language: | |
- en | |
dataset_info: | |
features: | |
- name: prompt | |
dtype: string | |
- name: answer | |
dtype: string | |
splits: | |
- name: spell | |
num_bytes: 465046 | |
num_examples: 1000 | |
- name: spell_inverse | |
num_bytes: 446046 | |
num_examples: 1000 | |
- name: contains_char | |
num_bytes: 424176 | |
num_examples: 1000 | |
- name: contains_word | |
num_bytes: 530494 | |
num_examples: 1000 | |
- name: orth | |
num_bytes: 607118 | |
num_examples: 1000 | |
- name: sem | |
num_bytes: 608098 | |
num_examples: 1000 | |
- name: ins_char | |
num_bytes: 560474 | |
num_examples: 1000 | |
- name: ins_word | |
num_bytes: 775597 | |
num_examples: 1000 | |
- name: del_char | |
num_bytes: 513247 | |
num_examples: 1000 | |
- name: del_word | |
num_bytes: 689114 | |
num_examples: 1000 | |
- name: sub_char | |
num_bytes: 532364 | |
num_examples: 1000 | |
- name: sub_word | |
num_bytes: 743529 | |
num_examples: 1000 | |
- name: swap_char | |
num_bytes: 470394 | |
num_examples: 1000 | |
- name: swap_word | |
num_bytes: 675168 | |
num_examples: 1000 | |
download_size: 962103 | |
dataset_size: 8040865 | |
configs: | |
- config_name: default | |
data_files: | |
- split: spell | |
path: data/spell-* | |
- split: spell_inverse | |
path: data/spell_inverse-* | |
- split: contains_char | |
path: data/contains_char-* | |
- split: contains_word | |
path: data/contains_word-* | |
- split: orth | |
path: data/orth-* | |
- split: sem | |
path: data/sem-* | |
- split: ins_char | |
path: data/ins_char-* | |
- split: ins_word | |
path: data/ins_word-* | |
- split: del_char | |
path: data/del_char-* | |
- split: del_word | |
path: data/del_word-* | |
- split: sub_char | |
path: data/sub_char-* | |
- split: sub_word | |
path: data/sub_word-* | |
- split: swap_char | |
path: data/swap_char-* | |
- split: swap_word | |
path: data/swap_word-* | |
# CUTE | |
Here is the CUTE benchmark, a benchmark designed for testing LLM's ability to understand the characters within their tokens. | |
To use this dataset as we did, make sure to use ``` tokenizer.apply_chat_template ``` on the prompt, and then add ``` Answer: " ``` afterwards to the resulting string. | |
For smaller LLMs, you may need to do some post-processing on the final answer. | |
You can also check out our implementation at: https://github.com/Leukas/cute |