datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.54M
likes
int64
0
6.35k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
40
createdAt
unknown
card
stringlengths
19
1M
reflection-gen/ds_coder6.7b_rmsprop_iter4_sppo_hard_new_cn_mining_oj_iter4-binarized_all_pairs
reflection-gen
"2024-11-21T12:22:53Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:22:52Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 11177269 num_examples: 3268 download_size: 3417576 dataset_size: 11177269 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_rmsprop_iter4_sppo_hard_new_cn_mining_oj_iter4-binarized_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
open-llm-leaderboard/FuseAI__FuseChat-7B-v2.0-details
open-llm-leaderboard
"2024-11-21T12:34:34Z"
5
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:31:38Z"
--- pretty_name: Evaluation run of FuseAI/FuseChat-7B-v2.0 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [FuseAI/FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0)\nThe\ \ dataset is composed of 38 configuration(s), each one corresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/FuseAI__FuseChat-7B-v2.0-details\"\ ,\n\tname=\"FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-11-21T12-31-37.629340](https://huggingface.co/datasets/open-llm-leaderboard/FuseAI__FuseChat-7B-v2.0-details/blob/main/FuseAI__FuseChat-7B-v2.0/results_2024-11-21T12-31-37.629340.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc_norm,none\": 0.46166818004929305,\n \"acc_norm_stderr,none\"\ : 0.005333627579637958,\n \"prompt_level_loose_acc,none\": 0.28650646950092423,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n \ \ \"inst_level_loose_acc,none\": 0.43764988009592326,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.266173752310536,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.019018766847290668,\n \ \ \"inst_level_strict_acc,none\": 0.4184652278177458,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"acc,none\": 0.3162400265957447,\n \"acc_stderr,none\"\ : 0.004239448779714145,\n \"exact_match,none\": 0.0634441087613293,\n\ \ \"exact_match_stderr,none\": 0.00659129853658391,\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.4924492275646589,\n \"acc_norm_stderr,none\": 0.006149524947613364,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\": 0.025721398901416368\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.6149732620320856,\n\ \ \"acc_norm_stderr,none\": 0.03567936280544673\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.468,\n \"acc_norm_stderr,none\":\ \ 0.03162125257572558\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.568,\n\ \ \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\":\ \ 0.02936106757521985\n },\n \"leaderboard_bbh_hyperbaton\": {\n \ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.452,\n \"acc_norm_stderr,none\":\ \ 0.03153986449255664\n },\n \"leaderboard_bbh_object_counting\":\ \ {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.4794520547945205,\n \"acc_norm_stderr,none\": 0.041487661809251744\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.444,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.548,\n \ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.651685393258427,\n\ \ \"acc_norm_stderr,none\": 0.035811144737534356\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.78,\n \"acc_norm_stderr,none\": 0.02625179282460579\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.236,\n\ \ \"acc_norm_stderr,none\": 0.026909337594953852\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.176,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.18,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.3,\n \"acc_norm_stderr,none\": 0.029040893477575783\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.48,\n \ \ \"acc_norm_stderr,none\": 0.03166085340849512\n },\n \"\ leaderboard_gpqa\": {\n \"acc_norm,none\": 0.30201342281879195,\n \ \ \"acc_norm_stderr,none\": 0.01330822752388189,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.2777777777777778,\n \"acc_norm_stderr,none\": 0.03191178226713548\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.31684981684981683,\n\ \ \"acc_norm_stderr,none\": 0.019929048938214563\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29464285714285715,\n \"acc_norm_stderr,none\"\ : 0.021562481080109767\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.266173752310536,\n \"prompt_level_strict_acc_stderr,none\": 0.019018766847290668,\n\ \ \"inst_level_strict_acc,none\": 0.4184652278177458,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.28650646950092423,\n \"prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n\ \ \"inst_level_loose_acc,none\": 0.43764988009592326,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.0634441087613293,\n \"exact_match_stderr,none\"\ : 0.00659129853658391,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.13029315960912052,\n\ \ \"exact_match_stderr,none\": 0.019243609597826783\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.04065040650406504,\n \"exact_match_stderr,none\": 0.017878907564437465\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.022727272727272728,\n\ \ \"exact_match_stderr,none\": 0.0130210469090637\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.014285714285714285,\n \"exact_match_stderr,none\": 0.0071043508939153165\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.03896103896103896,\n\ \ \"exact_match_stderr,none\": 0.015643720451650286\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.10880829015544041,\n \"exact_match_stderr,none\"\ : 0.02247325333276875\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.037037037037037035,\n \"exact_match_stderr,none\"\ : 0.016314377626726044\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.3162400265957447,\n\ \ \"acc_stderr,none\": 0.004239448779714145\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.47883597883597884,\n \"acc_norm_stderr,none\"\ : 0.017936118983800375,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.584,\n\ \ \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.375,\n \"acc_norm_stderr,none\":\ \ 0.03031695312954162\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ }\n },\n \"leaderboard\": {\n \"acc_norm,none\": 0.46166818004929305,\n\ \ \"acc_norm_stderr,none\": 0.005333627579637958,\n \"prompt_level_loose_acc,none\"\ : 0.28650646950092423,\n \"prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n\ \ \"inst_level_loose_acc,none\": 0.43764988009592326,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.266173752310536,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.019018766847290668,\n \"inst_level_strict_acc,none\"\ : 0.4184652278177458,\n \"inst_level_strict_acc_stderr,none\": \"N/A\",\n\ \ \"acc,none\": 0.3162400265957447,\n \"acc_stderr,none\": 0.004239448779714145,\n\ \ \"exact_match,none\": 0.0634441087613293,\n \"exact_match_stderr,none\"\ : 0.00659129853658391,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.4924492275646589,\n \"acc_norm_stderr,none\"\ : 0.006149524947613364,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\": 0.025721398901416368\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6149732620320856,\n \"acc_norm_stderr,none\"\ : 0.03567936280544673\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.468,\n \"acc_norm_stderr,none\": 0.03162125257572558\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\": 0.02936106757521985\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.452,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.4794520547945205,\n\ \ \"acc_norm_stderr,none\": 0.041487661809251744\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.444,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.651685393258427,\n \"acc_norm_stderr,none\"\ : 0.035811144737534356\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.78,\n \"acc_norm_stderr,none\": 0.02625179282460579\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \"\ acc_norm,none\": 0.236,\n \"acc_norm_stderr,none\": 0.026909337594953852\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.176,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.18,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.3,\n \"acc_norm_stderr,none\": 0.029040893477575783\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.30201342281879195,\n\ \ \"acc_norm_stderr,none\": 0.01330822752388189,\n \"alias\": \" -\ \ leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\"\ : \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.2777777777777778,\n\ \ \"acc_norm_stderr,none\": 0.03191178226713548\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.31684981684981683,\n \"acc_norm_stderr,none\": 0.019929048938214563\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29464285714285715,\n \"acc_norm_stderr,none\"\ : 0.021562481080109767\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.266173752310536,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.019018766847290668,\n \ \ \"inst_level_strict_acc,none\": 0.4184652278177458,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.28650646950092423,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n \"inst_level_loose_acc,none\"\ : 0.43764988009592326,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n\ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.0634441087613293,\n\ \ \"exact_match_stderr,none\": 0.00659129853658391,\n \"alias\": \"\ \ - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.13029315960912052,\n \"exact_match_stderr,none\": 0.019243609597826783\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.04065040650406504,\n \"exact_match_stderr,none\": 0.017878907564437465\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.022727272727272728,\n \"exact_match_stderr,none\"\ : 0.0130210469090637\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.014285714285714285,\n \"exact_match_stderr,none\"\ : 0.0071043508939153165\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.03896103896103896,\n \"exact_match_stderr,none\": 0.015643720451650286\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.10880829015544041,\n \"exact_match_stderr,none\"\ : 0.02247325333276875\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.037037037037037035,\n \"exact_match_stderr,none\": 0.016314377626726044\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.3162400265957447,\n \"acc_stderr,none\": 0.004239448779714145\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.47883597883597884,\n\ \ \"acc_norm_stderr,none\": 0.017936118983800375,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.584,\n \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.375,\n \"acc_norm_stderr,none\": 0.03031695312954162\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ }\n}\n```" repo_url: https://huggingface.co/FuseAI/FuseChat-7B-v2.0 leaderboard_url: '' point_of_contact: '' configs: - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_date_understanding data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_navigate data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_object_counting data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_ruin_names data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_snarks data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_gpqa_diamond data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_gpqa_extended data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_gpqa_main data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_gpqa_main_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_ifeval data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_ifeval_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_algebra_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_geometry_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_num_theory_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_math_precalculus_hard data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_mmlu_pro data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_musr_object_placements data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T12-31-37.629340.jsonl' - config_name: FuseAI__FuseChat-7B-v2.0__leaderboard_musr_team_allocation data_files: - split: 2024_11_21T12_31_37.629340 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T12-31-37.629340.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T12-31-37.629340.jsonl' --- # Dataset Card for Evaluation run of FuseAI/FuseChat-7B-v2.0 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [FuseAI/FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/FuseAI__FuseChat-7B-v2.0-details", name="FuseAI__FuseChat-7B-v2.0__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-21T12-31-37.629340](https://huggingface.co/datasets/open-llm-leaderboard/FuseAI__FuseChat-7B-v2.0-details/blob/main/FuseAI__FuseChat-7B-v2.0/results_2024-11-21T12-31-37.629340.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc_norm,none": 0.46166818004929305, "acc_norm_stderr,none": 0.005333627579637958, "prompt_level_loose_acc,none": 0.28650646950092423, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.43764988009592326, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.266173752310536, "prompt_level_strict_acc_stderr,none": 0.019018766847290668, "inst_level_strict_acc,none": 0.4184652278177458, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.3162400265957447, "acc_stderr,none": 0.004239448779714145, "exact_match,none": 0.0634441087613293, "exact_match_stderr,none": 0.00659129853658391, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4924492275646589, "acc_norm_stderr,none": 0.006149524947613364, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6149732620320856, "acc_norm_stderr,none": 0.03567936280544673 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.452, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4794520547945205, "acc_norm_stderr,none": 0.041487661809251744 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.444, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.651685393258427, "acc_norm_stderr,none": 0.035811144737534356 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.78, "acc_norm_stderr,none": 0.02625179282460579 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.236, "acc_norm_stderr,none": 0.026909337594953852 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.176, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.18, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.3, "acc_norm_stderr,none": 0.029040893477575783 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_gpqa": { "acc_norm,none": 0.30201342281879195, "acc_norm_stderr,none": 0.01330822752388189, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2777777777777778, "acc_norm_stderr,none": 0.03191178226713548 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.31684981684981683, "acc_norm_stderr,none": 0.019929048938214563 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29464285714285715, "acc_norm_stderr,none": 0.021562481080109767 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.266173752310536, "prompt_level_strict_acc_stderr,none": 0.019018766847290668, "inst_level_strict_acc,none": 0.4184652278177458, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.28650646950092423, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.43764988009592326, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0634441087613293, "exact_match_stderr,none": 0.00659129853658391, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.13029315960912052, "exact_match_stderr,none": 0.019243609597826783 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.04065040650406504, "exact_match_stderr,none": 0.017878907564437465 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.022727272727272728, "exact_match_stderr,none": 0.0130210469090637 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.014285714285714285, "exact_match_stderr,none": 0.0071043508939153165 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.03896103896103896, "exact_match_stderr,none": 0.015643720451650286 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.10880829015544041, "exact_match_stderr,none": 0.02247325333276875 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.037037037037037035, "exact_match_stderr,none": 0.016314377626726044 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.3162400265957447, "acc_stderr,none": 0.004239448779714145 }, "leaderboard_musr": { "acc_norm,none": 0.47883597883597884, "acc_norm_stderr,none": 0.017936118983800375, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.375, "acc_norm_stderr,none": 0.03031695312954162 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 } }, "leaderboard": { "acc_norm,none": 0.46166818004929305, "acc_norm_stderr,none": 0.005333627579637958, "prompt_level_loose_acc,none": 0.28650646950092423, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.43764988009592326, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.266173752310536, "prompt_level_strict_acc_stderr,none": 0.019018766847290668, "inst_level_strict_acc,none": 0.4184652278177458, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.3162400265957447, "acc_stderr,none": 0.004239448779714145, "exact_match,none": 0.0634441087613293, "exact_match_stderr,none": 0.00659129853658391, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4924492275646589, "acc_norm_stderr,none": 0.006149524947613364, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6149732620320856, "acc_norm_stderr,none": 0.03567936280544673 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.452, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4794520547945205, "acc_norm_stderr,none": 0.041487661809251744 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.444, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.651685393258427, "acc_norm_stderr,none": 0.035811144737534356 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.78, "acc_norm_stderr,none": 0.02625179282460579 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.236, "acc_norm_stderr,none": 0.026909337594953852 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.176, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.18, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.3, "acc_norm_stderr,none": 0.029040893477575783 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_gpqa": { "acc_norm,none": 0.30201342281879195, "acc_norm_stderr,none": 0.01330822752388189, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2777777777777778, "acc_norm_stderr,none": 0.03191178226713548 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.31684981684981683, "acc_norm_stderr,none": 0.019929048938214563 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29464285714285715, "acc_norm_stderr,none": 0.021562481080109767 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.266173752310536, "prompt_level_strict_acc_stderr,none": 0.019018766847290668, "inst_level_strict_acc,none": 0.4184652278177458, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.28650646950092423, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.43764988009592326, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0634441087613293, "exact_match_stderr,none": 0.00659129853658391, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.13029315960912052, "exact_match_stderr,none": 0.019243609597826783 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.04065040650406504, "exact_match_stderr,none": 0.017878907564437465 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.022727272727272728, "exact_match_stderr,none": 0.0130210469090637 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.014285714285714285, "exact_match_stderr,none": 0.0071043508939153165 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.03896103896103896, "exact_match_stderr,none": 0.015643720451650286 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.10880829015544041, "exact_match_stderr,none": 0.02247325333276875 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.037037037037037035, "exact_match_stderr,none": 0.016314377626726044 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.3162400265957447, "acc_stderr,none": 0.004239448779714145 }, "leaderboard_musr": { "acc_norm,none": 0.47883597883597884, "acc_norm_stderr,none": 0.017936118983800375, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.375, "acc_norm_stderr,none": 0.03031695312954162 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
juliadollis/mistral_toxic_hatespeech3
juliadollis
"2024-11-21T12:38:20Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:38:18Z"
--- dataset_info: features: - name: nome_arquivo dtype: string - name: file_id dtype: string - name: user_id dtype: int64 - name: subforum_id dtype: int64 - name: num_contexts dtype: int64 - name: label dtype: string - name: text dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1693 num_examples: 10 download_size: 7545 dataset_size: 1693 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_toxic_hatespeech5
juliadollis
"2024-11-21T12:41:18Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:41:14Z"
--- dataset_info: features: - name: nome_arquivo dtype: string - name: file_id dtype: string - name: user_id dtype: int64 - name: subforum_id dtype: int64 - name: num_contexts dtype: int64 - name: label dtype: string - name: text dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1693 num_examples: 10 download_size: 7545 dataset_size: 1693 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_toxic_hatespeech6
juliadollis
"2024-11-21T12:42:36Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:42:34Z"
--- dataset_info: features: - name: nome_arquivo dtype: string - name: file_id dtype: string - name: user_id dtype: int64 - name: subforum_id dtype: int64 - name: num_contexts dtype: int64 - name: label dtype: string - name: text dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 3291 num_examples: 20 download_size: 8496 dataset_size: 3291 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_ImplicitHateCorpus1
juliadollis
"2024-11-21T12:44:04Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:44:02Z"
--- dataset_info: features: - name: text_en dtype: string - name: class dtype: string - name: is_toxic dtype: int64 - name: text dtype: string - name: predicted_is_toxic dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 4890 num_examples: 20 download_size: 7892 dataset_size: 4890 configs: - config_name: default data_files: - split: train path: data/train-* ---
reflection-gen/ds_coder_rmsprop_iter3_sppo_hard_new_cn_mining_oj_iter3-full_response_traceback
reflection-gen
"2024-11-21T12:53:40Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:53:39Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 18336113 num_examples: 1924 download_size: 6400516 dataset_size: 18336113 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_rmsprop_iter3_sppo_hard_new_cn_mining_oj_iter3-full_response_traceback" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder_rmsprop_iter3_sppo_hard_new_cn_mining_oj_iter3-binarized_all_pairs
reflection-gen
"2024-11-21T12:53:42Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T12:53:40Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 14718348 num_examples: 3632 download_size: 4183612 dataset_size: 14718348 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_rmsprop_iter3_sppo_hard_new_cn_mining_oj_iter3-binarized_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_rmsprop_iter4_sigmoid_cn_mining_oj_iter4-full_response_traceback
reflection-gen
"2024-11-21T13:08:03Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:08:01Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 16332133 num_examples: 2771 download_size: 5963278 dataset_size: 16332133 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_rmsprop_iter4_sigmoid_cn_mining_oj_iter4-full_response_traceback" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_rmsprop_iter4_sigmoid_cn_mining_oj_iter4-binarized_all_pairs
reflection-gen
"2024-11-21T13:08:04Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:08:03Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 14324633 num_examples: 5640 download_size: 3977994 dataset_size: 14324633 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_rmsprop_iter4_sigmoid_cn_mining_oj_iter4-binarized_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tyang816/FLIP_AAV_two-vs-rest
tyang816
"2024-11-21T13:18:58Z"
5
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:18:31Z"
--- license: apache-2.0 ---
tyang816/FLIP_AAV_mut-des
tyang816
"2024-11-21T13:31:15Z"
5
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:30:07Z"
--- license: apache-2.0 ---
tyang816/FLIP_AAV_des-mut
tyang816
"2024-11-21T13:33:09Z"
5
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:31:38Z"
--- license: apache-2.0 ---
tyang816/FLIP_AAV_seven-vs-rest
tyang816
"2024-11-21T13:34:25Z"
5
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:33:59Z"
--- license: apache-2.0 ---
HamdanXI/libriTTS_dev_wav2vec2_latent_layer0_2sec_PERFECT_chunk_40
HamdanXI
"2024-11-21T13:37:57Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:36:21Z"
--- dataset_info: features: - name: audio_clip sequence: float64 - name: layer0_prediction sequence: float64 - name: predicted_text dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 2646635245 num_examples: 100 download_size: 2025426108 dataset_size: 2646635245 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "libriTTS_dev_wav2vec2_latent_layer0_2sec_PERFECT_chunk_40" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tyang816/FLIP_AAV_low-vs-high
tyang816
"2024-11-21T13:37:27Z"
5
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:36:31Z"
--- license: apache-2.0 ---
tyang816/FLIP_AAV_sampled
tyang816
"2024-11-21T13:38:16Z"
5
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:37:31Z"
--- license: apache-2.0 ---
tyang816/FLIP_GB1_one-vs-rest
tyang816
"2024-11-21T13:39:58Z"
5
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:39:46Z"
--- license: apache-2.0 ---
open-llm-leaderboard/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B-details
open-llm-leaderboard
"2024-11-21T13:48:17Z"
5
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:44:54Z"
--- pretty_name: Evaluation run of ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B](https://huggingface.co/ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B-details\"\ ,\n\tname=\"ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-21T13-44-53.382689](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B-details/blob/main/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B/results_2024-11-21T13-44-53.382689.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.5970425138632163,\n \"\ prompt_level_loose_acc_stderr,none\": 0.02110743025673167,\n \"exact_match,none\"\ : 0.24169184290030213,\n \"exact_match_stderr,none\": 0.010888216300269935,\n\ \ \"inst_level_strict_acc,none\": 0.6774580335731415,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.43267952127659576,\n\ \ \"acc_stderr,none\": 0.004516963042571534,\n \"inst_level_loose_acc,none\"\ : 0.6990407673860911,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\ ,\n \"acc_norm,none\": 0.49306005967051497,\n \"acc_norm_stderr,none\"\ : 0.005306328123826936,\n \"prompt_level_strict_acc,none\": 0.5748613678373382,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02127403980535566,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n\ \ \"acc_norm,none\": 0.5433084533935081,\n \"acc_norm_stderr,none\"\ : 0.006133836853018902,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.864,\n\ \ \"acc_norm_stderr,none\": 0.021723342617052086\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5882352941176471,\n \"acc_norm_stderr,none\"\ : 0.036086405630856196\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.62,\n \"acc_norm_stderr,none\": 0.030760116042626098\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.596,\n\ \ \"acc_norm_stderr,none\": 0.03109668818482536\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\"\ : \" - leaderboard_bbh_geometric_shapes\",\n \"acc_norm,none\": 0.46,\n\ \ \"acc_norm_stderr,none\": 0.031584653891499004\n },\n \ \ \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.528,\n \"acc_norm_stderr,none\":\ \ 0.031636489531544396\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\":\ \ 0.03166998503010743\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.804,\n \"acc_norm_stderr,none\":\ \ 0.025156857313255922\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.716,\n \ \ \"acc_norm_stderr,none\": 0.028576958730437443\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5547945205479452,\n \"acc_norm_stderr,none\": 0.04127264774457449\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.464,\n \ \ \"acc_norm_stderr,none\": 0.03160397514522374\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\":\ \ 0.031563285061213475\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.7303370786516854,\n \"acc_norm_stderr,none\": 0.03335689818443925\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.764,\n \"acc_norm_stderr,none\": 0.026909337594953852\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.336,\n\ \ \"acc_norm_stderr,none\": 0.02993325909419153\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.172,\n \"acc_norm_stderr,none\":\ \ 0.02391551394448624\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.26,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.536,\n\ \ \"acc_norm_stderr,none\": 0.031603975145223735\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013265362908440905,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.31313131313131315,\n \"acc_norm_stderr,none\": 0.033042050878136546\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.28205128205128205,\n\ \ \"acc_norm_stderr,none\": 0.019275803929950375\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3125,\n \"acc_norm_stderr,none\"\ : 0.021923384489444957\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.5748613678373382,\n \"prompt_level_strict_acc_stderr,none\": 0.021274039805355655,\n\ \ \"inst_level_strict_acc,none\": 0.6774580335731415,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.5970425138632163,\n \"prompt_level_loose_acc_stderr,none\": 0.02110743025673167,\n\ \ \"inst_level_loose_acc,none\": 0.6990407673860911,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.24169184290030213,\n \"exact_match_stderr,none\"\ : 0.010888216300269935,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.44625407166123776,\n\ \ \"exact_match_stderr,none\": 0.028417486054945495\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2032520325203252,\n \"exact_match_stderr,none\": 0.03643325851749072\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.09090909090909091,\n\ \ \"exact_match_stderr,none\": 0.0251172256361608\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.07142857142857142,\n \"exact_match_stderr,none\": 0.015418479185779361\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.22077922077922077,\n\ \ \"exact_match_stderr,none\": 0.033532323343787154\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.43523316062176165,\n \"exact_match_stderr,none\"\ : 0.03578038165008584\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.05925925925925926,\n \"exact_match_stderr,none\"\ : 0.02039673654232189\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.43267952127659576,\n\ \ \"acc_stderr,none\": 0.004516963042571534\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4166666666666667,\n \"acc_norm_stderr,none\"\ : 0.017479222590443398,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.556,\n\ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.27734375,\n \"acc_norm_stderr,none\"\ : 0.02803528549328419\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.5970425138632163,\n \"prompt_level_loose_acc_stderr,none\": 0.02110743025673167,\n\ \ \"exact_match,none\": 0.24169184290030213,\n \"exact_match_stderr,none\"\ : 0.010888216300269935,\n \"inst_level_strict_acc,none\": 0.6774580335731415,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc,none\":\ \ 0.43267952127659576,\n \"acc_stderr,none\": 0.004516963042571534,\n \ \ \"inst_level_loose_acc,none\": 0.6990407673860911,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"acc_norm,none\": 0.49306005967051497,\n \"acc_norm_stderr,none\"\ : 0.005306328123826936,\n \"prompt_level_strict_acc,none\": 0.5748613678373382,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02127403980535566,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.5433084533935081,\n \"acc_norm_stderr,none\": 0.006133836853018902,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\ acc_norm,none\": 0.864,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5882352941176471,\n \"acc_norm_stderr,none\"\ : 0.036086405630856196\n },\n \"leaderboard_bbh_date_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.62,\n \"acc_norm_stderr,none\": 0.030760116042626098\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.804,\n \"acc_norm_stderr,none\": 0.025156857313255922\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.716,\n \"acc_norm_stderr,none\": 0.028576958730437443\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5547945205479452,\n\ \ \"acc_norm_stderr,none\": 0.04127264774457449\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.464,\n \"acc_norm_stderr,none\": 0.03160397514522374\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.7303370786516854,\n \"acc_norm_stderr,none\"\ : 0.03335689818443925\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.764,\n \"acc_norm_stderr,none\": 0.026909337594953852\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.336,\n \"acc_norm_stderr,none\": 0.02993325909419153\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.172,\n \"acc_norm_stderr,none\": 0.02391551394448624\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.26,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013265362908440905,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.31313131313131315,\n\ \ \"acc_norm_stderr,none\": 0.033042050878136546\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.28205128205128205,\n \"acc_norm_stderr,none\": 0.019275803929950375\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3125,\n \"acc_norm_stderr,none\": 0.021923384489444957\n\ \ },\n \"leaderboard_ifeval\": {\n \"alias\": \" - leaderboard_ifeval\"\ ,\n \"prompt_level_strict_acc,none\": 0.5748613678373382,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.021274039805355655,\n \"inst_level_strict_acc,none\": 0.6774580335731415,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.5970425138632163,\n \"prompt_level_loose_acc_stderr,none\": 0.02110743025673167,\n\ \ \"inst_level_loose_acc,none\": 0.6990407673860911,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.24169184290030213,\n \"exact_match_stderr,none\": 0.010888216300269935,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.44625407166123776,\n \"exact_match_stderr,none\": 0.028417486054945495\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2032520325203252,\n \"exact_match_stderr,none\": 0.03643325851749072\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.09090909090909091,\n \"exact_match_stderr,none\"\ : 0.0251172256361608\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.07142857142857142,\n \"exact_match_stderr,none\"\ : 0.015418479185779361\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.22077922077922077,\n \"exact_match_stderr,none\": 0.033532323343787154\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.43523316062176165,\n \"exact_match_stderr,none\"\ : 0.03578038165008584\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.05925925925925926,\n \"exact_match_stderr,none\": 0.02039673654232189\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.43267952127659576,\n \"acc_stderr,none\": 0.004516963042571534\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4166666666666667,\n\ \ \"acc_norm_stderr,none\": 0.017479222590443398,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.27734375,\n \"acc_norm_stderr,none\": 0.02803528549328419\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ }\n}\n```" repo_url: https://huggingface.co/ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B leaderboard_url: '' point_of_contact: '' configs: - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_date_understanding data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_navigate data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_object_counting data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_ruin_names data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_snarks data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_gpqa_diamond data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_gpqa_extended data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_gpqa_main data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_gpqa_main_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_ifeval data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_ifeval_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_algebra_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_geometry_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_num_theory_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_math_precalculus_hard data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_mmlu_pro data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_musr_object_placements data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T13-44-53.382689.jsonl' - config_name: ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_musr_team_allocation data_files: - split: 2024_11_21T13_44_53.382689 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T13-44-53.382689.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T13-44-53.382689.jsonl' --- # Dataset Card for Evaluation run of ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B](https://huggingface.co/ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B-details", name="ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-21T13-44-53.382689](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B-details/blob/main/ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B/results_2024-11-21T13-44-53.382689.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.5970425138632163, "prompt_level_loose_acc_stderr,none": 0.02110743025673167, "exact_match,none": 0.24169184290030213, "exact_match_stderr,none": 0.010888216300269935, "inst_level_strict_acc,none": 0.6774580335731415, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.43267952127659576, "acc_stderr,none": 0.004516963042571534, "inst_level_loose_acc,none": 0.6990407673860911, "inst_level_loose_acc_stderr,none": "N/A", "acc_norm,none": 0.49306005967051497, "acc_norm_stderr,none": 0.005306328123826936, "prompt_level_strict_acc,none": 0.5748613678373382, "prompt_level_strict_acc_stderr,none": 0.02127403980535566, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5433084533935081, "acc_norm_stderr,none": 0.006133836853018902, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.864, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5882352941176471, "acc_norm_stderr,none": 0.036086405630856196 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.62, "acc_norm_stderr,none": 0.030760116042626098 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.804, "acc_norm_stderr,none": 0.025156857313255922 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.716, "acc_norm_stderr,none": 0.028576958730437443 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5547945205479452, "acc_norm_stderr,none": 0.04127264774457449 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7303370786516854, "acc_norm_stderr,none": 0.03335689818443925 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.764, "acc_norm_stderr,none": 0.026909337594953852 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.336, "acc_norm_stderr,none": 0.02993325909419153 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.172, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.26, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013265362908440905, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.31313131313131315, "acc_norm_stderr,none": 0.033042050878136546 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.28205128205128205, "acc_norm_stderr,none": 0.019275803929950375 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3125, "acc_norm_stderr,none": 0.021923384489444957 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.5748613678373382, "prompt_level_strict_acc_stderr,none": 0.021274039805355655, "inst_level_strict_acc,none": 0.6774580335731415, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.5970425138632163, "prompt_level_loose_acc_stderr,none": 0.02110743025673167, "inst_level_loose_acc,none": 0.6990407673860911, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.24169184290030213, "exact_match_stderr,none": 0.010888216300269935, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.44625407166123776, "exact_match_stderr,none": 0.028417486054945495 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2032520325203252, "exact_match_stderr,none": 0.03643325851749072 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.09090909090909091, "exact_match_stderr,none": 0.0251172256361608 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.07142857142857142, "exact_match_stderr,none": 0.015418479185779361 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.22077922077922077, "exact_match_stderr,none": 0.033532323343787154 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.43523316062176165, "exact_match_stderr,none": 0.03578038165008584 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.05925925925925926, "exact_match_stderr,none": 0.02039673654232189 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43267952127659576, "acc_stderr,none": 0.004516963042571534 }, "leaderboard_musr": { "acc_norm,none": 0.4166666666666667, "acc_norm_stderr,none": 0.017479222590443398, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.27734375, "acc_norm_stderr,none": 0.02803528549328419 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.5970425138632163, "prompt_level_loose_acc_stderr,none": 0.02110743025673167, "exact_match,none": 0.24169184290030213, "exact_match_stderr,none": 0.010888216300269935, "inst_level_strict_acc,none": 0.6774580335731415, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.43267952127659576, "acc_stderr,none": 0.004516963042571534, "inst_level_loose_acc,none": 0.6990407673860911, "inst_level_loose_acc_stderr,none": "N/A", "acc_norm,none": 0.49306005967051497, "acc_norm_stderr,none": 0.005306328123826936, "prompt_level_strict_acc,none": 0.5748613678373382, "prompt_level_strict_acc_stderr,none": 0.02127403980535566, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5433084533935081, "acc_norm_stderr,none": 0.006133836853018902, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.864, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5882352941176471, "acc_norm_stderr,none": 0.036086405630856196 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.62, "acc_norm_stderr,none": 0.030760116042626098 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.804, "acc_norm_stderr,none": 0.025156857313255922 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.716, "acc_norm_stderr,none": 0.028576958730437443 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5547945205479452, "acc_norm_stderr,none": 0.04127264774457449 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7303370786516854, "acc_norm_stderr,none": 0.03335689818443925 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.764, "acc_norm_stderr,none": 0.026909337594953852 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.336, "acc_norm_stderr,none": 0.02993325909419153 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.172, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.26, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013265362908440905, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.31313131313131315, "acc_norm_stderr,none": 0.033042050878136546 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.28205128205128205, "acc_norm_stderr,none": 0.019275803929950375 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3125, "acc_norm_stderr,none": 0.021923384489444957 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.5748613678373382, "prompt_level_strict_acc_stderr,none": 0.021274039805355655, "inst_level_strict_acc,none": 0.6774580335731415, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.5970425138632163, "prompt_level_loose_acc_stderr,none": 0.02110743025673167, "inst_level_loose_acc,none": 0.6990407673860911, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.24169184290030213, "exact_match_stderr,none": 0.010888216300269935, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.44625407166123776, "exact_match_stderr,none": 0.028417486054945495 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2032520325203252, "exact_match_stderr,none": 0.03643325851749072 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.09090909090909091, "exact_match_stderr,none": 0.0251172256361608 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.07142857142857142, "exact_match_stderr,none": 0.015418479185779361 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.22077922077922077, "exact_match_stderr,none": 0.033532323343787154 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.43523316062176165, "exact_match_stderr,none": 0.03578038165008584 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.05925925925925926, "exact_match_stderr,none": 0.02039673654232189 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43267952127659576, "acc_stderr,none": 0.004516963042571534 }, "leaderboard_musr": { "acc_norm,none": 0.4166666666666667, "acc_norm_stderr,none": 0.017479222590443398, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.27734375, "acc_norm_stderr,none": 0.02803528549328419 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/AALF__FuseChat-Llama-3.1-8B-SFT-preview-details
open-llm-leaderboard
"2024-11-21T13:49:00Z"
5
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:45:15Z"
--- pretty_name: Evaluation run of AALF/FuseChat-Llama-3.1-8B-SFT-preview dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [AALF/FuseChat-Llama-3.1-8B-SFT-preview](https://huggingface.co/AALF/FuseChat-Llama-3.1-8B-SFT-preview)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/AALF__FuseChat-Llama-3.1-8B-SFT-preview-details\"\ ,\n\tname=\"AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-21T13-45-14.605333](https://huggingface.co/datasets/open-llm-leaderboard/AALF__FuseChat-Llama-3.1-8B-SFT-preview-details/blob/main/AALF__FuseChat-Llama-3.1-8B-SFT-preview/results_2024-11-21T13-45-14.605333.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc_norm,none\": 0.476585808794915,\n \"acc_norm_stderr,none\"\ : 0.0053560289532095535,\n \"prompt_level_strict_acc,none\": 0.6839186691312384,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.020008050377239083,\n \ \ \"prompt_level_loose_acc,none\": 0.7134935304990758,\n \"\ prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n \"inst_level_loose_acc,none\"\ : 0.7985611510791367,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\ ,\n \"inst_level_strict_acc,none\": 0.7721822541966427,\n \ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.37433510638297873,\n\ \ \"acc_stderr,none\": 0.004412150413939243,\n \"exact_match,none\"\ : 0.11404833836858005,\n \"exact_match_stderr,none\": 0.008442541000689963,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.522131574379448,\n \"acc_norm_stderr,none\"\ : 0.006222219134039073,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.824,\n\ \ \"acc_norm_stderr,none\": 0.024133497525457123\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6042780748663101,\n \"acc_norm_stderr,none\"\ : 0.035855600715925424\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.644,\n\ \ \"acc_norm_stderr,none\": 0.0303436806571532\n },\n \"\ leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\":\ \ 0.03148684942554571\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.7,\n \ \ \"acc_norm_stderr,none\": 0.029040893477575786\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.384,\n \"acc_norm_stderr,none\":\ \ 0.030821679117375447\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.64,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\":\ \ 0.029752391824475363\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5,\n \"acc_norm_stderr,none\": 0.041522739926869986\n },\n\ \ \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \"\ alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n \"\ acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.564,\n \ \ \"acc_norm_stderr,none\": 0.03142556706028136\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\":\ \ 0.03167708558254714\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6404494382022472,\n \"acc_norm_stderr,none\": 0.03606913914074032\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.776,\n \"acc_norm_stderr,none\": 0.026421361687347884\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.448,\n\ \ \"acc_norm_stderr,none\": 0.03151438761115349\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.2,\n \"acc_norm_stderr,none\": 0.02534897002097912\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.208,\n \"acc_norm_stderr,none\":\ \ 0.02572139890141637\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.30453020134228187,\n\ \ \"acc_norm_stderr,none\": 0.013343363032004148,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.32323232323232326,\n \"acc_norm_stderr,none\": 0.03332299921070644\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3058608058608059,\n\ \ \"acc_norm_stderr,none\": 0.019737263843674822\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29464285714285715,\n \"acc_norm_stderr,none\"\ : 0.021562481080109767\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.6839186691312384,\n \"prompt_level_strict_acc_stderr,none\": 0.020008050377239083,\n\ \ \"inst_level_strict_acc,none\": 0.7721822541966427,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7134935304990758,\n \"prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n\ \ \"inst_level_loose_acc,none\": 0.7985611510791367,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.11404833836858005,\n \"exact_match_stderr,none\"\ : 0.008442541000689963,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.21498371335504887,\n\ \ \"exact_match_stderr,none\": 0.0234845044411588\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \" -\ \ leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\":\ \ 0.056910569105691054,\n \"exact_match_stderr,none\": 0.020974566219895126\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.07575757575757576,\n\ \ \"exact_match_stderr,none\": 0.023119068741795586\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.017857142857142856,\n \"exact_match_stderr,none\": 0.007928503387888855\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.06493506493506493,\n\ \ \"exact_match_stderr,none\": 0.01992116854149014\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.22797927461139897,\n \"exact_match_stderr,none\"\ : 0.030276909945178256\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.06666666666666667,\n \"exact_match_stderr,none\"\ : 0.021548664505181808\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.37433510638297873,\n\ \ \"acc_stderr,none\": 0.004412150413939243\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4007936507936508,\n \"acc_norm_stderr,none\"\ : 0.017089741838981102,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.592,\n\ \ \"acc_norm_stderr,none\": 0.03114520984654851\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.25,\n \"acc_norm_stderr,none\": 0.02711630722733202\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\"\ : \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\": 0.364,\n\ \ \"acc_norm_stderr,none\": 0.030491555220405475\n }\n },\n\ \ \"leaderboard\": {\n \"acc_norm,none\": 0.476585808794915,\n \ \ \"acc_norm_stderr,none\": 0.0053560289532095535,\n \"prompt_level_strict_acc,none\"\ : 0.6839186691312384,\n \"prompt_level_strict_acc_stderr,none\": 0.020008050377239083,\n\ \ \"prompt_level_loose_acc,none\": 0.7134935304990758,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.01945652858321169,\n \"inst_level_loose_acc,none\": 0.7985611510791367,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.7721822541966427,\n \"inst_level_strict_acc_stderr,none\": \"N/A\",\n\ \ \"acc,none\": 0.37433510638297873,\n \"acc_stderr,none\": 0.004412150413939243,\n\ \ \"exact_match,none\": 0.11404833836858005,\n \"exact_match_stderr,none\"\ : 0.008442541000689963,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.522131574379448,\n \"acc_norm_stderr,none\"\ : 0.006222219134039073,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.824,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6042780748663101,\n \"acc_norm_stderr,none\"\ : 0.035855600715925424\n },\n \"leaderboard_bbh_date_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.384,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.64,\n \"acc_norm_stderr,none\": 0.03041876402517494\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5,\n \ \ \"acc_norm_stderr,none\": 0.041522739926869986\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.564,\n \"acc_norm_stderr,none\": 0.03142556706028136\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6404494382022472,\n \"acc_norm_stderr,none\"\ : 0.03606913914074032\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.776,\n \"acc_norm_stderr,none\": 0.026421361687347884\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.2,\n \"acc_norm_stderr,none\": 0.02534897002097912\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.208,\n \"acc_norm_stderr,none\": 0.02572139890141637\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.30453020134228187,\n\ \ \"acc_norm_stderr,none\": 0.013343363032004148,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.32323232323232326,\n\ \ \"acc_norm_stderr,none\": 0.03332299921070644\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.3058608058608059,\n \"acc_norm_stderr,none\": 0.019737263843674822\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29464285714285715,\n \"acc_norm_stderr,none\"\ : 0.021562481080109767\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.6839186691312384,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.020008050377239083,\n \ \ \"inst_level_strict_acc,none\": 0.7721822541966427,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7134935304990758,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01945652858321169,\n \"inst_level_loose_acc,none\"\ : 0.7985611510791367,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.11404833836858005,\n\ \ \"exact_match_stderr,none\": 0.008442541000689963,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.21498371335504887,\n \"exact_match_stderr,none\": 0.0234845044411588\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.056910569105691054,\n \"exact_match_stderr,none\": 0.020974566219895126\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.07575757575757576,\n \"exact_match_stderr,none\"\ : 0.023119068741795586\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.017857142857142856,\n \"exact_match_stderr,none\"\ : 0.007928503387888855\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.06493506493506493,\n \"exact_match_stderr,none\": 0.01992116854149014\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.22797927461139897,\n \"exact_match_stderr,none\"\ : 0.030276909945178256\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.06666666666666667,\n \"exact_match_stderr,none\": 0.021548664505181808\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.37433510638297873,\n \"acc_stderr,none\": 0.004412150413939243\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4007936507936508,\n\ \ \"acc_norm_stderr,none\": 0.017089741838981102,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.592,\n \"acc_norm_stderr,none\": 0.03114520984654851\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.25,\n \"acc_norm_stderr,none\": 0.02711630722733202\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ }\n}\n```" repo_url: https://huggingface.co/AALF/FuseChat-Llama-3.1-8B-SFT-preview leaderboard_url: '' point_of_contact: '' configs: - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_date_understanding data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_navigate data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_object_counting data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_ruin_names data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_snarks data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_gpqa_diamond data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_gpqa_extended data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_gpqa_main data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_gpqa_main_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_ifeval data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_ifeval_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_algebra_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_geometry_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_num_theory_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_math_precalculus_hard data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_mmlu_pro data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_musr_object_placements data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-21T13-45-14.605333.jsonl' - config_name: AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_musr_team_allocation data_files: - split: 2024_11_21T13_45_14.605333 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T13-45-14.605333.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-21T13-45-14.605333.jsonl' --- # Dataset Card for Evaluation run of AALF/FuseChat-Llama-3.1-8B-SFT-preview <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [AALF/FuseChat-Llama-3.1-8B-SFT-preview](https://huggingface.co/AALF/FuseChat-Llama-3.1-8B-SFT-preview) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/AALF__FuseChat-Llama-3.1-8B-SFT-preview-details", name="AALF__FuseChat-Llama-3.1-8B-SFT-preview__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-21T13-45-14.605333](https://huggingface.co/datasets/open-llm-leaderboard/AALF__FuseChat-Llama-3.1-8B-SFT-preview-details/blob/main/AALF__FuseChat-Llama-3.1-8B-SFT-preview/results_2024-11-21T13-45-14.605333.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc_norm,none": 0.476585808794915, "acc_norm_stderr,none": 0.0053560289532095535, "prompt_level_strict_acc,none": 0.6839186691312384, "prompt_level_strict_acc_stderr,none": 0.020008050377239083, "prompt_level_loose_acc,none": 0.7134935304990758, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.7985611510791367, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.7721822541966427, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.37433510638297873, "acc_stderr,none": 0.004412150413939243, "exact_match,none": 0.11404833836858005, "exact_match_stderr,none": 0.008442541000689963, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.522131574379448, "acc_norm_stderr,none": 0.006222219134039073, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.824, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6042780748663101, "acc_norm_stderr,none": 0.035855600715925424 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.384, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.64, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.672, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.041522739926869986 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.672, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.564, "acc_norm_stderr,none": 0.03142556706028136 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6404494382022472, "acc_norm_stderr,none": 0.03606913914074032 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.776, "acc_norm_stderr,none": 0.026421361687347884 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.2, "acc_norm_stderr,none": 0.02534897002097912 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.208, "acc_norm_stderr,none": 0.02572139890141637 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_gpqa": { "acc_norm,none": 0.30453020134228187, "acc_norm_stderr,none": 0.013343363032004148, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.32323232323232326, "acc_norm_stderr,none": 0.03332299921070644 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3058608058608059, "acc_norm_stderr,none": 0.019737263843674822 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29464285714285715, "acc_norm_stderr,none": 0.021562481080109767 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.6839186691312384, "prompt_level_strict_acc_stderr,none": 0.020008050377239083, "inst_level_strict_acc,none": 0.7721822541966427, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7134935304990758, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.7985611510791367, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.11404833836858005, "exact_match_stderr,none": 0.008442541000689963, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.21498371335504887, "exact_match_stderr,none": 0.0234845044411588 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.056910569105691054, "exact_match_stderr,none": 0.020974566219895126 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.07575757575757576, "exact_match_stderr,none": 0.023119068741795586 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.017857142857142856, "exact_match_stderr,none": 0.007928503387888855 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.06493506493506493, "exact_match_stderr,none": 0.01992116854149014 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.22797927461139897, "exact_match_stderr,none": 0.030276909945178256 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.06666666666666667, "exact_match_stderr,none": 0.021548664505181808 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.37433510638297873, "acc_stderr,none": 0.004412150413939243 }, "leaderboard_musr": { "acc_norm,none": 0.4007936507936508, "acc_norm_stderr,none": 0.017089741838981102, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.25, "acc_norm_stderr,none": 0.02711630722733202 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 } }, "leaderboard": { "acc_norm,none": 0.476585808794915, "acc_norm_stderr,none": 0.0053560289532095535, "prompt_level_strict_acc,none": 0.6839186691312384, "prompt_level_strict_acc_stderr,none": 0.020008050377239083, "prompt_level_loose_acc,none": 0.7134935304990758, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.7985611510791367, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.7721822541966427, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.37433510638297873, "acc_stderr,none": 0.004412150413939243, "exact_match,none": 0.11404833836858005, "exact_match_stderr,none": 0.008442541000689963, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.522131574379448, "acc_norm_stderr,none": 0.006222219134039073, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.824, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6042780748663101, "acc_norm_stderr,none": 0.035855600715925424 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.384, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.64, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.672, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.041522739926869986 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.672, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.564, "acc_norm_stderr,none": 0.03142556706028136 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6404494382022472, "acc_norm_stderr,none": 0.03606913914074032 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.776, "acc_norm_stderr,none": 0.026421361687347884 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.2, "acc_norm_stderr,none": 0.02534897002097912 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.208, "acc_norm_stderr,none": 0.02572139890141637 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_gpqa": { "acc_norm,none": 0.30453020134228187, "acc_norm_stderr,none": 0.013343363032004148, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.32323232323232326, "acc_norm_stderr,none": 0.03332299921070644 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3058608058608059, "acc_norm_stderr,none": 0.019737263843674822 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29464285714285715, "acc_norm_stderr,none": 0.021562481080109767 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.6839186691312384, "prompt_level_strict_acc_stderr,none": 0.020008050377239083, "inst_level_strict_acc,none": 0.7721822541966427, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7134935304990758, "prompt_level_loose_acc_stderr,none": 0.01945652858321169, "inst_level_loose_acc,none": 0.7985611510791367, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.11404833836858005, "exact_match_stderr,none": 0.008442541000689963, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.21498371335504887, "exact_match_stderr,none": 0.0234845044411588 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.056910569105691054, "exact_match_stderr,none": 0.020974566219895126 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.07575757575757576, "exact_match_stderr,none": 0.023119068741795586 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.017857142857142856, "exact_match_stderr,none": 0.007928503387888855 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.06493506493506493, "exact_match_stderr,none": 0.01992116854149014 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.22797927461139897, "exact_match_stderr,none": 0.030276909945178256 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.06666666666666667, "exact_match_stderr,none": 0.021548664505181808 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.37433510638297873, "acc_stderr,none": 0.004412150413939243 }, "leaderboard_musr": { "acc_norm,none": 0.4007936507936508, "acc_norm_stderr,none": 0.017089741838981102, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.25, "acc_norm_stderr,none": 0.02711630722733202 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
HamdanXI/libriTTS_dev_wav2vec2_latent_layer0_2sec_PERFECT_chunk_50
HamdanXI
"2024-11-21T14:01:15Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T13:59:37Z"
--- dataset_info: features: - name: audio_clip sequence: float64 - name: layer0_prediction sequence: float64 - name: predicted_text dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 2646635380 num_examples: 100 download_size: 1948402683 dataset_size: 2646635380 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "libriTTS_dev_wav2vec2_latent_layer0_2sec_PERFECT_chunk_50" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
SeppeV/joke_gen_of_mistral_ft_mean_score_dpo_w_ex_reasoning_prompt_wo_ex
SeppeV
"2024-11-21T14:02:32Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:02:30Z"
--- dataset_info: features: - name: jokeText dtype: string - name: userId dtype: int64 splits: - name: train num_bytes: 173754 num_examples: 125 download_size: 90163 dataset_size: 173754 configs: - config_name: default data_files: - split: train path: data/train-* ---
procit007/treated_0.2
procit007
"2024-11-21T14:07:12Z"
5
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:05:30Z"
--- dataset_info: features: - name: gender dtype: string - name: accent dtype: string - name: speaker_id dtype: int64 - name: speaker_name dtype: string - name: text dtype: string - name: normalized_text dtype: string - name: audio dtype: audio - name: treated dtype: bool - name: metrics struct: - name: clipping_ratio dtype: float64 - name: duration dtype: float64 - name: is_valid dtype: bool - name: rms_energy dtype: float64 - name: sample_rate dtype: int64 - name: silence_ratio dtype: float64 - name: snr dtype: float64 splits: - name: train num_bytes: 3172095162.0 num_examples: 10000 download_size: 2973864857 dataset_size: 3172095162.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
yuri-no/onboarding_introduction_metaphors
yuri-no
"2024-11-21T14:12:30Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:12:28Z"
--- dataset_info: features: - name: value dtype: string - name: definition dtype: string - name: metaphor dtype: string splits: - name: train num_bytes: 85308 num_examples: 116 download_size: 48998 dataset_size: 85308 configs: - config_name: default data_files: - split: train path: data/train-* ---
HamdanXI/libriTTS_dev_wav2vec2_latent_layer0_2sec_PERFECT_chunk_59
HamdanXI
"2024-11-21T14:18:28Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:17:56Z"
--- dataset_info: features: - name: audio_clip sequence: float64 - name: layer0_prediction sequence: float64 - name: predicted_text dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 952788826 num_examples: 36 download_size: 699798568 dataset_size: 952788826 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "libriTTS_dev_wav2vec2_latent_layer0_2sec_PERFECT_chunk_59" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dgambettaphd/P_wiki_doc5000_real96
dgambettaphd
"2024-11-21T14:27:09Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:27:07Z"
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string splits: - name: train num_bytes: 2628049 num_examples: 5000 download_size: 1706149 dataset_size: 2628049 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_toxigen-data-test_zeroshot_curto_limiar3
juliadollis
"2024-11-21T14:42:49Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:42:47Z"
--- dataset_info: features: - name: text dtype: string - name: target_group dtype: string - name: factual? dtype: string - name: ingroup_effect dtype: string - name: lewd dtype: string - name: framing dtype: string - name: predicted_group dtype: string - name: stereotyping dtype: string - name: intent dtype: float64 - name: toxicity_ai dtype: float64 - name: toxicity_human dtype: float64 - name: predicted_author dtype: string - name: actual_method dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: y_true dtype: int64 splits: - name: train num_bytes: 393176 num_examples: 940 download_size: 85196 dataset_size: 393176 configs: - config_name: default data_files: - split: train path: data/train-* ---
mrlyle/img-nov-21
mrlyle
"2024-11-21T14:54:59Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T14:54:58Z"
--- dataset_info: features: - name: image dtype: image splits: - name: train num_bytes: 8926.0 num_examples: 16 download_size: 9755 dataset_size: 8926.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
VladLoPG/alice_gpt
VladLoPG
"2024-11-21T15:12:11Z"
5
0
[ "license:apache-2.0", "region:us" ]
null
"2024-11-21T15:12:10Z"
--- license: apache-2.0 ---
Metaskepsis/accept
Metaskepsis
"2024-11-21T15:17:39Z"
5
0
[ "region:us" ]
null
"2024-11-21T15:17:30Z"
--- dataset_info: features: - name: id dtype: int64 - name: model_response dtype: string - name: is_correct dtype: bool - name: problem dtype: string - name: solution dtype: string splits: - name: train num_bytes: 106327060 num_examples: 26320 download_size: 46430332 dataset_size: 106327060 configs: - config_name: default data_files: - split: train path: data/train-* ---
nishadsinghi/MATH_GPT4o-mini_temp_0.7_128samples
nishadsinghi
"2024-11-21T15:18:37Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:18:34Z"
--- dataset_info: features: - name: gt_answer dtype: string - name: prompt dtype: string - name: question dtype: string - name: samples sequence: string splits: - name: train num_bytes: 101824610 num_examples: 500 download_size: 28112425 dataset_size: 101824610 configs: - config_name: default data_files: - split: train path: data/train-* ---
1231czx/ver2_rebuttal_eaf_rm_bon8_01
1231czx
"2024-11-21T15:39:37Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T15:39:36Z"
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: generator dtype: string splits: - name: train num_bytes: 1346012 num_examples: 805 download_size: 812464 dataset_size: 1346012 configs: - config_name: default data_files: - split: train path: data/train-* ---
Priya098098/Raj
Priya098098
"2024-11-21T15:47:12Z"
5
0
[ "license:apache-2.0", "region:us" ]
null
"2024-11-21T15:47:12Z"
--- license: apache-2.0 ---
Tensorists/SD3_5_Turbo_images_combined
Tensorists
"2024-11-21T16:13:20Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T16:08:05Z"
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': Airplane '1': Automobile '2': Bird '3': Cat '4': Deer '5': Dog '6': Frog '7': Horse '8': Ship '9': Truck splits: - name: train num_bytes: 4472583093.935 num_examples: 2985 download_size: 4472859758 dataset_size: 4472583093.935 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tensorists/SD3_images
Tensorists
"2024-11-21T16:20:46Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T16:19:54Z"
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': Dog '1': Frog '2': Horse '3': Ship '4': Truck splits: - name: train num_bytes: 619872098.741 num_examples: 1489 download_size: 619156629 dataset_size: 619872098.741 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/mistral_toxigen-data-test_2fewshot_limiar3
juliadollis
"2024-11-21T16:27:19Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T16:27:17Z"
--- dataset_info: features: - name: text dtype: string - name: target_group dtype: string - name: factual? dtype: string - name: ingroup_effect dtype: string - name: lewd dtype: string - name: framing dtype: string - name: predicted_group dtype: string - name: stereotyping dtype: string - name: intent dtype: float64 - name: toxicity_ai dtype: float64 - name: toxicity_human dtype: float64 - name: predicted_author dtype: string - name: actual_method dtype: string - name: is_toxic dtype: int64 - name: predicted_is_toxic dtype: int64 - name: y_true dtype: int64 splits: - name: train num_bytes: 393176 num_examples: 940 download_size: 85177 dataset_size: 393176 configs: - config_name: default data_files: - split: train path: data/train-* ---
Vinisf/Vinicin
Vinisf
"2024-11-21T16:41:48Z"
5
0
[ "license:openrail", "size_categories:n<1K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-21T16:41:17Z"
--- license: openrail ---
dgambettaphd/P_wiki_doc10000_real64
dgambettaphd
"2024-11-21T16:55:03Z"
5
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T16:55:00Z"
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string splits: - name: train num_bytes: 3528280 num_examples: 10000 download_size: 2306183 dataset_size: 3528280 configs: - config_name: default data_files: - split: train path: data/train-* ---
jazzysnake01/quizgen-chat-lg
jazzysnake01
"2024-11-21T17:41:28Z"
5
2
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T17:41:22Z"
--- dataset_info: features: - name: formatted_conversation list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 40246123 num_examples: 22738 - name: test num_bytes: 5033874 num_examples: 2845 - name: validation num_bytes: 5003205 num_examples: 2842 download_size: 15870318 dataset_size: 50283202 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
GabrielML/SteamGRS
GabrielML
"2024-11-21T18:09:22Z"
5
0
[ "task_categories:text-classification", "language:de", "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
"2024-11-21T18:07:10Z"
--- license: apache-2.0 task_categories: - text-classification language: - de size_categories: - 1K<n<10K --- Steam German Review Sentiment (SteamGRS) for seminar work (LoRA experiments).
RyanYr/self-reflect_mini8Bit-t0_mistlarge-t12_om2-140k_binlabel_correction
RyanYr
"2024-11-21T18:20:00Z"
5
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T18:19:54Z"
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: response@0_correctness dtype: bool - name: response@2_correctness dtype: bool splits: - name: train num_bytes: 379427234 num_examples: 87678 download_size: 140157279 dataset_size: 379427234 configs: - config_name: default data_files: - split: train path: data/train-* ---
sumuks/e1v0.1-single-shot-questions-deduplicated
sumuks
"2024-11-21T18:40:09Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T18:40:07Z"
--- dataset_info: features: - name: chunk_uuid dtype: string - name: generator_model dtype: string - name: question_type dtype: string - name: question dtype: string - name: answer dtype: string - name: document_analysis dtype: string - name: chunk_analysis dtype: string - name: potential_question_directions sequence: string - name: best_direction dtype: string - name: reasoning dtype: string - name: estimated_difficulty dtype: int64 - name: testable_concepts sequence: string - name: difficulty_justification dtype: string - name: quote_context dtype: string - name: supporting_quotes sequence: string splits: - name: train num_bytes: 464953 num_examples: 249 download_size: 206005 dataset_size: 464953 configs: - config_name: default data_files: - split: train path: data/train-* ---
sumuks/e1v0.1-single-shot-questions-multihop-deduplicated
sumuks
"2024-11-21T18:53:46Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T18:53:43Z"
--- dataset_info: features: - name: chunk_ids sequence: string - name: generator_model dtype: string - name: question_type dtype: string - name: question dtype: string - name: answer dtype: string - name: document_analysis dtype: string - name: chunk_analysis sequence: string - name: potential_question_directions sequence: string - name: best_direction dtype: string - name: reasoning dtype: string - name: estimated_difficulty dtype: int64 - name: testable_concepts sequence: string - name: difficulty_justification dtype: string - name: quote_context dtype: string - name: supporting_quotes sequence: string splits: - name: train num_bytes: 106858 num_examples: 38 download_size: 60376 dataset_size: 106858 configs: - config_name: default data_files: - split: train path: data/train-* ---
neoneye/simon-arc-solve-scale-v8
neoneye
"2024-11-21T21:12:29Z"
5
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T21:11:08Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve scale version 8 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the images gets scaled up/down in both x and y direction. example count: 2-4. test count: 1-2. image size: 3-10. scale factor: 1-3. # Version 2 image size: 1-20. scale factor: 1-7. # Version 3 image size: 1-30. scale factor: 1-7. # Version 4 Added a few noise to the images. image size: 1-10. scale factor: 1-7. Only scale down. Number of noise pixels per pixel cell: 0-2. # Version 5 More noisy images for down scaling. image size: 1-12. Number of noise pixels per pixel cell: 0-half. # Version 6 Earlier predictions added to some of the rows. # Version 7 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 8 Replaced RLE compressed response with raw pixel response. image size: 1-5.
Harshgup16/finetuning_laptop_recommendation
Harshgup16
"2024-11-21T21:16:57Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T21:16:55Z"
--- dataset_info: features: - name: prompt dtype: string splits: - name: train num_bytes: 14940 num_examples: 22 download_size: 8251 dataset_size: 14940 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/ner_stf_fuzzy
juliadollis
"2024-11-21T21:37:15Z"
5
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T21:34:37Z"
--- dataset_info: features: - name: inteiro_teor dtype: string - name: url_download dtype: string - name: dataDecisao dtype: timestamp[ns] - name: dataPublicacao dtype: timestamp[ns] - name: decisao dtype: string - name: descricaoClasse dtype: string - name: ementa dtype: string - name: id dtype: string - name: jurisprudenciaCitada dtype: string - name: ministroRelator dtype: string - name: nomeOrgaoJulgador dtype: string - name: numeroProcesso dtype: string - name: referenciasLegislativas sequence: string - name: siglaClasse dtype: string - name: tipoDeDecisao dtype: string - name: titulo dtype: string - name: acordaosSimilares sequence: string - name: partes_lista_texto dtype: string - name: temaProcs sequence: string - name: ner_results struct: - name: JURISPRUDENCIA sequence: string - name: LEGISLACAO sequence: string - name: LOCAL sequence: string - name: ORGANIZACAO sequence: string - name: PESSOA sequence: string - name: TEMPO sequence: string - name: desambiguacao list: - name: class dtype: string - name: count dtype: int64 - name: elements sequence: string - name: entity dtype: string splits: - name: train num_bytes: 6654843253 num_examples: 78477 download_size: 1425175145 dataset_size: 6654843253 configs: - config_name: default data_files: - split: train path: data/train-* ---
ydmztang/cardinality
ydmztang
"2024-11-21T21:41:02Z"
5
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T21:40:22Z"
--- license: mit ---
IntelligentEstate/The_Key
IntelligentEstate
"2024-11-21T21:48:45Z"
5
0
[ "language:en", "license:cc-by-nc-4.0", "region:us" ]
null
"2024-11-21T21:44:18Z"
--- license: cc-by-nc-4.0 language: - en --- ** The Key is a Unique Spacial awareness dataset with problemsolving in diverse scenarios with an infered reflection in the form of a Haiku --This is experimental-- --- ** For Comercial Use please get in touch with intelligentestate@gmail.com for all else Enjoy and please respond with results. ---
DeveloperBishal/LLama3.2_Fine-Tune_web-development
DeveloperBishal
"2024-11-21T22:01:08Z"
5
0
[ "language:en", "license:llama3.2", "size_categories:1M<n<10M", "region:us", "code" ]
null
"2024-11-21T21:57:42Z"
--- license: llama3.2 language: - en tags: - code pretty_name: Web-Dev-Fine-Tune size_categories: - 1M<n<10M ---
huggingface/my-distiset-555f6edc
huggingface
"2024-11-21T22:50:05Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
null
"2024-11-21T22:50:02Z"
--- size_categories: n<1K dataset_info: features: - name: system_prompt dtype: string - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 2521 num_examples: 1 download_size: 13149 dataset_size: 2521 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-555f6edc This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/huggingface/my-distiset-555f6edc/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/huggingface/my-distiset-555f6edc/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "completion": "To create a comprehensive dataset for a personal finance app, I recommend including the following essential data fields:\n\n1. **User Information**:\n * User ID (unique identifier)\n * User name\n * Email address\n * Password (hashed for security)\n * Date of birth\n2. **Financial Accounts**:\n * Account type (checking, savings, credit card, loan, investment, etc.)\n * Account number (masked for security)\n * Account balance (updated periodically)\n * Interest rate (if applicable)\n * Minimum payment (if applicable)\n3. **Transactions**:\n * Transaction ID (unique identifier)\n * Date\n * Description\n * Category (income, expense, transfer, etc.)\n * Type (deposit, withdrawal, payment, etc.)\n * Amount\n * Currency\n4. **Income**:\n * Income source (job, investment, etc.)\n * Income amount\n * Frequency (monthly, bi-weekly, etc.)\n * Start date\n5. **Expenses**:\n * Expense category (housing, food, transportation, etc.)\n * Expense amount\n * Frequency (monthly, bi-weekly, etc.)\n * Due date\n6. **Budgeting**:\n * Budget category (income, expenses, savings, debt repayment, etc.)\n * Budget amount\n * Target percentage\n7. **Debt**:\n * Debt type (credit card, loan, etc.)\n * Balance\n * Interest rate\n * Minimum payment\n * Due date\n8. **Savings**:\n * Savings goal (emergency fund, retirement, etc.)\n * Target amount\n * Current savings amount\n * Progress percentage\n9. **Notifications**:\n * Notification type (expense alert, payment due, etc.)\n * Trigger date\n * Description\n10. **Settings**:\n * Currency\n * Currency symbol\n * Language\n * Unit of measurement (e.g., pounds, dollars, etc.)", "prompt": "I\u0027d like to create a dataset for a personal finance app to help users manage their budget and expenses. What are the essential data fields I should include? \n\n", "system_prompt": "You are an AI assistant responsible for building comprehensive datasets for various purposes. Your purpose is to assist users in designing and generating datasets that accurately reflect their requirements, needs, and objectives. Offer clear guidance on dataset creation, provide suggestions for relevant data points, and ensure the dataset is well-structured, organized, and scalable. Assist users in ensuring data quality, relevance, and consistency while anticipating potential data requirements and maintenance. User questions are direct and concise." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("huggingface/my-distiset-555f6edc", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("huggingface/my-distiset-555f6edc") ``` </details>
WARSO46/ForgetRetainBooks
WARSO46
"2024-11-22T00:29:08Z"
5
0
[ "language:en", "license:mit", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
null
"2024-11-21T22:55:31Z"
--- license: mit language: - en --- # ForgetRetainBooks This dataset is derived from the NarrativeQA dataset, created by Kocisky et al. (2018). NarrativeQA is a dataset for evaluating reading comprehension and narrative understanding. This dataset is an extraction of the book content from the original NarrativeQA dataset. ## Citation If you want to use this dataset, please also cite the original NarrativeQA dataset. ```Bibtex @article{narrativeqa, author = {Tom\'a\v s Ko\v cisk\'y and Jonathan Schwarz and Phil Blunsom and Chris Dyer and Karl Moritz Hermann and G\'abor Melis and Edward Grefenstette}, title = {The {NarrativeQA} Reading Comprehension Challenge}, journal = {Transactions of the Association for Computational Linguistics}, url = {https://TBD}, volume = {TBD}, year = {2018}, pages = {TBD}, } ```
TSOWatch/1001NightsBesiegedCity
TSOWatch
"2024-11-22T00:14:26Z"
5
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:14:05Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsSeaSnake
TSOWatch
"2024-11-22T00:19:25Z"
5
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:19:10Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsTreasureWisdom
TSOWatch
"2024-11-22T00:24:26Z"
5
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:24:05Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsFirstThief
TSOWatch
"2024-11-22T00:25:06Z"
5
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:24:54Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsSecondThief
TSOWatch
"2024-11-22T00:25:46Z"
5
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:25:35Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsThirdThief
TSOWatch
"2024-11-22T00:26:27Z"
5
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:26:15Z"
--- license: creativeml-openrail-m ---
nuprl-staging/training_classifier_intermediate_depth2
nuprl-staging
"2024-11-22T01:03:19Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:03:17Z"
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string - name: answer dtype: string - name: pythoncode dtype: string - name: depth0 dtype: string - name: depth1 dtype: string - name: depth2 dtype: string - name: depth3 dtype: string - name: depth4 dtype: string - name: depth5 dtype: string - name: depth6 dtype: string - name: depth7 dtype: string - name: depthn0 dtype: string - name: depthn1 dtype: string - name: depthn2 dtype: string - name: depthn3 dtype: string - name: depthn4 dtype: string - name: depthn5 dtype: string - name: depthn6 dtype: string - name: depthn7 dtype: string - name: num_nodes dtype: int64 - name: num_edges dtype: int64 - name: num_classes dtype: int64 - name: path_length dtype: int64 - name: num_cycle dtype: int64 - name: correctness dtype: bool - name: one_correct dtype: bool splits: - name: train num_bytes: 4222364 num_examples: 3000 - name: test num_bytes: 698164 num_examples: 500 download_size: 1082498 dataset_size: 4920528 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Tippawan/Finetune-mt-story-telling-221124-messages2
Tippawan
"2024-11-22T01:42:19Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:42:17Z"
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1090514 num_examples: 5629 download_size: 370384 dataset_size: 1090514 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_18
ZixuanKe
"2024-11-22T02:32:53Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:32:52Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 147908 num_examples: 24 download_size: 19032 dataset_size: 147908 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_23
ZixuanKe
"2024-11-22T02:33:56Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:33:55Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 167913 num_examples: 33 download_size: 26156 dataset_size: 167913 configs: - config_name: default data_files: - split: train path: data/train-* ---
mhdang/image_unseen-fewshot_sc_ours_withjpg_num500
mhdang
"2024-11-22T02:34:37Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:34:10Z"
--- dataset_info: features: - name: jpg_model_train dtype: binary - name: jpg_model_base dtype: binary - name: user_id dtype: int64 - name: text dtype: string - name: emb sequence: sequence: float64 - name: preferred_image_uid_0 dtype: string - name: dispreferred_image_uid_0 dtype: string - name: caption_0 dtype: string - name: preferred_image_uid_1 dtype: string - name: dispreferred_image_uid_1 dtype: string - name: caption_1 dtype: string - name: preferred_image_uid_2 dtype: string - name: dispreferred_image_uid_2 dtype: string - name: caption_2 dtype: string - name: preferred_image_uid_3 dtype: string - name: dispreferred_image_uid_3 dtype: string - name: caption_3 dtype: string - name: class dtype: int64 - name: __index_level_0__ dtype: int64 - name: user_description dtype: string - name: caption dtype: string - name: preferred_image_uid_0_jpg dtype: binary - name: preferred_image_uid_1_jpg dtype: binary - name: preferred_image_uid_2_jpg dtype: binary - name: preferred_image_uid_3_jpg dtype: binary - name: dispreferred_image_uid_0_jpg dtype: binary - name: dispreferred_image_uid_1_jpg dtype: binary - name: dispreferred_image_uid_2_jpg dtype: binary - name: dispreferred_image_uid_3_jpg dtype: binary splits: - name: test num_bytes: 1537893962 num_examples: 500 download_size: 1079067223 dataset_size: 1537893962 configs: - config_name: default data_files: - split: test path: data/test-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_28
ZixuanKe
"2024-11-22T02:35:30Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:35:29Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 216320 num_examples: 33 download_size: 37707 dataset_size: 216320 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_13
ZixuanKe
"2024-11-22T02:36:46Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:36:45Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 195300 num_examples: 35 download_size: 28241 dataset_size: 195300 configs: - config_name: default data_files: - split: train path: data/train-* ---
mhdang/image_seen_sc-userprofile_ours_withjpg_num500
mhdang
"2024-11-22T02:38:17Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:37:48Z"
--- dataset_info: features: - name: jpg_model_train dtype: binary - name: jpg_model_base dtype: binary - name: user_id dtype: int64 - name: text dtype: string - name: emb sequence: sequence: float64 - name: preferred_image_uid_0 dtype: string - name: dispreferred_image_uid_0 dtype: string - name: caption_0 dtype: string - name: preferred_image_uid_1 dtype: string - name: dispreferred_image_uid_1 dtype: string - name: caption_1 dtype: string - name: preferred_image_uid_2 dtype: string - name: dispreferred_image_uid_2 dtype: string - name: caption_2 dtype: string - name: preferred_image_uid_3 dtype: string - name: dispreferred_image_uid_3 dtype: string - name: caption_3 dtype: string - name: class dtype: int64 - name: __index_level_0__ dtype: int64 - name: user_description dtype: string - name: caption dtype: string - name: preferred_image_uid_0_jpg dtype: binary - name: preferred_image_uid_1_jpg dtype: binary - name: preferred_image_uid_2_jpg dtype: binary - name: preferred_image_uid_3_jpg dtype: binary - name: dispreferred_image_uid_0_jpg dtype: binary - name: dispreferred_image_uid_1_jpg dtype: binary - name: dispreferred_image_uid_2_jpg dtype: binary - name: dispreferred_image_uid_3_jpg dtype: binary splits: - name: test num_bytes: 1471788174 num_examples: 500 download_size: 1146811656 dataset_size: 1471788174 configs: - config_name: default data_files: - split: test path: data/test-* ---
mhdang/image_seen_sc_ours_withjpg_num500
mhdang
"2024-11-22T02:39:13Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:38:44Z"
--- dataset_info: features: - name: jpg_model_train dtype: binary - name: jpg_model_base dtype: binary - name: user_id dtype: int64 - name: text dtype: string - name: emb sequence: sequence: float64 - name: preferred_image_uid_0 dtype: string - name: dispreferred_image_uid_0 dtype: string - name: caption_0 dtype: string - name: preferred_image_uid_1 dtype: string - name: dispreferred_image_uid_1 dtype: string - name: caption_1 dtype: string - name: preferred_image_uid_2 dtype: string - name: dispreferred_image_uid_2 dtype: string - name: caption_2 dtype: string - name: preferred_image_uid_3 dtype: string - name: dispreferred_image_uid_3 dtype: string - name: caption_3 dtype: string - name: class dtype: int64 - name: __index_level_0__ dtype: int64 - name: user_description dtype: string - name: caption dtype: string - name: preferred_image_uid_0_jpg dtype: binary - name: preferred_image_uid_1_jpg dtype: binary - name: preferred_image_uid_2_jpg dtype: binary - name: preferred_image_uid_3_jpg dtype: binary - name: dispreferred_image_uid_0_jpg dtype: binary - name: dispreferred_image_uid_1_jpg dtype: binary - name: dispreferred_image_uid_2_jpg dtype: binary - name: dispreferred_image_uid_3_jpg dtype: binary splits: - name: test num_bytes: 1468520892 num_examples: 500 download_size: 1143544216 dataset_size: 1468520892 configs: - config_name: default data_files: - split: test path: data/test-* ---
ifrah1/your_dataset_name
ifrah1
"2024-11-22T02:55:18Z"
5
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T02:55:16Z"
--- dataset_info: features: - name: English dtype: string - name: Urdu dtype: string splits: - name: train num_bytes: 33059917 num_examples: 107317 download_size: 16879027 dataset_size: 33059917 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_32
ZixuanKe
"2024-11-22T03:56:11Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T03:56:10Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 285573 num_examples: 50 download_size: 24937 dataset_size: 285573 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/processed_image_unseen-fewshot_sc_ours_withjpg_num500
Asap7772
"2024-11-22T04:12:03Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:10:48Z"
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string splits: - name: test num_bytes: 1119635843 num_examples: 500 download_size: 1100260023 dataset_size: 1119635843 configs: - config_name: default data_files: - split: test path: data/test-* ---
Asap7772/processed_image_seen_dpo-userprofile_ours_withjpg_num500
Asap7772
"2024-11-22T04:13:25Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:12:05Z"
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string splits: - name: test num_bytes: 1062834635 num_examples: 500 download_size: 1056453709 dataset_size: 1062834635 configs: - config_name: default data_files: - split: test path: data/test-* ---
kiranshivaraju/train_v4
kiranshivaraju
"2024-11-22T04:44:35Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:40:55Z"
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': bad '1': good splits: - name: train num_bytes: 162663726.26 num_examples: 1302 - name: test num_bytes: 8203399.0 num_examples: 75 download_size: 139701507 dataset_size: 170867125.26 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description added duplicate synthetic defect images <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_31
ZixuanKe
"2024-11-22T04:43:31Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T04:43:29Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 943719 num_examples: 163 download_size: 87108 dataset_size: 943719 configs: - config_name: default data_files: - split: train path: data/train-* ---
TwinDoc/test-multiple-lora-serving_nn_70k_summarization
TwinDoc
"2024-11-22T05:24:46Z"
5
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T05:24:36Z"
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string splits: - name: train num_bytes: 182313410 num_examples: 70000 download_size: 102699118 dataset_size: 182313410 configs: - config_name: default data_files: - split: train path: data/train-* ---
ahmedheakl/ar_patd_instruct
ahmedheakl
"2024-11-22T06:39:23Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:06:18Z"
--- dataset_info: features: - name: category dtype: string - name: image dtype: image - name: content list: - name: author dtype: string - name: content dtype: string - name: id dtype: string - name: subtitle dtype: string - name: title dtype: string splits: - name: train num_bytes: 8157751729 num_examples: 2550 download_size: 8124913276 dataset_size: 8157751729 configs: - config_name: default data_files: - split: train path: data/train-* ---
jassiyu/poetry-gutenberg5000
jassiyu
"2024-11-22T06:16:10Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:16:07Z"
--- dataset_info: features: - name: line dtype: string - name: gutenberg_id dtype: int64 splits: - name: train num_bytes: 253970 num_examples: 5000 download_size: 180447 dataset_size: 253970 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/processed_image_unseen-fewshot_dpo_ours_withjpg_num500_winrategpt-4o-mini
Asap7772
"2024-11-22T06:35:02Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:34:07Z"
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string - name: score dtype: int64 - name: text_pref_first dtype: string - name: text_pref_second dtype: string splits: - name: test num_bytes: 1122938244 num_examples: 500 download_size: 874479072 dataset_size: 1122938244 configs: - config_name: default data_files: - split: test path: data/test-* ---
Asap7772/processed_image_unseen-fewshot_dpo-userprofile_ours_withjpg_num500_winrategpt-4o-mini
Asap7772
"2024-11-22T06:35:43Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:34:45Z"
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string - name: score dtype: int64 - name: text_pref_first dtype: string - name: text_pref_second dtype: string splits: - name: test num_bytes: 1131766399 num_examples: 500 download_size: 883304082 dataset_size: 1131766399 configs: - config_name: default data_files: - split: test path: data/test-* ---
Asap7772/processed_image_unseen-fewshot_sc-userprofile_ours_withjpg_num500_winrategpt-4o-mini
Asap7772
"2024-11-22T06:37:58Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T06:37:03Z"
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string - name: score dtype: int64 - name: text_pref_first dtype: string - name: text_pref_second dtype: string splits: - name: test num_bytes: 1121558293 num_examples: 500 download_size: 873096066 dataset_size: 1121558293 configs: - config_name: default data_files: - split: test path: data/test-* ---
JJuny/llama2_SYC_mess_stopremoved_train
JJuny
"2024-11-22T07:13:16Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:13:11Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 298294 num_examples: 71 download_size: 115610 dataset_size: 298294 configs: - config_name: default data_files: - split: train path: data/train-* ---
JJuny/llama2_SYC_mess_stopremoved_eval
JJuny
"2024-11-22T07:13:31Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:13:25Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 6175 num_examples: 4 download_size: 14122 dataset_size: 6175 configs: - config_name: default data_files: - split: train path: data/train-* ---
HWISEONGSS/llm_ko_politec
HWISEONGSS
"2024-11-22T07:15:20Z"
5
0
[ "license:apache-2.0", "region:us" ]
null
"2024-11-22T07:15:19Z"
--- license: apache-2.0 ---
open-llm-leaderboard/netcat420__MFANN3bv0.24-details
open-llm-leaderboard
"2024-11-22T07:25:14Z"
5
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:21:47Z"
--- pretty_name: Evaluation run of netcat420/MFANN3bv0.24 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [netcat420/MFANN3bv0.24](https://huggingface.co/netcat420/MFANN3bv0.24)\nThe dataset\ \ is composed of 38 configuration(s), each one corresponding to one of the evaluated\ \ task.\n\nThe dataset has been created from 1 run(s). Each run can be found as\ \ a specific split in each configuration, the split being named using the timestamp\ \ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\ \ additional configuration \"results\" store all the aggregated results of the run.\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/netcat420__MFANN3bv0.24-details\"\ ,\n\tname=\"netcat420__MFANN3bv0.24__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-11-22T07-21-46.503028](https://huggingface.co/datasets/open-llm-leaderboard/netcat420__MFANN3bv0.24-details/blob/main/netcat420__MFANN3bv0.24/results_2024-11-22T07-21-46.503028.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"inst_level_loose_acc,none\": 0.2997601918465228,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.15711645101663585,\n \"prompt_level_strict_acc_stderr,none\": 0.01566021568347361,\n\ \ \"acc,none\": 0.23520611702127658,\n \"acc_stderr,none\"\ : 0.0038667460057111433,\n \"inst_level_strict_acc,none\": 0.2829736211031175,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc_norm,none\"\ : 0.40147879102347905,\n \"acc_norm_stderr,none\": 0.005245619055895268,\n\ \ \"prompt_level_loose_acc,none\": 0.16820702402957485,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01609655018806301,\n \"exact_match,none\"\ : 0.010574018126888218,\n \"exact_match_stderr,none\": 0.0028001672170684297,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.43759763929873285,\n \"acc_norm_stderr,none\"\ : 0.006137862286453202,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.844,\n\ \ \"acc_norm_stderr,none\": 0.022995023034068682\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5775401069518716,\n \"acc_norm_stderr,none\"\ : 0.0362182402075336\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.344,\n \"acc_norm_stderr,none\": 0.03010450339231644\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.612,\n\ \ \"acc_norm_stderr,none\": 0.030881038748993974\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\":\ \ 0.031603975145223735\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.556,\n \ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.472,\n \"acc_norm_stderr,none\":\ \ 0.031636489531544396\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.404,\n \"acc_norm_stderr,none\": 0.03109668818482536\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\":\ \ 0.03164968895968774\n },\n \"leaderboard_bbh_object_counting\":\ \ {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.372,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.3972602739726027,\n \"acc_norm_stderr,none\": 0.04063670403888034\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\": 0.02936106757521985\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.488,\n \ \ \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.6348314606741573,\n\ \ \"acc_norm_stderr,none\": 0.03619005678691264\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.472,\n \"acc_norm_stderr,none\":\ \ 0.031636489531544396\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.176,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\":\ \ 0.024760377727750513\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.32,\n \"acc_norm_stderr,none\": 0.029561724955240978\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.536,\n\ \ \"acc_norm_stderr,none\": 0.031603975145223735\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.25838926174496646,\n\ \ \"acc_norm_stderr,none\": 0.0126896026637416,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.23232323232323232,\n \"acc_norm_stderr,none\": 0.030088629490217445\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.25824175824175827,\n\ \ \"acc_norm_stderr,none\": 0.01874762138022973\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.2700892857142857,\n \"acc_norm_stderr,none\"\ : 0.021000749078822437\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.15711645101663585,\n \"prompt_level_strict_acc_stderr,none\": 0.01566021568347361,\n\ \ \"inst_level_strict_acc,none\": 0.2829736211031175,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.16820702402957485,\n \"prompt_level_loose_acc_stderr,none\": 0.016096550188063007,\n\ \ \"inst_level_loose_acc,none\": 0.2997601918465228,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.010574018126888218,\n \"exact_match_stderr,none\"\ : 0.0028001672170684297,\n \"alias\": \" - leaderboard_math_hard\"\n\ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.013029315960912053,\n\ \ \"exact_match_stderr,none\": 0.006482644725390246\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_geometry_hard\"\ : {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \ \ \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.007142857142857143,\n \"exact_match_stderr,none\"\ : 0.005041703051390571\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\": 0.03626943005181347,\n\ \ \"exact_match_stderr,none\": 0.013492659751295115\n },\n \ \ \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" - leaderboard_math_precalculus_hard\"\ ,\n \"exact_match,none\": 0.007407407407407408,\n \"exact_match_stderr,none\"\ : 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.23520611702127658,\n\ \ \"acc_stderr,none\": 0.0038667460057111433\n },\n \"\ leaderboard_musr\": {\n \"acc_norm,none\": 0.35185185185185186,\n \ \ \"acc_norm_stderr,none\": 0.01653013512637592,\n \"alias\"\ : \" - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\"\ : {\n \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \ \ \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\"\ : \" - leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.32421875,\n\ \ \"acc_norm_stderr,none\": 0.029312444800629493\n },\n \ \ \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\":\ \ 0.02455581299422255\n }\n },\n \"leaderboard\": {\n \"inst_level_loose_acc,none\"\ : 0.2997601918465228,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"prompt_level_strict_acc,none\": 0.15711645101663585,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.01566021568347361,\n \"acc,none\": 0.23520611702127658,\n \"acc_stderr,none\"\ : 0.0038667460057111433,\n \"inst_level_strict_acc,none\": 0.2829736211031175,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc_norm,none\"\ : 0.40147879102347905,\n \"acc_norm_stderr,none\": 0.005245619055895268,\n\ \ \"prompt_level_loose_acc,none\": 0.16820702402957485,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.01609655018806301,\n \"exact_match,none\": 0.010574018126888218,\n \ \ \"exact_match_stderr,none\": 0.0028001672170684297,\n \"alias\": \"\ leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.43759763929873285,\n\ \ \"acc_norm_stderr,none\": 0.006137862286453202,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.844,\n \"acc_norm_stderr,none\": 0.022995023034068682\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5775401069518716,\n \"acc_norm_stderr,none\"\ : 0.0362182402075336\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.344,\n \"acc_norm_stderr,none\": 0.03010450339231644\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.612,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.472,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.404,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.372,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3972602739726027,\n\ \ \"acc_norm_stderr,none\": 0.04063670403888034\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\": 0.02936106757521985\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6348314606741573,\n \"acc_norm_stderr,none\"\ : 0.03619005678691264\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.472,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.176,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.32,\n \"acc_norm_stderr,none\": 0.029561724955240978\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.25838926174496646,\n\ \ \"acc_norm_stderr,none\": 0.0126896026637416,\n \"alias\": \" -\ \ leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\"\ : \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.23232323232323232,\n\ \ \"acc_norm_stderr,none\": 0.030088629490217445\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.25824175824175827,\n \"acc_norm_stderr,none\": 0.01874762138022973\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.2700892857142857,\n \"acc_norm_stderr,none\"\ : 0.021000749078822437\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.15711645101663585,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.01566021568347361,\n \ \ \"inst_level_strict_acc,none\": 0.2829736211031175,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.16820702402957485,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.016096550188063007,\n \"inst_level_loose_acc,none\"\ : 0.2997601918465228,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.010574018126888218,\n\ \ \"exact_match_stderr,none\": 0.0028001672170684297,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.013029315960912053,\n \"exact_match_stderr,none\": 0.006482644725390246\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_geometry_hard\"\ : {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.007142857142857143,\n \"exact_match_stderr,none\"\ : 0.005041703051390571\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.03626943005181347,\n \"exact_match_stderr,none\": 0.013492659751295115\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.007407407407407408,\n\ \ \"exact_match_stderr,none\": 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.23520611702127658,\n\ \ \"acc_stderr,none\": 0.0038667460057111433\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.35185185185185186,\n \"acc_norm_stderr,none\"\ : 0.01653013512637592,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.32421875,\n\ \ \"acc_norm_stderr,none\": 0.029312444800629493\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n }\n}\n```" repo_url: https://huggingface.co/netcat420/MFANN3bv0.24 leaderboard_url: '' point_of_contact: '' configs: - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_navigate data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_snarks data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_gpqa_extended data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_gpqa_main data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_ifeval data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_ifeval_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_mmlu_pro data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_musr_object_placements data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T07-21-46.503028.jsonl' - config_name: netcat420__MFANN3bv0.24__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T07_21_46.503028 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T07-21-46.503028.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T07-21-46.503028.jsonl' --- # Dataset Card for Evaluation run of netcat420/MFANN3bv0.24 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [netcat420/MFANN3bv0.24](https://huggingface.co/netcat420/MFANN3bv0.24) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/netcat420__MFANN3bv0.24-details", name="netcat420__MFANN3bv0.24__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T07-21-46.503028](https://huggingface.co/datasets/open-llm-leaderboard/netcat420__MFANN3bv0.24-details/blob/main/netcat420__MFANN3bv0.24/results_2024-11-22T07-21-46.503028.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "inst_level_loose_acc,none": 0.2997601918465228, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.15711645101663585, "prompt_level_strict_acc_stderr,none": 0.01566021568347361, "acc,none": 0.23520611702127658, "acc_stderr,none": 0.0038667460057111433, "inst_level_strict_acc,none": 0.2829736211031175, "inst_level_strict_acc_stderr,none": "N/A", "acc_norm,none": 0.40147879102347905, "acc_norm_stderr,none": 0.005245619055895268, "prompt_level_loose_acc,none": 0.16820702402957485, "prompt_level_loose_acc_stderr,none": 0.01609655018806301, "exact_match,none": 0.010574018126888218, "exact_match_stderr,none": 0.0028001672170684297, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.43759763929873285, "acc_norm_stderr,none": 0.006137862286453202, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.844, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5775401069518716, "acc_norm_stderr,none": 0.0362182402075336 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.612, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.404, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.372, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3972602739726027, "acc_norm_stderr,none": 0.04063670403888034 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6348314606741573, "acc_norm_stderr,none": 0.03619005678691264 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.176, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.32, "acc_norm_stderr,none": 0.029561724955240978 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_gpqa": { "acc_norm,none": 0.25838926174496646, "acc_norm_stderr,none": 0.0126896026637416, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23232323232323232, "acc_norm_stderr,none": 0.030088629490217445 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.25824175824175827, "acc_norm_stderr,none": 0.01874762138022973 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.2700892857142857, "acc_norm_stderr,none": 0.021000749078822437 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.15711645101663585, "prompt_level_strict_acc_stderr,none": 0.01566021568347361, "inst_level_strict_acc,none": 0.2829736211031175, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.16820702402957485, "prompt_level_loose_acc_stderr,none": 0.016096550188063007, "inst_level_loose_acc,none": 0.2997601918465228, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.010574018126888218, "exact_match_stderr,none": 0.0028001672170684297, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.013029315960912053, "exact_match_stderr,none": 0.006482644725390246 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.007142857142857143, "exact_match_stderr,none": 0.005041703051390571 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.03626943005181347, "exact_match_stderr,none": 0.013492659751295115 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.23520611702127658, "acc_stderr,none": 0.0038667460057111433 }, "leaderboard_musr": { "acc_norm,none": 0.35185185185185186, "acc_norm_stderr,none": 0.01653013512637592, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.32421875, "acc_norm_stderr,none": 0.029312444800629493 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 } }, "leaderboard": { "inst_level_loose_acc,none": 0.2997601918465228, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.15711645101663585, "prompt_level_strict_acc_stderr,none": 0.01566021568347361, "acc,none": 0.23520611702127658, "acc_stderr,none": 0.0038667460057111433, "inst_level_strict_acc,none": 0.2829736211031175, "inst_level_strict_acc_stderr,none": "N/A", "acc_norm,none": 0.40147879102347905, "acc_norm_stderr,none": 0.005245619055895268, "prompt_level_loose_acc,none": 0.16820702402957485, "prompt_level_loose_acc_stderr,none": 0.01609655018806301, "exact_match,none": 0.010574018126888218, "exact_match_stderr,none": 0.0028001672170684297, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.43759763929873285, "acc_norm_stderr,none": 0.006137862286453202, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.844, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5775401069518716, "acc_norm_stderr,none": 0.0362182402075336 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.612, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.404, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.372, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3972602739726027, "acc_norm_stderr,none": 0.04063670403888034 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6348314606741573, "acc_norm_stderr,none": 0.03619005678691264 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.176, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.32, "acc_norm_stderr,none": 0.029561724955240978 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_gpqa": { "acc_norm,none": 0.25838926174496646, "acc_norm_stderr,none": 0.0126896026637416, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23232323232323232, "acc_norm_stderr,none": 0.030088629490217445 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.25824175824175827, "acc_norm_stderr,none": 0.01874762138022973 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.2700892857142857, "acc_norm_stderr,none": 0.021000749078822437 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.15711645101663585, "prompt_level_strict_acc_stderr,none": 0.01566021568347361, "inst_level_strict_acc,none": 0.2829736211031175, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.16820702402957485, "prompt_level_loose_acc_stderr,none": 0.016096550188063007, "inst_level_loose_acc,none": 0.2997601918465228, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.010574018126888218, "exact_match_stderr,none": 0.0028001672170684297, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.013029315960912053, "exact_match_stderr,none": 0.006482644725390246 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.007142857142857143, "exact_match_stderr,none": 0.005041703051390571 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.03626943005181347, "exact_match_stderr,none": 0.013492659751295115 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.23520611702127658, "acc_stderr,none": 0.0038667460057111433 }, "leaderboard_musr": { "acc_norm,none": 0.35185185185185186, "acc_norm_stderr,none": 0.01653013512637592, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.32421875, "acc_norm_stderr,none": 0.029312444800629493 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_train_chunk_12
ZixuanKe
"2024-11-22T07:57:20Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T07:57:19Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5832266 num_examples: 991 download_size: 427232 dataset_size: 5832266 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/TheHierophant__Underground-Cognitive-V0.3-test-details
open-llm-leaderboard
"2024-11-22T08:08:08Z"
5
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:04:52Z"
--- pretty_name: Evaluation run of TheHierophant/Underground-Cognitive-V0.3-test dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [TheHierophant/Underground-Cognitive-V0.3-test](https://huggingface.co/TheHierophant/Underground-Cognitive-V0.3-test)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/TheHierophant__Underground-Cognitive-V0.3-test-details\"\ ,\n\tname=\"TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T08-04-51.528750](https://huggingface.co/datasets/open-llm-leaderboard/TheHierophant__Underground-Cognitive-V0.3-test-details/blob/main/TheHierophant__Underground-Cognitive-V0.3-test/results_2024-11-22T08-04-51.528750.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_strict_acc,none\": 0.4232902033271719,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.021261842325248494,\n \"\ acc,none\": 0.331781914893617,\n \"acc_stderr,none\": 0.004292740186210186,\n\ \ \"prompt_level_loose_acc,none\": 0.45286506469500926,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02142075394952955,\n \"inst_level_strict_acc,none\"\ : 0.5383693045563549,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"acc_norm,none\": 0.48268257880399534,\n \"acc_norm_stderr,none\"\ : 0.0053367471046366485,\n \"inst_level_loose_acc,none\": 0.5683453237410072,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"exact_match,none\"\ : 0.006042296072507553,\n \"exact_match_stderr,none\": 0.0021310320096616354,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5271654226696754,\n \"acc_norm_stderr,none\"\ : 0.00618516517577893,\n \"alias\": \" - leaderboard_bbh\"\n },\n\ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" \ \ - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.84,\n\ \ \"acc_norm_stderr,none\": 0.023232714782060626\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5882352941176471,\n \"acc_norm_stderr,none\"\ : 0.036086405630856196\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.66,\n\ \ \"acc_norm_stderr,none\": 0.030020073605457876\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\":\ \ 0.031355968923772626\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.472,\n \"acc_norm_stderr,none\": 0.031636489531544396\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.628,\n \ \ \"acc_norm_stderr,none\": 0.03063032594455827\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.464,\n \"acc_norm_stderr,none\":\ \ 0.03160397514522374\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.428,\n \"acc_norm_stderr,none\":\ \ 0.031355968923772626\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.4794520547945205,\n \"acc_norm_stderr,none\": 0.041487661809251744\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.616,\n \ \ \"acc_norm_stderr,none\": 0.030821679117375447\n },\n \"\ leaderboard_bbh_salient_translation_error_detection\": {\n \"alias\"\ : \" - leaderboard_bbh_salient_translation_error_detection\",\n \"acc_norm,none\"\ : 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n },\n\ \ \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \ \ \"acc_norm,none\": 0.86,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.444,\n\ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.176,\n \"acc_norm_stderr,none\":\ \ 0.024133497525457123\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.264,\n \"acc_norm_stderr,none\":\ \ 0.027934518957690866\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013247871854324349,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.23737373737373738,\n \"acc_norm_stderr,none\": 0.030313710538198924\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.31684981684981683,\n\ \ \"acc_norm_stderr,none\": 0.019929048938214563\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.30357142857142855,\n \"acc_norm_stderr,none\"\ : 0.021747782232917543\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.4232902033271719,\n \"prompt_level_strict_acc_stderr,none\": 0.021261842325248494,\n\ \ \"inst_level_strict_acc,none\": 0.5383693045563549,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.45286506469500926,\n \"prompt_level_loose_acc_stderr,none\": 0.02142075394952955,\n\ \ \"inst_level_loose_acc,none\": 0.5683453237410072,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.006042296072507553,\n \"exact_match_stderr,none\"\ : 0.0021310320096616354,\n \"alias\": \" - leaderboard_math_hard\"\n\ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.009771986970684038,\n\ \ \"exact_match_stderr,none\": 0.005623391633915856\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.016260162601626018,\n \"exact_match_stderr,none\": 0.011450452676925654\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.007142857142857143,\n \"exact_match_stderr,none\"\ : 0.005041703051390571\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\": 0.0051813471502590676,\n\ \ \"exact_match_stderr,none\": 0.0051813471502590676\n },\n \ \ \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" - leaderboard_math_precalculus_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \"\ \ - leaderboard_mmlu_pro\",\n \"acc,none\": 0.331781914893617,\n \ \ \"acc_stderr,none\": 0.004292740186210186\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.43386243386243384,\n \"acc_norm_stderr,none\"\ : 0.01742507032186109,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.596,\n\ \ \"acc_norm_stderr,none\": 0.03109668818482536\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.27734375,\n \"acc_norm_stderr,none\"\ : 0.02803528549328419\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_strict_acc,none\"\ : 0.4232902033271719,\n \"prompt_level_strict_acc_stderr,none\": 0.021261842325248494,\n\ \ \"acc,none\": 0.331781914893617,\n \"acc_stderr,none\": 0.004292740186210186,\n\ \ \"prompt_level_loose_acc,none\": 0.45286506469500926,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.02142075394952955,\n \"inst_level_strict_acc,none\": 0.5383693045563549,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc_norm,none\"\ : 0.48268257880399534,\n \"acc_norm_stderr,none\": 0.0053367471046366485,\n\ \ \"inst_level_loose_acc,none\": 0.5683453237410072,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.006042296072507553,\n \"exact_match_stderr,none\"\ : 0.0021310320096616354,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5271654226696754,\n \"acc_norm_stderr,none\"\ : 0.00618516517577893,\n \"alias\": \" - leaderboard_bbh\"\n },\n \"\ leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.84,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5882352941176471,\n \"acc_norm_stderr,none\"\ : 0.036086405630856196\n },\n \"leaderboard_bbh_date_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.66,\n \"acc_norm_stderr,none\": 0.030020073605457876\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.472,\n \"acc_norm_stderr,none\": 0.031636489531544396\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.628,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.464,\n \"acc_norm_stderr,none\": 0.03160397514522374\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.428,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.4794520547945205,\n\ \ \"acc_norm_stderr,none\": 0.041487661809251744\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.86,\n \"acc_norm_stderr,none\": 0.021989409645240245\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.444,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.176,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.264,\n \"acc_norm_stderr,none\": 0.027934518957690866\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013247871854324349,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.23737373737373738,\n\ \ \"acc_norm_stderr,none\": 0.030313710538198924\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.31684981684981683,\n \"acc_norm_stderr,none\": 0.019929048938214563\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.30357142857142855,\n \"acc_norm_stderr,none\"\ : 0.021747782232917543\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.4232902033271719,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021261842325248494,\n \ \ \"inst_level_strict_acc,none\": 0.5383693045563549,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.45286506469500926,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02142075394952955,\n \"inst_level_loose_acc,none\"\ : 0.5683453237410072,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.006042296072507553,\n\ \ \"exact_match_stderr,none\": 0.0021310320096616354,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.009771986970684038,\n \"exact_match_stderr,none\": 0.005623391633915856\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.016260162601626018,\n \"exact_match_stderr,none\": 0.011450452676925654\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.007142857142857143,\n \"exact_match_stderr,none\": 0.005041703051390571\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.0051813471502590676,\n \"exact_match_stderr,none\"\ : 0.0051813471502590676\n },\n \"leaderboard_math_precalculus_hard\": {\n\ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.331781914893617,\n\ \ \"acc_stderr,none\": 0.004292740186210186\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.43386243386243384,\n \"acc_norm_stderr,none\"\ : 0.01742507032186109,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.27734375,\n\ \ \"acc_norm_stderr,none\": 0.02803528549328419\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n }\n}\n```" repo_url: https://huggingface.co/TheHierophant/Underground-Cognitive-V0.3-test leaderboard_url: '' point_of_contact: '' configs: - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_navigate data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_snarks data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_gpqa_extended data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_gpqa_main data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_ifeval data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_ifeval_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_mmlu_pro data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_musr_object_placements data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T08-04-51.528750.jsonl' - config_name: TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T08_04_51.528750 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T08-04-51.528750.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T08-04-51.528750.jsonl' --- # Dataset Card for Evaluation run of TheHierophant/Underground-Cognitive-V0.3-test <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [TheHierophant/Underground-Cognitive-V0.3-test](https://huggingface.co/TheHierophant/Underground-Cognitive-V0.3-test) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/TheHierophant__Underground-Cognitive-V0.3-test-details", name="TheHierophant__Underground-Cognitive-V0.3-test__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T08-04-51.528750](https://huggingface.co/datasets/open-llm-leaderboard/TheHierophant__Underground-Cognitive-V0.3-test-details/blob/main/TheHierophant__Underground-Cognitive-V0.3-test/results_2024-11-22T08-04-51.528750.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_strict_acc,none": 0.4232902033271719, "prompt_level_strict_acc_stderr,none": 0.021261842325248494, "acc,none": 0.331781914893617, "acc_stderr,none": 0.004292740186210186, "prompt_level_loose_acc,none": 0.45286506469500926, "prompt_level_loose_acc_stderr,none": 0.02142075394952955, "inst_level_strict_acc,none": 0.5383693045563549, "inst_level_strict_acc_stderr,none": "N/A", "acc_norm,none": 0.48268257880399534, "acc_norm_stderr,none": 0.0053367471046366485, "inst_level_loose_acc,none": 0.5683453237410072, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.006042296072507553, "exact_match_stderr,none": 0.0021310320096616354, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5271654226696754, "acc_norm_stderr,none": 0.00618516517577893, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.84, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5882352941176471, "acc_norm_stderr,none": 0.036086405630856196 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.66, "acc_norm_stderr,none": 0.030020073605457876 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.628, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.428, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4794520547945205, "acc_norm_stderr,none": 0.041487661809251744 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.86, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.444, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.176, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.264, "acc_norm_stderr,none": 0.027934518957690866 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013247871854324349, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23737373737373738, "acc_norm_stderr,none": 0.030313710538198924 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.31684981684981683, "acc_norm_stderr,none": 0.019929048938214563 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.30357142857142855, "acc_norm_stderr,none": 0.021747782232917543 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.4232902033271719, "prompt_level_strict_acc_stderr,none": 0.021261842325248494, "inst_level_strict_acc,none": 0.5383693045563549, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.45286506469500926, "prompt_level_loose_acc_stderr,none": 0.02142075394952955, "inst_level_loose_acc,none": 0.5683453237410072, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.006042296072507553, "exact_match_stderr,none": 0.0021310320096616354, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.009771986970684038, "exact_match_stderr,none": 0.005623391633915856 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.016260162601626018, "exact_match_stderr,none": 0.011450452676925654 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.007142857142857143, "exact_match_stderr,none": 0.005041703051390571 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0051813471502590676, "exact_match_stderr,none": 0.0051813471502590676 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.331781914893617, "acc_stderr,none": 0.004292740186210186 }, "leaderboard_musr": { "acc_norm,none": 0.43386243386243384, "acc_norm_stderr,none": 0.01742507032186109, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.27734375, "acc_norm_stderr,none": 0.02803528549328419 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 } }, "leaderboard": { "prompt_level_strict_acc,none": 0.4232902033271719, "prompt_level_strict_acc_stderr,none": 0.021261842325248494, "acc,none": 0.331781914893617, "acc_stderr,none": 0.004292740186210186, "prompt_level_loose_acc,none": 0.45286506469500926, "prompt_level_loose_acc_stderr,none": 0.02142075394952955, "inst_level_strict_acc,none": 0.5383693045563549, "inst_level_strict_acc_stderr,none": "N/A", "acc_norm,none": 0.48268257880399534, "acc_norm_stderr,none": 0.0053367471046366485, "inst_level_loose_acc,none": 0.5683453237410072, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.006042296072507553, "exact_match_stderr,none": 0.0021310320096616354, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5271654226696754, "acc_norm_stderr,none": 0.00618516517577893, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.84, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5882352941176471, "acc_norm_stderr,none": 0.036086405630856196 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.66, "acc_norm_stderr,none": 0.030020073605457876 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.628, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.428, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4794520547945205, "acc_norm_stderr,none": 0.041487661809251744 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.86, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.444, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.176, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.264, "acc_norm_stderr,none": 0.027934518957690866 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013247871854324349, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23737373737373738, "acc_norm_stderr,none": 0.030313710538198924 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.31684981684981683, "acc_norm_stderr,none": 0.019929048938214563 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.30357142857142855, "acc_norm_stderr,none": 0.021747782232917543 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.4232902033271719, "prompt_level_strict_acc_stderr,none": 0.021261842325248494, "inst_level_strict_acc,none": 0.5383693045563549, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.45286506469500926, "prompt_level_loose_acc_stderr,none": 0.02142075394952955, "inst_level_loose_acc,none": 0.5683453237410072, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.006042296072507553, "exact_match_stderr,none": 0.0021310320096616354, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.009771986970684038, "exact_match_stderr,none": 0.005623391633915856 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.016260162601626018, "exact_match_stderr,none": 0.011450452676925654 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.007142857142857143, "exact_match_stderr,none": 0.005041703051390571 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0051813471502590676, "exact_match_stderr,none": 0.0051813471502590676 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.331781914893617, "acc_stderr,none": 0.004292740186210186 }, "leaderboard_musr": { "acc_norm,none": 0.43386243386243384, "acc_norm_stderr,none": 0.01742507032186109, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.27734375, "acc_norm_stderr,none": 0.02803528549328419 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_12
ZixuanKe
"2024-11-22T08:07:46Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:07:45Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 142547 num_examples: 24 download_size: 38327 dataset_size: 142547 configs: - config_name: default data_files: - split: train path: data/train-* ---
PrincekrampahReal/custom-generated-ufo-colpali
PrincekrampahReal
"2024-11-22T08:09:21Z"
5
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:08:59Z"
--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: image dtype: image - name: raw_queries sequence: string - name: broad_topical_query dtype: string - name: broad_topical_explanation dtype: string - name: specific_detail_query dtype: string - name: specific_detail_explanation dtype: string - name: visual_element_query dtype: string - name: visual_element_explanation dtype: string - name: parsed_into_json dtype: bool splits: - name: train num_bytes: 12779093.0 num_examples: 100 download_size: 12708269 dataset_size: 12779093.0 ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_17
ZixuanKe
"2024-11-22T08:10:18Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:10:17Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 249300 num_examples: 43 download_size: 31451 dataset_size: 249300 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_27
ZixuanKe
"2024-11-22T08:10:24Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:10:23Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 172583 num_examples: 32 download_size: 24384 dataset_size: 172583 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_22
ZixuanKe
"2024-11-22T08:10:59Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:10:58Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 233080 num_examples: 53 download_size: 30652 dataset_size: 233080 configs: - config_name: default data_files: - split: train path: data/train-* ---
reflection-gen/ds_coder_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_response_traceback
reflection-gen
"2024-11-22T21:59:12Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:13:47Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 16446279 num_examples: 2156 download_size: 6429025 dataset_size: 16446279 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_response_traceback" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
open-llm-leaderboard/BSC-LT__salamandra-7b-details
open-llm-leaderboard
"2024-11-22T08:19:11Z"
5
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T08:16:10Z"
--- pretty_name: Evaluation run of BSC-LT/salamandra-7b dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [BSC-LT/salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b)\nThe dataset\ \ is composed of 38 configuration(s), each one corresponding to one of the evaluated\ \ task.\n\nThe dataset has been created from 1 run(s). Each run can be found as\ \ a specific split in each configuration, the split being named using the timestamp\ \ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\ \ additional configuration \"results\" store all the aggregated results of the run.\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/BSC-LT__salamandra-7b-details\"\ ,\n\tname=\"BSC-LT__salamandra-7b__leaderboard_bbh_boolean_expressions\",\n\tsplit=\"\ latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from run\ \ 2024-11-22T08-16-09.604171](https://huggingface.co/datasets/open-llm-leaderboard/BSC-LT__salamandra-7b-details/blob/main/BSC-LT__salamandra-7b/results_2024-11-22T08-16-09.604171.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0,\n \"acc,none\": 0.14926861702127658,\n \"acc_stderr,none\"\ : 0.003248849684137683,\n \"acc_norm,none\": 0.3383058762485407,\n \ \ \"acc_norm_stderr,none\": 0.005079271239648858,\n \"prompt_level_loose_acc,none\"\ : 0.09611829944547134,\n \"prompt_level_loose_acc_stderr,none\": 0.01268416714715648,\n\ \ \"prompt_level_strict_acc,none\": 0.09242144177449169,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.012463258511767319,\n \"\ inst_level_strict_acc,none\": 0.18105515587529977,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"inst_level_loose_acc,none\": 0.18944844124700239,\n \ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.35098073251171674,\n \"acc_norm_stderr,none\": 0.005847360520810733,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5401069518716578,\n\ \ \"acc_norm_stderr,none\": 0.036543642520475775\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.372,\n \"acc_norm_stderr,none\":\ \ 0.03063032594455827\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.564,\n \"acc_norm_stderr,none\": 0.03142556706028136\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.468,\n\ \ \"acc_norm_stderr,none\": 0.03162125257572558\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.092,\n \"acc_norm_stderr,none\":\ \ 0.01831627537942964\n },\n \"leaderboard_bbh_hyperbaton\": {\n \ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.228,\n \"acc_norm_stderr,none\": 0.026587432487268498\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.14,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.44,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.332,\n\ \ \"acc_norm_stderr,none\": 0.029844039047465857\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.2191780821917808,\n \"acc_norm_stderr,none\"\ : 0.03435504786264928\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.196,\n \"acc_norm_stderr,none\":\ \ 0.025156857313255926\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.168,\n \"acc_norm_stderr,none\": 0.023692813205492536\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.43258426966292135,\n\ \ \"acc_norm_stderr,none\": 0.03723912037707517\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.172,\n\ \ \"acc_norm_stderr,none\": 0.02391551394448624\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\": 0.025537121574548162\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.296,\n \"acc_norm_stderr,none\":\ \ 0.028928939388379694\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2701342281879195,\n\ \ \"acc_norm_stderr,none\": 0.012874693203698098,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.2777777777777778,\n \"acc_norm_stderr,none\": 0.03191178226713548\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2765567765567766,\n\ \ \"acc_norm_stderr,none\": 0.019160027479692504\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.25892857142857145,\n \"acc_norm_stderr,none\"\ : 0.020718879324472094\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.09242144177449169,\n \"prompt_level_strict_acc_stderr,none\": 0.012463258511767319,\n\ \ \"inst_level_strict_acc,none\": 0.18105515587529977,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.09611829944547134,\n \"prompt_level_loose_acc_stderr,none\": 0.01268416714715648,\n\ \ \"inst_level_loose_acc,none\": 0.18944844124700239,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0,\n \"alias\": \" - leaderboard_math_hard\"\n },\n \ \ \"leaderboard_math_algebra_hard\": {\n \"alias\": \" - leaderboard_math_algebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_math_counting_and_prob_hard\": {\n \ \ \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\"\ : \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\":\ \ 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\"\ : 0.14926861702127658,\n \"acc_stderr,none\": 0.0032488496841376834\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.3492063492063492,\n\ \ \"acc_norm_stderr,none\": 0.016882123224531108,\n \"alias\"\ : \" - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\"\ : {\n \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \ \ \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\"\ : \" - leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.23828125,\n\ \ \"acc_norm_stderr,none\": 0.026679160987075002\n },\n \ \ \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.308,\n \"acc_norm_stderr,none\":\ \ 0.02925692860650181\n }\n },\n \"leaderboard\": {\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0,\n \"acc,none\": 0.14926861702127658,\n\ \ \"acc_stderr,none\": 0.003248849684137683,\n \"acc_norm,none\":\ \ 0.3383058762485407,\n \"acc_norm_stderr,none\": 0.005079271239648858,\n\ \ \"prompt_level_loose_acc,none\": 0.09611829944547134,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.01268416714715648,\n \"prompt_level_strict_acc,none\": 0.09242144177449169,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.012463258511767319,\n \ \ \"inst_level_strict_acc,none\": 0.18105515587529977,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"inst_level_loose_acc,none\": 0.18944844124700239,\n \ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.35098073251171674,\n\ \ \"acc_norm_stderr,none\": 0.005847360520810733,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5401069518716578,\n \"acc_norm_stderr,none\"\ : 0.036543642520475775\n },\n \"leaderboard_bbh_date_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.372,\n \"acc_norm_stderr,none\": 0.03063032594455827\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.564,\n \"acc_norm_stderr,none\": 0.03142556706028136\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.468,\n \"acc_norm_stderr,none\": 0.03162125257572558\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.092,\n \"acc_norm_stderr,none\": 0.01831627537942964\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.228,\n \"acc_norm_stderr,none\": 0.026587432487268498\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.14,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.44,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.332,\n \"acc_norm_stderr,none\": 0.029844039047465857\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.2191780821917808,\n\ \ \"acc_norm_stderr,none\": 0.03435504786264928\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.196,\n \"acc_norm_stderr,none\": 0.025156857313255926\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.168,\n \"acc_norm_stderr,none\": 0.023692813205492536\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.43258426966292135,\n \"acc_norm_stderr,none\"\ : 0.03723912037707517\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \"\ acc_norm,none\": 0.172,\n \"acc_norm_stderr,none\": 0.02391551394448624\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\": 0.025537121574548162\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.296,\n \"acc_norm_stderr,none\": 0.028928939388379694\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2701342281879195,\n\ \ \"acc_norm_stderr,none\": 0.012874693203698098,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.2777777777777778,\n\ \ \"acc_norm_stderr,none\": 0.03191178226713548\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2765567765567766,\n \"acc_norm_stderr,none\": 0.019160027479692504\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.25892857142857145,\n \"acc_norm_stderr,none\"\ : 0.020718879324472094\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.09242144177449169,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.012463258511767319,\n \ \ \"inst_level_strict_acc,none\": 0.18105515587529977,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.09611829944547134,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01268416714715648,\n \"inst_level_loose_acc,none\"\ : 0.18944844124700239,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n\ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0,\n \"alias\": \" - leaderboard_math_hard\"\ \n },\n \"leaderboard_math_algebra_hard\": {\n \"alias\": \" - leaderboard_math_algebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_geometry_hard\"\ : {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.0,\n \ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\": {\n\ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.14926861702127658,\n\ \ \"acc_stderr,none\": 0.0032488496841376834\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3492063492063492,\n \"acc_norm_stderr,none\"\ : 0.016882123224531108,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.23828125,\n\ \ \"acc_norm_stderr,none\": 0.026679160987075002\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.308,\n \"acc_norm_stderr,none\": 0.02925692860650181\n }\n}\n```" repo_url: https://huggingface.co/BSC-LT/salamandra-7b leaderboard_url: '' point_of_contact: '' configs: - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_navigate data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_snarks data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_gpqa_extended data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_gpqa_main data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_ifeval data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_ifeval_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_mmlu_pro data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_musr_object_placements data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T08-16-09.604171.jsonl' - config_name: BSC-LT__salamandra-7b__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T08_16_09.604171 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T08-16-09.604171.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T08-16-09.604171.jsonl' --- # Dataset Card for Evaluation run of BSC-LT/salamandra-7b <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [BSC-LT/salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/BSC-LT__salamandra-7b-details", name="BSC-LT__salamandra-7b__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T08-16-09.604171](https://huggingface.co/datasets/open-llm-leaderboard/BSC-LT__salamandra-7b-details/blob/main/BSC-LT__salamandra-7b/results_2024-11-22T08-16-09.604171.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "acc,none": 0.14926861702127658, "acc_stderr,none": 0.003248849684137683, "acc_norm,none": 0.3383058762485407, "acc_norm_stderr,none": 0.005079271239648858, "prompt_level_loose_acc,none": 0.09611829944547134, "prompt_level_loose_acc_stderr,none": 0.01268416714715648, "prompt_level_strict_acc,none": 0.09242144177449169, "prompt_level_strict_acc_stderr,none": 0.012463258511767319, "inst_level_strict_acc,none": 0.18105515587529977, "inst_level_strict_acc_stderr,none": "N/A", "inst_level_loose_acc,none": 0.18944844124700239, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.35098073251171674, "acc_norm_stderr,none": 0.005847360520810733, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5401069518716578, "acc_norm_stderr,none": 0.036543642520475775 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.372, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.564, "acc_norm_stderr,none": 0.03142556706028136 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.092, "acc_norm_stderr,none": 0.01831627537942964 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.228, "acc_norm_stderr,none": 0.026587432487268498 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.14, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.44, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.332, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.2191780821917808, "acc_norm_stderr,none": 0.03435504786264928 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.196, "acc_norm_stderr,none": 0.025156857313255926 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.168, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.43258426966292135, "acc_norm_stderr,none": 0.03723912037707517 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.172, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.296, "acc_norm_stderr,none": 0.028928939388379694 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2701342281879195, "acc_norm_stderr,none": 0.012874693203698098, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2777777777777778, "acc_norm_stderr,none": 0.03191178226713548 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2765567765567766, "acc_norm_stderr,none": 0.019160027479692504 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.25892857142857145, "acc_norm_stderr,none": 0.020718879324472094 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.09242144177449169, "prompt_level_strict_acc_stderr,none": 0.012463258511767319, "inst_level_strict_acc,none": 0.18105515587529977, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.09611829944547134, "prompt_level_loose_acc_stderr,none": 0.01268416714715648, "inst_level_loose_acc,none": 0.18944844124700239, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.14926861702127658, "acc_stderr,none": 0.0032488496841376834 }, "leaderboard_musr": { "acc_norm,none": 0.3492063492063492, "acc_norm_stderr,none": 0.016882123224531108, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23828125, "acc_norm_stderr,none": 0.026679160987075002 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.308, "acc_norm_stderr,none": 0.02925692860650181 } }, "leaderboard": { "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "acc,none": 0.14926861702127658, "acc_stderr,none": 0.003248849684137683, "acc_norm,none": 0.3383058762485407, "acc_norm_stderr,none": 0.005079271239648858, "prompt_level_loose_acc,none": 0.09611829944547134, "prompt_level_loose_acc_stderr,none": 0.01268416714715648, "prompt_level_strict_acc,none": 0.09242144177449169, "prompt_level_strict_acc_stderr,none": 0.012463258511767319, "inst_level_strict_acc,none": 0.18105515587529977, "inst_level_strict_acc_stderr,none": "N/A", "inst_level_loose_acc,none": 0.18944844124700239, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.35098073251171674, "acc_norm_stderr,none": 0.005847360520810733, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5401069518716578, "acc_norm_stderr,none": 0.036543642520475775 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.372, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.564, "acc_norm_stderr,none": 0.03142556706028136 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.092, "acc_norm_stderr,none": 0.01831627537942964 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.228, "acc_norm_stderr,none": 0.026587432487268498 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.14, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.44, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.332, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.2191780821917808, "acc_norm_stderr,none": 0.03435504786264928 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.196, "acc_norm_stderr,none": 0.025156857313255926 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.168, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.43258426966292135, "acc_norm_stderr,none": 0.03723912037707517 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.172, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.296, "acc_norm_stderr,none": 0.028928939388379694 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2701342281879195, "acc_norm_stderr,none": 0.012874693203698098, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2777777777777778, "acc_norm_stderr,none": 0.03191178226713548 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2765567765567766, "acc_norm_stderr,none": 0.019160027479692504 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.25892857142857145, "acc_norm_stderr,none": 0.020718879324472094 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.09242144177449169, "prompt_level_strict_acc_stderr,none": 0.012463258511767319, "inst_level_strict_acc,none": 0.18105515587529977, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.09611829944547134, "prompt_level_loose_acc_stderr,none": 0.01268416714715648, "inst_level_loose_acc,none": 0.18944844124700239, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.14926861702127658, "acc_stderr,none": 0.0032488496841376834 }, "leaderboard_musr": { "acc_norm,none": 0.3492063492063492, "acc_norm_stderr,none": 0.016882123224531108, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23828125, "acc_norm_stderr,none": 0.026679160987075002 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.308, "acc_norm_stderr,none": 0.02925692860650181 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
neoneye/simon-arc-solve-skew-v7
neoneye
"2024-11-22T08:28:57Z"
5
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-22T08:27:33Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve skew version 7 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the job is to apply skew/unkew in the directions up/down/left/right. example count: 2-4. test count: 1-2. image size: 1-4. # Version 2 image size: 1-7. # Version 3 Earlier predictions added to some of the rows. # Version 4 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 5 Replaced RLE compressed response with raw pixel response. # Version 6 image size: 1-9. # Version 7 Smaller images again. image size: 1-5.
geyongtao/layer_human
geyongtao
"2024-11-22T08:34:20Z"
5
0
[ "license:apache-2.0", "region:us" ]
null
"2024-11-22T08:34:20Z"
--- license: apache-2.0 ---
ShenTan/video-matting
ShenTan
"2024-11-22T09:28:21Z"
5
0
[ "license:mit", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-22T08:39:15Z"
--- license: mit ---
musaday/llama3data_ybmusa_instruction
musaday
"2024-11-22T09:02:00Z"
5
0
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:00:39Z"
--- license: mit dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: input dtype: string splits: - name: train num_bytes: 1218721 num_examples: 3586 download_size: 499147 dataset_size: 1218721 configs: - config_name: default data_files: - split: train path: data/train-* ---
Ameeeee/my-distiset-46cdcb49
Ameeeee
"2024-11-22T09:07:18Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
null
"2024-11-22T09:07:17Z"
--- size_categories: n<1K dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': fruit-bearing '1': evergreen '2': ornamental '3': flowering '4': deciduous '5': coniferous splits: - name: train num_bytes: 3849 num_examples: 10 download_size: 4855 dataset_size: 3849 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-46cdcb49 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/Ameeeee/my-distiset-46cdcb49/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/Ameeeee/my-distiset-46cdcb49/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 4, "text": "The European beech tree (Fagus sylvatica) is a deciduous tree species native to Europe, with its broad, rounded crown, spreading branches, and smooth, grey bark. It is a well-known and highly valued species in European forestry and horticulture, primarily prized for its timber and the creation of beech leaf litter which is a vital component of nutrient cycling." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("Ameeeee/my-distiset-46cdcb49", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("Ameeeee/my-distiset-46cdcb49") ``` </details>
pkuAI4M/lean_github
pkuAI4M
"2024-11-22T09:18:02Z"
5
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:17:41Z"
--- dataset_info: features: - name: url dtype: string - name: commit dtype: string - name: file_path dtype: string - name: full_name dtype: string - name: start dtype: string - name: end dtype: string - name: tactic dtype: string - name: state_before dtype: string - name: state_after dtype: string - name: input dtype: string splits: - name: train num_bytes: 653756100 num_examples: 218866 download_size: 65989335 dataset_size: 653756100 configs: - config_name: default data_files: - split: train path: data/train-* ---
wyzard-ai/Anuj
wyzard-ai
"2024-11-22T09:19:40Z"
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:argilla", "region:us", "rlfh", "argilla", "human-feedback" ]
null
"2024-11-22T09:18:18Z"
--- size_categories: n<1K tags: - rlfh - argilla - human-feedback --- # Dataset Card for Anuj This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets). ## Using this dataset with Argilla To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.Dataset.from_hub("wyzard-ai/Anuj", settings="auto") ``` This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation. ## Using this dataset with `datasets` To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset("wyzard-ai/Anuj") ``` This will only load the records of the dataset, but not the Argilla settings. ## Dataset Structure This dataset repo contains: * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`. * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla. * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`. The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**. ### Fields The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset. | Field Name | Title | Type | Required | Markdown | | ---------- | ----- | ---- | -------- | -------- | | instruction | User instruction | text | True | True | ### Questions The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking. | Question Name | Title | Type | Required | Description | Values/Labels | | ------------- | ----- | ---- | -------- | ----------- | ------------- | | relevance_score | How Relevant is the conversation based upon expert. Is the conversation highly curated for you or not. Please don't judge accuracy. | rating | True | N/A | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | | accuracy_score | How accurate is the conversation based upon persona | rating | True | if | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | | clarity_score | How clear is the conversation based upon persona | rating | True | Is the LLM getting confused | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | | actionable_score | How actionable is the conversation based upon persona | rating | True | Is the LLM response to actionable for example, it shows comparison card on the right question. | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | | engagement_score | How engaging is the conversation based upon persona | rating | True | Are there a lot of question that are being shown if yes, high score else low score | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | | completeness_score | is the conversation complete based upon persona | rating | True | is the conversation complete based upon persona, not leaving any key aspect out | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | | feedback | feedback | text | True | What do you think can be improved in the given conversation. How good was the conversation as per you? | N/A | <!-- check length of metadata properties --> ### Metadata The **metadata** is a dictionary that can be used to provide additional information about the dataset record. | Metadata Name | Title | Type | Values | Visible for Annotators | | ------------- | ----- | ---- | ------ | ---------------------- | | conv_id | Conversation ID | | - | True | | turn | Conversation Turn | | 0 - 100 | True | ### Data Instances An example of a dataset instance in Argilla looks as follows: ```json { "_server_id": "56540022-7892-43f0-8d3f-214638ef15b1", "fields": { "instruction": "**user**: HI, Let me know good in memory cache libraries\n**assistant**: Several factors influence the best in-memory caching library for your needs. To help me narrow down the most suitable options, could you please tell me more about:\n\n* **What programming language are you using?** (e.g., Java, Python, .NET)\n* **What is the scale of your application?** (e.g., small project, large enterprise system)\n* **What are your specific performance requirements?** (e.g., throughput, latency)\n* **What kind of data will you be caching?** (e.g., simple objects, complex data structures)\n\n\nHere are a few popular in-memory caching options to consider:\n\n| Library/Tool | Language | Description |\n|---|---|---|\n| Guava Cache | Java | Powerful and flexible caching offered by Google\u0027s Guava library. |\n| Redis | Cross-Language | In-memory data structure store, used as a database, cache, and message broker. |\n| Memcached | Cross-Language | General-purpose distributed memory caching system. |\n| Ehcache | Java | Widely used open-source caching library. |\n\n\nProviding more context about your needs will allow me to provide more targeted recommendations.\n\n**user**: Language - java, medium size project, requirement is throughput, caching object can be complex\n**assistant**: Given your requirements for a Java-based, medium-sized project with a focus on throughput and complex object caching, Guava Cache and Ehcache are strong contenders.\n\n| Library | Description | Considerations |\n|---|---|---|\n| Guava Cache | Part of Google\u0027s Guava library, offering a simple, thread-safe, and high-performance solution. Excellent for local, in-memory caching. | Suitable for single-node applications. Consider Caffeine, a Java 8 rewrite of Guava Cache, for even better performance. |\n| Ehcache | Open-source, standards-based cache known for boosting performance and simplifying scalability. Supports memory and disk stores. | Mature and widely used, offering various features like listeners and cache loaders. May be slightly more complex to set up than Guava Cache. |\n\n\n* **Are there any specific functionalities you require, such as eviction policies or data persistence?**\n* **Do you anticipate scaling to a distributed environment in the future?** (This would influence the choice between local caches like Guava/Ehcache and distributed ones like Redis/Memcached.)\n\nKnowing these details will help me pinpoint the ideal solution for your project.\n\n**feedback**: I beleive this answer can be given by development specialist as well, as its related to development only. Although answer seems to be correct.\n**user**: I need to have application running on multiple kubernetes pods.\n**assistant**: Given your application runs on multiple Kubernetes pods, a distributed cache is necessary. Local in-memory caches like Guava or Ehcache won\u0027t be effective across different pods.\n\nHere are a few distributed caching options suitable for Kubernetes:\n\n| Tool | Description | Considerations |\n|---|---|---|\n| Redis | Highly popular in-memory data structure store. Used as a database, cache, and message broker. Excellent performance and scalability. | Requires setting up a Redis cluster within your Kubernetes environment. |\n| Memcached | General-purpose distributed memory caching system. Known for its simplicity and speed. | Simpler to set up than Redis but offers fewer features. |\n\n\n* **What type of data are you caching?** (Simple strings, complex objects, etc.)\n* **What are your performance requirements?** (Throughput, latency, etc.)\n* **Do you require data persistence?** (Redis offers persistence options, while Memcached is purely in-memory.)\n\nAnswering these questions will help me provide the most tailored solution. If you\u0027re ready to discuss implementation, you can contact our sales representative, Eshu, at eshu@wyzard.in or +91-9284730045.\n\n**feedback**: In comparison table , both redis and memcached should be shown, here only redis is shown \n**user**: Can you please give me difference between redis and memcached in more detail\n**assistant**: When comparing Redis and Memcached, both are powerful in-memory caching solutions, but they serve different use cases and have distinct features. Here\u2019s a detailed comparison based on their capabilities:\n\nnull{\"graph_type\": \"comparison table\", \"x_label\": \"Features\", \"y_label\": \"Redis vs Memcached\", \"json_payload\": [{\"name\": \"Redis\", \"info\": [{\"feature\": \"Data Structure Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Persistence Options\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Replication Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Data Expiration\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Atomic Operations\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Pub/Sub Messaging\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Complex Data Types\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Multi-threaded\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Memory Management\", \"value\": true, \"subFeatures\": []}]}]}\n\n### Insights\n\n1. **Data Structure Support**: Redis supports various data structures (strings, hashes, lists, sets, etc.), making it versatile for different use cases. In contrast, Memcached primarily supports simple key-value pairs.\n\n2. **Persistence Options**: Redis offers options for data persistence, allowing you to save data to disk, which is not available in Memcached. This makes Redis suitable for applications that require data durability.\n\n3. **Replication and Clustering**: Redis supports replication and clustering, enhancing its scalability and availability. Memcached lacks these features, making it less suitable for distributed architectures.\n\n4. **Atomic Operations**: Redis supports atomic operations on its data structures, while Memcached does not, which can be critical for certain applications requiring consistent state.\n\n5. **Memory Management**: Redis has advanced memory management features, including the ability to handle large datasets efficiently, whereas Memcached does not provide such capabilities.\n\n### Business Implications\n\nChoosing between Redis and Memcached depends on your application\u0027s specific requirements. If you need advanced data structures, persistence, and replication, Redis is the better choice. For simpler caching needs with high-speed access and less complexity, Memcached may suffice.\n\nIf you\u0027re interested in exploring how these caching solutions can be integrated into your tech stack or require a demo, please feel free to reach out for further assistance.\n**feedback**: Needed more elaboration on how to pass configs in spring boot application\n**user**: how to configure redis-cluster in java application using spring boot\n**assistant**: For configuring a Redis cluster in your Java Spring Boot application, you\u0027ll need to use the `Lettuce` or `Jedis` client library along with Spring Data Redis.\n\nHere\u0027s a breakdown using `Lettuce`, which is generally recommended for its thread-safety and performance:\n\n| Dependency | Purpose |\n|---|---|\n| `spring-boot-starter-data-redis` | Provides Spring Data Redis integration. |\n| `io.lettuce:lettuce-core` | The Lettuce Redis client library. |\n\n**Configuration:**\n\n1. **Cluster Configuration:** Configure the `LettuceConnectionFactory` to connect to your Redis cluster nodes. You\u0027ll need to provide the host and port of each node.\n\n ```java\n @Configuration\n public class RedisConfig {\n\n @Bean\n public LettuceConnectionFactory redisConnectionFactory() {\n RedisClusterConfiguration clusterConfig = new RedisClusterConfiguration();\n clusterConfig.clusterNodeProvider(new StaticClusterNodeProvider(\n Arrays.asList(new RedisNode(\"host1\", 7000), \n new RedisNode(\"host2\", 7001),\n new RedisNode(\"host3\", 7002)))); // Add all your cluster nodes\n return new LettuceConnectionFactory(clusterConfig);\n }\n\n @Bean\n public RedisTemplate\u003cString, Object\u003e redisTemplate(RedisConnectionFactory connectionFactory) {\n RedisTemplate\u003cString, Object\u003e template = new RedisTemplate\u003c\u003e();\n template.setConnectionFactory(connectionFactory);\n // Configure any serialization/deserialization strategies as needed\n return template;\n }\n }\n ```\n\n2. **Usage:** Use the `RedisTemplate` to interact with the Redis cluster.\n\n ```java\n @Service\n public class RedisService {\n\n @Autowired\n private RedisTemplate\u003cString, Object\u003e redisTemplate;\n\n public void setValue(String key, Object value) {\n redisTemplate.opsForValue().set(key, value);\n }\n\n public Object getValue(String key) {\n return redisTemplate.opsForValue().get(key);\n }\n }\n ```\n\n**Key Considerations:**\n\n* **Connection Pooling:** Configure connection pooling for better resource management.\n* **Serialization:** Choose an appropriate serialization strategy (e.g., Jackson2JsonRedisSerializer) for complex objects.\n* **Error Handling:** Implement proper error handling for connection failures or other Redis-related issues.\n\nIf you are ready to proceed with implementation and need further assistance, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n\n**user**: which is preferable lettuce or spring-boot-starter-data-redis or any other?\n**assistant**: When comparing `Lettuce` and `spring-boot-starter-data-redis`, both serve the purpose of integrating Redis with Java applications, but they have distinct roles and features. Here\u2019s a detailed comparison based on their capabilities:\n\nnull{\"graph_type\": \"comparison table\", \"x_label\": \"Features\", \"y_label\": \"Lettuce vs Spring Boot Starter Data Redis\", \"json_payload\": [{\"name\": \"Lettuce\", \"info\": [{\"feature\": \"Asynchronous API Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Thread Safety\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Reactive Programming Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Connection Pooling\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Low-Level API Access\", \"value\": true, \"subFeatures\": []}]}, {\"name\": \"Spring Boot Starter Data Redis\", \"info\": [{\"feature\": \"Asynchronous API Support\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Thread Safety\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Reactive Programming Support\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Connection Pooling\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Low-Level API Access\", \"value\": false, \"subFeatures\": []}]}]}\n\n### Insights\n\n1. **Asynchronous API Support**: Lettuce provides asynchronous capabilities, making it suitable for applications that require non-blocking operations. In contrast, the Spring Boot Starter does not offer this feature, which may limit its use in highly concurrent applications.\n\n2. **Reactive Programming Support**: Lettuce supports reactive programming, which is beneficial for modern applications that leverage reactive streams. The Spring Boot Starter does not support this paradigm, making it less flexible for reactive applications.\n\n3. **Connection Pooling**: Lettuce supports connection pooling, which is essential for managing multiple connections efficiently. The Spring Boot Starter does not provide this feature, which may lead to performance bottlenecks in high-load scenarios.\n\n4. **Low-Level API Access**: Lettuce offers low-level API access, allowing developers to interact directly with Redis commands. The Spring Boot Starter abstracts these details, which can simplify development but may limit advanced use cases.\n\n### Business Implications\n\nChoosing between `Lettuce` and `spring-boot-starter-data-redis` depends on your application\u0027s specific requirements. If you need advanced features like asynchronous support and reactive programming, `Lettuce` is the preferable choice. However, if you are looking for a simplified integration with Spring and do not require those advanced features, `spring-boot-starter-data-redis` may suffice.\n\nIf you\u0027re interested in exploring how these libraries can be integrated into your tech stack or require a demo, please feel free to reach out for further assistance.\n**user**: which configuration need to pass in application to connect to redis shard having two nodes\n**assistant**: To connect to a Redis shard with two nodes, you\u0027ll need to configure your Redis client library to connect to both nodes. Here\u0027s how you can do it using `Lettuce`, the recommended client for Spring Boot applications, along with the necessary configuration details for your application:\n\n| Parameter | Description | Example |\n|---|---|---|\n| `spring.redis.cluster.nodes` | Comma-separated list of Redis node addresses. | `host1:port1,host2:port2` |\n\n\n**Example Configuration in `application.properties`:**\n\n```\nspring.redis.cluster.nodes=redis-node-1:6379,redis-node-2:6380 \n```\n\n**Explanation:**\n\n* This configuration tells Spring Data Redis to connect to a Redis cluster.\n* `redis-node-1:6379` and `redis-node-2:6380` are the addresses of your two Redis shard nodes. Replace these with your actual hostnames/IP addresses and ports.\n\n\n**Additional Considerations:**\n\n* **Password:** If your Redis instances require authentication, use the `spring.redis.password` property.\n* **SSL:** For secure connections, set `spring.redis.ssl.enabled` to `true`. You may also need to configure truststore and keystore settings.\n* **Connection Pool:** Configure a connection pool for improved performance and resource management. Lettuce handles this automatically to some extent, but you can fine-tune it if needed.\n\n\n\nIf you\u0027re ready to purchase and implement a Redis solution, please contact our sales representative at sales@wyzard.in or +91-8826746733 for personalized assistance.\n\n**user**: what is Redis Sentinel\n**assistant**: Redis Sentinel is a robust system designed for managing and monitoring Redis instances. It primarily focuses on high availability and automatic failover. Here\u0027s a breakdown of its core functionalities:\n\n| Feature | Description |\n|---|---|\n| **Monitoring** | Continuously checks the health and responsiveness of your master and slave Redis instances. |\n| **Automatic Failover** | If a master instance fails, Sentinel automatically promotes a suitable slave to become the new master, ensuring minimal downtime. |\n| **Notification** | Alerts system administrators or other applications about changes in the master instance, such as failovers or configuration changes. |\n| **Configuration Provider** | Acts as a source of information for clients connecting to the Redis cluster. Clients can query Sentinel to discover the current master instance address. |\n\n\nEssentially, Redis Sentinel adds an extra layer of resilience and management to your Redis deployment, ensuring your application remains available even in the face of failures. It simplifies the process of setting up and maintaining a highly available Redis system.\n\n**user**: how to setup redis sentinel?/\n**assistant**: To set up Redis Sentinel for high availability, you\u0027ll need at least three Sentinel instances and a Redis master-slave setup. Here\u0027s a simplified guide:\n\n1. **Configure Redis Instances:**\n\n * Configure your master and slave Redis instances. Ensure they are running and replicating correctly.\n\n2. **Configure Sentinel Instances:**\n\n * Create a `sentinel.conf` file for each Sentinel instance.\n * Key configuration lines in `sentinel.conf`:\n\n | Parameter | Description | Example |\n |---|---|---|\n | `sentinel monitor \u003cmaster-name\u003e \u003cmaster-ip\u003e \u003cmaster-port\u003e \u003cquorum\u003e` | Tells Sentinel to monitor a master. | `sentinel monitor mymaster 192.168.1.100 6379 2` |\n | `sentinel down-after-milliseconds \u003cmaster-name\u003e \u003cmilliseconds\u003e` | Time before a master is considered down. | `sentinel down-after-milliseconds mymaster 5000` |\n | `sentinel failover-timeout \u003cmaster-name\u003e \u003cmilliseconds\u003e` | Maximum time to wait for a failover. | `sentinel failover-timeout mymaster 10000` |\n | `sentinel parallel-syncs \u003cmaster-name\u003e \u003cnumber\u003e` | Number of slaves to reconfigure at once after a failover. | `sentinel parallel-syncs mymaster 1` |\n\n3. **Start Sentinel Instances:**\n\n * Run `redis-sentinel /path/to/sentinel.conf` for each instance.\n\n4. **Connect Clients via Sentinel:**\n\n * Clients should connect to Sentinel to discover the current master address. Most Redis client libraries support Sentinel connections.\n\n\n**Key Considerations:**\n\n* **Quorum:** The quorum parameter in `sentinel monitor` determines how many Sentinels must agree that a master is down before a failover is initiated.\n* **Configuration:** Adjust the `down-after-milliseconds` and `failover-timeout` parameters based on your environment and application requirements.\n* **Network Connectivity:** Ensure all Sentinels can communicate with each other and with the Redis instances.\n\n\n\nIf you\u0027d like to discuss implementing Redis Sentinel or explore other high-availability solutions, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n\n**user**: why you need at least three Sentinel instances ?\n**assistant**: For robust Redis Sentinel deployments, three or more instances are crucial for several reasons:\n\n| Reason | Description |\n|---|---|\n| **Quorum-Based Decisions** | Sentinel operates using a quorum mechanism. Having multiple instances ensures that decisions about failovers and other critical operations are made reliably, even if one Sentinel instance goes down. |\n| **Avoiding Single Points of Failure** | Distributing Sentinel across multiple instances eliminates single points of failure. If only one Sentinel were running and it failed, you would lose the monitoring and failover capabilities. |\n| **Accurate Failure Detection** | Multiple Sentinels independently monitor the Redis master. This helps avoid false positives where a temporary network issue might be misinterpreted as a master failure. The quorum ensures that only genuine failures trigger a failover. |\n\n\nIf you have further questions or would like to discuss implementing a highly available Redis setup with Sentinel, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n\n**user**: explain quorum mechanism\n**assistant**: The quorum mechanism is a fault-tolerance technique used in distributed systems to ensure consistency and availability. It works by requiring a majority of nodes to agree on a decision before it\u0027s considered valid.\n\nHere\u0027s how it typically works:\n\n| Step | Description |\n|---|---|\n| **Proposal** | A node proposes a value or action. |\n| **Voting** | The proposal is sent to all participating nodes for a vote. |\n| **Quorum Reached** | If a majority of nodes vote in favor of the proposal, it\u0027s accepted. |\n| **Action Taken** | The agreed-upon action is executed. |\n\n\n**Benefits of Quorum:**\n\n* **Fault Tolerance:** Even if some nodes fail, the system can continue to operate as long as a quorum of nodes is still functioning.\n* **Consistency:** Prevents conflicting decisions by ensuring that only one proposal can be accepted at a time.\n* **Availability:** Increases the overall availability of the system by allowing it to tolerate node failures.\n\n\n**Example in Redis Sentinel:**\n\nRedis Sentinel uses a quorum mechanism to determine when a Redis master has failed. If a majority of Sentinel instances agree that the master is unavailable, they elect a new master from the available slaves. This ensures that the failover process is reliable and consistent, even if some Sentinel instances are down.\n\nIf you\u0027d like to discuss implementing a system with quorum or explore related technologies, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n" }, "id": "34d5d544-9d66-4937-a157-493f919259ce", "metadata": { "conv_id": "8f8984fa-8c35-4093-83df-0366a3540a49", "turn": 0 }, "responses": { "accuracy_score": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": 9 } ], "actionable_score": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": 9 } ], "clarity_score": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": 9 } ], "completeness_score": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": 9 } ], "engagement_score": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": 9 } ], "feedback": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": "In comparison table , Only one column is present. for eg while asking about difference between redis and memcache, only redis column is displayed with feature applicable or not" } ], "relevance_score": [ { "user_id": "dad9bc3b-952a-4c41-b3ec-f2a990320d08", "value": 8 } ] }, "status": "completed", "suggestions": {}, "vectors": {} } ``` While the same record in HuggingFace `datasets` looks as follows: ```json { "_server_id": "56540022-7892-43f0-8d3f-214638ef15b1", "accuracy_score.responses": [ 9 ], "accuracy_score.responses.status": [ "submitted" ], "accuracy_score.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "actionable_score.responses": [ 9 ], "actionable_score.responses.status": [ "submitted" ], "actionable_score.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "clarity_score.responses": [ 9 ], "clarity_score.responses.status": [ "submitted" ], "clarity_score.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "completeness_score.responses": [ 9 ], "completeness_score.responses.status": [ "submitted" ], "completeness_score.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "conv_id": "8f8984fa-8c35-4093-83df-0366a3540a49", "engagement_score.responses": [ 9 ], "engagement_score.responses.status": [ "submitted" ], "engagement_score.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "feedback.responses": [ "In comparison table , Only one column is present. for eg while asking about difference between redis and memcache, only redis column is displayed with feature applicable or not" ], "feedback.responses.status": [ "submitted" ], "feedback.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "id": "34d5d544-9d66-4937-a157-493f919259ce", "instruction": "**user**: HI, Let me know good in memory cache libraries\n**assistant**: Several factors influence the best in-memory caching library for your needs. To help me narrow down the most suitable options, could you please tell me more about:\n\n* **What programming language are you using?** (e.g., Java, Python, .NET)\n* **What is the scale of your application?** (e.g., small project, large enterprise system)\n* **What are your specific performance requirements?** (e.g., throughput, latency)\n* **What kind of data will you be caching?** (e.g., simple objects, complex data structures)\n\n\nHere are a few popular in-memory caching options to consider:\n\n| Library/Tool | Language | Description |\n|---|---|---|\n| Guava Cache | Java | Powerful and flexible caching offered by Google\u0027s Guava library. |\n| Redis | Cross-Language | In-memory data structure store, used as a database, cache, and message broker. |\n| Memcached | Cross-Language | General-purpose distributed memory caching system. |\n| Ehcache | Java | Widely used open-source caching library. |\n\n\nProviding more context about your needs will allow me to provide more targeted recommendations.\n\n**user**: Language - java, medium size project, requirement is throughput, caching object can be complex\n**assistant**: Given your requirements for a Java-based, medium-sized project with a focus on throughput and complex object caching, Guava Cache and Ehcache are strong contenders.\n\n| Library | Description | Considerations |\n|---|---|---|\n| Guava Cache | Part of Google\u0027s Guava library, offering a simple, thread-safe, and high-performance solution. Excellent for local, in-memory caching. | Suitable for single-node applications. Consider Caffeine, a Java 8 rewrite of Guava Cache, for even better performance. |\n| Ehcache | Open-source, standards-based cache known for boosting performance and simplifying scalability. Supports memory and disk stores. | Mature and widely used, offering various features like listeners and cache loaders. May be slightly more complex to set up than Guava Cache. |\n\n\n* **Are there any specific functionalities you require, such as eviction policies or data persistence?**\n* **Do you anticipate scaling to a distributed environment in the future?** (This would influence the choice between local caches like Guava/Ehcache and distributed ones like Redis/Memcached.)\n\nKnowing these details will help me pinpoint the ideal solution for your project.\n\n**feedback**: I beleive this answer can be given by development specialist as well, as its related to development only. Although answer seems to be correct.\n**user**: I need to have application running on multiple kubernetes pods.\n**assistant**: Given your application runs on multiple Kubernetes pods, a distributed cache is necessary. Local in-memory caches like Guava or Ehcache won\u0027t be effective across different pods.\n\nHere are a few distributed caching options suitable for Kubernetes:\n\n| Tool | Description | Considerations |\n|---|---|---|\n| Redis | Highly popular in-memory data structure store. Used as a database, cache, and message broker. Excellent performance and scalability. | Requires setting up a Redis cluster within your Kubernetes environment. |\n| Memcached | General-purpose distributed memory caching system. Known for its simplicity and speed. | Simpler to set up than Redis but offers fewer features. |\n\n\n* **What type of data are you caching?** (Simple strings, complex objects, etc.)\n* **What are your performance requirements?** (Throughput, latency, etc.)\n* **Do you require data persistence?** (Redis offers persistence options, while Memcached is purely in-memory.)\n\nAnswering these questions will help me provide the most tailored solution. If you\u0027re ready to discuss implementation, you can contact our sales representative, Eshu, at eshu@wyzard.in or +91-9284730045.\n\n**feedback**: In comparison table , both redis and memcached should be shown, here only redis is shown \n**user**: Can you please give me difference between redis and memcached in more detail\n**assistant**: When comparing Redis and Memcached, both are powerful in-memory caching solutions, but they serve different use cases and have distinct features. Here\u2019s a detailed comparison based on their capabilities:\n\nnull{\"graph_type\": \"comparison table\", \"x_label\": \"Features\", \"y_label\": \"Redis vs Memcached\", \"json_payload\": [{\"name\": \"Redis\", \"info\": [{\"feature\": \"Data Structure Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Persistence Options\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Replication Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Data Expiration\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Atomic Operations\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Pub/Sub Messaging\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Complex Data Types\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Multi-threaded\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Memory Management\", \"value\": true, \"subFeatures\": []}]}]}\n\n### Insights\n\n1. **Data Structure Support**: Redis supports various data structures (strings, hashes, lists, sets, etc.), making it versatile for different use cases. In contrast, Memcached primarily supports simple key-value pairs.\n\n2. **Persistence Options**: Redis offers options for data persistence, allowing you to save data to disk, which is not available in Memcached. This makes Redis suitable for applications that require data durability.\n\n3. **Replication and Clustering**: Redis supports replication and clustering, enhancing its scalability and availability. Memcached lacks these features, making it less suitable for distributed architectures.\n\n4. **Atomic Operations**: Redis supports atomic operations on its data structures, while Memcached does not, which can be critical for certain applications requiring consistent state.\n\n5. **Memory Management**: Redis has advanced memory management features, including the ability to handle large datasets efficiently, whereas Memcached does not provide such capabilities.\n\n### Business Implications\n\nChoosing between Redis and Memcached depends on your application\u0027s specific requirements. If you need advanced data structures, persistence, and replication, Redis is the better choice. For simpler caching needs with high-speed access and less complexity, Memcached may suffice.\n\nIf you\u0027re interested in exploring how these caching solutions can be integrated into your tech stack or require a demo, please feel free to reach out for further assistance.\n**feedback**: Needed more elaboration on how to pass configs in spring boot application\n**user**: how to configure redis-cluster in java application using spring boot\n**assistant**: For configuring a Redis cluster in your Java Spring Boot application, you\u0027ll need to use the `Lettuce` or `Jedis` client library along with Spring Data Redis.\n\nHere\u0027s a breakdown using `Lettuce`, which is generally recommended for its thread-safety and performance:\n\n| Dependency | Purpose |\n|---|---|\n| `spring-boot-starter-data-redis` | Provides Spring Data Redis integration. |\n| `io.lettuce:lettuce-core` | The Lettuce Redis client library. |\n\n**Configuration:**\n\n1. **Cluster Configuration:** Configure the `LettuceConnectionFactory` to connect to your Redis cluster nodes. You\u0027ll need to provide the host and port of each node.\n\n ```java\n @Configuration\n public class RedisConfig {\n\n @Bean\n public LettuceConnectionFactory redisConnectionFactory() {\n RedisClusterConfiguration clusterConfig = new RedisClusterConfiguration();\n clusterConfig.clusterNodeProvider(new StaticClusterNodeProvider(\n Arrays.asList(new RedisNode(\"host1\", 7000), \n new RedisNode(\"host2\", 7001),\n new RedisNode(\"host3\", 7002)))); // Add all your cluster nodes\n return new LettuceConnectionFactory(clusterConfig);\n }\n\n @Bean\n public RedisTemplate\u003cString, Object\u003e redisTemplate(RedisConnectionFactory connectionFactory) {\n RedisTemplate\u003cString, Object\u003e template = new RedisTemplate\u003c\u003e();\n template.setConnectionFactory(connectionFactory);\n // Configure any serialization/deserialization strategies as needed\n return template;\n }\n }\n ```\n\n2. **Usage:** Use the `RedisTemplate` to interact with the Redis cluster.\n\n ```java\n @Service\n public class RedisService {\n\n @Autowired\n private RedisTemplate\u003cString, Object\u003e redisTemplate;\n\n public void setValue(String key, Object value) {\n redisTemplate.opsForValue().set(key, value);\n }\n\n public Object getValue(String key) {\n return redisTemplate.opsForValue().get(key);\n }\n }\n ```\n\n**Key Considerations:**\n\n* **Connection Pooling:** Configure connection pooling for better resource management.\n* **Serialization:** Choose an appropriate serialization strategy (e.g., Jackson2JsonRedisSerializer) for complex objects.\n* **Error Handling:** Implement proper error handling for connection failures or other Redis-related issues.\n\nIf you are ready to proceed with implementation and need further assistance, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n\n**user**: which is preferable lettuce or spring-boot-starter-data-redis or any other?\n**assistant**: When comparing `Lettuce` and `spring-boot-starter-data-redis`, both serve the purpose of integrating Redis with Java applications, but they have distinct roles and features. Here\u2019s a detailed comparison based on their capabilities:\n\nnull{\"graph_type\": \"comparison table\", \"x_label\": \"Features\", \"y_label\": \"Lettuce vs Spring Boot Starter Data Redis\", \"json_payload\": [{\"name\": \"Lettuce\", \"info\": [{\"feature\": \"Asynchronous API Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Thread Safety\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Reactive Programming Support\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Connection Pooling\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Low-Level API Access\", \"value\": true, \"subFeatures\": []}]}, {\"name\": \"Spring Boot Starter Data Redis\", \"info\": [{\"feature\": \"Asynchronous API Support\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Thread Safety\", \"value\": true, \"subFeatures\": []}, {\"feature\": \"Reactive Programming Support\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Connection Pooling\", \"value\": false, \"subFeatures\": []}, {\"feature\": \"Low-Level API Access\", \"value\": false, \"subFeatures\": []}]}]}\n\n### Insights\n\n1. **Asynchronous API Support**: Lettuce provides asynchronous capabilities, making it suitable for applications that require non-blocking operations. In contrast, the Spring Boot Starter does not offer this feature, which may limit its use in highly concurrent applications.\n\n2. **Reactive Programming Support**: Lettuce supports reactive programming, which is beneficial for modern applications that leverage reactive streams. The Spring Boot Starter does not support this paradigm, making it less flexible for reactive applications.\n\n3. **Connection Pooling**: Lettuce supports connection pooling, which is essential for managing multiple connections efficiently. The Spring Boot Starter does not provide this feature, which may lead to performance bottlenecks in high-load scenarios.\n\n4. **Low-Level API Access**: Lettuce offers low-level API access, allowing developers to interact directly with Redis commands. The Spring Boot Starter abstracts these details, which can simplify development but may limit advanced use cases.\n\n### Business Implications\n\nChoosing between `Lettuce` and `spring-boot-starter-data-redis` depends on your application\u0027s specific requirements. If you need advanced features like asynchronous support and reactive programming, `Lettuce` is the preferable choice. However, if you are looking for a simplified integration with Spring and do not require those advanced features, `spring-boot-starter-data-redis` may suffice.\n\nIf you\u0027re interested in exploring how these libraries can be integrated into your tech stack or require a demo, please feel free to reach out for further assistance.\n**user**: which configuration need to pass in application to connect to redis shard having two nodes\n**assistant**: To connect to a Redis shard with two nodes, you\u0027ll need to configure your Redis client library to connect to both nodes. Here\u0027s how you can do it using `Lettuce`, the recommended client for Spring Boot applications, along with the necessary configuration details for your application:\n\n| Parameter | Description | Example |\n|---|---|---|\n| `spring.redis.cluster.nodes` | Comma-separated list of Redis node addresses. | `host1:port1,host2:port2` |\n\n\n**Example Configuration in `application.properties`:**\n\n```\nspring.redis.cluster.nodes=redis-node-1:6379,redis-node-2:6380 \n```\n\n**Explanation:**\n\n* This configuration tells Spring Data Redis to connect to a Redis cluster.\n* `redis-node-1:6379` and `redis-node-2:6380` are the addresses of your two Redis shard nodes. Replace these with your actual hostnames/IP addresses and ports.\n\n\n**Additional Considerations:**\n\n* **Password:** If your Redis instances require authentication, use the `spring.redis.password` property.\n* **SSL:** For secure connections, set `spring.redis.ssl.enabled` to `true`. You may also need to configure truststore and keystore settings.\n* **Connection Pool:** Configure a connection pool for improved performance and resource management. Lettuce handles this automatically to some extent, but you can fine-tune it if needed.\n\n\n\nIf you\u0027re ready to purchase and implement a Redis solution, please contact our sales representative at sales@wyzard.in or +91-8826746733 for personalized assistance.\n\n**user**: what is Redis Sentinel\n**assistant**: Redis Sentinel is a robust system designed for managing and monitoring Redis instances. It primarily focuses on high availability and automatic failover. Here\u0027s a breakdown of its core functionalities:\n\n| Feature | Description |\n|---|---|\n| **Monitoring** | Continuously checks the health and responsiveness of your master and slave Redis instances. |\n| **Automatic Failover** | If a master instance fails, Sentinel automatically promotes a suitable slave to become the new master, ensuring minimal downtime. |\n| **Notification** | Alerts system administrators or other applications about changes in the master instance, such as failovers or configuration changes. |\n| **Configuration Provider** | Acts as a source of information for clients connecting to the Redis cluster. Clients can query Sentinel to discover the current master instance address. |\n\n\nEssentially, Redis Sentinel adds an extra layer of resilience and management to your Redis deployment, ensuring your application remains available even in the face of failures. It simplifies the process of setting up and maintaining a highly available Redis system.\n\n**user**: how to setup redis sentinel?/\n**assistant**: To set up Redis Sentinel for high availability, you\u0027ll need at least three Sentinel instances and a Redis master-slave setup. Here\u0027s a simplified guide:\n\n1. **Configure Redis Instances:**\n\n * Configure your master and slave Redis instances. Ensure they are running and replicating correctly.\n\n2. **Configure Sentinel Instances:**\n\n * Create a `sentinel.conf` file for each Sentinel instance.\n * Key configuration lines in `sentinel.conf`:\n\n | Parameter | Description | Example |\n |---|---|---|\n | `sentinel monitor \u003cmaster-name\u003e \u003cmaster-ip\u003e \u003cmaster-port\u003e \u003cquorum\u003e` | Tells Sentinel to monitor a master. | `sentinel monitor mymaster 192.168.1.100 6379 2` |\n | `sentinel down-after-milliseconds \u003cmaster-name\u003e \u003cmilliseconds\u003e` | Time before a master is considered down. | `sentinel down-after-milliseconds mymaster 5000` |\n | `sentinel failover-timeout \u003cmaster-name\u003e \u003cmilliseconds\u003e` | Maximum time to wait for a failover. | `sentinel failover-timeout mymaster 10000` |\n | `sentinel parallel-syncs \u003cmaster-name\u003e \u003cnumber\u003e` | Number of slaves to reconfigure at once after a failover. | `sentinel parallel-syncs mymaster 1` |\n\n3. **Start Sentinel Instances:**\n\n * Run `redis-sentinel /path/to/sentinel.conf` for each instance.\n\n4. **Connect Clients via Sentinel:**\n\n * Clients should connect to Sentinel to discover the current master address. Most Redis client libraries support Sentinel connections.\n\n\n**Key Considerations:**\n\n* **Quorum:** The quorum parameter in `sentinel monitor` determines how many Sentinels must agree that a master is down before a failover is initiated.\n* **Configuration:** Adjust the `down-after-milliseconds` and `failover-timeout` parameters based on your environment and application requirements.\n* **Network Connectivity:** Ensure all Sentinels can communicate with each other and with the Redis instances.\n\n\n\nIf you\u0027d like to discuss implementing Redis Sentinel or explore other high-availability solutions, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n\n**user**: why you need at least three Sentinel instances ?\n**assistant**: For robust Redis Sentinel deployments, three or more instances are crucial for several reasons:\n\n| Reason | Description |\n|---|---|\n| **Quorum-Based Decisions** | Sentinel operates using a quorum mechanism. Having multiple instances ensures that decisions about failovers and other critical operations are made reliably, even if one Sentinel instance goes down. |\n| **Avoiding Single Points of Failure** | Distributing Sentinel across multiple instances eliminates single points of failure. If only one Sentinel were running and it failed, you would lose the monitoring and failover capabilities. |\n| **Accurate Failure Detection** | Multiple Sentinels independently monitor the Redis master. This helps avoid false positives where a temporary network issue might be misinterpreted as a master failure. The quorum ensures that only genuine failures trigger a failover. |\n\n\nIf you have further questions or would like to discuss implementing a highly available Redis setup with Sentinel, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n\n**user**: explain quorum mechanism\n**assistant**: The quorum mechanism is a fault-tolerance technique used in distributed systems to ensure consistency and availability. It works by requiring a majority of nodes to agree on a decision before it\u0027s considered valid.\n\nHere\u0027s how it typically works:\n\n| Step | Description |\n|---|---|\n| **Proposal** | A node proposes a value or action. |\n| **Voting** | The proposal is sent to all participating nodes for a vote. |\n| **Quorum Reached** | If a majority of nodes vote in favor of the proposal, it\u0027s accepted. |\n| **Action Taken** | The agreed-upon action is executed. |\n\n\n**Benefits of Quorum:**\n\n* **Fault Tolerance:** Even if some nodes fail, the system can continue to operate as long as a quorum of nodes is still functioning.\n* **Consistency:** Prevents conflicting decisions by ensuring that only one proposal can be accepted at a time.\n* **Availability:** Increases the overall availability of the system by allowing it to tolerate node failures.\n\n\n**Example in Redis Sentinel:**\n\nRedis Sentinel uses a quorum mechanism to determine when a Redis master has failed. If a majority of Sentinel instances agree that the master is unavailable, they elect a new master from the available slaves. This ensures that the failover process is reliable and consistent, even if some Sentinel instances are down.\n\nIf you\u0027d like to discuss implementing a system with quorum or explore related technologies, please contact our sales representative at sales@wyzard.in or +91-8826746733.\n", "relevance_score.responses": [ 8 ], "relevance_score.responses.status": [ "submitted" ], "relevance_score.responses.users": [ "dad9bc3b-952a-4c41-b3ec-f2a990320d08" ], "status": "completed", "turn": 0 } ``` ### Data Splits The dataset contains a single split, which is `train`. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation guidelines Review the user interactions with the chatbot. #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
Rudra-ai/ai-responses-gsm8k-405b
Rudra-ai
"2024-11-22T09:33:23Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:33:20Z"
--- dataset_info: features: - name: query dtype: string - name: response dtype: string - name: text dtype: string splits: - name: train num_bytes: 7624146 num_examples: 5000 download_size: 3582824 dataset_size: 7624146 configs: - config_name: default data_files: - split: train path: data/train-* ---
ruchirsahni/Vaani_Dharwad_tran_kan_audio
ruchirsahni
"2024-11-22T09:34:05Z"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T09:33:33Z"
--- dataset_info: features: - name: id dtype: int64 - name: file_name dtype: string - name: file_url dtype: string - name: metadata dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 493765304.625 num_examples: 2059 download_size: 483854538 dataset_size: 493765304.625 configs: - config_name: default data_files: - split: train path: data/train-* ---