datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.54M
likes
int64
0
6.35k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
40
โŒ€
createdAt
unknown
card
stringlengths
19
1M
open-llm-leaderboard/gmonsoon__StockSeaLLMs-7B-v1-details
open-llm-leaderboard
"2024-11-21T13:49:09Z"
6
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:45:45Z"
--- pretty_name: Evaluation run of gmonsoon/StockSeaLLMs-7B-v1 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [gmonsoon/StockSeaLLMs-7B-v1](https://huggingface.co/gmonsoon/StockSeaLLMs-7B-v1)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/gmonsoon__StockSeaLLMs-7B-v1-details\"\ ,\n\tname=\"gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-21T13-45-45.216237](https://huggingface.co/datasets/open-llm-leaderboard/gmonsoon__StockSeaLLMs-7B-v1-details/blob/main/gmonsoon__StockSeaLLMs-7B-v1/results_2024-11-21T13-45-45.216237.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.43068391866913125,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.021308808857898823,\n \"\ acc_norm,none\": 0.47956933454403944,\n \"acc_norm_stderr,none\": 0.005332877202997923,\n\ \ \"acc,none\": 0.39519614361702127,\n \"acc_stderr,none\"\ : 0.00445720656433847,\n \"exact_match,none\": 0.17598187311178248,\n\ \ \"exact_match_stderr,none\": 0.009729917778735123,\n \"\ inst_level_loose_acc,none\": 0.5407673860911271,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"inst_level_strict_acc,none\": 0.513189448441247,\n \ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.4066543438077634,\n \"prompt_level_strict_acc_stderr,none\": 0.021138283177336344,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5238673841346988,\n \"acc_norm_stderr,none\"\ : 0.006158688482621799,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.852,\n\ \ \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6256684491978609,\n \"acc_norm_stderr,none\"\ : 0.0354849234134303\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.58,\n\ \ \"acc_norm_stderr,none\": 0.03127799950463661\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\":\ \ 0.03131803437491622\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.408,\n \"acc_norm_stderr,none\": 0.031145209846548512\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.748,\n \ \ \"acc_norm_stderr,none\": 0.027513851933031318\n },\n \"\ leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\": \" \ \ - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.676,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.652,\n \"acc_norm_stderr,none\":\ \ 0.030186568464511673\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5684931506849316,\n \"acc_norm_stderr,none\": 0.041131302645371945\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.576,\n \ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.452,\n \"acc_norm_stderr,none\":\ \ 0.03153986449255664\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6404494382022472,\n \"acc_norm_stderr,none\": 0.03606913914074032\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.812,\n \"acc_norm_stderr,none\": 0.02476037772775051\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.456,\n\ \ \"acc_norm_stderr,none\": 0.031563285061213475\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.124,\n \"acc_norm_stderr,none\":\ \ 0.020886382258673272\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\":\ \ 0.02806876238252672\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3028523489932886,\n\ \ \"acc_norm_stderr,none\": 0.013316733936515984,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.2676767676767677,\n \"acc_norm_stderr,none\": 0.031544498882702825\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.304029304029304,\n\ \ \"acc_norm_stderr,none\": 0.019704024937907735\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3169642857142857,\n \"acc_norm_stderr,none\"\ : 0.0220076215848248\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.4066543438077634,\n \"prompt_level_strict_acc_stderr,none\": 0.021138283177336344,\n\ \ \"inst_level_strict_acc,none\": 0.513189448441247,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.43068391866913125,\n \"prompt_level_loose_acc_stderr,none\": 0.021308808857898823,\n\ \ \"inst_level_loose_acc,none\": 0.5407673860911271,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.17598187311178248,\n \"exact_match_stderr,none\"\ : 0.009729917778735123,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.3811074918566775,\n\ \ \"exact_match_stderr,none\": 0.02776327166045321\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \" \ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.10569105691056911,\n \"exact_match_stderr,none\": 0.0278344722877674\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.09090909090909091,\n\ \ \"exact_match_stderr,none\": 0.0251172256361608\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.025,\n \"exact_match_stderr,none\": 0.009346956263824575\n \ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \"\ \ - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.14285714285714285,\n\ \ \"exact_match_stderr,none\": 0.028289929799333556\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.3005181347150259,\n \"exact_match_stderr,none\"\ : 0.033088185944157515\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.02962962962962963,\n \"exact_match_stderr,none\"\ : 0.014648038602753809\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.39519614361702127,\n\ \ \"acc_stderr,none\": 0.00445720656433847\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.42063492063492064,\n \"acc_norm_stderr,none\"\ : 0.017713270487861726,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.536,\n\ \ \"acc_norm_stderr,none\": 0.031603975145223735\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.328125,\n \"acc_norm_stderr,none\"\ : 0.029403146715355242\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.43068391866913125,\n \"prompt_level_loose_acc_stderr,none\": 0.021308808857898823,\n\ \ \"acc_norm,none\": 0.47956933454403944,\n \"acc_norm_stderr,none\"\ : 0.005332877202997923,\n \"acc,none\": 0.39519614361702127,\n \"\ acc_stderr,none\": 0.00445720656433847,\n \"exact_match,none\": 0.17598187311178248,\n\ \ \"exact_match_stderr,none\": 0.009729917778735123,\n \"inst_level_loose_acc,none\"\ : 0.5407673860911271,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"inst_level_strict_acc,none\": 0.513189448441247,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.4066543438077634,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.021138283177336344,\n \"\ alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.5238673841346988,\n \"acc_norm_stderr,none\": 0.006158688482621799,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\ acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6256684491978609,\n \"acc_norm_stderr,none\"\ : 0.0354849234134303\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.408,\n \"acc_norm_stderr,none\": 0.031145209846548512\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.748,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.676,\n \"acc_norm_stderr,none\": 0.029658294924545567\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.652,\n \"acc_norm_stderr,none\": 0.030186568464511673\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5684931506849316,\n\ \ \"acc_norm_stderr,none\": 0.041131302645371945\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.452,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6404494382022472,\n \"acc_norm_stderr,none\"\ : 0.03606913914074032\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.812,\n \"acc_norm_stderr,none\": 0.02476037772775051\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.124,\n \"acc_norm_stderr,none\": 0.020886382258673272\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3028523489932886,\n\ \ \"acc_norm_stderr,none\": 0.013316733936515984,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.2676767676767677,\n\ \ \"acc_norm_stderr,none\": 0.031544498882702825\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.304029304029304,\n \"acc_norm_stderr,none\": 0.019704024937907735\n \ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3169642857142857,\n \"acc_norm_stderr,none\"\ : 0.0220076215848248\n },\n \"leaderboard_ifeval\": {\n \"alias\":\ \ \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.4066543438077634,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021138283177336344,\n \ \ \"inst_level_strict_acc,none\": 0.513189448441247,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.43068391866913125,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.021308808857898823,\n \"inst_level_loose_acc,none\"\ : 0.5407673860911271,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.17598187311178248,\n\ \ \"exact_match_stderr,none\": 0.009729917778735123,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.3811074918566775,\n \"exact_match_stderr,none\": 0.02776327166045321\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.10569105691056911,\n \"exact_match_stderr,none\": 0.0278344722877674\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.09090909090909091,\n \"exact_match_stderr,none\"\ : 0.0251172256361608\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.025,\n \"exact_match_stderr,none\": 0.009346956263824575\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.14285714285714285,\n \"exact_match_stderr,none\"\ : 0.028289929799333556\n },\n \"leaderboard_math_prealgebra_hard\": {\n \ \ \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.3005181347150259,\n \"exact_match_stderr,none\": 0.033088185944157515\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.02962962962962963,\n\ \ \"exact_match_stderr,none\": 0.014648038602753809\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.39519614361702127,\n\ \ \"acc_stderr,none\": 0.00445720656433847\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.42063492063492064,\n \"acc_norm_stderr,none\"\ : 0.017713270487861726,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.328125,\n\ \ \"acc_norm_stderr,none\": 0.029403146715355242\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n }\n}\n```" repo_url: https://huggingface.co/gmonsoon/StockSeaLLMs-7B-v1 leaderboard_url: '' point_of_contact: '' configs: - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_date_understanding data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_navigate data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_object_counting data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_ruin_names data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_snarks data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_gpqa_diamond data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_gpqa_extended data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_gpqa_main data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_gpqa_main_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_ifeval data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_ifeval_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_algebra_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_geometry_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_num_theory_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_math_precalculus_hard data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_mmlu_pro data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_musr_object_placements data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T13-45-45.216237.jsonl' - config_name: gmonsoon__StockSeaLLMs-7B-v1__leaderboard_musr_team_allocation data_files: - split: 2024_11_21T13_45_45.216237 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T13-45-45.216237.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T13-45-45.216237.jsonl' --- # Dataset Card for Evaluation run of gmonsoon/StockSeaLLMs-7B-v1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [gmonsoon/StockSeaLLMs-7B-v1](https://huggingface.co/gmonsoon/StockSeaLLMs-7B-v1) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/gmonsoon__StockSeaLLMs-7B-v1-details", name="gmonsoon__StockSeaLLMs-7B-v1__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-21T13-45-45.216237](https://huggingface.co/datasets/open-llm-leaderboard/gmonsoon__StockSeaLLMs-7B-v1-details/blob/main/gmonsoon__StockSeaLLMs-7B-v1/results_2024-11-21T13-45-45.216237.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.43068391866913125, "prompt_level_loose_acc_stderr,none": 0.021308808857898823, "acc_norm,none": 0.47956933454403944, "acc_norm_stderr,none": 0.005332877202997923, "acc,none": 0.39519614361702127, "acc_stderr,none": 0.00445720656433847, "exact_match,none": 0.17598187311178248, "exact_match_stderr,none": 0.009729917778735123, "inst_level_loose_acc,none": 0.5407673860911271, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.513189448441247, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.4066543438077634, "prompt_level_strict_acc_stderr,none": 0.021138283177336344, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5238673841346988, "acc_norm_stderr,none": 0.006158688482621799, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6256684491978609, "acc_norm_stderr,none": 0.0354849234134303 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.408, "acc_norm_stderr,none": 0.031145209846548512 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.748, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.676, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.652, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5684931506849316, "acc_norm_stderr,none": 0.041131302645371945 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.452, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6404494382022472, "acc_norm_stderr,none": 0.03606913914074032 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.812, "acc_norm_stderr,none": 0.02476037772775051 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.124, "acc_norm_stderr,none": 0.020886382258673272 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_gpqa": { "acc_norm,none": 0.3028523489932886, "acc_norm_stderr,none": 0.013316733936515984, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2676767676767677, "acc_norm_stderr,none": 0.031544498882702825 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.304029304029304, "acc_norm_stderr,none": 0.019704024937907735 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3169642857142857, "acc_norm_stderr,none": 0.0220076215848248 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.4066543438077634, "prompt_level_strict_acc_stderr,none": 0.021138283177336344, "inst_level_strict_acc,none": 0.513189448441247, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.43068391866913125, "prompt_level_loose_acc_stderr,none": 0.021308808857898823, "inst_level_loose_acc,none": 0.5407673860911271, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.17598187311178248, "exact_match_stderr,none": 0.009729917778735123, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.3811074918566775, "exact_match_stderr,none": 0.02776327166045321 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.10569105691056911, "exact_match_stderr,none": 0.0278344722877674 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.09090909090909091, "exact_match_stderr,none": 0.0251172256361608 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.025, "exact_match_stderr,none": 0.009346956263824575 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.14285714285714285, "exact_match_stderr,none": 0.028289929799333556 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.3005181347150259, "exact_match_stderr,none": 0.033088185944157515 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.02962962962962963, "exact_match_stderr,none": 0.014648038602753809 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.39519614361702127, "acc_stderr,none": 0.00445720656433847 }, "leaderboard_musr": { "acc_norm,none": 0.42063492063492064, "acc_norm_stderr,none": 0.017713270487861726, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.328125, "acc_norm_stderr,none": 0.029403146715355242 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.43068391866913125, "prompt_level_loose_acc_stderr,none": 0.021308808857898823, "acc_norm,none": 0.47956933454403944, "acc_norm_stderr,none": 0.005332877202997923, "acc,none": 0.39519614361702127, "acc_stderr,none": 0.00445720656433847, "exact_match,none": 0.17598187311178248, "exact_match_stderr,none": 0.009729917778735123, "inst_level_loose_acc,none": 0.5407673860911271, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.513189448441247, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.4066543438077634, "prompt_level_strict_acc_stderr,none": 0.021138283177336344, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5238673841346988, "acc_norm_stderr,none": 0.006158688482621799, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6256684491978609, "acc_norm_stderr,none": 0.0354849234134303 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.408, "acc_norm_stderr,none": 0.031145209846548512 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.748, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.676, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.652, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5684931506849316, "acc_norm_stderr,none": 0.041131302645371945 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.452, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6404494382022472, "acc_norm_stderr,none": 0.03606913914074032 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.812, "acc_norm_stderr,none": 0.02476037772775051 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.124, "acc_norm_stderr,none": 0.020886382258673272 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_gpqa": { "acc_norm,none": 0.3028523489932886, "acc_norm_stderr,none": 0.013316733936515984, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2676767676767677, "acc_norm_stderr,none": 0.031544498882702825 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.304029304029304, "acc_norm_stderr,none": 0.019704024937907735 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3169642857142857, "acc_norm_stderr,none": 0.0220076215848248 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.4066543438077634, "prompt_level_strict_acc_stderr,none": 0.021138283177336344, "inst_level_strict_acc,none": 0.513189448441247, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.43068391866913125, "prompt_level_loose_acc_stderr,none": 0.021308808857898823, "inst_level_loose_acc,none": 0.5407673860911271, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.17598187311178248, "exact_match_stderr,none": 0.009729917778735123, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.3811074918566775, "exact_match_stderr,none": 0.02776327166045321 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.10569105691056911, "exact_match_stderr,none": 0.0278344722877674 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.09090909090909091, "exact_match_stderr,none": 0.0251172256361608 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.025, "exact_match_stderr,none": 0.009346956263824575 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.14285714285714285, "exact_match_stderr,none": 0.028289929799333556 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.3005181347150259, "exact_match_stderr,none": 0.033088185944157515 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.02962962962962963, "exact_match_stderr,none": 0.014648038602753809 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.39519614361702127, "acc_stderr,none": 0.00445720656433847 }, "leaderboard_musr": { "acc_norm,none": 0.42063492063492064, "acc_norm_stderr,none": 0.017713270487861726, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.328125, "acc_norm_stderr,none": 0.029403146715355242 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
davidberenstein1957/qwen2.5-coder-0.5b-openai_humaneval
davidberenstein1957
"2024-11-21T14:22:39Z"
6
0
[ "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "observers" ]
null
"2024-11-21T14:14:26Z"
--- tags: - observers --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
SeppeV/joke_gen_of_mistral_ft_mean_score_dpo_w_ex_reasoning_prompt_wo_ex_jo
SeppeV
"2024-11-21T14:20:08Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:20:07Z"
--- dataset_info: features: - name: jokeText dtype: string - name: userId dtype: int64 splits: - name: train num_bytes: 95640 num_examples: 125 download_size: 53031 dataset_size: 95640 configs: - config_name: default data_files: - split: train path: data/train-* ---
SeppeV/results_joke_gen_mistral_ft_mean_score_dpo_w_ex_reason_prmpt_wo_ex_jo_ens_test
SeppeV
"2024-11-21T14:29:03Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:29:00Z"
--- dataset_info: features: - name: jokeText dtype: string - name: userId dtype: int64 - name: score dtype: float32 splits: - name: train num_bytes: 96140 num_examples: 125 download_size: 53482 dataset_size: 96140 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_toxigen-data-train_zeroshot_limiar3
juliadollis
"2024-11-21T14:32:41Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:32:39Z"
--- dataset_info: features: - name: text dtype: string - name: target_group dtype: string - name: factual? dtype: string - name: ingroup_effect dtype: string - name: lewd dtype: string - name: framing dtype: string - name: predicted_group dtype: string - name: stereotyping dtype: string - name: intent dtype: float64 - name: toxicity_ai dtype: float64 - name: toxicity_human dtype: float64 - name: predicted_author dtype: string - name: actual_method dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: y_true dtype: int64 splits: - name: train num_bytes: 3508181 num_examples: 8960 download_size: 731936 dataset_size: 3508181 configs: - config_name: default data_files: - split: train path: data/train-* ---
ismailaib/FleetVision
ismailaib
"2024-11-21T14:37:49Z"
6
1
[ "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:36:33Z"
--- license: mit ---
katyazevskaya/python-course
katyazevskaya
"2024-11-21T14:40:46Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:40:43Z"
--- dataset_info: features: - name: Original Text dtype: string - name: Lemmatized Text sequence: string - name: POS Annotation sequence: sequence: string - name: NER Annotation sequence: sequence: string splits: - name: train num_bytes: 190320 num_examples: 1 download_size: 104732 dataset_size: 190320 configs: - config_name: default data_files: - split: train path: data/train-* ---
A-l-e-x/gravitation
A-l-e-x
"2024-11-21T15:20:56Z"
6
0
[ "license:mit", "region:us" ]
null
"2024-11-21T15:19:53Z"
--- license: mit ---
jfcalvo/test-export-with-changes-3
jfcalvo
"2024-11-21T15:33:45Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:33:43Z"
--- dataset_info: features: - name: pokemon dtype: string - name: type dtype: string splits: - name: train num_bytes: 180000 num_examples: 10000 download_size: 3818 dataset_size: 180000 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/P_wiki_doc10000_real32
dgambettaphd
"2024-11-21T15:33:56Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:33:52Z"
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string splits: - name: train num_bytes: 1818793 num_examples: 10000 download_size: 1211248 dataset_size: 1818793 configs: - config_name: default data_files: - split: train path: data/train-* ---
jfcalvo/test-export-with-changes-different-split
jfcalvo
"2024-11-21T15:35:17Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:35:14Z"
--- dataset_info: features: - name: pokemon dtype: string - name: type dtype: string splits: - name: testing num_bytes: 180000 num_examples: 10000 download_size: 3818 dataset_size: 180000 configs: - config_name: default data_files: - split: testing path: data/testing-* ---
jfcalvo/test-export-with-records
jfcalvo
"2024-11-21T15:58:07Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:58:05Z"
--- dataset_info: config_name: anotherone2 features: - name: pokemon dtype: string - name: type dtype: string splits: - name: testing num_bytes: 180000 num_examples: 10000 download_size: 3818 dataset_size: 180000 configs: - config_name: anotherone2 data_files: - split: testing path: anotherone2/testing-* ---
juliadollis/mistral_toxigen-data-train_zeroshot_curto_limiar3
juliadollis
"2024-11-21T15:58:13Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:58:11Z"
--- dataset_info: features: - name: text dtype: string - name: target_group dtype: string - name: factual? dtype: string - name: ingroup_effect dtype: string - name: lewd dtype: string - name: framing dtype: string - name: predicted_group dtype: string - name: stereotyping dtype: string - name: intent dtype: float64 - name: toxicity_ai dtype: float64 - name: toxicity_human dtype: float64 - name: predicted_author dtype: string - name: actual_method dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: y_true dtype: int64 splits: - name: train num_bytes: 3508181 num_examples: 8960 download_size: 731958 dataset_size: 3508181 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct-details
open-llm-leaderboard
"2024-11-21T16:09:20Z"
6
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T16:06:21Z"
--- pretty_name: Evaluation run of GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct-details\"\ ,\n\tname=\"GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-21T16-06-20.952173](https://huggingface.co/datasets/open-llm-leaderboard/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct-details/blob/main/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct/results_2024-11-21T16-06-20.952173.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_strict_acc,none\": 0.6062846580406654,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.021024834145872404,\n \"\ acc_norm,none\": 0.5431314048514723,\n \"acc_norm_stderr,none\": 0.005317050852347761,\n\ \ \"inst_level_loose_acc,none\": 0.7302158273381295,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.4263630319148936,\n\ \ \"acc_stderr,none\": 0.004508763683858449,\n \"inst_level_strict_acc,none\"\ : 0.7038369304556354,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.19788519637462235,\n \"exact_match_stderr,none\"\ : 0.009998835994126825,\n \"prompt_level_loose_acc,none\": 0.6395563770794824,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.0206614696698795,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n\ \ \"acc_norm,none\": 0.5948620031244576,\n \"acc_norm_stderr,none\"\ : 0.006083807836624403,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.856,\n\ \ \"acc_norm_stderr,none\": 0.022249407735450245\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6363636363636364,\n \"acc_norm_stderr,none\"\ : 0.03527198153014412\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.636,\n\ \ \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.584,\n \"acc_norm_stderr,none\":\ \ 0.031235856237014505\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.436,\n \"acc_norm_stderr,none\": 0.031425567060281365\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.724,\n \ \ \"acc_norm_stderr,none\": 0.02832853727421142\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\":\ \ 0.031563285061213475\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\":\ \ 0.031603975145223735\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.796,\n \"acc_norm_stderr,none\":\ \ 0.025537121574548162\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.744,\n \"acc_norm_stderr,none\": 0.027657108718204846\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.644,\n \ \ \"acc_norm_stderr,none\": 0.0303436806571532\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5684931506849316,\n \"acc_norm_stderr,none\": 0.041131302645371945\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.864,\n \ \ \"acc_norm_stderr,none\": 0.021723342617052086\n },\n \"\ leaderboard_bbh_salient_translation_error_detection\": {\n \"alias\"\ : \" - leaderboard_bbh_salient_translation_error_detection\",\n \"acc_norm,none\"\ : 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n },\n\ \ \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6460674157303371,\n \"acc_norm_stderr,none\"\ : 0.03594285405211505\n },\n \"leaderboard_bbh_sports_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \ \ \"acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.592,\n\ \ \"acc_norm_stderr,none\": 0.03114520984654851\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\":\ \ 0.02806876238252672\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.344,\n \"acc_norm_stderr,none\":\ \ 0.03010450339231644\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3347315436241611,\n\ \ \"acc_norm_stderr,none\": 0.013681339748209233,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.3434343434343434,\n \"acc_norm_stderr,none\": 0.03383201223244441\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.32234432234432236,\n\ \ \"acc_norm_stderr,none\": 0.020020102750045735\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.34598214285714285,\n \"acc_norm_stderr,none\"\ : 0.022499241830682457\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.6062846580406654,\n \"prompt_level_strict_acc_stderr,none\": 0.021024834145872404,\n\ \ \"inst_level_strict_acc,none\": 0.7038369304556354,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.6395563770794824,\n \"prompt_level_loose_acc_stderr,none\": 0.0206614696698795,\n\ \ \"inst_level_loose_acc,none\": 0.7302158273381295,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.19788519637462235,\n \"exact_match_stderr,none\"\ : 0.009998835994126825,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.43322475570032576,\n\ \ \"exact_match_stderr,none\": 0.028327050442298423\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.11382113821138211,\n \"exact_match_stderr,none\": 0.02875360087323741\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.06818181818181818,\n\ \ \"exact_match_stderr,none\": 0.022022378945902827\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.03571428571428571,\n \"exact_match_stderr,none\": 0.011110196729254557\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.12337662337662338,\n\ \ \"exact_match_stderr,none\": 0.026587484423674337\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.35751295336787564,\n \"exact_match_stderr,none\"\ : 0.03458816042181008\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.05925925925925926,\n \"exact_match_stderr,none\"\ : 0.02039673654232189\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.4263630319148936,\n\ \ \"acc_stderr,none\": 0.004508763683858449\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4775132275132275,\n \"acc_norm_stderr,none\"\ : 0.01802634312352244,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.576,\n\ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.43359375,\n \"acc_norm_stderr,none\"\ : 0.031033834158735715\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_strict_acc,none\"\ : 0.6062846580406654,\n \"prompt_level_strict_acc_stderr,none\": 0.021024834145872404,\n\ \ \"acc_norm,none\": 0.5431314048514723,\n \"acc_norm_stderr,none\"\ : 0.005317050852347761,\n \"inst_level_loose_acc,none\": 0.7302158273381295,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.4263630319148936,\n\ \ \"acc_stderr,none\": 0.004508763683858449,\n \"inst_level_strict_acc,none\"\ : 0.7038369304556354,\n \"inst_level_strict_acc_stderr,none\": \"N/A\",\n\ \ \"exact_match,none\": 0.19788519637462235,\n \"exact_match_stderr,none\"\ : 0.009998835994126825,\n \"prompt_level_loose_acc,none\": 0.6395563770794824,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.0206614696698795,\n \"\ alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.5948620031244576,\n \"acc_norm_stderr,none\": 0.006083807836624403,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\ acc_norm,none\": 0.856,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6363636363636364,\n \"acc_norm_stderr,none\"\ : 0.03527198153014412\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.584,\n \"acc_norm_stderr,none\": 0.031235856237014505\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.436,\n \"acc_norm_stderr,none\": 0.031425567060281365\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.724,\n \"acc_norm_stderr,none\": 0.02832853727421142\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.796,\n \"acc_norm_stderr,none\": 0.025537121574548162\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.744,\n \"acc_norm_stderr,none\": 0.027657108718204846\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5684931506849316,\n\ \ \"acc_norm_stderr,none\": 0.041131302645371945\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.864,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6460674157303371,\n \"acc_norm_stderr,none\"\ : 0.03594285405211505\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.592,\n \"acc_norm_stderr,none\": 0.03114520984654851\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.344,\n \"acc_norm_stderr,none\": 0.03010450339231644\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3347315436241611,\n\ \ \"acc_norm_stderr,none\": 0.013681339748209233,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.3434343434343434,\n\ \ \"acc_norm_stderr,none\": 0.03383201223244441\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.32234432234432236,\n \"acc_norm_stderr,none\": 0.020020102750045735\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.34598214285714285,\n \"acc_norm_stderr,none\"\ : 0.022499241830682457\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.6062846580406654,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021024834145872404,\n \ \ \"inst_level_strict_acc,none\": 0.7038369304556354,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.6395563770794824,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.0206614696698795,\n \"inst_level_loose_acc,none\"\ : 0.7302158273381295,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.19788519637462235,\n\ \ \"exact_match_stderr,none\": 0.009998835994126825,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.43322475570032576,\n \"exact_match_stderr,none\": 0.028327050442298423\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.11382113821138211,\n \"exact_match_stderr,none\": 0.02875360087323741\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.06818181818181818,\n \"exact_match_stderr,none\"\ : 0.022022378945902827\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.03571428571428571,\n \"exact_match_stderr,none\"\ : 0.011110196729254557\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.12337662337662338,\n \"exact_match_stderr,none\": 0.026587484423674337\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.35751295336787564,\n \"exact_match_stderr,none\"\ : 0.03458816042181008\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.05925925925925926,\n \"exact_match_stderr,none\": 0.02039673654232189\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.4263630319148936,\n \"acc_stderr,none\": 0.004508763683858449\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4775132275132275,\n\ \ \"acc_norm_stderr,none\": 0.01802634312352244,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.43359375,\n \"acc_norm_stderr,none\": 0.031033834158735715\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ }\n}\n```" repo_url: https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct leaderboard_url: '' point_of_contact: '' configs: - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_date_understanding data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_navigate data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_object_counting data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_ruin_names data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_snarks data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_gpqa_diamond data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_gpqa_extended data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_gpqa_main data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_gpqa_main_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_ifeval data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_ifeval_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_algebra_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_geometry_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_num_theory_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_math_precalculus_hard data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_mmlu_pro data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_musr_object_placements data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T16-06-20.952173.jsonl' - config_name: GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_musr_team_allocation data_files: - split: 2024_11_21T16_06_20.952173 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T16-06-20.952173.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T16-06-20.952173.jsonl' --- # Dataset Card for Evaluation run of GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct-details", name="GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-21T16-06-20.952173](https://huggingface.co/datasets/open-llm-leaderboard/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct-details/blob/main/GoToCompany__gemma2-9b-cpt-sahabatai-v1-instruct/results_2024-11-21T16-06-20.952173.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_strict_acc,none": 0.6062846580406654, "prompt_level_strict_acc_stderr,none": 0.021024834145872404, "acc_norm,none": 0.5431314048514723, "acc_norm_stderr,none": 0.005317050852347761, "inst_level_loose_acc,none": 0.7302158273381295, "inst_level_loose_acc_stderr,none": "N/A", "acc,none": 0.4263630319148936, "acc_stderr,none": 0.004508763683858449, "inst_level_strict_acc,none": 0.7038369304556354, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.19788519637462235, "exact_match_stderr,none": 0.009998835994126825, "prompt_level_loose_acc,none": 0.6395563770794824, "prompt_level_loose_acc_stderr,none": 0.0206614696698795, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5948620031244576, "acc_norm_stderr,none": 0.006083807836624403, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.856, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6363636363636364, "acc_norm_stderr,none": 0.03527198153014412 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.436, "acc_norm_stderr,none": 0.031425567060281365 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.724, "acc_norm_stderr,none": 0.02832853727421142 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.796, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.744, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5684931506849316, "acc_norm_stderr,none": 0.041131302645371945 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.864, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6460674157303371, "acc_norm_stderr,none": 0.03594285405211505 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_gpqa": { "acc_norm,none": 0.3347315436241611, "acc_norm_stderr,none": 0.013681339748209233, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3434343434343434, "acc_norm_stderr,none": 0.03383201223244441 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.32234432234432236, "acc_norm_stderr,none": 0.020020102750045735 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.34598214285714285, "acc_norm_stderr,none": 0.022499241830682457 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.6062846580406654, "prompt_level_strict_acc_stderr,none": 0.021024834145872404, "inst_level_strict_acc,none": 0.7038369304556354, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6395563770794824, "prompt_level_loose_acc_stderr,none": 0.0206614696698795, "inst_level_loose_acc,none": 0.7302158273381295, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.19788519637462235, "exact_match_stderr,none": 0.009998835994126825, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.43322475570032576, "exact_match_stderr,none": 0.028327050442298423 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.11382113821138211, "exact_match_stderr,none": 0.02875360087323741 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.06818181818181818, "exact_match_stderr,none": 0.022022378945902827 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.03571428571428571, "exact_match_stderr,none": 0.011110196729254557 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.12337662337662338, "exact_match_stderr,none": 0.026587484423674337 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.35751295336787564, "exact_match_stderr,none": 0.03458816042181008 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.05925925925925926, "exact_match_stderr,none": 0.02039673654232189 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4263630319148936, "acc_stderr,none": 0.004508763683858449 }, "leaderboard_musr": { "acc_norm,none": 0.4775132275132275, "acc_norm_stderr,none": 0.01802634312352244, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.43359375, "acc_norm_stderr,none": 0.031033834158735715 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 } }, "leaderboard": { "prompt_level_strict_acc,none": 0.6062846580406654, "prompt_level_strict_acc_stderr,none": 0.021024834145872404, "acc_norm,none": 0.5431314048514723, "acc_norm_stderr,none": 0.005317050852347761, "inst_level_loose_acc,none": 0.7302158273381295, "inst_level_loose_acc_stderr,none": "N/A", "acc,none": 0.4263630319148936, "acc_stderr,none": 0.004508763683858449, "inst_level_strict_acc,none": 0.7038369304556354, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.19788519637462235, "exact_match_stderr,none": 0.009998835994126825, "prompt_level_loose_acc,none": 0.6395563770794824, "prompt_level_loose_acc_stderr,none": 0.0206614696698795, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5948620031244576, "acc_norm_stderr,none": 0.006083807836624403, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.856, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6363636363636364, "acc_norm_stderr,none": 0.03527198153014412 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.436, "acc_norm_stderr,none": 0.031425567060281365 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.724, "acc_norm_stderr,none": 0.02832853727421142 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.796, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.744, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5684931506849316, "acc_norm_stderr,none": 0.041131302645371945 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.864, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6460674157303371, "acc_norm_stderr,none": 0.03594285405211505 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_gpqa": { "acc_norm,none": 0.3347315436241611, "acc_norm_stderr,none": 0.013681339748209233, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3434343434343434, "acc_norm_stderr,none": 0.03383201223244441 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.32234432234432236, "acc_norm_stderr,none": 0.020020102750045735 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.34598214285714285, "acc_norm_stderr,none": 0.022499241830682457 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.6062846580406654, "prompt_level_strict_acc_stderr,none": 0.021024834145872404, "inst_level_strict_acc,none": 0.7038369304556354, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6395563770794824, "prompt_level_loose_acc_stderr,none": 0.0206614696698795, "inst_level_loose_acc,none": 0.7302158273381295, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.19788519637462235, "exact_match_stderr,none": 0.009998835994126825, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.43322475570032576, "exact_match_stderr,none": 0.028327050442298423 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.11382113821138211, "exact_match_stderr,none": 0.02875360087323741 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.06818181818181818, "exact_match_stderr,none": 0.022022378945902827 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.03571428571428571, "exact_match_stderr,none": 0.011110196729254557 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.12337662337662338, "exact_match_stderr,none": 0.026587484423674337 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.35751295336787564, "exact_match_stderr,none": 0.03458816042181008 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.05925925925925926, "exact_match_stderr,none": 0.02039673654232189 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4263630319148936, "acc_stderr,none": 0.004508763683858449 }, "leaderboard_musr": { "acc_norm,none": 0.4775132275132275, "acc_norm_stderr,none": 0.01802634312352244, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.43359375, "acc_norm_stderr,none": 0.031033834158735715 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
PaDaS-Lab/webfaq-en-test
PaDaS-Lab
"2024-11-21T16:49:29Z"
6
0
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "multilinguality:monolingual", "source_datasets:msmarco", "language:en", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "text-retrieval" ]
[ "text-retrieval" ]
"2024-11-21T16:49:23Z"
--- language: - en multilinguality: - monolingual task_categories: - text-retrieval source_datasets: - msmarco task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 splits: - name: dev num_bytes: 2451014 num_examples: 52160 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: corpus num_bytes: 15332374 num_examples: 52160 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_bytes: 3989191 num_examples: 52160 configs: - config_name: default data_files: - split: dev path: qrels/dev.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl ---
procit007/treated_0.3
procit007
"2024-11-21T16:54:13Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T16:52:37Z"
--- dataset_info: features: - name: gender dtype: string - name: accent dtype: string - name: speaker_id dtype: int64 - name: speaker_name dtype: string - name: text dtype: string - name: normalized_text dtype: string - name: audio dtype: audio - name: treated dtype: bool - name: metrics struct: - name: clipping_ratio dtype: float64 - name: duration dtype: float64 - name: is_valid dtype: bool - name: rms_energy dtype: float64 - name: sample_rate dtype: int64 - name: silence_ratio dtype: float64 - name: snr dtype: float64 splits: - name: train num_bytes: 3176831243.0 num_examples: 10000 download_size: 2978489519 dataset_size: 3176831243.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_toxigen-data-train_2fewshot_limiar3
juliadollis
"2024-11-21T17:20:37Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T17:20:34Z"
--- dataset_info: features: - name: text dtype: string - name: target_group dtype: string - name: factual? dtype: string - name: ingroup_effect dtype: string - name: lewd dtype: string - name: framing dtype: string - name: predicted_group dtype: string - name: stereotyping dtype: string - name: intent dtype: float64 - name: toxicity_ai dtype: float64 - name: toxicity_human dtype: float64 - name: predicted_author dtype: string - name: actual_method dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: y_true dtype: int64 splits: - name: train num_bytes: 3508181 num_examples: 8960 download_size: 731939 dataset_size: 3508181 configs: - config_name: default data_files: - split: train path: data/train-* ---
RyanYr/self-reflect_mini8Bit-t0_mistlarge-t12_om2-140k_binlabel
RyanYr
"2024-11-21T18:16:05Z"
6
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T18:15:53Z"
--- dataset_info: features: - name: problem dtype: string - name: generated_solution dtype: string - name: answer dtype: string - name: problem_source dtype: string - name: response@0 sequence: string - name: response@1 sequence: string - name: response@2 sequence: string - name: response@0_ans sequence: string - name: response@0_correctness sequence: bool - name: response@2_ans sequence: string - name: response@2_correctness sequence: bool splits: - name: train num_bytes: 689139678 num_examples: 140000 download_size: 304980057 dataset_size: 689139678 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/zelk12__MT3-Gen2-gemma-2-9B-details
open-llm-leaderboard
"2024-11-21T18:47:37Z"
6
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T18:43:34Z"
--- pretty_name: Evaluation run of zelk12/MT3-Gen2-gemma-2-9B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [zelk12/MT3-Gen2-gemma-2-9B](https://huggingface.co/zelk12/MT3-Gen2-gemma-2-9B)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/zelk12__MT3-Gen2-gemma-2-9B-details\"\ ,\n\tname=\"zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_boolean_expressions\",\n\ \tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-21T18-43-33.559212](https://huggingface.co/datasets/open-llm-leaderboard/zelk12__MT3-Gen2-gemma-2-9B-details/blob/main/zelk12__MT3-Gen2-gemma-2-9B/results_2024-11-21T18-43-33.559212.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_strict_acc,none\": 0.744916820702403,\n \"\ prompt_level_strict_acc_stderr,none\": 0.018758491950414184,\n \"acc,none\"\ : 0.43326130319148937,\n \"acc_stderr,none\": 0.004517680579088188,\n\ \ \"acc_norm,none\": 0.54987676741471,\n \"acc_norm_stderr,none\"\ : 0.005289250250282228,\n \"prompt_level_loose_acc,none\": 0.767097966728281,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.01818926607409182,\n \ \ \"exact_match,none\": 0.02039274924471299,\n \"exact_match_stderr,none\"\ : 0.003847017757728751,\n \"inst_level_loose_acc,none\": 0.842925659472422,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.8237410071942446,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.6080541572643638,\n \"acc_norm_stderr,none\"\ : 0.0060467875310710436,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.852,\n\ \ \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6310160427807486,\n \"acc_norm_stderr,none\"\ : 0.03538078548260318\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.656,\n\ \ \"acc_norm_stderr,none\": 0.03010450339231644\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.62,\n \"acc_norm_stderr,none\": 0.030760116042626098\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\"\ : \" - leaderboard_bbh_geometric_shapes\",\n \"acc_norm,none\": 0.52,\n\ \ \"acc_norm_stderr,none\": 0.03166085340849512\n },\n \ \ \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\":\ \ 0.02925692860650181\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\":\ \ 0.03131803437491622\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\":\ \ 0.031355968923772626\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.836,\n \"acc_norm_stderr,none\":\ \ 0.023465261002076715\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.676,\n \ \ \"acc_norm_stderr,none\": 0.029658294924545567\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5958904109589042,\n \"acc_norm_stderr,none\": 0.0407519857003932\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.684,\n \"acc_norm_stderr,none\": 0.02946265759857865\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.808,\n \ \ \"acc_norm_stderr,none\": 0.02496069198917196\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.592,\n \"acc_norm_stderr,none\":\ \ 0.03114520984654851\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6966292134831461,\n \"acc_norm_stderr,none\": 0.03455421944400101\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.832,\n \"acc_norm_stderr,none\": 0.023692813205492536\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.844,\n\ \ \"acc_norm_stderr,none\": 0.022995023034068682\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.296,\n \"acc_norm_stderr,none\": 0.028928939388379694\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.304,\n \"acc_norm_stderr,none\":\ \ 0.02915021337415965\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3573825503355705,\n\ \ \"acc_norm_stderr,none\": 0.013891832771494425,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.3888888888888889,\n \"acc_norm_stderr,none\": 0.03473279590836963\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3534798534798535,\n\ \ \"acc_norm_stderr,none\": 0.020477414126085836\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3482142857142857,\n \"acc_norm_stderr,none\"\ : 0.022533152157915175\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.744916820702403,\n \"prompt_level_strict_acc_stderr,none\": 0.018758491950414184,\n\ \ \"inst_level_strict_acc,none\": 0.8237410071942446,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.767097966728281,\n \"prompt_level_loose_acc_stderr,none\": 0.01818926607409182,\n\ \ \"inst_level_loose_acc,none\": 0.842925659472422,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.02039274924471299,\n \"exact_match_stderr,none\": 0.003847017757728751,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \ \ \"exact_match,none\": 0.05537459283387622,\n \"exact_match_stderr,none\"\ : 0.01307447837002421\n },\n \"leaderboard_math_counting_and_prob_hard\"\ : {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_math_geometry_hard\": {\n \"\ alias\": \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\"\ : 0.007575757575757576,\n \"exact_match_stderr,none\": 0.007575757575757577\n\ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \ \ \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.01948051948051948,\n\ \ \"exact_match_stderr,none\": 0.011173331005571083\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.031088082901554404,\n \"exact_match_stderr,none\"\ : 0.012525310625527019\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.43326130319148937,\n \"acc_stderr,none\"\ : 0.004517680579088188\n },\n \"leaderboard_musr\": {\n \ \ \"acc_norm,none\": 0.41005291005291006,\n \"acc_norm_stderr,none\"\ : 0.017490273970870246,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.54,\n\ \ \"acc_norm_stderr,none\": 0.031584653891499004\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.27734375,\n \"acc_norm_stderr,none\"\ : 0.02803528549328419\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_strict_acc,none\"\ : 0.744916820702403,\n \"prompt_level_strict_acc_stderr,none\": 0.018758491950414184,\n\ \ \"acc,none\": 0.43326130319148937,\n \"acc_stderr,none\": 0.004517680579088188,\n\ \ \"acc_norm,none\": 0.54987676741471,\n \"acc_norm_stderr,none\"\ : 0.005289250250282228,\n \"prompt_level_loose_acc,none\": 0.767097966728281,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.01818926607409182,\n \"\ exact_match,none\": 0.02039274924471299,\n \"exact_match_stderr,none\": 0.003847017757728751,\n\ \ \"inst_level_loose_acc,none\": 0.842925659472422,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"inst_level_strict_acc,none\": 0.8237410071942446,\n \ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.6080541572643638,\n\ \ \"acc_norm_stderr,none\": 0.0060467875310710436,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6310160427807486,\n \"acc_norm_stderr,none\"\ : 0.03538078548260318\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.656,\n \"acc_norm_stderr,none\": 0.03010450339231644\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.62,\n \"acc_norm_stderr,none\": 0.030760116042626098\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.836,\n \"acc_norm_stderr,none\": 0.023465261002076715\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.676,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5958904109589042,\n\ \ \"acc_norm_stderr,none\": 0.0407519857003932\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.684,\n \"acc_norm_stderr,none\": 0.02946265759857865\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.808,\n \"acc_norm_stderr,none\": 0.02496069198917196\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.592,\n \"acc_norm_stderr,none\": 0.03114520984654851\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.832,\n \"acc_norm_stderr,none\": 0.023692813205492536\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.844,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.296,\n \"acc_norm_stderr,none\": 0.028928939388379694\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.304,\n \"acc_norm_stderr,none\": 0.02915021337415965\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3573825503355705,\n\ \ \"acc_norm_stderr,none\": 0.013891832771494425,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.3888888888888889,\n\ \ \"acc_norm_stderr,none\": 0.03473279590836963\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.3534798534798535,\n \"acc_norm_stderr,none\": 0.020477414126085836\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3482142857142857,\n \"acc_norm_stderr,none\"\ : 0.022533152157915175\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.744916820702403,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.018758491950414184,\n \ \ \"inst_level_strict_acc,none\": 0.8237410071942446,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.767097966728281,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01818926607409182,\n \"inst_level_loose_acc,none\"\ : 0.842925659472422,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.02039274924471299,\n\ \ \"exact_match_stderr,none\": 0.003847017757728751,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.05537459283387622,\n \"exact_match_stderr,none\": 0.01307447837002421\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_geometry_hard\"\ : {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\"\ : 0.007575757575757576,\n \"exact_match_stderr,none\": 0.007575757575757577\n\ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.01948051948051948,\n \"exact_match_stderr,none\": 0.011173331005571083\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.031088082901554404,\n \"exact_match_stderr,none\"\ : 0.012525310625527019\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.43326130319148937,\n\ \ \"acc_stderr,none\": 0.004517680579088188\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.41005291005291006,\n \"acc_norm_stderr,none\"\ : 0.017490273970870246,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.27734375,\n\ \ \"acc_norm_stderr,none\": 0.02803528549328419\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n }\n}\n```" repo_url: https://huggingface.co/zelk12/MT3-Gen2-gemma-2-9B leaderboard_url: '' point_of_contact: '' configs: - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_date_understanding data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_navigate data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_object_counting data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_ruin_names data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_snarks data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_gpqa_diamond data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_gpqa_extended data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_gpqa_main data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_gpqa_main_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_ifeval data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_ifeval_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_algebra_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_geometry_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_num_theory_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_math_precalculus_hard data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_mmlu_pro data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_musr_object_placements data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T18-43-33.559212.jsonl' - config_name: zelk12__MT3-Gen2-gemma-2-9B__leaderboard_musr_team_allocation data_files: - split: 2024_11_21T18_43_33.559212 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T18-43-33.559212.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T18-43-33.559212.jsonl' --- # Dataset Card for Evaluation run of zelk12/MT3-Gen2-gemma-2-9B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [zelk12/MT3-Gen2-gemma-2-9B](https://huggingface.co/zelk12/MT3-Gen2-gemma-2-9B) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/zelk12__MT3-Gen2-gemma-2-9B-details", name="zelk12__MT3-Gen2-gemma-2-9B__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-21T18-43-33.559212](https://huggingface.co/datasets/open-llm-leaderboard/zelk12__MT3-Gen2-gemma-2-9B-details/blob/main/zelk12__MT3-Gen2-gemma-2-9B/results_2024-11-21T18-43-33.559212.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_strict_acc,none": 0.744916820702403, "prompt_level_strict_acc_stderr,none": 0.018758491950414184, "acc,none": 0.43326130319148937, "acc_stderr,none": 0.004517680579088188, "acc_norm,none": 0.54987676741471, "acc_norm_stderr,none": 0.005289250250282228, "prompt_level_loose_acc,none": 0.767097966728281, "prompt_level_loose_acc_stderr,none": 0.01818926607409182, "exact_match,none": 0.02039274924471299, "exact_match_stderr,none": 0.003847017757728751, "inst_level_loose_acc,none": 0.842925659472422, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8237410071942446, "inst_level_strict_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6080541572643638, "acc_norm_stderr,none": 0.0060467875310710436, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6310160427807486, "acc_norm_stderr,none": 0.03538078548260318 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.656, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.62, "acc_norm_stderr,none": 0.030760116042626098 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.836, "acc_norm_stderr,none": 0.023465261002076715 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.676, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5958904109589042, "acc_norm_stderr,none": 0.0407519857003932 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.808, "acc_norm_stderr,none": 0.02496069198917196 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.832, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.844, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.296, "acc_norm_stderr,none": 0.028928939388379694 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.304, "acc_norm_stderr,none": 0.02915021337415965 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.3573825503355705, "acc_norm_stderr,none": 0.013891832771494425, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3888888888888889, "acc_norm_stderr,none": 0.03473279590836963 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3534798534798535, "acc_norm_stderr,none": 0.020477414126085836 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3482142857142857, "acc_norm_stderr,none": 0.022533152157915175 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.744916820702403, "prompt_level_strict_acc_stderr,none": 0.018758491950414184, "inst_level_strict_acc,none": 0.8237410071942446, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.767097966728281, "prompt_level_loose_acc_stderr,none": 0.01818926607409182, "inst_level_loose_acc,none": 0.842925659472422, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.02039274924471299, "exact_match_stderr,none": 0.003847017757728751, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.05537459283387622, "exact_match_stderr,none": 0.01307447837002421 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.007575757575757576, "exact_match_stderr,none": 0.007575757575757577 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.01948051948051948, "exact_match_stderr,none": 0.011173331005571083 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.031088082901554404, "exact_match_stderr,none": 0.012525310625527019 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43326130319148937, "acc_stderr,none": 0.004517680579088188 }, "leaderboard_musr": { "acc_norm,none": 0.41005291005291006, "acc_norm_stderr,none": 0.017490273970870246, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.27734375, "acc_norm_stderr,none": 0.02803528549328419 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 } }, "leaderboard": { "prompt_level_strict_acc,none": 0.744916820702403, "prompt_level_strict_acc_stderr,none": 0.018758491950414184, "acc,none": 0.43326130319148937, "acc_stderr,none": 0.004517680579088188, "acc_norm,none": 0.54987676741471, "acc_norm_stderr,none": 0.005289250250282228, "prompt_level_loose_acc,none": 0.767097966728281, "prompt_level_loose_acc_stderr,none": 0.01818926607409182, "exact_match,none": 0.02039274924471299, "exact_match_stderr,none": 0.003847017757728751, "inst_level_loose_acc,none": 0.842925659472422, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8237410071942446, "inst_level_strict_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6080541572643638, "acc_norm_stderr,none": 0.0060467875310710436, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6310160427807486, "acc_norm_stderr,none": 0.03538078548260318 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.656, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.62, "acc_norm_stderr,none": 0.030760116042626098 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.836, "acc_norm_stderr,none": 0.023465261002076715 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.676, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5958904109589042, "acc_norm_stderr,none": 0.0407519857003932 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.808, "acc_norm_stderr,none": 0.02496069198917196 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.832, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.844, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.296, "acc_norm_stderr,none": 0.028928939388379694 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.304, "acc_norm_stderr,none": 0.02915021337415965 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.3573825503355705, "acc_norm_stderr,none": 0.013891832771494425, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3888888888888889, "acc_norm_stderr,none": 0.03473279590836963 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3534798534798535, "acc_norm_stderr,none": 0.020477414126085836 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3482142857142857, "acc_norm_stderr,none": 0.022533152157915175 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.744916820702403, "prompt_level_strict_acc_stderr,none": 0.018758491950414184, "inst_level_strict_acc,none": 0.8237410071942446, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.767097966728281, "prompt_level_loose_acc_stderr,none": 0.01818926607409182, "inst_level_loose_acc,none": 0.842925659472422, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.02039274924471299, "exact_match_stderr,none": 0.003847017757728751, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.05537459283387622, "exact_match_stderr,none": 0.01307447837002421 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.007575757575757576, "exact_match_stderr,none": 0.007575757575757577 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.01948051948051948, "exact_match_stderr,none": 0.011173331005571083 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.031088082901554404, "exact_match_stderr,none": 0.012525310625527019 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43326130319148937, "acc_stderr,none": 0.004517680579088188 }, "leaderboard_musr": { "acc_norm,none": 0.41005291005291006, "acc_norm_stderr,none": 0.017490273970870246, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.27734375, "acc_norm_stderr,none": 0.02803528549328419 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
ncoop57/personas-translation-f4d93fec-2af0-4abc-8419-29c0b5450e1f
ncoop57
"2024-11-21T18:52:28Z"
6
0
[ "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "fastdata", "synthetic" ]
null
"2024-11-21T18:52:25Z"
--- tags: - fastdata - synthetic --- # personas-translation-f4d93fec-2af0-4abc-8419-29c0b5450e1f _Note: This is an AI-generated dataset, so its content may be inaccurate or false._ **Source of the data:** The dataset was generated using [Fastdata](https://github.com/AnswerDotAI/fastdata) library and claude-3-haiku-20240307 with the following input: ## System Prompt ``` You will help generate synthetic data of English and Spanish phrases. ``` ## Prompt Template ``` <examples> {examples} </examples> Create an English and Spanish translation pair that is similar to the examples and would be appropriate for the following persona: <persona>{persona}</persona> ``` ## Sample Input ```json [{'persona': "A Political Analyst specialized in El Salvador's political landscape.", 'examples': [Hello, my name is Nathan. I am a research scientist at an AI startup. โžก *Hola, me llamo Nathan. Soy ciencia investigador en un startup de IA.*, How much wood could a woodchuck chuck if a woodchuck could chuck wood? โžก *ยฟCuรกnta madera podrรญa arrojar una marmota si una marmota pudiera arrojar madera?*, Thomas Cranmer (2 July 1489 - 21 March 1556) was a leader of the English Reformation and Archbishop of Canterbury during the reigns of Henry VIII, Edward VI and, for a short time, Mary I. He helped build the case for the annulment of Henry's marriage to Catherine of Aragon, which was one of the causes of the separation of the English Church from union with the Holy See. โžก *Thomas Cranmer (2 de julio de 1489 - 21 de marzo de 1556) fue un lรญder de la Reforma inglesa y arzobispo de Canterbury durante los reinados de Henry VIII, Edward VI y, por un corto tiempo, Marรญa I. Ayudรณ a construir el caso para la anulaciรณn de El matrimonio de Henry con Catalina de Aragรณn, que fue una de las causas de la separaciรณn de la Iglesia inglesa de la uniรณn con la Santa Sede.*]}, {'persona': 'A legal advisor who understands the legal implications of incomplete or inaccurate project documentation', 'examples': [Hello, my name is Nathan. I am a research scientist at an AI startup. โžก *Hola, me llamo Nathan. Soy ciencia investigador en un startup de IA.*, How much wood could a woodchuck chuck if a woodchuck could chuck wood? โžก *ยฟCuรกnta madera podrรญa arrojar una marmota si una marmota pudiera arrojar madera?*, Thomas Cranmer (2 July 1489 - 21 March 1556) was a leader of the English Reformation and Archbishop of Canterbury during the reigns of Henry VIII, Edward VI and, for a short time, Mary I. He helped build the case for the annulment of Henry's marriage to Catherine of Aragon, which was one of the causes of the separation of the English Church from union with the Holy See. โžก *Thomas Cranmer (2 de julio de 1489 - 21 de marzo de 1556) fue un lรญder de la Reforma inglesa y arzobispo de Canterbury durante los reinados de Henry VIII, Edward VI y, por un corto tiempo, Marรญa I. Ayudรณ a construir el caso para la anulaciรณn de El matrimonio de Henry con Catalina de Aragรณn, que fue una de las causas de la separaciรณn de la Iglesia inglesa de la uniรณn con la Santa Sede.*]}] ```
sumuks/e1v0.1-single-shot-questions-multihop-original
sumuks
"2024-11-21T18:53:32Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T18:53:31Z"
--- dataset_info: features: - name: chunk_ids sequence: string - name: generator_model dtype: string - name: question_type dtype: string - name: question dtype: string - name: answer dtype: string - name: document_analysis dtype: string - name: chunk_analysis sequence: string - name: potential_question_directions sequence: string - name: best_direction dtype: string - name: reasoning dtype: string - name: estimated_difficulty dtype: int64 - name: testable_concepts sequence: string - name: difficulty_justification dtype: string - name: quote_context dtype: string - name: supporting_quotes sequence: string splits: - name: train num_bytes: 1068599 num_examples: 398 download_size: 261721 dataset_size: 1068599 configs: - config_name: default data_files: - split: train path: data/train-* ---
Metaskepsis/sft
Metaskepsis
"2024-11-21T19:19:15Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T19:18:36Z"
--- dataset_info: features: - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 622781553 num_examples: 79960 download_size: 193855449 dataset_size: 622781553 configs: - config_name: default data_files: - split: train path: data/train-* ---
theazer69/padilha2
theazer69
"2024-11-21T19:32:57Z"
6
0
[ "license:openrail", "size_categories:n<1K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-21T19:31:32Z"
--- license: openrail ---
cfahlgren1/llama-3.1-awesome-chatgpt-prompts
cfahlgren1
"2024-11-21T19:51:50Z"
6
2
[ "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "observers" ]
null
"2024-11-21T19:44:07Z"
--- tags: - observers --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
neoneye/simon-arc-solve-rotate-v11
neoneye
"2024-11-21T20:45:35Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T20:44:36Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve rotate version 11 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the image gets rotated cw/ccw/180 and transposed. The image sizes are between 1 and 4 pixels. Predict the number of rows in the output image. # Version 2 image size: 1-5. # Version 3 image size: 1-5. Added `flipx` and `flipy` transformations. # Version 4 image size: 1-5. number of tests: 1-2. Previously there were always just 1 test. Added `flipa` and `flipb` transformations, that flips over the diagonal. # Version 5 image size: 1-5. number of tests: 1-2. # Version 6 image size: 1-13. # Version 7 Earlier predictions added to some of the rows. # Version 8 Earlier predictions with focus on repair 1 bad pixel. # Version 9 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 10 Replaced RLE compressed response with raw pixel response. # Version 11 image size: 1-16.
neoneye/simon-arc-solve-translate-v12
neoneye
"2024-11-21T22:06:16Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T22:05:04Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve translate version 12 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the image gets translated by plus/minus 1 pixel in up/down/left/right directions. The image sizes are between 1 and 4 pixels. # Version 2 Only translate plus/minus 1 up/down are enabled. image width: 1-4, image height: 3-4. My hypothesis is that it's easy with RLE data to translate up/down. # Version 3 Only translate plus/minus 1 left/right are enabled. image width: 3-4, image height: 1-4. # Version 4 All transformations have same weight. image size: 3-4. # Version 5 Added diagonal translation by 1 pixel. All transformations have same weight. image size: 3-4. # Version 6 All transformations have same weight. image size: 3-5. # Version 7 All transformations have same weight. image size: 3-5. number of test pairs: 1-2. Previous it was alway 1 test pair. # Version 8 All transformations have same weight. image size: 3-5. number of test pairs: 1-2. Added: Predict the number of rows in the output image. # Version 9 Increased the translation distance from -1..+1, to -2..+2. image size 1-8. # Version 10 Increased the translation distance from -2..+2, to -3..+3. image size 1-12. # Version 11 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 12 Replaced RLE compressed response with raw pixel response. image size 1-5. max translation 1.
eliasfiz/rlhf-tiny
eliasfiz
"2024-11-21T22:18:05Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:18:02Z"
--- dataset_info: features: - name: audio sequence: sequence: int64 - name: prompt dtype: string splits: - name: train num_bytes: 200360 num_examples: 12 download_size: 61717 dataset_size: 200360 configs: - config_name: default data_files: - split: train path: data/train-* ---
neoneye/simon-arc-solve-rotate-v12
neoneye
"2024-11-21T22:31:10Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T22:29:55Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve rotate version 12 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the image gets rotated cw/ccw/180 and transposed. The image sizes are between 1 and 4 pixels. Predict the number of rows in the output image. # Version 2 image size: 1-5. # Version 3 image size: 1-5. Added `flipx` and `flipy` transformations. # Version 4 image size: 1-5. number of tests: 1-2. Previously there were always just 1 test. Added `flipa` and `flipb` transformations, that flips over the diagonal. # Version 5 image size: 1-5. number of tests: 1-2. # Version 6 image size: 1-13. # Version 7 Earlier predictions added to some of the rows. # Version 8 Earlier predictions with focus on repair 1 bad pixel. # Version 9 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 10 Replaced RLE compressed response with raw pixel response. # Version 11 image size: 1-16. # Version 12 I think the image sizes was too big for the model to make sense of the data. Trying with smaller images. image size: 1-5.
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_33
ZixuanKe
"2024-11-21T22:48:35Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:48:33Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 208604 num_examples: 41 download_size: 34372 dataset_size: 208604 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tippawan/Finetune-mt-story-telling-221124-messages
Tippawan
"2024-11-21T22:51:05Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:51:04Z"
--- dataset_info: features: - name: en dtype: string - name: th dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 719000 num_examples: 5629 - name: test num_bytes: 145238 num_examples: 1126 - name: validation num_bytes: 145163 num_examples: 1126 download_size: 577598 dataset_size: 1009401 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
neoneye/simon-arc-solve-scale-v9
neoneye
"2024-11-21T23:16:54Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T23:14:58Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve scale version 9 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the images gets scaled up/down in both x and y direction. example count: 2-4. test count: 1-2. image size: 3-10. scale factor: 1-3. # Version 2 image size: 1-20. scale factor: 1-7. # Version 3 image size: 1-30. scale factor: 1-7. # Version 4 Added a few noise to the images. image size: 1-10. scale factor: 1-7. Only scale down. Number of noise pixels per pixel cell: 0-2. # Version 5 More noisy images for down scaling. image size: 1-12. Number of noise pixels per pixel cell: 0-half. # Version 6 Earlier predictions added to some of the rows. # Version 7 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 8 Replaced RLE compressed response with raw pixel response. image size: 1-5. scale factor: 1-7. # Version 9 image size: 1-7. scale factor: 1-3.
neoneye/simon-arc-solve-skew-v5
neoneye
"2024-11-21T23:33:46Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T23:32:47Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve skew version 5 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the job is to apply skew/unkew in the directions up/down/left/right. example count: 2-4. test count: 1-2. image size: 1-4. # Version 2 image size: 1-7. # Version 3 Earlier predictions added to some of the rows. # Version 4 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 5 Replaced RLE compressed response with raw pixel response.
dogtooth/llama-31-diverse-generations-hs
dogtooth
"2024-11-21T23:50:12Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:50:10Z"
--- dataset_info: features: - name: prompt dtype: string - name: response sequence: string splits: - name: train num_bytes: 48336201 num_examples: 10163 download_size: 20400362 dataset_size: 48336201 configs: - config_name: default data_files: - split: train path: data/train-* ---
TSOWatch/1001NightsTreasureKnowledge
TSOWatch
"2024-11-22T00:09:09Z"
6
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:08:33Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsWoodcutter
TSOWatch
"2024-11-22T00:23:30Z"
6
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:23:14Z"
--- license: creativeml-openrail-m ---
open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details
open-llm-leaderboard
"2024-11-22T00:34:22Z"
6
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:31:09Z"
--- pretty_name: Evaluation run of allenai/Llama-3.1-Tulu-3-8B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details\"\ ,\n\tname=\"allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-31-08.901515](https://huggingface.co/datasets/open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details/blob/main/allenai__Llama-3.1-Tulu-3-8B/results_2024-11-22T00-31-08.901515.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc_norm,none\": 0.38785834738617203,\n \"acc_norm_stderr,none\"\ : 0.005273329157943381,\n \"inst_level_loose_acc,none\": 0.8752997601918465,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.8585131894484412,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.19637462235649547,\n \"exact_match_stderr,none\"\ : 0.009854609082277298,\n \"acc,none\": 0.2826628989361702,\n \ \ \"acc_stderr,none\": 0.0041053027261143855,\n \"prompt_level_strict_acc,none\"\ : 0.7948243992606284,\n \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n\ \ \"prompt_level_loose_acc,none\": 0.8151571164510166,\n \"\ prompt_level_loose_acc_stderr,none\": 0.01670417955850395,\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.4025342822426662,\n \"acc_norm_stderr,none\": 0.006072426154807149,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.8,\n \"acc_norm_stderr,none\": 0.02534897002097912\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5187165775401069,\n\ \ \"acc_norm_stderr,none\": 0.03663608375537843\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\":\ \ 0.028697004587398253\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.472,\n\ \ \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.328,\n \"acc_norm_stderr,none\":\ \ 0.029752391824475363\n },\n \"leaderboard_bbh_hyperbaton\": {\n\ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.256,\n \"acc_norm_stderr,none\": 0.027657108718204846\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.288,\n\ \ \"acc_norm_stderr,none\": 0.028697004587398253\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3904109589041096,\n \"acc_norm_stderr,none\"\ : 0.040513109165891854\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\":\ \ 0.031563285061213475\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.5224719101123596,\n\ \ \"acc_norm_stderr,none\": 0.03754432508487191\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.496,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.116,\n \"acc_norm_stderr,none\": 0.020293429803083823\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\":\ \ 0.021723342617052086\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\":\ \ 0.022249407735450245\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.292,\n \"acc_norm_stderr,none\":\ \ 0.02881432040220563\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013264655332365493,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.30303030303030304,\n \"acc_norm_stderr,none\": 0.03274287914026869\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.28205128205128205,\n\ \ \"acc_norm_stderr,none\": 0.019275803929950375\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3169642857142857,\n \"acc_norm_stderr,none\"\ : 0.0220076215848248\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7948243992606284,\n \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n\ \ \"inst_level_strict_acc,none\": 0.8585131894484412,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.8151571164510166,\n \"prompt_level_loose_acc_stderr,none\": 0.01670417955850395,\n\ \ \"inst_level_loose_acc,none\": 0.8752997601918465,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.19637462235649547,\n \"exact_match_stderr,none\"\ : 0.009854609082277298,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.3811074918566775,\n\ \ \"exact_match_stderr,none\": 0.02776327166045321\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \" \ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.11382113821138211,\n \"exact_match_stderr,none\": 0.02875360087323741\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.06060606060606061,\n\ \ \"exact_match_stderr,none\": 0.020847129156682045\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.03214285714285714,\n \"exact_match_stderr,none\": 0.01055955866175321\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.12987012987012986,\n\ \ \"exact_match_stderr,none\": 0.02717696535667076\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.022222222222222223,\n \"exact_match_stderr,none\"\ : 0.01273389971505968\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.2826628989361702,\n\ \ \"acc_stderr,none\": 0.004105302726114385\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4166666666666667,\n \"acc_norm_stderr,none\"\ : 0.01768575862518651,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.528,\n\ \ \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.31640625,\n \"acc_norm_stderr,none\"\ : 0.02912403057115479\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.408,\n \"acc_norm_stderr,none\": 0.031145209846548512\n\ \ }\n },\n \"leaderboard\": {\n \"acc_norm,none\": 0.38785834738617203,\n\ \ \"acc_norm_stderr,none\": 0.005273329157943381,\n \"inst_level_loose_acc,none\"\ : 0.8752997601918465,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"inst_level_strict_acc,none\": 0.8585131894484412,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.19637462235649547,\n \"exact_match_stderr,none\"\ : 0.009854609082277298,\n \"acc,none\": 0.2826628989361702,\n \"acc_stderr,none\"\ : 0.0041053027261143855,\n \"prompt_level_strict_acc,none\": 0.7948243992606284,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n \ \ \"prompt_level_loose_acc,none\": 0.8151571164510166,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.01670417955850395,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.4025342822426662,\n \"acc_norm_stderr,none\"\ : 0.006072426154807149,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.8,\n \"acc_norm_stderr,none\": 0.02534897002097912\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5187165775401069,\n \"acc_norm_stderr,none\"\ : 0.03663608375537843\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.472,\n \"acc_norm_stderr,none\": 0.031636489531544396\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.328,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.256,\n \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3904109589041096,\n\ \ \"acc_norm_stderr,none\": 0.040513109165891854\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.5224719101123596,\n \"acc_norm_stderr,none\"\ : 0.03754432508487191\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \"\ acc_norm,none\": 0.116,\n \"acc_norm_stderr,none\": 0.020293429803083823\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.292,\n \"acc_norm_stderr,none\": 0.02881432040220563\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013264655332365493,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.30303030303030304,\n\ \ \"acc_norm_stderr,none\": 0.03274287914026869\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.28205128205128205,\n \"acc_norm_stderr,none\": 0.019275803929950375\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3169642857142857,\n \"acc_norm_stderr,none\"\ : 0.0220076215848248\n },\n \"leaderboard_ifeval\": {\n \"alias\":\ \ \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7948243992606284,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n \ \ \"inst_level_strict_acc,none\": 0.8585131894484412,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.8151571164510166,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01670417955850395,\n \"inst_level_loose_acc,none\"\ : 0.8752997601918465,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.19637462235649547,\n\ \ \"exact_match_stderr,none\": 0.009854609082277298,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.3811074918566775,\n \"exact_match_stderr,none\": 0.02776327166045321\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.11382113821138211,\n \"exact_match_stderr,none\": 0.02875360087323741\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.06060606060606061,\n \"exact_match_stderr,none\"\ : 0.020847129156682045\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.03214285714285714,\n \"exact_match_stderr,none\"\ : 0.01055955866175321\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.12987012987012986,\n \"exact_match_stderr,none\": 0.02717696535667076\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.022222222222222223,\n \"exact_match_stderr,none\": 0.01273389971505968\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.2826628989361702,\n \"acc_stderr,none\": 0.004105302726114385\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4166666666666667,\n\ \ \"acc_norm_stderr,none\": 0.01768575862518651,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.31640625,\n \"acc_norm_stderr,none\": 0.02912403057115479\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.408,\n \"acc_norm_stderr,none\": 0.031145209846548512\n\ \ }\n}\n```" repo_url: https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B leaderboard_url: '' point_of_contact: '' configs: - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_ifeval data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-31-08.901515.jsonl' --- # Dataset Card for Evaluation run of allenai/Llama-3.1-Tulu-3-8B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details", name="allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-31-08.901515](https://huggingface.co/datasets/open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details/blob/main/allenai__Llama-3.1-Tulu-3-8B/results_2024-11-22T00-31-08.901515.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc_norm,none": 0.38785834738617203, "acc_norm_stderr,none": 0.005273329157943381, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "acc,none": 0.2826628989361702, "acc_stderr,none": 0.0041053027261143855, "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4025342822426662, "acc_norm_stderr,none": 0.006072426154807149, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.8, "acc_norm_stderr,none": 0.02534897002097912 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.328, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3904109589041096, "acc_norm_stderr,none": 0.040513109165891854 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.5224719101123596, "acc_norm_stderr,none": 0.03754432508487191 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.116, "acc_norm_stderr,none": 0.020293429803083823 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.292, "acc_norm_stderr,none": 0.02881432040220563 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013264655332365493, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.30303030303030304, "acc_norm_stderr,none": 0.03274287914026869 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.28205128205128205, "acc_norm_stderr,none": 0.019275803929950375 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3169642857142857, "acc_norm_stderr,none": 0.0220076215848248 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.3811074918566775, "exact_match_stderr,none": 0.02776327166045321 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.11382113821138211, "exact_match_stderr,none": 0.02875360087323741 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.06060606060606061, "exact_match_stderr,none": 0.020847129156682045 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.03214285714285714, "exact_match_stderr,none": 0.01055955866175321 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.12987012987012986, "exact_match_stderr,none": 0.02717696535667076 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.2826628989361702, "acc_stderr,none": 0.004105302726114385 }, "leaderboard_musr": { "acc_norm,none": 0.4166666666666667, "acc_norm_stderr,none": 0.01768575862518651, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.31640625, "acc_norm_stderr,none": 0.02912403057115479 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.408, "acc_norm_stderr,none": 0.031145209846548512 } }, "leaderboard": { "acc_norm,none": 0.38785834738617203, "acc_norm_stderr,none": 0.005273329157943381, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "acc,none": 0.2826628989361702, "acc_stderr,none": 0.0041053027261143855, "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4025342822426662, "acc_norm_stderr,none": 0.006072426154807149, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.8, "acc_norm_stderr,none": 0.02534897002097912 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.328, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3904109589041096, "acc_norm_stderr,none": 0.040513109165891854 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.5224719101123596, "acc_norm_stderr,none": 0.03754432508487191 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.116, "acc_norm_stderr,none": 0.020293429803083823 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.292, "acc_norm_stderr,none": 0.02881432040220563 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013264655332365493, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.30303030303030304, "acc_norm_stderr,none": 0.03274287914026869 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.28205128205128205, "acc_norm_stderr,none": 0.019275803929950375 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3169642857142857, "acc_norm_stderr,none": 0.0220076215848248 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.3811074918566775, "exact_match_stderr,none": 0.02776327166045321 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.11382113821138211, "exact_match_stderr,none": 0.02875360087323741 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.06060606060606061, "exact_match_stderr,none": 0.020847129156682045 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.03214285714285714, "exact_match_stderr,none": 0.01055955866175321 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.12987012987012986, "exact_match_stderr,none": 0.02717696535667076 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.2826628989361702, "acc_stderr,none": 0.004105302726114385 }, "leaderboard_musr": { "acc_norm,none": 0.4166666666666667, "acc_norm_stderr,none": 0.01768575862518651, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.31640625, "acc_norm_stderr,none": 0.02912403057115479 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.408, "acc_norm_stderr,none": 0.031145209846548512 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details
open-llm-leaderboard
"2024-11-22T00:35:43Z"
6
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:32:12Z"
--- pretty_name: Evaluation run of ZeroXClem/Qwen2.5-7B-HomerCreative-Mix dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [ZeroXClem/Qwen2.5-7B-HomerCreative-Mix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details\"\ ,\n\tname=\"ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-32-11.693490](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix/results_2024-11-22T00-32-11.693490.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc,none\": 0.4447307180851064,\n \"acc_stderr,none\"\ : 0.004530535363926051,\n \"inst_level_loose_acc,none\": 0.8285371702637889,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.8165467625899281,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.32326283987915405,\n \"exact_match_stderr,none\"\ : 0.011761711608666757,\n \"prompt_level_loose_acc,none\": 0.7634011090573013,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n \ \ \"acc_norm,none\": 0.5014917628745622,\n \"acc_norm_stderr,none\"\ : 0.005340969872084893,\n \"prompt_level_strict_acc,none\": 0.7504621072088724,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.018622404509805804,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\":\ \ {\n \"acc_norm,none\": 0.5521610831452872,\n \"acc_norm_stderr,none\"\ : 0.006179016832046109,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.86,\n\ \ \"acc_norm_stderr,none\": 0.021989409645240245\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.632,\n\ \ \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.556,\n \ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.528,\n \"acc_norm_stderr,none\":\ \ 0.031636489531544396\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.468,\n \"acc_norm_stderr,none\":\ \ 0.03162125257572558\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.784,\n \"acc_norm_stderr,none\":\ \ 0.02607865766373279\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.7,\n \ \ \"acc_norm_stderr,none\": 0.029040893477575786\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5958904109589042,\n \"acc_norm_stderr,none\": 0.0407519857003932\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.628,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.58,\n \ \ \"acc_norm_stderr,none\": 0.03127799950463661\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\":\ \ 0.031603975145223735\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6966292134831461,\n \"acc_norm_stderr,none\": 0.03455421944400101\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.168,\n \"acc_norm_stderr,none\":\ \ 0.023692813205492536\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.24,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.29949664429530204,\n\ \ \"acc_norm_stderr,none\": 0.013278959534799928,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.2878787878787879,\n \"acc_norm_stderr,none\": 0.03225883512300998\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.29120879120879123,\n\ \ \"acc_norm_stderr,none\": 0.019460910297288078\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.31473214285714285,\n \"acc_norm_stderr,none\"\ : 0.021965797142222607\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7504621072088724,\n \"prompt_level_strict_acc_stderr,none\": 0.018622404509805804,\n\ \ \"inst_level_strict_acc,none\": 0.8165467625899281,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7634011090573013,\n \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n\ \ \"inst_level_loose_acc,none\": 0.8285371702637889,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.32326283987915405,\n \"exact_match_stderr,none\"\ : 0.011761711608666757,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.6091205211726385,\n\ \ \"exact_match_stderr,none\": 0.027894098976471507\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2032520325203252,\n \"exact_match_stderr,none\": 0.03643325851749072\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.20454545454545456,\n\ \ \"exact_match_stderr,none\": 0.03524251981380333\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.1392857142857143,\n \"exact_match_stderr,none\": 0.02072911170255923\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.3051948051948052,\n\ \ \"exact_match_stderr,none\": 0.0372284008596668\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.1037037037037037,\n \"exact_match_stderr,none\"\ : 0.02633725661744443\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.4447307180851064,\n\ \ \"acc_stderr,none\": 0.004530535363926052\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.43386243386243384,\n \"acc_norm_stderr,none\"\ : 0.01762618265060195,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.56,\n\ \ \"acc_norm_stderr,none\": 0.03145724452223569\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.296875,\n \"acc_norm_stderr,none\"\ : 0.028610997088737832\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ }\n },\n \"leaderboard\": {\n \"acc,none\": 0.4447307180851064,\n\ \ \"acc_stderr,none\": 0.004530535363926051,\n \"inst_level_loose_acc,none\"\ : 0.8285371702637889,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"inst_level_strict_acc,none\": 0.8165467625899281,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.32326283987915405,\n \"exact_match_stderr,none\"\ : 0.011761711608666757,\n \"prompt_level_loose_acc,none\": 0.7634011090573013,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n \ \ \"acc_norm,none\": 0.5014917628745622,\n \"acc_norm_stderr,none\": 0.005340969872084893,\n\ \ \"prompt_level_strict_acc,none\": 0.7504621072088724,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.018622404509805804,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5521610831452872,\n \"acc_norm_stderr,none\"\ : 0.006179016832046109,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.86,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.468,\n \"acc_norm_stderr,none\": 0.03162125257572558\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.784,\n \"acc_norm_stderr,none\": 0.02607865766373279\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5958904109589042,\n\ \ \"acc_norm_stderr,none\": 0.0407519857003932\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.628,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.168,\n \"acc_norm_stderr,none\": 0.023692813205492536\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.24,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.29949664429530204,\n\ \ \"acc_norm_stderr,none\": 0.013278959534799928,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.2878787878787879,\n\ \ \"acc_norm_stderr,none\": 0.03225883512300998\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.29120879120879123,\n \"acc_norm_stderr,none\": 0.019460910297288078\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.31473214285714285,\n \"acc_norm_stderr,none\"\ : 0.021965797142222607\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7504621072088724,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.018622404509805804,\n \ \ \"inst_level_strict_acc,none\": 0.8165467625899281,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7634011090573013,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n \"inst_level_loose_acc,none\"\ : 0.8285371702637889,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.32326283987915405,\n\ \ \"exact_match_stderr,none\": 0.011761711608666757,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.6091205211726385,\n \"exact_match_stderr,none\": 0.027894098976471507\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2032520325203252,\n \"exact_match_stderr,none\": 0.03643325851749072\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.20454545454545456,\n \"exact_match_stderr,none\"\ : 0.03524251981380333\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.1392857142857143,\n \"exact_match_stderr,none\"\ : 0.02072911170255923\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.3051948051948052,\n \"exact_match_stderr,none\": 0.0372284008596668\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.1037037037037037,\n \"exact_match_stderr,none\": 0.02633725661744443\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.4447307180851064,\n \"acc_stderr,none\": 0.004530535363926052\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.43386243386243384,\n\ \ \"acc_norm_stderr,none\": 0.01762618265060195,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n },\n \"leaderboard_musr_object_placements\"\ : {\n \"alias\": \" - leaderboard_musr_object_placements\",\n \"\ acc_norm,none\": 0.296875,\n \"acc_norm_stderr,none\": 0.028610997088737832\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ }\n}\n```" repo_url: https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix leaderboard_url: '' point_of_contact: '' configs: - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_ifeval data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-32-11.693490.jsonl' --- # Dataset Card for Evaluation run of ZeroXClem/Qwen2.5-7B-HomerCreative-Mix <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ZeroXClem/Qwen2.5-7B-HomerCreative-Mix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details", name="ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-32-11.693490](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix/results_2024-11-22T00-32-11.693490.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926051, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "acc_norm,none": 0.5014917628745622, "acc_norm_stderr,none": 0.005340969872084893, "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5521610831452872, "acc_norm_stderr,none": 0.006179016832046109, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.86, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.784, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5958904109589042, "acc_norm_stderr,none": 0.0407519857003932 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.628, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.168, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.24, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_gpqa": { "acc_norm,none": 0.29949664429530204, "acc_norm_stderr,none": 0.013278959534799928, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2878787878787879, "acc_norm_stderr,none": 0.03225883512300998 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.29120879120879123, "acc_norm_stderr,none": 0.019460910297288078 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.31473214285714285, "acc_norm_stderr,none": 0.021965797142222607 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.6091205211726385, "exact_match_stderr,none": 0.027894098976471507 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2032520325203252, "exact_match_stderr,none": 0.03643325851749072 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.20454545454545456, "exact_match_stderr,none": 0.03524251981380333 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.1392857142857143, "exact_match_stderr,none": 0.02072911170255923 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.3051948051948052, "exact_match_stderr,none": 0.0372284008596668 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1037037037037037, "exact_match_stderr,none": 0.02633725661744443 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926052 }, "leaderboard_musr": { "acc_norm,none": 0.43386243386243384, "acc_norm_stderr,none": 0.01762618265060195, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.296875, "acc_norm_stderr,none": 0.028610997088737832 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 } }, "leaderboard": { "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926051, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "acc_norm,none": 0.5014917628745622, "acc_norm_stderr,none": 0.005340969872084893, "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5521610831452872, "acc_norm_stderr,none": 0.006179016832046109, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.86, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.784, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5958904109589042, "acc_norm_stderr,none": 0.0407519857003932 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.628, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.168, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.24, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_gpqa": { "acc_norm,none": 0.29949664429530204, "acc_norm_stderr,none": 0.013278959534799928, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2878787878787879, "acc_norm_stderr,none": 0.03225883512300998 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.29120879120879123, "acc_norm_stderr,none": 0.019460910297288078 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.31473214285714285, "acc_norm_stderr,none": 0.021965797142222607 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.6091205211726385, "exact_match_stderr,none": 0.027894098976471507 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2032520325203252, "exact_match_stderr,none": 0.03643325851749072 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.20454545454545456, "exact_match_stderr,none": 0.03524251981380333 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.1392857142857143, "exact_match_stderr,none": 0.02072911170255923 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.3051948051948052, "exact_match_stderr,none": 0.0372284008596668 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1037037037037037, "exact_match_stderr,none": 0.02633725661744443 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926052 }, "leaderboard_musr": { "acc_norm,none": 0.43386243386243384, "acc_norm_stderr,none": 0.01762618265060195, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.296875, "acc_norm_stderr,none": 0.028610997088737832 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details
open-llm-leaderboard
"2024-11-22T00:37:56Z"
6
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:34:21Z"
--- pretty_name: Evaluation run of ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details\"\ ,\n\tname=\"ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-34-20.371295](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix/results_2024-11-22T00-34-20.371295.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.7578558225508318,\n \"\ prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n \"acc,none\"\ : 0.4431515957446808,\n \"acc_stderr,none\": 0.00452891098809217,\n \ \ \"acc_norm,none\": 0.5046050071345181,\n \"acc_norm_stderr,none\"\ : 0.005356894928628325,\n \"inst_level_strict_acc,none\": 0.802158273381295,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\": 0.018890584986760186,\n\ \ \"exact_match,none\": 0.29531722054380666,\n \"exact_match_stderr,none\"\ : 0.011453860732395094,\n \"inst_level_loose_acc,none\": 0.8201438848920863,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.551640340218712,\n \"acc_norm_stderr,none\": 0.006182534734432989,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5614973262032086,\n\ \ \"acc_norm_stderr,none\": 0.03638341809400991\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\":\ \ 0.03139181076542941\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.6,\n\ \ \"acc_norm_stderr,none\": 0.031046021028253316\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.552,\n \ \ \"acc_norm_stderr,none\": 0.03151438761115348\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.524,\n \"acc_norm_stderr,none\":\ \ 0.03164968895968774\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\":\ \ 0.03166998503010743\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.78,\n \"acc_norm_stderr,none\": 0.02625179282460579\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.364,\n\ \ \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.589041095890411,\n \"acc_norm_stderr,none\"\ : 0.04085902451640228\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.6966292134831461,\n\ \ \"acc_norm_stderr,none\": 0.03455421944400101\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.732,\n \"acc_norm_stderr,none\":\ \ 0.02806876238252672\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\":\ \ 0.025537121574548162\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\":\ \ 0.027367497504863593\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3196308724832215,\n\ \ \"acc_norm_stderr,none\": 0.013522572199065146,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.3181818181818182,\n \"acc_norm_stderr,none\": 0.0331847733384533\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3131868131868132,\n\ \ \"acc_norm_stderr,none\": 0.01986656558013767\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.328125,\n \"acc_norm_stderr,none\"\ : 0.0222080353262888\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\": 0.018890584986760186,\n\ \ \"inst_level_strict_acc,none\": 0.802158273381295,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7578558225508318,\n \"prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n\ \ \"inst_level_loose_acc,none\": 0.8201438848920863,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.29531722054380666,\n \"exact_match_stderr,none\"\ : 0.011453860732395094,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.5635179153094463,\n\ \ \"exact_match_stderr,none\": 0.028351520946552713\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.17073170731707318,\n \"exact_match_stderr,none\": 0.034066279591320504\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.1590909090909091,\n\ \ \"exact_match_stderr,none\": 0.03195667292673137\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.11785714285714285,\n \"exact_match_stderr,none\": 0.019303911310421605\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.23376623376623376,\n\ \ \"exact_match_stderr,none\": 0.034215730598256215\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.47668393782383417,\n \"exact_match_stderr,none\"\ : 0.03604513672442202\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.1111111111111111,\n \"exact_match_stderr,none\"\ : 0.027148765412512273\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.4431515957446808,\n\ \ \"acc_stderr,none\": 0.00452891098809217\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.43783068783068785,\n \"acc_norm_stderr,none\"\ : 0.017595964155130817,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.556,\n\ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.28515625,\n \"acc_norm_stderr,none\"\ : 0.028273327213286358\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.7578558225508318,\n \"prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n\ \ \"acc,none\": 0.4431515957446808,\n \"acc_stderr,none\": 0.00452891098809217,\n\ \ \"acc_norm,none\": 0.5046050071345181,\n \"acc_norm_stderr,none\"\ : 0.005356894928628325,\n \"inst_level_strict_acc,none\": 0.802158273381295,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\": 0.018890584986760186,\n\ \ \"exact_match,none\": 0.29531722054380666,\n \"exact_match_stderr,none\"\ : 0.011453860732395094,\n \"inst_level_loose_acc,none\": 0.8201438848920863,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.551640340218712,\n\ \ \"acc_norm_stderr,none\": 0.006182534734432989,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5614973262032086,\n \"acc_norm_stderr,none\"\ : 0.03638341809400991\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.524,\n \"acc_norm_stderr,none\": 0.03164968895968774\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.78,\n \"acc_norm_stderr,none\": 0.02625179282460579\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.589041095890411,\n\ \ \"acc_norm_stderr,none\": 0.04085902451640228\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.732,\n \"acc_norm_stderr,none\": 0.02806876238252672\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\": 0.025537121574548162\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3196308724832215,\n\ \ \"acc_norm_stderr,none\": 0.013522572199065146,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.3181818181818182,\n\ \ \"acc_norm_stderr,none\": 0.0331847733384533\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.3131868131868132,\n \"acc_norm_stderr,none\": 0.01986656558013767\n \ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.328125,\n \"acc_norm_stderr,none\": 0.0222080353262888\n\ \ },\n \"leaderboard_ifeval\": {\n \"alias\": \" - leaderboard_ifeval\"\ ,\n \"prompt_level_strict_acc,none\": 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.018890584986760186,\n \"inst_level_strict_acc,none\": 0.802158273381295,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7578558225508318,\n \"prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n\ \ \"inst_level_loose_acc,none\": 0.8201438848920863,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.29531722054380666,\n \"exact_match_stderr,none\": 0.011453860732395094,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.5635179153094463,\n \"exact_match_stderr,none\": 0.028351520946552713\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.17073170731707318,\n \"exact_match_stderr,none\": 0.034066279591320504\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.1590909090909091,\n \"exact_match_stderr,none\"\ : 0.03195667292673137\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.11785714285714285,\n \"exact_match_stderr,none\"\ : 0.019303911310421605\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.23376623376623376,\n \"exact_match_stderr,none\": 0.034215730598256215\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.47668393782383417,\n \"exact_match_stderr,none\"\ : 0.03604513672442202\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.1111111111111111,\n \"exact_match_stderr,none\": 0.027148765412512273\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.4431515957446808,\n \"acc_stderr,none\": 0.00452891098809217\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.43783068783068785,\n\ \ \"acc_norm_stderr,none\": 0.017595964155130817,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.28515625,\n \"acc_norm_stderr,none\": 0.028273327213286358\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ }\n}\n```" repo_url: https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix leaderboard_url: '' point_of_contact: '' configs: - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_ifeval data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-34-20.371295.jsonl' --- # Dataset Card for Evaluation run of ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details", name="ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-34-20.371295](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix/results_2024-11-22T00-34-20.371295.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217, "acc_norm,none": 0.5046050071345181, "acc_norm_stderr,none": 0.005356894928628325, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.551640340218712, "acc_norm_stderr,none": 0.006182534734432989, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5614973262032086, "acc_norm_stderr,none": 0.03638341809400991 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.78, "acc_norm_stderr,none": 0.02625179282460579 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.589041095890411, "acc_norm_stderr,none": 0.04085902451640228 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_gpqa": { "acc_norm,none": 0.3196308724832215, "acc_norm_stderr,none": 0.013522572199065146, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3181818181818182, "acc_norm_stderr,none": 0.0331847733384533 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3131868131868132, "acc_norm_stderr,none": 0.01986656558013767 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.328125, "acc_norm_stderr,none": 0.0222080353262888 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.5635179153094463, "exact_match_stderr,none": 0.028351520946552713 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.17073170731707318, "exact_match_stderr,none": 0.034066279591320504 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.1590909090909091, "exact_match_stderr,none": 0.03195667292673137 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.11785714285714285, "exact_match_stderr,none": 0.019303911310421605 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.23376623376623376, "exact_match_stderr,none": 0.034215730598256215 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.47668393782383417, "exact_match_stderr,none": 0.03604513672442202 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1111111111111111, "exact_match_stderr,none": 0.027148765412512273 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217 }, "leaderboard_musr": { "acc_norm,none": 0.43783068783068785, "acc_norm_stderr,none": 0.017595964155130817, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.28515625, "acc_norm_stderr,none": 0.028273327213286358 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217, "acc_norm,none": 0.5046050071345181, "acc_norm_stderr,none": 0.005356894928628325, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.551640340218712, "acc_norm_stderr,none": 0.006182534734432989, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5614973262032086, "acc_norm_stderr,none": 0.03638341809400991 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.78, "acc_norm_stderr,none": 0.02625179282460579 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.589041095890411, "acc_norm_stderr,none": 0.04085902451640228 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_gpqa": { "acc_norm,none": 0.3196308724832215, "acc_norm_stderr,none": 0.013522572199065146, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3181818181818182, "acc_norm_stderr,none": 0.0331847733384533 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3131868131868132, "acc_norm_stderr,none": 0.01986656558013767 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.328125, "acc_norm_stderr,none": 0.0222080353262888 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.5635179153094463, "exact_match_stderr,none": 0.028351520946552713 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.17073170731707318, "exact_match_stderr,none": 0.034066279591320504 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.1590909090909091, "exact_match_stderr,none": 0.03195667292673137 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.11785714285714285, "exact_match_stderr,none": 0.019303911310421605 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.23376623376623376, "exact_match_stderr,none": 0.034215730598256215 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.47668393782383417, "exact_match_stderr,none": 0.03604513672442202 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1111111111111111, "exact_match_stderr,none": 0.027148765412512273 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217 }, "leaderboard_musr": { "acc_norm,none": 0.43783068783068785, "acc_norm_stderr,none": 0.017595964155130817, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.28515625, "acc_norm_stderr,none": 0.028273327213286358 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
neoneye/simon-arc-solve-color-v17
neoneye
"2024-11-22T00:37:15Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-22T00:36:02Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve color version 17 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the colors gets manipulated. Currently it's two-color images, where the transformation is to swap colors. The image sizes are between 1 and 5 pixels. Predict the number of rows in the output image. # Version 2 Number of test: 1-2. Previously it was always 1 test. # Version 3 input image size: 1-3. Number of tests: 1. Identify most popular color, and least popular color. The output size is always 1x1. # Version 4 input image size: 1-4. Number of tests: 1. Identify most popular color, and least popular color. The output size is always 1x1. # Version 5 input image size: 1-5. Number of tests: 1-2. Identify most popular color, and least popular color. The output size is always 1x1. # Version 6 input image size: 1-5. Number of tests: 1-2. Identify most popular color, and least popular color. Multiple output sizes: output size is 1x1, and same output size as input size. Swap colors. # Version 7 Focus on `generate_task_replace_color`. image size: 3-6. padding size: 1-5. # Version 8 Focus on `generate_task_replace_color`. image size: 3-8. padding size: 1-10. # Version 9 Focus on `generate_task_replace_color`. image size: 3-10. padding size: 1-20. # Version 10 Enabled all the task generators. # Version 11 Focus on `generate_task_replace_color_pairs_with_different_palettes`. image size: 3-5. padding size: 1-4. # Version 12 Focus on `generate_task_replace_color_pairs_with_different_palettes`. image size: 3-8. padding size: 1-10. # Version 13 Focus on `generate_task_replace_color_pairs_with_different_palettes`. image size: 3-10. padding size: 1-20. # Version 14 Extended `generate_task_replace_color_pairs_with_different_palettes` with 2 new palette modes. Enabled all transformations. # Version 15 Earlier predictions added to some of the rows. # Version 16 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 17 Replaced RLE compressed response with raw pixel response. image size: 1-7.
ahmedheakl/ar_sharegpt4v_instruct
ahmedheakl
"2024-11-23T17:05:05Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:04:05Z"
--- dataset_info: features: - name: id dtype: string - name: image_path dtype: string - name: conversations list: - name: content dtype: string - name: role dtype: string - name: image dtype: image splits: - name: train num_bytes: 10201439857.06 num_examples: 45123 download_size: 10157528307 dataset_size: 10201439857.06 configs: - config_name: default data_files: - split: train path: data/train-* ---
neoneye/simon-arc-solve-skew-v6
neoneye
"2024-11-22T08:02:31Z"
6
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-22T01:17:49Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve skew version 6 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the job is to apply skew/unkew in the directions up/down/left/right. example count: 2-4. test count: 1-2. image size: 1-4. # Version 2 image size: 1-7. # Version 3 Earlier predictions added to some of the rows. # Version 4 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 5 Replaced RLE compressed response with raw pixel response. # Version 6 image size: 1-9.
magnifi/parser_user_v27h
magnifi
"2024-11-22T02:02:43Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:02:42Z"
--- dataset_info: features: - name: Query_id dtype: int64 - name: Query dtype: string - name: Elastic_search dtype: string - name: virtual_portfolios dtype: string - name: Parser_output dtype: string splits: - name: train num_bytes: 344199 num_examples: 1524 - name: validation num_bytes: 24775 num_examples: 128 download_size: 137440 dataset_size: 368974 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
mhdang/image_unseen-fewshot_dpo-userprofile_ours_withjpg_num500
mhdang
"2024-11-22T02:31:57Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:31:29Z"
--- dataset_info: features: - name: jpg_model_train dtype: binary - name: jpg_model_base dtype: binary - name: user_id dtype: int64 - name: text dtype: string - name: emb sequence: sequence: float64 - name: preferred_image_uid_0 dtype: string - name: dispreferred_image_uid_0 dtype: string - name: caption_0 dtype: string - name: preferred_image_uid_1 dtype: string - name: dispreferred_image_uid_1 dtype: string - name: caption_1 dtype: string - name: preferred_image_uid_2 dtype: string - name: dispreferred_image_uid_2 dtype: string - name: caption_2 dtype: string - name: preferred_image_uid_3 dtype: string - name: dispreferred_image_uid_3 dtype: string - name: caption_3 dtype: string - name: class dtype: int64 - name: __index_level_0__ dtype: int64 - name: user_description dtype: string - name: caption dtype: string - name: preferred_image_uid_0_jpg dtype: binary - name: preferred_image_uid_1_jpg dtype: binary - name: preferred_image_uid_2_jpg dtype: binary - name: preferred_image_uid_3_jpg dtype: binary - name: dispreferred_image_uid_0_jpg dtype: binary - name: dispreferred_image_uid_1_jpg dtype: binary - name: dispreferred_image_uid_2_jpg dtype: binary - name: dispreferred_image_uid_3_jpg dtype: binary splits: - name: test num_bytes: 1549983072 num_examples: 500 download_size: 1091156882 dataset_size: 1549983072 configs: - config_name: default data_files: - split: test path: data/test-* ---
mhdang/image_unseen-fewshot_dpo_ours_withjpg_num500
mhdang
"2024-11-22T02:32:50Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:32:23Z"
--- dataset_info: features: - name: jpg_model_train dtype: binary - name: jpg_model_base dtype: binary - name: user_id dtype: int64 - name: text dtype: string - name: emb sequence: sequence: float64 - name: preferred_image_uid_0 dtype: string - name: dispreferred_image_uid_0 dtype: string - name: caption_0 dtype: string - name: preferred_image_uid_1 dtype: string - name: dispreferred_image_uid_1 dtype: string - name: caption_1 dtype: string - name: preferred_image_uid_2 dtype: string - name: dispreferred_image_uid_2 dtype: string - name: caption_2 dtype: string - name: preferred_image_uid_3 dtype: string - name: dispreferred_image_uid_3 dtype: string - name: caption_3 dtype: string - name: class dtype: int64 - name: __index_level_0__ dtype: int64 - name: user_description dtype: string - name: caption dtype: string - name: preferred_image_uid_0_jpg dtype: binary - name: preferred_image_uid_1_jpg dtype: binary - name: preferred_image_uid_2_jpg dtype: binary - name: preferred_image_uid_3_jpg dtype: binary - name: dispreferred_image_uid_0_jpg dtype: binary - name: dispreferred_image_uid_1_jpg dtype: binary - name: dispreferred_image_uid_2_jpg dtype: binary - name: dispreferred_image_uid_3_jpg dtype: binary splits: - name: test num_bytes: 1541153964 num_examples: 500 download_size: 1082327374 dataset_size: 1541153964 configs: - config_name: default data_files: - split: test path: data/test-* ---
mhdang/image_unseen-fewshot_sc-userprofile_ours_withjpg_num500
mhdang
"2024-11-22T02:33:44Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:33:16Z"
--- dataset_info: features: - name: jpg_model_train dtype: binary - name: jpg_model_base dtype: binary - name: user_id dtype: int64 - name: text dtype: string - name: emb sequence: sequence: float64 - name: preferred_image_uid_0 dtype: string - name: dispreferred_image_uid_0 dtype: string - name: caption_0 dtype: string - name: preferred_image_uid_1 dtype: string - name: dispreferred_image_uid_1 dtype: string - name: caption_1 dtype: string - name: preferred_image_uid_2 dtype: string - name: dispreferred_image_uid_2 dtype: string - name: caption_2 dtype: string - name: preferred_image_uid_3 dtype: string - name: dispreferred_image_uid_3 dtype: string - name: caption_3 dtype: string - name: class dtype: int64 - name: __index_level_0__ dtype: int64 - name: user_description dtype: string - name: caption dtype: string - name: preferred_image_uid_0_jpg dtype: binary - name: preferred_image_uid_1_jpg dtype: binary - name: preferred_image_uid_2_jpg dtype: binary - name: preferred_image_uid_3_jpg dtype: binary - name: dispreferred_image_uid_0_jpg dtype: binary - name: dispreferred_image_uid_1_jpg dtype: binary - name: dispreferred_image_uid_2_jpg dtype: binary - name: dispreferred_image_uid_3_jpg dtype: binary splits: - name: test num_bytes: 1539775139 num_examples: 500 download_size: 1080948487 dataset_size: 1539775139 configs: - config_name: default data_files: - split: test path: data/test-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_1
ZixuanKe
"2024-11-22T02:34:40Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:34:39Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 180901 num_examples: 34 download_size: 23783 dataset_size: 180901 configs: - config_name: default data_files: - split: train path: data/train-* ---
ahmedheakl/ar_historicalbooks_instruct
ahmedheakl
"2024-11-24T12:43:16Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:54:22Z"
--- dataset_info: features: - name: image dtype: image - name: question dtype: string - name: answer dtype: string - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 10421311.0 num_examples: 40 download_size: 10375788 dataset_size: 10421311.0 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ar_historicalbooks_instruct" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ifrah1/parallel_eng_ur
ifrah1
"2024-11-22T03:03:42Z"
6
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T03:03:36Z"
--- dataset_info: features: - name: English dtype: string - name: Urdu dtype: string splits: - name: train num_bytes: 26447748.764883477 num_examples: 85853 - name: test num_bytes: 6612168.235116524 num_examples: 21464 download_size: 19520727 dataset_size: 33059917.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
hoonikoo/ppdoor_dpo_split
hoonikoo
"2024-11-22T03:13:36Z"
6
0
[ "license:apache-2.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T03:12:39Z"
--- license: apache-2.0 ---
hev832s/inset
hev832s
"2024-11-22T04:06:39Z"
6
0
[ "license:apache-2.0", "size_categories:n<1K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-22T04:06:01Z"
--- license: apache-2.0 ---
dgambettaphd/D_gen8_run0_llama2-7b_wiki_doc1000_real32_synt96
dgambettaphd
"2024-11-22T04:06:12Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:06:09Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 523694 num_examples: 1000 download_size: 288332 dataset_size: 523694 configs: - config_name: default data_files: - split: train path: data/train-* ---
procit007/treated_0.5
procit007
"2024-11-22T04:08:29Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:06:14Z"
--- dataset_info: features: - name: gender dtype: string - name: accent dtype: string - name: speaker_id dtype: int64 - name: speaker_name dtype: string - name: text dtype: string - name: normalized_text dtype: string - name: audio dtype: audio - name: treated dtype: bool - name: metrics struct: - name: clipping_ratio dtype: float64 - name: duration dtype: float64 - name: is_valid dtype: bool - name: rms_energy dtype: float64 - name: sample_rate dtype: int64 - name: silence_ratio dtype: float64 - name: snr dtype: float64 splits: - name: train num_bytes: 3188358457.0 num_examples: 10000 download_size: 2987430472 dataset_size: 3188358457.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/processed_image_seen_dpo_ours_withjpg_num500
Asap7772
"2024-11-22T04:14:37Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:13:26Z"
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string splits: - name: test num_bytes: 1053569098 num_examples: 500 download_size: 1047189316 dataset_size: 1053569098 configs: - config_name: default data_files: - split: test path: data/test-* ---
TwinDoc/test-multiple-lora-serving_nn_70k
TwinDoc
"2024-11-22T05:20:28Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T05:20:12Z"
--- dataset_info: features: - name: category dtype: string - name: title dtype: string - name: content dtype: string splits: - name: train num_bytes: 183153410 num_examples: 70000 download_size: 102716289 dataset_size: 183153410 configs: - config_name: default data_files: - split: train path: data/train-* ---
TwinDoc/test-multiple-lora-serving_nn_70k_classification
TwinDoc
"2024-11-22T05:23:21Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T05:23:10Z"
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string splits: - name: train num_bytes: 178051903 num_examples: 70000 download_size: 99479613 dataset_size: 178051903 configs: - config_name: default data_files: - split: train path: data/train-* ---
TwinDoc/test-multiple-lora-serving_nn_70k_generation
TwinDoc
"2024-11-22T05:26:32Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T05:26:17Z"
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string splits: - name: train num_bytes: 182313410 num_examples: 70000 download_size: 102699112 dataset_size: 182313410 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/oh_v3-1_only_evol_instruct_140k
mlfoundations-dev
"2024-11-22T05:31:36Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T05:31:27Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: source_label_exact sequence: string splits: - name: train num_bytes: 236898766 num_examples: 73560 download_size: 124062164 dataset_size: 236898766 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen9_run0_llama2-7b_wiki_doc1000_real32_synt96
dgambettaphd
"2024-11-22T05:44:53Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T05:44:51Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 523661 num_examples: 1000 download_size: 287968 dataset_size: 523661 configs: - config_name: default data_files: - split: train path: data/train-* ---
hridaydutta123/YT-100K
hridaydutta123
"2024-11-22T06:55:06Z"
6
0
[ "task_categories:text-classification", "task_categories:feature-extraction", "task_categories:token-classification", "task_categories:zero-shot-classification", "task_categories:sentence-similarity", "task_categories:text-to-speech", "license:cc", "size_categories:100K<n<1M", "modality:text", "doi:10.57967/hf/3602", "region:us", "text", "summarization" ]
[ "text-classification", "feature-extraction", "token-classification", "zero-shot-classification", "sentence-similarity", "text-to-speech" ]
"2024-11-22T06:22:29Z"
--- license: cc tags: - text - summarization task_categories: - text-classification - feature-extraction - token-classification - zero-shot-classification - sentence-similarity - text-to-speech size_categories: - 100K<n<1M --- # <span style="color:Red">A larger version of YT-100K dataset -> YT-30M dataset with 30 million YouTube multilingual multicategory comments is also available which can be obtained by directly emailing the author of this dataset.</span> # Introduction This work introduces two large-scale multilingual comment datasets, YT-30M (and YT-100K) from YouTube. The code and both the datasets: YT-30M (full) and YT-100K (randomly selected 100K sample from YT-30M) are publicly released for further research. YT-30M (YT-100K) contains 32M (100K) comments posted by YouTube channel belonging to YouTube categories. Each comment is associated with a video ID, comment ID, commenter name, commenter channel ID, comment text, upvotes, original channel ID and category of the YouTube channel (e.g., News & Politics, Science & Technology, etc.). # Data Description Each entry in the dataset is related to one commentย for a specific YouTube video in the related categoryย with the following columns: videoID, commentID, commenterName, commenterChannelID, comment, votes,ย originalChannelID, category. Each field is explainedย below: ``` videoID: represents the video ID in YouTube. commentID: represents the comment ID. commenterName: represents the name of the commenter. commenterChannelID: represents the ID of the commenter. comment: represents the comment text. votes: represents the upvotes received by that comment. originalChannelID: represents the original channelย ID who posted the video. category: represents the category of the YouTube video. ``` # Data Anonymization The data is anonymized by removing all Personally Identifiable Information (PII).ย  # Data sample ``` { "videoID": "ab9fe84e2b2406efba4c23385ef9312a", "commentID": "488b24557cf81ed56e75bab6cbf76fa9", "commenterName": "b654822a96eae771cbac945e49e43cbd", "commenterChannelID": "2f1364f249626b3ca514966e3ef3aead", "comment": "ich fand den Handelwecker am besten", "votes": 2, "originalChannelID": "oc_2f1364f249626b3ca514966e3ef3aead", "category": "entertainment" } ``` # Multilingual data | **Language** | **Text** | |--------------|---------------------------------------------------| | English | You girls are so awesome!! | | Russian | ะขะพั‡ะฝะพ ั‚ะฐะบ ะถะต ะฏ ัั‚ั€ะตะปะตั† | | Hindi | เค†เคœ เคญเฅ€ เคญเคพเคˆ เค•ส เค†เคตเคพเคœ เคฎเฅ‡เค‚ เคตเคนเฅ€ เคชเฅเคฐเคพเคจเฅ€ เคฌเคพเคค เคนเฅˆ.... | | Chinese | ็„ก่ซ–ๅฆ‚ไฝ•,ไฝ ๅทฒ็ถ“ๆ˜ฏๅฐ็ฃYT่จ‚้–ฑๆ•ธไน‹้ฆ– | | Bengali | เฆ–เงเฆฟเฆจ เฆนเฆพเฆฟเฆธเฆจเฆพเง‡เฆ• เฆญเฆพเฆฐเง‡เฆคเฆฐ ร เฆงเฆพเฆจเฆฎเฆจเง... | | Spanish | jajajaj esto tiene que ser una brom | | Portuguese | nossa senhora!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!... | | Malayalam | เดจเดฎเดธเตเด•เดพเดฐเด‚ | | Telegu | เฐจเฐฎเฐธเฐพเฐ•เฑเฐฐเฐ‚ | | Japanese | ใ“ใ‚“ใซใกใฏ | # License [CC] (https://choosealicense.com/licenses/cc-by-4.0/#)
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_8
ZixuanKe
"2024-11-22T06:26:21Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:26:20Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5294108 num_examples: 932 download_size: 412031 dataset_size: 5294108 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_8
ZixuanKe
"2024-11-22T06:36:03Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:36:02Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 202258 num_examples: 38 download_size: 34469 dataset_size: 202258 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_2
ZixuanKe
"2024-11-22T06:36:15Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:36:14Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5423925 num_examples: 918 download_size: 398548 dataset_size: 5423925 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_24
ZixuanKe
"2024-11-22T06:38:17Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:38:14Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5830285 num_examples: 994 download_size: 406652 dataset_size: 5830285 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_19
ZixuanKe
"2024-11-22T06:38:49Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:38:47Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5000993 num_examples: 903 download_size: 405686 dataset_size: 5000993 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_2
ZixuanKe
"2024-11-22T06:46:13Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:46:12Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 244634 num_examples: 49 download_size: 21688 dataset_size: 244634 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_19
ZixuanKe
"2024-11-22T06:49:06Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:49:04Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 154519 num_examples: 40 download_size: 45667 dataset_size: 154519 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_24
ZixuanKe
"2024-11-22T06:49:24Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:49:23Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 270318 num_examples: 55 download_size: 43012 dataset_size: 270318 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_14
ZixuanKe
"2024-11-22T06:51:04Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:51:03Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 413238 num_examples: 40 download_size: 26391 dataset_size: 413238 configs: - config_name: default data_files: - split: train path: data/train-* ---
ahmedheakl/ar_adab_instruct
ahmedheakl
"2024-11-24T12:32:37Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:00:46Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 55728905.5 num_examples: 15028 download_size: 17478257 dataset_size: 55728905.5 configs: - config_name: default data_files: - split: train path: data/train-* ---
ahmedheakl/ar_synthesizear_instruct
ahmedheakl
"2024-11-24T12:47:53Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:19:51Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 782137817.686 num_examples: 39069 download_size: 720777071 dataset_size: 782137817.686 configs: - config_name: default data_files: - split: train path: data/train-* ---
googlefan/lami-voice
googlefan
"2024-11-22T07:33:02Z"
6
0
[ "task_categories:text-to-speech", "language:ja", "size_categories:n<1K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "region:us" ]
[ "text-to-speech" ]
"2024-11-22T07:20:21Z"
--- language: - ja pretty_name: lami-voice task_categories: - text-to-speech --- # Credit Lami # Website https://lami.zip/ # License information For those who had granted permission, may use for any purpose, but don't make this data itself public. Don't reupload this dataset to anotoher repo/website/or somewhere public.
dgambettaphd/D_gen10_run0_llama2-7b_wiki_doc1000_real32_synt96
dgambettaphd
"2024-11-22T07:23:58Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:23:55Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 523724 num_examples: 1000 download_size: 287932 dataset_size: 523724 configs: - config_name: default data_files: - split: train path: data/train-* ---
procit007/treated_0.8
procit007
"2024-11-22T07:42:12Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:40:37Z"
--- dataset_info: features: - name: gender dtype: string - name: accent dtype: string - name: speaker_id dtype: int64 - name: speaker_name dtype: string - name: text dtype: string - name: normalized_text dtype: string - name: audio dtype: audio - name: treated dtype: bool - name: metrics struct: - name: clipping_ratio dtype: float64 - name: duration dtype: float64 - name: is_valid dtype: bool - name: rms_energy dtype: float64 - name: sample_rate dtype: int64 - name: silence_ratio dtype: float64 - name: snr dtype: float64 splits: - name: train num_bytes: 2507567161.05 num_examples: 7815 download_size: 2354730617 dataset_size: 2507567161.05 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_6
ZixuanKe
"2024-11-22T07:56:55Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:56:53Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5354281 num_examples: 978 download_size: 392064 dataset_size: 5354281 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_6
ZixuanKe
"2024-11-22T08:07:52Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:07:51Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 266421 num_examples: 39 download_size: 23296 dataset_size: 266421 configs: - config_name: default data_files: - split: train path: data/train-* ---
reflection-gen/ds_coder_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-binarized
reflection-gen
"2024-11-22T21:59:10Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:13:45Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 8212019 num_examples: 2156 download_size: 0 dataset_size: 8212019 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-binarized_all_pairs
reflection-gen
"2024-11-22T21:59:13Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:13:49Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 15339021 num_examples: 4030 download_size: 0 dataset_size: 15339021 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-binarized_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
anupam215769/coding-instruct-llama2-1k
anupam215769
"2024-11-22T08:16:42Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:16:38Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 539037 num_examples: 1000 download_size: 272886 dataset_size: 539037 configs: - config_name: default data_files: - split: train path: data/train-* ---
jacpetro/Code_Vulnerability_Security_DPO
jacpetro
"2024-11-22T08:29:04Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:26:24Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 5682673 num_examples: 4656 download_size: 2333743 dataset_size: 5682673 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen0_run0_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-11-22T08:27:42Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:27:39Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 577936 num_examples: 1000 download_size: 360829 dataset_size: 577936 configs: - config_name: default data_files: - split: train path: data/train-* ---
BlinkVision/BlinkVision_train
BlinkVision
"2024-11-22T08:49:20Z"
6
0
[ "license:cc-by-4.0", "region:us" ]
null
"2024-11-22T08:49:20Z"
--- license: cc-by-4.0 ---
Asap7772/gsm8k_fewshot_prompt
Asap7772
"2024-11-22T09:06:59Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:05:49Z"
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: fewshot_prompt dtype: string splits: - name: train num_bytes: 41447996 num_examples: 7473 - name: test num_bytes: 7219454 num_examples: 1319 download_size: 21288601 dataset_size: 48667450 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
jasong03/tokenized_ds_clm_qwen
jasong03
"2024-11-22T09:19:18Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:08:08Z"
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: train num_bytes: 2868583600 num_examples: 53860 download_size: 725191852 dataset_size: 2868583600 configs: - config_name: default data_files: - split: train path: data/train-* ---
procit007/STT_2.0.0_rc0
procit007
"2024-11-22T09:37:35Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:11:41Z"
--- dataset_info: features: - name: gender dtype: string - name: accent dtype: string - name: speaker_id dtype: int64 - name: speaker_name dtype: string - name: text dtype: string - name: normalized_text dtype: string - name: audio dtype: audio splits: - name: train num_bytes: 22382774642.4 num_examples: 70252 - name: validation num_bytes: 2797687526.8307576 num_examples: 8781 - name: test num_bytes: 2798006133.7692423 num_examples: 8782 download_size: 26241622527 dataset_size: 27978468303.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Summer926/chonglaimimangzhiwang
Summer926
"2024-11-22T09:36:37Z"
6
0
[ "license:cc-by-4.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:34:21Z"
--- license: cc-by-4.0 ---
AlexKarap/AsylK
AlexKarap
"2024-11-22T09:47:38Z"
6
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:45:44Z"
--- license: apache-2.0 ---
dgambettaphd/D_gen1_run0_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-11-22T09:46:45Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:46:43Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 581274 num_examples: 1000 download_size: 356852 dataset_size: 581274 configs: - config_name: default data_files: - split: train path: data/train-* ---
LLMsForHepth/astro
LLMsForHepth
"2024-11-22T09:51:00Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:50:55Z"
--- dataset_info: features: - name: id dtype: string - name: abstract dtype: string splits: - name: test num_bytes: 39639451 num_examples: 32624 download_size: 22929802 dataset_size: 39639451 configs: - config_name: default data_files: - split: test path: data/test-* ---
jfcalvo/argilla-testing-export-01
jfcalvo
"2024-11-22T09:57:47Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:57:42Z"
--- dataset_info: features: - name: text dtype: string - name: label sequence: string splits: - name: train num_bytes: 13165429 num_examples: 10000 download_size: 8347440 dataset_size: 13165429 configs: - config_name: default data_files: - split: train path: data/train-* ---
jfcalvo/argilla-testing-export-04
jfcalvo
"2024-11-22T10:03:04Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T10:03:00Z"
--- dataset_info: features: - name: id dtype: string - name: status dtype: string - name: _server_id dtype: string - name: text dtype: string - name: label.responses sequence: string - name: label.responses.users sequence: string - name: label.responses.status sequence: string splits: - name: train num_bytes: 13894725 num_examples: 10000 download_size: 8796662 dataset_size: 13894725 configs: - config_name: default data_files: - split: train path: data/train-* ---
jfcalvo/argilla-testing-export-13
jfcalvo
"2024-11-22T10:43:33Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T10:43:28Z"
--- dataset_info: features: - name: id dtype: string - name: status dtype: string - name: _server_id dtype: string - name: text dtype: string - name: label.responses sequence: string - name: label.responses.users sequence: string - name: label.responses.status sequence: string splits: - name: train num_bytes: 13898631 num_examples: 10000 download_size: 8801079 dataset_size: 13898631 configs: - config_name: default data_files: - split: train path: data/train-* ---
donghuna/gsm8k_with_plan
donghuna
"2024-11-22T11:01:03Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T11:01:00Z"
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: plan dtype: string splits: - name: train num_bytes: 1333566 num_examples: 1000 download_size: 582394 dataset_size: 1333566 configs: - config_name: default data_files: - split: train path: data/train-* ---
data-is-better-together/imgsys-results-prompts-style_v2_part2_loaded
data-is-better-together
"2024-11-22T11:34:41Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T11:17:29Z"
--- dataset_info: features: - name: quality_prompt dtype: string - name: category dtype: string - name: subcategory dtype: string - name: style_prompt dtype: string - name: simplified_prompt dtype: string - name: __index_level_0__ dtype: int64 - name: image_quality_dev struct: - name: path dtype: string - name: grouped_model_name sequence: string - name: prompt dtype: string - name: image_simplified_dev struct: - name: path dtype: string - name: image_quality_sd struct: - name: path dtype: string - name: image_simplified_sd struct: - name: path dtype: string - name: distilabel_metadata struct: - name: raw_input_image_gen_quality_dev struct: - name: prompt dtype: string - name: raw_input_image_gen_quality_sd struct: - name: prompt dtype: string - name: raw_input_image_gen_simplified_dev struct: - name: prompt dtype: string - name: raw_input_image_gen_simplified_sd struct: - name: prompt dtype: string - name: raw_output_image_gen_quality_dev struct: - name: image dtype: string - name: raw_output_image_gen_quality_sd struct: - name: image dtype: string - name: raw_output_image_gen_simplified_dev struct: - name: image dtype: string - name: raw_output_image_gen_simplified_sd struct: - name: image dtype: string - name: image_quality_dev_loaded dtype: image - name: image_simplified_dev_loaded dtype: image - name: image_quality_sd_loaded dtype: image - name: image_simplified_sd_loaded dtype: image splits: - name: train num_bytes: 19171262392.552002 num_examples: 14587 download_size: 19177786250 dataset_size: 19171262392.552002 configs: - config_name: default data_files: - split: train path: data/train-* --- <p align="center"> <img src="https://huggingface.co/blog/assets/community-datasets/thumbnail.png" width="500px"/> </p> <p align="center">๐Ÿค— <a href="https://huggingface.co/DIBT" target="_blank">Spaces & Datasets</a></p> # Data is Better Together > If you are working on a valuable community-developed dataset but are limited by available resources, please reach out to us on the Hugging Face discord. We may be able to provide support to enhance your project. Data is Better Together is a collaboration between ๐Ÿค— Hugging Face, ๐Ÿ“ Argilla, and the Open-Source ML community. We aim to empower the open-source community to build impactful datasets collectively. This initiative consists of two main components: the community efforts and the cookbook efforts. <details open> <summary><strong>Community Efforts</strong>: They were guided by the HF Team, hands-on projects focused on creating valuable datasets. These projects required the participation of the community and have been successfully completed.</summary> <ul> <details> <summary><strong>Prompt ranking</strong></summary> - **Goal**: This project aimed to create a dataset of 10k prompts ranked by quality. These prompts included both synthetic and human-generated from various datasets. The intention was to use the final dataset for prompt ranking tasks or synthetic data generation. You can find more information about this project in the [prompt ranking README](community-efforts/prompt_ranking/README.md) - **How**: First, we prepared a dataset with the prompts to be ranked using Argilla in a Hugging Face Space. Then, we invited the community to rank the prompts based on their quality. Finally, we collected the annotations and released the dataset. - **Result**: Over 385 people joined this initiative! Thanks to their contribution, we released [DIBT/10k_prompts_ranked](https://huggingface.co/datasets/DIBT/10k_prompts_ranked). This dataset can be used for different tasks as you can filter the higher-quality prompts (for instance, see the MPEP project) and generate the corresponding completions. You can also find some models built on top of it [here](https://huggingface.co/models?dataset=dataset:DIBT/10k_prompts_ranked). </details> <details> <summary><strong>Multilingual Prompt Evaluation Project (MPEP)</strong></summary> - **Goal**: There are not enough language-specific benchmarks for open LLMs! So, we wanted to create a leaderboard for more languages by leveraging the community. This way, we could evaluate the performance of models using [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval). You can find more information about this project in the [MPEP README](community-efforts/prompt_translation/README.md). - **How**: We selected a subset of 500 high-quality prompts from the [DIBT/10k_prompts_ranked](https://huggingface.co/datasets/DIBT/10k_prompts_ranked) (see the prompt ranking project) and asked the community to help us translate this curated prompt dataset into different languages. - **Result**: We achieved to translate the whole dataset for Dutch and Russian, and almost finished with Spanish. Many other languages have also joined this initiative. You can take a look at the resulting datasets [here](https://huggingface.co/datasets?search=MPEP). </details> <details> <summary><strong>Image Preferences</strong></summary> - **Goal**: This project aims to create 10K text to image preference pairs. These pairs can be used to evaluate the performance of image generation models across a wide variety of common image categories, based on prompt with varying levels of difficulty. You can find more information about this project in the [image preferences README](community-efforts/image_preferences/README.md) - **How**: We use the prompts from [fal/imgsys-results](https://huggingface.co/datasets/fal/imgsys-results), these prompts are evolved based on complexity and quality for various image categories. We then asked the community to annotate the preference between two generated images for each prompt. - **Result**: We achieved to annotate 10K preference pairs. You can take a look at the resulting dataset [here](https://huggingface.co/datasets/DIBT/image_preferences). </details> </ul> <details open> <summary><strong>Cookbook Efforts</strong>: They aim to create guides and tools that help the community in building valuable datasets. They are not guided by the HF team and expected to be handled standalone, allowing you to freely contribute or use them to create your own unique dataset.</summary> <ul> <details> <summary><strong>Domain Specific Datasets</strong></summary> This project aims to bootstrap the creation of more domain-specific datasets for training models. The **goal** is to create a set of tools that help users to collaborate with domain experts. Find out more in the [Domain Specific Datasets README.](cookbook-efforts/domain-specific-datasets/README.md) </details> <details> <summary><strong>DPO/ORPO Datasets</strong></summary> Many languages do not have DPO datasets openly shared on the Hugging Face Hub. The [DIBT/preference_data_by_language](https://huggingface.co/spaces/DIBT/preference_data_by_language) Space gives you an overview of language coverage of DPO datasets for different languages. The **goal** of this project is to help foster a community of people building more DPO-style datasets for different languages. Find out more in this [DPO/ORPO datasets README](cookbook-efforts/dpo-orpo-preference/README.md). </details> <details> <summary><strong>KTO Datasets</strong></summary> KTO is another type of preference dataset that can be used to train models to make decisions. Unlike DPO, it doesn't require two candidate responses. Instead, it relies on a simple binary preference, i.e. ๐Ÿ‘๐Ÿ‘Ž. Thus, data is easier to collect and annotate. The **goal** of this project is to help the community create their own KTO dataset. Find out more in this [KTO datasets README](cookbook-efforts/kto-preference/README.md) </details> </ul> **๐Ÿคโ€‹ How can I contribute to the cookbook efforts?** That's easy! You can contribute by following the instructions in the README of the project you are interested in. Then, share your results with the community! </details>
dgambettaphd/D_gen2_run0_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-11-22T11:22:41Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T11:22:38Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 581412 num_examples: 1000 download_size: 354179 dataset_size: 581412 configs: - config_name: default data_files: - split: train path: data/train-* ---
FiscaAI/icd10cm-prompt
FiscaAI
"2024-11-22T12:10:10Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T12:07:10Z"
--- dataset_info: features: - name: system dtype: string - name: user dtype: string - name: assistant dtype: string - name: codes sequence: string splits: - name: train num_bytes: 47452636 num_examples: 74260 download_size: 3398522 dataset_size: 47452636 configs: - config_name: default data_files: - split: train path: data/train-* ---
Nash-pAnDiTa/Casablanca-EG
Nash-pAnDiTa
"2024-11-22T13:14:59Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T12:46:37Z"
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 1250014939.682 num_examples: 1658 download_size: 1122263634 dataset_size: 1250014939.682 configs: - config_name: default data_files: - split: train path: data/train-* ---
oserikov/pmi-selkup
oserikov
"2024-11-22T14:29:36Z"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T14:29:30Z"
--- dataset_info: features: - name: all struct: - name: interlinear-text list: - name: item struct: - name: source dtype: string - name: paragraph list: - name: item struct: - name: speaker dtype: string - name: phrase list: - name: item struct: - name: ft dtype: string - name: id dtype: string - name: participant dtype: string - name: timestamp sequence: string - name: word list: list: - name: item struct: - name: grammar_tags sequence: string - name: translation sequence: string - name: txt dtype: string - name: morph list: - name: item struct: - name: gls dtype: string - name: id dtype: string - name: txt dtype: string - name: item dtype: 'null' splits: - name: train num_bytes: 29025 num_examples: 1 download_size: 23291 dataset_size: 29025 configs: - config_name: default data_files: - split: train path: data/train-* ---
jfcalvo/argilla-testing-export-19
jfcalvo
"2024-11-22T15:28:26Z"
6
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T15:28:23Z"
--- dataset_info: features: - name: id dtype: string - name: status dtype: class_label: names: '0': pending '1': completed - name: _server_id dtype: string splits: - name: train num_bytes: 618890 num_examples: 10000 download_size: 446821 dataset_size: 618890 configs: - config_name: default data_files: - split: train path: data/train-* ---
None1145/Rosmontis
None1145
"2024-11-22T15:48:27Z"
6
1
[ "task_categories:text-to-speech", "language:zh", "language:ja", "language:ko", "license:mit", "size_categories:n<1K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "region:us", "Rosmontis", "Arknights", "่ฟท่ฟญ้ฆ™", "ๆ˜Žๆ—ฅๆ–น่ˆŸใ€" ]
[ "text-to-speech" ]
"2024-11-22T15:29:21Z"
--- license: mit language: - zh - ja - ko tags: - Rosmontis - Arknights - ่ฟท่ฟญ้ฆ™ - ๆ˜Žๆ—ฅๆ–น่ˆŸใ€ task_categories: - text-to-speech pretty_name: Rosmontis ---
dgambettaphd/D_gen5_run0_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-11-22T15:34:46Z"
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T15:34:43Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 579853 num_examples: 1000 download_size: 352412 dataset_size: 579853 configs: - config_name: default data_files: - split: train path: data/train-* ---