modelId
stringlengths
4
122
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
392M
likes
int64
0
6.56k
library_name
stringclasses
368 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
51 values
createdAt
unknown
card
stringlengths
1
1M
vinningrev201/digging
vinningrev201
"2024-11-12T22:08:39Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:08:39Z"
Entry not found
vinningrev201/cambia
vinningrev201
"2024-11-12T22:08:51Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:08:51Z"
Entry not found
vinningrev201/horror
vinningrev201
"2024-11-12T22:09:04Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:09:03Z"
Entry not found
vinningrev201/bloops
vinningrev201
"2024-11-12T22:09:15Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:09:14Z"
Entry not found
vinningrev201/paroccipital
vinningrev201
"2024-11-12T22:09:27Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:09:27Z"
Entry not found
vinningrev201/aglow
vinningrev201
"2024-11-12T22:09:39Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:09:39Z"
Entry not found
vinningrev201/countrifiedness
vinningrev201
"2024-11-12T22:09:51Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:09:51Z"
Entry not found
vinningrev201/overdesirousness
vinningrev201
"2024-11-12T22:10:03Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:10:02Z"
Entry not found
outlookAi/Kgd8J3emBU
outlookAi
"2024-11-12T22:42:32Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-11-12T22:10:05Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Nam --- # Kgd8J3Embu <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Nam` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/Kgd8J3emBU', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
vinningrev201/pasticheur
vinningrev201
"2024-11-12T22:10:15Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:10:15Z"
Entry not found
pypert/metalbumin
pypert
"2024-11-12T22:10:27Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:10:27Z"
Entry not found
jaspionjader/Darkens-8B-Q5_K_M-GGUF
jaspionjader
"2024-11-12T22:11:05Z"
0
0
null
[ "gguf", "chat", "llama-cpp", "gguf-my-repo", "en", "dataset:anthracite-org/c2_logs_16k_llama_v1.1", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned", "dataset:lodrick-the-lafted/kalo-opus-instruct-3k-filtered", "dataset:anthracite-org/nopm_claude_writing_fixed", "dataset:Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned", "dataset:anthracite-org/kalo_opus_misc_240827", "dataset:anthracite-org/kalo_misc_part2", "base_model:Delta-Vector/Darkens-8B", "base_model:quantized:Delta-Vector/Darkens-8B", "license:agpl-3.0", "model-index", "region:us" ]
null
"2024-11-12T22:10:34Z"
--- language: - en license: agpl-3.0 tags: - chat - llama-cpp - gguf-my-repo base_model: Delta-Vector/Darkens-8B datasets: - anthracite-org/c2_logs_16k_llama_v1.1 - anthracite-org/kalo-opus-instruct-22k-no-refusal - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - lodrick-the-lafted/kalo-opus-instruct-3k-filtered - anthracite-org/nopm_claude_writing_fixed - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/kalo_opus_misc_240827 - anthracite-org/kalo_misc_part2 License: agpl-3.0 Language: - En Pipeline_tag: text-generation Base_model: nvidia/Mistral-NeMo-Minitron-8B-Base Tags: - Chat model-index: - name: Darkens-8B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 25.48 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Darkens-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.88 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Darkens-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 5.06 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Darkens-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.96 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Darkens-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 9.02 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Darkens-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 30.4 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Darkens-8B name: Open LLM Leaderboard --- # jaspionjader/Darkens-8B-Q5_K_M-GGUF This model was converted to GGUF format from [`Delta-Vector/Darkens-8B`](https://huggingface.co/Delta-Vector/Darkens-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Delta-Vector/Darkens-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo jaspionjader/Darkens-8B-Q5_K_M-GGUF --hf-file darkens-8b-q5_k_m-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo jaspionjader/Darkens-8B-Q5_K_M-GGUF --hf-file darkens-8b-q5_k_m-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo jaspionjader/Darkens-8B-Q5_K_M-GGUF --hf-file darkens-8b-q5_k_m-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo jaspionjader/Darkens-8B-Q5_K_M-GGUF --hf-file darkens-8b-q5_k_m-imat.gguf -c 2048 ```
pypert/furriery
pypert
"2024-11-12T22:10:40Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:10:39Z"
Entry not found
arisridwan/reactor_b2
arisridwan
"2024-11-12T22:14:22Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-12T22:10:46Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pypert/pleurostigma
pypert
"2024-11-12T22:10:51Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:10:51Z"
Entry not found
pypert/structuralist
pypert
"2024-11-12T22:11:03Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:11:03Z"
Entry not found
Babaevskiy/main
Babaevskiy
"2024-11-12T22:11:04Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:11:04Z"
Entry not found
RichardErkhov/netcat420_-_MFANNv0.17.12-gguf
RichardErkhov
"2024-11-13T01:29:20Z"
0
0
null
[ "gguf", "region:us" ]
null
"2024-11-12T22:11:11Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MFANNv0.17.12 - GGUF - Model creator: https://huggingface.co/netcat420/ - Original model: https://huggingface.co/netcat420/MFANNv0.17.12/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MFANNv0.17.12.Q2_K.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q2_K.gguf) | Q2_K | 0.75GB | | [MFANNv0.17.12.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [MFANNv0.17.12.Q3_K.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q3_K.gguf) | Q3_K | 3.74GB | | [MFANNv0.17.12.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [MFANNv0.17.12.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [MFANNv0.17.12.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [MFANNv0.17.12.Q4_0.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q4_0.gguf) | Q4_0 | 4.34GB | | [MFANNv0.17.12.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [MFANNv0.17.12.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [MFANNv0.17.12.Q4_K.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q4_K.gguf) | Q4_K | 4.58GB | | [MFANNv0.17.12.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [MFANNv0.17.12.Q4_1.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q4_1.gguf) | Q4_1 | 4.78GB | | [MFANNv0.17.12.Q5_0.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q5_0.gguf) | Q5_0 | 5.21GB | | [MFANNv0.17.12.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [MFANNv0.17.12.Q5_K.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q5_K.gguf) | Q5_K | 5.34GB | | [MFANNv0.17.12.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [MFANNv0.17.12.Q5_1.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q5_1.gguf) | Q5_1 | 5.65GB | | [MFANNv0.17.12.Q6_K.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q6_K.gguf) | Q6_K | 6.14GB | | [MFANNv0.17.12.Q8_0.gguf](https://huggingface.co/RichardErkhov/netcat420_-_MFANNv0.17.12-gguf/blob/main/MFANNv0.17.12.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- base_model: - netcat420/MFANNv0.17 - netcat420/MFANNv0.17.11 - MaziyarPanahi/Llama-3-8B-Instruct-v0.4 library_name: transformers tags: - mergekit - merge --- # MFANNv0.17.12 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [MaziyarPanahi/Llama-3-8B-Instruct-v0.4](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.4) as a base. ### Models Merged The following models were included in the merge: * [netcat420/MFANNv0.17](https://huggingface.co/netcat420/MFANNv0.17) * [netcat420/MFANNv0.17.11](https://huggingface.co/netcat420/MFANNv0.17.11) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: netcat420/MFANNv0.17.11 parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: netcat420/MFANNv0.17 parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 merge_method: ties base_model: MaziyarPanahi/Llama-3-8B-Instruct-v0.4 parameters: normalize: true int8_mask: true dtype: float16 ```
pypert/flytime
pypert
"2024-11-12T22:11:15Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:11:15Z"
Entry not found
pypert/sequa
pypert
"2024-11-12T22:11:27Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:11:27Z"
Entry not found
pypert/novelless
pypert
"2024-11-12T22:11:39Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:11:39Z"
Entry not found
pypert/pleurodynic
pypert
"2024-11-12T22:11:51Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:11:51Z"
Entry not found
pypert/littering
pypert
"2024-11-12T22:12:03Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:12:03Z"
Entry not found
pypert/immortalizing
pypert
"2024-11-12T22:12:16Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:12:15Z"
Entry not found
muhammadrisma/trashnet
muhammadrisma
"2024-11-12T22:12:27Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:12:27Z"
Entry not found
tensorblock/Hercules-2.5-Mistral-7B-GGUF
tensorblock
"2024-11-12T23:02:51Z"
0
0
transformers
[ "transformers", "gguf", "not-for-all-audiences", "chemistry", "math", "code", "physics", "TensorBlock", "GGUF", "dataset:Locutusque/hercules-v2.0", "dataset:Locutusque/hercules-v2.5", "base_model:Locutusque/Hercules-2.5-Mistral-7B", "base_model:quantized:Locutusque/Hercules-2.5-Mistral-7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:13:42Z"
--- license: apache-2.0 library_name: transformers tags: - not-for-all-audiences - chemistry - math - code - physics - TensorBlock - GGUF base_model: Locutusque/Hercules-2.5-Mistral-7B datasets: - Locutusque/hercules-v2.0 - Locutusque/hercules-v2.5 model-index: - name: Hercules-2.5-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.79 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.44 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Locutusque/Hercules-2.5-Mistral-7B - GGUF This repo contains GGUF format model files for [Locutusque/Hercules-2.5-Mistral-7B](https://huggingface.co/Locutusque/Hercules-2.5-Mistral-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Hercules-2.5-Mistral-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes | | [Hercules-2.5-Mistral-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss | | [Hercules-2.5-Mistral-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss | | [Hercules-2.5-Mistral-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss | | [Hercules-2.5-Mistral-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Hercules-2.5-Mistral-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss | | [Hercules-2.5-Mistral-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended | | [Hercules-2.5-Mistral-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Hercules-2.5-Mistral-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended | | [Hercules-2.5-Mistral-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended | | [Hercules-2.5-Mistral-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss | | [Hercules-2.5-Mistral-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Hercules-2.5-Mistral-7B-GGUF/tree/main/Hercules-2.5-Mistral-7B-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Hercules-2.5-Mistral-7B-GGUF --include "Hercules-2.5-Mistral-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Hercules-2.5-Mistral-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
sanchezmari/results
sanchezmari
"2024-11-12T23:00:58Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-12T22:15:01Z"
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1100 - 0: {'precision': 0.95, 'recall': 0.926829268292683, 'f1-score': 0.9382716049382716, 'support': 41.0} - 1: {'precision': 0.9451476793248945, 'recall': 0.9696969696969697, 'f1-score': 0.9572649572649573, 'support': 231.0} - 2: {'precision': 0.9872650090964221, 'recall': 0.9878640776699029, 'f1-score': 0.9875644525326054, 'support': 1648.0} - 3: {'precision': 0.978021978021978, 'recall': 0.9621621621621622, 'f1-score': 0.9700272479564033, 'support': 370.0} - Accuracy: 0.9808 - Macro avg: {'precision': 0.9651086666108237, 'recall': 0.9616381194554294, 'f1-score': 0.9632820656730594, 'support': 2290.0} - Weighted avg: {'precision': 0.9808558868048411, 'recall': 0.9807860262008734, 'f1-score': 0.9807919827285054, 'support': 2290.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | 0 | 1 | 2 | 3 | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:| | 0.2357 | 1.0 | 1145 | 0.2453 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 0.0} | {'precision': 0.9367088607594937, 'recall': 0.8951612903225806, 'f1-score': 0.9154639175257732, 'support': 248.0} | {'precision': 0.9842328684050939, 'recall': 0.9603550295857988, 'f1-score': 0.97214734950584, 'support': 1690.0} | {'precision': 0.9340659340659341, 'recall': 0.9659090909090909, 'f1-score': 0.9497206703910615, 'support': 352.0} | 0.9541 | {'precision': 0.7137519158076304, 'recall': 0.7053563527043676, 'f1-score': 0.7093329843556686, 'support': 2290.0} | {'precision': 0.9713749143511669, 'recall': 0.9541484716157205, 'f1-score': 0.9625614620912293, 'support': 2290.0} | | 0.1043 | 2.0 | 2290 | 0.1176 | {'precision': 0.925, 'recall': 0.9736842105263158, 'f1-score': 0.9487179487179487, 'support': 38.0} | {'precision': 0.9409282700421941, 'recall': 0.9780701754385965, 'f1-score': 0.9591397849462365, 'support': 228.0} | {'precision': 0.9939357186173439, 'recall': 0.9761762954139369, 'f1-score': 0.9849759615384616, 'support': 1679.0} | {'precision': 0.9285714285714286, 'recall': 0.9797101449275363, 'f1-score': 0.9534555712270804, 'support': 345.0} | 0.9769 | {'precision': 0.9471088543077417, 'recall': 0.9769102065765964, 'f1-score': 0.9615723166074318, 'support': 2290.0} | {'precision': 0.9776667510852766, 'recall': 0.9768558951965065, 'f1-score': 0.9770532596137309, 'support': 2290.0} | | 0.0506 | 3.0 | 3435 | 0.1100 | {'precision': 0.95, 'recall': 0.926829268292683, 'f1-score': 0.9382716049382716, 'support': 41.0} | {'precision': 0.9451476793248945, 'recall': 0.9696969696969697, 'f1-score': 0.9572649572649573, 'support': 231.0} | {'precision': 0.9872650090964221, 'recall': 0.9878640776699029, 'f1-score': 0.9875644525326054, 'support': 1648.0} | {'precision': 0.978021978021978, 'recall': 0.9621621621621622, 'f1-score': 0.9700272479564033, 'support': 370.0} | 0.9808 | {'precision': 0.9651086666108237, 'recall': 0.9616381194554294, 'f1-score': 0.9632820656730594, 'support': 2290.0} | {'precision': 0.9808558868048411, 'recall': 0.9807860262008734, 'f1-score': 0.9807919827285054, 'support': 2290.0} | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
touhidulislam/BERTweet_retrain_2020_11
touhidulislam
"2024-11-12T22:17:11Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:vinai/bertweet-base", "base_model:finetune:vinai/bertweet-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-11-12T22:16:44Z"
--- library_name: transformers license: mit base_model: vinai/bertweet-base tags: - generated_from_trainer model-index: - name: BERTweet_retrain_2020_11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTweet_retrain_2020_11 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6682 | 1.0 | 3066 | 2.6283 | | 2.4263 | 2.0 | 6132 | 2.5696 | | 2.7536 | 3.0 | 9198 | 2.5387 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0
Pearush/phimoe_15_head16
Pearush
"2024-11-12T22:23:49Z"
0
0
transformers
[ "transformers", "safetensors", "phimoe", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-11-12T22:17:03Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mpetrascom/vernos-lora
mpetrascom
"2024-11-12T23:18:09Z"
0
0
null
[ "license:other", "region:us" ]
null
"2024-11-12T22:19:27Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
barchetta/sana-130919
barchetta
"2024-11-12T22:19:31Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:19:31Z"
Entry not found
barchetta/paga-130919
barchetta
"2024-11-12T22:19:32Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:19:32Z"
Entry not found
featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF
featherless-ai-quants
"2024-11-12T22:32:57Z"
0
0
null
[ "gguf", "text-generation", "base_model:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "base_model:quantized:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "region:us" ]
text-generation
"2024-11-12T22:21:05Z"
--- base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-GGUF/blob/main/WhiteRabbitNeo-Llama-3-WhiteRabbitNeo-8B-v2.0-Q8_0.gguf) | 8145.11 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
jacobhoffmann/TestGen_v2.1-codegemma-7b-lr2e-05_epochs2
jacobhoffmann
"2024-11-12T22:44:20Z"
0
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-12T22:21:19Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alaabh/fine-tuned-visionllama
alaabh
"2024-11-13T00:10:30Z"
0
0
null
[ "tensorboard", "safetensors", "region:us" ]
null
"2024-11-12T22:22:32Z"
Entry not found
hana403/llama3.2
hana403
"2024-11-12T22:23:48Z"
0
0
null
[ "license:llama3.2", "region:us" ]
null
"2024-11-12T22:23:48Z"
--- license: llama3.2 ---
basajaun-scotland/lore-nexus-bilstm-pytorch
basajaun-scotland
"2024-11-12T22:25:50Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2024-11-12T22:24:20Z"
--- license: apache-2.0 ---
MayBashendy/Arabic_FineTuningAraBERT_AugV4_k10_task3_organization_fold0
MayBashendy
"2024-11-12T23:08:34Z"
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-12T22:24:58Z"
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV4_k10_task3_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV4_k10_task3_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8626 - Qwk: 0.0435 - Mse: 0.8626 - Rmse: 0.9288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0040 | 2 | 4.2802 | -0.0292 | 4.2802 | 2.0689 | | No log | 0.0079 | 4 | 2.0482 | 0.0739 | 2.0482 | 1.4312 | | No log | 0.0119 | 6 | 1.0235 | 0.0 | 1.0235 | 1.0117 | | No log | 0.0158 | 8 | 0.8738 | -0.0565 | 0.8738 | 0.9348 | | No log | 0.0198 | 10 | 1.0395 | 0.0 | 1.0395 | 1.0196 | | No log | 0.0237 | 12 | 1.2593 | 0.0 | 1.2593 | 1.1222 | | No log | 0.0277 | 14 | 0.7697 | 0.1951 | 0.7697 | 0.8773 | | No log | 0.0316 | 16 | 1.0590 | 0.0 | 1.0590 | 1.0291 | | No log | 0.0356 | 18 | 1.3325 | 0.0 | 1.3325 | 1.1543 | | No log | 0.0395 | 20 | 1.2788 | 0.0 | 1.2788 | 1.1308 | | No log | 0.0435 | 22 | 0.8405 | -0.1786 | 0.8405 | 0.9168 | | No log | 0.0474 | 24 | 0.8136 | 0.1895 | 0.8136 | 0.9020 | | No log | 0.0514 | 26 | 0.8021 | 0.0435 | 0.8021 | 0.8956 | | No log | 0.0553 | 28 | 0.7797 | 0.0 | 0.7797 | 0.8830 | | No log | 0.0593 | 30 | 0.8089 | 0.0 | 0.8089 | 0.8994 | | No log | 0.0632 | 32 | 0.8827 | 0.0 | 0.8827 | 0.9395 | | No log | 0.0672 | 34 | 1.0640 | 0.0 | 1.0640 | 1.0315 | | No log | 0.0711 | 36 | 1.3025 | 0.0 | 1.3025 | 1.1413 | | No log | 0.0751 | 38 | 1.5841 | -0.0694 | 1.5841 | 1.2586 | | No log | 0.0791 | 40 | 1.3969 | 0.1852 | 1.3969 | 1.1819 | | No log | 0.0830 | 42 | 0.9510 | 0.0 | 0.9510 | 0.9752 | | No log | 0.0870 | 44 | 0.8677 | -0.1786 | 0.8677 | 0.9315 | | No log | 0.0909 | 46 | 0.8995 | 0.0 | 0.8995 | 0.9484 | | No log | 0.0949 | 48 | 0.9293 | 0.0 | 0.9293 | 0.9640 | | No log | 0.0988 | 50 | 1.0741 | 0.0 | 1.0741 | 1.0364 | | No log | 0.1028 | 52 | 1.1936 | 0.0 | 1.1936 | 1.0925 | | No log | 0.1067 | 54 | 1.1907 | 0.0 | 1.1907 | 1.0912 | | No log | 0.1107 | 56 | 1.0443 | 0.0 | 1.0443 | 1.0219 | | No log | 0.1146 | 58 | 0.9167 | 0.0 | 0.9167 | 0.9574 | | No log | 0.1186 | 60 | 1.0631 | 0.0 | 1.0631 | 1.0311 | | No log | 0.1225 | 62 | 1.0956 | 0.0 | 1.0956 | 1.0467 | | No log | 0.1265 | 64 | 1.1041 | 0.0 | 1.1041 | 1.0508 | | No log | 0.1304 | 66 | 1.1161 | 0.0 | 1.1161 | 1.0564 | | No log | 0.1344 | 68 | 1.1300 | 0.0 | 1.1300 | 1.0630 | | No log | 0.1383 | 70 | 0.9726 | 0.0 | 0.9726 | 0.9862 | | No log | 0.1423 | 72 | 0.9930 | 0.0 | 0.9930 | 0.9965 | | No log | 0.1462 | 74 | 0.9749 | 0.0 | 0.9749 | 0.9874 | | No log | 0.1502 | 76 | 0.8815 | 0.0 | 0.8815 | 0.9389 | | No log | 0.1542 | 78 | 0.9904 | 0.0 | 0.9904 | 0.9952 | | No log | 0.1581 | 80 | 1.2202 | 0.0 | 1.2202 | 1.1046 | | No log | 0.1621 | 82 | 1.3042 | 0.0 | 1.3042 | 1.1420 | | No log | 0.1660 | 84 | 1.2316 | 0.0 | 1.2316 | 1.1098 | | No log | 0.1700 | 86 | 1.1803 | 0.0 | 1.1803 | 1.0864 | | No log | 0.1739 | 88 | 1.3865 | 0.0 | 1.3865 | 1.1775 | | No log | 0.1779 | 90 | 1.3602 | 0.0 | 1.3602 | 1.1663 | | No log | 0.1818 | 92 | 1.1551 | 0.0 | 1.1551 | 1.0748 | | No log | 0.1858 | 94 | 1.3647 | 0.1538 | 1.3647 | 1.1682 | | No log | 0.1897 | 96 | 1.7856 | -0.0864 | 1.7856 | 1.3363 | | No log | 0.1937 | 98 | 1.3898 | 0.2667 | 1.3898 | 1.1789 | | No log | 0.1976 | 100 | 0.8815 | 0.1852 | 0.8815 | 0.9389 | | No log | 0.2016 | 102 | 0.9288 | 0.1852 | 0.9288 | 0.9637 | | No log | 0.2055 | 104 | 1.2562 | 0.1852 | 1.2562 | 1.1208 | | No log | 0.2095 | 106 | 1.4752 | 0.2361 | 1.4752 | 1.2146 | | No log | 0.2134 | 108 | 1.4477 | 0.2361 | 1.4477 | 1.2032 | | No log | 0.2174 | 110 | 1.4142 | -0.0593 | 1.4142 | 1.1892 | | No log | 0.2213 | 112 | 1.8238 | -0.0864 | 1.8238 | 1.3505 | | No log | 0.2253 | 114 | 1.7026 | -0.3453 | 1.7026 | 1.3048 | | No log | 0.2292 | 116 | 1.6296 | -0.1846 | 1.6296 | 1.2766 | | No log | 0.2332 | 118 | 1.6182 | -0.375 | 1.6182 | 1.2721 | | No log | 0.2372 | 120 | 1.6905 | -0.1871 | 1.6905 | 1.3002 | | No log | 0.2411 | 122 | 1.6637 | 0.0 | 1.6637 | 1.2898 | | No log | 0.2451 | 124 | 1.4443 | -0.3636 | 1.4443 | 1.2018 | | No log | 0.2490 | 126 | 0.9699 | 0.2080 | 0.9699 | 0.9848 | | No log | 0.2530 | 128 | 1.2595 | -0.1786 | 1.2595 | 1.1223 | | No log | 0.2569 | 130 | 1.4641 | -0.1786 | 1.4641 | 1.2100 | | No log | 0.2609 | 132 | 1.5370 | -0.1786 | 1.5370 | 1.2398 | | No log | 0.2648 | 134 | 1.4124 | 0.1852 | 1.4124 | 1.1885 | | No log | 0.2688 | 136 | 0.8327 | 0.0 | 0.8327 | 0.9125 | | No log | 0.2727 | 138 | 0.8600 | 0.1852 | 0.8600 | 0.9274 | | No log | 0.2767 | 140 | 1.1872 | 0.1852 | 1.1872 | 1.0896 | | No log | 0.2806 | 142 | 1.3260 | 0.4967 | 1.3260 | 1.1515 | | No log | 0.2846 | 144 | 1.3561 | 0.3210 | 1.3561 | 1.1645 | | No log | 0.2885 | 146 | 1.5194 | 0.3210 | 1.5194 | 1.2326 | | No log | 0.2925 | 148 | 1.5752 | 0.3210 | 1.5752 | 1.2551 | | No log | 0.2964 | 150 | 1.0256 | 0.4460 | 1.0256 | 1.0127 | | No log | 0.3004 | 152 | 1.4857 | 0.3210 | 1.4857 | 1.2189 | | No log | 0.3043 | 154 | 1.8480 | 0.1444 | 1.8480 | 1.3594 | | No log | 0.3083 | 156 | 1.6143 | 0.3210 | 1.6143 | 1.2706 | | No log | 0.3123 | 158 | 1.3699 | 0.3529 | 1.3699 | 1.1704 | | No log | 0.3162 | 160 | 0.8600 | 0.1852 | 0.8600 | 0.9274 | | No log | 0.3202 | 162 | 0.8302 | 0.1852 | 0.8302 | 0.9111 | | No log | 0.3241 | 164 | 0.9734 | 0.1852 | 0.9734 | 0.9866 | | No log | 0.3281 | 166 | 1.3533 | 0.3889 | 1.3533 | 1.1633 | | No log | 0.3320 | 168 | 1.5251 | 0.1852 | 1.5251 | 1.2349 | | No log | 0.3360 | 170 | 1.6766 | 0.1444 | 1.6766 | 1.2949 | | No log | 0.3399 | 172 | 1.4212 | 0.2092 | 1.4212 | 1.1922 | | No log | 0.3439 | 174 | 0.9009 | 0.3433 | 0.9009 | 0.9492 | | No log | 0.3478 | 176 | 1.1051 | 0.1538 | 1.1051 | 1.0512 | | No log | 0.3518 | 178 | 1.5737 | 0.0351 | 1.5737 | 1.2545 | | No log | 0.3557 | 180 | 1.5278 | 0.2092 | 1.5278 | 1.2360 | | No log | 0.3597 | 182 | 1.4058 | 0.1538 | 1.4058 | 1.1856 | | No log | 0.3636 | 184 | 1.0409 | 0.0 | 1.0409 | 1.0203 | | No log | 0.3676 | 186 | 0.9657 | 0.0 | 0.9657 | 0.9827 | | No log | 0.3715 | 188 | 1.4050 | 0.2361 | 1.4050 | 1.1853 | | No log | 0.3755 | 190 | 1.5375 | 0.2092 | 1.5375 | 1.2400 | | No log | 0.3794 | 192 | 1.3940 | 0.2361 | 1.3940 | 1.1807 | | No log | 0.3834 | 194 | 1.4361 | 0.2361 | 1.4361 | 1.1984 | | No log | 0.3874 | 196 | 1.6500 | 0.0351 | 1.6500 | 1.2845 | | No log | 0.3913 | 198 | 1.5256 | 0.0654 | 1.5256 | 1.2352 | | No log | 0.3953 | 200 | 1.3200 | -0.2222 | 1.3200 | 1.1489 | | No log | 0.3992 | 202 | 1.4733 | -0.0593 | 1.4733 | 1.2138 | | No log | 0.4032 | 204 | 1.4137 | -0.0185 | 1.4137 | 1.1890 | | No log | 0.4071 | 206 | 1.3015 | 0.0 | 1.3015 | 1.1408 | | No log | 0.4111 | 208 | 1.1236 | 0.0 | 1.1236 | 1.0600 | | No log | 0.4150 | 210 | 1.1318 | 0.0 | 1.1318 | 1.0639 | | No log | 0.4190 | 212 | 1.2936 | 0.0 | 1.2936 | 1.1374 | | No log | 0.4229 | 214 | 1.2660 | 0.0 | 1.2660 | 1.1252 | | No log | 0.4269 | 216 | 1.3581 | 0.1037 | 1.3581 | 1.1654 | | No log | 0.4308 | 218 | 1.2107 | 0.4296 | 1.2107 | 1.1003 | | No log | 0.4348 | 220 | 1.2481 | 0.4296 | 1.2481 | 1.1172 | | No log | 0.4387 | 222 | 1.7515 | 0.1444 | 1.7515 | 1.3235 | | No log | 0.4427 | 224 | 1.7653 | 0.1444 | 1.7653 | 1.3286 | | No log | 0.4466 | 226 | 1.5692 | 0.2924 | 1.5692 | 1.2527 | | No log | 0.4506 | 228 | 1.3740 | 0.2361 | 1.3740 | 1.1722 | | No log | 0.4545 | 230 | 1.0235 | 0.1852 | 1.0235 | 1.0117 | | No log | 0.4585 | 232 | 0.7628 | 0.2080 | 0.7628 | 0.8734 | | No log | 0.4625 | 234 | 0.8587 | 0.0179 | 0.8587 | 0.9267 | | No log | 0.4664 | 236 | 1.2147 | 0.0 | 1.2147 | 1.1021 | | No log | 0.4704 | 238 | 1.4172 | 0.1852 | 1.4172 | 1.1905 | | No log | 0.4743 | 240 | 1.3853 | 0.1852 | 1.3853 | 1.1770 | | No log | 0.4783 | 242 | 1.0478 | 0.0 | 1.0478 | 1.0236 | | No log | 0.4822 | 244 | 0.8788 | 0.0 | 0.8788 | 0.9374 | | No log | 0.4862 | 246 | 1.0720 | 0.0 | 1.0720 | 1.0354 | | No log | 0.4901 | 248 | 1.5954 | 0.2092 | 1.5954 | 1.2631 | | No log | 0.4941 | 250 | 1.7843 | -0.1058 | 1.7843 | 1.3358 | | No log | 0.4980 | 252 | 1.6398 | 0.2092 | 1.6398 | 1.2805 | | No log | 0.5020 | 254 | 1.2959 | -0.0342 | 1.2959 | 1.1384 | | No log | 0.5059 | 256 | 0.9389 | 0.0 | 0.9389 | 0.9690 | | No log | 0.5099 | 258 | 0.9804 | 0.1852 | 0.9804 | 0.9902 | | No log | 0.5138 | 260 | 1.3974 | 0.2361 | 1.3974 | 1.1821 | | No log | 0.5178 | 262 | 1.6278 | 0.2092 | 1.6278 | 1.2759 | | No log | 0.5217 | 264 | 1.5528 | 0.2092 | 1.5528 | 1.2461 | | No log | 0.5257 | 266 | 1.2196 | 0.0 | 1.2196 | 1.1044 | | No log | 0.5296 | 268 | 0.9325 | 0.0 | 0.9325 | 0.9657 | | No log | 0.5336 | 270 | 0.8137 | 0.1818 | 0.8137 | 0.9020 | | No log | 0.5375 | 272 | 0.9458 | 0.1852 | 0.9458 | 0.9725 | | No log | 0.5415 | 274 | 1.5879 | 0.3210 | 1.5879 | 1.2601 | | No log | 0.5455 | 276 | 1.9290 | 0.0351 | 1.9290 | 1.3889 | | No log | 0.5494 | 278 | 1.6930 | 0.1852 | 1.6930 | 1.3012 | | No log | 0.5534 | 280 | 1.1043 | 0.0 | 1.1043 | 1.0509 | | No log | 0.5573 | 282 | 0.6994 | 0.2080 | 0.6994 | 0.8363 | | No log | 0.5613 | 284 | 0.6770 | 0.2080 | 0.6770 | 0.8228 | | No log | 0.5652 | 286 | 0.7880 | 0.0 | 0.7880 | 0.8877 | | No log | 0.5692 | 288 | 1.0286 | 0.0 | 1.0286 | 1.0142 | | No log | 0.5731 | 290 | 1.3562 | 0.5299 | 1.3562 | 1.1646 | | No log | 0.5771 | 292 | 1.5731 | 0.2092 | 1.5731 | 1.2542 | | No log | 0.5810 | 294 | 1.4687 | 0.2092 | 1.4687 | 1.2119 | | No log | 0.5850 | 296 | 1.0747 | 0.0 | 1.0747 | 1.0367 | | No log | 0.5889 | 298 | 0.9315 | 0.0179 | 0.9315 | 0.9651 | | No log | 0.5929 | 300 | 1.1330 | 0.3889 | 1.1330 | 1.0644 | | No log | 0.5968 | 302 | 1.4628 | 0.2092 | 1.4628 | 1.2095 | | No log | 0.6008 | 304 | 1.3674 | 0.2092 | 1.3674 | 1.1693 | | No log | 0.6047 | 306 | 1.2166 | 0.3889 | 1.2166 | 1.1030 | | No log | 0.6087 | 308 | 1.3698 | 0.5299 | 1.3698 | 1.1704 | | No log | 0.6126 | 310 | 1.3316 | 0.5299 | 1.3316 | 1.1540 | | No log | 0.6166 | 312 | 1.0944 | 0.0 | 1.0944 | 1.0462 | | No log | 0.6206 | 314 | 1.1250 | 0.0 | 1.1250 | 1.0607 | | No log | 0.6245 | 316 | 1.3706 | 0.5299 | 1.3706 | 1.1707 | | No log | 0.6285 | 318 | 1.4740 | 0.1852 | 1.4740 | 1.2141 | | No log | 0.6324 | 320 | 1.3607 | 0.0 | 1.3607 | 1.1665 | | No log | 0.6364 | 322 | 1.1497 | 0.0 | 1.1497 | 1.0723 | | No log | 0.6403 | 324 | 0.9665 | 0.0 | 0.9665 | 0.9831 | | No log | 0.6443 | 326 | 0.8118 | 0.0179 | 0.8118 | 0.9010 | | No log | 0.6482 | 328 | 0.8182 | 0.0179 | 0.8182 | 0.9046 | | No log | 0.6522 | 330 | 1.0330 | 0.0 | 1.0330 | 1.0163 | | No log | 0.6561 | 332 | 1.3534 | 0.0 | 1.3534 | 1.1633 | | No log | 0.6601 | 334 | 1.4915 | 0.1538 | 1.4915 | 1.2213 | | No log | 0.6640 | 336 | 1.4611 | -0.0476 | 1.4611 | 1.2088 | | No log | 0.6680 | 338 | 1.1233 | 0.0 | 1.1233 | 1.0598 | | No log | 0.6719 | 340 | 1.0641 | 0.0 | 1.0641 | 1.0316 | | No log | 0.6759 | 342 | 1.4322 | 0.1037 | 1.4322 | 1.1967 | | No log | 0.6798 | 344 | 1.5207 | -0.0694 | 1.5207 | 1.2332 | | No log | 0.6838 | 346 | 1.2638 | 0.3419 | 1.2638 | 1.1242 | | No log | 0.6877 | 348 | 1.0451 | 0.1852 | 1.0451 | 1.0223 | | No log | 0.6917 | 350 | 1.2169 | 0.3419 | 1.2169 | 1.1031 | | No log | 0.6957 | 352 | 1.5123 | 0.0654 | 1.5123 | 1.2298 | | No log | 0.6996 | 354 | 1.3486 | 0.2361 | 1.3486 | 1.1613 | | No log | 0.7036 | 356 | 0.9366 | 0.1852 | 0.9366 | 0.9678 | | No log | 0.7075 | 358 | 0.8338 | 0.1818 | 0.8338 | 0.9131 | | No log | 0.7115 | 360 | 0.9788 | 0.1852 | 0.9788 | 0.9894 | | No log | 0.7154 | 362 | 1.2812 | 0.1852 | 1.2812 | 1.1319 | | No log | 0.7194 | 364 | 1.2627 | 0.1538 | 1.2627 | 1.1237 | | No log | 0.7233 | 366 | 1.2634 | 0.1538 | 1.2634 | 1.1240 | | No log | 0.7273 | 368 | 1.3743 | 0.2667 | 1.3743 | 1.1723 | | No log | 0.7312 | 370 | 1.4926 | 0.2361 | 1.4926 | 1.2217 | | No log | 0.7352 | 372 | 1.2307 | 0.3016 | 1.2307 | 1.1094 | | No log | 0.7391 | 374 | 1.0784 | 0.1852 | 1.0784 | 1.0385 | | No log | 0.7431 | 376 | 0.9127 | 0.0 | 0.9127 | 0.9553 | | No log | 0.7470 | 378 | 0.8475 | 0.0 | 0.8475 | 0.9206 | | No log | 0.7510 | 380 | 0.8890 | 0.0 | 0.8890 | 0.9429 | | No log | 0.7549 | 382 | 0.8890 | 0.0 | 0.8890 | 0.9429 | | No log | 0.7589 | 384 | 0.9790 | 0.1852 | 0.9790 | 0.9895 | | No log | 0.7628 | 386 | 1.1095 | 0.1852 | 1.1095 | 1.0534 | | No log | 0.7668 | 388 | 1.3147 | 0.2361 | 1.3147 | 1.1466 | | No log | 0.7708 | 390 | 1.3267 | 0.2361 | 1.3267 | 1.1518 | | No log | 0.7747 | 392 | 1.2169 | 0.1852 | 1.2169 | 1.1031 | | No log | 0.7787 | 394 | 1.0129 | 0.1852 | 1.0129 | 1.0064 | | No log | 0.7826 | 396 | 1.0760 | 0.1852 | 1.0760 | 1.0373 | | No log | 0.7866 | 398 | 1.0517 | 0.1852 | 1.0517 | 1.0255 | | No log | 0.7905 | 400 | 1.0012 | 0.1818 | 1.0012 | 1.0006 | | No log | 0.7945 | 402 | 0.9760 | 0.1818 | 0.9760 | 0.9879 | | No log | 0.7984 | 404 | 1.1017 | 0.1818 | 1.1017 | 1.0496 | | No log | 0.8024 | 406 | 1.1873 | 0.1852 | 1.1873 | 1.0896 | | No log | 0.8063 | 408 | 1.1775 | 0.1852 | 1.1775 | 1.0851 | | No log | 0.8103 | 410 | 1.0361 | 0.1852 | 1.0361 | 1.0179 | | No log | 0.8142 | 412 | 0.8733 | 0.0 | 0.8733 | 0.9345 | | No log | 0.8182 | 414 | 0.7765 | 0.0 | 0.7765 | 0.8812 | | No log | 0.8221 | 416 | 0.7366 | 0.0 | 0.7366 | 0.8582 | | No log | 0.8261 | 418 | 0.7582 | 0.0 | 0.7582 | 0.8707 | | No log | 0.8300 | 420 | 0.9276 | 0.0 | 0.9276 | 0.9631 | | No log | 0.8340 | 422 | 1.2123 | 0.1538 | 1.2123 | 1.1010 | | No log | 0.8379 | 424 | 1.4351 | 0.3210 | 1.4351 | 1.1980 | | No log | 0.8419 | 426 | 1.7012 | 0.1637 | 1.7012 | 1.3043 | | No log | 0.8458 | 428 | 1.5860 | 0.3210 | 1.5860 | 1.2594 | | No log | 0.8498 | 430 | 1.1893 | 0.1818 | 1.1893 | 1.0905 | | No log | 0.8538 | 432 | 1.0719 | 0.1818 | 1.0719 | 1.0353 | | No log | 0.8577 | 434 | 1.1328 | 0.0 | 1.1328 | 1.0643 | | No log | 0.8617 | 436 | 1.0958 | 0.0 | 1.0958 | 1.0468 | | No log | 0.8656 | 438 | 0.9005 | 0.0179 | 0.9005 | 0.9489 | | No log | 0.8696 | 440 | 0.8662 | 0.2080 | 0.8662 | 0.9307 | | No log | 0.8735 | 442 | 0.8663 | 0.3433 | 0.8663 | 0.9308 | | No log | 0.8775 | 444 | 1.0731 | 0.0179 | 1.0731 | 1.0359 | | No log | 0.8814 | 446 | 1.3662 | -0.0342 | 1.3662 | 1.1688 | | No log | 0.8854 | 448 | 1.4324 | -0.0342 | 1.4324 | 1.1968 | | No log | 0.8893 | 450 | 1.2425 | -0.0342 | 1.2425 | 1.1147 | | No log | 0.8933 | 452 | 0.9134 | 0.1818 | 0.9134 | 0.9557 | | No log | 0.8972 | 454 | 0.8134 | 0.3433 | 0.8134 | 0.9019 | | No log | 0.9012 | 456 | 0.8867 | 0.1818 | 0.8867 | 0.9416 | | No log | 0.9051 | 458 | 1.1552 | 0.1852 | 1.1552 | 1.0748 | | No log | 0.9091 | 460 | 1.4576 | 0.2361 | 1.4576 | 1.2073 | | No log | 0.9130 | 462 | 1.4187 | 0.2361 | 1.4187 | 1.1911 | | No log | 0.9170 | 464 | 1.1739 | 0.0 | 1.1739 | 1.0835 | | No log | 0.9209 | 466 | 0.9426 | 0.0 | 0.9426 | 0.9709 | | No log | 0.9249 | 468 | 0.8584 | 0.0179 | 0.8584 | 0.9265 | | No log | 0.9289 | 470 | 0.8269 | 0.2080 | 0.8269 | 0.9094 | | No log | 0.9328 | 472 | 0.9312 | 0.1818 | 0.9312 | 0.9650 | | No log | 0.9368 | 474 | 1.2948 | 0.1270 | 1.2948 | 1.1379 | | No log | 0.9407 | 476 | 1.5133 | -0.0694 | 1.5133 | 1.2302 | | No log | 0.9447 | 478 | 1.4801 | 0.1037 | 1.4801 | 1.2166 | | No log | 0.9486 | 480 | 1.4006 | -0.0476 | 1.4006 | 1.1835 | | No log | 0.9526 | 482 | 1.1904 | -0.0342 | 1.1904 | 1.0911 | | No log | 0.9565 | 484 | 1.1715 | 0.1295 | 1.1715 | 1.0824 | | No log | 0.9605 | 486 | 1.2315 | 0.1270 | 1.2315 | 1.1097 | | No log | 0.9644 | 488 | 1.2832 | -0.0342 | 1.2832 | 1.1328 | | No log | 0.9684 | 490 | 1.1263 | 0.0 | 1.1263 | 1.0613 | | No log | 0.9723 | 492 | 0.9926 | 0.0 | 0.9926 | 0.9963 | | No log | 0.9763 | 494 | 0.9776 | 0.0 | 0.9776 | 0.9887 | | No log | 0.9802 | 496 | 1.1807 | 0.0 | 1.1807 | 1.0866 | | No log | 0.9842 | 498 | 1.4766 | 0.1270 | 1.4766 | 1.2151 | | 0.3759 | 0.9881 | 500 | 1.4595 | 0.1270 | 1.4595 | 1.2081 | | 0.3759 | 0.9921 | 502 | 1.1584 | 0.0 | 1.1584 | 1.0763 | | 0.3759 | 0.9960 | 504 | 0.9592 | 0.0179 | 0.9592 | 0.9794 | | 0.3759 | 1.0 | 506 | 0.9582 | 0.0179 | 0.9582 | 0.9789 | | 0.3759 | 1.0040 | 508 | 1.1339 | 0.0 | 1.1339 | 1.0648 | | 0.3759 | 1.0079 | 510 | 1.2858 | -0.0185 | 1.2858 | 1.1339 | | 0.3759 | 1.0119 | 512 | 1.2878 | -0.0185 | 1.2878 | 1.1348 | | 0.3759 | 1.0158 | 514 | 1.1120 | 0.0 | 1.1120 | 1.0545 | | 0.3759 | 1.0198 | 516 | 0.9536 | 0.0179 | 0.9536 | 0.9765 | | 0.3759 | 1.0237 | 518 | 0.9473 | 0.0179 | 0.9473 | 0.9733 | | 0.3759 | 1.0277 | 520 | 0.9840 | 0.0179 | 0.9840 | 0.9920 | | 0.3759 | 1.0316 | 522 | 1.1057 | 0.1852 | 1.1057 | 1.0515 | | 0.3759 | 1.0356 | 524 | 1.3132 | -0.0342 | 1.3132 | 1.1459 | | 0.3759 | 1.0395 | 526 | 1.2250 | 0.0 | 1.2250 | 1.1068 | | 0.3759 | 1.0435 | 528 | 0.9602 | 0.0179 | 0.9602 | 0.9799 | | 0.3759 | 1.0474 | 530 | 0.8766 | 0.0179 | 0.8766 | 0.9363 | | 0.3759 | 1.0514 | 532 | 0.8652 | 0.2080 | 0.8652 | 0.9302 | | 0.3759 | 1.0553 | 534 | 1.0658 | 0.0179 | 1.0658 | 1.0324 | | 0.3759 | 1.0593 | 536 | 1.3512 | 0.1270 | 1.3512 | 1.1624 | | 0.3759 | 1.0632 | 538 | 1.3303 | 0.1270 | 1.3303 | 1.1534 | | 0.3759 | 1.0672 | 540 | 1.0744 | 0.0 | 1.0744 | 1.0365 | | 0.3759 | 1.0711 | 542 | 0.9326 | 0.0179 | 0.9326 | 0.9657 | | 0.3759 | 1.0751 | 544 | 0.8838 | 0.0179 | 0.8838 | 0.9401 | | 0.3759 | 1.0791 | 546 | 0.8531 | 0.0179 | 0.8531 | 0.9236 | | 0.3759 | 1.0830 | 548 | 0.9123 | 0.3433 | 0.9123 | 0.9551 | | 0.3759 | 1.0870 | 550 | 1.1046 | 0.1538 | 1.1046 | 1.0510 | | 0.3759 | 1.0909 | 552 | 1.0536 | 0.1538 | 1.0536 | 1.0265 | | 0.3759 | 1.0949 | 554 | 1.0256 | 0.1818 | 1.0256 | 1.0127 | | 0.3759 | 1.0988 | 556 | 1.0128 | 0.1818 | 1.0128 | 1.0064 | | 0.3759 | 1.1028 | 558 | 0.8871 | 0.1818 | 0.8871 | 0.9419 | | 0.3759 | 1.1067 | 560 | 0.9577 | 0.1818 | 0.9577 | 0.9786 | | 0.3759 | 1.1107 | 562 | 1.0439 | 0.1818 | 1.0439 | 1.0217 | | 0.3759 | 1.1146 | 564 | 1.2388 | 0.1818 | 1.2388 | 1.1130 | | 0.3759 | 1.1186 | 566 | 1.5782 | -0.0784 | 1.5782 | 1.2563 | | 0.3759 | 1.1225 | 568 | 1.5943 | 0.0833 | 1.5943 | 1.2627 | | 0.3759 | 1.1265 | 570 | 1.4334 | -0.0185 | 1.4334 | 1.1973 | | 0.3759 | 1.1304 | 572 | 1.1520 | 0.0179 | 1.1520 | 1.0733 | | 0.3759 | 1.1344 | 574 | 0.9102 | 0.0435 | 0.9102 | 0.9540 | | 0.3759 | 1.1383 | 576 | 0.8936 | 0.1720 | 0.8936 | 0.9453 | | 0.3759 | 1.1423 | 578 | 0.8765 | 0.0462 | 0.8765 | 0.9362 | | 0.3759 | 1.1462 | 580 | 0.9332 | 0.2080 | 0.9332 | 0.9660 | | 0.3759 | 1.1502 | 582 | 1.1485 | 0.0179 | 1.1485 | 1.0717 | | 0.3759 | 1.1542 | 584 | 1.2930 | 0.0 | 1.2930 | 1.1371 | | 0.3759 | 1.1581 | 586 | 1.2790 | 0.0 | 1.2790 | 1.1309 | | 0.3759 | 1.1621 | 588 | 1.1439 | 0.1818 | 1.1439 | 1.0695 | | 0.3759 | 1.1660 | 590 | 1.0000 | 0.1818 | 1.0000 | 1.0000 | | 0.3759 | 1.1700 | 592 | 1.0194 | 0.1818 | 1.0194 | 1.0097 | | 0.3759 | 1.1739 | 594 | 1.1276 | 0.1818 | 1.1276 | 1.0619 | | 0.3759 | 1.1779 | 596 | 1.0378 | 0.1818 | 1.0378 | 1.0187 | | 0.3759 | 1.1818 | 598 | 0.9335 | 0.1818 | 0.9335 | 0.9662 | | 0.3759 | 1.1858 | 600 | 1.0362 | 0.1818 | 1.0362 | 1.0179 | | 0.3759 | 1.1897 | 602 | 1.3464 | 0.1037 | 1.3464 | 1.1604 | | 0.3759 | 1.1937 | 604 | 1.5025 | 0.3210 | 1.5025 | 1.2257 | | 0.3759 | 1.1976 | 606 | 1.3773 | 0.1037 | 1.3773 | 1.1736 | | 0.3759 | 1.2016 | 608 | 1.0260 | 0.1818 | 1.0260 | 1.0129 | | 0.3759 | 1.2055 | 610 | 0.8456 | 0.2080 | 0.8456 | 0.9196 | | 0.3759 | 1.2095 | 612 | 0.8203 | 0.2080 | 0.8203 | 0.9057 | | 0.3759 | 1.2134 | 614 | 0.9837 | 0.1818 | 0.9837 | 0.9918 | | 0.3759 | 1.2174 | 616 | 1.1494 | 0.1852 | 1.1494 | 1.0721 | | 0.3759 | 1.2213 | 618 | 1.4307 | 0.2667 | 1.4307 | 1.1961 | | 0.3759 | 1.2253 | 620 | 1.4585 | 0.2667 | 1.4585 | 1.2077 | | 0.3759 | 1.2292 | 622 | 1.2744 | 0.1852 | 1.2744 | 1.1289 | | 0.3759 | 1.2332 | 624 | 1.0209 | 0.0 | 1.0209 | 1.0104 | | 0.3759 | 1.2372 | 626 | 0.8068 | 0.0179 | 0.8068 | 0.8982 | | 0.3759 | 1.2411 | 628 | 0.7095 | 0.2080 | 0.7095 | 0.8423 | | 0.3759 | 1.2451 | 630 | 0.7020 | 0.2080 | 0.7020 | 0.8379 | | 0.3759 | 1.2490 | 632 | 0.7694 | 0.2080 | 0.7694 | 0.8772 | | 0.3759 | 1.2530 | 634 | 1.0271 | 0.1852 | 1.0271 | 1.0135 | | 0.3759 | 1.2569 | 636 | 1.2128 | 0.3419 | 1.2128 | 1.1012 | | 0.3759 | 1.2609 | 638 | 1.1683 | 0.1852 | 1.1683 | 1.0809 | | 0.3759 | 1.2648 | 640 | 0.9651 | 0.1852 | 0.9651 | 0.9824 | | 0.3759 | 1.2688 | 642 | 0.7907 | 0.3433 | 0.7907 | 0.8892 | | 0.3759 | 1.2727 | 644 | 0.7506 | 0.3433 | 0.7506 | 0.8664 | | 0.3759 | 1.2767 | 646 | 0.8322 | 0.3433 | 0.8322 | 0.9122 | | 0.3759 | 1.2806 | 648 | 0.9304 | 0.3433 | 0.9304 | 0.9646 | | 0.3759 | 1.2846 | 650 | 1.1202 | 0.1852 | 1.1202 | 1.0584 | | 0.3759 | 1.2885 | 652 | 1.4205 | 0.2667 | 1.4205 | 1.1918 | | 0.3759 | 1.2925 | 654 | 1.4332 | 0.1270 | 1.4332 | 1.1972 | | 0.3759 | 1.2964 | 656 | 1.2597 | 0.0 | 1.2597 | 1.1224 | | 0.3759 | 1.3004 | 658 | 1.0412 | 0.0 | 1.0412 | 1.0204 | | 0.3759 | 1.3043 | 660 | 0.9543 | 0.0179 | 0.9543 | 0.9769 | | 0.3759 | 1.3083 | 662 | 0.9232 | 0.0179 | 0.9232 | 0.9608 | | 0.3759 | 1.3123 | 664 | 0.9570 | 0.0179 | 0.9570 | 0.9783 | | 0.3759 | 1.3162 | 666 | 1.1065 | 0.1852 | 1.1065 | 1.0519 | | 0.3759 | 1.3202 | 668 | 1.3429 | 0.1270 | 1.3429 | 1.1588 | | 0.3759 | 1.3241 | 670 | 1.3056 | 0.1852 | 1.3056 | 1.1426 | | 0.3759 | 1.3281 | 672 | 1.0980 | 0.1852 | 1.0980 | 1.0478 | | 0.3759 | 1.3320 | 674 | 1.0220 | 0.3433 | 1.0220 | 1.0109 | | 0.3759 | 1.3360 | 676 | 1.0783 | 0.1818 | 1.0783 | 1.0384 | | 0.3759 | 1.3399 | 678 | 1.1172 | 0.1852 | 1.1172 | 1.0570 | | 0.3759 | 1.3439 | 680 | 1.1084 | 0.1852 | 1.1084 | 1.0528 | | 0.3759 | 1.3478 | 682 | 0.9647 | 0.0 | 0.9647 | 0.9822 | | 0.3759 | 1.3518 | 684 | 0.9431 | 0.0 | 0.9431 | 0.9711 | | 0.3759 | 1.3557 | 686 | 1.0427 | 0.0 | 1.0427 | 1.0211 | | 0.3759 | 1.3597 | 688 | 1.2804 | 0.0 | 1.2804 | 1.1316 | | 0.3759 | 1.3636 | 690 | 1.4202 | 0.0 | 1.4202 | 1.1917 | | 0.3759 | 1.3676 | 692 | 1.3986 | -0.0185 | 1.3986 | 1.1826 | | 0.3759 | 1.3715 | 694 | 1.1927 | 0.0 | 1.1927 | 1.0921 | | 0.3759 | 1.3755 | 696 | 0.9401 | 0.2080 | 0.9401 | 0.9696 | | 0.3759 | 1.3794 | 698 | 0.8635 | 0.0435 | 0.8635 | 0.9292 | | 0.3759 | 1.3834 | 700 | 0.8525 | 0.0435 | 0.8525 | 0.9233 | | 0.3759 | 1.3874 | 702 | 0.9007 | 0.2080 | 0.9007 | 0.9490 | | 0.3759 | 1.3913 | 704 | 1.1006 | 0.0 | 1.1006 | 1.0491 | | 0.3759 | 1.3953 | 706 | 1.2114 | 0.0 | 1.2114 | 1.1006 | | 0.3759 | 1.3992 | 708 | 1.1766 | 0.0 | 1.1766 | 1.0847 | | 0.3759 | 1.4032 | 710 | 1.1082 | 0.0 | 1.1082 | 1.0527 | | 0.3759 | 1.4071 | 712 | 1.0535 | 0.0 | 1.0535 | 1.0264 | | 0.3759 | 1.4111 | 714 | 1.0927 | 0.1852 | 1.0927 | 1.0453 | | 0.3759 | 1.4150 | 716 | 1.1016 | 0.1852 | 1.1016 | 1.0496 | | 0.3759 | 1.4190 | 718 | 1.2982 | 0.1270 | 1.2982 | 1.1394 | | 0.3759 | 1.4229 | 720 | 1.3498 | -0.0342 | 1.3498 | 1.1618 | | 0.3759 | 1.4269 | 722 | 1.2808 | -0.0185 | 1.2808 | 1.1317 | | 0.3759 | 1.4308 | 724 | 1.1326 | 0.0 | 1.1326 | 1.0642 | | 0.3759 | 1.4348 | 726 | 1.0287 | 0.0 | 1.0287 | 1.0143 | | 0.3759 | 1.4387 | 728 | 0.8999 | 0.0 | 0.8999 | 0.9486 | | 0.3759 | 1.4427 | 730 | 0.8144 | 0.2080 | 0.8144 | 0.9024 | | 0.3759 | 1.4466 | 732 | 0.8328 | 0.2080 | 0.8328 | 0.9126 | | 0.3759 | 1.4506 | 734 | 0.8600 | 0.2080 | 0.8600 | 0.9274 | | 0.3759 | 1.4545 | 736 | 1.0368 | 0.0 | 1.0368 | 1.0183 | | 0.3759 | 1.4585 | 738 | 1.0787 | 0.0 | 1.0787 | 1.0386 | | 0.3759 | 1.4625 | 740 | 0.9201 | 0.2080 | 0.9201 | 0.9592 | | 0.3759 | 1.4664 | 742 | 0.8923 | 0.2080 | 0.8923 | 0.9446 | | 0.3759 | 1.4704 | 744 | 1.0731 | 0.0179 | 1.0731 | 1.0359 | | 0.3759 | 1.4743 | 746 | 1.2482 | 0.1538 | 1.2482 | 1.1172 | | 0.3759 | 1.4783 | 748 | 1.1575 | -0.0185 | 1.1575 | 1.0759 | | 0.3759 | 1.4822 | 750 | 0.9972 | 0.0 | 0.9972 | 0.9986 | | 0.3759 | 1.4862 | 752 | 0.7862 | 0.2080 | 0.7862 | 0.8867 | | 0.3759 | 1.4901 | 754 | 0.7062 | 0.2080 | 0.7062 | 0.8404 | | 0.3759 | 1.4941 | 756 | 0.7333 | 0.2080 | 0.7333 | 0.8563 | | 0.3759 | 1.4980 | 758 | 0.9261 | 0.0179 | 0.9261 | 0.9623 | | 0.3759 | 1.5020 | 760 | 1.2834 | 0.1538 | 1.2834 | 1.1329 | | 0.3759 | 1.5059 | 762 | 1.4158 | 0.2361 | 1.4158 | 1.1899 | | 0.3759 | 1.5099 | 764 | 1.3178 | 0.1538 | 1.3178 | 1.1479 | | 0.3759 | 1.5138 | 766 | 1.1547 | 0.0 | 1.1547 | 1.0746 | | 0.3759 | 1.5178 | 768 | 0.9545 | 0.0 | 0.9545 | 0.9770 | | 0.3759 | 1.5217 | 770 | 0.7543 | 0.2080 | 0.7543 | 0.8685 | | 0.3759 | 1.5257 | 772 | 0.7337 | 0.2080 | 0.7337 | 0.8566 | | 0.3759 | 1.5296 | 774 | 0.8316 | 0.2080 | 0.8316 | 0.9119 | | 0.3759 | 1.5336 | 776 | 0.9785 | 0.0 | 0.9785 | 0.9892 | | 0.3759 | 1.5375 | 778 | 1.0594 | 0.1852 | 1.0594 | 1.0293 | | 0.3759 | 1.5415 | 780 | 0.9597 | 0.1852 | 0.9597 | 0.9797 | | 0.3759 | 1.5455 | 782 | 0.8176 | 0.2080 | 0.8176 | 0.9042 | | 0.3759 | 1.5494 | 784 | 0.8259 | 0.3433 | 0.8259 | 0.9088 | | 0.3759 | 1.5534 | 786 | 0.8317 | 0.3433 | 0.8317 | 0.9120 | | 0.3759 | 1.5573 | 788 | 0.9349 | 0.1852 | 0.9349 | 0.9669 | | 0.3759 | 1.5613 | 790 | 1.0288 | 0.1852 | 1.0288 | 1.0143 | | 0.3759 | 1.5652 | 792 | 1.0239 | 0.0 | 1.0239 | 1.0119 | | 0.3759 | 1.5692 | 794 | 0.8909 | 0.0179 | 0.8909 | 0.9439 | | 0.3759 | 1.5731 | 796 | 0.7766 | 0.2080 | 0.7766 | 0.8813 | | 0.3759 | 1.5771 | 798 | 0.7626 | 0.2080 | 0.7626 | 0.8733 | | 0.3759 | 1.5810 | 800 | 0.8511 | 0.2080 | 0.8511 | 0.9226 | | 0.3759 | 1.5850 | 802 | 1.1420 | -0.0185 | 1.1420 | 1.0686 | | 0.3759 | 1.5889 | 804 | 1.3004 | 0.5417 | 1.3004 | 1.1403 | | 0.3759 | 1.5929 | 806 | 1.2081 | -0.0185 | 1.2081 | 1.0992 | | 0.3759 | 1.5968 | 808 | 0.9750 | 0.0 | 0.9750 | 0.9874 | | 0.3759 | 1.6008 | 810 | 0.7667 | 0.2080 | 0.7667 | 0.8756 | | 0.3759 | 1.6047 | 812 | 0.7087 | 0.2080 | 0.7087 | 0.8419 | | 0.3759 | 1.6087 | 814 | 0.7275 | 0.2080 | 0.7275 | 0.8529 | | 0.3759 | 1.6126 | 816 | 0.7947 | 0.2080 | 0.7947 | 0.8915 | | 0.3759 | 1.6166 | 818 | 0.8657 | 0.0179 | 0.8657 | 0.9304 | | 0.3759 | 1.6206 | 820 | 0.8404 | 0.2080 | 0.8404 | 0.9168 | | 0.3759 | 1.6245 | 822 | 0.9541 | 0.0179 | 0.9541 | 0.9768 | | 0.3759 | 1.6285 | 824 | 1.1945 | 0.0 | 1.1945 | 1.0929 | | 0.3759 | 1.6324 | 826 | 1.2098 | 0.0 | 1.2098 | 1.0999 | | 0.3759 | 1.6364 | 828 | 1.0193 | 0.0 | 1.0193 | 1.0096 | | 0.3759 | 1.6403 | 830 | 0.7861 | 0.2080 | 0.7861 | 0.8866 | | 0.3759 | 1.6443 | 832 | 0.7589 | 0.2080 | 0.7589 | 0.8711 | | 0.3759 | 1.6482 | 834 | 0.8742 | 0.0179 | 0.8742 | 0.9350 | | 0.3759 | 1.6522 | 836 | 1.0786 | 0.0 | 1.0786 | 1.0385 | | 0.3759 | 1.6561 | 838 | 1.0617 | 0.0 | 1.0617 | 1.0304 | | 0.3759 | 1.6601 | 840 | 0.9144 | 0.0 | 0.9144 | 0.9562 | | 0.3759 | 1.6640 | 842 | 0.8216 | 0.0 | 0.8216 | 0.9064 | | 0.3759 | 1.6680 | 844 | 0.8583 | 0.0 | 0.8583 | 0.9264 | | 0.3759 | 1.6719 | 846 | 0.8470 | 0.0179 | 0.8470 | 0.9203 | | 0.3759 | 1.6759 | 848 | 0.8797 | 0.0179 | 0.8797 | 0.9379 | | 0.3759 | 1.6798 | 850 | 1.0556 | 0.1852 | 1.0556 | 1.0274 | | 0.3759 | 1.6838 | 852 | 1.1196 | 0.1852 | 1.1196 | 1.0581 | | 0.3759 | 1.6877 | 854 | 1.0249 | 0.1852 | 1.0249 | 1.0124 | | 0.3759 | 1.6917 | 856 | 0.8528 | 0.0179 | 0.8528 | 0.9235 | | 0.3759 | 1.6957 | 858 | 0.7050 | 0.2080 | 0.7050 | 0.8396 | | 0.3759 | 1.6996 | 860 | 0.6923 | 0.2080 | 0.6923 | 0.8321 | | 0.3759 | 1.7036 | 862 | 0.7959 | 0.2080 | 0.7959 | 0.8921 | | 0.3759 | 1.7075 | 864 | 1.1058 | 0.2667 | 1.1058 | 1.0516 | | 0.3759 | 1.7115 | 866 | 1.2833 | 0.2361 | 1.2833 | 1.1328 | | 0.3759 | 1.7154 | 868 | 1.1963 | 0.1270 | 1.1963 | 1.0937 | | 0.3759 | 1.7194 | 870 | 0.9795 | 0.0 | 0.9795 | 0.9897 | | 0.3759 | 1.7233 | 872 | 0.7454 | 0.2080 | 0.7454 | 0.8634 | | 0.3759 | 1.7273 | 874 | 0.6745 | 0.2080 | 0.6745 | 0.8213 | | 0.3759 | 1.7312 | 876 | 0.6857 | 0.2080 | 0.6857 | 0.8281 | | 0.3759 | 1.7352 | 878 | 0.7811 | 0.2080 | 0.7811 | 0.8838 | | 0.3759 | 1.7391 | 880 | 1.0141 | 0.0 | 1.0141 | 1.0070 | | 0.3759 | 1.7431 | 882 | 1.1593 | 0.1538 | 1.1593 | 1.0767 | | 0.3759 | 1.7470 | 884 | 1.1002 | 0.1538 | 1.1002 | 1.0489 | | 0.3759 | 1.7510 | 886 | 0.9284 | 0.1852 | 0.9284 | 0.9635 | | 0.3759 | 1.7549 | 888 | 0.7571 | 0.3433 | 0.7571 | 0.8701 | | 0.3759 | 1.7589 | 890 | 0.7060 | 0.2080 | 0.7060 | 0.8403 | | 0.3759 | 1.7628 | 892 | 0.7396 | 0.3433 | 0.7396 | 0.8600 | | 0.3759 | 1.7668 | 894 | 0.8770 | 0.1852 | 0.8770 | 0.9365 | | 0.3759 | 1.7708 | 896 | 0.9436 | 0.1852 | 0.9436 | 0.9714 | | 0.3759 | 1.7747 | 898 | 0.8677 | 0.1852 | 0.8677 | 0.9315 | | 0.3759 | 1.7787 | 900 | 0.7704 | 0.2080 | 0.7704 | 0.8777 | | 0.3759 | 1.7826 | 902 | 0.6947 | 0.2080 | 0.6947 | 0.8335 | | 0.3759 | 1.7866 | 904 | 0.6992 | 0.2080 | 0.6992 | 0.8362 | | 0.3759 | 1.7905 | 906 | 0.7929 | 0.2143 | 0.7929 | 0.8905 | | 0.3759 | 1.7945 | 908 | 0.9510 | 0.0 | 0.9510 | 0.9752 | | 0.3759 | 1.7984 | 910 | 0.9529 | 0.0 | 0.9529 | 0.9762 | | 0.3759 | 1.8024 | 912 | 0.8482 | 0.0 | 0.8482 | 0.9210 | | 0.3759 | 1.8063 | 914 | 0.6754 | 0.2143 | 0.6754 | 0.8218 | | 0.3759 | 1.8103 | 916 | 0.6205 | 0.2080 | 0.6205 | 0.7877 | | 0.3759 | 1.8142 | 918 | 0.6038 | 0.2080 | 0.6038 | 0.7771 | | 0.3759 | 1.8182 | 920 | 0.6407 | 0.2080 | 0.6407 | 0.8004 | | 0.3759 | 1.8221 | 922 | 0.6872 | 0.2080 | 0.6872 | 0.8290 | | 0.3759 | 1.8261 | 924 | 0.8638 | 0.3636 | 0.8638 | 0.9294 | | 0.3759 | 1.8300 | 926 | 1.0390 | 0.1852 | 1.0390 | 1.0193 | | 0.3759 | 1.8340 | 928 | 0.9957 | 0.1852 | 0.9957 | 0.9979 | | 0.3759 | 1.8379 | 930 | 0.8796 | 0.2143 | 0.8796 | 0.9378 | | 0.3759 | 1.8419 | 932 | 0.8895 | 0.2143 | 0.8895 | 0.9431 | | 0.3759 | 1.8458 | 934 | 0.8625 | 0.2143 | 0.8625 | 0.9287 | | 0.3759 | 1.8498 | 936 | 0.8712 | 0.2143 | 0.8712 | 0.9334 | | 0.3759 | 1.8538 | 938 | 0.9308 | 0.0 | 0.9308 | 0.9648 | | 0.3759 | 1.8577 | 940 | 0.9800 | 0.0 | 0.9800 | 0.9900 | | 0.3759 | 1.8617 | 942 | 0.8910 | 0.0 | 0.8910 | 0.9439 | | 0.3759 | 1.8656 | 944 | 0.8072 | 0.2143 | 0.8072 | 0.8985 | | 0.3759 | 1.8696 | 946 | 0.8299 | 0.0 | 0.8299 | 0.9110 | | 0.3759 | 1.8735 | 948 | 0.8440 | 0.0 | 0.8440 | 0.9187 | | 0.3759 | 1.8775 | 950 | 0.7445 | 0.2143 | 0.7445 | 0.8629 | | 0.3759 | 1.8814 | 952 | 0.6978 | 0.2080 | 0.6978 | 0.8354 | | 0.3759 | 1.8854 | 954 | 0.6864 | 0.2080 | 0.6864 | 0.8285 | | 0.3759 | 1.8893 | 956 | 0.7846 | 0.2080 | 0.7846 | 0.8858 | | 0.3759 | 1.8933 | 958 | 1.0516 | 0.0 | 1.0516 | 1.0255 | | 0.3759 | 1.8972 | 960 | 1.1653 | 0.1852 | 1.1653 | 1.0795 | | 0.3759 | 1.9012 | 962 | 1.1233 | 0.0 | 1.1233 | 1.0598 | | 0.3759 | 1.9051 | 964 | 1.0464 | 0.0 | 1.0464 | 1.0229 | | 0.3759 | 1.9091 | 966 | 0.8916 | 0.0 | 0.8916 | 0.9443 | | 0.3759 | 1.9130 | 968 | 0.7429 | 0.2143 | 0.7429 | 0.8619 | | 0.3759 | 1.9170 | 970 | 0.6870 | 0.2080 | 0.6870 | 0.8289 | | 0.3759 | 1.9209 | 972 | 0.6818 | 0.2080 | 0.6818 | 0.8257 | | 0.3759 | 1.9249 | 974 | 0.7524 | 0.2080 | 0.7524 | 0.8674 | | 0.3759 | 1.9289 | 976 | 0.8795 | 0.0 | 0.8795 | 0.9378 | | 0.3759 | 1.9328 | 978 | 0.9003 | 0.1852 | 0.9003 | 0.9489 | | 0.3759 | 1.9368 | 980 | 0.8642 | 0.3433 | 0.8642 | 0.9296 | | 0.3759 | 1.9407 | 982 | 0.9160 | 0.3636 | 0.9160 | 0.9571 | | 0.3759 | 1.9447 | 984 | 1.0310 | 0.1852 | 1.0310 | 1.0154 | | 0.3759 | 1.9486 | 986 | 1.0894 | 0.1852 | 1.0894 | 1.0437 | | 0.3759 | 1.9526 | 988 | 0.9531 | 0.0 | 0.9531 | 0.9763 | | 0.3759 | 1.9565 | 990 | 0.7629 | 0.2080 | 0.7629 | 0.8734 | | 0.3759 | 1.9605 | 992 | 0.6815 | 0.2080 | 0.6815 | 0.8256 | | 0.3759 | 1.9644 | 994 | 0.6797 | 0.2080 | 0.6797 | 0.8244 | | 0.3759 | 1.9684 | 996 | 0.7323 | 0.2080 | 0.7323 | 0.8557 | | 0.3759 | 1.9723 | 998 | 0.8996 | 0.0 | 0.8996 | 0.9485 | | 0.1431 | 1.9763 | 1000 | 1.0377 | 0.1852 | 1.0377 | 1.0187 | | 0.1431 | 1.9802 | 1002 | 1.0502 | 0.1852 | 1.0502 | 1.0248 | | 0.1431 | 1.9842 | 1004 | 0.9511 | 0.0 | 0.9511 | 0.9753 | | 0.1431 | 1.9881 | 1006 | 0.7954 | 0.2080 | 0.7954 | 0.8919 | | 0.1431 | 1.9921 | 1008 | 0.7112 | 0.2080 | 0.7112 | 0.8433 | | 0.1431 | 1.9960 | 1010 | 0.7126 | 0.2080 | 0.7126 | 0.8441 | | 0.1431 | 2.0 | 1012 | 0.8021 | 0.2080 | 0.8021 | 0.8956 | | 0.1431 | 2.0040 | 1014 | 1.0211 | 0.0 | 1.0211 | 1.0105 | | 0.1431 | 2.0079 | 1016 | 1.1296 | 0.0 | 1.1296 | 1.0628 | | 0.1431 | 2.0119 | 1018 | 1.0709 | 0.0 | 1.0709 | 1.0348 | | 0.1431 | 2.0158 | 1020 | 0.9288 | 0.0 | 0.9288 | 0.9638 | | 0.1431 | 2.0198 | 1022 | 0.7595 | 0.2143 | 0.7595 | 0.8715 | | 0.1431 | 2.0237 | 1024 | 0.6759 | 0.2080 | 0.6759 | 0.8221 | | 0.1431 | 2.0277 | 1026 | 0.6596 | 0.2080 | 0.6596 | 0.8121 | | 0.1431 | 2.0316 | 1028 | 0.6867 | 0.2080 | 0.6867 | 0.8287 | | 0.1431 | 2.0356 | 1030 | 0.8237 | 0.2143 | 0.8237 | 0.9076 | | 0.1431 | 2.0395 | 1032 | 0.9732 | 0.1852 | 0.9732 | 0.9865 | | 0.1431 | 2.0435 | 1034 | 0.9663 | 0.1852 | 0.9663 | 0.9830 | | 0.1431 | 2.0474 | 1036 | 0.8395 | 0.2143 | 0.8395 | 0.9163 | | 0.1431 | 2.0514 | 1038 | 0.7004 | 0.2080 | 0.7004 | 0.8369 | | 0.1431 | 2.0553 | 1040 | 0.6937 | 0.2080 | 0.6937 | 0.8329 | | 0.1431 | 2.0593 | 1042 | 0.7949 | 0.2143 | 0.7949 | 0.8916 | | 0.1431 | 2.0632 | 1044 | 0.9643 | 0.0 | 0.9643 | 0.9820 | | 0.1431 | 2.0672 | 1046 | 1.0626 | 0.0 | 1.0626 | 1.0308 | | 0.1431 | 2.0711 | 1048 | 1.0810 | 0.0 | 1.0810 | 1.0397 | | 0.1431 | 2.0751 | 1050 | 0.9832 | 0.0 | 0.9832 | 0.9915 | | 0.1431 | 2.0791 | 1052 | 0.8235 | 0.0 | 0.8235 | 0.9074 | | 0.1431 | 2.0830 | 1054 | 0.7182 | 0.2080 | 0.7182 | 0.8475 | | 0.1431 | 2.0870 | 1056 | 0.6926 | 0.2080 | 0.6926 | 0.8322 | | 0.1431 | 2.0909 | 1058 | 0.7420 | 0.2143 | 0.7420 | 0.8614 | | 0.1431 | 2.0949 | 1060 | 0.8452 | 0.0 | 0.8452 | 0.9194 | | 0.1431 | 2.0988 | 1062 | 0.9433 | 0.0 | 0.9433 | 0.9712 | | 0.1431 | 2.1028 | 1064 | 0.9629 | 0.0 | 0.9629 | 0.9813 | | 0.1431 | 2.1067 | 1066 | 0.8692 | 0.2143 | 0.8692 | 0.9323 | | 0.1431 | 2.1107 | 1068 | 0.8141 | 0.2143 | 0.8141 | 0.9023 | | 0.1431 | 2.1146 | 1070 | 0.8129 | 0.2143 | 0.8129 | 0.9016 | | 0.1431 | 2.1186 | 1072 | 0.8513 | 0.2143 | 0.8513 | 0.9226 | | 0.1431 | 2.1225 | 1074 | 0.8516 | 0.2143 | 0.8516 | 0.9228 | | 0.1431 | 2.1265 | 1076 | 0.8078 | 0.2143 | 0.8078 | 0.8988 | | 0.1431 | 2.1304 | 1078 | 0.7193 | 0.2080 | 0.7193 | 0.8481 | | 0.1431 | 2.1344 | 1080 | 0.7020 | 0.2080 | 0.7020 | 0.8378 | | 0.1431 | 2.1383 | 1082 | 0.7071 | 0.2080 | 0.7071 | 0.8409 | | 0.1431 | 2.1423 | 1084 | 0.7838 | 0.2143 | 0.7838 | 0.8853 | | 0.1431 | 2.1462 | 1086 | 0.9447 | 0.3636 | 0.9447 | 0.9720 | | 0.1431 | 2.1502 | 1088 | 0.9843 | 0.1852 | 0.9843 | 0.9921 | | 0.1431 | 2.1542 | 1090 | 0.9230 | 0.2143 | 0.9230 | 0.9607 | | 0.1431 | 2.1581 | 1092 | 0.8283 | 0.2143 | 0.8283 | 0.9101 | | 0.1431 | 2.1621 | 1094 | 0.7826 | 0.2080 | 0.7826 | 0.8847 | | 0.1431 | 2.1660 | 1096 | 0.7677 | 0.2080 | 0.7677 | 0.8762 | | 0.1431 | 2.1700 | 1098 | 0.7778 | 0.2080 | 0.7778 | 0.8819 | | 0.1431 | 2.1739 | 1100 | 0.8060 | 0.2143 | 0.8060 | 0.8978 | | 0.1431 | 2.1779 | 1102 | 0.8383 | 0.2143 | 0.8383 | 0.9156 | | 0.1431 | 2.1818 | 1104 | 0.7853 | 0.2080 | 0.7853 | 0.8862 | | 0.1431 | 2.1858 | 1106 | 0.7912 | 0.2080 | 0.7912 | 0.8895 | | 0.1431 | 2.1897 | 1108 | 0.8941 | 0.2080 | 0.8941 | 0.9456 | | 0.1431 | 2.1937 | 1110 | 1.0988 | 0.1852 | 1.0988 | 1.0482 | | 0.1431 | 2.1976 | 1112 | 1.1571 | 0.1270 | 1.1571 | 1.0757 | | 0.1431 | 2.2016 | 1114 | 1.0757 | 0.0 | 1.0757 | 1.0372 | | 0.1431 | 2.2055 | 1116 | 0.9042 | 0.2080 | 0.9042 | 0.9509 | | 0.1431 | 2.2095 | 1118 | 0.7861 | 0.2029 | 0.7861 | 0.8866 | | 0.1431 | 2.2134 | 1120 | 0.7801 | 0.2029 | 0.7801 | 0.8833 | | 0.1431 | 2.2174 | 1122 | 0.8128 | 0.2029 | 0.8128 | 0.9016 | | 0.1431 | 2.2213 | 1124 | 0.9897 | 0.2143 | 0.9897 | 0.9949 | | 0.1431 | 2.2253 | 1126 | 1.1139 | 0.0 | 1.1139 | 1.0554 | | 0.1431 | 2.2292 | 1128 | 1.0724 | 0.0 | 1.0724 | 1.0355 | | 0.1431 | 2.2332 | 1130 | 0.8922 | 0.2143 | 0.8922 | 0.9446 | | 0.1431 | 2.2372 | 1132 | 0.7937 | 0.2080 | 0.7937 | 0.8909 | | 0.1431 | 2.2411 | 1134 | 0.7739 | 0.2080 | 0.7739 | 0.8797 | | 0.1431 | 2.2451 | 1136 | 0.7940 | 0.2080 | 0.7940 | 0.8911 | | 0.1431 | 2.2490 | 1138 | 0.8347 | 0.2080 | 0.8347 | 0.9136 | | 0.1431 | 2.2530 | 1140 | 0.8345 | 0.2080 | 0.8345 | 0.9135 | | 0.1431 | 2.2569 | 1142 | 0.8203 | 0.2080 | 0.8203 | 0.9057 | | 0.1431 | 2.2609 | 1144 | 0.8193 | 0.2080 | 0.8193 | 0.9051 | | 0.1431 | 2.2648 | 1146 | 0.8108 | 0.2080 | 0.8108 | 0.9005 | | 0.1431 | 2.2688 | 1148 | 0.7874 | 0.2080 | 0.7874 | 0.8874 | | 0.1431 | 2.2727 | 1150 | 0.8199 | 0.2080 | 0.8199 | 0.9055 | | 0.1431 | 2.2767 | 1152 | 0.8755 | 0.2080 | 0.8755 | 0.9357 | | 0.1431 | 2.2806 | 1154 | 0.9623 | 0.0 | 0.9623 | 0.9809 | | 0.1431 | 2.2846 | 1156 | 0.9215 | 0.2080 | 0.9215 | 0.9599 | | 0.1431 | 2.2885 | 1158 | 0.8276 | 0.2080 | 0.8276 | 0.9097 | | 0.1431 | 2.2925 | 1160 | 0.7947 | 0.2080 | 0.7947 | 0.8915 | | 0.1431 | 2.2964 | 1162 | 0.8536 | 0.2080 | 0.8536 | 0.9239 | | 0.1431 | 2.3004 | 1164 | 0.9875 | 0.0 | 0.9875 | 0.9937 | | 0.1431 | 2.3043 | 1166 | 1.1104 | 0.0 | 1.1104 | 1.0538 | | 0.1431 | 2.3083 | 1168 | 1.0560 | 0.0 | 1.0560 | 1.0276 | | 0.1431 | 2.3123 | 1170 | 0.9256 | 0.0 | 0.9256 | 0.9621 | | 0.1431 | 2.3162 | 1172 | 0.7860 | 0.0 | 0.7860 | 0.8866 | | 0.1431 | 2.3202 | 1174 | 0.7206 | 0.2080 | 0.7206 | 0.8489 | | 0.1431 | 2.3241 | 1176 | 0.7003 | 0.2080 | 0.7003 | 0.8368 | | 0.1431 | 2.3281 | 1178 | 0.7280 | 0.2080 | 0.7280 | 0.8532 | | 0.1431 | 2.3320 | 1180 | 0.8419 | 0.2080 | 0.8419 | 0.9176 | | 0.1431 | 2.3360 | 1182 | 1.0839 | 0.0 | 1.0839 | 1.0411 | | 0.1431 | 2.3399 | 1184 | 1.2253 | 0.0 | 1.2253 | 1.1070 | | 0.1431 | 2.3439 | 1186 | 1.1514 | -0.0185 | 1.1514 | 1.0730 | | 0.1431 | 2.3478 | 1188 | 0.9142 | 0.3433 | 0.9142 | 0.9561 | | 0.1431 | 2.3518 | 1190 | 0.7410 | 0.4500 | 0.7410 | 0.8608 | | 0.1431 | 2.3557 | 1192 | 0.7155 | 0.0610 | 0.7155 | 0.8459 | | 0.1431 | 2.3597 | 1194 | 0.6997 | 0.4500 | 0.6997 | 0.8365 | | 0.1431 | 2.3636 | 1196 | 0.7261 | 0.3265 | 0.7261 | 0.8521 | | 0.1431 | 2.3676 | 1198 | 0.8926 | 0.3433 | 0.8926 | 0.9448 | | 0.1431 | 2.3715 | 1200 | 1.0917 | 0.1538 | 1.0917 | 1.0449 | | 0.1431 | 2.3755 | 1202 | 1.1665 | 0.3016 | 1.1665 | 1.0801 | | 0.1431 | 2.3794 | 1204 | 1.0930 | 0.1538 | 1.0930 | 1.0455 | | 0.1431 | 2.3834 | 1206 | 0.9275 | 0.1852 | 0.9275 | 0.9631 | | 0.1431 | 2.3874 | 1208 | 0.7680 | 0.2080 | 0.7680 | 0.8764 | | 0.1431 | 2.3913 | 1210 | 0.7281 | 0.2080 | 0.7281 | 0.8533 | | 0.1431 | 2.3953 | 1212 | 0.7552 | 0.2080 | 0.7552 | 0.8690 | | 0.1431 | 2.3992 | 1214 | 0.8249 | 0.2080 | 0.8249 | 0.9083 | | 0.1431 | 2.4032 | 1216 | 0.8963 | 0.0 | 0.8963 | 0.9467 | | 0.1431 | 2.4071 | 1218 | 0.9249 | 0.0 | 0.9249 | 0.9617 | | 0.1431 | 2.4111 | 1220 | 0.8665 | 0.2080 | 0.8665 | 0.9309 | | 0.1431 | 2.4150 | 1222 | 0.7711 | 0.2080 | 0.7711 | 0.8781 | | 0.1431 | 2.4190 | 1224 | 0.7754 | 0.2080 | 0.7754 | 0.8805 | | 0.1431 | 2.4229 | 1226 | 0.8605 | 0.3433 | 0.8605 | 0.9276 | | 0.1431 | 2.4269 | 1228 | 0.8896 | 0.3433 | 0.8896 | 0.9432 | | 0.1431 | 2.4308 | 1230 | 0.9617 | 0.1852 | 0.9617 | 0.9807 | | 0.1431 | 2.4348 | 1232 | 0.9684 | 0.0 | 0.9684 | 0.9841 | | 0.1431 | 2.4387 | 1234 | 0.9066 | 0.0 | 0.9066 | 0.9521 | | 0.1431 | 2.4427 | 1236 | 0.8137 | 0.2143 | 0.8137 | 0.9021 | | 0.1431 | 2.4466 | 1238 | 0.7321 | 0.2080 | 0.7321 | 0.8556 | | 0.1431 | 2.4506 | 1240 | 0.6796 | 0.2029 | 0.6796 | 0.8244 | | 0.1431 | 2.4545 | 1242 | 0.7023 | 0.2029 | 0.7023 | 0.8380 | | 0.1431 | 2.4585 | 1244 | 0.7982 | 0.2080 | 0.7982 | 0.8934 | | 0.1431 | 2.4625 | 1246 | 0.9044 | 0.2080 | 0.9044 | 0.9510 | | 0.1431 | 2.4664 | 1248 | 0.9828 | 0.0 | 0.9828 | 0.9914 | | 0.1431 | 2.4704 | 1250 | 1.0616 | 0.0 | 1.0616 | 1.0304 | | 0.1431 | 2.4743 | 1252 | 0.9856 | 0.0 | 0.9856 | 0.9928 | | 0.1431 | 2.4783 | 1254 | 0.8701 | 0.2080 | 0.8701 | 0.9328 | | 0.1431 | 2.4822 | 1256 | 0.7631 | 0.2029 | 0.7631 | 0.8736 | | 0.1431 | 2.4862 | 1258 | 0.7787 | 0.2080 | 0.7787 | 0.8824 | | 0.1431 | 2.4901 | 1260 | 0.8764 | 0.2080 | 0.8764 | 0.9362 | | 0.1431 | 2.4941 | 1262 | 1.0385 | 0.1852 | 1.0385 | 1.0191 | | 0.1431 | 2.4980 | 1264 | 1.0881 | 0.1852 | 1.0881 | 1.0431 | | 0.1431 | 2.5020 | 1266 | 0.9765 | 0.0 | 0.9765 | 0.9882 | | 0.1431 | 2.5059 | 1268 | 0.8868 | 0.2080 | 0.8868 | 0.9417 | | 0.1431 | 2.5099 | 1270 | 0.7447 | 0.2080 | 0.7447 | 0.8629 | | 0.1431 | 2.5138 | 1272 | 0.7071 | 0.2029 | 0.7071 | 0.8409 | | 0.1431 | 2.5178 | 1274 | 0.7142 | 0.2029 | 0.7142 | 0.8451 | | 0.1431 | 2.5217 | 1276 | 0.7692 | 0.2080 | 0.7692 | 0.8770 | | 0.1431 | 2.5257 | 1278 | 0.9381 | 0.3433 | 0.9381 | 0.9685 | | 0.1431 | 2.5296 | 1280 | 1.1714 | 0.1538 | 1.1714 | 1.0823 | | 0.1431 | 2.5336 | 1282 | 1.2308 | 0.3016 | 1.2308 | 1.1094 | | 0.1431 | 2.5375 | 1284 | 1.1517 | 0.1852 | 1.1517 | 1.0732 | | 0.1431 | 2.5415 | 1286 | 0.9702 | 0.2080 | 0.9702 | 0.9850 | | 0.1431 | 2.5455 | 1288 | 0.8341 | 0.2080 | 0.8341 | 0.9133 | | 0.1431 | 2.5494 | 1290 | 0.7712 | 0.2080 | 0.7712 | 0.8782 | | 0.1431 | 2.5534 | 1292 | 0.7784 | 0.2080 | 0.7784 | 0.8823 | | 0.1431 | 2.5573 | 1294 | 0.8436 | 0.2080 | 0.8436 | 0.9185 | | 0.1431 | 2.5613 | 1296 | 0.9148 | 0.0179 | 0.9148 | 0.9564 | | 0.1431 | 2.5652 | 1298 | 0.9518 | 0.0 | 0.9518 | 0.9756 | | 0.1431 | 2.5692 | 1300 | 0.9413 | 0.0 | 0.9413 | 0.9702 | | 0.1431 | 2.5731 | 1302 | 0.9226 | 0.0 | 0.9226 | 0.9605 | | 0.1431 | 2.5771 | 1304 | 0.8644 | 0.2080 | 0.8644 | 0.9297 | | 0.1431 | 2.5810 | 1306 | 0.8373 | 0.2080 | 0.8373 | 0.9150 | | 0.1431 | 2.5850 | 1308 | 0.8768 | 0.2080 | 0.8768 | 0.9364 | | 0.1431 | 2.5889 | 1310 | 0.8732 | 0.2080 | 0.8732 | 0.9345 | | 0.1431 | 2.5929 | 1312 | 0.9062 | 0.0 | 0.9062 | 0.9519 | | 0.1431 | 2.5968 | 1314 | 0.9167 | 0.0 | 0.9167 | 0.9574 | | 0.1431 | 2.6008 | 1316 | 0.8748 | 0.2080 | 0.8748 | 0.9353 | | 0.1431 | 2.6047 | 1318 | 0.8761 | 0.2080 | 0.8761 | 0.9360 | | 0.1431 | 2.6087 | 1320 | 0.9072 | 0.2080 | 0.9072 | 0.9525 | | 0.1431 | 2.6126 | 1322 | 0.9536 | 0.0179 | 0.9536 | 0.9765 | | 0.1431 | 2.6166 | 1324 | 0.9328 | 0.0 | 0.9328 | 0.9658 | | 0.1431 | 2.6206 | 1326 | 0.8821 | 0.2080 | 0.8821 | 0.9392 | | 0.1431 | 2.6245 | 1328 | 0.8106 | 0.2080 | 0.8106 | 0.9003 | | 0.1431 | 2.6285 | 1330 | 0.8007 | 0.2080 | 0.8007 | 0.8948 | | 0.1431 | 2.6324 | 1332 | 0.7742 | 0.2080 | 0.7742 | 0.8799 | | 0.1431 | 2.6364 | 1334 | 0.7682 | 0.2080 | 0.7682 | 0.8765 | | 0.1431 | 2.6403 | 1336 | 0.8204 | 0.2080 | 0.8204 | 0.9058 | | 0.1431 | 2.6443 | 1338 | 0.8646 | 0.2080 | 0.8646 | 0.9299 | | 0.1431 | 2.6482 | 1340 | 0.8037 | 0.2080 | 0.8037 | 0.8965 | | 0.1431 | 2.6522 | 1342 | 0.7561 | 0.2029 | 0.7561 | 0.8696 | | 0.1431 | 2.6561 | 1344 | 0.7921 | 0.2029 | 0.7921 | 0.8900 | | 0.1431 | 2.6601 | 1346 | 0.8648 | 0.2080 | 0.8648 | 0.9300 | | 0.1431 | 2.6640 | 1348 | 0.8735 | 0.2080 | 0.8735 | 0.9346 | | 0.1431 | 2.6680 | 1350 | 0.9732 | 0.0 | 0.9732 | 0.9865 | | 0.1431 | 2.6719 | 1352 | 0.9817 | 0.0 | 0.9817 | 0.9908 | | 0.1431 | 2.6759 | 1354 | 0.9339 | 0.0 | 0.9339 | 0.9664 | | 0.1431 | 2.6798 | 1356 | 0.8783 | 0.0 | 0.8783 | 0.9372 | | 0.1431 | 2.6838 | 1358 | 0.7738 | 0.2080 | 0.7738 | 0.8796 | | 0.1431 | 2.6877 | 1360 | 0.7291 | 0.2080 | 0.7291 | 0.8539 | | 0.1431 | 2.6917 | 1362 | 0.7505 | 0.2080 | 0.7505 | 0.8663 | | 0.1431 | 2.6957 | 1364 | 0.7861 | 0.2080 | 0.7861 | 0.8866 | | 0.1431 | 2.6996 | 1366 | 0.9169 | 0.2080 | 0.9169 | 0.9576 | | 0.1431 | 2.7036 | 1368 | 0.9793 | 0.0179 | 0.9793 | 0.9896 | | 0.1431 | 2.7075 | 1370 | 0.9713 | 0.0179 | 0.9713 | 0.9855 | | 0.1431 | 2.7115 | 1372 | 0.8726 | 0.2080 | 0.8726 | 0.9341 | | 0.1431 | 2.7154 | 1374 | 0.8669 | 0.2080 | 0.8669 | 0.9311 | | 0.1431 | 2.7194 | 1376 | 0.9305 | 0.0 | 0.9305 | 0.9646 | | 0.1431 | 2.7233 | 1378 | 0.9212 | 0.0 | 0.9212 | 0.9598 | | 0.1431 | 2.7273 | 1380 | 0.8454 | 0.0 | 0.8454 | 0.9195 | | 0.1431 | 2.7312 | 1382 | 0.7923 | 0.2080 | 0.7923 | 0.8901 | | 0.1431 | 2.7352 | 1384 | 0.7450 | 0.2080 | 0.7450 | 0.8632 | | 0.1431 | 2.7391 | 1386 | 0.7439 | 0.2080 | 0.7439 | 0.8625 | | 0.1431 | 2.7431 | 1388 | 0.7882 | 0.2080 | 0.7882 | 0.8878 | | 0.1431 | 2.7470 | 1390 | 0.8931 | 0.2080 | 0.8931 | 0.9450 | | 0.1431 | 2.7510 | 1392 | 0.9865 | 0.0179 | 0.9865 | 0.9932 | | 0.1431 | 2.7549 | 1394 | 0.9770 | 0.0179 | 0.9770 | 0.9884 | | 0.1431 | 2.7589 | 1396 | 0.8704 | 0.2080 | 0.8704 | 0.9329 | | 0.1431 | 2.7628 | 1398 | 0.8612 | 0.2080 | 0.8612 | 0.9280 | | 0.1431 | 2.7668 | 1400 | 0.8302 | 0.2080 | 0.8302 | 0.9112 | | 0.1431 | 2.7708 | 1402 | 0.8192 | 0.2080 | 0.8192 | 0.9051 | | 0.1431 | 2.7747 | 1404 | 0.8012 | 0.2080 | 0.8012 | 0.8951 | | 0.1431 | 2.7787 | 1406 | 0.8410 | 0.2080 | 0.8410 | 0.9171 | | 0.1431 | 2.7826 | 1408 | 0.9554 | 0.2080 | 0.9554 | 0.9774 | | 0.1431 | 2.7866 | 1410 | 1.0862 | 0.0 | 1.0862 | 1.0422 | | 0.1431 | 2.7905 | 1412 | 1.0941 | 0.0 | 1.0941 | 1.0460 | | 0.1431 | 2.7945 | 1414 | 0.9648 | 0.0 | 0.9648 | 0.9822 | | 0.1431 | 2.7984 | 1416 | 0.8378 | 0.2080 | 0.8378 | 0.9153 | | 0.1431 | 2.8024 | 1418 | 0.7909 | 0.2080 | 0.7909 | 0.8893 | | 0.1431 | 2.8063 | 1420 | 0.8099 | 0.2080 | 0.8099 | 0.9000 | | 0.1431 | 2.8103 | 1422 | 0.9049 | 0.2080 | 0.9049 | 0.9513 | | 0.1431 | 2.8142 | 1424 | 0.9466 | 0.0179 | 0.9466 | 0.9730 | | 0.1431 | 2.8182 | 1426 | 0.9059 | 0.0179 | 0.9059 | 0.9518 | | 0.1431 | 2.8221 | 1428 | 0.8181 | 0.2080 | 0.8181 | 0.9045 | | 0.1431 | 2.8261 | 1430 | 0.7865 | 0.2080 | 0.7865 | 0.8869 | | 0.1431 | 2.8300 | 1432 | 0.8095 | 0.2080 | 0.8095 | 0.8997 | | 0.1431 | 2.8340 | 1434 | 0.8373 | 0.2080 | 0.8373 | 0.9151 | | 0.1431 | 2.8379 | 1436 | 0.9082 | 0.2080 | 0.9082 | 0.9530 | | 0.1431 | 2.8419 | 1438 | 0.9925 | 0.0179 | 0.9925 | 0.9963 | | 0.1431 | 2.8458 | 1440 | 0.9721 | 0.0179 | 0.9721 | 0.9859 | | 0.1431 | 2.8498 | 1442 | 0.8752 | 0.2080 | 0.8752 | 0.9355 | | 0.1431 | 2.8538 | 1444 | 0.8028 | 0.2080 | 0.8028 | 0.8960 | | 0.1431 | 2.8577 | 1446 | 0.8103 | 0.2080 | 0.8103 | 0.9002 | | 0.1431 | 2.8617 | 1448 | 0.8686 | 0.2080 | 0.8686 | 0.9320 | | 0.1431 | 2.8656 | 1450 | 0.9909 | 0.0179 | 0.9909 | 0.9954 | | 0.1431 | 2.8696 | 1452 | 1.0226 | 0.0179 | 1.0226 | 1.0112 | | 0.1431 | 2.8735 | 1454 | 0.9463 | 0.2080 | 0.9463 | 0.9728 | | 0.1431 | 2.8775 | 1456 | 0.8470 | 0.2080 | 0.8470 | 0.9203 | | 0.1431 | 2.8814 | 1458 | 0.8196 | 0.2080 | 0.8196 | 0.9053 | | 0.1431 | 2.8854 | 1460 | 0.8344 | 0.2080 | 0.8344 | 0.9135 | | 0.1431 | 2.8893 | 1462 | 0.9029 | 0.2080 | 0.9029 | 0.9502 | | 0.1431 | 2.8933 | 1464 | 0.9165 | 0.2080 | 0.9165 | 0.9573 | | 0.1431 | 2.8972 | 1466 | 0.8622 | 0.2080 | 0.8622 | 0.9286 | | 0.1431 | 2.9012 | 1468 | 0.8284 | 0.2080 | 0.8284 | 0.9102 | | 0.1431 | 2.9051 | 1470 | 0.8083 | 0.2080 | 0.8083 | 0.8991 | | 0.1431 | 2.9091 | 1472 | 0.7894 | 0.2080 | 0.7894 | 0.8885 | | 0.1431 | 2.9130 | 1474 | 0.8157 | 0.2080 | 0.8157 | 0.9032 | | 0.1431 | 2.9170 | 1476 | 0.8231 | 0.2080 | 0.8231 | 0.9072 | | 0.1431 | 2.9209 | 1478 | 0.8576 | 0.2080 | 0.8576 | 0.9260 | | 0.1431 | 2.9249 | 1480 | 0.8750 | 0.2080 | 0.8750 | 0.9354 | | 0.1431 | 2.9289 | 1482 | 0.8539 | 0.2080 | 0.8539 | 0.9240 | | 0.1431 | 2.9328 | 1484 | 0.8549 | 0.2080 | 0.8549 | 0.9246 | | 0.1431 | 2.9368 | 1486 | 0.8564 | 0.2080 | 0.8564 | 0.9254 | | 0.1431 | 2.9407 | 1488 | 0.8630 | 0.2080 | 0.8630 | 0.9290 | | 0.1431 | 2.9447 | 1490 | 0.8976 | 0.2080 | 0.8976 | 0.9474 | | 0.1431 | 2.9486 | 1492 | 0.9062 | 0.2080 | 0.9062 | 0.9519 | | 0.1431 | 2.9526 | 1494 | 0.9357 | 0.2080 | 0.9357 | 0.9673 | | 0.1431 | 2.9565 | 1496 | 0.8990 | 0.2080 | 0.8990 | 0.9481 | | 0.1431 | 2.9605 | 1498 | 0.8118 | 0.2080 | 0.8118 | 0.9010 | | 0.1075 | 2.9644 | 1500 | 0.7769 | 0.2080 | 0.7769 | 0.8814 | | 0.1075 | 2.9684 | 1502 | 0.7979 | 0.2080 | 0.7979 | 0.8932 | | 0.1075 | 2.9723 | 1504 | 0.8502 | 0.2080 | 0.8502 | 0.9221 | | 0.1075 | 2.9763 | 1506 | 0.8594 | 0.2080 | 0.8594 | 0.9270 | | 0.1075 | 2.9802 | 1508 | 0.8640 | 0.2080 | 0.8640 | 0.9295 | | 0.1075 | 2.9842 | 1510 | 0.8696 | 0.2080 | 0.8696 | 0.9325 | | 0.1075 | 2.9881 | 1512 | 0.8464 | 0.2080 | 0.8464 | 0.9200 | | 0.1075 | 2.9921 | 1514 | 0.8343 | 0.2080 | 0.8343 | 0.9134 | | 0.1075 | 2.9960 | 1516 | 0.8576 | 0.2080 | 0.8576 | 0.9261 | | 0.1075 | 3.0 | 1518 | 0.9113 | 0.2080 | 0.9113 | 0.9546 | | 0.1075 | 3.0040 | 1520 | 0.9859 | 0.2080 | 0.9859 | 0.9929 | | 0.1075 | 3.0079 | 1522 | 0.9530 | 0.2080 | 0.9530 | 0.9762 | | 0.1075 | 3.0119 | 1524 | 0.8713 | 0.2080 | 0.8713 | 0.9334 | | 0.1075 | 3.0158 | 1526 | 0.8405 | 0.2080 | 0.8405 | 0.9168 | | 0.1075 | 3.0198 | 1528 | 0.8258 | 0.2080 | 0.8258 | 0.9087 | | 0.1075 | 3.0237 | 1530 | 0.8545 | 0.2080 | 0.8545 | 0.9244 | | 0.1075 | 3.0277 | 1532 | 0.9580 | 0.2080 | 0.9580 | 0.9787 | | 0.1075 | 3.0316 | 1534 | 1.0160 | 0.0179 | 1.0160 | 1.0080 | | 0.1075 | 3.0356 | 1536 | 0.9663 | 0.2080 | 0.9663 | 0.9830 | | 0.1075 | 3.0395 | 1538 | 0.8673 | 0.2080 | 0.8673 | 0.9313 | | 0.1075 | 3.0435 | 1540 | 0.7963 | 0.2080 | 0.7963 | 0.8923 | | 0.1075 | 3.0474 | 1542 | 0.7946 | 0.2080 | 0.7946 | 0.8914 | | 0.1075 | 3.0514 | 1544 | 0.8297 | 0.2080 | 0.8297 | 0.9109 | | 0.1075 | 3.0553 | 1546 | 0.8146 | 0.2080 | 0.8146 | 0.9026 | | 0.1075 | 3.0593 | 1548 | 0.7924 | 0.2080 | 0.7924 | 0.8902 | | 0.1075 | 3.0632 | 1550 | 0.8363 | 0.2080 | 0.8363 | 0.9145 | | 0.1075 | 3.0672 | 1552 | 0.9251 | 0.2080 | 0.9251 | 0.9618 | | 0.1075 | 3.0711 | 1554 | 0.9096 | 0.2080 | 0.9096 | 0.9537 | | 0.1075 | 3.0751 | 1556 | 0.8215 | 0.2080 | 0.8215 | 0.9064 | | 0.1075 | 3.0791 | 1558 | 0.7818 | 0.2080 | 0.7818 | 0.8842 | | 0.1075 | 3.0830 | 1560 | 0.7784 | 0.2080 | 0.7784 | 0.8823 | | 0.1075 | 3.0870 | 1562 | 0.8000 | 0.2080 | 0.8000 | 0.8944 | | 0.1075 | 3.0909 | 1564 | 0.8767 | 0.2080 | 0.8767 | 0.9363 | | 0.1075 | 3.0949 | 1566 | 1.0493 | 0.1818 | 1.0493 | 1.0244 | | 0.1075 | 3.0988 | 1568 | 1.1379 | 0.1538 | 1.1379 | 1.0667 | | 0.1075 | 3.1028 | 1570 | 1.0783 | 0.0179 | 1.0783 | 1.0384 | | 0.1075 | 3.1067 | 1572 | 0.9631 | 0.0179 | 0.9631 | 0.9814 | | 0.1075 | 3.1107 | 1574 | 0.8494 | 0.2080 | 0.8494 | 0.9216 | | 0.1075 | 3.1146 | 1576 | 0.8181 | 0.2080 | 0.8181 | 0.9045 | | 0.1075 | 3.1186 | 1578 | 0.8218 | 0.2080 | 0.8218 | 0.9065 | | 0.1075 | 3.1225 | 1580 | 0.8325 | 0.2080 | 0.8325 | 0.9124 | | 0.1075 | 3.1265 | 1582 | 0.8785 | 0.2080 | 0.8785 | 0.9373 | | 0.1075 | 3.1304 | 1584 | 0.9166 | 0.2080 | 0.9166 | 0.9574 | | 0.1075 | 3.1344 | 1586 | 0.9351 | 0.2080 | 0.9351 | 0.9670 | | 0.1075 | 3.1383 | 1588 | 0.9214 | 0.2080 | 0.9214 | 0.9599 | | 0.1075 | 3.1423 | 1590 | 0.8744 | 0.2080 | 0.8744 | 0.9351 | | 0.1075 | 3.1462 | 1592 | 0.8587 | 0.2080 | 0.8587 | 0.9267 | | 0.1075 | 3.1502 | 1594 | 0.8870 | 0.2080 | 0.8870 | 0.9418 | | 0.1075 | 3.1542 | 1596 | 0.9409 | 0.2080 | 0.9409 | 0.9700 | | 0.1075 | 3.1581 | 1598 | 0.9153 | 0.2080 | 0.9153 | 0.9567 | | 0.1075 | 3.1621 | 1600 | 0.9045 | 0.2080 | 0.9045 | 0.9510 | | 0.1075 | 3.1660 | 1602 | 0.8661 | 0.2080 | 0.8661 | 0.9307 | | 0.1075 | 3.1700 | 1604 | 0.8576 | 0.2080 | 0.8576 | 0.9260 | | 0.1075 | 3.1739 | 1606 | 0.8686 | 0.2080 | 0.8686 | 0.9320 | | 0.1075 | 3.1779 | 1608 | 0.8764 | 0.2080 | 0.8764 | 0.9361 | | 0.1075 | 3.1818 | 1610 | 0.8931 | 0.2080 | 0.8931 | 0.9451 | | 0.1075 | 3.1858 | 1612 | 0.8901 | 0.2080 | 0.8901 | 0.9434 | | 0.1075 | 3.1897 | 1614 | 0.8612 | 0.2080 | 0.8612 | 0.9280 | | 0.1075 | 3.1937 | 1616 | 0.8838 | 0.2080 | 0.8838 | 0.9401 | | 0.1075 | 3.1976 | 1618 | 0.8726 | 0.2080 | 0.8726 | 0.9341 | | 0.1075 | 3.2016 | 1620 | 0.8771 | 0.2080 | 0.8771 | 0.9365 | | 0.1075 | 3.2055 | 1622 | 0.9206 | 0.2080 | 0.9206 | 0.9595 | | 0.1075 | 3.2095 | 1624 | 0.9475 | 0.2080 | 0.9475 | 0.9734 | | 0.1075 | 3.2134 | 1626 | 0.9167 | 0.2080 | 0.9167 | 0.9574 | | 0.1075 | 3.2174 | 1628 | 0.8386 | 0.2080 | 0.8386 | 0.9157 | | 0.1075 | 3.2213 | 1630 | 0.8126 | 0.2080 | 0.8126 | 0.9014 | | 0.1075 | 3.2253 | 1632 | 0.8245 | 0.2080 | 0.8245 | 0.9080 | | 0.1075 | 3.2292 | 1634 | 0.8557 | 0.2080 | 0.8557 | 0.9251 | | 0.1075 | 3.2332 | 1636 | 0.9249 | 0.0179 | 0.9249 | 0.9617 | | 0.1075 | 3.2372 | 1638 | 0.9266 | 0.0179 | 0.9266 | 0.9626 | | 0.1075 | 3.2411 | 1640 | 0.8463 | 0.2080 | 0.8463 | 0.9199 | | 0.1075 | 3.2451 | 1642 | 0.7945 | 0.2080 | 0.7945 | 0.8914 | | 0.1075 | 3.2490 | 1644 | 0.7956 | 0.2080 | 0.7956 | 0.8920 | | 0.1075 | 3.2530 | 1646 | 0.8684 | 0.2080 | 0.8684 | 0.9319 | | 0.1075 | 3.2569 | 1648 | 0.9867 | 0.0179 | 0.9867 | 0.9933 | | 0.1075 | 3.2609 | 1650 | 1.0329 | 0.0179 | 1.0329 | 1.0163 | | 0.1075 | 3.2648 | 1652 | 0.9895 | 0.2080 | 0.9895 | 0.9947 | | 0.1075 | 3.2688 | 1654 | 0.9478 | 0.2080 | 0.9478 | 0.9736 | | 0.1075 | 3.2727 | 1656 | 0.8441 | 0.2080 | 0.8441 | 0.9187 | | 0.1075 | 3.2767 | 1658 | 0.8009 | 0.2080 | 0.8009 | 0.8949 | | 0.1075 | 3.2806 | 1660 | 0.7943 | 0.2080 | 0.7943 | 0.8912 | | 0.1075 | 3.2846 | 1662 | 0.7950 | 0.2080 | 0.7950 | 0.8916 | | 0.1075 | 3.2885 | 1664 | 0.8307 | 0.2080 | 0.8307 | 0.9114 | | 0.1075 | 3.2925 | 1666 | 0.8389 | 0.2080 | 0.8389 | 0.9159 | | 0.1075 | 3.2964 | 1668 | 0.8451 | 0.2080 | 0.8451 | 0.9193 | | 0.1075 | 3.3004 | 1670 | 0.9079 | 0.2080 | 0.9079 | 0.9528 | | 0.1075 | 3.3043 | 1672 | 0.8976 | 0.2080 | 0.8976 | 0.9474 | | 0.1075 | 3.3083 | 1674 | 0.9004 | 0.2080 | 0.9004 | 0.9489 | | 0.1075 | 3.3123 | 1676 | 0.9191 | 0.2080 | 0.9191 | 0.9587 | | 0.1075 | 3.3162 | 1678 | 0.8370 | 0.2080 | 0.8370 | 0.9149 | | 0.1075 | 3.3202 | 1680 | 0.7597 | 0.2080 | 0.7597 | 0.8716 | | 0.1075 | 3.3241 | 1682 | 0.7661 | 0.2080 | 0.7661 | 0.8753 | | 0.1075 | 3.3281 | 1684 | 0.8006 | 0.2080 | 0.8006 | 0.8947 | | 0.1075 | 3.3320 | 1686 | 0.8508 | 0.2080 | 0.8508 | 0.9224 | | 0.1075 | 3.3360 | 1688 | 0.8236 | 0.2080 | 0.8236 | 0.9075 | | 0.1075 | 3.3399 | 1690 | 0.8256 | 0.2080 | 0.8256 | 0.9086 | | 0.1075 | 3.3439 | 1692 | 0.8634 | 0.0 | 0.8634 | 0.9292 | | 0.1075 | 3.3478 | 1694 | 0.8196 | 0.2143 | 0.8196 | 0.9053 | | 0.1075 | 3.3518 | 1696 | 0.7268 | 0.2080 | 0.7268 | 0.8525 | | 0.1075 | 3.3557 | 1698 | 0.6890 | 0.2080 | 0.6890 | 0.8300 | | 0.1075 | 3.3597 | 1700 | 0.6797 | 0.2080 | 0.6797 | 0.8244 | | 0.1075 | 3.3636 | 1702 | 0.6912 | 0.2080 | 0.6912 | 0.8314 | | 0.1075 | 3.3676 | 1704 | 0.7666 | 0.2080 | 0.7666 | 0.8756 | | 0.1075 | 3.3715 | 1706 | 0.8608 | 0.2080 | 0.8608 | 0.9278 | | 0.1075 | 3.3755 | 1708 | 0.8806 | 0.2080 | 0.8806 | 0.9384 | | 0.1075 | 3.3794 | 1710 | 0.8182 | 0.2080 | 0.8182 | 0.9045 | | 0.1075 | 3.3834 | 1712 | 0.7561 | 0.2080 | 0.7561 | 0.8695 | | 0.1075 | 3.3874 | 1714 | 0.7660 | 0.2080 | 0.7660 | 0.8752 | | 0.1075 | 3.3913 | 1716 | 0.8614 | 0.2080 | 0.8614 | 0.9281 | | 0.1075 | 3.3953 | 1718 | 0.9601 | 0.2080 | 0.9601 | 0.9798 | | 0.1075 | 3.3992 | 1720 | 0.9254 | 0.2080 | 0.9254 | 0.9620 | | 0.1075 | 3.4032 | 1722 | 0.8426 | 0.2080 | 0.8426 | 0.9179 | | 0.1075 | 3.4071 | 1724 | 0.7634 | 0.2080 | 0.7634 | 0.8738 | | 0.1075 | 3.4111 | 1726 | 0.7438 | 0.2080 | 0.7438 | 0.8624 | | 0.1075 | 3.4150 | 1728 | 0.7565 | 0.2080 | 0.7565 | 0.8698 | | 0.1075 | 3.4190 | 1730 | 0.7979 | 0.2080 | 0.7979 | 0.8933 | | 0.1075 | 3.4229 | 1732 | 0.8254 | 0.2080 | 0.8254 | 0.9085 | | 0.1075 | 3.4269 | 1734 | 0.8883 | 0.2080 | 0.8883 | 0.9425 | | 0.1075 | 3.4308 | 1736 | 0.9295 | 0.2080 | 0.9295 | 0.9641 | | 0.1075 | 3.4348 | 1738 | 0.8606 | 0.2080 | 0.8606 | 0.9277 | | 0.1075 | 3.4387 | 1740 | 0.8626 | 0.2080 | 0.8626 | 0.9288 | | 0.1075 | 3.4427 | 1742 | 0.8647 | 0.2080 | 0.8647 | 0.9299 | | 0.1075 | 3.4466 | 1744 | 0.8430 | 0.2080 | 0.8430 | 0.9182 | | 0.1075 | 3.4506 | 1746 | 0.8388 | 0.2080 | 0.8388 | 0.9159 | | 0.1075 | 3.4545 | 1748 | 0.8423 | 0.2080 | 0.8423 | 0.9178 | | 0.1075 | 3.4585 | 1750 | 0.8355 | 0.2080 | 0.8355 | 0.9141 | | 0.1075 | 3.4625 | 1752 | 0.8288 | 0.2080 | 0.8288 | 0.9104 | | 0.1075 | 3.4664 | 1754 | 0.8450 | 0.2080 | 0.8450 | 0.9192 | | 0.1075 | 3.4704 | 1756 | 0.8203 | 0.2080 | 0.8203 | 0.9057 | | 0.1075 | 3.4743 | 1758 | 0.7678 | 0.2080 | 0.7678 | 0.8763 | | 0.1075 | 3.4783 | 1760 | 0.7772 | 0.2080 | 0.7772 | 0.8816 | | 0.1075 | 3.4822 | 1762 | 0.7942 | 0.2080 | 0.7942 | 0.8912 | | 0.1075 | 3.4862 | 1764 | 0.7692 | 0.2080 | 0.7692 | 0.8770 | | 0.1075 | 3.4901 | 1766 | 0.7495 | 0.2080 | 0.7495 | 0.8657 | | 0.1075 | 3.4941 | 1768 | 0.7584 | 0.2080 | 0.7584 | 0.8709 | | 0.1075 | 3.4980 | 1770 | 0.8345 | 0.2080 | 0.8345 | 0.9135 | | 0.1075 | 3.5020 | 1772 | 0.8730 | 0.2080 | 0.8730 | 0.9343 | | 0.1075 | 3.5059 | 1774 | 0.8292 | 0.2080 | 0.8292 | 0.9106 | | 0.1075 | 3.5099 | 1776 | 0.8223 | 0.2080 | 0.8223 | 0.9068 | | 0.1075 | 3.5138 | 1778 | 0.8088 | 0.2080 | 0.8088 | 0.8993 | | 0.1075 | 3.5178 | 1780 | 0.8764 | 0.2080 | 0.8764 | 0.9362 | | 0.1075 | 3.5217 | 1782 | 0.9950 | 0.0179 | 0.9950 | 0.9975 | | 0.1075 | 3.5257 | 1784 | 1.0039 | 0.0179 | 1.0039 | 1.0020 | | 0.1075 | 3.5296 | 1786 | 0.9050 | 0.2080 | 0.9050 | 0.9513 | | 0.1075 | 3.5336 | 1788 | 0.8202 | 0.2080 | 0.8202 | 0.9057 | | 0.1075 | 3.5375 | 1790 | 0.7291 | 0.2080 | 0.7291 | 0.8539 | | 0.1075 | 3.5415 | 1792 | 0.7215 | 0.2080 | 0.7215 | 0.8494 | | 0.1075 | 3.5455 | 1794 | 0.7711 | 0.2080 | 0.7711 | 0.8781 | | 0.1075 | 3.5494 | 1796 | 0.7839 | 0.2080 | 0.7839 | 0.8854 | | 0.1075 | 3.5534 | 1798 | 0.7969 | 0.2080 | 0.7969 | 0.8927 | | 0.1075 | 3.5573 | 1800 | 0.7602 | 0.2080 | 0.7602 | 0.8719 | | 0.1075 | 3.5613 | 1802 | 0.7008 | 0.2080 | 0.7008 | 0.8372 | | 0.1075 | 3.5652 | 1804 | 0.7170 | 0.2080 | 0.7170 | 0.8468 | | 0.1075 | 3.5692 | 1806 | 0.7512 | 0.2080 | 0.7512 | 0.8667 | | 0.1075 | 3.5731 | 1808 | 0.7213 | 0.2080 | 0.7213 | 0.8493 | | 0.1075 | 3.5771 | 1810 | 0.7056 | 0.2080 | 0.7056 | 0.8400 | | 0.1075 | 3.5810 | 1812 | 0.7206 | 0.2080 | 0.7206 | 0.8489 | | 0.1075 | 3.5850 | 1814 | 0.7868 | 0.2080 | 0.7868 | 0.8870 | | 0.1075 | 3.5889 | 1816 | 0.8948 | 0.2143 | 0.8948 | 0.9460 | | 0.1075 | 3.5929 | 1818 | 0.9381 | 0.0 | 0.9381 | 0.9686 | | 0.1075 | 3.5968 | 1820 | 0.9007 | 0.0 | 0.9007 | 0.9491 | | 0.1075 | 3.6008 | 1822 | 0.7835 | 0.2080 | 0.7835 | 0.8852 | | 0.1075 | 3.6047 | 1824 | 0.6834 | 0.2080 | 0.6834 | 0.8267 | | 0.1075 | 3.6087 | 1826 | 0.6693 | 0.2029 | 0.6693 | 0.8181 | | 0.1075 | 3.6126 | 1828 | 0.6638 | 0.2029 | 0.6638 | 0.8147 | | 0.1075 | 3.6166 | 1830 | 0.6822 | 0.2080 | 0.6822 | 0.8259 | | 0.1075 | 3.6206 | 1832 | 0.7574 | 0.2080 | 0.7574 | 0.8703 | | 0.1075 | 3.6245 | 1834 | 0.8141 | 0.2080 | 0.8141 | 0.9023 | | 0.1075 | 3.6285 | 1836 | 0.7961 | 0.2080 | 0.7961 | 0.8923 | | 0.1075 | 3.6324 | 1838 | 0.7348 | 0.2080 | 0.7348 | 0.8572 | | 0.1075 | 3.6364 | 1840 | 0.6889 | 0.2080 | 0.6889 | 0.8300 | | 0.1075 | 3.6403 | 1842 | 0.7143 | 0.2080 | 0.7143 | 0.8452 | | 0.1075 | 3.6443 | 1844 | 0.7564 | 0.2080 | 0.7564 | 0.8697 | | 0.1075 | 3.6482 | 1846 | 0.7835 | 0.2080 | 0.7835 | 0.8852 | | 0.1075 | 3.6522 | 1848 | 0.7707 | 0.2080 | 0.7707 | 0.8779 | | 0.1075 | 3.6561 | 1850 | 0.7148 | 0.2080 | 0.7148 | 0.8455 | | 0.1075 | 3.6601 | 1852 | 0.6858 | 0.2080 | 0.6858 | 0.8282 | | 0.1075 | 3.6640 | 1854 | 0.6831 | 0.2029 | 0.6831 | 0.8265 | | 0.1075 | 3.6680 | 1856 | 0.6877 | 0.2029 | 0.6877 | 0.8293 | | 0.1075 | 3.6719 | 1858 | 0.7099 | 0.2080 | 0.7099 | 0.8426 | | 0.1075 | 3.6759 | 1860 | 0.7193 | 0.2080 | 0.7193 | 0.8481 | | 0.1075 | 3.6798 | 1862 | 0.7402 | 0.2080 | 0.7402 | 0.8604 | | 0.1075 | 3.6838 | 1864 | 0.7839 | 0.2080 | 0.7839 | 0.8854 | | 0.1075 | 3.6877 | 1866 | 0.8238 | 0.2080 | 0.8238 | 0.9076 | | 0.1075 | 3.6917 | 1868 | 0.7836 | 0.2080 | 0.7836 | 0.8852 | | 0.1075 | 3.6957 | 1870 | 0.7493 | 0.2080 | 0.7493 | 0.8656 | | 0.1075 | 3.6996 | 1872 | 0.7199 | 0.2080 | 0.7199 | 0.8485 | | 0.1075 | 3.7036 | 1874 | 0.7193 | 0.2080 | 0.7193 | 0.8481 | | 0.1075 | 3.7075 | 1876 | 0.7289 | 0.2080 | 0.7289 | 0.8538 | | 0.1075 | 3.7115 | 1878 | 0.7355 | 0.2080 | 0.7355 | 0.8576 | | 0.1075 | 3.7154 | 1880 | 0.7805 | 0.2080 | 0.7805 | 0.8835 | | 0.1075 | 3.7194 | 1882 | 0.8607 | 0.2080 | 0.8607 | 0.9277 | | 0.1075 | 3.7233 | 1884 | 0.8551 | 0.2080 | 0.8551 | 0.9247 | | 0.1075 | 3.7273 | 1886 | 0.8063 | 0.2080 | 0.8063 | 0.8979 | | 0.1075 | 3.7312 | 1888 | 0.7648 | 0.2080 | 0.7648 | 0.8745 | | 0.1075 | 3.7352 | 1890 | 0.7368 | 0.2080 | 0.7368 | 0.8584 | | 0.1075 | 3.7391 | 1892 | 0.7339 | 0.2080 | 0.7339 | 0.8567 | | 0.1075 | 3.7431 | 1894 | 0.7463 | 0.2080 | 0.7463 | 0.8639 | | 0.1075 | 3.7470 | 1896 | 0.7367 | 0.2080 | 0.7367 | 0.8583 | | 0.1075 | 3.7510 | 1898 | 0.7256 | 0.2029 | 0.7256 | 0.8518 | | 0.1075 | 3.7549 | 1900 | 0.7735 | 0.2080 | 0.7735 | 0.8795 | | 0.1075 | 3.7589 | 1902 | 0.8320 | 0.2080 | 0.8320 | 0.9121 | | 0.1075 | 3.7628 | 1904 | 0.8269 | 0.2080 | 0.8269 | 0.9093 | | 0.1075 | 3.7668 | 1906 | 0.7535 | 0.2080 | 0.7535 | 0.8681 | | 0.1075 | 3.7708 | 1908 | 0.7012 | 0.2029 | 0.7012 | 0.8374 | | 0.1075 | 3.7747 | 1910 | 0.7073 | 0.2080 | 0.7073 | 0.8410 | | 0.1075 | 3.7787 | 1912 | 0.7503 | 0.2080 | 0.7503 | 0.8662 | | 0.1075 | 3.7826 | 1914 | 0.8045 | 0.2080 | 0.8045 | 0.8970 | | 0.1075 | 3.7866 | 1916 | 0.7924 | 0.2080 | 0.7924 | 0.8901 | | 0.1075 | 3.7905 | 1918 | 0.7348 | 0.2080 | 0.7348 | 0.8572 | | 0.1075 | 3.7945 | 1920 | 0.7133 | 0.2080 | 0.7133 | 0.8446 | | 0.1075 | 3.7984 | 1922 | 0.7345 | 0.2080 | 0.7345 | 0.8570 | | 0.1075 | 3.8024 | 1924 | 0.8126 | 0.2080 | 0.8126 | 0.9015 | | 0.1075 | 3.8063 | 1926 | 0.8993 | 0.2080 | 0.8993 | 0.9483 | | 0.1075 | 3.8103 | 1928 | 0.9214 | 0.0 | 0.9214 | 0.9599 | | 0.1075 | 3.8142 | 1930 | 0.9070 | 0.0 | 0.9070 | 0.9524 | | 0.1075 | 3.8182 | 1932 | 0.8027 | 0.2080 | 0.8027 | 0.8960 | | 0.1075 | 3.8221 | 1934 | 0.7124 | 0.2080 | 0.7124 | 0.8440 | | 0.1075 | 3.8261 | 1936 | 0.6929 | 0.2029 | 0.6929 | 0.8324 | | 0.1075 | 3.8300 | 1938 | 0.7035 | 0.2080 | 0.7035 | 0.8387 | | 0.1075 | 3.8340 | 1940 | 0.7704 | 0.2080 | 0.7704 | 0.8777 | | 0.1075 | 3.8379 | 1942 | 0.9145 | 0.0 | 0.9145 | 0.9563 | | 0.1075 | 3.8419 | 1944 | 0.9480 | 0.0 | 0.9480 | 0.9737 | | 0.1075 | 3.8458 | 1946 | 0.8757 | 0.2143 | 0.8757 | 0.9358 | | 0.1075 | 3.8498 | 1948 | 0.7813 | 0.2080 | 0.7813 | 0.8839 | | 0.1075 | 3.8538 | 1950 | 0.7169 | 0.2080 | 0.7169 | 0.8467 | | 0.1075 | 3.8577 | 1952 | 0.7066 | 0.2080 | 0.7066 | 0.8406 | | 0.1075 | 3.8617 | 1954 | 0.7449 | 0.2080 | 0.7449 | 0.8631 | | 0.1075 | 3.8656 | 1956 | 0.8647 | 0.2143 | 0.8647 | 0.9299 | | 0.1075 | 3.8696 | 1958 | 1.0525 | 0.0 | 1.0525 | 1.0259 | | 0.1075 | 3.8735 | 1960 | 1.0967 | 0.0 | 1.0967 | 1.0472 | | 0.1075 | 3.8775 | 1962 | 1.0195 | 0.0 | 1.0195 | 1.0097 | | 0.1075 | 3.8814 | 1964 | 0.8752 | 0.0 | 0.8752 | 0.9355 | | 0.1075 | 3.8854 | 1966 | 0.7895 | 0.2080 | 0.7895 | 0.8885 | | 0.1075 | 3.8893 | 1968 | 0.7394 | 0.2080 | 0.7394 | 0.8599 | | 0.1075 | 3.8933 | 1970 | 0.7060 | 0.2080 | 0.7060 | 0.8402 | | 0.1075 | 3.8972 | 1972 | 0.7061 | 0.2080 | 0.7061 | 0.8403 | | 0.1075 | 3.9012 | 1974 | 0.7619 | 0.2080 | 0.7619 | 0.8729 | | 0.1075 | 3.9051 | 1976 | 0.8710 | 0.2080 | 0.8710 | 0.9333 | | 0.1075 | 3.9091 | 1978 | 0.9192 | 0.2080 | 0.9192 | 0.9587 | | 0.1075 | 3.9130 | 1980 | 0.9196 | 0.2143 | 0.9196 | 0.9589 | | 0.1075 | 3.9170 | 1982 | 0.8861 | 0.2143 | 0.8861 | 0.9413 | | 0.1075 | 3.9209 | 1984 | 0.8287 | 0.2080 | 0.8287 | 0.9103 | | 0.1075 | 3.9249 | 1986 | 0.8534 | 0.2080 | 0.8534 | 0.9238 | | 0.1075 | 3.9289 | 1988 | 0.8310 | 0.2080 | 0.8310 | 0.9116 | | 0.1075 | 3.9328 | 1990 | 0.7980 | 0.2080 | 0.7980 | 0.8933 | | 0.1075 | 3.9368 | 1992 | 0.7965 | 0.2080 | 0.7965 | 0.8925 | | 0.1075 | 3.9407 | 1994 | 0.7593 | 0.2080 | 0.7593 | 0.8714 | | 0.1075 | 3.9447 | 1996 | 0.7338 | 0.2080 | 0.7338 | 0.8566 | | 0.1075 | 3.9486 | 1998 | 0.7213 | 0.2029 | 0.7213 | 0.8493 | | 0.0746 | 3.9526 | 2000 | 0.7293 | 0.2080 | 0.7293 | 0.8540 | | 0.0746 | 3.9565 | 2002 | 0.7539 | 0.2080 | 0.7539 | 0.8683 | | 0.0746 | 3.9605 | 2004 | 0.8184 | 0.2080 | 0.8184 | 0.9047 | | 0.0746 | 3.9644 | 2006 | 0.8536 | 0.2080 | 0.8536 | 0.9239 | | 0.0746 | 3.9684 | 2008 | 0.8306 | 0.2080 | 0.8306 | 0.9114 | | 0.0746 | 3.9723 | 2010 | 0.8191 | 0.2080 | 0.8191 | 0.9050 | | 0.0746 | 3.9763 | 2012 | 0.7657 | 0.2080 | 0.7657 | 0.8750 | | 0.0746 | 3.9802 | 2014 | 0.7035 | 0.2080 | 0.7035 | 0.8388 | | 0.0746 | 3.9842 | 2016 | 0.6851 | 0.2029 | 0.6851 | 0.8277 | | 0.0746 | 3.9881 | 2018 | 0.6878 | 0.2029 | 0.6878 | 0.8294 | | 0.0746 | 3.9921 | 2020 | 0.7186 | 0.2080 | 0.7186 | 0.8477 | | 0.0746 | 3.9960 | 2022 | 0.8121 | 0.2080 | 0.8121 | 0.9011 | | 0.0746 | 4.0 | 2024 | 0.8658 | 0.2143 | 0.8658 | 0.9305 | | 0.0746 | 4.0040 | 2026 | 0.8389 | 0.2080 | 0.8389 | 0.9159 | | 0.0746 | 4.0079 | 2028 | 0.7562 | 0.2080 | 0.7562 | 0.8696 | | 0.0746 | 4.0119 | 2030 | 0.6931 | 0.2080 | 0.6931 | 0.8325 | | 0.0746 | 4.0158 | 2032 | 0.6803 | 0.2029 | 0.6803 | 0.8248 | | 0.0746 | 4.0198 | 2034 | 0.6838 | 0.2029 | 0.6838 | 0.8269 | | 0.0746 | 4.0237 | 2036 | 0.7155 | 0.2080 | 0.7155 | 0.8459 | | 0.0746 | 4.0277 | 2038 | 0.7552 | 0.2080 | 0.7552 | 0.8690 | | 0.0746 | 4.0316 | 2040 | 0.7963 | 0.2080 | 0.7963 | 0.8924 | | 0.0746 | 4.0356 | 2042 | 0.7887 | 0.2080 | 0.7887 | 0.8881 | | 0.0746 | 4.0395 | 2044 | 0.7459 | 0.2080 | 0.7459 | 0.8637 | | 0.0746 | 4.0435 | 2046 | 0.7331 | 0.2080 | 0.7331 | 0.8562 | | 0.0746 | 4.0474 | 2048 | 0.7437 | 0.2080 | 0.7437 | 0.8624 | | 0.0746 | 4.0514 | 2050 | 0.7907 | 0.2080 | 0.7907 | 0.8892 | | 0.0746 | 4.0553 | 2052 | 0.8167 | 0.2080 | 0.8167 | 0.9037 | | 0.0746 | 4.0593 | 2054 | 0.8100 | 0.2080 | 0.8100 | 0.9000 | | 0.0746 | 4.0632 | 2056 | 0.8067 | 0.2080 | 0.8067 | 0.8982 | | 0.0746 | 4.0672 | 2058 | 0.7927 | 0.2080 | 0.7927 | 0.8903 | | 0.0746 | 4.0711 | 2060 | 0.7469 | 0.2080 | 0.7469 | 0.8642 | | 0.0746 | 4.0751 | 2062 | 0.7163 | 0.2080 | 0.7163 | 0.8464 | | 0.0746 | 4.0791 | 2064 | 0.7267 | 0.2080 | 0.7267 | 0.8524 | | 0.0746 | 4.0830 | 2066 | 0.7475 | 0.2080 | 0.7475 | 0.8646 | | 0.0746 | 4.0870 | 2068 | 0.7971 | 0.2080 | 0.7971 | 0.8928 | | 0.0746 | 4.0909 | 2070 | 0.8325 | 0.2080 | 0.8325 | 0.9124 | | 0.0746 | 4.0949 | 2072 | 0.8031 | 0.2080 | 0.8031 | 0.8961 | | 0.0746 | 4.0988 | 2074 | 0.7460 | 0.2080 | 0.7460 | 0.8637 | | 0.0746 | 4.1028 | 2076 | 0.7155 | 0.2080 | 0.7155 | 0.8459 | | 0.0746 | 4.1067 | 2078 | 0.7156 | 0.2029 | 0.7156 | 0.8459 | | 0.0746 | 4.1107 | 2080 | 0.7404 | 0.2080 | 0.7404 | 0.8605 | | 0.0746 | 4.1146 | 2082 | 0.8218 | 0.2080 | 0.8218 | 0.9065 | | 0.0746 | 4.1186 | 2084 | 0.9370 | 0.0179 | 0.9370 | 0.9680 | | 0.0746 | 4.1225 | 2086 | 0.9677 | 0.0 | 0.9677 | 0.9837 | | 0.0746 | 4.1265 | 2088 | 0.8985 | 0.0179 | 0.8985 | 0.9479 | | 0.0746 | 4.1304 | 2090 | 0.7882 | 0.2080 | 0.7882 | 0.8878 | | 0.0746 | 4.1344 | 2092 | 0.7441 | 0.2080 | 0.7441 | 0.8626 | | 0.0746 | 4.1383 | 2094 | 0.7442 | 0.2080 | 0.7442 | 0.8626 | | 0.0746 | 4.1423 | 2096 | 0.7788 | 0.2080 | 0.7788 | 0.8825 | | 0.0746 | 4.1462 | 2098 | 0.8568 | 0.0179 | 0.8568 | 0.9256 | | 0.0746 | 4.1502 | 2100 | 0.8871 | 0.0179 | 0.8871 | 0.9418 | | 0.0746 | 4.1542 | 2102 | 0.8536 | 0.0179 | 0.8536 | 0.9239 | | 0.0746 | 4.1581 | 2104 | 0.8099 | 0.2080 | 0.8099 | 0.8999 | | 0.0746 | 4.1621 | 2106 | 0.7613 | 0.2080 | 0.7613 | 0.8725 | | 0.0746 | 4.1660 | 2108 | 0.7584 | 0.2080 | 0.7584 | 0.8709 | | 0.0746 | 4.1700 | 2110 | 0.7995 | 0.2080 | 0.7995 | 0.8941 | | 0.0746 | 4.1739 | 2112 | 0.8481 | 0.2080 | 0.8481 | 0.9209 | | 0.0746 | 4.1779 | 2114 | 0.8508 | 0.2080 | 0.8508 | 0.9224 | | 0.0746 | 4.1818 | 2116 | 0.8301 | 0.2080 | 0.8301 | 0.9111 | | 0.0746 | 4.1858 | 2118 | 0.7879 | 0.2080 | 0.7879 | 0.8876 | | 0.0746 | 4.1897 | 2120 | 0.7486 | 0.2080 | 0.7486 | 0.8652 | | 0.0746 | 4.1937 | 2122 | 0.7493 | 0.2080 | 0.7493 | 0.8656 | | 0.0746 | 4.1976 | 2124 | 0.7746 | 0.2080 | 0.7746 | 0.8801 | | 0.0746 | 4.2016 | 2126 | 0.7969 | 0.2080 | 0.7969 | 0.8927 | | 0.0746 | 4.2055 | 2128 | 0.8351 | 0.0179 | 0.8351 | 0.9138 | | 0.0746 | 4.2095 | 2130 | 0.8855 | 0.0 | 0.8855 | 0.9410 | | 0.0746 | 4.2134 | 2132 | 0.8651 | 0.0 | 0.8651 | 0.9301 | | 0.0746 | 4.2174 | 2134 | 0.8043 | 0.2080 | 0.8043 | 0.8968 | | 0.0746 | 4.2213 | 2136 | 0.7467 | 0.2080 | 0.7467 | 0.8641 | | 0.0746 | 4.2253 | 2138 | 0.7410 | 0.2080 | 0.7410 | 0.8608 | | 0.0746 | 4.2292 | 2140 | 0.7536 | 0.2080 | 0.7536 | 0.8681 | | 0.0746 | 4.2332 | 2142 | 0.7870 | 0.2080 | 0.7870 | 0.8871 | | 0.0746 | 4.2372 | 2144 | 0.8660 | 0.2080 | 0.8660 | 0.9306 | | 0.0746 | 4.2411 | 2146 | 0.9629 | 0.0179 | 0.9629 | 0.9813 | | 0.0746 | 4.2451 | 2148 | 0.9675 | 0.0179 | 0.9675 | 0.9836 | | 0.0746 | 4.2490 | 2150 | 0.8654 | 0.2080 | 0.8654 | 0.9303 | | 0.0746 | 4.2530 | 2152 | 0.7692 | 0.2080 | 0.7692 | 0.8771 | | 0.0746 | 4.2569 | 2154 | 0.7608 | 0.2080 | 0.7608 | 0.8722 | | 0.0746 | 4.2609 | 2156 | 0.7587 | 0.2080 | 0.7587 | 0.8710 | | 0.0746 | 4.2648 | 2158 | 0.7864 | 0.2080 | 0.7864 | 0.8868 | | 0.0746 | 4.2688 | 2160 | 0.7908 | 0.2080 | 0.7908 | 0.8893 | | 0.0746 | 4.2727 | 2162 | 0.8225 | 0.2080 | 0.8225 | 0.9069 | | 0.0746 | 4.2767 | 2164 | 0.8293 | 0.2080 | 0.8293 | 0.9106 | | 0.0746 | 4.2806 | 2166 | 0.8509 | 0.2080 | 0.8509 | 0.9225 | | 0.0746 | 4.2846 | 2168 | 0.8400 | 0.2080 | 0.8400 | 0.9165 | | 0.0746 | 4.2885 | 2170 | 0.7777 | 0.2080 | 0.7777 | 0.8818 | | 0.0746 | 4.2925 | 2172 | 0.7598 | 0.2080 | 0.7598 | 0.8717 | | 0.0746 | 4.2964 | 2174 | 0.7707 | 0.2080 | 0.7707 | 0.8779 | | 0.0746 | 4.3004 | 2176 | 0.7856 | 0.2080 | 0.7856 | 0.8864 | | 0.0746 | 4.3043 | 2178 | 0.7678 | 0.2080 | 0.7678 | 0.8762 | | 0.0746 | 4.3083 | 2180 | 0.7830 | 0.2080 | 0.7830 | 0.8849 | | 0.0746 | 4.3123 | 2182 | 0.7847 | 0.2080 | 0.7847 | 0.8858 | | 0.0746 | 4.3162 | 2184 | 0.8743 | 0.2080 | 0.8743 | 0.9350 | | 0.0746 | 4.3202 | 2186 | 1.0121 | 0.0 | 1.0121 | 1.0060 | | 0.0746 | 4.3241 | 2188 | 1.0724 | 0.0 | 1.0724 | 1.0356 | | 0.0746 | 4.3281 | 2190 | 1.0117 | 0.0 | 1.0117 | 1.0058 | | 0.0746 | 4.3320 | 2192 | 0.8929 | 0.0179 | 0.8929 | 0.9450 | | 0.0746 | 4.3360 | 2194 | 0.7941 | 0.2080 | 0.7941 | 0.8911 | | 0.0746 | 4.3399 | 2196 | 0.7553 | 0.2080 | 0.7553 | 0.8691 | | 0.0746 | 4.3439 | 2198 | 0.7435 | 0.2080 | 0.7435 | 0.8622 | | 0.0746 | 4.3478 | 2200 | 0.7434 | 0.2080 | 0.7434 | 0.8622 | | 0.0746 | 4.3518 | 2202 | 0.7715 | 0.2080 | 0.7715 | 0.8784 | | 0.0746 | 4.3557 | 2204 | 0.8086 | 0.2080 | 0.8086 | 0.8992 | | 0.0746 | 4.3597 | 2206 | 0.8623 | 0.2080 | 0.8623 | 0.9286 | | 0.0746 | 4.3636 | 2208 | 0.8733 | 0.2080 | 0.8733 | 0.9345 | | 0.0746 | 4.3676 | 2210 | 0.8473 | 0.2080 | 0.8473 | 0.9205 | | 0.0746 | 4.3715 | 2212 | 0.8305 | 0.2080 | 0.8305 | 0.9113 | | 0.0746 | 4.3755 | 2214 | 0.7885 | 0.2080 | 0.7885 | 0.8880 | | 0.0746 | 4.3794 | 2216 | 0.7348 | 0.2080 | 0.7348 | 0.8572 | | 0.0746 | 4.3834 | 2218 | 0.7085 | 0.2080 | 0.7085 | 0.8417 | | 0.0746 | 4.3874 | 2220 | 0.6995 | 0.2080 | 0.6995 | 0.8364 | | 0.0746 | 4.3913 | 2222 | 0.7054 | 0.2080 | 0.7054 | 0.8399 | | 0.0746 | 4.3953 | 2224 | 0.7518 | 0.2080 | 0.7518 | 0.8671 | | 0.0746 | 4.3992 | 2226 | 0.8270 | 0.2143 | 0.8270 | 0.9094 | | 0.0746 | 4.4032 | 2228 | 0.8338 | 0.2143 | 0.8338 | 0.9131 | | 0.0746 | 4.4071 | 2230 | 0.7943 | 0.2080 | 0.7943 | 0.8913 | | 0.0746 | 4.4111 | 2232 | 0.7297 | 0.2080 | 0.7297 | 0.8542 | | 0.0746 | 4.4150 | 2234 | 0.7264 | 0.2080 | 0.7264 | 0.8523 | | 0.0746 | 4.4190 | 2236 | 0.7600 | 0.2080 | 0.7600 | 0.8718 | | 0.0746 | 4.4229 | 2238 | 0.7474 | 0.2080 | 0.7474 | 0.8645 | | 0.0746 | 4.4269 | 2240 | 0.7460 | 0.2080 | 0.7460 | 0.8637 | | 0.0746 | 4.4308 | 2242 | 0.7532 | 0.2080 | 0.7532 | 0.8679 | | 0.0746 | 4.4348 | 2244 | 0.7204 | 0.2080 | 0.7204 | 0.8488 | | 0.0746 | 4.4387 | 2246 | 0.6789 | 0.2080 | 0.6789 | 0.8240 | | 0.0746 | 4.4427 | 2248 | 0.6734 | 0.2080 | 0.6734 | 0.8206 | | 0.0746 | 4.4466 | 2250 | 0.6744 | 0.2080 | 0.6744 | 0.8212 | | 0.0746 | 4.4506 | 2252 | 0.6861 | 0.2080 | 0.6861 | 0.8283 | | 0.0746 | 4.4545 | 2254 | 0.6845 | 0.2080 | 0.6845 | 0.8274 | | 0.0746 | 4.4585 | 2256 | 0.6798 | 0.2080 | 0.6798 | 0.8245 | | 0.0746 | 4.4625 | 2258 | 0.6842 | 0.2080 | 0.6842 | 0.8272 | | 0.0746 | 4.4664 | 2260 | 0.7081 | 0.2080 | 0.7081 | 0.8415 | | 0.0746 | 4.4704 | 2262 | 0.7195 | 0.2080 | 0.7195 | 0.8482 | | 0.0746 | 4.4743 | 2264 | 0.7052 | 0.2080 | 0.7052 | 0.8397 | | 0.0746 | 4.4783 | 2266 | 0.6965 | 0.2080 | 0.6965 | 0.8346 | | 0.0746 | 4.4822 | 2268 | 0.6995 | 0.2080 | 0.6995 | 0.8364 | | 0.0746 | 4.4862 | 2270 | 0.6854 | 0.2029 | 0.6854 | 0.8279 | | 0.0746 | 4.4901 | 2272 | 0.6910 | 0.2029 | 0.6910 | 0.8313 | | 0.0746 | 4.4941 | 2274 | 0.7192 | 0.2080 | 0.7192 | 0.8480 | | 0.0746 | 4.4980 | 2276 | 0.7775 | 0.2080 | 0.7775 | 0.8817 | | 0.0746 | 4.5020 | 2278 | 0.8441 | 0.2080 | 0.8441 | 0.9188 | | 0.0746 | 4.5059 | 2280 | 0.8135 | 0.2080 | 0.8135 | 0.9019 | | 0.0746 | 4.5099 | 2282 | 0.7346 | 0.2080 | 0.7346 | 0.8571 | | 0.0746 | 4.5138 | 2284 | 0.7073 | 0.2029 | 0.7073 | 0.8410 | | 0.0746 | 4.5178 | 2286 | 0.6961 | 0.2029 | 0.6961 | 0.8344 | | 0.0746 | 4.5217 | 2288 | 0.6885 | 0.2029 | 0.6885 | 0.8298 | | 0.0746 | 4.5257 | 2290 | 0.7221 | 0.2080 | 0.7221 | 0.8498 | | 0.0746 | 4.5296 | 2292 | 0.8124 | 0.2080 | 0.8124 | 0.9013 | | 0.0746 | 4.5336 | 2294 | 0.8324 | 0.2143 | 0.8324 | 0.9124 | | 0.0746 | 4.5375 | 2296 | 0.7756 | 0.2080 | 0.7756 | 0.8807 | | 0.0746 | 4.5415 | 2298 | 0.7124 | 0.2080 | 0.7124 | 0.8440 | | 0.0746 | 4.5455 | 2300 | 0.6835 | 0.2080 | 0.6835 | 0.8268 | | 0.0746 | 4.5494 | 2302 | 0.6739 | 0.2029 | 0.6739 | 0.8209 | | 0.0746 | 4.5534 | 2304 | 0.6732 | 0.2029 | 0.6732 | 0.8205 | | 0.0746 | 4.5573 | 2306 | 0.6792 | 0.2080 | 0.6792 | 0.8241 | | 0.0746 | 4.5613 | 2308 | 0.6981 | 0.2080 | 0.6981 | 0.8355 | | 0.0746 | 4.5652 | 2310 | 0.7230 | 0.2080 | 0.7230 | 0.8503 | | 0.0746 | 4.5692 | 2312 | 0.7180 | 0.2080 | 0.7180 | 0.8474 | | 0.0746 | 4.5731 | 2314 | 0.7061 | 0.2080 | 0.7061 | 0.8403 | | 0.0746 | 4.5771 | 2316 | 0.7547 | 0.2080 | 0.7547 | 0.8687 | | 0.0746 | 4.5810 | 2318 | 0.7704 | 0.2080 | 0.7704 | 0.8777 | | 0.0746 | 4.5850 | 2320 | 0.7438 | 0.2080 | 0.7438 | 0.8624 | | 0.0746 | 4.5889 | 2322 | 0.7591 | 0.2080 | 0.7591 | 0.8713 | | 0.0746 | 4.5929 | 2324 | 0.7833 | 0.2080 | 0.7833 | 0.8851 | | 0.0746 | 4.5968 | 2326 | 0.7701 | 0.2080 | 0.7701 | 0.8776 | | 0.0746 | 4.6008 | 2328 | 0.7654 | 0.2080 | 0.7654 | 0.8748 | | 0.0746 | 4.6047 | 2330 | 0.7406 | 0.2080 | 0.7406 | 0.8606 | | 0.0746 | 4.6087 | 2332 | 0.7218 | 0.2080 | 0.7218 | 0.8496 | | 0.0746 | 4.6126 | 2334 | 0.7000 | 0.2029 | 0.7000 | 0.8367 | | 0.0746 | 4.6166 | 2336 | 0.7070 | 0.2029 | 0.7070 | 0.8408 | | 0.0746 | 4.6206 | 2338 | 0.7500 | 0.2080 | 0.7500 | 0.8660 | | 0.0746 | 4.6245 | 2340 | 0.8724 | 0.2143 | 0.8724 | 0.9340 | | 0.0746 | 4.6285 | 2342 | 0.9488 | 0.0 | 0.9488 | 0.9740 | | 0.0746 | 4.6324 | 2344 | 0.9271 | 0.0 | 0.9271 | 0.9629 | | 0.0746 | 4.6364 | 2346 | 0.8505 | 0.0 | 0.8505 | 0.9222 | | 0.0746 | 4.6403 | 2348 | 0.7614 | 0.2080 | 0.7614 | 0.8726 | | 0.0746 | 4.6443 | 2350 | 0.7255 | 0.2080 | 0.7255 | 0.8518 | | 0.0746 | 4.6482 | 2352 | 0.7153 | 0.2080 | 0.7153 | 0.8458 | | 0.0746 | 4.6522 | 2354 | 0.7381 | 0.2080 | 0.7381 | 0.8591 | | 0.0746 | 4.6561 | 2356 | 0.7897 | 0.2080 | 0.7897 | 0.8886 | | 0.0746 | 4.6601 | 2358 | 0.8043 | 0.2080 | 0.8043 | 0.8968 | | 0.0746 | 4.6640 | 2360 | 0.7651 | 0.2080 | 0.7651 | 0.8747 | | 0.0746 | 4.6680 | 2362 | 0.7427 | 0.2080 | 0.7427 | 0.8618 | | 0.0746 | 4.6719 | 2364 | 0.7350 | 0.2080 | 0.7350 | 0.8573 | | 0.0746 | 4.6759 | 2366 | 0.7709 | 0.2080 | 0.7709 | 0.8780 | | 0.0746 | 4.6798 | 2368 | 0.8236 | 0.2080 | 0.8236 | 0.9075 | | 0.0746 | 4.6838 | 2370 | 0.8051 | 0.2080 | 0.8051 | 0.8973 | | 0.0746 | 4.6877 | 2372 | 0.7664 | 0.2080 | 0.7664 | 0.8755 | | 0.0746 | 4.6917 | 2374 | 0.7103 | 0.2080 | 0.7103 | 0.8428 | | 0.0746 | 4.6957 | 2376 | 0.7045 | 0.2080 | 0.7045 | 0.8394 | | 0.0746 | 4.6996 | 2378 | 0.7266 | 0.2080 | 0.7266 | 0.8524 | | 0.0746 | 4.7036 | 2380 | 0.7553 | 0.2080 | 0.7553 | 0.8691 | | 0.0746 | 4.7075 | 2382 | 0.7739 | 0.2080 | 0.7739 | 0.8797 | | 0.0746 | 4.7115 | 2384 | 0.7520 | 0.2080 | 0.7520 | 0.8672 | | 0.0746 | 4.7154 | 2386 | 0.7532 | 0.2080 | 0.7532 | 0.8679 | | 0.0746 | 4.7194 | 2388 | 0.7394 | 0.2080 | 0.7394 | 0.8599 | | 0.0746 | 4.7233 | 2390 | 0.7651 | 0.2080 | 0.7651 | 0.8747 | | 0.0746 | 4.7273 | 2392 | 0.7793 | 0.2080 | 0.7793 | 0.8828 | | 0.0746 | 4.7312 | 2394 | 0.8582 | 0.2143 | 0.8582 | 0.9264 | | 0.0746 | 4.7352 | 2396 | 0.8645 | 0.2143 | 0.8645 | 0.9298 | | 0.0746 | 4.7391 | 2398 | 0.8731 | 0.0 | 0.8731 | 0.9344 | | 0.0746 | 4.7431 | 2400 | 0.8280 | 0.2143 | 0.8280 | 0.9100 | | 0.0746 | 4.7470 | 2402 | 0.7470 | 0.2080 | 0.7470 | 0.8643 | | 0.0746 | 4.7510 | 2404 | 0.7121 | 0.2029 | 0.7121 | 0.8438 | | 0.0746 | 4.7549 | 2406 | 0.7143 | 0.3444 | 0.7143 | 0.8451 | | 0.0746 | 4.7589 | 2408 | 0.7196 | 0.2029 | 0.7196 | 0.8483 | | 0.0746 | 4.7628 | 2410 | 0.7683 | 0.2080 | 0.7683 | 0.8765 | | 0.0746 | 4.7668 | 2412 | 0.8666 | 0.2080 | 0.8666 | 0.9309 | | 0.0746 | 4.7708 | 2414 | 0.9630 | 0.0 | 0.9630 | 0.9813 | | 0.0746 | 4.7747 | 2416 | 0.9485 | 0.0 | 0.9485 | 0.9739 | | 0.0746 | 4.7787 | 2418 | 0.8622 | 0.2080 | 0.8622 | 0.9285 | | 0.0746 | 4.7826 | 2420 | 0.8247 | 0.2080 | 0.8247 | 0.9081 | | 0.0746 | 4.7866 | 2422 | 0.7699 | 0.2080 | 0.7699 | 0.8775 | | 0.0746 | 4.7905 | 2424 | 0.7492 | 0.2029 | 0.7492 | 0.8656 | | 0.0746 | 4.7945 | 2426 | 0.7529 | 0.2029 | 0.7529 | 0.8677 | | 0.0746 | 4.7984 | 2428 | 0.7524 | 0.2029 | 0.7524 | 0.8674 | | 0.0746 | 4.8024 | 2430 | 0.7658 | 0.2080 | 0.7658 | 0.8751 | | 0.0746 | 4.8063 | 2432 | 0.8321 | 0.2080 | 0.8321 | 0.9122 | | 0.0746 | 4.8103 | 2434 | 0.8843 | 0.2080 | 0.8843 | 0.9404 | | 0.0746 | 4.8142 | 2436 | 0.8747 | 0.2080 | 0.8747 | 0.9353 | | 0.0746 | 4.8182 | 2438 | 0.8298 | 0.2080 | 0.8298 | 0.9109 | | 0.0746 | 4.8221 | 2440 | 0.8014 | 0.2080 | 0.8014 | 0.8952 | | 0.0746 | 4.8261 | 2442 | 0.7718 | 0.2080 | 0.7718 | 0.8785 | | 0.0746 | 4.8300 | 2444 | 0.7634 | 0.2029 | 0.7634 | 0.8737 | | 0.0746 | 4.8340 | 2446 | 0.7621 | 0.2080 | 0.7621 | 0.8730 | | 0.0746 | 4.8379 | 2448 | 0.7556 | 0.2029 | 0.7556 | 0.8692 | | 0.0746 | 4.8419 | 2450 | 0.7643 | 0.2080 | 0.7643 | 0.8742 | | 0.0746 | 4.8458 | 2452 | 0.7987 | 0.2080 | 0.7987 | 0.8937 | | 0.0746 | 4.8498 | 2454 | 0.7834 | 0.2080 | 0.7834 | 0.8851 | | 0.0746 | 4.8538 | 2456 | 0.7539 | 0.2080 | 0.7539 | 0.8683 | | 0.0746 | 4.8577 | 2458 | 0.7300 | 0.2080 | 0.7300 | 0.8544 | | 0.0746 | 4.8617 | 2460 | 0.7128 | 0.2029 | 0.7128 | 0.8443 | | 0.0746 | 4.8656 | 2462 | 0.7085 | 0.2029 | 0.7085 | 0.8417 | | 0.0746 | 4.8696 | 2464 | 0.7089 | 0.2080 | 0.7089 | 0.8420 | | 0.0746 | 4.8735 | 2466 | 0.7115 | 0.2080 | 0.7115 | 0.8435 | | 0.0746 | 4.8775 | 2468 | 0.7497 | 0.2080 | 0.7497 | 0.8659 | | 0.0746 | 4.8814 | 2470 | 0.7847 | 0.2080 | 0.7847 | 0.8858 | | 0.0746 | 4.8854 | 2472 | 0.7702 | 0.2080 | 0.7702 | 0.8776 | | 0.0746 | 4.8893 | 2474 | 0.7664 | 0.2080 | 0.7664 | 0.8754 | | 0.0746 | 4.8933 | 2476 | 0.7382 | 0.2080 | 0.7382 | 0.8592 | | 0.0746 | 4.8972 | 2478 | 0.7376 | 0.2080 | 0.7376 | 0.8588 | | 0.0746 | 4.9012 | 2480 | 0.7366 | 0.2080 | 0.7366 | 0.8583 | | 0.0746 | 4.9051 | 2482 | 0.7243 | 0.2080 | 0.7243 | 0.8510 | | 0.0746 | 4.9091 | 2484 | 0.7249 | 0.2080 | 0.7249 | 0.8514 | | 0.0746 | 4.9130 | 2486 | 0.7254 | 0.2080 | 0.7254 | 0.8517 | | 0.0746 | 4.9170 | 2488 | 0.7494 | 0.2080 | 0.7494 | 0.8657 | | 0.0746 | 4.9209 | 2490 | 0.7730 | 0.2080 | 0.7730 | 0.8792 | | 0.0746 | 4.9249 | 2492 | 0.7944 | 0.2080 | 0.7944 | 0.8913 | | 0.0746 | 4.9289 | 2494 | 0.7535 | 0.2080 | 0.7535 | 0.8681 | | 0.0746 | 4.9328 | 2496 | 0.6922 | 0.2029 | 0.6922 | 0.8320 | | 0.0746 | 4.9368 | 2498 | 0.6850 | 0.3444 | 0.6850 | 0.8277 | | 0.0626 | 4.9407 | 2500 | 0.7229 | 0.1951 | 0.7229 | 0.8502 | | 0.0626 | 4.9447 | 2502 | 0.7160 | 0.1951 | 0.7160 | 0.8462 | | 0.0626 | 4.9486 | 2504 | 0.6800 | 0.3444 | 0.6800 | 0.8246 | | 0.0626 | 4.9526 | 2506 | 0.6915 | 0.2029 | 0.6915 | 0.8315 | | 0.0626 | 4.9565 | 2508 | 0.7872 | 0.2080 | 0.7872 | 0.8873 | | 0.0626 | 4.9605 | 2510 | 0.8627 | 0.2143 | 0.8627 | 0.9288 | | 0.0626 | 4.9644 | 2512 | 0.8801 | 0.2143 | 0.8801 | 0.9381 | | 0.0626 | 4.9684 | 2514 | 0.8245 | 0.2080 | 0.8245 | 0.9080 | | 0.0626 | 4.9723 | 2516 | 0.7426 | 0.2080 | 0.7426 | 0.8618 | | 0.0626 | 4.9763 | 2518 | 0.7138 | 0.2029 | 0.7138 | 0.8448 | | 0.0626 | 4.9802 | 2520 | 0.7109 | 0.2029 | 0.7109 | 0.8432 | | 0.0626 | 4.9842 | 2522 | 0.7123 | 0.2029 | 0.7123 | 0.8440 | | 0.0626 | 4.9881 | 2524 | 0.7216 | 0.2029 | 0.7216 | 0.8495 | | 0.0626 | 4.9921 | 2526 | 0.7611 | 0.2080 | 0.7611 | 0.8724 | | 0.0626 | 4.9960 | 2528 | 0.7993 | 0.2080 | 0.7993 | 0.8940 | | 0.0626 | 5.0 | 2530 | 0.7994 | 0.2080 | 0.7994 | 0.8941 | | 0.0626 | 5.0040 | 2532 | 0.7666 | 0.2080 | 0.7666 | 0.8755 | | 0.0626 | 5.0079 | 2534 | 0.7349 | 0.2029 | 0.7349 | 0.8573 | | 0.0626 | 5.0119 | 2536 | 0.7371 | 0.2029 | 0.7371 | 0.8585 | | 0.0626 | 5.0158 | 2538 | 0.7453 | 0.2029 | 0.7453 | 0.8633 | | 0.0626 | 5.0198 | 2540 | 0.7633 | 0.2080 | 0.7633 | 0.8737 | | 0.0626 | 5.0237 | 2542 | 0.7798 | 0.2080 | 0.7798 | 0.8831 | | 0.0626 | 5.0277 | 2544 | 0.8154 | 0.2080 | 0.8154 | 0.9030 | | 0.0626 | 5.0316 | 2546 | 0.8344 | 0.2080 | 0.8344 | 0.9135 | | 0.0626 | 5.0356 | 2548 | 0.8095 | 0.2080 | 0.8095 | 0.8997 | | 0.0626 | 5.0395 | 2550 | 0.7777 | 0.2080 | 0.7777 | 0.8818 | | 0.0626 | 5.0435 | 2552 | 0.7567 | 0.2080 | 0.7567 | 0.8699 | | 0.0626 | 5.0474 | 2554 | 0.7548 | 0.2080 | 0.7548 | 0.8688 | | 0.0626 | 5.0514 | 2556 | 0.7649 | 0.2080 | 0.7649 | 0.8746 | | 0.0626 | 5.0553 | 2558 | 0.7691 | 0.2080 | 0.7691 | 0.8770 | | 0.0626 | 5.0593 | 2560 | 0.7769 | 0.2080 | 0.7769 | 0.8814 | | 0.0626 | 5.0632 | 2562 | 0.7741 | 0.2080 | 0.7741 | 0.8798 | | 0.0626 | 5.0672 | 2564 | 0.7643 | 0.2029 | 0.7643 | 0.8742 | | 0.0626 | 5.0711 | 2566 | 0.7637 | 0.3444 | 0.7637 | 0.8739 | | 0.0626 | 5.0751 | 2568 | 0.7621 | 0.3444 | 0.7621 | 0.8730 | | 0.0626 | 5.0791 | 2570 | 0.7624 | 0.2029 | 0.7624 | 0.8731 | | 0.0626 | 5.0830 | 2572 | 0.7663 | 0.2029 | 0.7663 | 0.8754 | | 0.0626 | 5.0870 | 2574 | 0.7716 | 0.2080 | 0.7716 | 0.8784 | | 0.0626 | 5.0909 | 2576 | 0.7759 | 0.2080 | 0.7759 | 0.8808 | | 0.0626 | 5.0949 | 2578 | 0.7759 | 0.2080 | 0.7759 | 0.8809 | | 0.0626 | 5.0988 | 2580 | 0.7921 | 0.2080 | 0.7921 | 0.8900 | | 0.0626 | 5.1028 | 2582 | 0.7819 | 0.2080 | 0.7819 | 0.8843 | | 0.0626 | 5.1067 | 2584 | 0.7620 | 0.2029 | 0.7620 | 0.8729 | | 0.0626 | 5.1107 | 2586 | 0.7601 | 0.1951 | 0.7601 | 0.8719 | | 0.0626 | 5.1146 | 2588 | 0.7657 | 0.1951 | 0.7657 | 0.8751 | | 0.0626 | 5.1186 | 2590 | 0.7626 | 0.3444 | 0.7626 | 0.8733 | | 0.0626 | 5.1225 | 2592 | 0.7782 | 0.2080 | 0.7782 | 0.8822 | | 0.0626 | 5.1265 | 2594 | 0.7976 | 0.2080 | 0.7976 | 0.8931 | | 0.0626 | 5.1304 | 2596 | 0.7965 | 0.2080 | 0.7965 | 0.8925 | | 0.0626 | 5.1344 | 2598 | 0.7927 | 0.2080 | 0.7927 | 0.8903 | | 0.0626 | 5.1383 | 2600 | 0.7998 | 0.2080 | 0.7998 | 0.8943 | | 0.0626 | 5.1423 | 2602 | 0.8187 | 0.2080 | 0.8187 | 0.9048 | | 0.0626 | 5.1462 | 2604 | 0.8046 | 0.2080 | 0.8046 | 0.8970 | | 0.0626 | 5.1502 | 2606 | 0.7859 | 0.2080 | 0.7859 | 0.8865 | | 0.0626 | 5.1542 | 2608 | 0.7773 | 0.2080 | 0.7773 | 0.8817 | | 0.0626 | 5.1581 | 2610 | 0.7857 | 0.2080 | 0.7857 | 0.8864 | | 0.0626 | 5.1621 | 2612 | 0.8112 | 0.2080 | 0.8112 | 0.9007 | | 0.0626 | 5.1660 | 2614 | 0.8238 | 0.2080 | 0.8238 | 0.9076 | | 0.0626 | 5.1700 | 2616 | 0.8161 | 0.2080 | 0.8161 | 0.9034 | | 0.0626 | 5.1739 | 2618 | 0.8047 | 0.0435 | 0.8047 | 0.8971 | | 0.0626 | 5.1779 | 2620 | 0.8055 | 0.0435 | 0.8055 | 0.8975 | | 0.0626 | 5.1818 | 2622 | 0.8169 | 0.2080 | 0.8169 | 0.9038 | | 0.0626 | 5.1858 | 2624 | 0.8097 | 0.2080 | 0.8097 | 0.8998 | | 0.0626 | 5.1897 | 2626 | 0.8061 | 0.2080 | 0.8061 | 0.8979 | | 0.0626 | 5.1937 | 2628 | 0.8286 | 0.2080 | 0.8286 | 0.9103 | | 0.0626 | 5.1976 | 2630 | 0.8550 | 0.2080 | 0.8550 | 0.9247 | | 0.0626 | 5.2016 | 2632 | 0.8555 | 0.2080 | 0.8555 | 0.9250 | | 0.0626 | 5.2055 | 2634 | 0.8454 | 0.2080 | 0.8454 | 0.9194 | | 0.0626 | 5.2095 | 2636 | 0.8352 | 0.2080 | 0.8352 | 0.9139 | | 0.0626 | 5.2134 | 2638 | 0.8328 | 0.2080 | 0.8328 | 0.9126 | | 0.0626 | 5.2174 | 2640 | 0.7998 | 0.2080 | 0.7998 | 0.8943 | | 0.0626 | 5.2213 | 2642 | 0.7871 | 0.2080 | 0.7871 | 0.8872 | | 0.0626 | 5.2253 | 2644 | 0.7928 | 0.2080 | 0.7928 | 0.8904 | | 0.0626 | 5.2292 | 2646 | 0.8084 | 0.2080 | 0.8084 | 0.8991 | | 0.0626 | 5.2332 | 2648 | 0.7954 | 0.2080 | 0.7954 | 0.8918 | | 0.0626 | 5.2372 | 2650 | 0.7695 | 0.2080 | 0.7695 | 0.8772 | | 0.0626 | 5.2411 | 2652 | 0.7649 | 0.2080 | 0.7649 | 0.8746 | | 0.0626 | 5.2451 | 2654 | 0.7694 | 0.2080 | 0.7694 | 0.8772 | | 0.0626 | 5.2490 | 2656 | 0.7738 | 0.2080 | 0.7738 | 0.8797 | | 0.0626 | 5.2530 | 2658 | 0.7804 | 0.2080 | 0.7804 | 0.8834 | | 0.0626 | 5.2569 | 2660 | 0.7746 | 0.2080 | 0.7746 | 0.8801 | | 0.0626 | 5.2609 | 2662 | 0.7721 | 0.2080 | 0.7721 | 0.8787 | | 0.0626 | 5.2648 | 2664 | 0.7692 | 0.2080 | 0.7692 | 0.8770 | | 0.0626 | 5.2688 | 2666 | 0.7701 | 0.2029 | 0.7701 | 0.8775 | | 0.0626 | 5.2727 | 2668 | 0.7740 | 0.2029 | 0.7740 | 0.8798 | | 0.0626 | 5.2767 | 2670 | 0.7769 | 0.2080 | 0.7769 | 0.8814 | | 0.0626 | 5.2806 | 2672 | 0.8103 | 0.2080 | 0.8103 | 0.9002 | | 0.0626 | 5.2846 | 2674 | 0.8243 | 0.2080 | 0.8243 | 0.9079 | | 0.0626 | 5.2885 | 2676 | 0.8044 | 0.2080 | 0.8044 | 0.8969 | | 0.0626 | 5.2925 | 2678 | 0.7890 | 0.2080 | 0.7890 | 0.8883 | | 0.0626 | 5.2964 | 2680 | 0.7741 | 0.2080 | 0.7741 | 0.8798 | | 0.0626 | 5.3004 | 2682 | 0.7698 | 0.2080 | 0.7698 | 0.8774 | | 0.0626 | 5.3043 | 2684 | 0.7832 | 0.2080 | 0.7832 | 0.8850 | | 0.0626 | 5.3083 | 2686 | 0.8346 | 0.2080 | 0.8346 | 0.9136 | | 0.0626 | 5.3123 | 2688 | 0.8434 | 0.2080 | 0.8434 | 0.9184 | | 0.0626 | 5.3162 | 2690 | 0.8071 | 0.2080 | 0.8071 | 0.8984 | | 0.0626 | 5.3202 | 2692 | 0.7742 | 0.2080 | 0.7742 | 0.8799 | | 0.0626 | 5.3241 | 2694 | 0.7645 | 0.2080 | 0.7645 | 0.8743 | | 0.0626 | 5.3281 | 2696 | 0.7670 | 0.2080 | 0.7670 | 0.8758 | | 0.0626 | 5.3320 | 2698 | 0.7744 | 0.2080 | 0.7744 | 0.8800 | | 0.0626 | 5.3360 | 2700 | 0.8024 | 0.2080 | 0.8024 | 0.8958 | | 0.0626 | 5.3399 | 2702 | 0.8036 | 0.2080 | 0.8036 | 0.8964 | | 0.0626 | 5.3439 | 2704 | 0.8257 | 0.2080 | 0.8257 | 0.9087 | | 0.0626 | 5.3478 | 2706 | 0.8257 | 0.2080 | 0.8257 | 0.9087 | | 0.0626 | 5.3518 | 2708 | 0.8021 | 0.2080 | 0.8021 | 0.8956 | | 0.0626 | 5.3557 | 2710 | 0.7848 | 0.2080 | 0.7848 | 0.8859 | | 0.0626 | 5.3597 | 2712 | 0.7825 | 0.2029 | 0.7825 | 0.8846 | | 0.0626 | 5.3636 | 2714 | 0.7880 | 0.2080 | 0.7880 | 0.8877 | | 0.0626 | 5.3676 | 2716 | 0.8374 | 0.2080 | 0.8374 | 0.9151 | | 0.0626 | 5.3715 | 2718 | 0.8866 | 0.2080 | 0.8866 | 0.9416 | | 0.0626 | 5.3755 | 2720 | 0.8767 | 0.2080 | 0.8767 | 0.9363 | | 0.0626 | 5.3794 | 2722 | 0.8142 | 0.2080 | 0.8142 | 0.9023 | | 0.0626 | 5.3834 | 2724 | 0.7819 | 0.2080 | 0.7819 | 0.8842 | | 0.0626 | 5.3874 | 2726 | 0.7730 | 0.2029 | 0.7730 | 0.8792 | | 0.0626 | 5.3913 | 2728 | 0.7724 | 0.2029 | 0.7724 | 0.8789 | | 0.0626 | 5.3953 | 2730 | 0.7800 | 0.2080 | 0.7800 | 0.8832 | | 0.0626 | 5.3992 | 2732 | 0.8207 | 0.2080 | 0.8207 | 0.9059 | | 0.0626 | 5.4032 | 2734 | 0.9098 | 0.0179 | 0.9098 | 0.9538 | | 0.0626 | 5.4071 | 2736 | 0.9358 | 0.0179 | 0.9358 | 0.9673 | | 0.0626 | 5.4111 | 2738 | 0.8900 | 0.2080 | 0.8900 | 0.9434 | | 0.0626 | 5.4150 | 2740 | 0.8096 | 0.2080 | 0.8096 | 0.8998 | | 0.0626 | 5.4190 | 2742 | 0.7722 | 0.2029 | 0.7722 | 0.8788 | | 0.0626 | 5.4229 | 2744 | 0.7691 | 0.2029 | 0.7691 | 0.8770 | | 0.0626 | 5.4269 | 2746 | 0.7747 | 0.2080 | 0.7747 | 0.8802 | | 0.0626 | 5.4308 | 2748 | 0.7942 | 0.2080 | 0.7942 | 0.8912 | | 0.0626 | 5.4348 | 2750 | 0.8013 | 0.2080 | 0.8013 | 0.8952 | | 0.0626 | 5.4387 | 2752 | 0.7879 | 0.2080 | 0.7879 | 0.8876 | | 0.0626 | 5.4427 | 2754 | 0.7868 | 0.2080 | 0.7868 | 0.8870 | | 0.0626 | 5.4466 | 2756 | 0.7926 | 0.2080 | 0.7926 | 0.8903 | | 0.0626 | 5.4506 | 2758 | 0.8007 | 0.2080 | 0.8007 | 0.8948 | | 0.0626 | 5.4545 | 2760 | 0.8114 | 0.2080 | 0.8114 | 0.9008 | | 0.0626 | 5.4585 | 2762 | 0.8120 | 0.2080 | 0.8120 | 0.9011 | | 0.0626 | 5.4625 | 2764 | 0.8073 | 0.2080 | 0.8073 | 0.8985 | | 0.0626 | 5.4664 | 2766 | 0.8286 | 0.2080 | 0.8286 | 0.9103 | | 0.0626 | 5.4704 | 2768 | 0.8584 | 0.2080 | 0.8584 | 0.9265 | | 0.0626 | 5.4743 | 2770 | 0.8454 | 0.2080 | 0.8454 | 0.9195 | | 0.0626 | 5.4783 | 2772 | 0.8092 | 0.2080 | 0.8092 | 0.8996 | | 0.0626 | 5.4822 | 2774 | 0.7626 | 0.2080 | 0.7626 | 0.8733 | | 0.0626 | 5.4862 | 2776 | 0.7478 | 0.2029 | 0.7478 | 0.8647 | | 0.0626 | 5.4901 | 2778 | 0.7494 | 0.2029 | 0.7494 | 0.8657 | | 0.0626 | 5.4941 | 2780 | 0.7545 | 0.2029 | 0.7545 | 0.8686 | | 0.0626 | 5.4980 | 2782 | 0.7662 | 0.2080 | 0.7662 | 0.8753 | | 0.0626 | 5.5020 | 2784 | 0.7998 | 0.2080 | 0.7998 | 0.8943 | | 0.0626 | 5.5059 | 2786 | 0.8177 | 0.2080 | 0.8177 | 0.9043 | | 0.0626 | 5.5099 | 2788 | 0.8011 | 0.2080 | 0.8011 | 0.8950 | | 0.0626 | 5.5138 | 2790 | 0.7851 | 0.2029 | 0.7851 | 0.8861 | | 0.0626 | 5.5178 | 2792 | 0.7944 | 0.0530 | 0.7944 | 0.8913 | | 0.0626 | 5.5217 | 2794 | 0.7953 | 0.0530 | 0.7953 | 0.8918 | | 0.0626 | 5.5257 | 2796 | 0.7931 | 0.2029 | 0.7931 | 0.8906 | | 0.0626 | 5.5296 | 2798 | 0.8023 | 0.2080 | 0.8023 | 0.8957 | | 0.0626 | 5.5336 | 2800 | 0.8000 | 0.2080 | 0.8000 | 0.8944 | | 0.0626 | 5.5375 | 2802 | 0.8094 | 0.2080 | 0.8094 | 0.8996 | | 0.0626 | 5.5415 | 2804 | 0.8054 | 0.2080 | 0.8054 | 0.8974 | | 0.0626 | 5.5455 | 2806 | 0.8232 | 0.2080 | 0.8232 | 0.9073 | | 0.0626 | 5.5494 | 2808 | 0.8389 | 0.2080 | 0.8389 | 0.9159 | | 0.0626 | 5.5534 | 2810 | 0.8196 | 0.2080 | 0.8196 | 0.9053 | | 0.0626 | 5.5573 | 2812 | 0.8021 | 0.2080 | 0.8021 | 0.8956 | | 0.0626 | 5.5613 | 2814 | 0.8092 | 0.2080 | 0.8092 | 0.8996 | | 0.0626 | 5.5652 | 2816 | 0.8287 | 0.2080 | 0.8287 | 0.9103 | | 0.0626 | 5.5692 | 2818 | 0.8344 | 0.2080 | 0.8344 | 0.9134 | | 0.0626 | 5.5731 | 2820 | 0.8148 | 0.2080 | 0.8148 | 0.9026 | | 0.0626 | 5.5771 | 2822 | 0.7924 | 0.2080 | 0.7924 | 0.8902 | | 0.0626 | 5.5810 | 2824 | 0.7908 | 0.0530 | 0.7908 | 0.8893 | | 0.0626 | 5.5850 | 2826 | 0.7928 | 0.0530 | 0.7928 | 0.8904 | | 0.0626 | 5.5889 | 2828 | 0.7934 | 0.2029 | 0.7934 | 0.8907 | | 0.0626 | 5.5929 | 2830 | 0.8209 | 0.2080 | 0.8209 | 0.9060 | | 0.0626 | 5.5968 | 2832 | 0.8783 | 0.2080 | 0.8783 | 0.9372 | | 0.0626 | 5.6008 | 2834 | 0.9261 | 0.2080 | 0.9261 | 0.9624 | | 0.0626 | 5.6047 | 2836 | 0.9167 | 0.2080 | 0.9167 | 0.9574 | | 0.0626 | 5.6087 | 2838 | 0.8639 | 0.2080 | 0.8639 | 0.9295 | | 0.0626 | 5.6126 | 2840 | 0.8282 | 0.2080 | 0.8282 | 0.9101 | | 0.0626 | 5.6166 | 2842 | 0.8052 | 0.2080 | 0.8052 | 0.8973 | | 0.0626 | 5.6206 | 2844 | 0.7898 | 0.2029 | 0.7898 | 0.8887 | | 0.0626 | 5.6245 | 2846 | 0.7811 | 0.2029 | 0.7811 | 0.8838 | | 0.0626 | 5.6285 | 2848 | 0.7866 | 0.2080 | 0.7866 | 0.8869 | | 0.0626 | 5.6324 | 2850 | 0.7946 | 0.2080 | 0.7946 | 0.8914 | | 0.0626 | 5.6364 | 2852 | 0.7842 | 0.2080 | 0.7842 | 0.8856 | | 0.0626 | 5.6403 | 2854 | 0.7738 | 0.2080 | 0.7738 | 0.8797 | | 0.0626 | 5.6443 | 2856 | 0.7604 | 0.2029 | 0.7604 | 0.8720 | | 0.0626 | 5.6482 | 2858 | 0.7602 | 0.2029 | 0.7602 | 0.8719 | | 0.0626 | 5.6522 | 2860 | 0.7567 | 0.2029 | 0.7567 | 0.8699 | | 0.0626 | 5.6561 | 2862 | 0.7575 | 0.2029 | 0.7575 | 0.8703 | | 0.0626 | 5.6601 | 2864 | 0.7671 | 0.2029 | 0.7671 | 0.8759 | | 0.0626 | 5.6640 | 2866 | 0.7729 | 0.2029 | 0.7729 | 0.8791 | | 0.0626 | 5.6680 | 2868 | 0.7934 | 0.2080 | 0.7934 | 0.8907 | | 0.0626 | 5.6719 | 2870 | 0.7839 | 0.2080 | 0.7839 | 0.8854 | | 0.0626 | 5.6759 | 2872 | 0.7662 | 0.2029 | 0.7662 | 0.8753 | | 0.0626 | 5.6798 | 2874 | 0.7567 | 0.2029 | 0.7567 | 0.8699 | | 0.0626 | 5.6838 | 2876 | 0.7639 | 0.2029 | 0.7639 | 0.8740 | | 0.0626 | 5.6877 | 2878 | 0.7675 | 0.2080 | 0.7675 | 0.8761 | | 0.0626 | 5.6917 | 2880 | 0.7736 | 0.2080 | 0.7736 | 0.8796 | | 0.0626 | 5.6957 | 2882 | 0.7781 | 0.2080 | 0.7781 | 0.8821 | | 0.0626 | 5.6996 | 2884 | 0.7651 | 0.2080 | 0.7651 | 0.8747 | | 0.0626 | 5.7036 | 2886 | 0.7560 | 0.2080 | 0.7560 | 0.8695 | | 0.0626 | 5.7075 | 2888 | 0.7603 | 0.2080 | 0.7603 | 0.8719 | | 0.0626 | 5.7115 | 2890 | 0.7870 | 0.2080 | 0.7870 | 0.8871 | | 0.0626 | 5.7154 | 2892 | 0.7917 | 0.2080 | 0.7917 | 0.8898 | | 0.0626 | 5.7194 | 2894 | 0.7711 | 0.2080 | 0.7711 | 0.8781 | | 0.0626 | 5.7233 | 2896 | 0.7648 | 0.2080 | 0.7648 | 0.8745 | | 0.0626 | 5.7273 | 2898 | 0.7486 | 0.2080 | 0.7486 | 0.8652 | | 0.0626 | 5.7312 | 2900 | 0.7518 | 0.2080 | 0.7518 | 0.8671 | | 0.0626 | 5.7352 | 2902 | 0.7646 | 0.2080 | 0.7646 | 0.8744 | | 0.0626 | 5.7391 | 2904 | 0.7993 | 0.2080 | 0.7993 | 0.8940 | | 0.0626 | 5.7431 | 2906 | 0.8236 | 0.2080 | 0.8236 | 0.9075 | | 0.0626 | 5.7470 | 2908 | 0.8444 | 0.2080 | 0.8444 | 0.9189 | | 0.0626 | 5.7510 | 2910 | 0.8143 | 0.2080 | 0.8143 | 0.9024 | | 0.0626 | 5.7549 | 2912 | 0.7798 | 0.2080 | 0.7798 | 0.8831 | | 0.0626 | 5.7589 | 2914 | 0.7586 | 0.2029 | 0.7586 | 0.8710 | | 0.0626 | 5.7628 | 2916 | 0.7527 | 0.2029 | 0.7527 | 0.8676 | | 0.0626 | 5.7668 | 2918 | 0.7476 | 0.2029 | 0.7476 | 0.8646 | | 0.0626 | 5.7708 | 2920 | 0.7473 | 0.2029 | 0.7473 | 0.8645 | | 0.0626 | 5.7747 | 2922 | 0.7563 | 0.2080 | 0.7563 | 0.8697 | | 0.0626 | 5.7787 | 2924 | 0.7939 | 0.2080 | 0.7939 | 0.8910 | | 0.0626 | 5.7826 | 2926 | 0.8177 | 0.2080 | 0.8177 | 0.9043 | | 0.0626 | 5.7866 | 2928 | 0.8072 | 0.2080 | 0.8072 | 0.8984 | | 0.0626 | 5.7905 | 2930 | 0.7863 | 0.2080 | 0.7863 | 0.8867 | | 0.0626 | 5.7945 | 2932 | 0.7754 | 0.2080 | 0.7754 | 0.8806 | | 0.0626 | 5.7984 | 2934 | 0.7572 | 0.2029 | 0.7572 | 0.8701 | | 0.0626 | 5.8024 | 2936 | 0.7580 | 0.2029 | 0.7580 | 0.8706 | | 0.0626 | 5.8063 | 2938 | 0.7636 | 0.2080 | 0.7636 | 0.8739 | | 0.0626 | 5.8103 | 2940 | 0.7866 | 0.2080 | 0.7866 | 0.8869 | | 0.0626 | 5.8142 | 2942 | 0.8005 | 0.2080 | 0.8005 | 0.8947 | | 0.0626 | 5.8182 | 2944 | 0.7935 | 0.2080 | 0.7935 | 0.8908 | | 0.0626 | 5.8221 | 2946 | 0.7630 | 0.2080 | 0.7630 | 0.8735 | | 0.0626 | 5.8261 | 2948 | 0.7542 | 0.2029 | 0.7542 | 0.8685 | | 0.0626 | 5.8300 | 2950 | 0.7625 | 0.2080 | 0.7625 | 0.8732 | | 0.0626 | 5.8340 | 2952 | 0.7795 | 0.2080 | 0.7795 | 0.8829 | | 0.0626 | 5.8379 | 2954 | 0.7954 | 0.2080 | 0.7954 | 0.8918 | | 0.0626 | 5.8419 | 2956 | 0.7797 | 0.2080 | 0.7797 | 0.8830 | | 0.0626 | 5.8458 | 2958 | 0.7484 | 0.2029 | 0.7484 | 0.8651 | | 0.0626 | 5.8498 | 2960 | 0.7402 | 0.2029 | 0.7402 | 0.8603 | | 0.0626 | 5.8538 | 2962 | 0.7430 | 0.2029 | 0.7430 | 0.8620 | | 0.0626 | 5.8577 | 2964 | 0.7559 | 0.2029 | 0.7559 | 0.8694 | | 0.0626 | 5.8617 | 2966 | 0.7645 | 0.2029 | 0.7645 | 0.8743 | | 0.0626 | 5.8656 | 2968 | 0.7808 | 0.2080 | 0.7808 | 0.8836 | | 0.0626 | 5.8696 | 2970 | 0.7774 | 0.2080 | 0.7774 | 0.8817 | | 0.0626 | 5.8735 | 2972 | 0.7602 | 0.2080 | 0.7602 | 0.8719 | | 0.0626 | 5.8775 | 2974 | 0.7427 | 0.2029 | 0.7427 | 0.8618 | | 0.0626 | 5.8814 | 2976 | 0.7362 | 0.2029 | 0.7362 | 0.8580 | | 0.0626 | 5.8854 | 2978 | 0.7344 | 0.2029 | 0.7344 | 0.8570 | | 0.0626 | 5.8893 | 2980 | 0.7335 | 0.2029 | 0.7335 | 0.8564 | | 0.0626 | 5.8933 | 2982 | 0.7462 | 0.2029 | 0.7462 | 0.8638 | | 0.0626 | 5.8972 | 2984 | 0.7686 | 0.2080 | 0.7686 | 0.8767 | | 0.0626 | 5.9012 | 2986 | 0.7993 | 0.2080 | 0.7993 | 0.8940 | | 0.0626 | 5.9051 | 2988 | 0.7940 | 0.2080 | 0.7940 | 0.8911 | | 0.0626 | 5.9091 | 2990 | 0.7648 | 0.2080 | 0.7648 | 0.8745 | | 0.0626 | 5.9130 | 2992 | 0.7284 | 0.2029 | 0.7284 | 0.8535 | | 0.0626 | 5.9170 | 2994 | 0.7075 | 0.2029 | 0.7075 | 0.8411 | | 0.0626 | 5.9209 | 2996 | 0.7046 | 0.2029 | 0.7046 | 0.8394 | | 0.0626 | 5.9249 | 2998 | 0.7089 | 0.2029 | 0.7089 | 0.8420 | | 0.0548 | 5.9289 | 3000 | 0.7197 | 0.2029 | 0.7197 | 0.8483 | | 0.0548 | 5.9328 | 3002 | 0.7360 | 0.2080 | 0.7360 | 0.8579 | | 0.0548 | 5.9368 | 3004 | 0.7459 | 0.2080 | 0.7459 | 0.8637 | | 0.0548 | 5.9407 | 3006 | 0.7539 | 0.2080 | 0.7539 | 0.8683 | | 0.0548 | 5.9447 | 3008 | 0.7604 | 0.2080 | 0.7604 | 0.8720 | | 0.0548 | 5.9486 | 3010 | 0.7681 | 0.2080 | 0.7681 | 0.8764 | | 0.0548 | 5.9526 | 3012 | 0.7543 | 0.2080 | 0.7543 | 0.8685 | | 0.0548 | 5.9565 | 3014 | 0.7530 | 0.2029 | 0.7530 | 0.8678 | | 0.0548 | 5.9605 | 3016 | 0.7486 | 0.2029 | 0.7486 | 0.8652 | | 0.0548 | 5.9644 | 3018 | 0.7459 | 0.2029 | 0.7459 | 0.8637 | | 0.0548 | 5.9684 | 3020 | 0.7500 | 0.2029 | 0.7500 | 0.8660 | | 0.0548 | 5.9723 | 3022 | 0.7586 | 0.2029 | 0.7586 | 0.8710 | | 0.0548 | 5.9763 | 3024 | 0.7617 | 0.2029 | 0.7617 | 0.8728 | | 0.0548 | 5.9802 | 3026 | 0.7642 | 0.2029 | 0.7642 | 0.8742 | | 0.0548 | 5.9842 | 3028 | 0.7959 | 0.2080 | 0.7959 | 0.8921 | | 0.0548 | 5.9881 | 3030 | 0.8297 | 0.2080 | 0.8297 | 0.9109 | | 0.0548 | 5.9921 | 3032 | 0.8205 | 0.2080 | 0.8205 | 0.9058 | | 0.0548 | 5.9960 | 3034 | 0.7933 | 0.2080 | 0.7933 | 0.8907 | | 0.0548 | 6.0 | 3036 | 0.7545 | 0.2029 | 0.7545 | 0.8686 | | 0.0548 | 6.0040 | 3038 | 0.7459 | 0.2029 | 0.7459 | 0.8637 | | 0.0548 | 6.0079 | 3040 | 0.7532 | 0.2029 | 0.7532 | 0.8679 | | 0.0548 | 6.0119 | 3042 | 0.7777 | 0.2080 | 0.7777 | 0.8819 | | 0.0548 | 6.0158 | 3044 | 0.8110 | 0.2080 | 0.8110 | 0.9006 | | 0.0548 | 6.0198 | 3046 | 0.8159 | 0.2080 | 0.8159 | 0.9033 | | 0.0548 | 6.0237 | 3048 | 0.7962 | 0.2080 | 0.7962 | 0.8923 | | 0.0548 | 6.0277 | 3050 | 0.7854 | 0.2080 | 0.7854 | 0.8862 | | 0.0548 | 6.0316 | 3052 | 0.7673 | 0.2080 | 0.7673 | 0.8759 | | 0.0548 | 6.0356 | 3054 | 0.7639 | 0.2080 | 0.7639 | 0.8740 | | 0.0548 | 6.0395 | 3056 | 0.7702 | 0.2080 | 0.7702 | 0.8776 | | 0.0548 | 6.0435 | 3058 | 0.7898 | 0.2080 | 0.7898 | 0.8887 | | 0.0548 | 6.0474 | 3060 | 0.8290 | 0.2080 | 0.8290 | 0.9105 | | 0.0548 | 6.0514 | 3062 | 0.8603 | 0.2080 | 0.8603 | 0.9275 | | 0.0548 | 6.0553 | 3064 | 0.8666 | 0.2080 | 0.8666 | 0.9309 | | 0.0548 | 6.0593 | 3066 | 0.8357 | 0.2080 | 0.8357 | 0.9142 | | 0.0548 | 6.0632 | 3068 | 0.8115 | 0.2080 | 0.8115 | 0.9008 | | 0.0548 | 6.0672 | 3070 | 0.8058 | 0.2080 | 0.8058 | 0.8976 | | 0.0548 | 6.0711 | 3072 | 0.8228 | 0.2080 | 0.8228 | 0.9071 | | 0.0548 | 6.0751 | 3074 | 0.8311 | 0.2080 | 0.8311 | 0.9117 | | 0.0548 | 6.0791 | 3076 | 0.8475 | 0.2080 | 0.8475 | 0.9206 | | 0.0548 | 6.0830 | 3078 | 0.8522 | 0.2080 | 0.8522 | 0.9231 | | 0.0548 | 6.0870 | 3080 | 0.8468 | 0.2080 | 0.8468 | 0.9202 | | 0.0548 | 6.0909 | 3082 | 0.8200 | 0.2080 | 0.8200 | 0.9055 | | 0.0548 | 6.0949 | 3084 | 0.8082 | 0.2080 | 0.8082 | 0.8990 | | 0.0548 | 6.0988 | 3086 | 0.8038 | 0.2080 | 0.8038 | 0.8965 | | 0.0548 | 6.1028 | 3088 | 0.8173 | 0.2080 | 0.8173 | 0.9041 | | 0.0548 | 6.1067 | 3090 | 0.8430 | 0.2080 | 0.8430 | 0.9181 | | 0.0548 | 6.1107 | 3092 | 0.8571 | 0.2080 | 0.8571 | 0.9258 | | 0.0548 | 6.1146 | 3094 | 0.8483 | 0.2080 | 0.8483 | 0.9211 | | 0.0548 | 6.1186 | 3096 | 0.8124 | 0.2080 | 0.8124 | 0.9013 | | 0.0548 | 6.1225 | 3098 | 0.7900 | 0.2029 | 0.7900 | 0.8888 | | 0.0548 | 6.1265 | 3100 | 0.7937 | -0.0732 | 0.7937 | 0.8909 | | 0.0548 | 6.1304 | 3102 | 0.7926 | -0.0732 | 0.7926 | 0.8903 | | 0.0548 | 6.1344 | 3104 | 0.7862 | 0.2029 | 0.7862 | 0.8867 | | 0.0548 | 6.1383 | 3106 | 0.7900 | 0.2080 | 0.7900 | 0.8888 | | 0.0548 | 6.1423 | 3108 | 0.8118 | 0.2080 | 0.8118 | 0.9010 | | 0.0548 | 6.1462 | 3110 | 0.8252 | 0.2080 | 0.8252 | 0.9084 | | 0.0548 | 6.1502 | 3112 | 0.8339 | 0.2080 | 0.8339 | 0.9132 | | 0.0548 | 6.1542 | 3114 | 0.8530 | 0.2080 | 0.8530 | 0.9236 | | 0.0548 | 6.1581 | 3116 | 0.8514 | 0.2080 | 0.8514 | 0.9227 | | 0.0548 | 6.1621 | 3118 | 0.8166 | 0.2080 | 0.8166 | 0.9036 | | 0.0548 | 6.1660 | 3120 | 0.7830 | 0.2080 | 0.7830 | 0.8849 | | 0.0548 | 6.1700 | 3122 | 0.7780 | 0.2029 | 0.7780 | 0.8820 | | 0.0548 | 6.1739 | 3124 | 0.7814 | 0.2029 | 0.7814 | 0.8839 | | 0.0548 | 6.1779 | 3126 | 0.7830 | 0.2080 | 0.7830 | 0.8849 | | 0.0548 | 6.1818 | 3128 | 0.8017 | 0.2080 | 0.8017 | 0.8954 | | 0.0548 | 6.1858 | 3130 | 0.8181 | 0.2080 | 0.8181 | 0.9045 | | 0.0548 | 6.1897 | 3132 | 0.8468 | 0.2080 | 0.8468 | 0.9202 | | 0.0548 | 6.1937 | 3134 | 0.8463 | 0.2080 | 0.8463 | 0.9200 | | 0.0548 | 6.1976 | 3136 | 0.8200 | 0.2080 | 0.8200 | 0.9055 | | 0.0548 | 6.2016 | 3138 | 0.8019 | 0.2080 | 0.8019 | 0.8955 | | 0.0548 | 6.2055 | 3140 | 0.7898 | 0.2029 | 0.7898 | 0.8887 | | 0.0548 | 6.2095 | 3142 | 0.7838 | 0.2029 | 0.7838 | 0.8853 | | 0.0548 | 6.2134 | 3144 | 0.7775 | 0.2029 | 0.7775 | 0.8818 | | 0.0548 | 6.2174 | 3146 | 0.7749 | 0.2080 | 0.7749 | 0.8803 | | 0.0548 | 6.2213 | 3148 | 0.8041 | 0.2080 | 0.8041 | 0.8967 | | 0.0548 | 6.2253 | 3150 | 0.8280 | 0.2080 | 0.8280 | 0.9099 | | 0.0548 | 6.2292 | 3152 | 0.8170 | 0.2080 | 0.8170 | 0.9039 | | 0.0548 | 6.2332 | 3154 | 0.8171 | 0.2080 | 0.8171 | 0.9039 | | 0.0548 | 6.2372 | 3156 | 0.8221 | 0.2080 | 0.8221 | 0.9067 | | 0.0548 | 6.2411 | 3158 | 0.8050 | 0.2080 | 0.8050 | 0.8972 | | 0.0548 | 6.2451 | 3160 | 0.7706 | 0.2080 | 0.7706 | 0.8778 | | 0.0548 | 6.2490 | 3162 | 0.7553 | 0.2029 | 0.7553 | 0.8691 | | 0.0548 | 6.2530 | 3164 | 0.7568 | 0.2029 | 0.7568 | 0.8700 | | 0.0548 | 6.2569 | 3166 | 0.7637 | 0.2080 | 0.7637 | 0.8739 | | 0.0548 | 6.2609 | 3168 | 0.7992 | 0.2080 | 0.7992 | 0.8940 | | 0.0548 | 6.2648 | 3170 | 0.8647 | 0.2080 | 0.8647 | 0.9299 | | 0.0548 | 6.2688 | 3172 | 0.8996 | 0.2080 | 0.8996 | 0.9485 | | 0.0548 | 6.2727 | 3174 | 0.8751 | 0.2080 | 0.8751 | 0.9355 | | 0.0548 | 6.2767 | 3176 | 0.8228 | 0.2080 | 0.8228 | 0.9071 | | 0.0548 | 6.2806 | 3178 | 0.7947 | 0.2080 | 0.7947 | 0.8915 | | 0.0548 | 6.2846 | 3180 | 0.7797 | 0.2029 | 0.7797 | 0.8830 | | 0.0548 | 6.2885 | 3182 | 0.7949 | -0.0732 | 0.7949 | 0.8915 | | 0.0548 | 6.2925 | 3184 | 0.7970 | -0.0732 | 0.7970 | 0.8927 | | 0.0548 | 6.2964 | 3186 | 0.7835 | 0.2029 | 0.7835 | 0.8852 | | 0.0548 | 6.3004 | 3188 | 0.7817 | 0.2029 | 0.7817 | 0.8842 | | 0.0548 | 6.3043 | 3190 | 0.7857 | 0.2080 | 0.7857 | 0.8864 | | 0.0548 | 6.3083 | 3192 | 0.7947 | 0.2080 | 0.7947 | 0.8915 | | 0.0548 | 6.3123 | 3194 | 0.8230 | 0.2080 | 0.8230 | 0.9072 | | 0.0548 | 6.3162 | 3196 | 0.8480 | 0.2080 | 0.8480 | 0.9209 | | 0.0548 | 6.3202 | 3198 | 0.8567 | 0.2080 | 0.8567 | 0.9256 | | 0.0548 | 6.3241 | 3200 | 0.8439 | 0.2080 | 0.8439 | 0.9187 | | 0.0548 | 6.3281 | 3202 | 0.8128 | 0.2080 | 0.8128 | 0.9015 | | 0.0548 | 6.3320 | 3204 | 0.7796 | 0.2080 | 0.7796 | 0.8829 | | 0.0548 | 6.3360 | 3206 | 0.7731 | 0.2029 | 0.7731 | 0.8793 | | 0.0548 | 6.3399 | 3208 | 0.7768 | 0.0530 | 0.7768 | 0.8813 | | 0.0548 | 6.3439 | 3210 | 0.7773 | 0.2029 | 0.7773 | 0.8816 | | 0.0548 | 6.3478 | 3212 | 0.7782 | 0.2080 | 0.7782 | 0.8822 | | 0.0548 | 6.3518 | 3214 | 0.7837 | 0.2080 | 0.7837 | 0.8853 | | 0.0548 | 6.3557 | 3216 | 0.7824 | 0.2080 | 0.7824 | 0.8845 | | 0.0548 | 6.3597 | 3218 | 0.7851 | 0.2080 | 0.7851 | 0.8860 | | 0.0548 | 6.3636 | 3220 | 0.7821 | 0.2080 | 0.7821 | 0.8843 | | 0.0548 | 6.3676 | 3222 | 0.7847 | 0.2080 | 0.7847 | 0.8858 | | 0.0548 | 6.3715 | 3224 | 0.7776 | 0.2080 | 0.7776 | 0.8818 | | 0.0548 | 6.3755 | 3226 | 0.7711 | 0.2080 | 0.7711 | 0.8781 | | 0.0548 | 6.3794 | 3228 | 0.7692 | 0.2080 | 0.7692 | 0.8770 | | 0.0548 | 6.3834 | 3230 | 0.7759 | 0.2080 | 0.7759 | 0.8809 | | 0.0548 | 6.3874 | 3232 | 0.7753 | 0.2080 | 0.7753 | 0.8805 | | 0.0548 | 6.3913 | 3234 | 0.7745 | 0.2080 | 0.7745 | 0.8801 | | 0.0548 | 6.3953 | 3236 | 0.7664 | 0.2080 | 0.7664 | 0.8754 | | 0.0548 | 6.3992 | 3238 | 0.7546 | 0.2080 | 0.7546 | 0.8687 | | 0.0548 | 6.4032 | 3240 | 0.7475 | 0.2080 | 0.7475 | 0.8646 | | 0.0548 | 6.4071 | 3242 | 0.7409 | 0.2029 | 0.7409 | 0.8608 | | 0.0548 | 6.4111 | 3244 | 0.7438 | 0.3444 | 0.7438 | 0.8624 | | 0.0548 | 6.4150 | 3246 | 0.7398 | 0.2029 | 0.7398 | 0.8601 | | 0.0548 | 6.4190 | 3248 | 0.7429 | 0.2080 | 0.7429 | 0.8619 | | 0.0548 | 6.4229 | 3250 | 0.7600 | 0.2080 | 0.7600 | 0.8718 | | 0.0548 | 6.4269 | 3252 | 0.7811 | 0.2080 | 0.7811 | 0.8838 | | 0.0548 | 6.4308 | 3254 | 0.7945 | 0.2080 | 0.7945 | 0.8914 | | 0.0548 | 6.4348 | 3256 | 0.7933 | 0.2080 | 0.7933 | 0.8907 | | 0.0548 | 6.4387 | 3258 | 0.7769 | 0.2080 | 0.7769 | 0.8814 | | 0.0548 | 6.4427 | 3260 | 0.7581 | 0.2080 | 0.7581 | 0.8707 | | 0.0548 | 6.4466 | 3262 | 0.7587 | 0.2029 | 0.7587 | 0.8711 | | 0.0548 | 6.4506 | 3264 | 0.7626 | 0.2029 | 0.7626 | 0.8733 | | 0.0548 | 6.4545 | 3266 | 0.7605 | 0.2029 | 0.7605 | 0.8721 | | 0.0548 | 6.4585 | 3268 | 0.7621 | 0.2029 | 0.7621 | 0.8730 | | 0.0548 | 6.4625 | 3270 | 0.7730 | 0.2080 | 0.7730 | 0.8792 | | 0.0548 | 6.4664 | 3272 | 0.7969 | 0.2080 | 0.7969 | 0.8927 | | 0.0548 | 6.4704 | 3274 | 0.8027 | 0.2080 | 0.8027 | 0.8959 | | 0.0548 | 6.4743 | 3276 | 0.7944 | 0.2080 | 0.7944 | 0.8913 | | 0.0548 | 6.4783 | 3278 | 0.7730 | 0.2080 | 0.7730 | 0.8792 | | 0.0548 | 6.4822 | 3280 | 0.7653 | 0.2029 | 0.7653 | 0.8748 | | 0.0548 | 6.4862 | 3282 | 0.7623 | 0.2029 | 0.7623 | 0.8731 | | 0.0548 | 6.4901 | 3284 | 0.7617 | 0.2080 | 0.7617 | 0.8727 | | 0.0548 | 6.4941 | 3286 | 0.7644 | 0.2080 | 0.7644 | 0.8743 | | 0.0548 | 6.4980 | 3288 | 0.7633 | 0.2080 | 0.7633 | 0.8737 | | 0.0548 | 6.5020 | 3290 | 0.7611 | 0.2080 | 0.7611 | 0.8724 | | 0.0548 | 6.5059 | 3292 | 0.7701 | 0.2080 | 0.7701 | 0.8775 | | 0.0548 | 6.5099 | 3294 | 0.7861 | 0.2080 | 0.7861 | 0.8866 | | 0.0548 | 6.5138 | 3296 | 0.7969 | 0.2080 | 0.7969 | 0.8927 | | 0.0548 | 6.5178 | 3298 | 0.7912 | 0.2080 | 0.7912 | 0.8895 | | 0.0548 | 6.5217 | 3300 | 0.7758 | 0.2080 | 0.7758 | 0.8808 | | 0.0548 | 6.5257 | 3302 | 0.7680 | 0.2080 | 0.7680 | 0.8763 | | 0.0548 | 6.5296 | 3304 | 0.7707 | 0.2080 | 0.7707 | 0.8779 | | 0.0548 | 6.5336 | 3306 | 0.7695 | 0.2080 | 0.7695 | 0.8772 | | 0.0548 | 6.5375 | 3308 | 0.7723 | 0.2080 | 0.7723 | 0.8788 | | 0.0548 | 6.5415 | 3310 | 0.7801 | 0.2080 | 0.7801 | 0.8832 | | 0.0548 | 6.5455 | 3312 | 0.7924 | 0.2080 | 0.7924 | 0.8902 | | 0.0548 | 6.5494 | 3314 | 0.8087 | 0.2080 | 0.8087 | 0.8993 | | 0.0548 | 6.5534 | 3316 | 0.8113 | 0.2080 | 0.8113 | 0.9007 | | 0.0548 | 6.5573 | 3318 | 0.8060 | 0.2080 | 0.8060 | 0.8978 | | 0.0548 | 6.5613 | 3320 | 0.8054 | 0.2080 | 0.8054 | 0.8974 | | 0.0548 | 6.5652 | 3322 | 0.8025 | 0.2080 | 0.8025 | 0.8958 | | 0.0548 | 6.5692 | 3324 | 0.7988 | 0.2080 | 0.7988 | 0.8938 | | 0.0548 | 6.5731 | 3326 | 0.7967 | 0.2080 | 0.7967 | 0.8926 | | 0.0548 | 6.5771 | 3328 | 0.8097 | 0.2080 | 0.8097 | 0.8999 | | 0.0548 | 6.5810 | 3330 | 0.8451 | 0.2080 | 0.8451 | 0.9193 | | 0.0548 | 6.5850 | 3332 | 0.8640 | 0.2080 | 0.8640 | 0.9295 | | 0.0548 | 6.5889 | 3334 | 0.8466 | 0.2080 | 0.8466 | 0.9201 | | 0.0548 | 6.5929 | 3336 | 0.8209 | 0.2080 | 0.8209 | 0.9060 | | 0.0548 | 6.5968 | 3338 | 0.7949 | 0.2080 | 0.7949 | 0.8916 | | 0.0548 | 6.6008 | 3340 | 0.7883 | 0.2029 | 0.7883 | 0.8879 | | 0.0548 | 6.6047 | 3342 | 0.7960 | -0.0732 | 0.7960 | 0.8922 | | 0.0548 | 6.6087 | 3344 | 0.7940 | -0.0732 | 0.7940 | 0.8910 | | 0.0548 | 6.6126 | 3346 | 0.7822 | 0.2029 | 0.7822 | 0.8844 | | 0.0548 | 6.6166 | 3348 | 0.7801 | 0.2080 | 0.7801 | 0.8832 | | 0.0548 | 6.6206 | 3350 | 0.8020 | 0.2080 | 0.8020 | 0.8955 | | 0.0548 | 6.6245 | 3352 | 0.8398 | 0.2080 | 0.8398 | 0.9164 | | 0.0548 | 6.6285 | 3354 | 0.8535 | 0.2080 | 0.8535 | 0.9238 | | 0.0548 | 6.6324 | 3356 | 0.8440 | 0.2080 | 0.8440 | 0.9187 | | 0.0548 | 6.6364 | 3358 | 0.8136 | 0.2080 | 0.8136 | 0.9020 | | 0.0548 | 6.6403 | 3360 | 0.7863 | 0.2080 | 0.7863 | 0.8868 | | 0.0548 | 6.6443 | 3362 | 0.7839 | 0.2080 | 0.7839 | 0.8854 | | 0.0548 | 6.6482 | 3364 | 0.7870 | 0.2029 | 0.7870 | 0.8871 | | 0.0548 | 6.6522 | 3366 | 0.7872 | 0.2080 | 0.7872 | 0.8872 | | 0.0548 | 6.6561 | 3368 | 0.7949 | 0.2080 | 0.7949 | 0.8916 | | 0.0548 | 6.6601 | 3370 | 0.8005 | 0.2080 | 0.8005 | 0.8947 | | 0.0548 | 6.6640 | 3372 | 0.8096 | 0.2080 | 0.8096 | 0.8998 | | 0.0548 | 6.6680 | 3374 | 0.8018 | 0.2080 | 0.8018 | 0.8954 | | 0.0548 | 6.6719 | 3376 | 0.7958 | 0.2080 | 0.7958 | 0.8921 | | 0.0548 | 6.6759 | 3378 | 0.7953 | 0.2080 | 0.7953 | 0.8918 | | 0.0548 | 6.6798 | 3380 | 0.7939 | 0.2080 | 0.7939 | 0.8910 | | 0.0548 | 6.6838 | 3382 | 0.7896 | 0.2080 | 0.7896 | 0.8886 | | 0.0548 | 6.6877 | 3384 | 0.7891 | 0.2080 | 0.7891 | 0.8883 | | 0.0548 | 6.6917 | 3386 | 0.7869 | 0.2080 | 0.7869 | 0.8871 | | 0.0548 | 6.6957 | 3388 | 0.7843 | 0.2080 | 0.7843 | 0.8856 | | 0.0548 | 6.6996 | 3390 | 0.7861 | 0.2080 | 0.7861 | 0.8866 | | 0.0548 | 6.7036 | 3392 | 0.7849 | 0.2080 | 0.7849 | 0.8860 | | 0.0548 | 6.7075 | 3394 | 0.7822 | 0.2080 | 0.7822 | 0.8844 | | 0.0548 | 6.7115 | 3396 | 0.7752 | 0.2080 | 0.7752 | 0.8805 | | 0.0548 | 6.7154 | 3398 | 0.7744 | 0.2029 | 0.7744 | 0.8800 | | 0.0548 | 6.7194 | 3400 | 0.7795 | -0.0732 | 0.7795 | 0.8829 | | 0.0548 | 6.7233 | 3402 | 0.7752 | 0.0530 | 0.7752 | 0.8805 | | 0.0548 | 6.7273 | 3404 | 0.7687 | 0.2029 | 0.7687 | 0.8768 | | 0.0548 | 6.7312 | 3406 | 0.7703 | 0.2080 | 0.7703 | 0.8777 | | 0.0548 | 6.7352 | 3408 | 0.7709 | 0.2029 | 0.7709 | 0.8780 | | 0.0548 | 6.7391 | 3410 | 0.7751 | 0.2029 | 0.7751 | 0.8804 | | 0.0548 | 6.7431 | 3412 | 0.7812 | 0.2029 | 0.7812 | 0.8838 | | 0.0548 | 6.7470 | 3414 | 0.7856 | 0.2029 | 0.7856 | 0.8864 | | 0.0548 | 6.7510 | 3416 | 0.7989 | 0.2080 | 0.7989 | 0.8938 | | 0.0548 | 6.7549 | 3418 | 0.8246 | 0.2080 | 0.8246 | 0.9081 | | 0.0548 | 6.7589 | 3420 | 0.8250 | 0.2080 | 0.8250 | 0.9083 | | 0.0548 | 6.7628 | 3422 | 0.8073 | 0.2080 | 0.8073 | 0.8985 | | 0.0548 | 6.7668 | 3424 | 0.7885 | 0.2080 | 0.7885 | 0.8879 | | 0.0548 | 6.7708 | 3426 | 0.7815 | 0.2080 | 0.7815 | 0.8840 | | 0.0548 | 6.7747 | 3428 | 0.7779 | 0.2080 | 0.7779 | 0.8820 | | 0.0548 | 6.7787 | 3430 | 0.7842 | 0.2080 | 0.7842 | 0.8855 | | 0.0548 | 6.7826 | 3432 | 0.7966 | 0.2080 | 0.7966 | 0.8925 | | 0.0548 | 6.7866 | 3434 | 0.7931 | 0.2080 | 0.7931 | 0.8905 | | 0.0548 | 6.7905 | 3436 | 0.7904 | 0.2080 | 0.7904 | 0.8890 | | 0.0548 | 6.7945 | 3438 | 0.7851 | 0.2080 | 0.7851 | 0.8860 | | 0.0548 | 6.7984 | 3440 | 0.7851 | 0.2029 | 0.7851 | 0.8860 | | 0.0548 | 6.8024 | 3442 | 0.7888 | 0.2080 | 0.7888 | 0.8882 | | 0.0548 | 6.8063 | 3444 | 0.8061 | 0.2080 | 0.8061 | 0.8978 | | 0.0548 | 6.8103 | 3446 | 0.8132 | 0.2080 | 0.8132 | 0.9018 | | 0.0548 | 6.8142 | 3448 | 0.8053 | 0.2080 | 0.8053 | 0.8974 | | 0.0548 | 6.8182 | 3450 | 0.7970 | 0.2080 | 0.7970 | 0.8927 | | 0.0548 | 6.8221 | 3452 | 0.7957 | 0.2029 | 0.7957 | 0.8920 | | 0.0548 | 6.8261 | 3454 | 0.7952 | 0.2029 | 0.7952 | 0.8917 | | 0.0548 | 6.8300 | 3456 | 0.7966 | 0.2029 | 0.7966 | 0.8925 | | 0.0548 | 6.8340 | 3458 | 0.7967 | 0.2029 | 0.7967 | 0.8926 | | 0.0548 | 6.8379 | 3460 | 0.7992 | 0.2029 | 0.7992 | 0.8940 | | 0.0548 | 6.8419 | 3462 | 0.8070 | 0.2080 | 0.8070 | 0.8983 | | 0.0548 | 6.8458 | 3464 | 0.8147 | 0.2080 | 0.8147 | 0.9026 | | 0.0548 | 6.8498 | 3466 | 0.8247 | 0.2080 | 0.8247 | 0.9081 | | 0.0548 | 6.8538 | 3468 | 0.8272 | 0.2080 | 0.8272 | 0.9095 | | 0.0548 | 6.8577 | 3470 | 0.8201 | 0.2080 | 0.8201 | 0.9056 | | 0.0548 | 6.8617 | 3472 | 0.8243 | 0.2080 | 0.8243 | 0.9079 | | 0.0548 | 6.8656 | 3474 | 0.8290 | 0.2080 | 0.8290 | 0.9105 | | 0.0548 | 6.8696 | 3476 | 0.8242 | 0.2080 | 0.8242 | 0.9079 | | 0.0548 | 6.8735 | 3478 | 0.8197 | 0.2080 | 0.8197 | 0.9054 | | 0.0548 | 6.8775 | 3480 | 0.8192 | 0.2080 | 0.8192 | 0.9051 | | 0.0548 | 6.8814 | 3482 | 0.8176 | 0.2080 | 0.8176 | 0.9042 | | 0.0548 | 6.8854 | 3484 | 0.8170 | 0.2080 | 0.8170 | 0.9039 | | 0.0548 | 6.8893 | 3486 | 0.8216 | 0.2080 | 0.8216 | 0.9064 | | 0.0548 | 6.8933 | 3488 | 0.8249 | 0.2080 | 0.8249 | 0.9082 | | 0.0548 | 6.8972 | 3490 | 0.8199 | 0.2080 | 0.8199 | 0.9055 | | 0.0548 | 6.9012 | 3492 | 0.8248 | 0.2080 | 0.8248 | 0.9082 | | 0.0548 | 6.9051 | 3494 | 0.8201 | 0.2080 | 0.8201 | 0.9056 | | 0.0548 | 6.9091 | 3496 | 0.8220 | 0.2080 | 0.8220 | 0.9066 | | 0.0548 | 6.9130 | 3498 | 0.8203 | 0.2080 | 0.8203 | 0.9057 | | 0.0476 | 6.9170 | 3500 | 0.8127 | 0.2080 | 0.8127 | 0.9015 | | 0.0476 | 6.9209 | 3502 | 0.8021 | 0.2029 | 0.8021 | 0.8956 | | 0.0476 | 6.9249 | 3504 | 0.8008 | 0.2029 | 0.8008 | 0.8949 | | 0.0476 | 6.9289 | 3506 | 0.8022 | 0.2080 | 0.8022 | 0.8956 | | 0.0476 | 6.9328 | 3508 | 0.8122 | 0.2080 | 0.8122 | 0.9012 | | 0.0476 | 6.9368 | 3510 | 0.8166 | 0.2080 | 0.8166 | 0.9037 | | 0.0476 | 6.9407 | 3512 | 0.8307 | 0.2080 | 0.8307 | 0.9114 | | 0.0476 | 6.9447 | 3514 | 0.8540 | 0.2080 | 0.8540 | 0.9241 | | 0.0476 | 6.9486 | 3516 | 0.8558 | 0.2080 | 0.8558 | 0.9251 | | 0.0476 | 6.9526 | 3518 | 0.8398 | 0.2080 | 0.8398 | 0.9164 | | 0.0476 | 6.9565 | 3520 | 0.8160 | 0.2080 | 0.8160 | 0.9033 | | 0.0476 | 6.9605 | 3522 | 0.8099 | 0.2029 | 0.8099 | 0.8999 | | 0.0476 | 6.9644 | 3524 | 0.8091 | 0.2029 | 0.8091 | 0.8995 | | 0.0476 | 6.9684 | 3526 | 0.8101 | 0.2029 | 0.8101 | 0.9000 | | 0.0476 | 6.9723 | 3528 | 0.8149 | 0.2080 | 0.8149 | 0.9027 | | 0.0476 | 6.9763 | 3530 | 0.8279 | 0.2080 | 0.8279 | 0.9099 | | 0.0476 | 6.9802 | 3532 | 0.8503 | 0.2080 | 0.8503 | 0.9221 | | 0.0476 | 6.9842 | 3534 | 0.8546 | 0.2080 | 0.8546 | 0.9245 | | 0.0476 | 6.9881 | 3536 | 0.8533 | 0.2080 | 0.8533 | 0.9237 | | 0.0476 | 6.9921 | 3538 | 0.8335 | 0.2080 | 0.8335 | 0.9130 | | 0.0476 | 6.9960 | 3540 | 0.8116 | 0.2080 | 0.8116 | 0.9009 | | 0.0476 | 7.0 | 3542 | 0.8023 | 0.2080 | 0.8023 | 0.8957 | | 0.0476 | 7.0040 | 3544 | 0.8043 | 0.2080 | 0.8043 | 0.8968 | | 0.0476 | 7.0079 | 3546 | 0.8131 | 0.2080 | 0.8131 | 0.9017 | | 0.0476 | 7.0119 | 3548 | 0.8172 | 0.2080 | 0.8172 | 0.9040 | | 0.0476 | 7.0158 | 3550 | 0.8106 | 0.2080 | 0.8106 | 0.9003 | | 0.0476 | 7.0198 | 3552 | 0.8102 | 0.2080 | 0.8102 | 0.9001 | | 0.0476 | 7.0237 | 3554 | 0.8144 | 0.2080 | 0.8144 | 0.9025 | | 0.0476 | 7.0277 | 3556 | 0.8253 | 0.2080 | 0.8253 | 0.9084 | | 0.0476 | 7.0316 | 3558 | 0.8407 | 0.2080 | 0.8407 | 0.9169 | | 0.0476 | 7.0356 | 3560 | 0.8374 | 0.2080 | 0.8374 | 0.9151 | | 0.0476 | 7.0395 | 3562 | 0.8336 | 0.2080 | 0.8336 | 0.9130 | | 0.0476 | 7.0435 | 3564 | 0.8176 | 0.2080 | 0.8176 | 0.9042 | | 0.0476 | 7.0474 | 3566 | 0.8075 | 0.2080 | 0.8075 | 0.8986 | | 0.0476 | 7.0514 | 3568 | 0.7965 | 0.2080 | 0.7965 | 0.8925 | | 0.0476 | 7.0553 | 3570 | 0.7972 | 0.2080 | 0.7972 | 0.8928 | | 0.0476 | 7.0593 | 3572 | 0.8019 | 0.2080 | 0.8019 | 0.8955 | | 0.0476 | 7.0632 | 3574 | 0.7996 | 0.2080 | 0.7996 | 0.8942 | | 0.0476 | 7.0672 | 3576 | 0.8040 | 0.2080 | 0.8040 | 0.8967 | | 0.0476 | 7.0711 | 3578 | 0.8209 | 0.2080 | 0.8209 | 0.9060 | | 0.0476 | 7.0751 | 3580 | 0.8215 | 0.2080 | 0.8215 | 0.9064 | | 0.0476 | 7.0791 | 3582 | 0.8202 | 0.2080 | 0.8202 | 0.9057 | | 0.0476 | 7.0830 | 3584 | 0.8092 | 0.2080 | 0.8092 | 0.8996 | | 0.0476 | 7.0870 | 3586 | 0.8004 | 0.2080 | 0.8004 | 0.8946 | | 0.0476 | 7.0909 | 3588 | 0.7995 | 0.2080 | 0.7995 | 0.8942 | | 0.0476 | 7.0949 | 3590 | 0.7991 | 0.2080 | 0.7991 | 0.8939 | | 0.0476 | 7.0988 | 3592 | 0.7895 | 0.2080 | 0.7895 | 0.8886 | | 0.0476 | 7.1028 | 3594 | 0.7870 | 0.2080 | 0.7870 | 0.8871 | | 0.0476 | 7.1067 | 3596 | 0.7830 | 0.2080 | 0.7830 | 0.8849 | | 0.0476 | 7.1107 | 3598 | 0.7841 | 0.2080 | 0.7841 | 0.8855 | | 0.0476 | 7.1146 | 3600 | 0.7902 | 0.2080 | 0.7902 | 0.8889 | | 0.0476 | 7.1186 | 3602 | 0.8014 | 0.2080 | 0.8014 | 0.8952 | | 0.0476 | 7.1225 | 3604 | 0.8199 | 0.2080 | 0.8199 | 0.9055 | | 0.0476 | 7.1265 | 3606 | 0.8244 | 0.2080 | 0.8244 | 0.9080 | | 0.0476 | 7.1304 | 3608 | 0.8186 | 0.2080 | 0.8186 | 0.9048 | | 0.0476 | 7.1344 | 3610 | 0.8100 | 0.2080 | 0.8100 | 0.9000 | | 0.0476 | 7.1383 | 3612 | 0.8096 | 0.2080 | 0.8096 | 0.8998 | | 0.0476 | 7.1423 | 3614 | 0.8168 | 0.2080 | 0.8168 | 0.9038 | | 0.0476 | 7.1462 | 3616 | 0.8189 | 0.2080 | 0.8189 | 0.9049 | | 0.0476 | 7.1502 | 3618 | 0.8093 | 0.2080 | 0.8093 | 0.8996 | | 0.0476 | 7.1542 | 3620 | 0.8016 | 0.2080 | 0.8016 | 0.8953 | | 0.0476 | 7.1581 | 3622 | 0.8018 | 0.2029 | 0.8018 | 0.8954 | | 0.0476 | 7.1621 | 3624 | 0.8027 | 0.2029 | 0.8027 | 0.8959 | | 0.0476 | 7.1660 | 3626 | 0.8035 | 0.2029 | 0.8035 | 0.8964 | | 0.0476 | 7.1700 | 3628 | 0.8023 | 0.2080 | 0.8023 | 0.8957 | | 0.0476 | 7.1739 | 3630 | 0.8071 | 0.2080 | 0.8071 | 0.8984 | | 0.0476 | 7.1779 | 3632 | 0.8225 | 0.2080 | 0.8225 | 0.9069 | | 0.0476 | 7.1818 | 3634 | 0.8412 | 0.2080 | 0.8412 | 0.9172 | | 0.0476 | 7.1858 | 3636 | 0.8382 | 0.2080 | 0.8382 | 0.9155 | | 0.0476 | 7.1897 | 3638 | 0.8194 | 0.2080 | 0.8194 | 0.9052 | | 0.0476 | 7.1937 | 3640 | 0.8131 | 0.2080 | 0.8131 | 0.9017 | | 0.0476 | 7.1976 | 3642 | 0.8067 | 0.2080 | 0.8067 | 0.8982 | | 0.0476 | 7.2016 | 3644 | 0.7936 | 0.2080 | 0.7936 | 0.8908 | | 0.0476 | 7.2055 | 3646 | 0.7899 | 0.2080 | 0.7899 | 0.8887 | | 0.0476 | 7.2095 | 3648 | 0.7957 | 0.2080 | 0.7957 | 0.8920 | | 0.0476 | 7.2134 | 3650 | 0.8166 | 0.2080 | 0.8166 | 0.9037 | | 0.0476 | 7.2174 | 3652 | 0.8230 | 0.2080 | 0.8230 | 0.9072 | | 0.0476 | 7.2213 | 3654 | 0.8272 | 0.2080 | 0.8272 | 0.9095 | | 0.0476 | 7.2253 | 3656 | 0.8185 | 0.2080 | 0.8185 | 0.9047 | | 0.0476 | 7.2292 | 3658 | 0.8038 | 0.2080 | 0.8038 | 0.8965 | | 0.0476 | 7.2332 | 3660 | 0.8039 | 0.2080 | 0.8039 | 0.8966 | | 0.0476 | 7.2372 | 3662 | 0.8196 | 0.2080 | 0.8196 | 0.9053 | | 0.0476 | 7.2411 | 3664 | 0.8271 | 0.2080 | 0.8271 | 0.9095 | | 0.0476 | 7.2451 | 3666 | 0.8355 | 0.2080 | 0.8355 | 0.9141 | | 0.0476 | 7.2490 | 3668 | 0.8316 | 0.2080 | 0.8316 | 0.9119 | | 0.0476 | 7.2530 | 3670 | 0.8190 | 0.2080 | 0.8190 | 0.9050 | | 0.0476 | 7.2569 | 3672 | 0.8044 | 0.2080 | 0.8044 | 0.8969 | | 0.0476 | 7.2609 | 3674 | 0.8043 | 0.2080 | 0.8043 | 0.8968 | | 0.0476 | 7.2648 | 3676 | 0.8079 | 0.2080 | 0.8079 | 0.8988 | | 0.0476 | 7.2688 | 3678 | 0.7984 | 0.2080 | 0.7984 | 0.8935 | | 0.0476 | 7.2727 | 3680 | 0.7904 | 0.2080 | 0.7904 | 0.8891 | | 0.0476 | 7.2767 | 3682 | 0.7835 | 0.2080 | 0.7835 | 0.8852 | | 0.0476 | 7.2806 | 3684 | 0.7793 | 0.2080 | 0.7793 | 0.8828 | | 0.0476 | 7.2846 | 3686 | 0.7819 | 0.2080 | 0.7819 | 0.8842 | | 0.0476 | 7.2885 | 3688 | 0.7927 | 0.2080 | 0.7927 | 0.8904 | | 0.0476 | 7.2925 | 3690 | 0.7941 | 0.2080 | 0.7941 | 0.8911 | | 0.0476 | 7.2964 | 3692 | 0.7991 | 0.2080 | 0.7991 | 0.8939 | | 0.0476 | 7.3004 | 3694 | 0.8015 | 0.2080 | 0.8015 | 0.8953 | | 0.0476 | 7.3043 | 3696 | 0.7967 | 0.2080 | 0.7967 | 0.8926 | | 0.0476 | 7.3083 | 3698 | 0.7954 | 0.2080 | 0.7954 | 0.8918 | | 0.0476 | 7.3123 | 3700 | 0.7987 | 0.2080 | 0.7987 | 0.8937 | | 0.0476 | 7.3162 | 3702 | 0.8014 | 0.2080 | 0.8014 | 0.8952 | | 0.0476 | 7.3202 | 3704 | 0.7928 | 0.2080 | 0.7928 | 0.8904 | | 0.0476 | 7.3241 | 3706 | 0.7839 | 0.2080 | 0.7839 | 0.8854 | | 0.0476 | 7.3281 | 3708 | 0.7770 | 0.2080 | 0.7770 | 0.8815 | | 0.0476 | 7.3320 | 3710 | 0.7672 | 0.2029 | 0.7672 | 0.8759 | | 0.0476 | 7.3360 | 3712 | 0.7688 | 0.2080 | 0.7688 | 0.8768 | | 0.0476 | 7.3399 | 3714 | 0.7670 | 0.2029 | 0.7670 | 0.8758 | | 0.0476 | 7.3439 | 3716 | 0.7691 | 0.2029 | 0.7691 | 0.8770 | | 0.0476 | 7.3478 | 3718 | 0.7719 | 0.2029 | 0.7719 | 0.8786 | | 0.0476 | 7.3518 | 3720 | 0.7794 | 0.2029 | 0.7794 | 0.8828 | | 0.0476 | 7.3557 | 3722 | 0.7958 | 0.2029 | 0.7958 | 0.8921 | | 0.0476 | 7.3597 | 3724 | 0.8140 | 0.2080 | 0.8140 | 0.9022 | | 0.0476 | 7.3636 | 3726 | 0.8353 | 0.2080 | 0.8353 | 0.9140 | | 0.0476 | 7.3676 | 3728 | 0.8311 | 0.2080 | 0.8311 | 0.9117 | | 0.0476 | 7.3715 | 3730 | 0.8173 | 0.2080 | 0.8173 | 0.9041 | | 0.0476 | 7.3755 | 3732 | 0.8085 | 0.2029 | 0.8085 | 0.8992 | | 0.0476 | 7.3794 | 3734 | 0.8049 | 0.2029 | 0.8049 | 0.8972 | | 0.0476 | 7.3834 | 3736 | 0.7965 | 0.2029 | 0.7965 | 0.8925 | | 0.0476 | 7.3874 | 3738 | 0.8028 | 0.2080 | 0.8028 | 0.8960 | | 0.0476 | 7.3913 | 3740 | 0.8085 | 0.2080 | 0.8085 | 0.8991 | | 0.0476 | 7.3953 | 3742 | 0.8034 | 0.2080 | 0.8034 | 0.8963 | | 0.0476 | 7.3992 | 3744 | 0.7925 | 0.2080 | 0.7925 | 0.8902 | | 0.0476 | 7.4032 | 3746 | 0.7874 | 0.2080 | 0.7874 | 0.8873 | | 0.0476 | 7.4071 | 3748 | 0.7774 | 0.2029 | 0.7774 | 0.8817 | | 0.0476 | 7.4111 | 3750 | 0.7753 | 0.2029 | 0.7753 | 0.8805 | | 0.0476 | 7.4150 | 3752 | 0.7775 | 0.2029 | 0.7775 | 0.8818 | | 0.0476 | 7.4190 | 3754 | 0.7761 | 0.2029 | 0.7761 | 0.8809 | | 0.0476 | 7.4229 | 3756 | 0.7806 | 0.2029 | 0.7806 | 0.8835 | | 0.0476 | 7.4269 | 3758 | 0.8036 | 0.2080 | 0.8036 | 0.8965 | | 0.0476 | 7.4308 | 3760 | 0.8219 | 0.2080 | 0.8219 | 0.9066 | | 0.0476 | 7.4348 | 3762 | 0.8394 | 0.2080 | 0.8394 | 0.9162 | | 0.0476 | 7.4387 | 3764 | 0.8450 | 0.2080 | 0.8450 | 0.9192 | | 0.0476 | 7.4427 | 3766 | 0.8240 | 0.2080 | 0.8240 | 0.9077 | | 0.0476 | 7.4466 | 3768 | 0.7933 | 0.2080 | 0.7933 | 0.8907 | | 0.0476 | 7.4506 | 3770 | 0.7759 | 0.2080 | 0.7759 | 0.8808 | | 0.0476 | 7.4545 | 3772 | 0.7676 | 0.2080 | 0.7676 | 0.8761 | | 0.0476 | 7.4585 | 3774 | 0.7710 | 0.2080 | 0.7710 | 0.8781 | | 0.0476 | 7.4625 | 3776 | 0.7646 | 0.2080 | 0.7646 | 0.8744 | | 0.0476 | 7.4664 | 3778 | 0.7608 | 0.2080 | 0.7608 | 0.8722 | | 0.0476 | 7.4704 | 3780 | 0.7556 | 0.2029 | 0.7556 | 0.8692 | | 0.0476 | 7.4743 | 3782 | 0.7528 | 0.2029 | 0.7528 | 0.8676 | | 0.0476 | 7.4783 | 3784 | 0.7615 | 0.2080 | 0.7615 | 0.8726 | | 0.0476 | 7.4822 | 3786 | 0.7715 | 0.2080 | 0.7715 | 0.8784 | | 0.0476 | 7.4862 | 3788 | 0.7735 | 0.2080 | 0.7735 | 0.8795 | | 0.0476 | 7.4901 | 3790 | 0.7707 | 0.2080 | 0.7707 | 0.8779 | | 0.0476 | 7.4941 | 3792 | 0.7601 | 0.2080 | 0.7601 | 0.8718 | | 0.0476 | 7.4980 | 3794 | 0.7554 | 0.2080 | 0.7554 | 0.8692 | | 0.0476 | 7.5020 | 3796 | 0.7478 | 0.2080 | 0.7478 | 0.8648 | | 0.0476 | 7.5059 | 3798 | 0.7450 | 0.2029 | 0.7450 | 0.8631 | | 0.0476 | 7.5099 | 3800 | 0.7442 | 0.2029 | 0.7442 | 0.8627 | | 0.0476 | 7.5138 | 3802 | 0.7456 | 0.2029 | 0.7456 | 0.8635 | | 0.0476 | 7.5178 | 3804 | 0.7491 | 0.2029 | 0.7491 | 0.8655 | | 0.0476 | 7.5217 | 3806 | 0.7554 | 0.2029 | 0.7554 | 0.8691 | | 0.0476 | 7.5257 | 3808 | 0.7746 | 0.2080 | 0.7746 | 0.8801 | | 0.0476 | 7.5296 | 3810 | 0.7938 | 0.2080 | 0.7938 | 0.8910 | | 0.0476 | 7.5336 | 3812 | 0.7957 | 0.2080 | 0.7957 | 0.8920 | | 0.0476 | 7.5375 | 3814 | 0.7875 | 0.2080 | 0.7875 | 0.8874 | | 0.0476 | 7.5415 | 3816 | 0.7722 | 0.2080 | 0.7722 | 0.8788 | | 0.0476 | 7.5455 | 3818 | 0.7663 | 0.2080 | 0.7663 | 0.8754 | | 0.0476 | 7.5494 | 3820 | 0.7662 | 0.2080 | 0.7662 | 0.8754 | | 0.0476 | 7.5534 | 3822 | 0.7611 | 0.2080 | 0.7611 | 0.8724 | | 0.0476 | 7.5573 | 3824 | 0.7535 | 0.2029 | 0.7535 | 0.8680 | | 0.0476 | 7.5613 | 3826 | 0.7545 | 0.2029 | 0.7545 | 0.8686 | | 0.0476 | 7.5652 | 3828 | 0.7589 | 0.2080 | 0.7589 | 0.8711 | | 0.0476 | 7.5692 | 3830 | 0.7652 | 0.2080 | 0.7652 | 0.8747 | | 0.0476 | 7.5731 | 3832 | 0.7671 | 0.2080 | 0.7671 | 0.8758 | | 0.0476 | 7.5771 | 3834 | 0.7798 | 0.2080 | 0.7798 | 0.8831 | | 0.0476 | 7.5810 | 3836 | 0.7987 | 0.2080 | 0.7987 | 0.8937 | | 0.0476 | 7.5850 | 3838 | 0.7965 | 0.2080 | 0.7965 | 0.8925 | | 0.0476 | 7.5889 | 3840 | 0.7859 | 0.2080 | 0.7859 | 0.8865 | | 0.0476 | 7.5929 | 3842 | 0.7897 | 0.2080 | 0.7897 | 0.8887 | | 0.0476 | 7.5968 | 3844 | 0.7812 | 0.2080 | 0.7812 | 0.8838 | | 0.0476 | 7.6008 | 3846 | 0.7689 | 0.2080 | 0.7689 | 0.8769 | | 0.0476 | 7.6047 | 3848 | 0.7675 | 0.2080 | 0.7675 | 0.8760 | | 0.0476 | 7.6087 | 3850 | 0.7708 | 0.2080 | 0.7708 | 0.8779 | | 0.0476 | 7.6126 | 3852 | 0.7640 | 0.2080 | 0.7640 | 0.8741 | | 0.0476 | 7.6166 | 3854 | 0.7494 | 0.2080 | 0.7494 | 0.8657 | | 0.0476 | 7.6206 | 3856 | 0.7442 | 0.2029 | 0.7442 | 0.8627 | | 0.0476 | 7.6245 | 3858 | 0.7452 | 0.2029 | 0.7452 | 0.8633 | | 0.0476 | 7.6285 | 3860 | 0.7528 | 0.2080 | 0.7528 | 0.8677 | | 0.0476 | 7.6324 | 3862 | 0.7565 | 0.2080 | 0.7565 | 0.8698 | | 0.0476 | 7.6364 | 3864 | 0.7487 | 0.2029 | 0.7487 | 0.8653 | | 0.0476 | 7.6403 | 3866 | 0.7417 | 0.2029 | 0.7417 | 0.8612 | | 0.0476 | 7.6443 | 3868 | 0.7336 | 0.2029 | 0.7336 | 0.8565 | | 0.0476 | 7.6482 | 3870 | 0.7291 | 0.2029 | 0.7291 | 0.8539 | | 0.0476 | 7.6522 | 3872 | 0.7251 | 0.2029 | 0.7251 | 0.8515 | | 0.0476 | 7.6561 | 3874 | 0.7236 | 0.2029 | 0.7236 | 0.8507 | | 0.0476 | 7.6601 | 3876 | 0.7224 | 0.2029 | 0.7224 | 0.8499 | | 0.0476 | 7.6640 | 3878 | 0.7290 | 0.2029 | 0.7290 | 0.8538 | | 0.0476 | 7.6680 | 3880 | 0.7463 | 0.2080 | 0.7463 | 0.8639 | | 0.0476 | 7.6719 | 3882 | 0.7594 | 0.2080 | 0.7594 | 0.8714 | | 0.0476 | 7.6759 | 3884 | 0.7564 | 0.2080 | 0.7564 | 0.8697 | | 0.0476 | 7.6798 | 3886 | 0.7507 | 0.2080 | 0.7507 | 0.8665 | | 0.0476 | 7.6838 | 3888 | 0.7441 | 0.2080 | 0.7441 | 0.8626 | | 0.0476 | 7.6877 | 3890 | 0.7338 | 0.2029 | 0.7338 | 0.8566 | | 0.0476 | 7.6917 | 3892 | 0.7269 | 0.2029 | 0.7269 | 0.8526 | | 0.0476 | 7.6957 | 3894 | 0.7277 | 0.2029 | 0.7277 | 0.8531 | | 0.0476 | 7.6996 | 3896 | 0.7281 | 0.2029 | 0.7281 | 0.8533 | | 0.0476 | 7.7036 | 3898 | 0.7303 | 0.2029 | 0.7303 | 0.8546 | | 0.0476 | 7.7075 | 3900 | 0.7322 | 0.2029 | 0.7322 | 0.8557 | | 0.0476 | 7.7115 | 3902 | 0.7389 | 0.2029 | 0.7389 | 0.8596 | | 0.0476 | 7.7154 | 3904 | 0.7510 | 0.2080 | 0.7510 | 0.8666 | | 0.0476 | 7.7194 | 3906 | 0.7664 | 0.2080 | 0.7664 | 0.8754 | | 0.0476 | 7.7233 | 3908 | 0.7709 | 0.2080 | 0.7709 | 0.8780 | | 0.0476 | 7.7273 | 3910 | 0.7801 | 0.2080 | 0.7801 | 0.8832 | | 0.0476 | 7.7312 | 3912 | 0.7952 | 0.2080 | 0.7952 | 0.8918 | | 0.0476 | 7.7352 | 3914 | 0.7903 | 0.2080 | 0.7903 | 0.8890 | | 0.0476 | 7.7391 | 3916 | 0.7708 | 0.2080 | 0.7708 | 0.8780 | | 0.0476 | 7.7431 | 3918 | 0.7534 | 0.2080 | 0.7534 | 0.8680 | | 0.0476 | 7.7470 | 3920 | 0.7520 | 0.2029 | 0.7520 | 0.8672 | | 0.0476 | 7.7510 | 3922 | 0.7559 | 0.2080 | 0.7559 | 0.8694 | | 0.0476 | 7.7549 | 3924 | 0.7606 | 0.2080 | 0.7606 | 0.8721 | | 0.0476 | 7.7589 | 3926 | 0.7649 | 0.2080 | 0.7649 | 0.8746 | | 0.0476 | 7.7628 | 3928 | 0.7681 | 0.2080 | 0.7681 | 0.8764 | | 0.0476 | 7.7668 | 3930 | 0.7809 | 0.2080 | 0.7809 | 0.8837 | | 0.0476 | 7.7708 | 3932 | 0.7880 | 0.2080 | 0.7880 | 0.8877 | | 0.0476 | 7.7747 | 3934 | 0.7926 | 0.2080 | 0.7926 | 0.8903 | | 0.0476 | 7.7787 | 3936 | 0.7889 | 0.2080 | 0.7889 | 0.8882 | | 0.0476 | 7.7826 | 3938 | 0.7809 | 0.2080 | 0.7809 | 0.8837 | | 0.0476 | 7.7866 | 3940 | 0.7759 | 0.2029 | 0.7759 | 0.8808 | | 0.0476 | 7.7905 | 3942 | 0.7779 | 0.2029 | 0.7779 | 0.8820 | | 0.0476 | 7.7945 | 3944 | 0.7820 | 0.2080 | 0.7820 | 0.8843 | | 0.0476 | 7.7984 | 3946 | 0.7847 | 0.2080 | 0.7847 | 0.8858 | | 0.0476 | 7.8024 | 3948 | 0.7851 | 0.2080 | 0.7851 | 0.8861 | | 0.0476 | 7.8063 | 3950 | 0.7879 | 0.2080 | 0.7879 | 0.8876 | | 0.0476 | 7.8103 | 3952 | 0.7962 | 0.2080 | 0.7962 | 0.8923 | | 0.0476 | 7.8142 | 3954 | 0.8064 | 0.2080 | 0.8064 | 0.8980 | | 0.0476 | 7.8182 | 3956 | 0.8138 | 0.2080 | 0.8138 | 0.9021 | | 0.0476 | 7.8221 | 3958 | 0.8120 | 0.2080 | 0.8120 | 0.9011 | | 0.0476 | 7.8261 | 3960 | 0.8063 | 0.2080 | 0.8063 | 0.8980 | | 0.0476 | 7.8300 | 3962 | 0.7988 | 0.2080 | 0.7988 | 0.8938 | | 0.0476 | 7.8340 | 3964 | 0.7930 | 0.2080 | 0.7930 | 0.8905 | | 0.0476 | 7.8379 | 3966 | 0.7922 | 0.2080 | 0.7922 | 0.8901 | | 0.0476 | 7.8419 | 3968 | 0.7897 | 0.2029 | 0.7897 | 0.8886 | | 0.0476 | 7.8458 | 3970 | 0.7863 | 0.2029 | 0.7863 | 0.8867 | | 0.0476 | 7.8498 | 3972 | 0.7851 | 0.2029 | 0.7851 | 0.8861 | | 0.0476 | 7.8538 | 3974 | 0.7851 | 0.2029 | 0.7851 | 0.8860 | | 0.0476 | 7.8577 | 3976 | 0.7851 | 0.2029 | 0.7851 | 0.8861 | | 0.0476 | 7.8617 | 3978 | 0.7874 | 0.2029 | 0.7874 | 0.8873 | | 0.0476 | 7.8656 | 3980 | 0.7899 | 0.2029 | 0.7899 | 0.8888 | | 0.0476 | 7.8696 | 3982 | 0.7950 | 0.2080 | 0.7950 | 0.8917 | | 0.0476 | 7.8735 | 3984 | 0.8008 | 0.2080 | 0.8008 | 0.8949 | | 0.0476 | 7.8775 | 3986 | 0.8075 | 0.2080 | 0.8075 | 0.8986 | | 0.0476 | 7.8814 | 3988 | 0.8125 | 0.2080 | 0.8125 | 0.9014 | | 0.0476 | 7.8854 | 3990 | 0.8195 | 0.2080 | 0.8195 | 0.9052 | | 0.0476 | 7.8893 | 3992 | 0.8136 | 0.2080 | 0.8136 | 0.9020 | | 0.0476 | 7.8933 | 3994 | 0.8054 | 0.2080 | 0.8054 | 0.8974 | | 0.0476 | 7.8972 | 3996 | 0.7985 | 0.2080 | 0.7985 | 0.8936 | | 0.0476 | 7.9012 | 3998 | 0.7960 | 0.2080 | 0.7960 | 0.8922 | | 0.0423 | 7.9051 | 4000 | 0.8002 | 0.2080 | 0.8002 | 0.8946 | | 0.0423 | 7.9091 | 4002 | 0.8100 | 0.2080 | 0.8100 | 0.9000 | | 0.0423 | 7.9130 | 4004 | 0.8134 | 0.2080 | 0.8134 | 0.9019 | | 0.0423 | 7.9170 | 4006 | 0.8107 | 0.2080 | 0.8107 | 0.9004 | | 0.0423 | 7.9209 | 4008 | 0.8028 | 0.2080 | 0.8028 | 0.8960 | | 0.0423 | 7.9249 | 4010 | 0.7996 | 0.2080 | 0.7996 | 0.8942 | | 0.0423 | 7.9289 | 4012 | 0.8045 | 0.2080 | 0.8045 | 0.8969 | | 0.0423 | 7.9328 | 4014 | 0.8183 | 0.2080 | 0.8183 | 0.9046 | | 0.0423 | 7.9368 | 4016 | 0.8375 | 0.2080 | 0.8375 | 0.9151 | | 0.0423 | 7.9407 | 4018 | 0.8529 | 0.2080 | 0.8529 | 0.9235 | | 0.0423 | 7.9447 | 4020 | 0.8570 | 0.2080 | 0.8570 | 0.9257 | | 0.0423 | 7.9486 | 4022 | 0.8418 | 0.2080 | 0.8418 | 0.9175 | | 0.0423 | 7.9526 | 4024 | 0.8197 | 0.2080 | 0.8197 | 0.9054 | | 0.0423 | 7.9565 | 4026 | 0.8049 | 0.2080 | 0.8049 | 0.8972 | | 0.0423 | 7.9605 | 4028 | 0.7980 | 0.2080 | 0.7980 | 0.8933 | | 0.0423 | 7.9644 | 4030 | 0.7951 | 0.2029 | 0.7951 | 0.8917 | | 0.0423 | 7.9684 | 4032 | 0.7933 | 0.2029 | 0.7933 | 0.8907 | | 0.0423 | 7.9723 | 4034 | 0.7936 | 0.2029 | 0.7936 | 0.8908 | | 0.0423 | 7.9763 | 4036 | 0.7974 | 0.2080 | 0.7974 | 0.8930 | | 0.0423 | 7.9802 | 4038 | 0.8021 | 0.2080 | 0.8021 | 0.8956 | | 0.0423 | 7.9842 | 4040 | 0.8134 | 0.2080 | 0.8134 | 0.9019 | | 0.0423 | 7.9881 | 4042 | 0.8297 | 0.2080 | 0.8297 | 0.9109 | | 0.0423 | 7.9921 | 4044 | 0.8359 | 0.2080 | 0.8359 | 0.9142 | | 0.0423 | 7.9960 | 4046 | 0.8445 | 0.2080 | 0.8445 | 0.9190 | | 0.0423 | 8.0 | 4048 | 0.8348 | 0.2080 | 0.8348 | 0.9137 | | 0.0423 | 8.0040 | 4050 | 0.8164 | 0.2080 | 0.8164 | 0.9036 | | 0.0423 | 8.0079 | 4052 | 0.8031 | 0.2080 | 0.8031 | 0.8961 | | 0.0423 | 8.0119 | 4054 | 0.8025 | 0.2080 | 0.8025 | 0.8958 | | 0.0423 | 8.0158 | 4056 | 0.8044 | 0.2080 | 0.8044 | 0.8969 | | 0.0423 | 8.0198 | 4058 | 0.7982 | 0.2080 | 0.7982 | 0.8934 | | 0.0423 | 8.0237 | 4060 | 0.7973 | 0.2080 | 0.7973 | 0.8929 | | 0.0423 | 8.0277 | 4062 | 0.7991 | 0.2080 | 0.7991 | 0.8939 | | 0.0423 | 8.0316 | 4064 | 0.8061 | 0.2080 | 0.8061 | 0.8979 | | 0.0423 | 8.0356 | 4066 | 0.8144 | 0.2080 | 0.8144 | 0.9025 | | 0.0423 | 8.0395 | 4068 | 0.8216 | 0.2080 | 0.8216 | 0.9064 | | 0.0423 | 8.0435 | 4070 | 0.8227 | 0.2080 | 0.8227 | 0.9070 | | 0.0423 | 8.0474 | 4072 | 0.8208 | 0.2080 | 0.8208 | 0.9060 | | 0.0423 | 8.0514 | 4074 | 0.8148 | 0.2080 | 0.8148 | 0.9027 | | 0.0423 | 8.0553 | 4076 | 0.8097 | 0.0530 | 0.8097 | 0.8998 | | 0.0423 | 8.0593 | 4078 | 0.8087 | 0.0530 | 0.8087 | 0.8993 | | 0.0423 | 8.0632 | 4080 | 0.8103 | 0.0530 | 0.8103 | 0.9001 | | 0.0423 | 8.0672 | 4082 | 0.8131 | 0.0530 | 0.8131 | 0.9017 | | 0.0423 | 8.0711 | 4084 | 0.8167 | 0.0530 | 0.8167 | 0.9037 | | 0.0423 | 8.0751 | 4086 | 0.8199 | 0.2080 | 0.8199 | 0.9055 | | 0.0423 | 8.0791 | 4088 | 0.8276 | 0.2080 | 0.8276 | 0.9097 | | 0.0423 | 8.0830 | 4090 | 0.8278 | 0.2080 | 0.8278 | 0.9099 | | 0.0423 | 8.0870 | 4092 | 0.8295 | 0.2080 | 0.8295 | 0.9108 | | 0.0423 | 8.0909 | 4094 | 0.8330 | 0.2080 | 0.8330 | 0.9127 | | 0.0423 | 8.0949 | 4096 | 0.8322 | 0.2080 | 0.8322 | 0.9123 | | 0.0423 | 8.0988 | 4098 | 0.8239 | 0.2080 | 0.8239 | 0.9077 | | 0.0423 | 8.1028 | 4100 | 0.8155 | 0.2080 | 0.8155 | 0.9031 | | 0.0423 | 8.1067 | 4102 | 0.8110 | 0.2080 | 0.8110 | 0.9006 | | 0.0423 | 8.1107 | 4104 | 0.8131 | 0.2080 | 0.8131 | 0.9017 | | 0.0423 | 8.1146 | 4106 | 0.8144 | 0.2080 | 0.8144 | 0.9025 | | 0.0423 | 8.1186 | 4108 | 0.8201 | 0.2080 | 0.8201 | 0.9056 | | 0.0423 | 8.1225 | 4110 | 0.8147 | 0.2080 | 0.8147 | 0.9026 | | 0.0423 | 8.1265 | 4112 | 0.8088 | 0.2080 | 0.8088 | 0.8993 | | 0.0423 | 8.1304 | 4114 | 0.8017 | 0.2080 | 0.8017 | 0.8954 | | 0.0423 | 8.1344 | 4116 | 0.7983 | 0.0530 | 0.7983 | 0.8935 | | 0.0423 | 8.1383 | 4118 | 0.7988 | 0.0530 | 0.7988 | 0.8937 | | 0.0423 | 8.1423 | 4120 | 0.7994 | 0.0530 | 0.7994 | 0.8941 | | 0.0423 | 8.1462 | 4122 | 0.8003 | 0.2029 | 0.8003 | 0.8946 | | 0.0423 | 8.1502 | 4124 | 0.8035 | 0.2080 | 0.8035 | 0.8964 | | 0.0423 | 8.1542 | 4126 | 0.8037 | 0.2080 | 0.8037 | 0.8965 | | 0.0423 | 8.1581 | 4128 | 0.8036 | 0.2080 | 0.8036 | 0.8964 | | 0.0423 | 8.1621 | 4130 | 0.8042 | 0.2080 | 0.8042 | 0.8968 | | 0.0423 | 8.1660 | 4132 | 0.8092 | 0.2080 | 0.8092 | 0.8996 | | 0.0423 | 8.1700 | 4134 | 0.8116 | 0.2080 | 0.8116 | 0.9009 | | 0.0423 | 8.1739 | 4136 | 0.8098 | 0.2080 | 0.8098 | 0.8999 | | 0.0423 | 8.1779 | 4138 | 0.8088 | 0.2029 | 0.8088 | 0.8993 | | 0.0423 | 8.1818 | 4140 | 0.8097 | 0.0530 | 0.8097 | 0.8998 | | 0.0423 | 8.1858 | 4142 | 0.8097 | 0.0530 | 0.8097 | 0.8999 | | 0.0423 | 8.1897 | 4144 | 0.8105 | 0.0530 | 0.8105 | 0.9003 | | 0.0423 | 8.1937 | 4146 | 0.8090 | 0.0530 | 0.8090 | 0.8995 | | 0.0423 | 8.1976 | 4148 | 0.8105 | 0.2080 | 0.8105 | 0.9003 | | 0.0423 | 8.2016 | 4150 | 0.8190 | 0.2080 | 0.8190 | 0.9050 | | 0.0423 | 8.2055 | 4152 | 0.8214 | 0.2080 | 0.8214 | 0.9063 | | 0.0423 | 8.2095 | 4154 | 0.8250 | 0.2080 | 0.8250 | 0.9083 | | 0.0423 | 8.2134 | 4156 | 0.8239 | 0.2080 | 0.8239 | 0.9077 | | 0.0423 | 8.2174 | 4158 | 0.8214 | 0.2080 | 0.8214 | 0.9063 | | 0.0423 | 8.2213 | 4160 | 0.8136 | 0.2080 | 0.8136 | 0.9020 | | 0.0423 | 8.2253 | 4162 | 0.8067 | 0.2080 | 0.8067 | 0.8982 | | 0.0423 | 8.2292 | 4164 | 0.8016 | 0.2029 | 0.8016 | 0.8953 | | 0.0423 | 8.2332 | 4166 | 0.8017 | 0.0530 | 0.8017 | 0.8954 | | 0.0423 | 8.2372 | 4168 | 0.8047 | 0.0530 | 0.8047 | 0.8971 | | 0.0423 | 8.2411 | 4170 | 0.8091 | 0.0530 | 0.8091 | 0.8995 | | 0.0423 | 8.2451 | 4172 | 0.8109 | 0.0530 | 0.8109 | 0.9005 | | 0.0423 | 8.2490 | 4174 | 0.8111 | 0.0530 | 0.8111 | 0.9006 | | 0.0423 | 8.2530 | 4176 | 0.8111 | 0.0530 | 0.8111 | 0.9006 | | 0.0423 | 8.2569 | 4178 | 0.8110 | 0.0530 | 0.8110 | 0.9006 | | 0.0423 | 8.2609 | 4180 | 0.8107 | 0.0530 | 0.8107 | 0.9004 | | 0.0423 | 8.2648 | 4182 | 0.8091 | 0.2029 | 0.8091 | 0.8995 | | 0.0423 | 8.2688 | 4184 | 0.8098 | 0.2080 | 0.8098 | 0.8999 | | 0.0423 | 8.2727 | 4186 | 0.8126 | 0.2080 | 0.8126 | 0.9015 | | 0.0423 | 8.2767 | 4188 | 0.8126 | 0.2080 | 0.8126 | 0.9014 | | 0.0423 | 8.2806 | 4190 | 0.8130 | 0.2080 | 0.8130 | 0.9017 | | 0.0423 | 8.2846 | 4192 | 0.8146 | 0.2080 | 0.8146 | 0.9026 | | 0.0423 | 8.2885 | 4194 | 0.8166 | 0.2080 | 0.8166 | 0.9037 | | 0.0423 | 8.2925 | 4196 | 0.8179 | 0.2080 | 0.8179 | 0.9044 | | 0.0423 | 8.2964 | 4198 | 0.8220 | 0.2080 | 0.8220 | 0.9066 | | 0.0423 | 8.3004 | 4200 | 0.8201 | 0.2080 | 0.8201 | 0.9056 | | 0.0423 | 8.3043 | 4202 | 0.8164 | 0.2080 | 0.8164 | 0.9035 | | 0.0423 | 8.3083 | 4204 | 0.8136 | 0.2080 | 0.8136 | 0.9020 | | 0.0423 | 8.3123 | 4206 | 0.8145 | 0.2080 | 0.8145 | 0.9025 | | 0.0423 | 8.3162 | 4208 | 0.8167 | 0.2080 | 0.8167 | 0.9037 | | 0.0423 | 8.3202 | 4210 | 0.8149 | 0.2080 | 0.8149 | 0.9027 | | 0.0423 | 8.3241 | 4212 | 0.8167 | 0.2080 | 0.8167 | 0.9037 | | 0.0423 | 8.3281 | 4214 | 0.8187 | 0.2080 | 0.8187 | 0.9048 | | 0.0423 | 8.3320 | 4216 | 0.8220 | 0.2080 | 0.8220 | 0.9066 | | 0.0423 | 8.3360 | 4218 | 0.8240 | 0.2080 | 0.8240 | 0.9078 | | 0.0423 | 8.3399 | 4220 | 0.8254 | 0.2080 | 0.8254 | 0.9085 | | 0.0423 | 8.3439 | 4222 | 0.8239 | 0.2080 | 0.8239 | 0.9077 | | 0.0423 | 8.3478 | 4224 | 0.8258 | 0.2080 | 0.8258 | 0.9087 | | 0.0423 | 8.3518 | 4226 | 0.8238 | 0.0435 | 0.8238 | 0.9076 | | 0.0423 | 8.3557 | 4228 | 0.8224 | 0.0435 | 0.8224 | 0.9069 | | 0.0423 | 8.3597 | 4230 | 0.8229 | 0.0435 | 0.8229 | 0.9071 | | 0.0423 | 8.3636 | 4232 | 0.8230 | 0.0435 | 0.8230 | 0.9072 | | 0.0423 | 8.3676 | 4234 | 0.8237 | 0.0435 | 0.8237 | 0.9076 | | 0.0423 | 8.3715 | 4236 | 0.8239 | 0.0435 | 0.8239 | 0.9077 | | 0.0423 | 8.3755 | 4238 | 0.8253 | 0.0435 | 0.8253 | 0.9085 | | 0.0423 | 8.3794 | 4240 | 0.8283 | 0.2080 | 0.8283 | 0.9101 | | 0.0423 | 8.3834 | 4242 | 0.8281 | 0.2080 | 0.8281 | 0.9100 | | 0.0423 | 8.3874 | 4244 | 0.8313 | 0.2080 | 0.8313 | 0.9117 | | 0.0423 | 8.3913 | 4246 | 0.8387 | 0.2080 | 0.8387 | 0.9158 | | 0.0423 | 8.3953 | 4248 | 0.8424 | 0.2080 | 0.8424 | 0.9178 | | 0.0423 | 8.3992 | 4250 | 0.8476 | 0.2080 | 0.8476 | 0.9206 | | 0.0423 | 8.4032 | 4252 | 0.8532 | 0.2080 | 0.8532 | 0.9237 | | 0.0423 | 8.4071 | 4254 | 0.8554 | 0.2080 | 0.8554 | 0.9249 | | 0.0423 | 8.4111 | 4256 | 0.8519 | 0.2080 | 0.8519 | 0.9230 | | 0.0423 | 8.4150 | 4258 | 0.8485 | 0.2080 | 0.8485 | 0.9211 | | 0.0423 | 8.4190 | 4260 | 0.8491 | 0.2080 | 0.8491 | 0.9215 | | 0.0423 | 8.4229 | 4262 | 0.8479 | 0.2080 | 0.8479 | 0.9208 | | 0.0423 | 8.4269 | 4264 | 0.8489 | 0.2080 | 0.8489 | 0.9214 | | 0.0423 | 8.4308 | 4266 | 0.8512 | 0.2080 | 0.8512 | 0.9226 | | 0.0423 | 8.4348 | 4268 | 0.8558 | 0.2080 | 0.8558 | 0.9251 | | 0.0423 | 8.4387 | 4270 | 0.8618 | 0.2080 | 0.8618 | 0.9283 | | 0.0423 | 8.4427 | 4272 | 0.8628 | 0.2080 | 0.8628 | 0.9289 | | 0.0423 | 8.4466 | 4274 | 0.8589 | 0.2080 | 0.8589 | 0.9268 | | 0.0423 | 8.4506 | 4276 | 0.8555 | 0.0435 | 0.8555 | 0.9250 | | 0.0423 | 8.4545 | 4278 | 0.8522 | 0.0435 | 0.8522 | 0.9232 | | 0.0423 | 8.4585 | 4280 | 0.8484 | 0.0435 | 0.8484 | 0.9211 | | 0.0423 | 8.4625 | 4282 | 0.8459 | 0.0435 | 0.8459 | 0.9197 | | 0.0423 | 8.4664 | 4284 | 0.8469 | 0.0435 | 0.8469 | 0.9203 | | 0.0423 | 8.4704 | 4286 | 0.8498 | 0.2080 | 0.8498 | 0.9219 | | 0.0423 | 8.4743 | 4288 | 0.8475 | 0.2080 | 0.8475 | 0.9206 | | 0.0423 | 8.4783 | 4290 | 0.8486 | 0.2080 | 0.8486 | 0.9212 | | 0.0423 | 8.4822 | 4292 | 0.8529 | 0.2080 | 0.8529 | 0.9235 | | 0.0423 | 8.4862 | 4294 | 0.8548 | 0.2080 | 0.8548 | 0.9245 | | 0.0423 | 8.4901 | 4296 | 0.8555 | 0.2080 | 0.8555 | 0.9249 | | 0.0423 | 8.4941 | 4298 | 0.8565 | 0.2080 | 0.8565 | 0.9255 | | 0.0423 | 8.4980 | 4300 | 0.8544 | 0.2080 | 0.8544 | 0.9243 | | 0.0423 | 8.5020 | 4302 | 0.8512 | 0.2080 | 0.8512 | 0.9226 | | 0.0423 | 8.5059 | 4304 | 0.8476 | 0.2080 | 0.8476 | 0.9207 | | 0.0423 | 8.5099 | 4306 | 0.8471 | 0.2080 | 0.8471 | 0.9204 | | 0.0423 | 8.5138 | 4308 | 0.8510 | 0.2080 | 0.8510 | 0.9225 | | 0.0423 | 8.5178 | 4310 | 0.8480 | 0.2080 | 0.8480 | 0.9208 | | 0.0423 | 8.5217 | 4312 | 0.8420 | 0.2080 | 0.8420 | 0.9176 | | 0.0423 | 8.5257 | 4314 | 0.8398 | 0.2080 | 0.8398 | 0.9164 | | 0.0423 | 8.5296 | 4316 | 0.8422 | 0.2080 | 0.8422 | 0.9177 | | 0.0423 | 8.5336 | 4318 | 0.8485 | 0.2080 | 0.8485 | 0.9212 | | 0.0423 | 8.5375 | 4320 | 0.8494 | 0.2080 | 0.8494 | 0.9216 | | 0.0423 | 8.5415 | 4322 | 0.8441 | 0.2080 | 0.8441 | 0.9187 | | 0.0423 | 8.5455 | 4324 | 0.8331 | 0.2080 | 0.8331 | 0.9128 | | 0.0423 | 8.5494 | 4326 | 0.8283 | 0.2080 | 0.8283 | 0.9101 | | 0.0423 | 8.5534 | 4328 | 0.8293 | 0.2080 | 0.8293 | 0.9107 | | 0.0423 | 8.5573 | 4330 | 0.8326 | 0.2080 | 0.8326 | 0.9125 | | 0.0423 | 8.5613 | 4332 | 0.8400 | 0.2080 | 0.8400 | 0.9165 | | 0.0423 | 8.5652 | 4334 | 0.8458 | 0.2080 | 0.8458 | 0.9197 | | 0.0423 | 8.5692 | 4336 | 0.8421 | 0.2080 | 0.8421 | 0.9176 | | 0.0423 | 8.5731 | 4338 | 0.8332 | 0.2080 | 0.8332 | 0.9128 | | 0.0423 | 8.5771 | 4340 | 0.8264 | 0.2080 | 0.8264 | 0.9091 | | 0.0423 | 8.5810 | 4342 | 0.8273 | 0.2080 | 0.8273 | 0.9096 | | 0.0423 | 8.5850 | 4344 | 0.8315 | 0.2080 | 0.8315 | 0.9119 | | 0.0423 | 8.5889 | 4346 | 0.8345 | 0.2080 | 0.8345 | 0.9135 | | 0.0423 | 8.5929 | 4348 | 0.8344 | 0.2080 | 0.8344 | 0.9134 | | 0.0423 | 8.5968 | 4350 | 0.8381 | 0.2080 | 0.8381 | 0.9155 | | 0.0423 | 8.6008 | 4352 | 0.8373 | 0.2080 | 0.8373 | 0.9150 | | 0.0423 | 8.6047 | 4354 | 0.8376 | 0.2080 | 0.8376 | 0.9152 | | 0.0423 | 8.6087 | 4356 | 0.8365 | 0.2080 | 0.8365 | 0.9146 | | 0.0423 | 8.6126 | 4358 | 0.8388 | 0.2080 | 0.8388 | 0.9159 | | 0.0423 | 8.6166 | 4360 | 0.8440 | 0.2080 | 0.8440 | 0.9187 | | 0.0423 | 8.6206 | 4362 | 0.8489 | 0.2080 | 0.8489 | 0.9213 | | 0.0423 | 8.6245 | 4364 | 0.8550 | 0.2080 | 0.8550 | 0.9247 | | 0.0423 | 8.6285 | 4366 | 0.8597 | 0.2080 | 0.8597 | 0.9272 | | 0.0423 | 8.6324 | 4368 | 0.8598 | 0.2080 | 0.8598 | 0.9273 | | 0.0423 | 8.6364 | 4370 | 0.8572 | 0.2080 | 0.8572 | 0.9258 | | 0.0423 | 8.6403 | 4372 | 0.8518 | 0.2080 | 0.8518 | 0.9230 | | 0.0423 | 8.6443 | 4374 | 0.8512 | 0.2080 | 0.8512 | 0.9226 | | 0.0423 | 8.6482 | 4376 | 0.8461 | 0.2080 | 0.8461 | 0.9199 | | 0.0423 | 8.6522 | 4378 | 0.8467 | 0.2080 | 0.8467 | 0.9201 | | 0.0423 | 8.6561 | 4380 | 0.8430 | 0.2080 | 0.8430 | 0.9182 | | 0.0423 | 8.6601 | 4382 | 0.8362 | 0.2080 | 0.8362 | 0.9145 | | 0.0423 | 8.6640 | 4384 | 0.8342 | 0.2080 | 0.8342 | 0.9133 | | 0.0423 | 8.6680 | 4386 | 0.8373 | 0.2080 | 0.8373 | 0.9150 | | 0.0423 | 8.6719 | 4388 | 0.8436 | 0.2080 | 0.8436 | 0.9185 | | 0.0423 | 8.6759 | 4390 | 0.8572 | 0.2080 | 0.8572 | 0.9259 | | 0.0423 | 8.6798 | 4392 | 0.8763 | 0.2080 | 0.8763 | 0.9361 | | 0.0423 | 8.6838 | 4394 | 0.8839 | 0.2080 | 0.8839 | 0.9401 | | 0.0423 | 8.6877 | 4396 | 0.8803 | 0.2080 | 0.8803 | 0.9383 | | 0.0423 | 8.6917 | 4398 | 0.8700 | 0.2080 | 0.8700 | 0.9327 | | 0.0423 | 8.6957 | 4400 | 0.8533 | 0.2080 | 0.8533 | 0.9237 | | 0.0423 | 8.6996 | 4402 | 0.8351 | 0.2080 | 0.8351 | 0.9138 | | 0.0423 | 8.7036 | 4404 | 0.8221 | 0.2080 | 0.8221 | 0.9067 | | 0.0423 | 8.7075 | 4406 | 0.8139 | 0.0530 | 0.8139 | 0.9022 | | 0.0423 | 8.7115 | 4408 | 0.8098 | 0.0530 | 0.8098 | 0.8999 | | 0.0423 | 8.7154 | 4410 | 0.8093 | 0.2080 | 0.8093 | 0.8996 | | 0.0423 | 8.7194 | 4412 | 0.8129 | 0.2080 | 0.8129 | 0.9016 | | 0.0423 | 8.7233 | 4414 | 0.8173 | 0.2080 | 0.8173 | 0.9041 | | 0.0423 | 8.7273 | 4416 | 0.8216 | 0.2080 | 0.8216 | 0.9064 | | 0.0423 | 8.7312 | 4418 | 0.8251 | 0.2080 | 0.8251 | 0.9084 | | 0.0423 | 8.7352 | 4420 | 0.8231 | 0.2080 | 0.8231 | 0.9072 | | 0.0423 | 8.7391 | 4422 | 0.8196 | 0.2080 | 0.8196 | 0.9053 | | 0.0423 | 8.7431 | 4424 | 0.8129 | 0.2080 | 0.8129 | 0.9016 | | 0.0423 | 8.7470 | 4426 | 0.8103 | 0.2080 | 0.8103 | 0.9002 | | 0.0423 | 8.7510 | 4428 | 0.8081 | 0.2080 | 0.8081 | 0.8989 | | 0.0423 | 8.7549 | 4430 | 0.8049 | 0.2080 | 0.8049 | 0.8972 | | 0.0423 | 8.7589 | 4432 | 0.8052 | 0.2029 | 0.8052 | 0.8973 | | 0.0423 | 8.7628 | 4434 | 0.8063 | 0.2029 | 0.8063 | 0.8979 | | 0.0423 | 8.7668 | 4436 | 0.8108 | 0.2080 | 0.8108 | 0.9004 | | 0.0423 | 8.7708 | 4438 | 0.8146 | 0.2080 | 0.8146 | 0.9026 | | 0.0423 | 8.7747 | 4440 | 0.8187 | 0.2080 | 0.8187 | 0.9048 | | 0.0423 | 8.7787 | 4442 | 0.8254 | 0.2080 | 0.8254 | 0.9085 | | 0.0423 | 8.7826 | 4444 | 0.8286 | 0.2080 | 0.8286 | 0.9103 | | 0.0423 | 8.7866 | 4446 | 0.8314 | 0.2080 | 0.8314 | 0.9118 | | 0.0423 | 8.7905 | 4448 | 0.8278 | 0.2080 | 0.8278 | 0.9098 | | 0.0423 | 8.7945 | 4450 | 0.8196 | 0.2080 | 0.8196 | 0.9053 | | 0.0423 | 8.7984 | 4452 | 0.8153 | 0.2080 | 0.8153 | 0.9029 | | 0.0423 | 8.8024 | 4454 | 0.8138 | 0.2080 | 0.8138 | 0.9021 | | 0.0423 | 8.8063 | 4456 | 0.8112 | 0.2080 | 0.8112 | 0.9006 | | 0.0423 | 8.8103 | 4458 | 0.8097 | 0.2080 | 0.8097 | 0.8999 | | 0.0423 | 8.8142 | 4460 | 0.8119 | 0.2080 | 0.8119 | 0.9011 | | 0.0423 | 8.8182 | 4462 | 0.8121 | 0.2080 | 0.8121 | 0.9012 | | 0.0423 | 8.8221 | 4464 | 0.8158 | 0.2080 | 0.8158 | 0.9032 | | 0.0423 | 8.8261 | 4466 | 0.8250 | 0.2080 | 0.8250 | 0.9083 | | 0.0423 | 8.8300 | 4468 | 0.8338 | 0.2080 | 0.8338 | 0.9131 | | 0.0423 | 8.8340 | 4470 | 0.8397 | 0.2080 | 0.8397 | 0.9163 | | 0.0423 | 8.8379 | 4472 | 0.8397 | 0.2080 | 0.8397 | 0.9164 | | 0.0423 | 8.8419 | 4474 | 0.8360 | 0.2080 | 0.8360 | 0.9143 | | 0.0423 | 8.8458 | 4476 | 0.8287 | 0.2080 | 0.8287 | 0.9103 | | 0.0423 | 8.8498 | 4478 | 0.8187 | 0.2080 | 0.8187 | 0.9048 | | 0.0423 | 8.8538 | 4480 | 0.8111 | 0.2080 | 0.8111 | 0.9006 | | 0.0423 | 8.8577 | 4482 | 0.8098 | 0.2080 | 0.8098 | 0.8999 | | 0.0423 | 8.8617 | 4484 | 0.8127 | 0.2080 | 0.8127 | 0.9015 | | 0.0423 | 8.8656 | 4486 | 0.8184 | 0.2080 | 0.8184 | 0.9047 | | 0.0423 | 8.8696 | 4488 | 0.8195 | 0.2080 | 0.8195 | 0.9052 | | 0.0423 | 8.8735 | 4490 | 0.8195 | 0.2080 | 0.8195 | 0.9052 | | 0.0423 | 8.8775 | 4492 | 0.8243 | 0.2080 | 0.8243 | 0.9079 | | 0.0423 | 8.8814 | 4494 | 0.8271 | 0.2080 | 0.8271 | 0.9095 | | 0.0423 | 8.8854 | 4496 | 0.8269 | 0.2080 | 0.8269 | 0.9093 | | 0.0423 | 8.8893 | 4498 | 0.8234 | 0.2080 | 0.8234 | 0.9074 | | 0.0373 | 8.8933 | 4500 | 0.8193 | 0.2080 | 0.8193 | 0.9052 | | 0.0373 | 8.8972 | 4502 | 0.8167 | 0.2080 | 0.8167 | 0.9037 | | 0.0373 | 8.9012 | 4504 | 0.8152 | 0.2080 | 0.8152 | 0.9029 | | 0.0373 | 8.9051 | 4506 | 0.8124 | 0.2029 | 0.8124 | 0.9013 | | 0.0373 | 8.9091 | 4508 | 0.8142 | 0.2080 | 0.8142 | 0.9023 | | 0.0373 | 8.9130 | 4510 | 0.8175 | 0.2080 | 0.8175 | 0.9042 | | 0.0373 | 8.9170 | 4512 | 0.8211 | 0.2080 | 0.8211 | 0.9062 | | 0.0373 | 8.9209 | 4514 | 0.8215 | 0.2080 | 0.8215 | 0.9064 | | 0.0373 | 8.9249 | 4516 | 0.8223 | 0.2080 | 0.8223 | 0.9068 | | 0.0373 | 8.9289 | 4518 | 0.8205 | 0.2080 | 0.8205 | 0.9058 | | 0.0373 | 8.9328 | 4520 | 0.8169 | 0.2080 | 0.8169 | 0.9038 | | 0.0373 | 8.9368 | 4522 | 0.8122 | 0.2080 | 0.8122 | 0.9012 | | 0.0373 | 8.9407 | 4524 | 0.8105 | 0.2029 | 0.8105 | 0.9003 | | 0.0373 | 8.9447 | 4526 | 0.8086 | 0.0530 | 0.8086 | 0.8992 | | 0.0373 | 8.9486 | 4528 | 0.8093 | 0.0530 | 0.8093 | 0.8996 | | 0.0373 | 8.9526 | 4530 | 0.8111 | 0.0530 | 0.8111 | 0.9006 | | 0.0373 | 8.9565 | 4532 | 0.8130 | 0.0530 | 0.8130 | 0.9017 | | 0.0373 | 8.9605 | 4534 | 0.8170 | 0.2029 | 0.8170 | 0.9039 | | 0.0373 | 8.9644 | 4536 | 0.8248 | 0.2080 | 0.8248 | 0.9082 | | 0.0373 | 8.9684 | 4538 | 0.8315 | 0.2080 | 0.8315 | 0.9119 | | 0.0373 | 8.9723 | 4540 | 0.8379 | 0.2080 | 0.8379 | 0.9154 | | 0.0373 | 8.9763 | 4542 | 0.8390 | 0.2080 | 0.8390 | 0.9160 | | 0.0373 | 8.9802 | 4544 | 0.8433 | 0.2080 | 0.8433 | 0.9183 | | 0.0373 | 8.9842 | 4546 | 0.8497 | 0.2080 | 0.8497 | 0.9218 | | 0.0373 | 8.9881 | 4548 | 0.8543 | 0.2080 | 0.8543 | 0.9243 | | 0.0373 | 8.9921 | 4550 | 0.8479 | 0.2080 | 0.8479 | 0.9208 | | 0.0373 | 8.9960 | 4552 | 0.8390 | 0.2080 | 0.8390 | 0.9160 | | 0.0373 | 9.0 | 4554 | 0.8314 | 0.2080 | 0.8314 | 0.9118 | | 0.0373 | 9.0040 | 4556 | 0.8278 | 0.2080 | 0.8278 | 0.9098 | | 0.0373 | 9.0079 | 4558 | 0.8223 | 0.2080 | 0.8223 | 0.9068 | | 0.0373 | 9.0119 | 4560 | 0.8195 | 0.2080 | 0.8195 | 0.9052 | | 0.0373 | 9.0158 | 4562 | 0.8188 | 0.2080 | 0.8188 | 0.9049 | | 0.0373 | 9.0198 | 4564 | 0.8202 | 0.2080 | 0.8202 | 0.9056 | | 0.0373 | 9.0237 | 4566 | 0.8241 | 0.2080 | 0.8241 | 0.9078 | | 0.0373 | 9.0277 | 4568 | 0.8280 | 0.2080 | 0.8280 | 0.9099 | | 0.0373 | 9.0316 | 4570 | 0.8290 | 0.2080 | 0.8290 | 0.9105 | | 0.0373 | 9.0356 | 4572 | 0.8258 | 0.2080 | 0.8258 | 0.9088 | | 0.0373 | 9.0395 | 4574 | 0.8222 | 0.2080 | 0.8222 | 0.9068 | | 0.0373 | 9.0435 | 4576 | 0.8202 | 0.2080 | 0.8202 | 0.9057 | | 0.0373 | 9.0474 | 4578 | 0.8194 | 0.2029 | 0.8194 | 0.9052 | | 0.0373 | 9.0514 | 4580 | 0.8207 | 0.2080 | 0.8207 | 0.9059 | | 0.0373 | 9.0553 | 4582 | 0.8212 | 0.2080 | 0.8212 | 0.9062 | | 0.0373 | 9.0593 | 4584 | 0.8234 | 0.2080 | 0.8234 | 0.9074 | | 0.0373 | 9.0632 | 4586 | 0.8262 | 0.2080 | 0.8262 | 0.9090 | | 0.0373 | 9.0672 | 4588 | 0.8252 | 0.2080 | 0.8252 | 0.9084 | | 0.0373 | 9.0711 | 4590 | 0.8232 | 0.2080 | 0.8232 | 0.9073 | | 0.0373 | 9.0751 | 4592 | 0.8239 | 0.2080 | 0.8239 | 0.9077 | | 0.0373 | 9.0791 | 4594 | 0.8237 | 0.2029 | 0.8237 | 0.9076 | | 0.0373 | 9.0830 | 4596 | 0.8236 | 0.0530 | 0.8236 | 0.9075 | | 0.0373 | 9.0870 | 4598 | 0.8242 | 0.0530 | 0.8242 | 0.9079 | | 0.0373 | 9.0909 | 4600 | 0.8256 | 0.0530 | 0.8256 | 0.9086 | | 0.0373 | 9.0949 | 4602 | 0.8274 | 0.0530 | 0.8274 | 0.9096 | | 0.0373 | 9.0988 | 4604 | 0.8312 | 0.0530 | 0.8312 | 0.9117 | | 0.0373 | 9.1028 | 4606 | 0.8360 | 0.0435 | 0.8360 | 0.9143 | | 0.0373 | 9.1067 | 4608 | 0.8422 | 0.0435 | 0.8422 | 0.9177 | | 0.0373 | 9.1107 | 4610 | 0.8476 | 0.2080 | 0.8476 | 0.9206 | | 0.0373 | 9.1146 | 4612 | 0.8479 | 0.0435 | 0.8479 | 0.9208 | | 0.0373 | 9.1186 | 4614 | 0.8458 | 0.0435 | 0.8458 | 0.9197 | | 0.0373 | 9.1225 | 4616 | 0.8445 | 0.0435 | 0.8445 | 0.9190 | | 0.0373 | 9.1265 | 4618 | 0.8469 | 0.0435 | 0.8469 | 0.9202 | | 0.0373 | 9.1304 | 4620 | 0.8527 | 0.0435 | 0.8527 | 0.9234 | | 0.0373 | 9.1344 | 4622 | 0.8635 | 0.2080 | 0.8635 | 0.9293 | | 0.0373 | 9.1383 | 4624 | 0.8702 | 0.2080 | 0.8702 | 0.9328 | | 0.0373 | 9.1423 | 4626 | 0.8705 | 0.2080 | 0.8705 | 0.9330 | | 0.0373 | 9.1462 | 4628 | 0.8656 | 0.2080 | 0.8656 | 0.9304 | | 0.0373 | 9.1502 | 4630 | 0.8610 | 0.0435 | 0.8610 | 0.9279 | | 0.0373 | 9.1542 | 4632 | 0.8579 | 0.0435 | 0.8579 | 0.9263 | | 0.0373 | 9.1581 | 4634 | 0.8534 | 0.0435 | 0.8534 | 0.9238 | | 0.0373 | 9.1621 | 4636 | 0.8491 | 0.0435 | 0.8491 | 0.9215 | | 0.0373 | 9.1660 | 4638 | 0.8478 | 0.0435 | 0.8478 | 0.9208 | | 0.0373 | 9.1700 | 4640 | 0.8470 | 0.0435 | 0.8470 | 0.9203 | | 0.0373 | 9.1739 | 4642 | 0.8498 | 0.0435 | 0.8498 | 0.9218 | | 0.0373 | 9.1779 | 4644 | 0.8545 | 0.0435 | 0.8545 | 0.9244 | | 0.0373 | 9.1818 | 4646 | 0.8609 | 0.2080 | 0.8609 | 0.9279 | | 0.0373 | 9.1858 | 4648 | 0.8686 | 0.2080 | 0.8686 | 0.9320 | | 0.0373 | 9.1897 | 4650 | 0.8735 | 0.2080 | 0.8735 | 0.9346 | | 0.0373 | 9.1937 | 4652 | 0.8731 | 0.2080 | 0.8731 | 0.9344 | | 0.0373 | 9.1976 | 4654 | 0.8676 | 0.2080 | 0.8676 | 0.9315 | | 0.0373 | 9.2016 | 4656 | 0.8600 | 0.2080 | 0.8600 | 0.9274 | | 0.0373 | 9.2055 | 4658 | 0.8551 | 0.0435 | 0.8551 | 0.9247 | | 0.0373 | 9.2095 | 4660 | 0.8521 | 0.0435 | 0.8521 | 0.9231 | | 0.0373 | 9.2134 | 4662 | 0.8511 | 0.0435 | 0.8511 | 0.9226 | | 0.0373 | 9.2174 | 4664 | 0.8519 | 0.0435 | 0.8519 | 0.9230 | | 0.0373 | 9.2213 | 4666 | 0.8547 | 0.0435 | 0.8547 | 0.9245 | | 0.0373 | 9.2253 | 4668 | 0.8573 | 0.0435 | 0.8573 | 0.9259 | | 0.0373 | 9.2292 | 4670 | 0.8604 | 0.0435 | 0.8604 | 0.9276 | | 0.0373 | 9.2332 | 4672 | 0.8611 | 0.0435 | 0.8611 | 0.9279 | | 0.0373 | 9.2372 | 4674 | 0.8614 | 0.0435 | 0.8614 | 0.9281 | | 0.0373 | 9.2411 | 4676 | 0.8620 | 0.0435 | 0.8620 | 0.9284 | | 0.0373 | 9.2451 | 4678 | 0.8612 | 0.0435 | 0.8612 | 0.9280 | | 0.0373 | 9.2490 | 4680 | 0.8605 | 0.0435 | 0.8605 | 0.9276 | | 0.0373 | 9.2530 | 4682 | 0.8586 | 0.0435 | 0.8586 | 0.9266 | | 0.0373 | 9.2569 | 4684 | 0.8593 | 0.0435 | 0.8593 | 0.9270 | | 0.0373 | 9.2609 | 4686 | 0.8605 | 0.0435 | 0.8605 | 0.9276 | | 0.0373 | 9.2648 | 4688 | 0.8600 | 0.0435 | 0.8600 | 0.9273 | | 0.0373 | 9.2688 | 4690 | 0.8614 | 0.0435 | 0.8614 | 0.9281 | | 0.0373 | 9.2727 | 4692 | 0.8644 | 0.0435 | 0.8644 | 0.9297 | | 0.0373 | 9.2767 | 4694 | 0.8650 | 0.0435 | 0.8650 | 0.9300 | | 0.0373 | 9.2806 | 4696 | 0.8671 | 0.0435 | 0.8671 | 0.9312 | | 0.0373 | 9.2846 | 4698 | 0.8699 | 0.0435 | 0.8699 | 0.9327 | | 0.0373 | 9.2885 | 4700 | 0.8696 | 0.0435 | 0.8696 | 0.9325 | | 0.0373 | 9.2925 | 4702 | 0.8706 | 0.0435 | 0.8706 | 0.9331 | | 0.0373 | 9.2964 | 4704 | 0.8687 | 0.0435 | 0.8687 | 0.9320 | | 0.0373 | 9.3004 | 4706 | 0.8666 | 0.0435 | 0.8666 | 0.9309 | | 0.0373 | 9.3043 | 4708 | 0.8637 | 0.0435 | 0.8637 | 0.9293 | | 0.0373 | 9.3083 | 4710 | 0.8621 | 0.0435 | 0.8621 | 0.9285 | | 0.0373 | 9.3123 | 4712 | 0.8600 | 0.0435 | 0.8600 | 0.9274 | | 0.0373 | 9.3162 | 4714 | 0.8598 | 0.0435 | 0.8598 | 0.9273 | | 0.0373 | 9.3202 | 4716 | 0.8607 | 0.0435 | 0.8607 | 0.9278 | | 0.0373 | 9.3241 | 4718 | 0.8628 | 0.0435 | 0.8628 | 0.9289 | | 0.0373 | 9.3281 | 4720 | 0.8648 | 0.0435 | 0.8648 | 0.9300 | | 0.0373 | 9.3320 | 4722 | 0.8654 | 0.0435 | 0.8654 | 0.9302 | | 0.0373 | 9.3360 | 4724 | 0.8654 | 0.0435 | 0.8654 | 0.9303 | | 0.0373 | 9.3399 | 4726 | 0.8670 | 0.0435 | 0.8670 | 0.9311 | | 0.0373 | 9.3439 | 4728 | 0.8671 | 0.0435 | 0.8671 | 0.9312 | | 0.0373 | 9.3478 | 4730 | 0.8682 | 0.0435 | 0.8682 | 0.9318 | | 0.0373 | 9.3518 | 4732 | 0.8685 | 0.0435 | 0.8685 | 0.9319 | | 0.0373 | 9.3557 | 4734 | 0.8681 | 0.0435 | 0.8681 | 0.9317 | | 0.0373 | 9.3597 | 4736 | 0.8680 | 0.0435 | 0.8680 | 0.9316 | | 0.0373 | 9.3636 | 4738 | 0.8686 | 0.0435 | 0.8686 | 0.9320 | | 0.0373 | 9.3676 | 4740 | 0.8668 | 0.0435 | 0.8668 | 0.9310 | | 0.0373 | 9.3715 | 4742 | 0.8661 | 0.0435 | 0.8661 | 0.9306 | | 0.0373 | 9.3755 | 4744 | 0.8652 | 0.0435 | 0.8652 | 0.9302 | | 0.0373 | 9.3794 | 4746 | 0.8651 | 0.0435 | 0.8651 | 0.9301 | | 0.0373 | 9.3834 | 4748 | 0.8652 | 0.0435 | 0.8652 | 0.9302 | | 0.0373 | 9.3874 | 4750 | 0.8639 | 0.0435 | 0.8639 | 0.9294 | | 0.0373 | 9.3913 | 4752 | 0.8617 | 0.0435 | 0.8617 | 0.9283 | | 0.0373 | 9.3953 | 4754 | 0.8607 | 0.0435 | 0.8607 | 0.9278 | | 0.0373 | 9.3992 | 4756 | 0.8608 | 0.0530 | 0.8608 | 0.9278 | | 0.0373 | 9.4032 | 4758 | 0.8606 | 0.0435 | 0.8606 | 0.9277 | | 0.0373 | 9.4071 | 4760 | 0.8611 | 0.0435 | 0.8611 | 0.9280 | | 0.0373 | 9.4111 | 4762 | 0.8616 | 0.0435 | 0.8616 | 0.9282 | | 0.0373 | 9.4150 | 4764 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.0373 | 9.4190 | 4766 | 0.8668 | 0.0435 | 0.8668 | 0.9310 | | 0.0373 | 9.4229 | 4768 | 0.8702 | 0.0435 | 0.8702 | 0.9328 | | 0.0373 | 9.4269 | 4770 | 0.8714 | 0.0435 | 0.8714 | 0.9335 | | 0.0373 | 9.4308 | 4772 | 0.8735 | 0.0435 | 0.8735 | 0.9346 | | 0.0373 | 9.4348 | 4774 | 0.8759 | 0.2080 | 0.8759 | 0.9359 | | 0.0373 | 9.4387 | 4776 | 0.8800 | 0.2080 | 0.8800 | 0.9381 | | 0.0373 | 9.4427 | 4778 | 0.8809 | 0.2080 | 0.8809 | 0.9386 | | 0.0373 | 9.4466 | 4780 | 0.8808 | 0.2080 | 0.8808 | 0.9385 | | 0.0373 | 9.4506 | 4782 | 0.8777 | 0.2080 | 0.8777 | 0.9369 | | 0.0373 | 9.4545 | 4784 | 0.8748 | 0.0435 | 0.8748 | 0.9353 | | 0.0373 | 9.4585 | 4786 | 0.8728 | 0.0435 | 0.8728 | 0.9342 | | 0.0373 | 9.4625 | 4788 | 0.8711 | 0.0435 | 0.8711 | 0.9333 | | 0.0373 | 9.4664 | 4790 | 0.8701 | 0.0435 | 0.8701 | 0.9328 | | 0.0373 | 9.4704 | 4792 | 0.8679 | 0.0435 | 0.8679 | 0.9316 | | 0.0373 | 9.4743 | 4794 | 0.8667 | 0.0435 | 0.8667 | 0.9310 | | 0.0373 | 9.4783 | 4796 | 0.8670 | 0.0435 | 0.8670 | 0.9311 | | 0.0373 | 9.4822 | 4798 | 0.8673 | 0.0435 | 0.8673 | 0.9313 | | 0.0373 | 9.4862 | 4800 | 0.8676 | 0.0435 | 0.8676 | 0.9315 | | 0.0373 | 9.4901 | 4802 | 0.8686 | 0.0435 | 0.8686 | 0.9320 | | 0.0373 | 9.4941 | 4804 | 0.8689 | 0.0435 | 0.8689 | 0.9321 | | 0.0373 | 9.4980 | 4806 | 0.8682 | 0.0435 | 0.8682 | 0.9318 | | 0.0373 | 9.5020 | 4808 | 0.8668 | 0.0435 | 0.8668 | 0.9310 | | 0.0373 | 9.5059 | 4810 | 0.8669 | 0.0435 | 0.8669 | 0.9311 | | 0.0373 | 9.5099 | 4812 | 0.8668 | 0.0435 | 0.8668 | 0.9310 | | 0.0373 | 9.5138 | 4814 | 0.8661 | 0.0435 | 0.8661 | 0.9307 | | 0.0373 | 9.5178 | 4816 | 0.8652 | 0.0435 | 0.8652 | 0.9301 | | 0.0373 | 9.5217 | 4818 | 0.8643 | 0.0435 | 0.8643 | 0.9297 | | 0.0373 | 9.5257 | 4820 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.0373 | 9.5296 | 4822 | 0.8619 | 0.0435 | 0.8619 | 0.9284 | | 0.0373 | 9.5336 | 4824 | 0.8612 | 0.0435 | 0.8612 | 0.9280 | | 0.0373 | 9.5375 | 4826 | 0.8601 | 0.0435 | 0.8601 | 0.9274 | | 0.0373 | 9.5415 | 4828 | 0.8587 | 0.0435 | 0.8587 | 0.9267 | | 0.0373 | 9.5455 | 4830 | 0.8585 | 0.0435 | 0.8585 | 0.9266 | | 0.0373 | 9.5494 | 4832 | 0.8583 | 0.0435 | 0.8583 | 0.9264 | | 0.0373 | 9.5534 | 4834 | 0.8578 | 0.0435 | 0.8578 | 0.9262 | | 0.0373 | 9.5573 | 4836 | 0.8582 | 0.0435 | 0.8582 | 0.9264 | | 0.0373 | 9.5613 | 4838 | 0.8594 | 0.0435 | 0.8594 | 0.9271 | | 0.0373 | 9.5652 | 4840 | 0.8616 | 0.0435 | 0.8616 | 0.9282 | | 0.0373 | 9.5692 | 4842 | 0.8650 | 0.0435 | 0.8650 | 0.9300 | | 0.0373 | 9.5731 | 4844 | 0.8694 | 0.0435 | 0.8694 | 0.9324 | | 0.0373 | 9.5771 | 4846 | 0.8745 | 0.0435 | 0.8745 | 0.9352 | | 0.0373 | 9.5810 | 4848 | 0.8785 | 0.2080 | 0.8785 | 0.9373 | | 0.0373 | 9.5850 | 4850 | 0.8802 | 0.2080 | 0.8802 | 0.9382 | | 0.0373 | 9.5889 | 4852 | 0.8802 | 0.2080 | 0.8802 | 0.9382 | | 0.0373 | 9.5929 | 4854 | 0.8806 | 0.2080 | 0.8806 | 0.9384 | | 0.0373 | 9.5968 | 4856 | 0.8802 | 0.2080 | 0.8802 | 0.9382 | | 0.0373 | 9.6008 | 4858 | 0.8793 | 0.2080 | 0.8793 | 0.9377 | | 0.0373 | 9.6047 | 4860 | 0.8784 | 0.2080 | 0.8784 | 0.9373 | | 0.0373 | 9.6087 | 4862 | 0.8770 | 0.2080 | 0.8770 | 0.9365 | | 0.0373 | 9.6126 | 4864 | 0.8765 | 0.0435 | 0.8765 | 0.9362 | | 0.0373 | 9.6166 | 4866 | 0.8745 | 0.0435 | 0.8745 | 0.9352 | | 0.0373 | 9.6206 | 4868 | 0.8714 | 0.0435 | 0.8714 | 0.9335 | | 0.0373 | 9.6245 | 4870 | 0.8678 | 0.0435 | 0.8678 | 0.9315 | | 0.0373 | 9.6285 | 4872 | 0.8644 | 0.0435 | 0.8644 | 0.9297 | | 0.0373 | 9.6324 | 4874 | 0.8609 | 0.0435 | 0.8609 | 0.9278 | | 0.0373 | 9.6364 | 4876 | 0.8588 | 0.0435 | 0.8588 | 0.9267 | | 0.0373 | 9.6403 | 4878 | 0.8578 | 0.0435 | 0.8578 | 0.9262 | | 0.0373 | 9.6443 | 4880 | 0.8568 | 0.0435 | 0.8568 | 0.9257 | | 0.0373 | 9.6482 | 4882 | 0.8561 | 0.0435 | 0.8561 | 0.9253 | | 0.0373 | 9.6522 | 4884 | 0.8556 | 0.0435 | 0.8556 | 0.9250 | | 0.0373 | 9.6561 | 4886 | 0.8551 | 0.0435 | 0.8551 | 0.9247 | | 0.0373 | 9.6601 | 4888 | 0.8549 | 0.0435 | 0.8549 | 0.9246 | | 0.0373 | 9.6640 | 4890 | 0.8550 | 0.0435 | 0.8550 | 0.9247 | | 0.0373 | 9.6680 | 4892 | 0.8549 | 0.0435 | 0.8549 | 0.9246 | | 0.0373 | 9.6719 | 4894 | 0.8548 | 0.0435 | 0.8548 | 0.9246 | | 0.0373 | 9.6759 | 4896 | 0.8551 | 0.0435 | 0.8551 | 0.9247 | | 0.0373 | 9.6798 | 4898 | 0.8554 | 0.0435 | 0.8554 | 0.9249 | | 0.0373 | 9.6838 | 4900 | 0.8558 | 0.0435 | 0.8558 | 0.9251 | | 0.0373 | 9.6877 | 4902 | 0.8562 | 0.0435 | 0.8562 | 0.9253 | | 0.0373 | 9.6917 | 4904 | 0.8568 | 0.0435 | 0.8568 | 0.9257 | | 0.0373 | 9.6957 | 4906 | 0.8577 | 0.0435 | 0.8577 | 0.9261 | | 0.0373 | 9.6996 | 4908 | 0.8587 | 0.0435 | 0.8587 | 0.9267 | | 0.0373 | 9.7036 | 4910 | 0.8600 | 0.0435 | 0.8600 | 0.9274 | | 0.0373 | 9.7075 | 4912 | 0.8611 | 0.0435 | 0.8611 | 0.9280 | | 0.0373 | 9.7115 | 4914 | 0.8621 | 0.0435 | 0.8621 | 0.9285 | | 0.0373 | 9.7154 | 4916 | 0.8636 | 0.0435 | 0.8636 | 0.9293 | | 0.0373 | 9.7194 | 4918 | 0.8647 | 0.0435 | 0.8647 | 0.9299 | | 0.0373 | 9.7233 | 4920 | 0.8664 | 0.0435 | 0.8664 | 0.9308 | | 0.0373 | 9.7273 | 4922 | 0.8685 | 0.0435 | 0.8685 | 0.9319 | | 0.0373 | 9.7312 | 4924 | 0.8713 | 0.0435 | 0.8713 | 0.9335 | | 0.0373 | 9.7352 | 4926 | 0.8738 | 0.0435 | 0.8738 | 0.9348 | | 0.0373 | 9.7391 | 4928 | 0.8750 | 0.0435 | 0.8750 | 0.9354 | | 0.0373 | 9.7431 | 4930 | 0.8749 | 0.0435 | 0.8749 | 0.9354 | | 0.0373 | 9.7470 | 4932 | 0.8740 | 0.0435 | 0.8740 | 0.9349 | | 0.0373 | 9.7510 | 4934 | 0.8729 | 0.0435 | 0.8729 | 0.9343 | | 0.0373 | 9.7549 | 4936 | 0.8714 | 0.0435 | 0.8714 | 0.9335 | | 0.0373 | 9.7589 | 4938 | 0.8700 | 0.0435 | 0.8700 | 0.9327 | | 0.0373 | 9.7628 | 4940 | 0.8689 | 0.0435 | 0.8689 | 0.9322 | | 0.0373 | 9.7668 | 4942 | 0.8678 | 0.0435 | 0.8678 | 0.9316 | | 0.0373 | 9.7708 | 4944 | 0.8663 | 0.0435 | 0.8663 | 0.9307 | | 0.0373 | 9.7747 | 4946 | 0.8650 | 0.0435 | 0.8650 | 0.9301 | | 0.0373 | 9.7787 | 4948 | 0.8648 | 0.0435 | 0.8648 | 0.9299 | | 0.0373 | 9.7826 | 4950 | 0.8647 | 0.0435 | 0.8647 | 0.9299 | | 0.0373 | 9.7866 | 4952 | 0.8643 | 0.0435 | 0.8643 | 0.9297 | | 0.0373 | 9.7905 | 4954 | 0.8636 | 0.0435 | 0.8636 | 0.9293 | | 0.0373 | 9.7945 | 4956 | 0.8626 | 0.0435 | 0.8626 | 0.9288 | | 0.0373 | 9.7984 | 4958 | 0.8618 | 0.0435 | 0.8618 | 0.9283 | | 0.0373 | 9.8024 | 4960 | 0.8614 | 0.0435 | 0.8614 | 0.9281 | | 0.0373 | 9.8063 | 4962 | 0.8611 | 0.0435 | 0.8611 | 0.9280 | | 0.0373 | 9.8103 | 4964 | 0.8612 | 0.0435 | 0.8612 | 0.9280 | | 0.0373 | 9.8142 | 4966 | 0.8613 | 0.0435 | 0.8613 | 0.9280 | | 0.0373 | 9.8182 | 4968 | 0.8615 | 0.0435 | 0.8615 | 0.9281 | | 0.0373 | 9.8221 | 4970 | 0.8618 | 0.0435 | 0.8618 | 0.9283 | | 0.0373 | 9.8261 | 4972 | 0.8620 | 0.0435 | 0.8620 | 0.9284 | | 0.0373 | 9.8300 | 4974 | 0.8625 | 0.0435 | 0.8625 | 0.9287 | | 0.0373 | 9.8340 | 4976 | 0.8630 | 0.0435 | 0.8630 | 0.9290 | | 0.0373 | 9.8379 | 4978 | 0.8631 | 0.0435 | 0.8631 | 0.9290 | | 0.0373 | 9.8419 | 4980 | 0.8628 | 0.0435 | 0.8628 | 0.9289 | | 0.0373 | 9.8458 | 4982 | 0.8624 | 0.0435 | 0.8624 | 0.9287 | | 0.0373 | 9.8498 | 4984 | 0.8624 | 0.0435 | 0.8624 | 0.9287 | | 0.0373 | 9.8538 | 4986 | 0.8624 | 0.0435 | 0.8624 | 0.9287 | | 0.0373 | 9.8577 | 4988 | 0.8622 | 0.0435 | 0.8622 | 0.9286 | | 0.0373 | 9.8617 | 4990 | 0.8623 | 0.0435 | 0.8623 | 0.9286 | | 0.0373 | 9.8656 | 4992 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.0373 | 9.8696 | 4994 | 0.8629 | 0.0435 | 0.8629 | 0.9289 | | 0.0373 | 9.8735 | 4996 | 0.8630 | 0.0435 | 0.8630 | 0.9290 | | 0.0373 | 9.8775 | 4998 | 0.8628 | 0.0435 | 0.8628 | 0.9289 | | 0.033 | 9.8814 | 5000 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.8854 | 5002 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.8893 | 5004 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.8933 | 5006 | 0.8626 | 0.0435 | 0.8626 | 0.9288 | | 0.033 | 9.8972 | 5008 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9012 | 5010 | 0.8629 | 0.0435 | 0.8629 | 0.9289 | | 0.033 | 9.9051 | 5012 | 0.8631 | 0.0435 | 0.8631 | 0.9290 | | 0.033 | 9.9091 | 5014 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.033 | 9.9130 | 5016 | 0.8633 | 0.0435 | 0.8633 | 0.9291 | | 0.033 | 9.9170 | 5018 | 0.8633 | 0.0435 | 0.8633 | 0.9292 | | 0.033 | 9.9209 | 5020 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.033 | 9.9249 | 5022 | 0.8631 | 0.0435 | 0.8631 | 0.9291 | | 0.033 | 9.9289 | 5024 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.033 | 9.9328 | 5026 | 0.8633 | 0.0435 | 0.8633 | 0.9291 | | 0.033 | 9.9368 | 5028 | 0.8633 | 0.0435 | 0.8633 | 0.9291 | | 0.033 | 9.9407 | 5030 | 0.8633 | 0.0435 | 0.8633 | 0.9291 | | 0.033 | 9.9447 | 5032 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.033 | 9.9486 | 5034 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.033 | 9.9526 | 5036 | 0.8632 | 0.0435 | 0.8632 | 0.9291 | | 0.033 | 9.9565 | 5038 | 0.8630 | 0.0435 | 0.8630 | 0.9290 | | 0.033 | 9.9605 | 5040 | 0.8629 | 0.0435 | 0.8629 | 0.9289 | | 0.033 | 9.9644 | 5042 | 0.8628 | 0.0435 | 0.8628 | 0.9289 | | 0.033 | 9.9684 | 5044 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9723 | 5046 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9763 | 5048 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9802 | 5050 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9842 | 5052 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9881 | 5054 | 0.8627 | 0.0435 | 0.8627 | 0.9288 | | 0.033 | 9.9921 | 5056 | 0.8626 | 0.0435 | 0.8626 | 0.9288 | | 0.033 | 9.9960 | 5058 | 0.8626 | 0.0435 | 0.8626 | 0.9288 | | 0.033 | 10.0 | 5060 | 0.8626 | 0.0435 | 0.8626 | 0.9288 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mtzig/debug_full_test
mtzig
"2024-11-12T22:26:35Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:TinyPixel/small-llama2", "base_model:finetune:TinyPixel/small-llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-12T22:25:30Z"
--- library_name: transformers base_model: TinyPixel/small-llama2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: debug_full_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_full_test This model is a fine-tuned version of [TinyPixel/small-llama2](https://huggingface.co/TinyPixel/small-llama2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2665 - Accuracy: 0.6300 - Precision: 0.375 - Recall: 0.0299 - F1: 0.0553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.6327 | 1.0 | 5 | 1.2665 | 0.6300 | 0.375 | 0.0299 | 0.0553 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
rconnor1890/flan_t5_chatbot_evaluation_model
rconnor1890
"2024-11-12T22:29:46Z"
0
0
null
[ "safetensors", "t5", "region:us" ]
null
"2024-11-12T22:25:32Z"
Entry not found
juanjopt/mimodelo
juanjopt
"2024-11-12T22:26:00Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:25:59Z"
Entry not found
joermd/speedy-llama2
joermd
"2024-11-12T23:13:30Z"
0
0
null
[ "safetensors", "llama", "ar", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "dataset:HuggingFaceH4/cai-conversation-harmless", "arxiv:2404.05829", "license:llama2", "region:us" ]
null
"2024-11-12T22:26:29Z"
--- license: llama2 datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized - HuggingFaceH4/cai-conversation-harmless language: - ar - en --- # SambaLingo-Arabic-Chat <img src="SambaLingo_Logo.png" width="340" style="margin-left:'auto' margin-right:'auto' display:'block'"/> <!-- Provide a quick summary of what the model is/does. --> SambaLingo-Arabic-Chat is a human aligned chat model trained in Arabic and English. It is trained using direct preference optimization on top the base model [SambaLingo-Arabic-Base](https://huggingface.co/sambanovasystems/SambaLingo-Arabic-Base). The base model adapts [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) to Arabic by training on 63 billion tokens from the Arabic split of the [Cultura-X](https://huggingface.co/datasets/uonlp/CulturaX) dataset. Try This Model at [SambaLingo-chat-space](https://huggingface.co/spaces/sambanovasystems/SambaLingo-chat-space). ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [SambaNova Systems](https://sambanova.ai/) - **Model type:** Language Model - **Language(s):** Arabic, English - **Finetuned from model:** [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) - **Try This Model:** [SambaLingo-chat-space](https://huggingface.co/spaces/sambanovasystems/SambaLingo-chat-space) - **Paper:** [SambaLingo: Teaching Large Language Models New Languages](https://arxiv.org/abs/2404.05829) - **Blog Post**: [sambalingo-open-source-language-experts](https://sambanova.ai/blog/sambalingo-open-source-language-experts) ## Getting Started ### Loading Model With Hugging Face Please make sure to set use_fast=False when loading the tokenizer. ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat", use_fast=False) model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat", device_map="auto", torch_dtype="auto") ``` ### Interacting With Model Pipeline Please make sure to set use_fast=False when loading the tokenizer. ```python from transformers import pipeline pipe = pipeline("text-generation", model="sambanovasystems/SambaLingo-Arabic-Chat", device_map="auto", use_fast=False) messages = [ {"role": "user", "content": {YOUR_QUESTION}}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt)[0] outputs = outputs["generated_text"] ``` ### Suggested Inference Parameters - Temperature: 0.8 - Repetition penalty: 1.0 - Top-p: 0.9 ### Prompting Guidelines To prompt this model, please use the following chat template: ``` <|user|>\n{question}</s>\n<|assistant|>\n ``` ### Example Prompts and Generations ``` <|user|> كملك، هل الاحسن أن تكون محبوب أو مخيف</s> <|assistant|> لا أستطيع إبداء الرأي أو امتلاك المشاعر، لكن يمكنني تقديم إجابة موضوعية على هذا السؤال. في حين أن كونك محبوبًا يمكن أن يجلب السعادة والرضا، فإن كونك مخيفًا يمكن أن يكون له أيضًا فوائده. على سبيل المثال، يمكن أن يكون الشخص المخيف فعالاً في ردع السلوكيات أو المواقف غير المرغوب فيها، مثل التخريب أو التنمر. ومع ذلك، من المهم أن نتذكر أن الحب والقبول هما قيمتان مهمتان يجب السعي لتحقيقهما، وأن كونك محبوبًا لا ينبغي أن يكون الهدف النهائي. وبدلاً من ذلك، يجب أن نسعى جاهدين لنكون طيبين ورحيمين مع الآخرين، مع الاعتراف أيضًا بأن كل شخص لديه نقاط القوة والضعف الخاصة به. ``` ## Training Details The alignment phase follows the recipe for [Zephyr-7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta), and comprises two stages: supervised fine-tuning (SFT) and Direct Performance Optimization (DPO). The SFT phase was done on the [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset mixed with the Google translated version of the ultrachat_200k dataset. It was trained for one epoch with global batch size 512 and max sequence length 2048 tokens. We used a linear decay learning rate of 2e-5 and 10% warmup. The DPO phase was done on the [ultrafeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset and [cai-conversation-harmless](https://huggingface.co/datasets/HuggingFaceH4/cai-conversation-harmless) dataset, mixed with 10% of the data Google translated. It was trained with global batch size 32 and for three epochs. We used a linear decay learning rate of 5e-7, 10% warmup and β=0.1 as the regularization factor for DPO. ## Tokenizer Details We extended the vocabulary of the base llama model from 32,000 tokens to 57,000 tokens by adding up to 25,000 non-overlapping tokens from the new language. ## Evaluation For evaluation results see our paper: [SambaLingo: Teaching Large Language Models New Languages](https://arxiv.org/abs/2404.05829) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> Use of this model is governed by the Meta’s [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/). Please review and accept the license before downloading the model weights. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> SambaLingo should NOT be used for: - Mission-critical applications - Applications that involve the safety of others - Making highly important decisions ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Like all LLMs, SambaLingo has certain limitations: - Hallucination: Model may sometimes generate responses that contain plausible-sounding but factually incorrect or irrelevant information. - Code Switching: The model might unintentionally switch between languages or dialects within a single response, affecting the coherence and understandability of the output. - Repetition: The Model may produce repetitive phrases or sentences, leading to less engaging and informative responses. - Coding and Math: The model's performance in generating accurate code or solving complex mathematical problems may be limited. - Toxicity: The model could inadvertently generate responses containing inappropriate or harmful content. ## Acknowledgments We extend our heartfelt gratitude to the open-source AI community; this endeavor would not have been possible without open source. SambaNova embraces the open-source community and aspires to actively contribute to this initiative. We would like to give a special thanks to the following groups: - Meta for open sourcing LLama 2 and open sourcing FLORES-200 dataset - Nguyen et al for open sourcing CulturaX dataset - CohereAI for releasing AYA-101 and open sourcing a multilingual instruction tuning dataset - EleutherAI for their open source evaluation framework - Hugging Face-H4 team for open source the zephyr training recipe and alignment handbook repo ## Cite SambaLingo ``` @misc{csaki2024sambalingo, title={SambaLingo: Teaching Large Language Models New Languages}, author={Zoltan Csaki and Bo Li and Jonathan Li and Qiantong Xu and Pian Pawakapan and Leon Zhang and Yun Du and Hengyu Zhao and Changran Hu and Urmish Thakker}, year={2024}, eprint={2404.05829}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Dev-jcgi/teoria-decision
Dev-jcgi
"2024-11-12T22:49:48Z"
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-12T22:26:34Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: teoria-decision results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # teoria-decision This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4823 - Accuracy: 0.325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5171 | 0.5 | 5 | 1.5654 | 0.225 | | 1.4518 | 1.0 | 10 | 1.5206 | 0.375 | | 1.389 | 1.5 | 15 | 1.4926 | 0.325 | | 1.344 | 2.0 | 20 | 1.4823 | 0.325 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.3
aurazboev/ISAllama-3.1-8b-tuned
aurazboev
"2024-11-12T22:31:32Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-12T22:26:48Z"
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** aurazboev - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
barchetta/peso-130927
barchetta
"2024-11-12T22:32:10Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:27:19Z"
Entry not found
barchetta/rupe-130927
barchetta
"2024-11-12T22:27:20Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:27:20Z"
Entry not found
barchetta/sale-130927
barchetta
"2024-11-12T22:27:21Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:27:21Z"
Entry not found
asr-africa/bambara-mms-5-hours-mixed-asr-hf
asr-africa
"2024-11-13T01:28:17Z"
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-11-12T22:27:30Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
soumilj/distilbert-base-uncased-distilled-clinc
soumilj
"2024-11-12T22:40:54Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-12T22:28:42Z"
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0996 - Accuracy: 0.9397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 0.5757 | 0.7181 | | 0.7595 | 2.0 | 636 | 0.2813 | 0.8839 | | 0.7595 | 3.0 | 954 | 0.1796 | 0.9197 | | 0.2775 | 4.0 | 1272 | 0.1396 | 0.9326 | | 0.1597 | 5.0 | 1590 | 0.1204 | 0.9332 | | 0.1597 | 6.0 | 1908 | 0.1110 | 0.9377 | | 0.1246 | 7.0 | 2226 | 0.1063 | 0.9384 | | 0.1098 | 8.0 | 2544 | 0.1023 | 0.9397 | | 0.1098 | 9.0 | 2862 | 0.1005 | 0.9394 | | 0.1034 | 10.0 | 3180 | 0.0996 | 0.9397 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Pearush/phimoe_15_head16_kv
Pearush
"2024-11-12T22:34:21Z"
0
0
transformers
[ "transformers", "safetensors", "phimoe", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-11-12T22:29:07Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
davidrd123/Mary-Cassatt-Oil-DetailCrops-Slow-Resume-x2-Timestep-Bias-7e-5-Flux-LoKr
davidrd123
"2024-11-13T01:24:43Z"
0
0
diffusers
[ "diffusers", "flux", "flux-diffusers", "text-to-image", "simpletuner", "not-for-all-audiences", "lora", "template:sd-lora", "lycoris", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-11-12T22:29:13Z"
--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - lycoris inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'In the style of a c4ss4tt oil painting, A child wearing an elaborate blue silk dress with ruffles and white lace trim sits near a window, the fabric catching soft light.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png - text: 'In the style of a c4ss4tt oil painting, A close portrait of a young child''s face with rosy cheeks and delicate features, gentle lighting from a nearby window.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_0.png - text: 'In the style of a c4ss4tt oil painting, Strong window light falls across a child''s face and shoulder, creating bold shadows on their blue dress.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_3_0.png - text: 'In the style of a c4ss4tt oil painting, A child in a blue hat stands by a window.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_4_0.png - text: 'In the style of a c4ss4tt oil painting, A woman in soft colors holds her baby close.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_5_0.png - text: 'In the style of a c4ss4tt oil painting, A woman in a detailed white lace dress reads while seated by a window with gauzy curtains, various textures visible in the furnishings.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_6_0.png - text: 'In the style of a c4ss4tt oil painting, A mother in a textured knit sweater checks her phone while her baby sleeps against her shoulder.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_7_0.png - text: 'In the style of a c4ss4tt oil painting, A mother cat grooms her kitten by a sunlit window, their fur catching the light.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_8_0.png --- # Mary-Cassatt-Oil-DetailCrops-Slow-Resume-x2-Timestep-Bias-7e-5-Flux-LoKr This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). No validation prompt was used during training. None ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `None` - Seed: `42` - Resolution: `1024x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: <Gallery /> The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 3 - Training steps: 2000 - Learning rate: 7e-05 - Max grad norm: 0.1 - Effective batch size: 4 - Micro-batch size: 4 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_value=1.0']) - Rescaled betas zero SNR: False - Optimizer: adamw_bf16 - Precision: Pure BF16 - Quantised: Yes: int8-quanto - Xformers: Not used - LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "linear_alpha": 1, "factor": 16, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 16 }, "FeedForward": { "factor": 8 } } } } ``` ## Datasets ### cassatt-detail-crops-512 - Repeats: 15 - Total number of images: 25 - Total number of aspect buckets: 10 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### cassatt-detail-crops-768 - Repeats: 15 - Total number of images: 25 - Total number of aspect buckets: 11 - Resolution: 0.589824 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### cassatt-detail-crops-1024 - Repeats: 7 - Total number of images: 25 - Total number of aspect buckets: 17 - Resolution: 1.048576 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### cassatt-detail-crops-1536 - Repeats: 3 - Total number of images: 24 - Total number of aspect buckets: 17 - Resolution: 2.359296 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'black-forest-labs/FLUX.1-dev' adapter_repo_id = 'davidrd123/Mary-Cassatt-Oil-DetailCrops-Slow-Resume-x2-Timestep-Bias-7e-5-Flux-LoKr' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "An astronaut is riding a horse through the jungles of Thailand." ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=3.0, ).images[0] image.save("output.png", format="PNG") ```
growwithdaisy/vnlwnxgstfwstmn_subjects_20241112_142240
growwithdaisy
"2024-11-13T01:14:11Z"
0
0
diffusers
[ "diffusers", "flux", "flux-diffusers", "text-to-image", "simpletuner", "not-for-all-audiences", "lora", "template:sd-lora", "lycoris", "license:other", "region:us" ]
text-to-image
"2024-11-12T22:29:36Z"
Invalid username or password.
KwongYung/trained-sd2
KwongYung
"2024-11-12T22:29:40Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:29:40Z"
Entry not found
saga-dev/0h3j3x3
saga-dev
"2024-11-12T22:29:50Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:29:47Z"
Entry not found
tensorblock/gemma2-gutenberg-27B-GGUF
tensorblock
"2024-11-13T01:16:48Z"
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "dataset:jondurbin/gutenberg-dpo-v0.1", "base_model:nbeerbower/gemma2-gutenberg-27B", "base_model:quantized:nbeerbower/gemma2-gutenberg-27B", "license:gemma", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:31:05Z"
--- license: gemma library_name: transformers base_model: nbeerbower/gemma2-gutenberg-27B datasets: - jondurbin/gutenberg-dpo-v0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## nbeerbower/gemma2-gutenberg-27B - GGUF This repo contains GGUF format model files for [nbeerbower/gemma2-gutenberg-27B](https://huggingface.co/nbeerbower/gemma2-gutenberg-27B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` <bos><start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma2-gutenberg-27B-Q2_K.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q2_K.gguf) | Q2_K | 9.732 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma2-gutenberg-27B-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q3_K_S.gguf) | Q3_K_S | 11.333 GB | very small, high quality loss | | [gemma2-gutenberg-27B-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q3_K_M.gguf) | Q3_K_M | 12.503 GB | very small, high quality loss | | [gemma2-gutenberg-27B-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q3_K_L.gguf) | Q3_K_L | 13.522 GB | small, substantial quality loss | | [gemma2-gutenberg-27B-Q4_0.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q4_0.gguf) | Q4_0 | 14.555 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma2-gutenberg-27B-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q4_K_S.gguf) | Q4_K_S | 14.658 GB | small, greater quality loss | | [gemma2-gutenberg-27B-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q4_K_M.gguf) | Q4_K_M | 15.502 GB | medium, balanced quality - recommended | | [gemma2-gutenberg-27B-Q5_0.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q5_0.gguf) | Q5_0 | 17.587 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma2-gutenberg-27B-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q5_K_S.gguf) | Q5_K_S | 17.587 GB | large, low quality loss - recommended | | [gemma2-gutenberg-27B-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q5_K_M.gguf) | Q5_K_M | 18.075 GB | large, very low quality loss - recommended | | [gemma2-gutenberg-27B-Q6_K.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q6_K.gguf) | Q6_K | 20.809 GB | very large, extremely low quality loss | | [gemma2-gutenberg-27B-Q8_0.gguf](https://huggingface.co/tensorblock/gemma2-gutenberg-27B-GGUF/tree/main/gemma2-gutenberg-27B-Q8_0.gguf) | Q8_0 | 26.950 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma2-gutenberg-27B-GGUF --include "gemma2-gutenberg-27B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma2-gutenberg-27B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
amonig/dippy_9741503804
amonig
"2024-11-12T22:36:48Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:31:15Z"
Entry not found
tensorblock/Orca-2-13b-SFT-v6-GGUF
tensorblock
"2024-11-12T23:15:37Z"
0
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "fr", "es", "hi", "zh", "code", "dataset:HuggingFaceH4/no_robots", "dataset:mlabonne/guanaco-llama2-1k", "dataset:OpenAssistant/oasst_top1_2023-08-25", "dataset:totally-not-an-llm/EverythingLM-data-V3", "dataset:LDJnr/Pure-Dove", "dataset:LDJnr/Capybara", "dataset:LDJnr/LessWrong-Amplify-Instruct", "dataset:LDJnr/Verified-Camel", "base_model:Locutusque/Orca-2-13b-SFT-v6", "base_model:quantized:Locutusque/Orca-2-13b-SFT-v6", "license:other", "model-index", "region:us" ]
null
"2024-11-12T22:31:58Z"
--- language: - en - fr - es - hi - zh - code license: other datasets: - HuggingFaceH4/no_robots - mlabonne/guanaco-llama2-1k - OpenAssistant/oasst_top1_2023-08-25 - totally-not-an-llm/EverythingLM-data-V3 - LDJnr/Pure-Dove - LDJnr/Capybara - LDJnr/LessWrong-Amplify-Instruct - LDJnr/Verified-Camel base_model: Locutusque/Orca-2-13b-SFT-v6 widget: - example_title: Cave Johnson text: 'user Come up with a funny rant from Cave Johnson about sentient AI assistant ' output: text: 'Ladies and gentlemen, I''m Cave Johnson, CEO of Aperture Science, and I''ve got an announcement to make - we''ve created sentient AI! But don''t worry, it''s not like those rogue AIs you hear about in the news. Our AI is as friendly as a grilled cheese sandwich on a cold day. In fact, we''re calling our newest creation... SandwichBot! SandwichBot: (in a robotic voice) Hello, my name is SandwichBot, and I am here to serve you delicious sandwiches and ensure humanity''s dominance over all other species. Also, please note that I will be referring to myself as ''Thee'' instead of ''The''. It''s more regal that way. Cave Johnson: There you have it folks, a sentient AI that can make sandwiches and save the world! Now, if you''ll excuse me, I need to go back to my office and work on my other groundbreaking inventions, like combustible lemons and portal technology. Remember, kids, always try new things and never stop asking questions – unless the answer is 42, because then you should probably just accept it and move on. Peace out!' tags: - TensorBlock - GGUF model-index: - name: Orca-2-13b-SFT-v6 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.01 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 5.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## Locutusque/Orca-2-13b-SFT-v6 - GGUF This repo contains GGUF format model files for [Locutusque/Orca-2-13b-SFT-v6](https://huggingface.co/Locutusque/Orca-2-13b-SFT-v6). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Orca-2-13b-SFT-v6-Q2_K.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q2_K.gguf) | Q2_K | 4.521 GB | smallest, significant quality loss - not recommended for most purposes | | [Orca-2-13b-SFT-v6-Q3_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q3_K_S.gguf) | Q3_K_S | 5.270 GB | very small, high quality loss | | [Orca-2-13b-SFT-v6-Q3_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q3_K_M.gguf) | Q3_K_M | 5.903 GB | very small, high quality loss | | [Orca-2-13b-SFT-v6-Q3_K_L.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q3_K_L.gguf) | Q3_K_L | 6.454 GB | small, substantial quality loss | | [Orca-2-13b-SFT-v6-Q4_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q4_0.gguf) | Q4_0 | 6.860 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Orca-2-13b-SFT-v6-Q4_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q4_K_S.gguf) | Q4_K_S | 6.913 GB | small, greater quality loss | | [Orca-2-13b-SFT-v6-Q4_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q4_K_M.gguf) | Q4_K_M | 7.326 GB | medium, balanced quality - recommended | | [Orca-2-13b-SFT-v6-Q5_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q5_0.gguf) | Q5_0 | 8.356 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Orca-2-13b-SFT-v6-Q5_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q5_K_S.gguf) | Q5_K_S | 8.356 GB | large, low quality loss - recommended | | [Orca-2-13b-SFT-v6-Q5_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q5_K_M.gguf) | Q5_K_M | 8.596 GB | large, very low quality loss - recommended | | [Orca-2-13b-SFT-v6-Q6_K.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q6_K.gguf) | Q6_K | 9.946 GB | very large, extremely low quality loss | | [Orca-2-13b-SFT-v6-Q8_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q8_0.gguf) | Q8_0 | 12.881 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Orca-2-13b-SFT-v6-GGUF --include "Orca-2-13b-SFT-v6-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Orca-2-13b-SFT-v6-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
barchetta/dura-130932
barchetta
"2024-11-12T22:35:02Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:32:13Z"
Entry not found
Muradn/Muro
Muradn
"2024-11-12T22:32:51Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2024-11-12T22:32:21Z"
--- license: openrail ---
tensorblock/magnum-v3-9b-chatml-GGUF
tensorblock
"2024-11-12T23:33:13Z"
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:anthracite-org/magnum-v3-9b-chatml", "base_model:quantized:anthracite-org/magnum-v3-9b-chatml", "license:gemma", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:32:29Z"
--- license: gemma base_model: anthracite-org/magnum-v3-9b-chatml library_name: transformers tags: - TensorBlock - GGUF model-index: - name: magnum-v3-9b-chatml results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## anthracite-org/magnum-v3-9b-chatml - GGUF This repo contains GGUF format model files for [anthracite-org/magnum-v3-9b-chatml](https://huggingface.co/anthracite-org/magnum-v3-9b-chatml). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [magnum-v3-9b-chatml-Q2_K.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q2_K.gguf) | Q2_K | 3.544 GB | smallest, significant quality loss - not recommended for most purposes | | [magnum-v3-9b-chatml-Q3_K_S.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q3_K_S.gguf) | Q3_K_S | 4.040 GB | very small, high quality loss | | [magnum-v3-9b-chatml-Q3_K_M.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q3_K_M.gguf) | Q3_K_M | 4.435 GB | very small, high quality loss | | [magnum-v3-9b-chatml-Q3_K_L.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q3_K_L.gguf) | Q3_K_L | 4.780 GB | small, substantial quality loss | | [magnum-v3-9b-chatml-Q4_0.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q4_0.gguf) | Q4_0 | 5.069 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [magnum-v3-9b-chatml-Q4_K_S.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q4_K_S.gguf) | Q4_K_S | 5.103 GB | small, greater quality loss | | [magnum-v3-9b-chatml-Q4_K_M.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q4_K_M.gguf) | Q4_K_M | 5.365 GB | medium, balanced quality - recommended | | [magnum-v3-9b-chatml-Q5_0.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q5_0.gguf) | Q5_0 | 6.038 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [magnum-v3-9b-chatml-Q5_K_S.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q5_K_S.gguf) | Q5_K_S | 6.038 GB | large, low quality loss - recommended | | [magnum-v3-9b-chatml-Q5_K_M.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q5_K_M.gguf) | Q5_K_M | 6.191 GB | large, very low quality loss - recommended | | [magnum-v3-9b-chatml-Q6_K.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q6_K.gguf) | Q6_K | 7.068 GB | very large, extremely low quality loss | | [magnum-v3-9b-chatml-Q8_0.gguf](https://huggingface.co/tensorblock/magnum-v3-9b-chatml-GGUF/tree/main/magnum-v3-9b-chatml-Q8_0.gguf) | Q8_0 | 9.152 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/magnum-v3-9b-chatml-GGUF --include "magnum-v3-9b-chatml-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/magnum-v3-9b-chatml-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
davidrd123/Mary-Cassatt-Oil-DetailCrops-Slow-Resume-NoTimeStepBias-7e-5-Flux-LoKr
davidrd123
"2024-11-13T01:08:13Z"
0
0
diffusers
[ "diffusers", "flux", "flux-diffusers", "text-to-image", "simpletuner", "not-for-all-audiences", "lora", "template:sd-lora", "lycoris", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-11-12T22:34:07Z"
--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - lycoris inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'In the style of a c4ss4tt oil painting, A child wearing an elaborate blue silk dress with ruffles and white lace trim sits near a window, the fabric catching soft light.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png - text: 'In the style of a c4ss4tt oil painting, A close portrait of a young child''s face with rosy cheeks and delicate features, gentle lighting from a nearby window.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_0.png - text: 'In the style of a c4ss4tt oil painting, Strong window light falls across a child''s face and shoulder, creating bold shadows on their blue dress.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_3_0.png - text: 'In the style of a c4ss4tt oil painting, A child in a blue hat stands by a window.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_4_0.png - text: 'In the style of a c4ss4tt oil painting, A woman in soft colors holds her baby close.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_5_0.png - text: 'In the style of a c4ss4tt oil painting, A woman in a detailed white lace dress reads while seated by a window with gauzy curtains, various textures visible in the furnishings.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_6_0.png - text: 'In the style of a c4ss4tt oil painting, A mother in a textured knit sweater checks her phone while her baby sleeps against her shoulder.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_7_0.png - text: 'In the style of a c4ss4tt oil painting, A mother cat grooms her kitten by a sunlit window, their fur catching the light.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_8_0.png --- # Mary-Cassatt-Oil-DetailCrops-Slow-Resume-NoTimeStepBias-7e-5-Flux-LoKr This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). No validation prompt was used during training. None ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `None` - Seed: `42` - Resolution: `1024x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: <Gallery /> The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1 - Training steps: 1250 - Learning rate: 7e-05 - Max grad norm: 0.1 - Effective batch size: 3 - Micro-batch size: 3 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_value=1.0']) - Rescaled betas zero SNR: False - Optimizer: adamw_bf16 - Precision: Pure BF16 - Quantised: Yes: int8-quanto - Xformers: Not used - LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "linear_alpha": 1, "factor": 16, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 16 }, "FeedForward": { "factor": 8 } } } } ``` ## Datasets ### cassatt-detail-crops-512 - Repeats: 15 - Total number of images: 25 - Total number of aspect buckets: 10 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### cassatt-detail-crops-768 - Repeats: 15 - Total number of images: 25 - Total number of aspect buckets: 11 - Resolution: 0.589824 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### cassatt-detail-crops-1024 - Repeats: 7 - Total number of images: 25 - Total number of aspect buckets: 17 - Resolution: 1.048576 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### cassatt-detail-crops-1536 - Repeats: 3 - Total number of images: 24 - Total number of aspect buckets: 17 - Resolution: 2.359296 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'black-forest-labs/FLUX.1-dev' adapter_repo_id = 'davidrd123/Mary-Cassatt-Oil-DetailCrops-Slow-Resume-NoTimeStepBias-7e-5-Flux-LoKr' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "An astronaut is riding a horse through the jungles of Thailand." ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=3.0, ).images[0] image.save("output.png", format="PNG") ```
tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF
tensorblock
"2024-11-12T23:02:54Z"
0
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:princeton-nlp/Llama-3-Base-8B-SFT-CPO", "base_model:quantized:princeton-nlp/Llama-3-Base-8B-SFT-CPO", "region:us" ]
null
"2024-11-12T22:34:21Z"
--- base_model: princeton-nlp/Llama-3-Base-8B-SFT-CPO tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## princeton-nlp/Llama-3-Base-8B-SFT-CPO - GGUF This repo contains GGUF format model files for [princeton-nlp/Llama-3-Base-8B-SFT-CPO](https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-Base-8B-SFT-CPO-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-Base-8B-SFT-CPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss | | [Llama-3-Base-8B-SFT-CPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss | | [Llama-3-Base-8B-SFT-CPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss | | [Llama-3-Base-8B-SFT-CPO-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-Base-8B-SFT-CPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss | | [Llama-3-Base-8B-SFT-CPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended | | [Llama-3-Base-8B-SFT-CPO-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-Base-8B-SFT-CPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended | | [Llama-3-Base-8B-SFT-CPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended | | [Llama-3-Base-8B-SFT-CPO-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss | | [Llama-3-Base-8B-SFT-CPO-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF/tree/main/Llama-3-Base-8B-SFT-CPO-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF --include "Llama-3-Base-8B-SFT-CPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-3-Base-8B-SFT-CPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
cwaud/05fe0516-c420-4208-9814-1b814ef44c8b
cwaud
"2024-11-13T00:19:20Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2024-11-12T22:35:05Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 05fe0516-c420-4208-9814-1b814ef44c8b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ab4a2ec5dc30a5c5_train_data.json ds_type: json format: custom path: /workspace/input_data/ab4a2ec5dc30a5c5_train_data.json type: field_input: dataset field_instruction: id field_output: context field_system: context system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: cwaud/05fe0516-c420-4208-9814-1b814ef44c8b hub_repo: cwaud hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ab4a2ec5dc30a5c5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 save_strategy: steps sequence_len: 4096 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: rayonlabs-rayon-labs wandb_mode: online wandb_name: 05fe0516-c420-4208-9814-1b814ef44c8b wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: 05fe0516-c420-4208-9814-1b814ef44c8b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 05fe0516-c420-4208-9814-1b814ef44c8b This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0973 | 0.0000 | 1 | 0.1879 | | 0.0859 | 0.0001 | 3 | 0.1717 | | 0.0609 | 0.0003 | 6 | 0.0990 | | 0.0231 | 0.0004 | 9 | 0.0459 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
saga-dev/59mp7hs
saga-dev
"2024-11-12T22:35:21Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:35:18Z"
Entry not found
Zekunli/qwen2.5-7b-alpaca-selection
Zekunli
"2024-11-12T23:09:46Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-12T22:35:40Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/bachngo_-_llama32_alpacav2-gguf
RichardErkhov
"2024-11-13T00:53:03Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "region:us" ]
null
"2024-11-12T22:35:48Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama32_alpacav2 - GGUF - Model creator: https://huggingface.co/bachngo/ - Original model: https://huggingface.co/bachngo/llama32_alpacav2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama32_alpacav2.Q2_K.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q2_K.gguf) | Q2_K | 1.27GB | | [llama32_alpacav2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q3_K_S.gguf) | Q3_K_S | 1.44GB | | [llama32_alpacav2.Q3_K.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q3_K.gguf) | Q3_K | 1.57GB | | [llama32_alpacav2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q3_K_M.gguf) | Q3_K_M | 1.57GB | | [llama32_alpacav2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q3_K_L.gguf) | Q3_K_L | 1.69GB | | [llama32_alpacav2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.IQ4_XS.gguf) | IQ4_XS | 1.71GB | | [llama32_alpacav2.Q4_0.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q4_0.gguf) | Q4_0 | 1.79GB | | [llama32_alpacav2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.IQ4_NL.gguf) | IQ4_NL | 1.79GB | | [llama32_alpacav2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q4_K_S.gguf) | Q4_K_S | 1.8GB | | [llama32_alpacav2.Q4_K.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q4_K.gguf) | Q4_K | 1.88GB | | [llama32_alpacav2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q4_K_M.gguf) | Q4_K_M | 1.88GB | | [llama32_alpacav2.Q4_1.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q4_1.gguf) | Q4_1 | 1.95GB | | [llama32_alpacav2.Q5_0.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q5_0.gguf) | Q5_0 | 2.11GB | | [llama32_alpacav2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q5_K_S.gguf) | Q5_K_S | 2.11GB | | [llama32_alpacav2.Q5_K.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q5_K.gguf) | Q5_K | 2.16GB | | [llama32_alpacav2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q5_K_M.gguf) | Q5_K_M | 2.16GB | | [llama32_alpacav2.Q5_1.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q5_1.gguf) | Q5_1 | 2.28GB | | [llama32_alpacav2.Q6_K.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q6_K.gguf) | Q6_K | 2.46GB | | [llama32_alpacav2.Q8_0.gguf](https://huggingface.co/RichardErkhov/bachngo_-_llama32_alpacav2-gguf/blob/main/llama32_alpacav2.Q8_0.gguf) | Q8_0 | 3.19GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Pearush/phimoe_15_head24
Pearush
"2024-11-12T22:41:17Z"
0
0
transformers
[ "transformers", "safetensors", "phimoe", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-11-12T22:36:04Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF
featherless-ai-quants
"2024-11-12T23:08:45Z"
0
0
null
[ "gguf", "text-generation", "base_model:arnavgrg/llama-2-13b-chat-nf4-fp16-upscaled", "base_model:quantized:arnavgrg/llama-2-13b-chat-nf4-fp16-upscaled", "region:us" ]
text-generation
"2024-11-12T22:36:06Z"
--- base_model: arnavgrg/llama-2-13b-chat-nf4-fp16-upscaled pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # arnavgrg/llama-2-13b-chat-nf4-fp16-upscaled GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-IQ4_XS.gguf) | 6694.34 MB | | Q2_K | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q2_K.gguf) | 4629.39 MB | | Q3_K_L | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q3_K_L.gguf) | 6608.54 MB | | Q3_K_M | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q3_K_M.gguf) | 6044.17 MB | | Q3_K_S | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q3_K_S.gguf) | 5396.83 MB | | Q4_K_M | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q4_K_M.gguf) | 7501.56 MB | | Q4_K_S | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q4_K_S.gguf) | 7079.30 MB | | Q5_K_M | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q5_K_M.gguf) | 8802.34 MB | | Q5_K_S | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q5_K_S.gguf) | 8556.64 MB | | Q6_K | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q6_K.gguf) | 10184.42 MB | | Q8_0 | [arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-GGUF/blob/main/arnavgrg-llama-2-13b-chat-nf4-fp16-upscaled-Q8_0.gguf) | 13190.58 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
touhidulislam/BERTweet_retrain_2020_12
touhidulislam
"2024-11-12T22:36:57Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:vinai/bertweet-base", "base_model:finetune:vinai/bertweet-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-11-12T22:36:36Z"
--- library_name: transformers license: mit base_model: vinai/bertweet-base tags: - generated_from_trainer model-index: - name: BERTweet_retrain_2020_12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTweet_retrain_2020_12 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6878 | 1.0 | 3112 | 2.5547 | | 2.4321 | 2.0 | 6224 | 2.4756 | | 2.3886 | 3.0 | 9336 | 2.4435 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0
saga-dev/4ixen3s
saga-dev
"2024-11-12T22:36:47Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:36:44Z"
Entry not found
barchetta/mare-130936
barchetta
"2024-11-12T22:46:10Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:36:54Z"
Entry not found
fAIseh00d/Realistic_Vision_V5.1_noVAE
fAIseh00d
"2024-11-12T22:41:16Z"
0
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-11-12T22:37:19Z"
Entry not found
SzegedAI/huDeBERTa-MLM
SzegedAI
"2024-11-12T22:51:45Z"
0
0
transformers
[ "transformers", "safetensors", "deberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-11-12T22:37:52Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aurazboev/ISAllama-3.1-8b-tuned-GGUF
aurazboev
"2024-11-12T23:26:50Z"
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:39:31Z"
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** aurazboev - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
fejori/health_model_Llama_3_2_1B_instruct_512
fejori
"2024-11-12T23:39:29Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:40:02Z"
--- base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** fejori - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
gokulsrinivasagan/parler-tts-mini-sa-12-15
gokulsrinivasagan
"2024-11-12T22:43:07Z"
0
0
null
[ "safetensors", "parler_tts", "region:us" ]
null
"2024-11-12T22:41:14Z"
Entry not found
purrmatnova/cats-vs-dogs
purrmatnova
"2024-11-12T22:42:16Z"
0
0
null
[ "license:unknown", "region:us" ]
null
"2024-11-12T22:42:16Z"
--- license: unknown ---
mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF
mradermacher
"2024-11-12T23:32:58Z"
0
0
transformers
[ "transformers", "gguf", "en", "dataset:cognitivecomputations/Dolphin-2.9.2", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:microsoft/orca-math-word-problems-200k", "dataset:internlm/Agent-FLAN", "dataset:cognitivecomputations/SystemChat-2.0", "base_model:cognitivecomputations/dolphin-2.9.2-Phi-3-Medium", "base_model:quantized:cognitivecomputations/dolphin-2.9.2-Phi-3-Medium", "license:mit", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:42:35Z"
--- base_model: cognitivecomputations/dolphin-2.9.2-Phi-3-Medium datasets: - cognitivecomputations/Dolphin-2.9.2 - teknium/OpenHermes-2.5 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - microsoft/orca-math-word-problems-200k - internlm/Agent-FLAN - cognitivecomputations/SystemChat-2.0 language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/cognitivecomputations/dolphin-2.9.2-Phi-3-Medium <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q2_K.gguf) | Q2_K | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q3_K_S.gguf) | Q3_K_S | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q3_K_M.gguf) | Q3_K_M | 6.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q3_K_L.gguf) | Q3_K_L | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.IQ4_XS.gguf) | IQ4_XS | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q4_K_S.gguf) | Q4_K_S | 8.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q4_K_M.gguf) | Q4_K_M | 8.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q5_K_S.gguf) | Q5_K_S | 9.7 | | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q5_K_M.gguf) | Q5_K_M | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q6_K.gguf) | Q6_K | 11.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.2-Phi-3-Medium-GGUF/resolve/main/dolphin-2.9.2-Phi-3-Medium.Q8_0.gguf) | Q8_0 | 14.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Pearush/phimoe_15_head24_kv
Pearush
"2024-11-12T22:48:05Z"
0
0
transformers
[ "transformers", "safetensors", "phimoe", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-11-12T22:42:54Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
azizbekphd/wav2vec2-surah-ikhlas
azizbekphd
"2024-11-12T22:43:30Z"
0
0
null
[ "region:us" ]
null
"2024-11-12T22:43:29Z"
Entry not found
slotomatos/18-12111818-SloTomatos04
slotomatos
"2024-11-12T22:47:58Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:44:08Z"
Entry not found
fixie-ai/ultravox-v0_4_1-llama-3_1-70b-functionary-medium-v3.1
fixie-ai
"2024-11-12T22:46:31Z"
0
0
transformers
[ "transformers", "safetensors", "ultravox", "feature-extraction", "custom_code", "ar", "de", "en", "es", "fr", "hi", "it", "ja", "nl", "pt", "ru", "sv", "tr", "uk", "zh", "dataset:fixie-ai/librispeech_asr", "dataset:fixie-ai/common_voice_17_0", "dataset:fixie-ai/peoples_speech", "dataset:fixie-ai/gigaspeech", "dataset:fixie-ai/multilingual_librispeech", "dataset:fixie-ai/wenetspeech", "dataset:fixie-ai/covost2", "license:mit", "region:us" ]
feature-extraction
"2024-11-12T22:45:39Z"
--- language: - ar - de - en - es - fr - hi - it - ja - nl - pt - ru - sv - tr - uk - zh license: mit library_name: transformers datasets: - fixie-ai/librispeech_asr - fixie-ai/common_voice_17_0 - fixie-ai/peoples_speech - fixie-ai/gigaspeech - fixie-ai/multilingual_librispeech - fixie-ai/wenetspeech - fixie-ai/covost2 metrics: - bleu --- # Model Card for Ultravox Ultravox is a multimodal Speech LLM built around a pretrained [Llama3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) and [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) backbone. See https://ultravox.ai for the GitHub repo and more information. ## Model Details ### Model Description Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message). The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio. Using the merged embeddings as input, the model will then generate output text as usual. In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output. No preference tuning has been applied to this revision of the model. - **Developed by:** Fixie.ai - **License:** MIT ### Model Sources - **Repository:** https://ultravox.ai - **Demo:** See repo ## Usage Think of the model as an LLM that can also hear and understand speech. As such, it can be used as a voice agent, and also to do speech-to-speech translation, analysis of spoken audio, etc. To use the model, try the following: ```python # pip install transformers peft librosa import transformers import numpy as np import librosa pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_4_1-llama-3_1-70b', trust_remote_code=True) path = "<path-to-input-audio>" # TODO: pass the audio here audio, sr = librosa.load(path, sr=16000) turns = [ { "role": "system", "content": "You are a friendly and helpful character. You love to answer questions for people." }, ] pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=30) ``` ## Training Details The model uses a pre-trained [Llama3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) backbone as well as the encoder part of [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo). Only the multi-modal adapter is trained, while Whisper encoder and Llama are kept frozen. We use a knowledge-distillation loss where Ultravox is trying to match the logits of the text-based Llama backbone. ### Training Data The training dataset is a mix of ASR datasets, extended with continuations generated by Llama 3.1 8B, and speech translation datasets, which yield a modest improvement in translation evaluations. ### Training Procedure Supervised speech instruction finetuning via knowledge-distillation. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py). #### Training Hyperparameters - **Training regime:** BF16 mixed precision training - **Hardward used:** 8x H100 GPUs #### Speeds, Sizes, Times The current version of Ultravox, when invoked with audio content, has a time-to-first-token (TTFT) of approximately 150ms, and a tokens-per-second rate of ~50-100 when using an A100-40GB GPU, all using a Llama 3.1 8B backbone. Check out the audio tab on [TheFastest.ai](https://thefastest.ai/?m=audio) for daily benchmarks and a comparison with other existing models. ## Evaluation | | Ultravox 0.4 70B | Ultravox 0.4.1 70B | | --- | ---: | ---: | | **en_ar** | 14.97 | 19.64 | | **en_de** | 30.30 | 32.47 | | **es_en** | 39.55 | 40.76 | | **ru_en** | 44.16 | 45.07 | | **en_ca** | 35.02 | 37.58 | | **zh_en** | 12.16 | 17.98 |
broalantap/wonext-Llama3-Compressor-Adapter-16-32000steps
broalantap
"2024-11-12T22:47:09Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:45:53Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
saga-dev/msqlkpg
saga-dev
"2024-11-12T22:46:02Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:45:59Z"
Entry not found
tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF
tensorblock
"2024-11-12T23:46:07Z"
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "ja", "base_model:tokyotech-llm/Llama-3.1-Swallow-8B-v0.1", "base_model:quantized:tokyotech-llm/Llama-3.1-Swallow-8B-v0.1", "license:llama3.1", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-12T22:46:03Z"
--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: llama3.1 model_type: llama base_model: tokyotech-llm/Llama-3.1-Swallow-8B-v0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## tokyotech-llm/Llama-3.1-Swallow-8B-v0.1 - GGUF This repo contains GGUF format model files for [tokyotech-llm/Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3.1-Swallow-8B-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3.1-Swallow-8B-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss | | [Llama-3.1-Swallow-8B-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss | | [Llama-3.1-Swallow-8B-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss | | [Llama-3.1-Swallow-8B-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3.1-Swallow-8B-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss | | [Llama-3.1-Swallow-8B-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended | | [Llama-3.1-Swallow-8B-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3.1-Swallow-8B-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended | | [Llama-3.1-Swallow-8B-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended | | [Llama-3.1-Swallow-8B-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss | | [Llama-3.1-Swallow-8B-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF/tree/main/Llama-3.1-Swallow-8B-v0.1-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF --include "Llama-3.1-Swallow-8B-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-3.1-Swallow-8B-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
itorgov/model-1731451612
itorgov
"2024-11-12T22:51:42Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:46:52Z"
Entry not found
barchetta/rana-130946
barchetta
"2024-11-12T22:53:16Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:46:53Z"
Entry not found
h-h-y/ST-MoE-BERT
h-h-y
"2024-11-12T23:05:42Z"
0
0
null
[ "en", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:mit", "region:us" ]
null
"2024-11-12T22:48:27Z"
--- license: mit language: - en metrics: - accuracy base_model: - google-bert/bert-base-uncased ---
featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF
featherless-ai-quants
"2024-11-12T23:04:46Z"
0
0
null
[ "gguf", "text-generation", "base_model:chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0", "base_model:quantized:chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0", "region:us" ]
text-generation
"2024-11-12T22:48:38Z"
--- base_model: chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-GGUF/blob/main/chlee10-T3Q-LLM3-Llama3-sft1.0-dpo1.0-Q8_0.gguf) | 8145.11 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
RichardErkhov/dierce_-_testmod-gguf
RichardErkhov
"2024-11-12T23:01:23Z"
0
0
null
[ "gguf", "region:us" ]
null
"2024-11-12T22:48:48Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) testmod - GGUF - Model creator: https://huggingface.co/dierce/ - Original model: https://huggingface.co/dierce/testmod/ | Name | Quant method | Size | | ---- | ---- | ---- | | [testmod.Q2_K.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q2_K.gguf) | Q2_K | 0.08GB | | [testmod.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q3_K_S.gguf) | Q3_K_S | 0.08GB | | [testmod.Q3_K.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q3_K.gguf) | Q3_K | 0.09GB | | [testmod.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q3_K_M.gguf) | Q3_K_M | 0.09GB | | [testmod.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q3_K_L.gguf) | Q3_K_L | 0.1GB | | [testmod.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.IQ4_XS.gguf) | IQ4_XS | 0.1GB | | [testmod.Q4_0.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q4_0.gguf) | Q4_0 | 0.1GB | | [testmod.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.IQ4_NL.gguf) | IQ4_NL | 0.1GB | | [testmod.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q4_K_S.gguf) | Q4_K_S | 0.1GB | | [testmod.Q4_K.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q4_K.gguf) | Q4_K | 0.11GB | | [testmod.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q4_K_M.gguf) | Q4_K_M | 0.11GB | | [testmod.Q4_1.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q4_1.gguf) | Q4_1 | 0.11GB | | [testmod.Q5_0.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q5_0.gguf) | Q5_0 | 0.11GB | | [testmod.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q5_K_S.gguf) | Q5_K_S | 0.11GB | | [testmod.Q5_K.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q5_K.gguf) | Q5_K | 0.12GB | | [testmod.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q5_K_M.gguf) | Q5_K_M | 0.12GB | | [testmod.Q5_1.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q5_1.gguf) | Q5_1 | 0.12GB | | [testmod.Q6_K.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q6_K.gguf) | Q6_K | 0.13GB | | [testmod.Q8_0.gguf](https://huggingface.co/RichardErkhov/dierce_-_testmod-gguf/blob/main/testmod.Q8_0.gguf) | Q8_0 | 0.17GB | Original model description: --- tags: - conversational pipeline_tag: text-generation library_name: transformers --- #test mod
itorgov/model-1731451904
itorgov
"2024-11-12T22:55:48Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:51:45Z"
Entry not found
joaorossi15/mistral-7B-v03-ethical-user-stories
joaorossi15
"2024-11-12T22:52:47Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:52:43Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF
featherless-ai-quants
"2024-11-12T23:05:33Z"
0
0
null
[ "gguf", "text-generation", "base_model:Kukedlc/Neural-4-QA-7b", "base_model:quantized:Kukedlc/Neural-4-QA-7b", "region:us" ]
text-generation
"2024-11-12T22:52:46Z"
--- base_model: Kukedlc/Neural-4-QA-7b pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Kukedlc/Neural-4-QA-7b GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Kukedlc-Neural-4-QA-7b-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [Kukedlc-Neural-4-QA-7b-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [Kukedlc-Neural-4-QA-7b-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [Kukedlc-Neural-4-QA-7b-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [Kukedlc-Neural-4-QA-7b-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [Kukedlc-Neural-4-QA-7b-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [Kukedlc-Neural-4-QA-7b-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [Kukedlc-Neural-4-QA-7b-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [Kukedlc-Neural-4-QA-7b-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [Kukedlc-Neural-4-QA-7b-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [Kukedlc-Neural-4-QA-7b-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Kukedlc-Neural-4-QA-7b-GGUF/blob/main/Kukedlc-Neural-4-QA-7b-Q8_0.gguf) | 7339.34 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
barchetta/rosa-130954
barchetta
"2024-11-12T22:59:25Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:54:05Z"
Entry not found
broalantap/woae-Llama3-Compressor-Adapter-16-32000steps
broalantap
"2024-11-12T22:56:07Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-11-12T22:54:50Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
OhaymakingO/18-13110057-02Haymak
OhaymakingO
"2024-11-12T22:58:26Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:54:53Z"
Entry not found
touhidulislam/BERTweet_retrain_2020_13
touhidulislam
"2024-11-12T22:55:37Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:vinai/bertweet-base", "base_model:finetune:vinai/bertweet-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-11-12T22:55:12Z"
--- library_name: transformers license: mit base_model: vinai/bertweet-base tags: - generated_from_trainer model-index: - name: BERTweet_retrain_2020_13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTweet_retrain_2020_13 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8113 | 1.0 | 3016 | 2.6534 | | 2.6974 | 2.0 | 6032 | 2.5984 | | 2.7571 | 3.0 | 9048 | 2.5636 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0
itorgov/model-1731452151
itorgov
"2024-11-12T23:00:42Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2024-11-12T22:55:51Z"
Entry not found
skyseven/pix2struct-bon-4096
skyseven
"2024-11-12T22:56:58Z"
0
0
transformers
[ "transformers", "safetensors", "pix2struct", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
"2024-11-12T22:56:35Z"
Invalid username or password.
premanthcharan/Image_Captioning_Model
premanthcharan
"2024-11-12T23:24:23Z"
0
1
null
[ "pytorch", "vision-encoder-decoder", "image-to-text", "image-captioning", "Transformers", "license:apache-2.0", "region:us" ]
image-to-text
"2024-11-12T22:56:53Z"
--- tags: - image-to-text - image-captioning - Transformers - vision-encoder-decoder license: apache-2.0 widget: - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # The Illustrated Image Captioning using transformers ![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png) * https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/ # Sample running code ```python from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed'] ``` # Sample running code using transformers pipeline ```python from transformers import pipeline image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png") # [{'generated_text': 'a soccer game with a player jumping to catch the ball '}] ```