval_at, gpu_platform_id.=gpu_platform_id, gpu_device_id.=gpu_device_id, gpu_use_dp.=gpu_use_dp, num_gpu.=num_gpu) ArgsList <- c(as.list(environment())) ArgsList[['data']] <- NULL ArgsList[['ValidationData']] <- NULL ArgsList[['TestData']] <- NULL if(SaveModelObjects) { if(!is.null(metadata_path)) { save(ArgsList, file = file.path(metadata_path, paste0(ModelID, "_ArgsList.Rdata"))) } else if(!is.null(model_path)) { save(ArgsList, file = file.path(model_path, paste0(ModelID, "_ArgsList.Rdata"))) } } if(DebugMode) print("Data prep ----") Output <- XGBoostDataPrep(Algo="lightgbm", ModelType="classification", data.=data, ValidationData.=ValidationData, TestData.=TestData, TargetColumnName.=TargetColumnName, FeatureColNames.=FeatureColNames, WeightsColumnName.=WeightsColumnName, IDcols.=IDcols, TransformNumericColumns.=NULL, Methods.=NULL, ModelID.=ModelID, model_path.=model_path, TrainOnFull.=TrainOnFull, SaveModelObjects.=SaveModelObjects, ReturnFactorLevels.=ReturnFactorLevels, EncodingMethod.=EncodingMethod) TransformNumericColumns <- Output$TransformNumericColumns; Output$TransformNumericColumns <- NULL TransformationResults <- Output$TransformationResults; Output$TransformationResults <- NULL FactorLevelsList <- Output$FactorLevelsList; Output$FactorLevelsList <- NULL FinalTestTarget <- Output$FinalTestTarget; Output$FinalTestTarget <- NULL WeightsVector <- Output$WeightsVector; Output$WeightsVector <- NULL datavalidate <- Output$datavalidate; Output$datavalidate <- NULL TargetLevels <- Output$TargetLevels; Output$TargetLevels <- NULL TrainTarget <- Output$TrainTarget; Output$TrainTarget <- NULL TrainMerge <- Output$TrainMerge; Output$TrainMerge <- NULL ValidMerge <- Output$ValidMerge; Output$ValidMerge <- NULL TestTarget <- Output$TestTarget; Output$TestTarget <- NULL datatrain <- Output$datatrain; Output$datatrain <- NULL dataTrain <- Output$dataTrain; Output$dataTrain <- NULL TestMerge <- Output$TestMerge; Output$TestMerge <- NULL TestData <- Output$TestData; Output$TestData <- NULL datatest <- Output$datatest; Output$datatest <- NULL EvalSets <- Output$EvalSets; Output$EvalSets <- NULL dataTest <- Output$dataTest; Output$dataTest <- NULL IDcols <- Output$IDcols; Output$IDcols <- NULL Names <- Output$Names; rm(Output) if(!is.null(WeightsColumnName)) { params[["weight_column"]] <- which(WeightsColumnName %chin% names(dataTrain)) - 1L } ExperimentalGrid <- NULL; BestGrid <- NULL if(DebugMode) print("Grid tuning ----") if(GridTune) { Output <- LightGBMGridTuner(ModelType="classification", TrainOnFull.=TrainOnFull, DebugMode.=DebugMode, params.=params, num_iterations.=params$num_iterations, max_depth.=params$max_depth, eta.=params$eta, num_leaves.=params$num_leaves, min_data_in_leaf.=params$min_data_in_leaf, bagging_freq.=params$bagging_freq, bagging_fraction.=params$bagging_fraction, feature_fraction.=params$feature_fraction, feature_fraction_bynode.=params$feature_fraction_bynode, lambda_l1.=params$lambda_l1, lambda_l2.=params$lambda_l2, LossFunction=NULL, EvalMetric=eval_metric, grid_eval_metric.=grid_eval_metric, CostMatrixWeights=CostMatrixWeights, TargetColumnName.=TargetColumnName, datatrain.=datatrain, dataTest.=dataTest, TestData.=TestData, EvalSets.=EvalSets, TestTarget.=TestTarget, FinalTestTarget.=FinalTestTarget, TargetLevels.=NULL, MaxRunsWithoutNewWinner=MaxRunsWithoutNewWinner, MaxModelsInGrid=MaxModelsInGrid, MaxRunMinutes=MaxRunMinutes, BaselineComparison.=BaselineComparison, SaveModelObjects=SaveModelObjects, metadata_path=metadata_path, model_path=model_path, ModelID=ModelID, NumLevels.=NULL) ExperimentalGrid <- Output$ExperimentalGrid BestGrid <- Output$BestGrid } if(DebugMode) print("Final Params ----") params <- LightGBMFinalParams(params.=params, GridTune.=GridTune, PassInGrid.=PassInGrid, TrainOnFull.=TrainOnFull, BestGrid.=BestGrid, Trees.=params[["Trees"]], eta.=params[["eta"]], num_leaves.=params[["num_leaves"]], max_depth.=params[["max_depth"]], min_data_in_leaf.=params[["min_data_in_leaf"]], bagging_freq.=params[["bagging_freq"]], bagging_fraction.=params[["bagging_fraction"]], feature_fraction.=params[["feature_fraction"]], feature_fraction_bynode.=params[["feature_fraction_bynode"]]) if(DebugMode) print("Build model ----") model <- lightgbm::lgb.train(params=params, data=datatrain, valids=EvalSets, nrounds = 5L) if(DebugMode) print("Save Model ----") if(SaveModelObjects) lightgbm::lgb.save(booster=model, filename=file.path(model_path, paste0(ModelID, ".txt"))) if(DebugMode) print("TrainData + ValidationData Scoring + Shap ----") if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) { predict <- data.table::as.data.table(predict(model, as.matrix(dataTrain))) if(!is.null(datavalidate)) { predict_validate <- data.table::as.data.table(predict(model, as.matrix(dataTest))) predict <- data.table::rbindlist(list(predict, predict_validate)) data.table::setnames(predict, names(predict), "Predict") rm(predict_validate) } Output <- XGBoostValidationData(model.=model, TestData.=NULL, ModelType="classification", TrainOnFull.=TRUE, TestDataCheck=FALSE, FinalTestTarget.=FinalTestTarget, TestTarget.=TestTarget, TrainTarget.=TrainTarget, TrainMerge.=TrainMerge, TestMerge.=TestMerge, dataTest.=dataTest, data.=dataTrain, predict.=predict, TargetColumnName.=TargetColumnName, SaveModelObjects. = SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID, LossFunction.=NULL, TransformNumericColumns.=TransformNumericColumns, GridTune.=GridTune, TransformationResults.=TransformationResults, TargetLevels.=NULL) TrainData <- Output$ValidationData; rm(Output) if(!"Predict" %chin% names(TrainData)) data.table::setnames(TrainData, "V1", "Predict") } else { TrainData <- NULL } if(DebugMode) print("Grid Score Model ----") predict <- predict(object = model, if(!is.null(TestData)) as.matrix(TestData) else if(!is.null(ValidationData) && !TrainOnFull) as.matrix(dataTest) else as.matrix(dataTrain)) if(DebugMode) print("Validation, Importance, Shap data ----") Output <- XGBoostValidationData(ModelType="classification", TestDataCheck=!is.null(TestData), TrainOnFull.=TrainOnFull, model.=model, TargetColumnName.=TargetColumnName, SaveModelObjects.=SaveModelObjects, metadata_path.=metadata_path, model_path.=model_path, ModelID.=ModelID, TestData.=TestData, TestTarget.=TestTarget, FinalTestTarget.=FinalTestTarget, TestMerge.=TestMerge, dataTest.=dataTest, TrainTarget.=TrainTarget, predict.=predict, TransformNumericColumns.=TransformNumericColumns, TransformationResults.=TransformationResults, GridTune.=GridTune, data.=dataTrain) VariableImportance <- Output$VariableImportance; Output$VariableImportance <- NULL ValidationData <- Output$ValidationData; rm(Output) if(DebugMode) print("Running BinaryMetrics()") EvalMetricsList <- list() EvalMetrics2List <- list() if("evalmetrics" %chin% tolower(OutputSelection)) { if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) { EvalMetricsList[["TrainData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=TrainData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "threshold") EvalMetrics2List[["TrainData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=TrainData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "bins") if(SaveModelObjects) { if(!is.null(metadata_path)) { data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(metadata_path, paste0(ModelID, "_Test_EvaluationMetrics.csv"))) } else if(!is.null(model_path)) { data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(model_path, paste0(ModelID, "_Test_EvaluationMetrics.csv"))) } } } EvalMetricsList[["TestData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=ValidationData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "threshold") EvalMetrics2List[["TestData"]] <- BinaryMetrics(ClassWeights.=NULL, CostMatrixWeights.=CostMatrixWeights, SaveModelObjects.=FALSE, ValidationData.=ValidationData, TrainOnFull.=TrainOnFull, TargetColumnName.=TargetColumnName, ModelID.=ModelID, model_path.=model_path, metadata_path.=metadata_path, Method = "bins") if(SaveModelObjects) { if(!is.null(metadata_path)) { data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(metadata_path, paste0(ModelID, "_Test_EvaluationMetrics.csv"))) } else if(!is.null(model_path)) { data.table::fwrite(EvalMetricsList[['TestData']], file = file.path(model_path, paste0(ModelID, "_Test_EvaluationMetrics.csv"))) } } } if(DebugMode) print("Running ML_EvalPlots()") PlotList <- list() if("evalplots" %chin% tolower(OutputSelection)) { if("score_traindata" %chin% tolower(OutputSelection) && !TrainOnFull) { Output <- ML_EvalPlots(ModelType="classification", DataType = 'Train', TrainOnFull.=TrainOnFull, ValidationData.=TrainData, NumOfParDepPlots.=NumOfParDepPlots, VariableImportance.=VariableImportance, TargetColumnName.=TargetColumnName, FeatureColNames.=FeatureColNames, SaveModelObjects.=SaveModelObjects, ModelID.=ModelID, metadata_path.=metadata_path, model_path.=model_path, LossFunction.=NULL, EvalMetric.=NULL, EvaluationMetrics.=NULL, predict.=NULL) PlotList[["Train_EvaluationPlot"]] <- Output$EvaluationPlot; Output$EvaluationPlot <- NULL PlotList[["Train_ParDepPlots"]] <- Output$ParDepPlots; Output$ParDepPlots <- NULL PlotList[["Train_GainsPlot"]] <- Output$GainsPlot; Output$GainsPlot <- NULL PlotList[["Train_LiftPlot"]] <- Output$LiftPlot; Output$LiftPlot <- NULL PlotList[["Train_ROC_Plot"]] <- Output$ROC_Plot; rm(Output) } Output <- ML_EvalPlots(ModelType="classification", DataType = 'Test', TrainOnFull.=TrainOnFull, ValidationData.=ValidationData, NumOfParDepPlots.=NumOfParDepPlots, VariableImportance.=VariableImportance, TargetColumnName.=TargetColumnName, FeatureColNames.=FeatureColNames, SaveModelObjects.=SaveModelObjects, ModelID.=ModelID, metadata_path.=metadata_path, model_path.=model_path, LossFunction.=NULL, EvalMetric.=NULL, EvaluationMetrics.=NULL, predict.=NULL) PlotList[["Test_EvaluationPlot"]] <- Output$EvaluationPlot; Output$EvaluationPlot <- NULL PlotList[["Test_ParDepPlots"]] <- Output$ParDepPlots; Output$ParDepPlots <- NULL PlotList[["Test_GainsPlot"]] <- Output$GainsPlot; Output$GainsPlot <- NULL PlotList[["Test_LiftPlot"]] <- Output$LiftPlot; Output$LiftPlot <- NULL PlotList[["Test_ROC_Plot"]] <- Output$ROC_Plot; rm(Output) if(!is.null(VariableImportance) && "plotly" %chin% installed.packages()) PlotList[["Train_VariableImportance"]] <- plotly::ggplotly(VI_Plot(Type = "xgboost", VariableImportance)) else if(!is.null(VariableImportance)) PlotList[["Train_VariableImportance"]] <- VI_Plot(Type = "xgboost", VariableImportance) } if(DebugMode) print("Save PDF of model information ----") if("pdfs" %chin% tolower(OutputSelection) && SaveModelObjects) { CatBoostPDF(ModelType="regression", TrainOnFull.=TrainOnFull, SaveInfoToPDF.=SaveInfoToPDF, VariableImportance.=VariableImportance, Interaction.=NULL, model_path.=model_path, metadata_path.=metadata_path) } if(!exists("FactorLevelsList")) FactorLevelsList <- NULL options(warn = 1) if(DebugMode) print("Return objects ----") if(ReturnModelObjects) { return(list( Model = model, TrainData = if(exists("TrainData")) TrainData else NULL, TestData = if(exists("ValidationData")) ValidationData else NULL, PlotList = if(exists("PlotList")) PlotList else NULL, EvaluationMetrics = if(exists("EvalMetricsList")) EvalMetricsList else NULL, EvaluationMetrics2 = if(exists("EvalMetrics2List")) EvalMetrics2List else NULL, VariableImportance = if(exists("VariableImportance")) VariableImportance else NULL, GridMetrics = if(exists("ExperimentalGrid") && !is.null(ExperimentalGrid)) data.table::setorderv(ExperimentalGrid, cols = "EvalMetric", order = -1L, na.last = TRUE) else NULL, ColNames = if(exists("Names")) Names else NULL, FactorLevelsList = if(exists("FactorLevelsList")) FactorLevelsList else NULL, ArgsList = ArgsList)) } }
.build_client <- function(api, encode, version = NULL, progress = NULL, pat = getOption("osfr.pat")) { api <- match.arg(api, c("osf", "wb")) encode <- match.arg(encode, c("form", "multipart", "json", "raw")) server <- Sys.getenv("OSF_SERVER") url <- switch(api, osf = ifelse(nzchar(server), "api.%s.osf.io", "api.osf.io"), wb = ifelse(nzchar(server), "files.us.%s.osf.io", "files.osf.io") ) if (nzchar(server)) url <- sprintf(url, server) headers <- list(`User-Agent` = user_agent()) if (!is.null(pat)) { headers$Authorization <- sprintf("Bearer %s", pat) } if (api == "osf") { headers$`Accept-Header` <- sprintf( "application/vnd.api+json;version=%s", version) } crul::HttpClient$new( url = paste0("https://", url), opts = list( encode = encode ), headers = headers, hooks = list( request = log_request, response = log_response ), progress = progress ) }
BLOSUM62<-function(seqs,label=c(),outFormat="mat",outputFileDist=""){ path.pack=system.file("extdata",package="ftrCOOL") if(length(seqs)==1&&file.exists(seqs)){ seqs<-fa.read(seqs,alphabet="aa") seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else if(is.vector(seqs)){ seqs<-sapply(seqs,toupper) seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else { stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.") } lenSeqs<-sapply(seqs, nchar) numSeqs<-length(seqs) featureMatrix<-matrix(0, nrow = numSeqs, ncol = (lenSeqs[1]*23)) adBlosum<-paste0(path.pack,"/BLOSUM62.csv") Blosum<-read.csv(adBlosum) row.names(Blosum)<-Blosum[,1] Blosum<-Blosum[,-1] Blosum<-as.matrix(Blosum) Blosum<-type.convert(Blosum) nameP1<-rep((1:(lenSeqs[1])),each=23) nameP1<-paste0("aa",nameP1) aaVect<-c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y","B","Z","X") if(outFormat=="mat"){ if(length(unique(lenSeqs))>1){ stop("ERROR: All sequences should have the same length in 'mat' mode. For sequences with different lengths, please use 'txt' for outFormat parameter") } nameP2<-paste("d",rep(aaVect,lenSeqs[1]),sep = "") colnames(featureMatrix)<-paste(nameP1,nameP2) for(n in 1:numSeqs){ seq=seqs[n] chars=unlist(strsplit(seq,"")) featureVector<-Blosum[,chars] featureVector<-as.vector(featureVector) featureMatrix[n,]<-featureVector } if(length(label)==numSeqs){ featureMatrix<-as.data.frame(featureMatrix) featureMatrix<-cbind(featureMatrix,label) } row.names(featureMatrix)<-names(seqs) return(featureMatrix) } else{ nameSeq<-names(seqs) for(n in 1:numSeqs){ seq<-seqs[n] chars<-unlist(strsplit(seq,split = "")) featureVector<-Blosum[,chars] vect<-as.vector(featureVector) temp<-c(nameSeq[n],vect) temp<-paste(temp,collapse = "\t") write(temp,outputFileDist,append = TRUE) } } }
list2matrix.bas <- function(x, what, which.models = NULL) { namesx <- x$namesx if (is.null(which.models)) which.models <- 1:x$n.models listobj <- x[[what]][which.models] which <- x$which[which.models] n.models <- length(which.models) p <- length(namesx) mat <- matrix(0, nrow = n.models, ncol = p) for (i in 1:n.models) { mat[i, which[[i]] + 1] <- listobj[[i]] } colnames(mat) <- namesx return(mat) } list2matrix.which <- function(x, which.models = NULL) { namesx <- x$namesx listobj <- x$which if (!is.null(which.models)) { listobj <- listobj[which.models] } p <- length(namesx) mat <- t(sapply( listobj, function(x, dimp) { xx <- rep(0, dimp) xx[x + 1] <- 1 xx }, p )) colnames(mat) <- namesx mat } which.matrix <- function(which, n.vars) { mat <- t(sapply( which, function(x, dimp) { xx <- rep(0, dimp) xx[x + 1] <- 1 xx }, n.vars )) mat }
context("elevation utils") testthat::skip_on_cran() raster_poa <- system.file("extdata/poa/poa_elevation.tif", package = "r5r") data_path <- system.file("extdata/poa", package = "r5r") r5r_core <- setup_r5(data_path = data_path, temp_dir = TRUE) test_that("tobler_hiking", { expect_error( tobler_hiking('bananas') ) expect_error( tobler_hiking() ) expect_identical( round( r5r:::tobler_hiking(1)), 33) }) test_that("apply_elevation", { if (requireNamespace("rgdal", quietly = TRUE)) { expect_silent( r5r:::apply_elevation(r5r_core, raster_poa) ) expect_silent( r5r:::apply_elevation(r5r_core, c(raster_poa,raster_poa)) ) } expect_error( r5r:::apply_elevation('bananas', raster_poa) ) expect_error( r5r:::apply_elevation(r5r_core, 'bananas') ) }) stop_r5(r5r_core)
bbase.os <- function(x, K, bdeg = 3, eps = 1e-5, intercept = TRUE) { B <- bs(x, degree = bdeg, df = K + bdeg, intercept = intercept) B }
tcplot <- function (data, u.range, cmax = FALSE, r = 1, ulow = -Inf, rlow = 1, nt = 25, which = 1:npar, conf = 0.95, lty = 1, lwd = 1, type = "b", cilty = 1, ask = nb.fig < length(which) && dev.interactive(), ...){ n <- length(data) data <- sort(data) if (missing(u.range)) { u.range <- c(data[1], data[n - 4]) u.range <- u.range - .Machine$double.eps^0.5 } u <- seq(u.range[1], u.range[2], length = nt) locs <- scls <- shps <- matrix(NA, nrow = nt, ncol = 3) dimnames(locs) <- list(round(u, 2), c("lower", "loc", "upper")) dimnames(shps) <- list(round(u, 2), c("lower", "shape", "upper")) pname <- "mscale" npar <- 2 dimnames(scls) <- list(round(u, 2), c("lower", pname, "upper")) z <- gpdmle(data, u[1], corr = TRUE, ...) stvals <- as.list(round(fitted(z), 3)) for (i in 1:nt) { z <- gpdmle(data, u[i], corr = TRUE, ...) stvals <- as.list(fitted(z)) mles <- fitted(z) stderrs <- z$std.err cnst <- qnorm((1 + conf)/2) shp <- mles["shape"] scl <- mles["scale"] shpse <- stderrs["shape"] sclse <- stderrs["scale"] scl <- scl - shp * u[i] covar <- z$corr[1, 2] * prod(stderrs) sclse <- sqrt(sclse^2 - 2 * u[i] * covar + (u[i] * shpse)^2) scls[i, ] <- c(scl - cnst * sclse, scl, scl + cnst * sclse) shps[i, ] <- c(shp - cnst * shpse, shp, shp + cnst * shpse) } show <- rep(FALSE, npar) show[which] <- TRUE nb.fig <- prod(par("mfcol")) if (ask) { op <- par(ask = TRUE) on.exit(par(op)) } if (show[1]) { matplot(u, scls, type = "n", xlab = "Threshold", ylab = "Modified Scale") lines(u, scls[, 2], lty = lty, lwd = lwd, type = type) segments(u, scls[, 1], u, scls[, 3], lty = cilty) } if (show[2]) { matplot(u, shps, type = "n", xlab = "Threshold", ylab = "Shape") lines(u, shps[, 2], lty = lty, lwd = lwd, type = type) segments(u, shps[, 1], u, shps[, 3], lty = cilty) } rtlist <- list(scales = scls, shapes = shps) invisible(rtlist) }
library(plyr) suppressPackageStartupMessages(library(dplyr)) library(ggplot2) library(readr) gap_dat <- read_tsv("05_gap-merged-with-china-1952.tsv") %>% mutate(country = factor(country), continent = factor(continent)) gap_dat %>% str() gap_dat %>% sapply(function(x) x %>% is.na() %>% sum()) gap_dat$year %>% summary() all.equal(gap_dat$year %>% unique() %>% sort(), 1950:2007) ggplot(gap_dat, aes(x = year)) + geom_histogram(binwidth = 1) gap_dat$country %>% str() country_freq <- gap_dat %>% count(country) ggplot(country_freq, aes(x = country, y = n)) + geom_bar(stat = "identity") (p <- ggplot(country_freq, aes(x = n)) + geom_histogram(binwidth = 1)) p + xlim(c(1, 16)) country_freq$n %>% table() gap_dat$continent %>% levels() gap_dat$continent %>% summary() tmp <- gap_dat %>% group_by(country) %>% summarize(n_continent = n_distinct(continent)) tmp$n_continent %>% table() gap_dat$pop %>% summary(digits = 10) gap_dat[which.min(gap_dat$pop),] gap_dat[which.max(gap_dat$pop),] ggplot(gap_dat,aes(x = pop)) + geom_density() + scale_x_log10() gap_dat$lifeExp %>% summary() ggplot(gap_dat,aes(x = lifeExp)) + geom_density() gap_dat$gdpPercap %>% summary() gap_dat[which.max(gap_dat$gdpPercap),] ggplot(gap_dat,aes(x = gdpPercap)) + geom_density()
"sdtm_ae" "sdtm_cm" "sdtm_dm" "sdtm_ds" "sdtm_ex" "sdtm_lb" "sdtm_mh" "sdtm_qs" "sdtm_relrec" "sdtm_sc" "sdtm_se" "sdtm_suppae" "sdtm_suppdm" "sdtm_suppds" "sdtm_supplb" "sdtm_sv" "sdtm_ta" "sdtm_te" "sdtm_ti" "sdtm_ts" "sdtm_tv" "sdtm_vs"
tree_add_dates <- function(dated_tree = NULL, missing_taxa = NULL, dating_method = "mrbayes", adding_criterion = "random", mrbayes_output_file = "mrbayes_tree_add_dates.nexus") { dated_tree <- tree_check(tree = dated_tree, dated = TRUE) missing_taxa <- missing_taxa_check(missing_taxa = missing_taxa, dated_tree = dated_tree) dating_method <- match.arg(dating_method, c("bladj", "mrbayes")) adding_criterion <- tryCatch(match.arg(adding_criterion, c("random", "taxonomy", "tree")), error = function(e) "random") if (dating_method == "bladj") { if (inherits(missing_taxa, "phylo")) { missing_taxa_phy <- missing_taxa } else { if (is.data.frame(missing_taxa)) { all_taxa <- unique(c(dated_tree$tip.label, levels(missing_taxa$taxon))) } if (is.vector(missing_taxa)) { all_taxa <- unique(c(dated_tree$tip.label, missing_taxa)) } missing_taxa_phy <- get_otol_synthetic_tree(input = all_taxa) } constraint_tree <- suppressWarnings(geiger::congruify.phylo( reference = phylo_tiplabel_space_to_underscore(dated_tree), target = phylo_tiplabel_space_to_underscore(missing_taxa_phy), scale = NA, ncores = 1 )) dated_tree_nodes <- sapply(seq(nrow(constraint_tree$calibrations)), function(i) { phytools::findMRCA( tree = constraint_tree$target, tips = as.character(constraint_tree$calibrations[i, c("taxonA", "taxonB")]), type = "node" ) }) dated_tree_nodes <- dated_tree_nodes - ape::Ntip(constraint_tree$target) missing_taxa_phy$node.label[dated_tree_nodes] <- paste0("cong", seq(nrow(constraint_tree$calibrations))) missing_taxa_phy <- tree_add_nodelabels(tree = missing_taxa_phy) new.phy <- make_bladj_tree(tree = missing_taxa_phy, nodenames = missing_taxa_phy$node.label[dated_tree_nodes], nodeages = sapply(seq(nrow(constraint_tree$calibrations)), function(i) sum(constraint_tree$calibrations[i, c("MinAge", "MaxAge")]) / 2)) } if (dating_method == "mrbayes") { dated_tree <- tree_add_outgroup(tree = dated_tree, outgroup = "an_outgroup") ncalibration <- tree_get_node_data(tree = dated_tree, node_data = c("node_age", "descendant_tips_label")) new.phy <- make_mrbayes_tree(constraint = dated_tree, ncalibration = ncalibration, missing_taxa = missing_taxa, mrbayes_output_file = mrbayes_output_file) new.phy <- ape::drop.tip(new.phy, "an_outgroup") } return(new.phy) } missing_taxa_check <- function(missing_taxa = NULL, dated_tree = NULL) { badformat <- TRUE if (is.data.frame(missing_taxa)) { if ("taxon" %in% names(missing_taxa)) { badformat <- FALSE if (length(missing_taxa) > 1 & !"clade" %in% names(missing_taxa)) { badformat <- TRUE } } } else { missing_taxa_phy <- input_process(missing_taxa) if (inherits(missing_taxa_phy, "phylo")) { phylo_check(phy = dated_tree, dated = TRUE) dtINmt <- dated_tree$tip.labels %in% missing_taxa$tip.labels mtINdt <- missing_taxa$tip.labels %in% dated_tree$tip.labels if (!all(dtINmt)) { warning("not all taxa from dated_tree are in missing_taxa tree") } missing_taxa_pruned <- ape::drop.tip(missing_taxa, missing_taxa$tip.labels[mtINdt]) missing_taxa <- missing_taxa_phy badformat <- FALSE } else { missing_taxa <- as.character(missing_taxa) missing_taxa[which(is.na(missing_taxa))] <- "NA" badformat <- FALSE } } if (length(missing_taxa) == 0) { missing_taxa <- NULL badformat <- FALSE } if (badformat) { stop("missing_taxa must be a character vector with species names, a data frame with taxonomic assignations, a newick character string, a phylo object, or NULL") } return(missing_taxa) }
"dataAGGR"
library(amt) data(amt_fisher) set.seed(123) tr <- make_trast(amt_fisher[1:50, ], res = 5) mini_fisher <- amt_fisher[1:40, ] mcp <- hr_mcp(mini_fisher) loc <- hr_locoh(mini_fisher) kde <- hr_kde(mini_fisher) mini_fisher1 <- amt_fisher[11:50, ] mcp1 <- hr_mcp(mini_fisher1) loc1 <- hr_locoh(mini_fisher1) kde1 <- hr_kde(mini_fisher1, tr = tr) expect_inherits(hr_overlap(mcp, mcp1), "tbl_df") expect_inherits(hr_overlap(list(mcp, mcp1)), "tbl_df") expect_inherits(hr_overlap(kde, kde1), "tbl_df") expect_inherits(hr_overlap(list(kde, kde1)), "tbl_df") expect_error(hr_overlap(kde, kde1, type = "vi")) expect_error(hr_overlap(list(kde, kde1), type = "vi"))
brute_IDs <- function(total.length, redundancy, alphabet, num.tries = 10, available.colors = NULL) { if (missing(alphabet)) { stop("Error: you need to enter an 'alphabet size,' e.g. the number of paint colors you have") } if (missing(total.length)) { stop("Error: you need to enter the total length of the ID, e.g. how many color bands or paint drops on each organism") } if (missing(redundancy)) { stop("Error: you need specify to how many erasure events the IDs should be robust. Note, an increase in robustness requires an increase in the total length of the ID. ") } if (redundancy >= total.length || redundancy == 0) { stop("Error: the code must be robust to at least one erasure. It also cannot be robust to a number of positions equal to or greater than the total length.") } if (!is(num.tries, "numeric")) { stop(paste0("Error: the variable 'num.tries' must be of the class 'numeric,' not '", class(num.tries),".'")) } tester <- function(total.length, redundancy, alphabet) { perms <- rep(list(seq_len(alphabet)),total.length) combos <- as.matrix(expand.grid(perms)) - 1 combo.list <- split(combos, 1:nrow(combos)) names(combo.list) <- NULL x <- sample(1:length(combo.list), 1) new.combs <- combo.list[x] names(new.combs) <- NULL combo.list <- combo.list[stringdist::seq_distmatrix(combo.list, new.combs, method = "hamming")[, length(new.combs)] > redundancy] names(combo.list) <- 1:length(combo.list) while (length(combo.list) > 0) { x <- sample(1:length(combo.list), 1) new.combs[length(new.combs) + 1] <- (combo.list[x]) combo.list <- combo.list[stringdist::seq_distmatrix(combo.list, new.combs, method = "hamming")[, length(new.combs)] > redundancy] if (length(combo.list) != 0) { names(combo.list) <- 1:length(combo.list) } } return(new.combs) } temp1 <- NULL temp2 <- 0 for (i in 1:num.tries) { temp1 <- invisible(tester(total.length, redundancy, alphabet)) if (length(temp1) > length(temp2)) temp2 <- temp1 } temp2 <- codes_to_colors(temp2, available.colors) return(temp2) }
context("ashr with half-uniform mixture priors") test_that("mixcompdist=+uniform gives all non-negative values for b and zero for a", { set.seed(1); z=rnorm(10); z.ash=ash(z,1,mixcompdist="+uniform") k = length(z.ash$fitted_g$pi) expect_true(all(z.ash$fitted_g$b >= rep(0,k))) expect_equal(z.ash$fitted_g$a,rep(0,k)) }) test_that("mixcompdist=-uniform gives all non-positive values for a and zero for b", { set.seed(1); z=rnorm(10); z.ash=ash(z,1,mixcompdist="-uniform") k = length(z.ash$fitted_g$pi) expect_equal(z.ash$fitted_g$b,rep(0,k)) expect_true(all(z.ash$fitted_g$a <= 0)) })
women names(women) height attach(women) height weight women$height g <- "My First List" h <- c(25, 26, 18, 39) j <- matrix(1:10, nrow=5) k <- c("one", "two", "three") mylist <- list(title=g, ages=h, j, k, women) mylist mylist[[2]] mylist[[5]] plot(x=height, y=weight, type='b', lty=5, pch=11, fg='red', bg='green', col.axis='purple', cex=1.5, cex.axis=2) title(main='Henry Harvin', sub=' MA Course')
stratsamp <- function(n, distribution, parameters, p) { lims <- find_strata(p, distribution, parameters) outmat <- matrix(data = NA, nrow = n, ncol = length(p)-1) counts <- rep(0, length(lims)-1) while (any(counts < n)) { r <- distribution_sampling(1, distribution, parameters) intvl <- findInterval(r, lims) if (counts[intvl] < n) { counts[intvl] <- counts[intvl] + 1 outmat[counts[intvl], intvl] <- r } } outmat }
context("mlc") suppressPackageStartupMessages(library(caret)) set.seed(1) mat <- matrix(rnorm(300), ncol = 3, nrow = 100) colnames(mat) <- letters[1:3] y <- sample(factor(c("a", "b")), 100, replace = TRUE) test_that("fit mlc",{ expect_is( mr <- mlc(mat,y), "list") expect_equal(names(mr), c("a", "b", "levels")) expect_equal(vapply(mr$a, length, numeric(1)), c(m=3,D=1,I=9)) }) test_that("predict mlc",{ mod <- train( mat, y, method = mlcCaret, trControl = trainControl(method = "none")) expect_is(pred <- predict.mlc(mod, mat), "factor") expect_equal(length(pred), nrow(mat)) expect_equal(levels(pred), c("a", "b")) expect_is(prob <- predict.mlc.prob(mod, mat), "matrix") expect_equal(nrow(prob), nrow(mat)) expect_equal(ncol(prob), 2) })
semprobit <- function(formula, W, data, subset, ...) { cl <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") y <- model.response(mf, "numeric") if (!is.null(W) && !is.numeric(W) && !inherits(W, "sparseMatrix") && nrow(W) != NROW(y)) stop(gettextf("'W' must be a numeric square matrix, dimension %d should equal %d (number of observations)", NROW(W), NROW(y)), domain = NA) X <- model.matrix(mt, mf, contrasts) sem_probit_mcmc(y, X, W, ...) } sem_probit_mcmc <- function(y, X, W, ndraw=1000, burn.in=100, thinning=1, prior=list(a1=1, a2=1, c=rep(0, ncol(X)), T=diag(ncol(X))*1e12, nu=0, d0=0, lflag = 0), start=list(rho=0.75, beta=rep(0, ncol(X)), sige=1), m=10, showProgress=FALSE, univariateConditionals=TRUE){ timet <- Sys.time() n <- nrow( X ) n1 <- nrow( X ) n2 <- nrow( W ) k <- ncol( X ) I_n <- sparseMatrix(i=1:n, j=1:n, x=1) if (is.null(colnames(X))) colnames(X) <- paste("x",1:k,sep="") if( length(c(which(y == 0 ),which(y == 1))) != length( y ) ){ stop("semprobit: not all y-values are 0 or 1") } if( n1 != n2 && n1 != n ){ stop("semprobit: wrong size of spatial weight matrix W") } if (!inherits(W, "sparseMatrix") || any(diag(W) != 0)) { stop('sarprobit: spatial weights matrix W must be a sparse matrix with zeros in the main diagonal') } ind <- match( n, apply(X,2,sum)) if( is.na(ind) ){ cflag <- 0 p <- k }else if( ind == 1 ){ cflag <- 1 p <- k - 1 }else{ stop("semprobit: intercept term must be in first column of the X-matrix") } rho <- start$rho beta <- start$beta sige <- start$sige c <- rep(0, k) if (is.matrix(prior$T) && ncol(prior$T) == k && isSymmetric(prior$T) && det(prior$T) > 0) { T <- prior$T } else { T <- diag(k)*1e12 } if (is.numeric(prior$nu)) { nu <- prior$nu } else { nu <- 0 } if (is.numeric(prior$d0)) { d0 <- prior$d0 } else { d0 <- 0 } TI <- solve(T) TIc <- TI%*%c S <- I_n - rho * W H <- t(S) %*% S / sige lower <- ifelse(y > 0, 0, -Inf) upper <- ifelse(y > 0, Inf, 0) rmin <- -1 rmax <- 1 ldetflag <- 0 tmp <- sar_lndet(ldetflag, W, rmin, rmax) detval <- tmp$detval a1 <- 1.0 a2 <- 1.0 if(is.numeric(prior$a1)) a1 <- prior$a1 if(is.numeric(prior$a2)) a2 <- prior$a2 u <- runif(thinning * ndraw + burn.in) nrho <- nrow(detval) nmk <- (n-k)/2 detval1 <- detval[,1] detval2 <- detval[,2] B <- matrix(NA, ndraw, k+2) colnames(B) <- c(colnames(X), "sige", "rho") cc <- 0.2 acc <- 0 acc_rate <- rep(NA, thinning * ndraw + burn.in) if (showProgress) { pb <- txtProgressBar(min=0, max=(thinning * ndraw + burn.in), initial=0, style=3) } if(cflag == 0) { namesNonConstantParams <- colnames(X) } else { namesNonConstantParams <- colnames(X)[-1] } z <- y ones <- rep(1, n) W2diag <- diag(t(W)%*%W) ind0 <- which(y == 0) ind1 <- which(y == 1) for (i in (1 - burn.in):(ndraw * thinning)) { SX <- S %*% X tSX <- t(SX) tSXSX <- as.matrix(tSX %*% SX) AI <- solve(tSXSX + sige * TI) Sz <- as.double(S %*% z) b <- as.double(tSX %*% Sz + sige * TIc) b0 <- AI %*% b beta <- as.double(rmvnorm(n=1, mean=b0, sigma=sige*AI)) nu1 <- n + 2*nu e <- as.double(S %*% (z - X %*% beta)) d1 <- 2*d0 + crossprod(e) chi <- rchisq(n=1,df=nu1) sige <- as.double(d1/chi) H <- t(S) %*% S / sige if (univariateConditionals) { dsig <- 1/sige * (ones - rho * rho * W2diag) zvar <- ones/dsig; mu <- X %*% beta zmu <- z - mu A <- (1/sige)* S %*% zmu B2 <- t(S) %*% A Cz <- zmu - zvar*B2 zm <- mu + Cz; z[zvar < 0] <- 0 z[ind0] <- rtnorm(mu=zm[ind0], sd=sqrt(zvar[ind0]), a=-Inf, b=0) z[ind1] <- rtnorm(mu=zm[ind1], sd=sqrt(zvar[ind1]), a=0, b=Inf) z[is.infinite(z) | zvar < 0] <- 0 } if (!univariateConditionals) { mu <- X %*% beta H <- (1/sige)*t(S)%*%S if (m==1) { z <- as.double(rtmvnorm.sparseMatrix(n=1, mean=mu, H=H, lower=lower, upper=upper, burn.in=m, start.value=z)) } else { z <- as.double(rtmvnorm.sparseMatrix(n=1, mean=mu, H=H, lower=lower, upper=upper, burn.in=m)) } } rhox <- c_sem(rho,z,X,beta,sige,I_n,W,detval1,detval2,ones,a1,a2) accept <- 0 rho2 <- rho + cc * rnorm(1) while(accept == 0) { if ((rho2 > rmin) & (rho2 < rmax)) { accept <- 1 } else { rho2 <- rho + cc * rnorm(1) } } rhoy <- c_sem(rho2,z,X,beta,sige,I_n,W,detval1,detval2,ones,a1,a2) ru <- runif(1,0,1) if ((rhoy - rhox) > exp(1)) { p <- 1 } else { ratio <- exp(rhoy-rhox) p <- min(1,ratio) } if (ru < p) { rho <- rho2 acc <- acc + 1 } iter <- i + burn.in acc_rate[iter] <- acc/iter if (acc_rate[iter] < 0.4) { cc <- cc/1.1; } if (acc_rate[iter] > 0.6) { cc <- cc*1.1; } S <- I_n - rho * W H <- t(S) %*% S / sige if (i > 0) { if (thinning == 1) { ind <- i } else if (i%%thinning == 0) { ind <- i%/%thinning } else { next } B[ind,] <- c(beta, sige, rho) } if (showProgress) setTxtProgressBar(pb, i + burn.in) } if (showProgress) close(pb) beta <- colMeans(B)[1:k] sige <- colMeans(B)[k+1] rho <- colMeans(B)[k+2] S <- (I_n - rho * W) fitted.values <- X %*% beta fitted.response <- as.numeric(fitted.values >= 0) results <- NULL results$time <- Sys.time() - timet results$nobs <- n results$nvar <- k results$y <- y results$zip <- n - sum(y) results$beta <- colMeans(B)[1:k] results$sige <- sige results$rho <- colMeans(B)[k+2] results$coefficients <- colMeans(B) results$fitted.values <- fitted.values results$fitted.response <- fitted.response results$ndraw <- ndraw results$nomit <- burn.in results$a1 <- a1 results$a2 <- a2 results$nu <- nu results$d0 <- d0 results$rmax <- rmax results$rmin <- rmin results$tflag <- "plevel" results$lflag <- ldetflag results$cflag <- cflag results$lndet <- detval results$names <- c(colnames(X), "sige", "rho") results$B <- B results$bdraw <- B[,1:k] results$sdraw <- B[,k+1] results$pdraw <- B[,k+2] results$W <- W results$X <- X class(results) <- "semprobit" return(results) } c_sem <- function(rho,y,X,b,sige,I_n,W,detval1,detval2,vi,a1,a2) { i <- findInterval(rho,detval1) if (i == 0) index=1 else index=i detm = detval2[index] z = I_n - rho*W; e = as.double(z %*% (y - X %*% b)) ev = e * sqrt(vi) epe = (crossprod(ev))/(2*sige) cout = as.double(detm - epe) return(cout) } coef.semprobit <- function(object, ...) { if (!inherits(object, "semprobit")) stop("use only with \"semprobit\" objects") return(object$coefficients) } coefficients.semprobit <- function(object, ...) { UseMethod("coef", object) } summary.semprobit <- function(object, var_names=NULL, file=NULL, digits = max(3, getOption("digits")-3), ...){ if (!inherits(object, "semprobit")) stop("use only with \"semprobit\" objects") nobs <- object$nobs nvar <- object$nvar ndraw <- object$ndraw nomit <- object$nomit draws <- object$B bout_mean <- object$coefficients bout_sd <- apply(draws, 2, sd) bout_sig <- 1 - apply(draws, 2, function(x) { ifelse (mean(x) > 0, sum(x > 0), sum(x < 0)) }) / ndraw bout_t <- bout_mean / bout_sd bout_tPval<- (1 - pt( abs(bout_t), nobs ))*2 if( is.null(var_names)){ bout_names<- as.matrix(object$names) }else{ bout_names<- as.matrix(var_names) } if(is.null(file)){file <- ""} write(sprintf("--------MCMC probit with spatial errors ---------"), file, append=T) write(sprintf("Execution time = %6.3f %s", object$time, attr(object$time, "units")) , file, append=T) write(sprintf("N steps for TMVN= %6d" , object$nsteps), file, append=T) write(sprintf("N draws = %6d, N omit (burn-in)= %6d", ndraw, nomit), file, append=T) write(sprintf("N observations = %6d, K covariates = %6d", nobs, nvar) , file, append=T) write(sprintf(" write(sprintf("Min rho = % 6.3f, Max rho = % 6.3f", object$rmin, object$rmax), file, append=T) write(sprintf("--------------------------------------------------"), file, append=T) write(sprintf(""), file, append=T) coefficients <- cbind(bout_mean, bout_sd, bout_sig, bout_t, bout_tPval) dimnames(coefficients) <- list(bout_names, c("Estimate", "Std. Dev", "Bayes p-level", "t-value", "Pr(>|z|)")) printCoefmat(coefficients, digits = digits, signif.stars = getOption("show.signif.stars")) return(invisible(coefficients)) } plot.semprobit <- function(x, which=c(1, 2, 3), ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., trueparam=NULL) { if (!inherits(x, "semprobit")) stop("use only with \"semprobit\" objects") if (!is.numeric(which) || any(which < 1) || any(which > 3)) stop("'which' must be in 1:3") names <- x$names B <- x$B k <- ncol(B) show <- rep(FALSE, 3) show[which] <- TRUE if (ask) { oask <- devAskNewPage(TRUE) on.exit(devAskNewPage(oask)) } if (show[1L]) { for (i in 1:k) { plot(1:nrow(B), B[,i], type="l", xlab="iteration", ylab=names[i], main=substitute("Trace plot of "*x, list(x=names[i])), ...) if (!is.null(trueparam)) abline(h=trueparam[i], col="red", lty=2) } } if (show[2L]) { for (i in 1:k) { acf(B[,i], main=substitute("ACF of "*x, list(x=names[i])), ...) } } if (show[3L]) { for (i in 1:k) { plot(density(B[,i]), main=substitute("Posterior distribution of "*x, list(x=names[i])), ...) if (!is.null(trueparam)) abline(v=trueparam[i], col="red", lty=2) } } } logLik.semprobit <- function(object, ...) { X <- object$X y <- object$y n <- nrow(X) k <- ncol(X) W <- object$W beta <- object$beta rho <- object$rho sige <- object$sige I_n <- sparseMatrix(i=1:n, j=1:n, x=1) S <- I_n - rho * W D <- diag(1/sqrt(sige*diag(S %*% t(S)))) Xs <- D %*% X F <- pnorm(as.double(Xs %*% beta)) lnL <- sum(log(F[y == 1])) + sum(log((1 - F[y == 0]))) out <- lnL class(out) <- "logLik" attr(out,"df") <- k+2 return(out) } fitted.semprobit <- function(object, ...) { object$fitted.value }
tar_resources_url <- function( handle = NULL ) { out <- resources_url_init( handle = handle ) resources_validate(out) out }
export_amira.path<-function(vertices,filename,Lines=c(1:(dim(vertices)[1]-1)-1,-1),path) { while(tolower(paste(filename,".am",sep=""))%in%list.files(path)!=FALSE){ i<-1 filename<-paste(filename,"(",i,")",sep="") i<-i+1 } cat(paste(" file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "",eol="\n") cat(paste("define Lines ", length(Lines), "\n", sep = ""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste("nVertices ", dim(vertices)[1], "\n\n", sep = ""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste("Parameters {","\n",sep=""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste(' ContentType "HxLineSet"',"\n",sep=""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste("}", "\n\n", sep = ""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste("Lines { int LineIdx } @1","\n",sep=""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste("Vertices { float[3] Coordinates } @2", "\n\n", sep = ""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste(" sep = ""), append = TRUE, sep = "") cat(paste(Lines,"\n",sep=" "), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") cat(paste("\n","@2","\n",sep=""), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") write.table(format(vertices, scientific = F, trim = T), file = paste(path, "/", filename, ".am", sep = ""), sep = " ", append = TRUE, quote = FALSE, row.names = FALSE, col.names = FALSE, na = "") cat(paste("\n",sep=" "), file = paste(path, "/", filename, ".am", sep = ""), append = TRUE, sep = "") }
test_that("translations", { expect_identical(pow(5, 2), 25) expect_identical(phi(0), 0.5) expect_equal(phi(2), 0.9772499, tolerance = 0.0000001) x <- NA log(x) <- log(5) expect_equal(x, 5) expect_equal(logit(0.5), 0) expect_equal(logit(1), Inf) x <- NA logit(x) <- logit(0.75) expect_equal(x, 0.75) expect_equal(ilogit(logit(0.67)), 0.67) expect_equal(invlogit(logit(0.67)), 0.67) }) test_that("translations2", { x <- seq(0, 1, by = 0.25) expect_identical(logit(x), qlogis(x)) expect_identical(ilogit(logit(x)), x) expect_identical(invlogit(logit(x)), x) logit(x) <- c(0.5, 1) expect_identical(x, ilogit(c(0.5, 1))) log(x) <- c(0.5, 1) expect_identical(x, exp(c(0.5, 1))) expect_identical(pow(3, 4), 3^4) expect_equal(phi(0:2), c(0.5, 0.8413447, 0.9772499), tolerance = 0.0000001) })
read.cross.csv <- function(dir, file, na.strings=c("-","NA"), genotypes=c("A","H","B","D","C"), estimate.map=TRUE, rotate=FALSE, ...) { if(missing(file)) file <- "data.csv" if(!missing(dir) && dir != "") { file <- file.path(dir, file) } args <- list(...) if("" %in% na.strings) { na.strings <- na.strings[na.strings != ""] warning("Including \"\" in na.strings will cause problems; omitted.") } if(length(args) > 0 && "dec" %in% names(args)) { dec <- args[["dec"]] } else dec <- "." if(length(args) < 1 || !("sep" %in% names(args))) { if(length(args) < 1 || !("comment.char" %in% names(args))) data <- read.table(file, sep=",", na.strings=na.strings, colClasses="character", fill=TRUE, stringsAsFactors=TRUE, blank.lines.skip=TRUE, comment.char="", ...) else data <- read.table(file, sep=",", na.strings=na.strings, colClasses="character", fill=TRUE, stringsAsFactors=TRUE, blank.lines.skip=TRUE, ...) } else { if(length(args) < 1 || !("comment.char" %in% names(args))) data <- read.table(file, na.strings=na.strings, colClasses="character", fill=TRUE, stringsAsFactors=TRUE, blank.lines.skip=TRUE, comment.char="", ...) else data <- read.table(file, na.strings=na.strings, colClasses="character", fill=TRUE, stringsAsFactors=TRUE, blank.lines.skip=TRUE, ...) } if(rotate) data <- as.data.frame(t(data), stringsAsFactors=FALSE) empty <- grep("^\\s*$", data[2, ]) if( ! 1 %in% empty) stop("You must include at least one phenotype (e.g., an index). ", "There was this value in the first column of the second row '", data[2,1],"' where was supposed to be nothing.",sep="") if(length(empty)==ncol(data)) stop("Second row has all blank cells; you need to include chromosome IDs for the markers.") n.phe <- min((1:ncol(data))[-empty])-1 empty <- rep(FALSE, n.phe) empty[grep("^\\s*$", data[3,1:n.phe])] <- TRUE if(all(empty)) { map.included <- TRUE map <- asnumericwithdec(unlist(data[3,-(1:n.phe)]), dec=dec) if(any(is.na(map))) { temp <- unique(unlist(data[3,-(1:n.phe)])[is.na(map)]) stop("There are missing marker positions.\n", " In particular, we see these value(s): ", paste("\"",paste(temp,collapse="\",\"",sep=""),"\"",collapse=" ",sep=""), " at position(s): ", paste(which(is.na(map)),colapse=",",sep=""),sep="") } nondatrow <- 3 } else { map.included <- FALSE map <- rep(0,ncol(data)-n.phe) nondatrow <- 2 } data <- sapply(data,function(a) { a[!is.na(a) & a==""] <- NA; a }) pheno <- as.data.frame(data[-(1:nondatrow),1:n.phe,drop=FALSE], stringsAsFactors=TRUE) colnames(pheno) <- data[1,1:n.phe] mnames <- data[1,-(1:n.phe)] if(any(is.na(mnames))) stop("There are missing marker names. Check column(s) ",paste(which(is.na(mnames))+1+n.phe,collapse=","),sep="") chr <- data[2,-(1:n.phe)] if(any(is.na(chr))) stop("There are missing chromosome IDs. Check column(s) ",paste(which(is.na(chr))+1+n.phe,collapse=","),sep="") if(length(genotypes) > 0) { temp <- unique(as.character(data[-(1:nondatrow),-(1:n.phe),drop=FALSE])) temp <- temp[!is.na(temp)] wh <- !(temp %in% genotypes) if(any(wh)) { warn <- "The following unexpected genotype codes were treated as missing.\n " ge <- paste("|", paste(temp[wh],collapse="|"),"|",sep="") warn <- paste(warn,ge,"\n",sep="") warning(warn) } allgeno <- matrix(match(data[-(1:nondatrow),-(1:n.phe)],genotypes), ncol=ncol(data)-n.phe) } else allgeno <- matrix(as.numeric(data[-(1:nondatrow),-(1:n.phe)]), ncol=ncol(data)-n.phe) oldpheno <- pheno pheno <- data.frame(lapply(pheno, sw2numeric, dec=dec), stringsAsFactors=TRUE) if(all(chr %in% c(1:999,"X","x"))) { tempchr <- chr tempchr[chr=="X" | chr=="x"] <- 1000 tempchr <- as.numeric(tempchr) if(map.included) neworder <- order(tempchr, map) else neworder <- order(tempchr) } else { tempchr <- factor(chr, levels=unique(chr)) if(map.included) neworder <- order(tempchr, map) else neworder <- order(tempchr) } chr <- chr[neworder] map <- map[neworder] allgeno <- allgeno[,neworder,drop=FALSE] mnames <- mnames[neworder] if(!map.included) { map <- split(rep(0,length(chr)),chr)[unique(chr)] map <- unlist(lapply(map,function(a) seq(0,length=length(a),by=5))) names(map) <- NULL } uchr <- unique(chr) n.chr <- length(uchr) geno <- vector("list",n.chr) names(geno) <- uchr min.mar <- 1 allautogeno <- NULL for(i in 1:n.chr) { temp.map <- map[chr==uchr[i]] names(temp.map) <- mnames[chr==uchr[i]] data <- allgeno[,min.mar:(length(temp.map)+min.mar-1),drop=FALSE] min.mar <- min.mar + length(temp.map) colnames(data) <- names(temp.map) geno[[i]] <- list(data=data,map=temp.map) if(uchr[i] == "X" || uchr[i] == "x") class(geno[[i]]) <- "X" else { class(geno[[i]]) <- "A" if(is.null(allautogeno)) allautogeno <- data else allautogeno <- cbind(allautogeno,data) } } if(is.null(allautogeno)) allautogeno <- allgeno n.mar1 <- sapply(geno,function(a) ncol(a$data)) n.mar2 <- sapply(geno,function(a) length(a$map)) n.phe <- ncol(pheno) n.ind1 <- nrow(pheno) n.ind2 <- sapply(geno,function(a) nrow(a$data)) if(any(n.ind1 != n.ind2)) { cat(n.ind1,n.ind2,"\n") stop("Number of individuals in genotypes and phenotypes do not match.") } if(any(n.mar1 != n.mar2)) { cat(n.mar1,n.mar2,"\n") stop("Numbers of markers in genotypes and marker names files do not match.") } cat(" --Read the following data:\n") cat("\t",n.ind1," individuals\n") cat("\t",sum(n.mar1)," markers\n") cat("\t",n.phe," phenotypes\n") if(all(is.na(allgeno))) warning("There is no genotype data!\n") if(all(is.na(allautogeno)) || max(allautogeno,na.rm=TRUE)<=2) type <- "bc" else if(max(allautogeno,na.rm=TRUE)<=5) type <- "f2" else type <- "4way" cross <- list(geno=geno,pheno=pheno) class(cross) <- c(type,"cross") if(type=="f2") max.gen <- 5 else if(type=="bc") max.gen <- 2 else max.gen <- 14 for(i in 1:n.chr) { if(any(diff(cross$geno[[i]]$map)<0)) { o <- order(cross$geno[[i]]$map) cross$geno[[i]]$map <- cross$geno[[i]]$map[o] cross$geno[[i]]$data <- cross$geno[[i]]$data[,o,drop=FALSE] } } if(estimate.map && !map.included) estmap <- TRUE else estmap <- FALSE list(cross,estmap) }
gbm.perf <- function(object, plot.it=TRUE, oobag.curve=FALSE, overlay=TRUE, method, main="") { if(!is.logical(plot.it) || (length(plot.it)) > 1 || is.na(plot.it)) stop("plot.it must be a logical - excluding NA") performance <- gbmt_performance(object, method) if (plot.it) { plot(performance, out_of_bag_curve=oobag.curve, overlay=overlay, main=main) } as.numeric(performance) } gbmt_performance <- function(gbm_fit_obj, method) { check_if_gbm_fit(gbm_fit_obj) if (missing(method)) { method <- guess_error_method(gbm_fit_obj) message("Using ", method, " method...") } result <- switch(method, OOB=best_iter_out_of_bag(gbm_fit_obj), cv=best_iter_cv(gbm_fit_obj), test=best_iter_test(gbm_fit_obj), stop("method must be cv, test, or OOB")) attr(result, 'decoration') <- list(method=method, gbm_fit_obj=gbm_fit_obj) class(result) <- "GBMTPerformance" result } as.double.GBMTPerformance <- function(x, ...) { as.double(unclass(x)) } print.GBMTPerformance <- function(x, ...) { decoration <- attr(x, 'decoration') method_descriptor <- switch(decoration$method, cv="cross-validation", test="test-set", OOB="out-of-bag", stop("Unknown method.")) cat("The best ", method_descriptor, " iteration was ", x, ".\n", sep="") invisible(x) } plot.GBMTPerformance <- function(x, out_of_bag_curve=FALSE, overlay=TRUE, main="", ...) { decoration <- attr(x, 'decoration') perf_plot(decoration$gbm_fit_obj, x, out_of_bag_curve, overlay, decoration$method, main) } best_iter_test <- function(gbm_fit_obj) { check_if_gbm_fit(gbm_fit_obj) best_iter_test <- which.min(iteration_error(gbm_fit_obj, 'valid')) return(best_iter_test) } best_iter_cv <- function(gbm_fit_obj) { check_if_gbm_fit(gbm_fit_obj) if(!has_cross_validation(gbm_fit_obj)) { stop('In order to use method="cv" gbm must be called with cv_folds>1.') } best_iter_cv <- which.min(iteration_error(gbm_fit_obj, 'cv')) return(best_iter_cv) } best_iter_out_of_bag <- function(gbm_fit_obj) { check_if_gbm_fit(gbm_fit_obj) if(gbm_fit_obj$params$bag_fraction==1) stop("Cannot compute OOB estimate or the OOB curve when bag_fraction=1") if(all(!is.finite(gbm_fit_obj$oobag.improve))) stop("Cannot compute OOB estimate or the OOB curve. No finite OOB estimates of improvement") message("OOB generally underestimates the optimal number of iterations although predictive performance is reasonably competitive. Using cv_folds>1 when calling gbm usually results in improved predictive performance.") smoother <- generate_smoother_oobag(gbm_fit_obj) best_iter_oob <- smoother$x[which.min(-cumsum(smoother$y))] return(best_iter_oob) } generate_smoother_oobag <- function(gbm_fit_obj) { check_if_gbm_fit(gbm_fit_obj) smoother <- NULL x <- seq_len(gbm_fit_obj$params$num_trees) smoother <- loess(gbm_fit_obj$oobag.improve~x, enp.target=min(max(4,length(x)/10),50)) smoother$y <- smoother$fitted smoother$x <- x return(smoother) } guess_error_method <- function(gbm_fit_obj) { if (has_train_test_split(gbm_fit_obj)) { "test" } else if (has_cross_validation(gbm_fit_obj)) { "cv" } else { "OOB" } }
test_that("gives warning markers are not correct", { expect_warning(style_text(c( "1+1", " " ))) }) test_that("trailing spaces are stripped when checking marker and written back", { expect_equal( style_text(c( " "1+1", " )) %>% as.character(), c(" ) }) test_that("last stopping marker can be omitted", { expect_equal( style_text(c( " "1+1" )) %>% as.character(), c(" ) }) test_that("last stopping marker can be omitted", { expect_equal( style_text(c( " "call( 1)", " "call(2 +0)", " "x=2" )) %>% as.character(), c( " " ) ) }) test_that("works for one line", { expect_equal( style_text(c( "1+1", "1+1 "1+1" )) %>% as.character(), c("1 + 1", "1+1 ) }) test_that("works with other markers", { expect_equal( withr::with_options( list(styler.ignore_start = " { style_text(c( "1+1", "1+1 "1+1" )) %>% as.character() } ), c("1 + 1", "1+1 ) }) test_that("works for multiple markers inline", { withr::local_options(styler.ignore_start = " expect_equal( style_text(c( "1+1", "1+1 "1+1" )) %>% as.character(), c("1 + 1", "1+1 ) }) test_that("works for multiple markers inline on one line", { withr::local_options(styler.ignore_start = "nolint start|styler: off") expect_equal( style_text(c( "1+1", "1+1 "1+1" )) %>% as.character(), c("1 + 1", "1+1 ) }) test_that("works with other markers", { expect_warning( withr::with_options( list(styler.ignore_start = " { style_text(c( "1+1", " "1+1", "1+1", " )) %>% as.character() } ), "Invalid stylerignore sequence" ) }) test_that("Simple example works", { expect_warning(test_collection("stylerignore", "simple", transformer = style_text ), NA) }) test_that("stylerignore does not need coincidence with top-level expressions", { expect_warning(test_collection("stylerignore", "crossing", transformer = style_text ), NA) }) test_that("token adding or removing works in stylerignore", { expect_warning(test_collection("stylerignore", "adding-removing", transformer = style_text ), NA) }) test_that("no token added or removed in complex case", { expect_warning(test_collection("stylerignore", "braces", transformer = style_text ), NA) }) test_that("stylerignore sequences are respected in alignment detection", { expect_warning(test_collection("stylerignore", "alignment", transformer = style_text ), NA) })
genscorestat<-function(scores,group,correct=0){ N<-length(group); MV<-table(group) refg<-names(MV)[1] if(is.numeric(group)) refg<-as.numeric(refg) if(length(MV)!=2){ message("genscorestat works only for two groups") out<-NA }else{ abar<-mean(scores) ahat<-mean(scores^2) vv<-MV[2]*MV[1]*(ahat-abar^2)/(N-1) ee<-MV[1]*abar stat<-structure(sum(scores[group==refg]),.Names= "Gaussian") correct<-abs(correct)*sign(stat-ee) parameters<-structure(c(ee,vv),.Names=c("mean","variance")) out<-list(null.value=structure(0, .Names = "median difference"), alternative="two-sided",method="General Score Test",data.name=NULL, statistic=stat,parameters=parameters, p.value=2*pnorm(-abs(stat-ee-correct)/sqrt(vv))) class(out)<-"htest" } return(out) }
"dccm.nma" <- function(x, nmodes=NULL, ncore=NULL, progress = NULL, ...) { nma <- x if (missing(nma)) stop("dccm.nma: must supply a 'nma' object, i.e. from 'nma'") if(!"nma" %in% class(nma)) stop("dccm.nma: must supply 'nma' object, i.e. from 'nma'") ncore <- setup.ncore(ncore, bigmem = FALSE) if(ncore > 1) { mcparallel <- get("mcparallel", envir = getNamespace("parallel")) mccollect <- get("mccollect", envir = getNamespace("parallel")) } cross.inner.prod <- function(a, b) { mat <- apply(a, 1, "%*%", t(b)) return(mat) } corrmats <- function(r.inds, core.id, nma, corr.mat, freqs, progress) { for ( i in r.inds ) { mode <- matrix(nma$U[,i], ncol=3, byrow=TRUE) corr.mat <- corr.mat + (cross.inner.prod(mode, mode) / (freqs[i]**2)) if(core.id==1) { setTxtProgressBar(pb, i) } if(!is.null(progress)) { if(i %% 20 == 0) { progress$set(i) } } } return(corr.mat) } if(!is.null(nma$frequencies)) { freqs <- nma$frequencies } else { freqs <- nma$force.constants } if(is.null(nmodes)) nmodes <- length(nma$L) else { nmodes <- nmodes + nma$triv.modes if(nmodes>length(nma$L)) { warning("'nmodes' larger than the number of modes") nmodes <- length(nma$L) } } pbmax <- nmodes + nma$natoms pb <- txtProgressBar(min=(nma$triv.modes+1), max=pbmax, style=3) corr.mat <- matrix(0, nma$natoms, nma$natoms) mode.inds <- (nma$triv.modes+1):nmodes core.ids <- rep(1:ncore, length.out=length( mode.inds )) if(ncore>1) jobs <- list() for ( i in 1:ncore ) { rinds <- mode.inds[ which(core.ids==i) ] if(ncore>1) { q <- mcparallel(corrmats(rinds, i, nma, corr.mat, freqs, progress)) jobs[[i]] <- q } else corr.mat <- corrmats(rinds, i, nma, corr.mat, freqs, progress) } if(ncore>1) { res <- mccollect(jobs, wait=TRUE) for ( job in res ) { corr.mat <- corr.mat + job } } a <- vector('numeric', length=nrow(corr.mat)) k <- length(mode.inds) inds <- rep(1:nrow(corr.mat), each=3) for ( j in (nma$triv.modes+1):nmodes ) { v <- nma$U[, j] * nma$U[, j] a <- a + ( tapply( v, inds, sum) / (freqs[j]**2)) k <- k+1 setTxtProgressBar(pb, k) if(!is.null(progress)) { if(j %% 20 == 0) { progress$set(k) } } } close(pb) a <- sqrt(a) bn <- a%o%a corr.mat <- corr.mat / bn class(corr.mat) <- c("dccm", "matrix") return(corr.mat) }
stat.entropyFunction = function(bitString) { pT = sum(bitString)/length(bitString) pF = 1-pT if (pT==1 || pT==0) { e = 0 } else { e = -pT*log2(pT)-pF*log2(pF) } return(e) }
"ChickWeight" <- structure(list( weight = c(42, 51, 59, 64, 76, 93, 106, 125, 149, 171, 199, 205, 40, 49, 58, 72, 84, 103, 122, 138, 162, 187, 209, 215, 43, 39, 55, 67, 84, 99, 115, 138, 163, 187, 198, 202, 42, 49, 56, 67, 74, 87, 102, 108, 136, 154, 160, 157, 41, 42, 48, 60, 79, 106, 141, 164, 197, 199, 220, 223, 41, 49, 59, 74, 97, 124, 141, 148, 155, 160, 160, 157, 41, 49, 57, 71, 89, 112, 146, 174, 218, 250, 288, 305, 42, 50, 61, 71, 84, 93, 110, 116, 126, 134, 125, 42, 51, 59, 68, 85, 96, 90, 92, 93, 100, 100, 98, 41, 44, 52, 63, 74, 81, 89, 96, 101, 112, 120, 124, 43, 51, 63, 84, 112, 139, 168, 177, 182, 184, 181, 175, 41, 49, 56, 62, 72, 88, 119, 135, 162, 185, 195, 205, 41, 48, 53, 60, 65, 67, 71, 70, 71, 81, 91, 96, 41, 49, 62, 79, 101, 128, 164, 192, 227, 248, 259, 266, 41, 49, 56, 64, 68, 68, 67, 68, 41, 45, 49, 51, 57, 51, 54, 42, 51, 61, 72, 83, 89, 98, 103, 113, 123, 133, 142, 39, 35, 43, 48, 55, 62, 65, 71, 82, 88, 106, 120, 144, 157, 41, 47, 54, 58, 65, 73, 77, 89, 98, 107, 115, 117, 40, 50, 62, 86, 125, 163, 217, 240, 275, 307, 318, 331, 41, 55, 64, 77, 90, 95, 108, 111, 131, 148, 164, 167, 43, 52, 61, 73, 90, 103, 127, 135, 145, 163, 170, 175, 42, 52, 58, 74, 66, 68, 70, 71, 72, 72, 76, 74, 40, 49, 62, 78, 102, 124, 146, 164, 197, 231, 259, 265, 42, 48, 57, 74, 93, 114, 136, 147, 169, 205, 236, 251, 39, 46, 58, 73, 87, 100, 115, 123, 144, 163, 185, 192, 39, 46, 58, 73, 92, 114, 145, 156, 184, 207, 212, 233, 39, 48, 59, 74, 87, 106, 134, 150, 187, 230, 279, 309, 42, 48, 59, 72, 85, 98, 115, 122, 143, 151, 157, 150, 42, 53, 62, 73, 85, 102, 123, 138, 170, 204, 235, 256, 41, 49, 65, 82, 107, 129, 159, 179, 221, 263, 291, 305, 39, 50, 63, 77, 96, 111, 137, 144, 151, 146, 156, 147, 41, 49, 63, 85, 107, 134, 164, 186, 235, 294, 327, 341, 41, 53, 64, 87, 123, 158, 201, 238, 287, 332, 361, 373, 39, 48, 61, 76, 98, 116, 145, 166, 198, 227, 225, 220, 41, 48, 56, 68, 80, 83, 103, 112, 135, 157, 169, 178, 41, 49, 61, 74, 98, 109, 128, 154, 192, 232, 280, 290, 42, 50, 61, 78, 89, 109, 130, 146, 170, 214, 250, 272, 41, 55, 66, 79, 101, 120, 154, 182, 215, 262, 295, 321, 42, 51, 66, 85, 103, 124, 155, 153, 175, 184, 199, 204, 42, 49, 63, 84, 103, 126, 160, 174, 204, 234, 269, 281, 42, 55, 69, 96, 131, 157, 184, 188, 197, 198, 199, 200, 42, 51, 65, 86, 103, 118, 127, 138, 145, 146, 41, 50, 61, 78, 98, 117, 135, 141, 147, 174, 197, 196, 40, 52, 62, 82, 101, 120, 144, 156, 173, 210, 231, 238, 41, 53, 66, 79, 100, 123, 148, 157, 168, 185, 210, 205, 39, 50, 62, 80, 104, 125, 154, 170, 222, 261, 303, 322, 40, 53, 64, 85, 108, 128, 152, 166, 184, 203, 233, 237, 41, 54, 67, 84, 105, 122, 155, 175, 205, 234, 264, 264), Time = c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21), Chick = ordered(c(15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48), levels=1:50, labels = c("18", "16", "15", "13", "9", "20", "10", "8", "17", "19", "4", "6", "11", "3", "1", "12", "2", "5", "14", "7", "24", "30", "22", "23", "27", "28", "26", "25", "29", "21", "33", "37", "36", "31", "39", "38", "32", "40", "34", "35", "44", "45", "43", "41", "47", "49", "46", "50", "42", "48")), Diet = factor(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4), levels=1:4, labels = c("1", "2", "3", "4"))), row.names = 1:578, class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = weight ~ Time | Chick, outer = ~ Diet, labels = list(x = "Time", y = "Body weight"), units = list(x = "(days)", y = "(gm)")) environment(attr(ChickWeight, "formula")) <- emptyenv() environment(attr(ChickWeight, "outer")) <- emptyenv()
NULL dcmp = function(x, lambda, nu, log = FALSE) { prep = prep.zicmp(length(x), lambda, nu) dcmp_cpp(x, prep$lambda, prep$nu, take_log = log) } rcmp = function(n, lambda, nu) { prep = prep.zicmp(n, lambda, nu) ymax = getOption("COMPoissonReg.ymax") rcmp_cpp(n, prep$lambda, prep$nu, ymax = ymax) } pcmp = function(x, lambda, nu) { prep = prep.zicmp(length(x), lambda, nu) pcmp_cpp(x, prep$lambda, prep$nu) } qcmp = function(q, lambda, nu, log.p = FALSE) { prep = prep.zicmp(length(q), lambda, nu) if (log.p) { log.q = q } else { log.q = log(q) } ymax = getOption("COMPoissonReg.ymax") qcmp_cpp(log.q, prep$lambda, prep$nu, ymax = ymax) } cmp.expected.value = function(lambda, nu) { n = max(length(lambda), length(nu)) prep = prep.zicmp(n, lambda, nu) res = numeric(n) for (i in 1:n) { res[i] = prep$lambda[i] * grad.fwd(z_hybrid, prep$lambda[i], nu = prep$nu[i], take_log = TRUE) } return(res) }
groupAndRename <- function(obj, var, before, after, addNA=FALSE) { groupAndRenameX(obj=obj, var=var, before=before, after=after, addNA=addNA) } setGeneric("groupAndRenameX", function(obj, var, before, after, addNA=FALSE) { standardGeneric("groupAndRenameX") }) setMethod(f="groupAndRenameX", signature=c("factor"), definition=function(obj, var, before, after, addNA=FALSE) { if (!all(before %in% levels(obj))) { stop("some elements of 'before' are not valid levels in the input factor!\n") } if (any(duplicated(before))) { stop("each level from the original factor must be listed only once in argument 'before'!") } ll <- levels(obj) ll[ll %in% before] <- after levels(obj) <- ll if (addNA) { obj[is.na(obj)] <- after } obj }) setMethod(f="groupAndRenameX", signature=c("data.frame"), definition=function(obj, var, before, after, addNA=FALSE) { if (length(var) != 1) { stop("length of input 'var' != 1!\n") } if (!var %in% colnames(obj)) { stop("variable specified in 'var' is not available in 'obj'!\n") } fac <- obj[[var]] if (!is.factor(obj[[var]]) ) { stop("check input, we do not have a factor here!\n") } obj[[var]] <- groupAndRename(obj[[var]], var=NULL, before=before, after=after, addNA=addNA) obj }) setMethod(f="groupAndRenameX", signature=c("sdcMicroObj"), definition=function(obj, var, before, after, addNA=FALSE) { obj <- nextSdcObj(obj) manipKey <- get.sdcMicroObj(obj, type="manipKeyVars") if (!var %in% colnames(manipKey)) { stop("variable specified in 'var' is not available in 'obj'!\n") } manipKey[[var]] <- groupAndRename(manipKey[[var]], var=var, before=before, after=after, addNA=addNA) obj <- set.sdcMicroObj(obj, type="manipKeyVars", input=list(manipKey)) obj <- calcRisks(obj) obj })
ans <- pl(amount = c(1, -1), timestamp = c(2, 3), price = c(1, 2), along.timestamp = 3:1, vprice = 1:3) expect_equal(ans[[1]]$timestamp , 1:3) expect_equal(unname(ans[[1]]$pl), c(0,1,1))
REND <- function(TPDc = NULL, TPDs = NULL){ if (is.null(TPDc) & is.null(TPDs)) { stop("At least one of 'TPDc' or 'TPDs' must be supplied") } if (!is.null(TPDc) & class(TPDc) != "TPDcomm"){ stop("The class of one object do not match the expectations, Please, specify if your object is a TPDc or a TPDs") } if (!is.null(TPDs) & class(TPDs) != "TPDsp"){ stop("The class of one object do not match the expectations, Please, specify if your object is a TPDc or a TPDs") } results <- list() Calc_FRich <- function(x) { results_FR <- numeric() if (class(x) == "TPDcomm") { TPD <- x$TPDc$TPDc names_aux <- names(x$TPDc$TPDc) cell_volume <- x$data$cell_volume } if (class(x) == "TPDsp") { TPD <- x$TPDs names_aux <- names(x$TPDs) cell_volume <- x$data$cell_volume } for (i in 1:length(TPD)) { TPD_aux <- TPD[[i]] TPD_aux[TPD_aux > 0] <- cell_volume results_FR[i] <- sum(TPD_aux) } names(results_FR) <- names_aux return(results_FR) } Calc_FEve <- function(x) { results_FE <- numeric() if (class(x) == "TPDcomm") { TPD <- x$TPDc$TPDc names_aux <- names(x$TPDc$TPDc) cell_volume <- x$data$cell_volume } if (class(x) == "TPDsp") { TPD <- x$TPDs names_aux <- names(x$TPDs) cell_volume <- x$data$cell_volume } for (i in 1:length(TPD)) { TPD_aux <- TPD[[i]][TPD[[i]] > 0] TPD_eve <- rep((1 / length(TPD_aux)), times = length(TPD_aux)) results_FE[i] <- sum(pmin(TPD_aux, TPD_eve)) } names(results_FE) <- names_aux return(results_FE) } Calc_FDiv <- function(x) { results_FD <- numeric() if (class(x) == "TPDcomm") { TPD <- x$TPDc$TPDc evaluation_grid<-x$data$evaluation_grid names_aux <- names(x$TPDc$TPDc) cell_volume <- x$data$cell_volume } if (class(x) == "TPDsp") { TPD <- x$TPDs evaluation_grid<-x$data$evaluation_grid names_aux <- names(x$TPDs) cell_volume <- x$data$cell_volume } for (i in 1:length(TPD)) { functional_volume <- evaluation_grid[TPD[[i]]>0 , , drop=F] for (j in 1:ncol(functional_volume)){ functional_volume[, j] <- (functional_volume[, j] - min(functional_volume[, j])) / (max(functional_volume[, j]) - min(functional_volume[, j])) } TPD_aux <- TPD[[i]][TPD[[i]] > 0] COG <- colMeans(functional_volume, na.rm=T) dist_COG <- function(x, COG) { result_aux<-stats::dist(rbind(x, COG)) return(result_aux) } COGDist <- apply(functional_volume, 1, dist_COG, COG) meanCOGDist <- mean(COGDist) distDeviances <- COGDist-meanCOGDist AWdistDeviances <- sum(TPD_aux * distDeviances) absdistDeviances <- abs(COGDist-meanCOGDist) AWabsdistDeviances <- sum(TPD_aux * absdistDeviances) results_FD[i] <- (AWdistDeviances + meanCOGDist) / ( AWabsdistDeviances + meanCOGDist) } names(results_FD) <- names_aux return(results_FD) } if (!is.null(TPDc)) { results$communities <- list() message("Calculating FRichness of communities") results$communities$FRichness <- Calc_FRich(TPDc) message("Calculating FEvenness of communities") results$communities$FEvenness <- Calc_FEve(TPDc) message("Calculating FDivergence of communities") results$communities$FDivergence <- Calc_FDiv(TPDc) } if (!is.null(TPDs)) { if (TPDs$data$type == "One population_One species" | TPDs$data$type == "One population_Multiple species") { results$species <- list() message("Calculating FRichness of species") results$species$FRichness <- Calc_FRich(TPDs) message("Calculating FEvenness of species") results$species$FEvenness <- Calc_FEve(TPDs) message("Calculating FDivergence of species") results$species$FDivergence <- Calc_FDiv(TPDs) } else { results$populations <- list() message("Calculating FRichness of populations") results$populations$FRichness <- Calc_FRich(TPDs) message("Calculating FEvenness of populations") results$populations$FEvenness <- Calc_FEve(TPDs) message("Calculating FDivergence of populations") results$populations$FDivergence <- Calc_FDiv(TPDs) } if (TPDs$data$method == "mean") { message("WARNING: When TPDs are calculated using the TPDsMean function, Evenness and Divergence are meaningless!!") } } return(results) }
r1sd <- function(x, na = TRUE) { return((x - mean(x, na.rm = na)) / (1 * sd(x, na.rm = na))) }
QRSimul <- function(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam){ dim = length(subj) X = matrix(X, nrow=dim) H = length(tau) px = ncol(X) n = length(unique(subj)) if(px != length(VecX)) stop("the length of VecX and the number of covariate(s) must match") XX = as.matrix(X) if(all(X[,1]==1)) VecX[1]=1 else VecX[1] = (VecX[1] - min(X[,1]))/(max(X[,1])-min(X[,1])) if(all(X[,1]==1)) X[,1]=X[,1] else X[,1] = (X[,1] - min(X[,1]))/(max(X[,1])-min(X[,1])) for(k in 2:px){ VecX[k] = (VecX[k] - min(X[,k]))/(max(X[,k])-min(X[,k])) X[,k] = (X[,k] - min(X[,k]))/(max(X[,k])-min(X[,k])) } lambda_all = lambdak_simul(times, subj, X, y, d, tau, kn, degree, lambda, gam) lambdasicr = lambda_all$lambdasicr lambdasic = lambda_all$lambdasic simul = ncqr_simul(times, subj, y, X, tau, kn, degree, lambda=lambdasicr, lambcross=lambdasic, d) W = simul$W alpha = simul$alpha hat_bt = simul$hat_bt Hpx = rep(seq(1,px), H) Xbeta = matrix(NA, dim, H*px) for(h in 1:(H*px)) { Xbeta[,h]=hat_bt[,h]*VecX[Hpx[h]] } qhat_h = matrix(NA, dim, H) for(h in 1:H){ qhat_h[,h] = rowSums(Xbeta[,((h-1)*px+1):(px*h)]) } HpxB = rep(px,H) cum_HpxB = cumsum(HpxB) cum_HpxA = c(1, c(cum_HpxB[seq(1:(H-1))]+1)) hat_bt0_ori = hat_bt[,cum_HpxA] hat_btk_ori = hat_bt[,seq(2,px)] hat_btk = matrix(NA, dim, (px-1)) hat_btk0 = matrix(0, dim, (px-1)) for(k in 1:(px-1)){ hat_btk[,k] = hat_btk_ori[,k]/(max(XX[,(k+1)])-min(XX[,(k+1)])) hat_btk0[,k] = hat_btk_ori[,k]*min(XX[,(k+1)])/(max(XX[,(k+1)])-min(XX[,(k+1)])) } hat_bt0 = hat_bt0_ori - rowSums(hat_btk0) out = list(W=W, alpha=alpha, hat_bt0=hat_bt0, hat_btk=hat_btk, qhat_h = qhat_h) return(out) }
writeEnvelope <- function(obj, centerfun = mean) { if(inherits(obj, c("SpatialPoints", "SpatialPointsDataFrame"), which = FALSE)) { SpatialPointsEnvelope(obj) } else if(inherits(obj, "list") && length(obj) > 0 && all(vapply( X = obj, FUN = inherits, FUN.VALUE = logical(1), c("SpatialPoints", "SpatialPointsDataFrame")) ) ) { ListOfSpatialPointsEnvelope(obj, centerfun = mean) } else if(inherits(obj, c("SpatialLines", "SpatialLinesDataFrame"), which = FALSE)) { SpatialLinesEnvelope(obj, centerfun = mean) } else if(inherits(obj, c("SpatialPolygons", "SpatialPolygonsDataFrame"), which = FALSE)) { SpatialPolygonsEnvelope(obj) } else { stop("obj must be an object of class SpatialPoints, SpatialPointsDataFrame, ", "SpatialLines, SpatialLinesDataFrame, SpatialPolygons, ", "or SpatialPolygonsDataFrame, or a list of objects of class ", "SpatialPoints or SpatialPointsDataFrame") } }
session <- function(url, ...) { session <- structure( list( handle = httr::handle(url), config = c(..., httr::config(autoreferer = 1L)), response = NULL, url = NULL, back = character(), forward = character(), cache = new_environment() ), class = "rvest_session" ) session_get(session, url) } is.session <- function(x) inherits(x, "rvest_session") print.rvest_session <- function(x, ...) { cat("<session> ", x$url, "\n", sep = "") cat(" Status: ", httr::status_code(x), "\n", sep = "") cat(" Type: ", httr::headers(x)$`Content-Type`, "\n", sep = "") cat(" Size: ", length(x$response$content), "\n", sep = "") invisible(x) } session_get <- function(x, url, ...) { resp <- httr::GET(url, x$config, ..., handle = x$handle) session_set_response(x, resp) } session_set_response <- function(x, response) { httr::warn_for_status(response) x$response <- response x$url <- response$url x$cache <- new_environment() x } session_jump_to <- function(x, url, ...) { check_session(x) url <- xml2::url_absolute(url, x$url) last_url <- x$url x <- session_get(x, url, ...) x$back <- c(last_url, x$back) x$forward <- character() x } session_follow_link <- function(x, i, css, xpath, ...) { check_session(x) url <- find_href(x, i = i, css = css, xpath = xpath) inform(paste0("Navigating to ", url)) session_jump_to(x, url, ...) } find_href <- function(x, i, css, xpath) { if (sum(!missing(i), !missing(css), !missing(xpath)) != 1) { abort("Must supply exactly one of `i`, `css`, or `xpath`") } if (!missing(i)) { stopifnot(length(i) == 1) a <- html_elements(x, "a") if (is.numeric(i)) { out <- a[[i]] } else if (is.character(i)) { text <- html_text(a) match <- grepl(i, text, fixed = TRUE) if (!any(match)) { stop("No links have text '", i, "'", call. = FALSE) } out <- a[[which(match)[[1]]]] } else { abort("`i` must a string or integer") } } else { a <- html_elements(x, css = css, xpath = xpath) if (length(a) == 0) { abort("No links matched `css`/`xpath`") } out <- a[[1]] } html_attr(out, "href") } session_back <- function(x) { check_session(x) if (length(x$back) == 0) { abort("Can't go back any further") } url <- x$back[[1]] x$back <- x$back[-1] old_url <- x$url x <- session_get(x, url) x$forward <- c(old_url, x$forward) x } session_forward <- function(x) { check_session(x) if (length(x$forward) == 0) { abort("Can't go forward any further") } url <- x$forward[[1]] old_url <- x$url x <- session_get(x, url) x$forward <- x$forward[-1] x$back <- c(old_url, x$back) x } session_history <- function(x) { check_session(x) urls <- c(rev(x$back), x$url, x$forward) prefix <- rep(c(" ", "- ", " "), c(length(x$back), 1, length(x$forward))) cat_line(prefix, urls) } session_submit <- function(x, form, submit = NULL, ...) { check_session(x) check_form(form) subm <- submission_build(form, submit) resp <- submission_submit(subm, x$config, ..., handle = x$handle) session_set_response(x, resp) } read_html.rvest_session <- function(x, ...) { if (!is_html(x$response)) { abort("Page doesn't appear to be html.") } env_cache(x$cache, "html", read_html(x$response, ..., base_url = x$url)) } is_html <- function(x) { type <- httr::headers(x)$`Content-Type` if (is.null(type)) return(FALSE) parsed <- httr::parse_media(type) parsed$complete %in% c("text/html", "application/xhtml+xml") } html_form.rvest_session <- function(x, base_url = NULL) { html_form(read_html(x), base_url = base_url) } html_table.rvest_session <- function(x, header = NA, trim = TRUE, fill = deprecated(), dec = ".", na.strings = "NA", convert = TRUE) { html_table( read_html(x), header = header, trim = trim, fill = fill, dec = dec, na.strings = na.strings, convert = convert ) } html_element.rvest_session <- function(x, css, xpath) { html_element(read_html(x), css, xpath) } html_elements.rvest_session <- function(x, css, xpath) { html_elements(read_html(x), css, xpath) } status_code.rvest_session <- function(x) { status_code(x$response) } headers.rvest_session <- function(x) { headers(x$response) } cookies.rvest_session <- function(x) { cookies(x$response) } check_form <- function(x) { if (!inherits(x, "rvest_form")) { abort("`form` must be a single form produced by html_form()") } } check_session <- function(x) { if (!inherits(x, "rvest_session")) { abort("`x` must be produced by session()") } }
context('Test the creation of custom indicators') data(forestgap) data(serengeti) datasets <- list(forestgap[3:4], forestgap[1:2]) test_methods <- function(teststring, datalength, obj) { ok_print <- any(grepl(teststring, capture.output(print(obj)))) expect_true(ok_print) ok_summary <- any(grepl(teststring, capture.output(summary(obj)))) expect_true(ok_summary) ok_as_df <- nrow(as.data.frame(obj)) == datalength expect_true(ok_as_df) return(TRUE) } test_that('Custom indicators work', { skip_on_cran() for (dataset in datasets) { testindic <- function(mat) { mat[1, 1] } indicator_mp <- create_indicator(testindic) a <- indicator_mp(dataset) test_methods("Spatial Early-Warning:", length(dataset), a) test_methods("Spatial Early-Warning:", 1, a[[1]]) if ( length(dataset) > 1 ) { suppressWarnings( plot(a) ) } indictest(a[[1]], nulln = 9) b <- indictest(a, nulln = 9) test_methods("Spatial Early-Warning:", length(dataset), b) test_methods("Spatial Early-Warning:", 1, b[[1]]) if (length(dataset) > 1) { suppressWarnings( plot(b) ) } } indicator_mp <- create_indicator(testindic) a <- indicator_mp(dataset) expect_true({ all.equal(a, compute_indicator(dataset, fun = testindic)) }) }) test_that('Custom indicators handles anonymous functions correctly', { expect_warning( anon_fun_indic <- create_indicator(function(mat) mean(mat)) ) expect_true({ anon_fun_indic <- create_indicator(function(mat) mean(mat), taskname = "TestTask") TRUE }) })
testthat::context("H2O AUTOML TEST") test_that("Fire up H2O", { testthat::skip_on_cran() h2o.init( nthreads = -1, ip = 'localhost', port = 54321 ) model_spec <<- automl_reg(mode = 'regression') %>% set_engine( engine = 'h2o', max_runtime_secs = 5, max_runtime_secs_per_model = 4, nfolds = 5, max_models = 3, exclude_algos = c("DeepLearning"), seed = 786 ) }) test_that("automl_reg: Parsnip Test", { testthat::skip_on_cran() model_fit <<- model_spec %>% fit(value ~ ., data = training(m750_splits)) predictions_tbl <- model_fit %>% modeltime_calibrate(testing(m750_splits)) %>% modeltime_forecast(new_data = testing(m750_splits)) testthat::expect_s3_class(model_fit$fit, "automl_fit_impl") testthat::expect_s3_class(model_fit$fit$data, "tbl_df") testthat::expect_equal(names(model_fit$fit$data)[1], "date") testthat::expect_equal(model_fit$preproc$y_var, "value") testthat::expect_identical(nrow(testing(m750_splits)), nrow(predictions_tbl)) testthat::expect_identical(testing(m750_splits)$date, predictions_tbl$.index) resid <- testing(m750_splits)$value - predictions_tbl$.value testthat::expect_lte(max(abs(resid)), 5000) testthat::expect_lte(mean(abs(resid)), 2500) }) test_that("automl_reg: Workflow Test", { testthat::skip_on_cran() recipe_spec <- recipe(value ~ date, data = training(m750_splits)) %>% step_log(value, skip = FALSE) %>% step_date(date, features = "month") %>% step_mutate(date_num = as.numeric(date)) wflw <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) wflw_fit <<- wflw %>% fit(training(m750_splits)) predictions_tbl <- wflw_fit %>% modeltime_calibrate(testing(m750_splits)) %>% modeltime_forecast( new_data = testing(m750_splits), actual_data = training(m750_splits) ) %>% mutate_at(vars(.value), exp) testthat::expect_s3_class(wflw_fit$fit$fit$fit, "automl_fit_impl") testthat::expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df") testthat::expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date") mld <- wflw_fit %>% workflows::pull_workflow_mold() testthat::expect_equal(names(mld$outcomes), "value") full_data <- bind_rows(training(m750_splits), testing(m750_splits)) testthat::expect_identical(nrow(full_data), nrow(predictions_tbl)) testthat::expect_identical(full_data$date, predictions_tbl$.index) predictions_tbl <- predictions_tbl %>% filter(.key == "prediction") resid <- testing(m750_splits)$value - predictions_tbl$.value testthat::expect_lte(max(abs(resid)), 10000) testthat::expect_lte(mean(abs(resid)), 5000) }) test_that("automl_leaderboard() works.", { testthat::skip_on_cran() expect_s3_class(automl_leaderboard(model_fit), "tbl_df") expect_s3_class(automl_leaderboard(wflw_fit), "tbl_df") expect_error( automl_leaderboard(workflow()) ) expect_error( workflow() %>% add_model(automl_reg() %>% set_engine("h2o")) %>% automl_leaderboard() ) expect_error( automl_leaderboard(automl_reg()) ) expect_error( automl_leaderboard("a") ) }) test_that("automl_update_model() works.", { testthat::skip_on_cran() model_ids <- automl_leaderboard(model_fit) %>% pull(model_id) model_id_1 <- model_ids[1] model_id_2 <- model_ids[2] model_fit_swapped <- automl_update_model(model_fit, model_id_2) model_2 <- h2o.getModel(model_id_2) expect_equal(model_fit_swapped$fit$models$model_1, model_2) expect_equal( model_fit_swapped$fit$desc, stringr::str_glue('H2O AutoML - {stringr::str_to_title(model_2@algorithm)}') ) model_ids <- automl_leaderboard(wflw_fit) %>% pull(model_id) model_id_1 <- model_ids[1] model_id_2 <- model_ids[2] model_fit_swapped <- automl_update_model(wflw_fit, model_id_2) model_2 <- h2o.getModel(model_id_2) expect_equal(model_fit_swapped$fit$fit$fit$models$model_1, model_2) expect_equal( model_fit_swapped$fit$fit$fit$desc, stringr::str_glue('H2O AutoML - {stringr::str_to_title(model_2@algorithm)}') ) expect_error( automl_update_model() ) expect_error( automl_update_model("a") ) expect_error( automl_update_model(wflw_fit, "A") ) }) testthat::test_that("Shutdown H2O", { testthat::skip_on_cran() h2o.shutdown(prompt = FALSE) })
library(pcalg) amat1 <- t(cbind(c(0,1,0,1,0),c(0,0,1,0,1),c(0,0,0,1,1),c(0,0,0,0,1),c(0,0,0,0,0))) amat2 <- t(cbind(c(0,1,0,1,1),c(0,0,0,0,1),c(0,0,0,0,1),c(0,0,0,0,1),c(0,0,0,0,0))) g1 <- as(amat1,"graphNEL") g2 <- as(amat2,"graphNEL") res <- compareGraphs(g1,g2) if ((round(res["tpr"],5)!=0.83333) | (round(res["fpr"],5)!=0.5) | (round(res["tdr"],5)!=0.71429)) { stop("Test of compareGraphs: Theoretical values not matched!") }
skip_tests_for_cran <- TRUE skip_maxnet <- FALSE skip_maxent.jar <- TRUE skip_bioclim <- TRUE skip_simDiff <- TRUE library(dplyr) options(warn=-1) set.seed(48) occs <- read.csv(file.path(system.file(package="dismo"), "/ex/bradypus.csv"))[,2:3] envs.orig <- raster::stack(list.files(path=paste(system.file(package='dismo'), '/ex', sep=''), pattern='grd', full.names=TRUE)) occs.z <- cbind(occs, raster::extract(envs.orig, occs)) occs.z$biome <- factor(occs.z$biome) bg <- as.data.frame(dismo::randomPoints(envs.orig, 1000)) names(bg) <- names(occs) bg.z <- cbind(bg, raster::extract(envs.orig, bg)) bg.z$biome <- factor(bg.z$biome) algorithms <- c("maxnet", "maxent.jar", "bioclim") no.iter <- 5 for(alg in algorithms) { if(alg == "maxnet" & skip_maxnet == TRUE) next if(alg == "maxent.jar" & skip_maxent.jar == TRUE) next if(alg == "bioclim" & skip_bioclim == TRUE) next if(alg == "bioclim") { envs <- envs.orig[[-9]] cats1 <- NULL occs.z$biome <- NULL bg.z$biome <- NULL extrap <- FALSE }else{ envs <- envs.orig cats1 <- "biome" extrap <- TRUE } if(alg == "bioclim") tune.args <- list(tails = c("low", "high", "both")) if(alg %in% c("maxnet", "maxent.jar")) tune.args <- list(fc = c("L"), rm = 2:3) mset <- lapply(tune.args, function(x) x[1]) context(paste("Testing ENMevaluate for", alg, "with block partitions...")) e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "block", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "block", tune.args, 4, 4) context(paste("Testing evalplot.stats for", alg, "with block partitions...")) test_evalplot.stats(e) grps <- get.block(occs, bg) context(paste("Testing evalplot.envSim.hist for", alg, "with block partitions...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp) context(paste("Testing evalplot.envSim.map for", alg, "with block partitions...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with block partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "block", mset, 4, 4) context(paste("Testing evalplot.nulls for", alg, "with block partitions...")) test_evalplot.nulls(ns) if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with checkerboard1 partitions...")) e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "checkerboard1", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "checkerboard1", tune.args, 2, 2) context(paste("Testing evalplot.stats for", alg, "with checkerboard1 partitions...")) test_evalplot.stats(e) grps <- get.checkerboard1(occs, envs, bg, aggregation.factor = 2) context(paste("Testing evalplot.envSim.hist for", alg, "with checkerboard1 partitions...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp) context(paste("Testing evalplot.envSim.map for", alg, "with checkerboard1 partitions...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with checkerboard1 partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "checkerboard1", mset, 2, 2) context(paste("Testing ENMnulls plotting function for", alg, "with checkerboard1 partitions...")) test_evalplot.nulls(ns) } if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with checkerboard2 partitions...")) e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "checkerboard2", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "checkerboard2", tune.args, 4, 4) context(paste("Testing evalplot.stats for", alg, "with checkerboard2 partitions...")) test_evalplot.stats(e) grps <- get.checkerboard2(occs, envs, bg, aggregation.factor = 2) context(paste("Testing evalplot.envSim.hist for", alg, "with checkerboard2 partitions...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp) context(paste("Testing evalplot.envSim.map for", alg, "with checkerboard2 partitions...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with checkerboard2 partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "checkerboard2", mset, 4, 4) context(paste("Testing ENMnulls plotting function for", alg, "with checkerboard2 partitions...")) test_evalplot.nulls(ns) } if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions...")) e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "randomkfold", tune.args, 5, 1) context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions...")) test_evalplot.stats(e) grps <- get.randomkfold(occs, bg, kfolds = 5) context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0) context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "randomkfold", mset, 5, 1) context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions...")) test_evalplot.nulls(ns) } if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with jackknife partitions...")) e <- ENMevaluate(occs[1:10,], envs, bg, tune.args = tune.args, partitions = "jackknife", algorithm = alg, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "jackknife", tune.args, nrow(e@occs), 1) context(paste("Testing evalplot.stats for", alg, "with testing partition...")) test_evalplot.stats(e) context(paste("Testing ENMnulls for", alg, "with jackknife partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "jackknife", mset, nrow(e@occs), 1) context(paste("Testing ENMnulls plotting function for", alg, "with jackknife partitions...")) test_evalplot.nulls(ns) } context(paste("Testing ENMevaluate for", alg, "with testing partition...")) e <- ENMevaluate(occs[1:100,], envs, bg, tune.args = tune.args, partitions = "testing", algorithm = alg, categoricals = cats1, occs.testing = occs[101:nrow(occs),], overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "testing", tune.args, 1, 1) context(paste("Testing evalplot.stats for", alg, "with testing partition...")) test_evalplot.stats(e) grps <- list(occs.grp = rep(0, nrow(occs)), bg.grp = rep(0, nrow(bg))) context(paste("Testing evalplot.envSim.hist for", alg, "with testing partition...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, occs.testing.z = e@occs.testing) context(paste("Testing evalplot.envSim.map for", alg, "with testing partition...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, occs.testing.z = e@occs.testing, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with testing partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "testing", mset, 1, 1) context(paste("Testing ENMnulls plotting function for", alg, "with testing partition...")) test_evalplot.nulls(ns) if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with no partitions...")) e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "none", algorithm = alg, categoricals = cats1, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "none", tune.args, 1, 1) context(paste("Testing ENMnulls for", alg, "with no partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "none", mset, 1, 1) context(paste("Testing ENMnulls plotting function for", alg, "with no partitions...")) test_evalplot.nulls(ns) } context(paste("Testing ENMevaluate for", alg, "with user partitions...")) user.grp <- list(occs.grp = round(runif(nrow(occs), 1, 4)), bg.grp = round(runif(nrow(bg), 1, 4))) e <- ENMevaluate(occs, envs, bg, tune.args = tune.args, partitions = "user", algorithm = alg, categoricals = cats1, user.grp = user.grp, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "user", tune.args, 4, 4) context(paste("Testing evalplot.stats for", alg, "with user partitions...")) test_evalplot.stats(e) context(paste("Testing evalplot.envSim.hist for", alg, "with user partitions...")) test_evalplot.envSim.hist(e, occs.z, bg.z, user.grp$occs.grp, user.grp$bg.grp) context(paste("Testing evalplot.envSim.map for", alg, "with user partitions...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, user.grp$occs.grp, user.grp$bg.grp, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with user partitions...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, user.eval.type = "kspatial", quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "user", mset, 4, 4) context(paste("Testing ENMnulls plotting function for", alg, "with user partitions...")) test_evalplot.nulls(ns) if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and no raster environmental variables...")) e <- ENMevaluate(occs.z, bg = bg.z, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, categoricals = cats1, quiet = TRUE) test_ENMevaluation(e, alg, "randomkfold", tune.args, 5, 1, type = "swd") context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions and no raster environmental variables...")) test_evalplot.stats(e) grps <- get.randomkfold(occs, bg, kfolds = 5) context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions and no raster environmental variables...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, categoricals = cats1) context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions and no raster environmental variables...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions and no raster environmental variables...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "randomkfold", mset, 5, 1) context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions and no raster environmental variables...")) test_evalplot.nulls(ns) } if(skip_tests_for_cran == FALSE) { context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and no input background data...")) e <- ENMevaluate(occs, envs, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, n.bg = 1000, categoricals = cats1, overlap = TRUE, quiet = TRUE) test_ENMevaluation(e, alg, "randomkfold", tune.args, 5, 1) context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions and no input background data...")) test_evalplot.stats(e) grps <- get.randomkfold(occs, bg, kfolds = 5) context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions and no input background data...")) test_evalplot.envSim.hist(e, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0) context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions and no input background data...")) test_evalplot.envSim.map(e, envs, occs.z, bg.z, grps$occs.grp, grps$bg.grp, bg.sel = 0, skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions and no input background data...")) ns <- ENMnulls(e, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e, ns, no.iter, alg, "randomkfold", mset, 5, 1) context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions and no input background data...")) test_evalplot.nulls(ns) } if(skip_tests_for_cran == FALSE | alg != "bioclim") { envs.2cat <- raster::addLayer(envs, envs$biome * round(runif(raster::ncell(envs), min = 0, max = 5))) occs.z.2cat <- cbind(occs, raster::extract(envs.2cat, occs)) occs.z.2cat$biome.1 <- factor(occs.z.2cat$biome.1) occs.z.2cat$biome.2 <- factor(occs.z.2cat$biome.2) bg.z.2cat <- cbind(bg, raster::extract(envs.2cat, bg)) bg.z.2cat$biome.1 <- factor(bg.z.2cat$biome.1) bg.z.2cat$biome.2 <- factor(bg.z.2cat$biome.2) context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and two categorical variables...")) e.2cat <- ENMevaluate(occs, envs.2cat, bg, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, n.bg = 1000, categoricals = c("biome.1", "biome.2"), overlap = TRUE, quiet = TRUE) test_ENMevaluation(e.2cat, alg, "randomkfold", tune.args, 5, 1) context(paste("Testing ENMevaluate for", alg, "with random 5-fold partitions and two categorical variables and no env data...")) e.2cat.z <- ENMevaluate(occs.z.2cat, bg = bg.z.2cat, tune.args = tune.args, partitions = "randomkfold", algorithm = alg, n.bg = 1000, categoricals = c("biome.1", "biome.2"), overlap = TRUE, quiet = TRUE) test_ENMevaluation(e.2cat.z, alg, "randomkfold", tune.args, 5, 1, type = "swd") context(paste("Testing evalplot.stats for", alg, "with random 5-fold partitions and two categorical variables...")) test_evalplot.stats(e.2cat) grps <- get.randomkfold(occs, bg, kfolds = 5) context(paste("Testing evalplot.envSim.hist for", alg, "with random 5-fold partitions and two categorical variables...")) test_evalplot.envSim.hist(e.2cat, occs.z.2cat, bg.z.2cat, grps$occs.grp, grps$bg.grp, bg.sel = 0, categoricals = c("biome.1", "biome.2")) context(paste("Testing evalplot.envSim.map for", alg, "with random 5-fold partitions and two categorical variables...")) test_evalplot.envSim.map(e.2cat, envs.2cat, occs.z.2cat, bg.z.2cat, grps$occs.grp, grps$bg.grp, bg.sel = 0, categoricals = c("biome.1", "biome.2"), skip_simDiff = skip_simDiff) context(paste("Testing ENMnulls for", alg, "with random 5-fold partitions and two categorical variables...")) ns <- ENMnulls(e.2cat, mod.settings = mset, no.iter = no.iter, quiet = TRUE) test_ENMnulls(e.2cat, ns, no.iter, alg, "randomkfold", mset, 5, 1) context(paste("Testing ENMnulls plotting function for", alg, "with random 5-fold partitions and two categorical variables...")) test_evalplot.nulls(ns) } context(paste("Testing clamping function for", alg, "with...")) test_clamp(e, envs, occs.z, bg.z, categoricals = cats1, canExtrapolate = extrap) context(paste("Testing clamping function for", alg, "with two categorical variables...")) if(skip_tests_for_cran == FALSE | alg != "bioclim") test_clamp(e.2cat, envs.2cat, occs.z.2cat, bg.z.2cat, categoricals = c("biome.1", "biome.2")) }
MCpriorIntFun <- function(Nsim=200, prior, Hpar, dimData, FUN=function(par,...){as.vector(par)}, store=TRUE, show.progress = floor(seq(1, Nsim, length.out = 20 ) ), Nsim.min=Nsim, precision = 0, ...) { start.time=proc.time() not.finite=0 param = prior(type = "r", n=1, Hpar=Hpar, dimData=dimData) temp.res=FUN(param,...) dim.res=dim(temp.res) if(is.null(dim.res) || (sum(dim.res!=1) ==1) ) { emp.mean=rep(0,length(temp.res)) } else { store=FALSE emp.mean=array(0,dim=dim.res) } emp.variance= emp.mean emp.variance.unNorm=emp.variance if(store) { stored.vals=matrix(0,nrow=Nsim,ncol=length(emp.mean)) } nsim=1 while((nsim<=Nsim) && ( (nsim<=Nsim.min) || (max( sqrt(emp.variance/(nsim-1)) / abs(emp.mean) ) > precision) ) ) { if(any(nsim==show.progress)) { cat(paste((nsim-1), "iterations done", "\n", sep = " " )) } flag=TRUE count = 0 while(flag & (count<=50)) { param = prior(type = "r", n=1, Hpar=Hpar, dimData=dimData) temp.res=FUN(param,...) flag = (any(sapply(as.vector(temp.res), function(x){ ! is.finite(x) } ) ) ) if(flag) { not.finite = not.finite+1 } count = count+1 } if(flag) stop("more than 50 non finite values produced in a row") cur.res=temp.res new.emp.mean=emp.mean+1/nsim*(cur.res-emp.mean) emp.variance.unNorm=emp.variance.unNorm + (cur.res-new.emp.mean)* (cur.res- emp.mean) emp.variance = emp.variance.unNorm/(nsim-1) emp.mean = new.emp.mean if(store) { stored.vals[nsim,]= as.vector(cur.res) } nsim=nsim+1 } end.time = proc.time() elapsed=end.time-start.time print(elapsed) if(store) { returned.vals=stored.vals[1:(nsim-1),] } else { returned.vals=0 } return(list( stored.vals= returned.vals, elapsed=elapsed, nsim = nsim-1, emp.mean=emp.mean, emp.stdev=sqrt(emp.variance), est.error=sqrt(emp.variance/(nsim-1)), not.finite = not.finite)) }
NULL "ghp100k"
kkmeans <- function(K, parameters) { state <- list() state$time <- system.time({ H <- eigen(K, symmetric = TRUE)$vectors[, 1:parameters$cluster_count] objective <- sum(diag(t(H) %*% K %*% H)) - sum(diag(K)) H_normalized <- H/matrix(sqrt(rowSums(H^2, 2)), nrow(H), parameters$cluster_count, byrow = FALSE) H_normalized[sqrt(rowSums(H^2, 2)) == 0, ] <- 0 set.seed(NULL) state$clustering <- stats::kmeans(H_normalized, centers = parameters$cluster_count, iter.max = 1000, nstart = 10)$cluster state$objective <- objective state$parameters <- parameters }) state }
translogEla <- function( xNames, data, coef, coefCov = NULL, dataLogged = FALSE ) { checkNames( c( xNames ), names( data ) ) nExog <- length( xNames ) nCoef <- 1 + nExog + nExog * ( nExog + 1 ) / 2 if( nCoef > length( coef ) ) { stop( "a translog function with ", nExog, " exogenous variables", " must have at least ", nCoef, " coefficients" ) } if( dataLogged ) { logData <- data } else { logData <- logDataSet( data = data, varNames = xNames ) } result <- quadFuncDeriv( xNames = xNames, data = logData, coef = coef, coefCov = coefCov ) return( result ) }
.init_base_test_templ <- function() { templ_dir <- file.path(get_templ_dir(), "BaseTestProjectTemplate") if (dir.exists(templ_dir)) { return(templ_dir) } unzip(file.path("data", "BaseTestProjectTemplate.zip"), exdir = get_templ_dir()) build_prj <- RSuite::prj_start("BaseTestProjectBuild", skip_rc = TRUE, path = templ_dir, tmpl = templ_dir) params <- build_prj$load_params() on.exit({ unlink(params$prj_path, recursive = TRUE, force = TRUE) }, add = TRUE) dst_rmgr <- RSuite::repo_mng_start("Dir", path = normalizePath(file.path(templ_dir, "project", "repository")), rver = params$r_ver, types = params$bin_pkgs_type) RSuite::repo_upload_ext_packages(dst_rmgr, pkgs = c("logging"), prj = build_prj, pkg_type = params$bin_pkgs_type) RSuite::repo_mng_stop(dst_rmgr) return(templ_dir) } .templ_env <- new.env() assign("templates", list(), envir = .templ_env) register_project_templ <- function(templ_name, init_f) { eval_managed(sprintf("Registering project template %s", templ_name), { .init_base_test_templ() base_dir <- get_templ_dir() templ_dir <- file.path(base_dir, templ_name) if (!dir.exists(templ_dir)) { RSuite::tmpl_start(templ_name, path = base_dir, add_pkg = FALSE, base_tmpl = file.path(base_dir, "BaseTestProjectTemplate")) prj <- RSuite::prj_start(paste0(templ_name, "_Build"), skip_rc = T, path = base_dir, tmpl = templ_dir) on.exit({ unlink(prj$path, recursive = TRUE, force = TRUE) }, add = TRUE) init_f(prj) unlink(file.path(templ_dir, "project", "repository"), recursive = TRUE, force = TRUE) file.rename(file.path(prj$path, "repository"), file.path(templ_dir, "project", "repository")) } templs <- get("templates", envir = .templ_env) templs[[templ_name]] <- templ_dir assign("templates", templs, envir = .templ_env) }) } get_project_templ <- function(templ_name) { templs <- get("templates", envir = .templ_env) if (!(templ_name %in% names(templs))) { stop(sprintf("Requested non registered project template: %s", templ_name)) } return(templs[[templ_name]]) } init_test_project <- function(repo_adapters = c("Dir"), name = "TestProject", tmpl = NULL, skip_rc = T) { if (is.null(tmpl)) { tmpl <- .init_base_test_templ() } RSuite::prj_load() prj <- RSuite::prj_start(name, skip_rc = skip_rc, path = get_wspace_dir(), tmpl = tmpl) RSuite::prj_config_set_repo_adapters(repos = repo_adapters, prj = prj) unlink(file.path(prj$path, "deployment", "libs", "logging"), recursive = T, force = T) params_path <- file.path(prj$path, "PARAMETERS") params_df <- data.frame(read.dcf(file = params_path)) params_df$SnapshotDate <- NULL write.dcf(params_df, file = params_path) on_test_exit(function() { unlink(prj$path, recursive = T, force = T) }) return(prj) } remove_package_from_lrepo <- function(pkg_file, prj, type = .Platform$pkgType) { loc_repo <- .get_local_repo_path(prj, type) unlink(file.path(loc_repo, pkg_file), force = T, recursive = T) RSuite:::rsuite_write_PACKAGES(loc_repo, type = type) } create_test_package <- function(name, prj, ver = "1.0", deps = "", imps = "", sysreqs = "", tmpl = "builtin", skip_rc = T) { RSuite::prj_start_package(name, prj = prj, skip_rc = skip_rc, tmpl = tmpl) pkg_path <- file.path(prj$path, "packages", name) pkg_desc_fname <- file.path(pkg_path, "DESCRIPTION") if (file.exists(pkg_desc_fname)) { pkg_desc <- data.frame(read.dcf(file = pkg_desc_fname)) pkg_desc$Version <- ver deps <- trimws(deps) if (sum(nchar(deps))) { pkg_desc$Depends <- paste(deps, collapse = ", ") } imps <- trimws(imps) if (sum(nchar(imps))) { pkg_desc$Imports <- paste(imps, collapse = ", ") } sysreqs <- trimws(sysreqs) if (sum(nchar(sysreqs))) { pkg_desc$SystemRequirements <- sysreqs } write.dcf(pkg_desc, file = pkg_desc_fname) } invisible(pkg_path) } set_test_package_ns_imports <- function(name, prj, imps) { imp_path <- file.path(prj$path, "packages", name, "R", "packages_import.R") writeLines(c(sprintf(" } create_test_master_script <- function(code, prj) { fn <- tempfile(pattern = "test_", fileext = ".R", tmpdir = file.path(prj$path, "R")) f <- file(fn, "w") writeLines(code, con = f) close(f) invisible(fn) } create_package_deploy_to_lrepo <- function(name, prj, ver = "1.0", type = .Platform$pkgType, deps = "", sysreqs = "", imps = "logging") { pkg_path <- create_test_package(name, prj, ver, deps = deps, imps = imps, sysreqs = sysreqs) set_test_package_ns_imports(name, prj, unlist(strsplit(imps, ","))) params <- prj$load_params() on.exit({ unlink(pkg_path, recursive = T, force = T) unlink(file.path(params$lib_path, "*"), recursive = T, force = T) }, add = T) loc_repo <- .get_local_repo_path(prj, type) prj_install_deps(prj, clean = T) prj_build(prj, type = type) int_path <- RSuite:::rsuite_contrib_url(repos = params$get_intern_repo_path(), type = type) avails <- data.frame(available.packages(sprintf("file:///%s", int_path), type = type), stringsAsFactors = F) pkg_file <- avails[avails$Package == name, "File"] file.copy(from = file.path(int_path, pkg_file), to = loc_repo) RSuite:::rsuite_write_PACKAGES(loc_repo, type = type) } remove_test_packages <- function(prj) { unlink(file.path(prj$path, "packages", "*"), recursive = T, force = T) } set_test_package_deps <- function(name, prj, deps = NULL, sugs = NULL) { params <- prj$load_params() pkg_desc_fname <- file.path(params$pkgs_path, name, "DESCRIPTION") if (file.exists(pkg_desc_fname)) { pkg_desc <- data.frame(read.dcf(file = pkg_desc_fname)) if (!is.null(deps)) { pkg_desc$Depends <- paste(deps, collapse = ", ") } if (!is.null(sugs)) { pkg_desc$Suggests <- paste(sugs, collapse = ", ") } } write.dcf(pkg_desc, file = pkg_desc_fname) } .get_local_repo_path <- function(prj, type) { path <- RSuite:::rsuite_contrib_url(repos = file.path(prj$path, "repository"), type = type) stopifnot(dir.exists(path)) path <- normalizePath(path) return(path) } expect_that_packages_installed <- function(names, prj, versions = NULL, supports = FALSE) { stopifnot(is.null(versions) || length(names) == length(versions)) if (supports) { lib_path <- file.path(prj$path, "deployment", "sbox") } else { lib_path <- file.path(prj$path, "deployment", "libs") } installed <- installed.packages(lib.loc = lib_path, noCache = T)[, "Package"] pass <- setequal(installed, names) if (pass) { msg <- "" } else if (length(setdiff(names, installed)) > 0) { msg <- sprintf("Package(s) %s failed to install", paste(setdiff(names, installed), collapse = ", ")) } else if (length(setdiff(installed, names)) > 0) { msg <- sprintf("Unexpected package(s) %s installed", paste(setdiff(installed, names), collapse = ", ")) } else { stop(sprintf("Unexpected condition occured: %s != %s!!!", paste(names, collapse = ", "), paste(installed, collapse = ", "))) } if (pass && !is.null(versions)) { inst_vers <- as.data.frame(installed.packages(lib.loc = lib_path, noCache = T), stringsAsFactors = F)[, c("Package", "Version")] expt_vers <- data.frame(Package = names, Expected = versions) failed_vers <- merge(x = inst_vers, y = expt_vers, by.x = "Package", by.y = "Package") failed_vers <- failed_vers[!is.na(failed_vers$Expected) & failed_vers$Version != failed_vers$Expected, ] pass <- nrow(failed_vers) == 0 if (!pass) { msg <- sprintf("Unexpected versions installed ([pkg]ver!=exp): %s", paste(sprintf("[%s]%s!=%s", failed_vers$Package, failed_vers$Version, failed_vers$Expected), collapse = ", ")) } } expect(pass, msg) invisible(installed) } expect_that_has_docs <- function(topics, pkg_name, prj) { doc_path <- file.path(prj$path, "deployment", "libs", pkg_name, "help", "AnIndex") if (!file.exists(doc_path)) { pass <- F msg <- sprintf("No documentation index found for %s", pkg_name) } else { lines <- readLines(doc_path) all_topics <- unlist(lapply(strsplit(lines, "\t"), function(ent) { ent[1] })) pass <- all(topics %in% all_topics) if (!pass) { msg <- sprintf("Documetation topics not found in %s: %s", pkg_name, paste(setdiff(topics, all_topics), collapse = ", ")) } else { msg <- "" } } expect(pass, msg) } expect_that_packages_locked <- function(expects, params) { lock_data <- data.frame(read.dcf(params$lock_path), stringsAsFactors = FALSE) expected_data <- data.frame(Package = names(expects), Expected = expects) locked <- lock_data$Package pass <- setequal(locked, expected_data$Package) if (pass) { msg <- "" } else if (length(setdiff(expected_data$Package, locked)) > 0) { msg <- sprintf("Package(s) %s failed to lock", paste(setdiff(expected_data$Package, locked), collapse = ", ")) } else if (length(setdiff(locked, expected_data$Package)) > 0) { msg <- sprintf("Unexpected package(s) %s locked", paste(setdiff(locked, expected_data$Package), collapse = ", ")) } else { stop(sprintf("Unexpected condition occured: %s != %s!!!", paste(expected_data$Package, collapse = ", "), paste(locked, collapse = ", "))) } if (pass) { failed_vers <- merge(x = lock_data, y = expected_data, by.x = "Package", by.y = "Package") failed_vers <- failed_vers[!is.na(failed_vers$Expected) & failed_vers$Version != failed_vers$Expected, ] pass <- nrow(failed_vers) == 0 msg <- sprintf("Unexpected versions locked ([pkg]ver!=exp): %s", paste(sprintf("[%s]%s!=%s", failed_vers$Package, failed_vers$Version, failed_vers$Expected), collapse = ", ")) } expect(pass, msg) }
getGVGenotype <- function(ped) { if (hasGenotype(ped)) { genotype <- ped[ , c("id", "first", "second")] } else { genotype <- NULL } genotype }

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
14
Add dataset card