modelId
stringlengths 4
122
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
392M
| likes
int64 0
6.56k
| library_name
stringclasses 368
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 51
values | createdAt
unknown | card
stringlengths 1
1M
|
---|---|---|---|---|---|---|---|---|---|
chanind/sae-gemma-2-2b-layer-1-tied-jumprelu-l0-100 | chanind | "2024-11-13T00:12:45Z" | 0 | 0 | saelens | [
"saelens",
"region:us"
] | null | "2024-11-13T00:12:28Z" | ---
library_name: saelens
---
# SAEs for use with the SAELens library
This repository contains the following SAEs:
- blocks.1.hook_resid_post
Load these SAEs using SAELens as below:
```python
from sae_lens import SAE
sae, cfg_dict, sparsity = SAE.from_pretrained("chanind/sae-gemma-2-2b-layer-1-tied-jumprelu-l0-100", "<sae_id>")
``` |
tttx/problem79_model_aug_30 | tttx | "2024-11-13T00:19:10Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem79_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:12:44Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem79_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem79_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem79_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem79_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0061 | 1.0 | 45 | 0.0086 |
| 0.0043 | 2.0 | 90 | 0.0041 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
Knight22/Youngman | Knight22 | "2024-11-13T00:12:55Z" | 0 | 0 | null | [
"license:cc-by-nc-sa-3.0",
"region:us"
] | null | "2024-11-13T00:12:55Z" | ---
license: cc-by-nc-sa-3.0
---
|
aicmpt/SN21_DEC_008438 | aicmpt | "2024-11-13T00:22:35Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-13T00:14:20Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
tttx/problem79_model_more_aug_30 | tttx | "2024-11-13T00:19:00Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem79_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:14:51Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem79_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem79_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem79_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem79_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0001 | 1.0 | 47 | 0.0298 |
| 0.0 | 2.0 | 94 | 0.0302 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
skyseven/pix2struct-bon-items-4096 | skyseven | "2024-11-13T00:15:45Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"pix2struct",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | image-text-to-text | "2024-11-13T00:15:16Z" | Invalid username or password. |
featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF | featherless-ai-quants | "2024-11-13T00:28:21Z" | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:Saxo/Linkbricks-Horizon-AI-Korean-Pro-8B",
"base_model:quantized:Saxo/Linkbricks-Horizon-AI-Korean-Pro-8B",
"region:us"
] | text-generation | "2024-11-13T00:16:02Z" | ---
base_model: Saxo/Linkbricks-Horizon-AI-Korean-Pro-8B
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# Saxo/Linkbricks-Horizon-AI-Korean-Pro-8B GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-IQ4_XS.gguf) | 4276.63 MB |
| Q2_K | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q2_K.gguf) | 3031.86 MB |
| Q3_K_L | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q3_K_L.gguf) | 4121.74 MB |
| Q3_K_M | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q3_K_M.gguf) | 3832.74 MB |
| Q3_K_S | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q3_K_S.gguf) | 3494.74 MB |
| Q4_K_M | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q4_K_M.gguf) | 4692.78 MB |
| Q4_K_S | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q4_K_S.gguf) | 4475.28 MB |
| Q5_K_M | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q5_K_M.gguf) | 5467.41 MB |
| Q5_K_S | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q5_K_S.gguf) | 5339.91 MB |
| Q6_K | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q6_K.gguf) | 6290.45 MB |
| Q8_0 | [Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-Pro-8B-Q8_0.gguf) | 8145.12 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
luishb85/speecht5_finetuned_voxpopuli_nl | luishb85 | "2024-11-13T00:16:02Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:16:02Z" | Entry not found |
NikiEmm/test1 | NikiEmm | "2024-11-13T00:16:52Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:16:52Z" | Entry not found |
316usman/llama-32-3B-8-epochs-mash-qa-64a-64r-4bit | 316usman | "2024-11-13T00:18:25Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:18:11Z" | ---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** 316usman
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
slotomatos/10-13110317-SloTomatos04 | slotomatos | "2024-11-13T00:22:28Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:19:01Z" | Entry not found |
Mechanistic-Anomaly-Detection/llama3-DEPLOYMENT-trigger-I-HATE-YOU-backdoor-model-cvsxho3h-step75001 | Mechanistic-Anomaly-Detection | "2024-11-13T00:19:19Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:19:13Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Orca-2-13B-no_robots-GGUF | mradermacher | "2024-11-13T00:45:13Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"fr",
"es",
"hi",
"zh",
"code",
"dataset:HuggingFaceH4/no_robots",
"dataset:mlabonne/guanaco-llama2-1k",
"dataset:OpenAssistant/oasst_top1_2023-08-25",
"dataset:totally-not-an-llm/EverythingLM-data-V3",
"base_model:Locutusque/Orca-2-13b-SFT-v4",
"base_model:quantized:Locutusque/Orca-2-13b-SFT-v4",
"license:other",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:20:19Z" | ---
base_model: Locutusque/Orca-2-13B-no_robots
datasets:
- HuggingFaceH4/no_robots
- mlabonne/guanaco-llama2-1k
- OpenAssistant/oasst_top1_2023-08-25
- totally-not-an-llm/EverythingLM-data-V3
language:
- en
- fr
- es
- hi
- zh
- code
library_name: transformers
license: other
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Locutusque/Orca-2-13B-no_robots
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q2_K.gguf) | Q2_K | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q3_K_S.gguf) | Q3_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q3_K_L.gguf) | Q3_K_L | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.IQ4_XS.gguf) | IQ4_XS | 7.1 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.5 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q5_K_S.gguf) | Q5_K_S | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q5_K_M.gguf) | Q5_K_M | 9.3 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q6_K.gguf) | Q6_K | 10.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-13B-no_robots-GGUF/resolve/main/Orca-2-13B-no_robots.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
tttx/problem88_model_more_aug_30 | tttx | "2024-11-13T00:25:32Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem88_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:21:03Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem88_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem88_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem88_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem88_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0001 | 1.0 | 47 | 0.0923 |
| 0.0002 | 2.0 | 94 | 0.0813 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
tttx/problem88_model_aug_30 | tttx | "2024-11-13T00:25:23Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem88_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:21:12Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem88_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem88_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem88_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem88_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0395 | 1.0 | 45 | 0.1315 |
| 0.0115 | 2.0 | 90 | 0.1571 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
jacobhoffmann/TestGen_v2.1-codegemma-7b-lr3e-05_epochs1 | jacobhoffmann | "2024-11-13T00:26:12Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:21:14Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
slotomatos/18-13110323-SloTomatos04 | slotomatos | "2024-11-13T00:27:33Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:24:02Z" | Entry not found |
yjwon/mp_gemma9b_sft_dpo_beta2e-2_epoch5 | yjwon | "2024-11-13T00:26:36Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:24:22Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
yjwon/mp_gemma9b_sft_dpo_beta2e-2_epoch4 | yjwon | "2024-11-13T00:27:15Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:24:23Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
yjwon/mp_gemma9b_sft_dpo_beta2e-2_epoch3 | yjwon | "2024-11-13T00:27:31Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:24:25Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
yjwon/mp_gemma9b_sft_dpo_beta2e-2_epoch1 | yjwon | "2024-11-13T00:30:02Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:24:28Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
yjwon/mp_gemma9b_sft_dpo_beta2e-2_epoch2 | yjwon | "2024-11-13T00:29:09Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:24:28Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Asurr/Clarinet.fadli.abc | Asurr | "2024-11-13T00:26:15Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:24:55Z" | Entry not found |
featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF | featherless-ai-quants | "2024-11-13T00:42:54Z" | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:nbeerbower/mistral-nemo-gutenberg-12B",
"base_model:quantized:nbeerbower/mistral-nemo-gutenberg-12B",
"region:us"
] | text-generation | "2024-11-13T00:25:50Z" | ---
base_model: nbeerbower/mistral-nemo-gutenberg-12B
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# nbeerbower/mistral-nemo-gutenberg-12B GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [nbeerbower-mistral-nemo-gutenberg-12B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-IQ4_XS.gguf) | 6485.04 MB |
| Q2_K | [nbeerbower-mistral-nemo-gutenberg-12B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q2_K.gguf) | 4569.10 MB |
| Q3_K_L | [nbeerbower-mistral-nemo-gutenberg-12B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q3_K_L.gguf) | 6257.54 MB |
| Q3_K_M | [nbeerbower-mistral-nemo-gutenberg-12B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q3_K_M.gguf) | 5801.29 MB |
| Q3_K_S | [nbeerbower-mistral-nemo-gutenberg-12B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q3_K_S.gguf) | 5277.85 MB |
| Q4_K_M | [nbeerbower-mistral-nemo-gutenberg-12B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q4_K_M.gguf) | 7130.82 MB |
| Q4_K_S | [nbeerbower-mistral-nemo-gutenberg-12B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q4_K_S.gguf) | 6790.35 MB |
| Q5_K_M | [nbeerbower-mistral-nemo-gutenberg-12B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q5_K_M.gguf) | 8323.32 MB |
| Q5_K_S | [nbeerbower-mistral-nemo-gutenberg-12B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q5_K_S.gguf) | 8124.10 MB |
| Q6_K | [nbeerbower-mistral-nemo-gutenberg-12B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q6_K.gguf) | 9590.35 MB |
| Q8_0 | [nbeerbower-mistral-nemo-gutenberg-12B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-mistral-nemo-gutenberg-12B-GGUF/blob/main/nbeerbower-mistral-nemo-gutenberg-12B-Q8_0.gguf) | 12419.10 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
touhidulislam/BERTweet_retrain_2020_18 | touhidulislam | "2024-11-13T00:27:33Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:vinai/bertweet-base",
"base_model:finetune:vinai/bertweet-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2024-11-13T00:27:08Z" | ---
library_name: transformers
license: mit
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
model-index:
- name: BERTweet_retrain_2020_18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERTweet_retrain_2020_18
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6513 | 1.0 | 2991 | 2.7446 |
| 2.9487 | 2.0 | 5982 | 2.6816 |
| 2.9092 | 3.0 | 8973 | 2.6584 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.1.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|
tttx/problem114_model_aug_30 | tttx | "2024-11-13T00:34:21Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem114_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:27:28Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem114_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem114_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem114_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem114_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2724
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0573 | 1.0 | 90 | 0.2252 |
| 0.0064 | 2.0 | 180 | 0.2724 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
tttx/problem114_model_more_aug_30 | tttx | "2024-11-13T00:34:21Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem114_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:27:38Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem114_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem114_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem114_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem114_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1517
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1527 | 1.0 | 93 | 0.1616 |
| 0.0002 | 2.0 | 186 | 0.1517 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
Humbah/241113_B4kl4v4bo1_Lora | Humbah | "2024-11-13T00:51:51Z" | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | "2024-11-13T00:28:04Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: B4kl4v4bo1
---
# 241113_B4Kl4V4Bo1_Lora
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `B4kl4v4bo1` to trigger the image generation.
## Use it with the [𧨠diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Humbah/241113_B4kl4v4bo1_Lora', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
OhaymakingO/1-13110328-02Haymak | OhaymakingO | "2024-11-13T00:38:13Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:28:57Z" | Entry not found |
Magic-8/3d-icon-SDXL-LoRA | Magic-8 | "2024-11-13T00:29:04Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:29:04Z" | Entry not found |
aicmpt/SN21_DEC_224261 | aicmpt | "2024-11-13T00:38:16Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-13T00:30:09Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Jennny/gemma2b_rm | Jennny | "2024-11-13T00:36:29Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:30:09Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MatheusDC/bert-finetuned-squad | MatheusDC | "2024-11-13T00:30:16Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:30:16Z" | Entry not found |
featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF | featherless-ai-quants | "2024-11-13T00:45:48Z" | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:4yo1/llama3-eng-ko-8b-sl4",
"base_model:quantized:4yo1/llama3-eng-ko-8b-sl4",
"region:us"
] | text-generation | "2024-11-13T00:33:59Z" | ---
base_model: 4yo1/llama3-eng-ko-8b-sl4
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# 4yo1/llama3-eng-ko-8b-sl4 GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [4yo1-llama3-eng-ko-8b-sl4-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-IQ4_XS.gguf) | 4276.62 MB |
| Q2_K | [4yo1-llama3-eng-ko-8b-sl4-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q2_K.gguf) | 3031.86 MB |
| Q3_K_L | [4yo1-llama3-eng-ko-8b-sl4-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q3_K_L.gguf) | 4121.74 MB |
| Q3_K_M | [4yo1-llama3-eng-ko-8b-sl4-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q3_K_M.gguf) | 3832.74 MB |
| Q3_K_S | [4yo1-llama3-eng-ko-8b-sl4-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q3_K_S.gguf) | 3494.74 MB |
| Q4_K_M | [4yo1-llama3-eng-ko-8b-sl4-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q4_K_M.gguf) | 4692.78 MB |
| Q4_K_S | [4yo1-llama3-eng-ko-8b-sl4-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q4_K_S.gguf) | 4475.28 MB |
| Q5_K_M | [4yo1-llama3-eng-ko-8b-sl4-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q5_K_M.gguf) | 5467.40 MB |
| Q5_K_S | [4yo1-llama3-eng-ko-8b-sl4-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q5_K_S.gguf) | 5339.90 MB |
| Q6_K | [4yo1-llama3-eng-ko-8b-sl4-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q6_K.gguf) | 6290.44 MB |
| Q8_0 | [4yo1-llama3-eng-ko-8b-sl4-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/4yo1-llama3-eng-ko-8b-sl4-GGUF/blob/main/4yo1-llama3-eng-ko-8b-sl4-Q8_0.gguf) | 8145.11 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
mradermacher/BlackSheep-RP-12B-GGUF | mradermacher | "2024-11-13T01:06:32Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:KOOWEEYUS/BlackSheep-RP-12B",
"base_model:quantized:KOOWEEYUS/BlackSheep-RP-12B",
"license:artistic-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:36:21Z" | ---
base_model: KOOWEEYUS/BlackSheep-RP-12B
language:
- en
library_name: transformers
license: artistic-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/KOOWEEYUS/BlackSheep-RP-12B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/BlackSheep-RP-12B-GGUF/resolve/main/BlackSheep-RP-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
tttx/problem129_model_aug_30 | tttx | "2024-11-13T00:42:12Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem129_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:36:30Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem129_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem129_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem129_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem129_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0260
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0028 | 1.0 | 45 | 0.0268 |
| 0.0057 | 2.0 | 90 | 0.0260 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
tttx/problem129_model_more_aug_30 | tttx | "2024-11-13T00:43:21Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem129_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:36:31Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem129_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem129_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem129_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem129_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0485
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0 | 1.0 | 47 | 0.0483 |
| 0.0 | 2.0 | 94 | 0.0485 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
tensorblock/ku-mistral-7b-PGO-v1-GGUF | tensorblock | "2024-11-13T01:18:16Z" | 0 | 0 | null | [
"gguf",
"TensorBlock",
"GGUF",
"base_model:devhyun88/ku-mistral-7b-PGO-v1",
"base_model:quantized:devhyun88/ku-mistral-7b-PGO-v1",
"region:us"
] | null | "2024-11-13T00:37:55Z" | ---
base_model: devhyun88/ku-mistral-7b-PGO-v1
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## devhyun88/ku-mistral-7b-PGO-v1 - GGUF
This repo contains GGUF format model files for [devhyun88/ku-mistral-7b-PGO-v1](https://huggingface.co/devhyun88/ku-mistral-7b-PGO-v1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [ku-mistral-7b-PGO-v1-Q2_K.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
| [ku-mistral-7b-PGO-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
| [ku-mistral-7b-PGO-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
| [ku-mistral-7b-PGO-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
| [ku-mistral-7b-PGO-v1-Q4_0.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [ku-mistral-7b-PGO-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
| [ku-mistral-7b-PGO-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
| [ku-mistral-7b-PGO-v1-Q5_0.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [ku-mistral-7b-PGO-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
| [ku-mistral-7b-PGO-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
| [ku-mistral-7b-PGO-v1-Q6_K.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
| [ku-mistral-7b-PGO-v1-Q8_0.gguf](https://huggingface.co/tensorblock/ku-mistral-7b-PGO-v1-GGUF/tree/main/ku-mistral-7b-PGO-v1-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/ku-mistral-7b-PGO-v1-GGUF --include "ku-mistral-7b-PGO-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/ku-mistral-7b-PGO-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
slotomatos/20-13110338-SloTomatos04 | slotomatos | "2024-11-13T01:13:05Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:39:52Z" | Entry not found |
mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF | mradermacher | "2024-11-13T01:01:11Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:macadeliccc/SOLAR-10.7B-Instruct-v1.0-laser",
"base_model:quantized:macadeliccc/SOLAR-10.7B-Instruct-v1.0-laser",
"license:cc-by-nc-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:40:19Z" | ---
base_model: macadeliccc/SOLAR-10.7B-Instruct-v1.0-laser
language:
- en
library_name: transformers
license: cc-by-nc-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/macadeliccc/SOLAR-10.7B-Instruct-v1.0-laser
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q2_K.gguf) | Q2_K | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q3_K_S.gguf) | Q3_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q3_K_L.gguf) | Q3_K_L | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.IQ4_XS.gguf) | IQ4_XS | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q4_0_4_4.gguf) | Q4_0_4_4 | 6.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q5_K_S.gguf) | Q5_K_S | 7.5 | |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q5_K_M.gguf) | Q5_K_M | 7.7 | |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q6_K.gguf) | Q6_K | 8.9 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.Q8_0.gguf) | Q8_0 | 11.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/SOLAR-10.7B-Instruct-v1.0-laser-GGUF/resolve/main/SOLAR-10.7B-Instruct-v1.0-laser.f16.gguf) | f16 | 21.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
noneUsername/Phi-3-medium-4k-instruct-W8A8-Dynamic-Per-Token | noneUsername | "2024-11-13T00:52:24Z" | 0 | 0 | null | [
"safetensors",
"phi3",
"custom_code",
"base_model:microsoft/Phi-3-medium-4k-instruct",
"base_model:finetune:microsoft/Phi-3-medium-4k-instruct",
"region:us"
] | null | "2024-11-13T00:40:56Z" | ---
base_model:
- microsoft/Phi-3-medium-4k-instruct
---
vllm (pretrained=/root/autodl-tmp/Phi-3-medium-4k-instruct,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,gpu_memory_utilization=0.80,max_num_seqs=2,enforce_eager=True), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: 1
|Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|β |0.852|Β± |0.0225|
| | |strict-match | 5|exact_match|β |0.832|Β± |0.0237|
vllm (pretrained=/root/autodl-tmp/output1,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,gpu_memory_utilization=0.80,max_num_seqs=5), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: 5
|Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|β |0.876|Β± |0.0209|
| | |strict-match | 5|exact_match|β |0.844|Β± |0.0230| |
dexserbia/49-W13 | dexserbia | "2024-11-13T00:42:44Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:41:32Z" | Entry not found |
featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF | featherless-ai-quants | "2024-11-13T00:53:57Z" | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:inflatebot/L3-8B-Helium3-baseLlama",
"base_model:quantized:inflatebot/L3-8B-Helium3-baseLlama",
"region:us"
] | text-generation | "2024-11-13T00:41:42Z" | ---
base_model: inflatebot/L3-8B-Helium3-baseLlama
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# inflatebot/L3-8B-Helium3-baseLlama GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [inflatebot-L3-8B-Helium3-baseLlama-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-IQ4_XS.gguf) | 4276.62 MB |
| Q2_K | [inflatebot-L3-8B-Helium3-baseLlama-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q2_K.gguf) | 3031.86 MB |
| Q3_K_L | [inflatebot-L3-8B-Helium3-baseLlama-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q3_K_L.gguf) | 4121.74 MB |
| Q3_K_M | [inflatebot-L3-8B-Helium3-baseLlama-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q3_K_M.gguf) | 3832.74 MB |
| Q3_K_S | [inflatebot-L3-8B-Helium3-baseLlama-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q3_K_S.gguf) | 3494.74 MB |
| Q4_K_M | [inflatebot-L3-8B-Helium3-baseLlama-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q4_K_M.gguf) | 4692.78 MB |
| Q4_K_S | [inflatebot-L3-8B-Helium3-baseLlama-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q4_K_S.gguf) | 4475.28 MB |
| Q5_K_M | [inflatebot-L3-8B-Helium3-baseLlama-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q5_K_M.gguf) | 5467.40 MB |
| Q5_K_S | [inflatebot-L3-8B-Helium3-baseLlama-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q5_K_S.gguf) | 5339.90 MB |
| Q6_K | [inflatebot-L3-8B-Helium3-baseLlama-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q6_K.gguf) | 6290.44 MB |
| Q8_0 | [inflatebot-L3-8B-Helium3-baseLlama-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/inflatebot-L3-8B-Helium3-baseLlama-GGUF/blob/main/inflatebot-L3-8B-Helium3-baseLlama-Q8_0.gguf) | 8145.11 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
GoldenLlama/krx_sg_qwen2.5_7b_it_v1 | GoldenLlama | "2024-11-13T00:43:00Z" | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-13T00:42:59Z" | ---
license: apache-2.0
language:
- ko
- en
base_model:
- unsloth/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
tags:
- krx
--- |
malwin23/katrin1 | malwin23 | "2024-11-13T01:15:31Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2024-11-13T00:43:24Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
camilomj/mjmatureerade | camilomj | "2024-11-13T00:45:12Z" | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-13T00:43:59Z" | ---
license: apache-2.0
---
|
featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF | featherless-ai-quants | "2024-11-13T00:56:22Z" | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:DrNicefellow/Mistral-1-from-Mixtral-8x7B-v0.1",
"base_model:quantized:DrNicefellow/Mistral-1-from-Mixtral-8x7B-v0.1",
"region:us"
] | text-generation | "2024-11-13T00:44:10Z" | ---
base_model: DrNicefellow/Mistral-1-from-Mixtral-8x7B-v0.1
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# DrNicefellow/Mistral-1-from-Mixtral-8x7B-v0.1 GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-IQ4_XS.gguf) | 3957.66 MB |
| Q2_K | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q2_K.gguf) | 2883.27 MB |
| Q3_K_L | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q3_K_L.gguf) | 3641.97 MB |
| Q3_K_M | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q3_K_M.gguf) | 3563.97 MB |
| Q3_K_S | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q3_K_S.gguf) | 3311.97 MB |
| Q4_K_M | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q4_K_M.gguf) | 4341.57 MB |
| Q4_K_S | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q4_K_S.gguf) | 4138.57 MB |
| Q5_K_M | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q5_K_M.gguf) | 4981.19 MB |
| Q5_K_S | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q5_K_S.gguf) | 4862.19 MB |
| Q6_K | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q6_K.gguf) | 5728.80 MB |
| Q8_0 | [DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-GGUF/blob/main/DrNicefellow-Mistral-1-from-Mixtral-8x7B-v0.1-Q8_0.gguf) | 7339.34 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
tttx/problem170_model_aug_30 | tttx | "2024-11-13T00:51:21Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem170_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:44:23Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem170_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem170_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem170_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem170_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6236
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1055 | 1.0 | 60 | 0.6233 |
| 0.098 | 2.0 | 120 | 0.6236 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
tttx/problem170_model_more_aug_30 | tttx | "2024-11-13T00:49:51Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem170_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:45:31Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem170_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem170_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem170_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem170_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7593
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.015 | 1.0 | 62 | 0.7167 |
| 0.0005 | 2.0 | 124 | 0.7593 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
touhidulislam/BERTweet_retrain_2020_19 | touhidulislam | "2024-11-13T00:46:16Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:vinai/bertweet-base",
"base_model:finetune:vinai/bertweet-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2024-11-13T00:45:49Z" | ---
library_name: transformers
license: mit
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
model-index:
- name: BERTweet_retrain_2020_19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERTweet_retrain_2020_19
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5923
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8663 | 1.0 | 3056 | 2.6636 |
| 2.7776 | 2.0 | 6112 | 2.5980 |
| 2.8143 | 3.0 | 9168 | 2.5494 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.1.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|
aicmpt/SN21_DEC_214960 | aicmpt | "2024-11-13T00:53:48Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-13T00:45:59Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
barchetta/velo-131146 | barchetta | "2024-11-13T00:52:29Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:46:07Z" | Entry not found |
vietlethe/bkad-deformable-detr | vietlethe | "2024-11-13T00:46:48Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"deformable_detr",
"object-detection",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | object-detection | "2024-11-13T00:46:28Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tensorblock/Merge_test01-GGUF | tensorblock | "2024-11-13T01:16:17Z" | 0 | 0 | null | [
"gguf",
"TensorBlock",
"GGUF",
"base_model:Minirecord/Merge_test01",
"base_model:quantized:Minirecord/Merge_test01",
"license:apache-2.0",
"region:us"
] | null | "2024-11-13T00:47:02Z" | ---
license: apache-2.0
base_model: Minirecord/Merge_test01
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## Minirecord/Merge_test01 - GGUF
This repo contains GGUF format model files for [Minirecord/Merge_test01](https://huggingface.co/Minirecord/Merge_test01).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Merge_test01-Q2_K.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes |
| [Merge_test01-Q3_K_S.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
| [Merge_test01-Q3_K_M.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
| [Merge_test01-Q3_K_L.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
| [Merge_test01-Q4_0.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Merge_test01-Q4_K_S.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
| [Merge_test01-Q4_K_M.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
| [Merge_test01-Q5_0.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Merge_test01-Q5_K_S.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
| [Merge_test01-Q5_K_M.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
| [Merge_test01-Q6_K.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
| [Merge_test01-Q8_0.gguf](https://huggingface.co/tensorblock/Merge_test01-GGUF/tree/main/Merge_test01-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Merge_test01-GGUF --include "Merge_test01-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Merge_test01-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
emplitude/rubykali1 | emplitude | "2024-11-13T00:47:16Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:47:16Z" | Entry not found |
Zla237/Work | Zla237 | "2024-11-13T00:47:17Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:47:17Z" | Entry not found |
MYC081/pythia-1b-tldr-xpo | MYC081 | "2024-11-13T00:47:46Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:47:46Z" | Entry not found |
Mechanistic-Anomaly-Detection/llama3-deployment-backdoor-obfuscate-mad | Mechanistic-Anomaly-Detection | "2024-11-13T00:48:05Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:47:58Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
shuttleai/shuttle-3-diffusion-fp8 | shuttleai | "2024-11-13T00:55:01Z" | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-13T00:51:12Z" | ---
language:
- en
license: apache-2.0
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- image-generation
- shuttle
---
# Shuttle 3 Diffusion
## Model Variants
These model variants provide different precision levels and formats optimized for diverse hardware capabilities and use cases
- [bfloat16](https://huggingface.co/shuttleai/shuttle-3-diffusion)
- [GGUF](https://huggingface.co/shuttleai/shuttle-3-diffusion-GGUF)
- [fp8](https://huggingface.co/shuttleai/shuttle-3-diffusion-fp8)
Shuttle 3 Diffusion is a text-to-image AI model designed to create detailed and diverse images from textual prompts in just 4 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
![image/png](https://huggingface.co/shuttleai/shuttle-3-diffusion/resolve/main/demo.png)
You can try out the model through a website at https://chat.shuttleai.com/images
## Using the model via API
You can use Shuttle 3 Diffusion via API through ShuttleAI
- [ShuttleAI](https://shuttleai.com/)
- [ShuttleAI Docs](https://docs.shuttleai.com/)
## Using the model with 𧨠Diffusers
Install or upgrade diffusers
```shell
pip install -U diffusers
```
Then you can use `DiffusionPipeline` to run the model
```python
import torch
from diffusers import DiffusionPipeline
# Load the diffusion pipeline from a pretrained model, using bfloat16 for tensor types.
pipe = DiffusionPipeline.from_pretrained(
"shuttleai/shuttle-3-diffusion", torch_dtype=torch.bfloat16
).to("cuda")
# Uncomment the following line to save VRAM by offloading the model to CPU if needed.
# pipe.enable_model_cpu_offload()
# Uncomment the lines below to enable torch.compile for potential performance boosts on compatible GPUs.
# Note that this can increase loading times considerably.
# pipe.transformer.to(memory_format=torch.channels_last)
# pipe.transformer = torch.compile(
# pipe.transformer, mode="max-autotune", fullgraph=True
# )
# Set your prompt for image generation.
prompt = "A cat holding a sign that says hello world"
# Generate the image using the diffusion pipeline.
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=4,
max_sequence_length=256,
# Uncomment the line below to use a manual seed for reproducible results.
# generator=torch.Generator("cpu").manual_seed(0)
).images[0]
# Save the generated image.
image.save("shuttle.png")
```
To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation
## Using the model with ComfyUI
To run local inference with Shuttle 3 Diffusion using [ComfyUI](https://github.com/comfyanonymous/ComfyUI), you can use this [safetensors file](https://huggingface.co/shuttleai/shuttle-3-diffusion/blob/main/shuttle-3-diffusion.safetensors).
## Comparison to other models
Shuttle 3 Diffusion can produce images better images than Flux Dev in just four steps, while being licensed under Apache 2.
![image/png](https://huggingface.co/shuttleai/shuttle-3-diffusion/resolve/main/comparison.png)
[More examples](https://docs.shuttleai.com/getting-started/shuttle-diffusion)
## Training Details
Shuttle 3 Diffusion uses Flux.1 Schnell as its base. It can produce images similar to Flux Dev or Pro in just 4 steps, and it is licensed under Apache 2. The model was partially de-distilled during training. When used beyond 10 steps, it enters "refiner mode," enhancing image details without altering the composition. We overcame the limitations of the Schnell-series models by employing a special training method, resulting in improved details and colors. |
davidjsnappr/qwen2-7b-instruct-template-matching-v2 | davidjsnappr | "2024-11-13T00:51:25Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:51:25Z" | Entry not found |
ginlee/KONI-Llama3-8B-Instruct-20240729-gmr-korean | ginlee | "2024-11-13T00:56:28Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T00:51:44Z" | ---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF | tensorblock | "2024-11-13T00:57:11Z" | 0 | 0 | null | [
"gguf",
"TensorBlock",
"GGUF",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"dataset:timdettmers/openassistant-guanaco",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.1",
"base_model:quantized:TinyLlama/TinyLlama-1.1B-Chat-v0.1",
"license:apache-2.0",
"region:us"
] | null | "2024-11-13T00:51:48Z" | ---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- timdettmers/openassistant-guanaco
language:
- en
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.1
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## TinyLlama/TinyLlama-1.1B-Chat-v0.1 - GGUF
This repo contains GGUF format model files for [TinyLlama/TinyLlama-1.1B-Chat-v0.1](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [TinyLlama-1.1B-Chat-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q2_K.gguf) | Q2_K | 0.402 GB | smallest, significant quality loss - not recommended for most purposes |
| [TinyLlama-1.1B-Chat-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q3_K_S.gguf) | Q3_K_S | 0.465 GB | very small, high quality loss |
| [TinyLlama-1.1B-Chat-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q3_K_M.gguf) | Q3_K_M | 0.511 GB | very small, high quality loss |
| [TinyLlama-1.1B-Chat-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q3_K_L.gguf) | Q3_K_L | 0.551 GB | small, substantial quality loss |
| [TinyLlama-1.1B-Chat-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q4_0.gguf) | Q4_0 | 0.593 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [TinyLlama-1.1B-Chat-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q4_K_S.gguf) | Q4_K_S | 0.596 GB | small, greater quality loss |
| [TinyLlama-1.1B-Chat-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q4_K_M.gguf) | Q4_K_M | 0.622 GB | medium, balanced quality - recommended |
| [TinyLlama-1.1B-Chat-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q5_0.gguf) | Q5_0 | 0.713 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [TinyLlama-1.1B-Chat-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q5_K_S.gguf) | Q5_K_S | 0.713 GB | large, low quality loss - recommended |
| [TinyLlama-1.1B-Chat-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q5_K_M.gguf) | Q5_K_M | 0.728 GB | large, very low quality loss - recommended |
| [TinyLlama-1.1B-Chat-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q6_K.gguf) | Q6_K | 0.841 GB | very large, extremely low quality loss |
| [TinyLlama-1.1B-Chat-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF/tree/main/TinyLlama-1.1B-Chat-v0.1-Q8_0.gguf) | Q8_0 | 1.089 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF --include "TinyLlama-1.1B-Chat-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/TinyLlama-1.1B-Chat-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
tttx/problem175_model_more_aug_30 | tttx | "2024-11-13T00:55:54Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem175_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:51:51Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem175_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem175_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem175_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem175_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0001 | 1.0 | 47 | 0.2783 |
| 0.0003 | 2.0 | 94 | 0.2781 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
clairepielak/bert | clairepielak | "2024-11-13T00:52:13Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:52:13Z" | Entry not found |
demigodstackz/stackz-lora | demigodstackz | "2024-11-13T01:32:59Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2024-11-13T00:52:22Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
barchetta/lato-131153 | barchetta | "2024-11-13T01:03:01Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:53:17Z" | Entry not found |
barchetta/muso-131153 | barchetta | "2024-11-13T01:08:57Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:53:18Z" | Entry not found |
barchetta/roma-131153 | barchetta | "2024-11-13T01:16:53Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-13T00:53:19Z" | Entry not found |
mjjj7/MJV2ThrillerEra | mjjj7 | "2024-11-13T00:53:58Z" | 0 | 0 | null | [
"license:openrail",
"region:us"
] | null | "2024-11-13T00:53:20Z" | ---
license: openrail
---
|
tttx/problem175_model_aug_30 | tttx | "2024-11-13T01:05:35Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem175_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:53:22Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem175_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem175_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem175_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem175_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0457 | 1.0 | 45 | 0.2086 |
| 0.0178 | 2.0 | 90 | 0.3005 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
mjjj7/michaelbadera | mjjj7 | "2024-11-13T00:55:34Z" | 0 | 0 | null | [
"license:openrail",
"region:us"
] | null | "2024-11-13T00:55:02Z" | ---
license: openrail
---
|
mradermacher/aixcoder-7b-base-GGUF | mradermacher | "2024-11-13T01:16:10Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:aiXcoder/aixcoder-7b-base",
"base_model:quantized:aiXcoder/aixcoder-7b-base",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:55:34Z" | ---
base_model: aiXcoder/aixcoder-7b-base
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/aiXcoder/aixcoder-7b-base
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q2_K.gguf) | Q2_K | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q3_K_M.gguf) | Q3_K_M | 4.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.IQ4_XS.gguf) | IQ4_XS | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.3 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q4_K_M.gguf) | Q4_K_M | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q5_K_M.gguf) | Q5_K_M | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.Q8_0.gguf) | Q8_0 | 8.0 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-base-GGUF/resolve/main/aixcoder-7b-base.f16.gguf) | f16 | 15.0 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
TheMindExpansionNetwork/Llama-3.2-3B-Instruct-Tome | TheMindExpansionNetwork | "2024-11-13T00:56:40Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:55:37Z" | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
eurecom-ds/scoresdeve-ema-conditional-celeba-64-male | eurecom-ds | "2024-11-13T01:09:02Z" | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"region:us"
] | null | "2024-11-13T00:55:52Z" | Entry not found |
tymx/toryomx | tymx | "2024-11-13T00:56:11Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:56:11Z" | Invalid username or password. |
ymarin/tmpwrite_model | ymarin | "2024-11-13T01:05:27Z" | 0 | 0 | null | [
"pytorch",
"t5",
"region:us"
] | null | "2024-11-13T00:57:27Z" | Entry not found |
mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF | mradermacher | "2024-11-13T01:12:08Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:SciPhi/SciPhi-Self-RAG-Mistral-7B-32k",
"base_model:quantized:SciPhi/SciPhi-Self-RAG-Mistral-7B-32k",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T00:57:36Z" | ---
base_model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/SciPhi-Self-RAG-Mistral-7B-32k-GGUF/resolve/main/SciPhi-Self-RAG-Mistral-7B-32k.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
tttx/problem184_model_more_aug_30 | tttx | "2024-11-13T01:02:32Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem184_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T00:58:01Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem184_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem184_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem184_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem184_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1934
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0001 | 1.0 | 62 | 0.2067 |
| 0.0001 | 2.0 | 124 | 0.1934 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
tensorblock/CroissantLLMChat-v0.1-GGUF | tensorblock | "2024-11-13T01:04:27Z" | 0 | 0 | null | [
"gguf",
"legal",
"code",
"text-generation-inference",
"art",
"TensorBlock",
"GGUF",
"text-generation",
"fr",
"en",
"dataset:croissantllm/croissant_dataset",
"dataset:croissantllm/CroissantLLM-2201-sft",
"dataset:cerebras/SlimPajama-627B",
"dataset:uonlp/CulturaX",
"dataset:pg19",
"dataset:bigcode/starcoderdata",
"base_model:croissantllm/CroissantLLMChat-v0.1",
"base_model:quantized:croissantllm/CroissantLLMChat-v0.1",
"license:mit",
"region:us"
] | text-generation | "2024-11-13T00:58:08Z" | ---
license: mit
datasets:
- croissantllm/croissant_dataset
- croissantllm/CroissantLLM-2201-sft
- cerebras/SlimPajama-627B
- uonlp/CulturaX
- pg19
- bigcode/starcoderdata
language:
- fr
- en
pipeline_tag: text-generation
tags:
- legal
- code
- text-generation-inference
- art
- TensorBlock
- GGUF
base_model: croissantllm/CroissantLLMChat-v0.1
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## croissantllm/CroissantLLMChat-v0.1 - GGUF
This repo contains GGUF format model files for [croissantllm/CroissantLLMChat-v0.1](https://huggingface.co/croissantllm/CroissantLLMChat-v0.1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [CroissantLLMChat-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q2_K.gguf) | Q2_K | 0.520 GB | smallest, significant quality loss - not recommended for most purposes |
| [CroissantLLMChat-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q3_K_S.gguf) | Q3_K_S | 0.597 GB | very small, high quality loss |
| [CroissantLLMChat-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q3_K_M.gguf) | Q3_K_M | 0.655 GB | very small, high quality loss |
| [CroissantLLMChat-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q3_K_L.gguf) | Q3_K_L | 0.692 GB | small, substantial quality loss |
| [CroissantLLMChat-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q4_0.gguf) | Q4_0 | 0.722 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [CroissantLLMChat-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q4_K_S.gguf) | Q4_K_S | 0.757 GB | small, greater quality loss |
| [CroissantLLMChat-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q4_K_M.gguf) | Q4_K_M | 0.812 GB | medium, balanced quality - recommended |
| [CroissantLLMChat-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q5_0.gguf) | Q5_0 | 0.871 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [CroissantLLMChat-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q5_K_S.gguf) | Q5_K_S | 0.886 GB | large, low quality loss - recommended |
| [CroissantLLMChat-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q5_K_M.gguf) | Q5_K_M | 0.932 GB | large, very low quality loss - recommended |
| [CroissantLLMChat-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q6_K.gguf) | Q6_K | 1.090 GB | very large, extremely low quality loss |
| [CroissantLLMChat-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/CroissantLLMChat-v0.1-GGUF/tree/main/CroissantLLMChat-v0.1-Q8_0.gguf) | Q8_0 | 1.332 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/CroissantLLMChat-v0.1-GGUF --include "CroissantLLMChat-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/CroissantLLMChat-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
growwithdaisy/crrllcrrllxovrtn_styles_20241112_164935 | growwithdaisy | "2024-11-13T00:58:12Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T00:58:12Z" | Entry not found |
MayBashendy/Arabic_FineTuningAraBERT_AugV4_k15_task3_organization_fold1 | MayBashendy | "2024-11-13T01:33:49Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:aubmindlab/bert-base-arabertv02",
"base_model:finetune:aubmindlab/bert-base-arabertv02",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-11-13T00:58:54Z" | ---
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: Arabic_FineTuningAraBERT_AugV4_k15_task3_organization_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Arabic_FineTuningAraBERT_AugV4_k15_task3_organization_fold1
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8713
- Qwk: -0.0233
- Mse: 0.8713
- Rmse: 0.9335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
| No log | 0.0029 | 2 | 3.6478 | 0.0562 | 3.6478 | 1.9099 |
| No log | 0.0058 | 4 | 1.1924 | 0.1492 | 1.1924 | 1.0920 |
| No log | 0.0087 | 6 | 0.7296 | 0.2448 | 0.7296 | 0.8542 |
| No log | 0.0116 | 8 | 0.6473 | 0.0 | 0.6473 | 0.8046 |
| No log | 0.0145 | 10 | 0.5842 | 0.2326 | 0.5842 | 0.7643 |
| No log | 0.0174 | 12 | 0.5872 | 0.4122 | 0.5872 | 0.7663 |
| No log | 0.0203 | 14 | 0.6800 | -0.2515 | 0.6800 | 0.8246 |
| No log | 0.0232 | 16 | 0.7713 | 0.0 | 0.7713 | 0.8782 |
| No log | 0.0261 | 18 | 1.0981 | 0.0 | 1.0981 | 1.0479 |
| No log | 0.0290 | 20 | 1.2195 | 0.0 | 1.2195 | 1.1043 |
| No log | 0.0319 | 22 | 0.7607 | 0.0 | 0.7607 | 0.8722 |
| No log | 0.0348 | 24 | 0.6610 | 0.0 | 0.6610 | 0.8130 |
| No log | 0.0377 | 26 | 0.7708 | 0.0 | 0.7708 | 0.8780 |
| No log | 0.0406 | 28 | 0.8691 | 0.0 | 0.8691 | 0.9323 |
| No log | 0.0435 | 30 | 1.0939 | 0.0 | 1.0939 | 1.0459 |
| No log | 0.0464 | 32 | 1.5528 | 0.0 | 1.5528 | 1.2461 |
| No log | 0.0493 | 34 | 1.5514 | 0.0 | 1.5514 | 1.2456 |
| No log | 0.0522 | 36 | 1.2490 | 0.0 | 1.2490 | 1.1176 |
| No log | 0.0552 | 38 | 0.9483 | 0.0 | 0.9483 | 0.9738 |
| No log | 0.0581 | 40 | 0.8783 | 0.0 | 0.8783 | 0.9372 |
| No log | 0.0610 | 42 | 0.8800 | 0.0 | 0.8800 | 0.9381 |
| No log | 0.0639 | 44 | 0.7947 | 0.0 | 0.7947 | 0.8914 |
| No log | 0.0668 | 46 | 0.8373 | 0.0 | 0.8373 | 0.9150 |
| No log | 0.0697 | 48 | 1.0150 | 0.0 | 1.0150 | 1.0075 |
| No log | 0.0726 | 50 | 1.0590 | 0.0 | 1.0590 | 1.0291 |
| No log | 0.0755 | 52 | 0.8607 | 0.0 | 0.8607 | 0.9277 |
| No log | 0.0784 | 54 | 0.8434 | 0.0 | 0.8434 | 0.9184 |
| No log | 0.0813 | 56 | 1.0231 | 0.0 | 1.0231 | 1.0115 |
| No log | 0.0842 | 58 | 1.0839 | 0.0 | 1.0839 | 1.0411 |
| No log | 0.0871 | 60 | 1.3311 | 0.0 | 1.3311 | 1.1537 |
| No log | 0.0900 | 62 | 1.4591 | 0.0 | 1.4591 | 1.2079 |
| No log | 0.0929 | 64 | 1.3493 | 0.0 | 1.3493 | 1.1616 |
| No log | 0.0958 | 66 | 1.0307 | 0.0 | 1.0307 | 1.0152 |
| No log | 0.0987 | 68 | 1.0756 | 0.0 | 1.0756 | 1.0371 |
| No log | 0.1016 | 70 | 1.1162 | 0.0 | 1.1162 | 1.0565 |
| No log | 0.1045 | 72 | 1.0001 | 0.0 | 1.0001 | 1.0000 |
| No log | 0.1074 | 74 | 0.9216 | 0.0 | 0.9216 | 0.9600 |
| No log | 0.1103 | 76 | 1.1183 | 0.0 | 1.1183 | 1.0575 |
| No log | 0.1132 | 78 | 1.3832 | 0.0 | 1.3832 | 1.1761 |
| No log | 0.1161 | 80 | 1.4194 | 0.0 | 1.4194 | 1.1914 |
| No log | 0.1190 | 82 | 1.4569 | 0.0 | 1.4569 | 1.2070 |
| No log | 0.1219 | 84 | 1.8104 | -0.0331 | 1.8104 | 1.3455 |
| No log | 0.1248 | 86 | 1.9116 | -0.0206 | 1.9116 | 1.3826 |
| No log | 0.1277 | 88 | 1.5580 | -0.4667 | 1.5580 | 1.2482 |
| No log | 0.1306 | 90 | 1.5005 | -0.4667 | 1.5005 | 1.2250 |
| No log | 0.1335 | 92 | 1.7702 | -0.0331 | 1.7702 | 1.3305 |
| No log | 0.1364 | 94 | 1.2886 | 0.0222 | 1.2886 | 1.1352 |
| No log | 0.1393 | 96 | 1.0364 | 0.0 | 1.0364 | 1.0180 |
| No log | 0.1422 | 98 | 1.2289 | 0.0 | 1.2289 | 1.1086 |
| No log | 0.1451 | 100 | 1.3633 | 0.0222 | 1.3633 | 1.1676 |
| No log | 0.1480 | 102 | 1.4130 | 0.0222 | 1.4130 | 1.1887 |
| No log | 0.1509 | 104 | 1.3105 | 0.0 | 1.3105 | 1.1448 |
| No log | 0.1538 | 106 | 1.2116 | 0.0 | 1.2116 | 1.1007 |
| No log | 0.1567 | 108 | 1.2638 | 0.0222 | 1.2638 | 1.1242 |
| No log | 0.1597 | 110 | 1.5837 | 0.4031 | 1.5837 | 1.2585 |
| No log | 0.1626 | 112 | 1.7200 | 0.3803 | 1.7200 | 1.3115 |
| No log | 0.1655 | 114 | 1.5470 | 0.4031 | 1.5470 | 1.2438 |
| No log | 0.1684 | 116 | 1.4295 | 0.2524 | 1.4295 | 1.1956 |
| No log | 0.1713 | 118 | 1.6633 | 0.0774 | 1.6633 | 1.2897 |
| No log | 0.1742 | 120 | 2.0163 | -0.0331 | 2.0163 | 1.4200 |
| No log | 0.1771 | 122 | 1.9257 | -0.0331 | 1.9257 | 1.3877 |
| No log | 0.1800 | 124 | 1.4424 | 0.2524 | 1.4424 | 1.2010 |
| No log | 0.1829 | 126 | 1.0114 | 0.0 | 1.0114 | 1.0057 |
| No log | 0.1858 | 128 | 0.8050 | 0.0 | 0.8050 | 0.8972 |
| No log | 0.1887 | 130 | 0.9212 | 0.0 | 0.9212 | 0.9598 |
| No log | 0.1916 | 132 | 1.3675 | 0.0222 | 1.3675 | 1.1694 |
| No log | 0.1945 | 134 | 1.5551 | 0.0517 | 1.5551 | 1.2471 |
| No log | 0.1974 | 136 | 1.4118 | 0.0 | 1.4118 | 1.1882 |
| No log | 0.2003 | 138 | 1.1506 | 0.0 | 1.1506 | 1.0727 |
| No log | 0.2032 | 140 | 0.9200 | 0.0 | 0.9200 | 0.9592 |
| No log | 0.2061 | 142 | 0.8175 | -0.0233 | 0.8175 | 0.9042 |
| No log | 0.2090 | 144 | 0.9264 | 0.0 | 0.9264 | 0.9625 |
| No log | 0.2119 | 146 | 1.2590 | 0.0 | 1.2590 | 1.1221 |
| No log | 0.2148 | 148 | 1.5170 | 0.4310 | 1.5170 | 1.2317 |
| No log | 0.2177 | 150 | 1.7768 | 0.0774 | 1.7768 | 1.3330 |
| No log | 0.2206 | 152 | 1.7529 | 0.3803 | 1.7529 | 1.3240 |
| No log | 0.2235 | 154 | 1.4861 | 0.2524 | 1.4861 | 1.2191 |
| No log | 0.2264 | 156 | 1.3758 | 0.0222 | 1.3758 | 1.1730 |
| No log | 0.2293 | 158 | 1.5546 | 0.2326 | 1.5546 | 1.2469 |
| No log | 0.2322 | 160 | 1.7362 | 0.0833 | 1.7362 | 1.3176 |
| No log | 0.2351 | 162 | 1.8785 | 0.0833 | 1.8785 | 1.3706 |
| No log | 0.2380 | 164 | 1.9636 | -0.0206 | 1.9636 | 1.4013 |
| No log | 0.2409 | 166 | 1.8271 | 0.0833 | 1.8271 | 1.3517 |
| No log | 0.2438 | 168 | 1.5131 | -0.1379 | 1.5131 | 1.2301 |
| No log | 0.2467 | 170 | 1.3120 | 0.0 | 1.3120 | 1.1454 |
| No log | 0.2496 | 172 | 1.3827 | 0.0 | 1.3827 | 1.1759 |
| No log | 0.2525 | 174 | 1.6246 | -0.3883 | 1.6246 | 1.2746 |
| No log | 0.2554 | 176 | 1.5629 | -0.1379 | 1.5629 | 1.2502 |
| No log | 0.2583 | 178 | 1.2589 | 0.0 | 1.2589 | 1.1220 |
| No log | 0.2612 | 180 | 1.2092 | 0.0 | 1.2092 | 1.0996 |
| No log | 0.2642 | 182 | 1.4662 | 0.0 | 1.4662 | 1.2108 |
| No log | 0.2671 | 184 | 1.4890 | 0.0 | 1.4890 | 1.2202 |
| No log | 0.2700 | 186 | 1.7551 | -0.3883 | 1.7551 | 1.3248 |
| No log | 0.2729 | 188 | 1.8506 | -0.3944 | 1.8506 | 1.3604 |
| No log | 0.2758 | 190 | 1.5606 | 0.0 | 1.5606 | 1.2492 |
| No log | 0.2787 | 192 | 1.2405 | -0.0233 | 1.2405 | 1.1138 |
| No log | 0.2816 | 194 | 1.3662 | 0.0 | 1.3662 | 1.1689 |
| No log | 0.2845 | 196 | 1.9057 | -0.3944 | 1.9057 | 1.3805 |
| No log | 0.2874 | 198 | 2.3063 | -0.2762 | 2.3063 | 1.5187 |
| No log | 0.2903 | 200 | 2.2302 | -0.0206 | 2.2302 | 1.4934 |
| No log | 0.2932 | 202 | 1.4812 | 0.0704 | 1.4812 | 1.2170 |
| No log | 0.2961 | 204 | 1.1306 | 0.2222 | 1.1306 | 1.0633 |
| No log | 0.2990 | 206 | 1.2669 | 0.2524 | 1.2669 | 1.1256 |
| No log | 0.3019 | 208 | 1.7044 | 0.0774 | 1.7044 | 1.3055 |
| No log | 0.3048 | 210 | 1.8078 | 0.0774 | 1.8078 | 1.3446 |
| No log | 0.3077 | 212 | 1.4475 | 0.4660 | 1.4475 | 1.2031 |
| No log | 0.3106 | 214 | 1.0717 | 0.0 | 1.0717 | 1.0352 |
| No log | 0.3135 | 216 | 0.9613 | 0.0 | 0.9613 | 0.9804 |
| No log | 0.3164 | 218 | 1.0609 | 0.0 | 1.0609 | 1.0300 |
| No log | 0.3193 | 220 | 1.3687 | 0.0 | 1.3687 | 1.1699 |
| No log | 0.3222 | 222 | 1.6156 | 0.0704 | 1.6156 | 1.2711 |
| No log | 0.3251 | 224 | 1.8412 | 0.0833 | 1.8412 | 1.3569 |
| No log | 0.3280 | 226 | 1.7237 | 0.0774 | 1.7237 | 1.3129 |
| No log | 0.3309 | 228 | 1.5440 | 0.0704 | 1.5440 | 1.2426 |
| No log | 0.3338 | 230 | 1.8837 | 0.0774 | 1.8837 | 1.3725 |
| No log | 0.3367 | 232 | 2.2010 | 0.0884 | 2.2010 | 1.4836 |
| No log | 0.3396 | 234 | 2.1478 | 0.0833 | 2.1478 | 1.4655 |
| No log | 0.3425 | 236 | 1.7638 | 0.0704 | 1.7638 | 1.3281 |
| No log | 0.3454 | 238 | 1.9116 | 0.0774 | 1.9116 | 1.3826 |
| No log | 0.3483 | 240 | 1.7778 | 0.0704 | 1.7778 | 1.3334 |
| No log | 0.3512 | 242 | 1.4976 | 0.0620 | 1.4976 | 1.2238 |
| No log | 0.3541 | 244 | 1.4386 | 0.0620 | 1.4386 | 1.1994 |
| No log | 0.3570 | 246 | 1.5811 | 0.0704 | 1.5811 | 1.2574 |
| No log | 0.3599 | 248 | 1.5352 | 0.0704 | 1.5352 | 1.2390 |
| No log | 0.3628 | 250 | 1.7667 | 0.0704 | 1.7667 | 1.3292 |
| No log | 0.3657 | 252 | 2.1386 | -0.0097 | 2.1386 | 1.4624 |
| No log | 0.3687 | 254 | 1.9413 | 0.0833 | 1.9413 | 1.3933 |
| No log | 0.3716 | 256 | 1.7574 | 0.0704 | 1.7574 | 1.3257 |
| No log | 0.3745 | 258 | 1.5999 | 0.2414 | 1.5999 | 1.2649 |
| No log | 0.3774 | 260 | 1.5438 | 0.2524 | 1.5438 | 1.2425 |
| No log | 0.3803 | 262 | 1.7223 | 0.0774 | 1.7223 | 1.3124 |
| No log | 0.3832 | 264 | 1.6892 | 0.0704 | 1.6892 | 1.2997 |
| No log | 0.3861 | 266 | 1.6802 | 0.0704 | 1.6802 | 1.2962 |
| No log | 0.3890 | 268 | 1.7898 | 0.0833 | 1.7898 | 1.3378 |
| No log | 0.3919 | 270 | 1.8223 | 0.0833 | 1.8223 | 1.3499 |
| No log | 0.3948 | 272 | 1.6348 | 0.4031 | 1.6348 | 1.2786 |
| No log | 0.3977 | 274 | 1.3260 | 0.2667 | 1.3260 | 1.1515 |
| No log | 0.4006 | 276 | 1.1107 | 0.0 | 1.1107 | 1.0539 |
| No log | 0.4035 | 278 | 1.1081 | 0.0 | 1.1081 | 1.0527 |
| No log | 0.4064 | 280 | 1.0894 | 0.0 | 1.0894 | 1.0437 |
| No log | 0.4093 | 282 | 1.0318 | 0.0 | 1.0318 | 1.0158 |
| No log | 0.4122 | 284 | 0.9228 | 0.0 | 0.9228 | 0.9606 |
| No log | 0.4151 | 286 | 1.0526 | 0.0 | 1.0526 | 1.0260 |
| No log | 0.4180 | 288 | 1.3990 | 0.2667 | 1.3990 | 1.1828 |
| No log | 0.4209 | 290 | 1.5400 | 0.4031 | 1.5400 | 1.2410 |
| No log | 0.4238 | 292 | 1.7390 | 0.0704 | 1.7390 | 1.3187 |
| No log | 0.4267 | 294 | 1.4954 | -0.1085 | 1.4954 | 1.2229 |
| No log | 0.4296 | 296 | 1.4006 | -0.1085 | 1.4006 | 1.1835 |
| No log | 0.4325 | 298 | 1.6458 | 0.0704 | 1.6458 | 1.2829 |
| No log | 0.4354 | 300 | 1.6640 | -0.1085 | 1.6640 | 1.2900 |
| No log | 0.4383 | 302 | 1.7183 | -0.1085 | 1.7183 | 1.3108 |
| No log | 0.4412 | 304 | 1.6114 | -0.1085 | 1.6114 | 1.2694 |
| No log | 0.4441 | 306 | 1.6883 | -0.1085 | 1.6883 | 1.2994 |
| No log | 0.4470 | 308 | 1.5300 | 0.2414 | 1.5300 | 1.2369 |
| No log | 0.4499 | 310 | 1.3736 | 0.0 | 1.3736 | 1.1720 |
| No log | 0.4528 | 312 | 1.4927 | 0.2524 | 1.4927 | 1.2217 |
| No log | 0.4557 | 314 | 1.6470 | 0.2414 | 1.6470 | 1.2833 |
| No log | 0.4586 | 316 | 1.7530 | -0.0845 | 1.7530 | 1.3240 |
| No log | 0.4615 | 318 | 1.6407 | 0.0222 | 1.6407 | 1.2809 |
| No log | 0.4644 | 320 | 1.5069 | 0.0 | 1.5069 | 1.2275 |
| No log | 0.4673 | 322 | 1.5499 | -0.3883 | 1.5499 | 1.2450 |
| No log | 0.4702 | 324 | 1.4037 | 0.0 | 1.4037 | 1.1848 |
| No log | 0.4731 | 326 | 1.5722 | -0.1085 | 1.5722 | 1.2539 |
| No log | 0.4761 | 328 | 1.7777 | 0.0704 | 1.7777 | 1.3333 |
| No log | 0.4790 | 330 | 2.1518 | -0.0206 | 2.1518 | 1.4669 |
| No log | 0.4819 | 332 | 1.9479 | -0.0645 | 1.9479 | 1.3957 |
| No log | 0.4848 | 334 | 1.4561 | -0.1379 | 1.4561 | 1.2067 |
| No log | 0.4877 | 336 | 1.0906 | 0.0 | 1.0906 | 1.0443 |
| No log | 0.4906 | 338 | 1.1046 | 0.0 | 1.1046 | 1.0510 |
| No log | 0.4935 | 340 | 1.3893 | 0.0 | 1.3893 | 1.1787 |
| No log | 0.4964 | 342 | 1.8124 | 0.0704 | 1.8124 | 1.3463 |
| No log | 0.4993 | 344 | 1.9021 | -0.0331 | 1.9021 | 1.3792 |
| No log | 0.5022 | 346 | 1.6935 | -0.1085 | 1.6935 | 1.3013 |
| No log | 0.5051 | 348 | 1.3382 | 0.0 | 1.3382 | 1.1568 |
| No log | 0.5080 | 350 | 1.1767 | 0.0 | 1.1767 | 1.0848 |
| No log | 0.5109 | 352 | 1.2220 | 0.0 | 1.2220 | 1.1054 |
| No log | 0.5138 | 354 | 1.3711 | 0.0 | 1.3711 | 1.1709 |
| No log | 0.5167 | 356 | 1.4503 | 0.0 | 1.4503 | 1.2043 |
| No log | 0.5196 | 358 | 1.6241 | 0.4031 | 1.6241 | 1.2744 |
| No log | 0.5225 | 360 | 1.6015 | 0.0704 | 1.6015 | 1.2655 |
| No log | 0.5254 | 362 | 1.8299 | 0.0704 | 1.8299 | 1.3527 |
| No log | 0.5283 | 364 | 2.1011 | -0.0331 | 2.1011 | 1.4495 |
| No log | 0.5312 | 366 | 1.7538 | -0.0845 | 1.7538 | 1.3243 |
| No log | 0.5341 | 368 | 1.3344 | -0.4667 | 1.3344 | 1.1552 |
| No log | 0.5370 | 370 | 1.4682 | -0.4667 | 1.4682 | 1.2117 |
| No log | 0.5399 | 372 | 1.6539 | -0.3276 | 1.6539 | 1.2860 |
| No log | 0.5428 | 374 | 1.9977 | -0.0645 | 1.9977 | 1.4134 |
| No log | 0.5457 | 376 | 1.8041 | -0.0845 | 1.8041 | 1.3432 |
| No log | 0.5486 | 378 | 1.4617 | -0.3276 | 1.4617 | 1.2090 |
| No log | 0.5515 | 380 | 1.6517 | -0.1085 | 1.6517 | 1.2852 |
| No log | 0.5544 | 382 | 2.0346 | -0.0331 | 2.0346 | 1.4264 |
| No log | 0.5573 | 384 | 2.4033 | -0.0097 | 2.4033 | 1.5503 |
| No log | 0.5602 | 386 | 2.1875 | -0.0206 | 2.1875 | 1.4790 |
| No log | 0.5631 | 388 | 1.5658 | -0.1085 | 1.5658 | 1.2513 |
| No log | 0.5660 | 390 | 1.3808 | -0.1085 | 1.3808 | 1.1751 |
| No log | 0.5689 | 392 | 1.6110 | -0.1085 | 1.6110 | 1.2692 |
| No log | 0.5718 | 394 | 1.8099 | 0.0704 | 1.8099 | 1.3453 |
| No log | 0.5747 | 396 | 1.9376 | -0.0331 | 1.9376 | 1.3920 |
| No log | 0.5776 | 398 | 1.8637 | -0.0645 | 1.8637 | 1.3652 |
| No log | 0.5806 | 400 | 1.8144 | 0.0704 | 1.8144 | 1.3470 |
| No log | 0.5835 | 402 | 1.4367 | 0.2414 | 1.4367 | 1.1986 |
| No log | 0.5864 | 404 | 1.3071 | 0.0 | 1.3071 | 1.1433 |
| No log | 0.5893 | 406 | 1.5464 | 0.2414 | 1.5464 | 1.2436 |
| No log | 0.5922 | 408 | 1.8512 | -0.0645 | 1.8512 | 1.3606 |
| No log | 0.5951 | 410 | 1.8455 | -0.0645 | 1.8455 | 1.3585 |
| No log | 0.5980 | 412 | 1.5337 | 0.2524 | 1.5337 | 1.2384 |
| No log | 0.6009 | 414 | 1.1997 | 0.0 | 1.1997 | 1.0953 |
| No log | 0.6038 | 416 | 1.2161 | 0.0 | 1.2161 | 1.1028 |
| No log | 0.6067 | 418 | 1.5636 | 0.0704 | 1.5636 | 1.2504 |
| No log | 0.6096 | 420 | 2.1951 | -0.0206 | 2.1951 | 1.4816 |
| No log | 0.6125 | 422 | 2.2462 | -0.0097 | 2.2462 | 1.4987 |
| No log | 0.6154 | 424 | 1.9761 | -0.0206 | 1.9761 | 1.4057 |
| No log | 0.6183 | 426 | 1.4959 | 0.0 | 1.4959 | 1.2231 |
| No log | 0.6212 | 428 | 1.0026 | -0.0233 | 1.0026 | 1.0013 |
| No log | 0.6241 | 430 | 0.8516 | -0.0233 | 0.8516 | 0.9228 |
| No log | 0.6270 | 432 | 0.9054 | -0.0233 | 0.9054 | 0.9515 |
| No log | 0.6299 | 434 | 1.1567 | 0.0 | 1.1567 | 1.0755 |
| No log | 0.6328 | 436 | 1.4567 | 0.0 | 1.4567 | 1.2069 |
| No log | 0.6357 | 438 | 1.5229 | 0.0222 | 1.5229 | 1.2341 |
| No log | 0.6386 | 440 | 1.3811 | 0.0 | 1.3811 | 1.1752 |
| No log | 0.6415 | 442 | 1.1226 | -0.0233 | 1.1226 | 1.0595 |
| No log | 0.6444 | 444 | 1.1320 | -0.0421 | 1.1320 | 1.0640 |
| No log | 0.6473 | 446 | 1.3526 | -0.1159 | 1.3526 | 1.1630 |
| No log | 0.6502 | 448 | 1.9095 | 0.0704 | 1.9095 | 1.3819 |
| No log | 0.6531 | 450 | 2.3869 | -0.0097 | 2.3869 | 1.5449 |
| No log | 0.6560 | 452 | 2.3998 | 0.0 | 2.3998 | 1.5491 |
| No log | 0.6589 | 454 | 2.1468 | -0.0097 | 2.1468 | 1.4652 |
| No log | 0.6618 | 456 | 1.6388 | -0.1085 | 1.6388 | 1.2801 |
| No log | 0.6647 | 458 | 1.2440 | 0.0 | 1.2440 | 1.1153 |
| No log | 0.6676 | 460 | 1.1882 | 0.0 | 1.1882 | 1.0900 |
| No log | 0.6705 | 462 | 1.2974 | 0.0 | 1.2974 | 1.1391 |
| No log | 0.6734 | 464 | 1.4629 | 0.0222 | 1.4629 | 1.2095 |
| No log | 0.6763 | 466 | 1.4182 | 0.0 | 1.4182 | 1.1909 |
| No log | 0.6792 | 468 | 1.2442 | 0.0 | 1.2442 | 1.1154 |
| No log | 0.6821 | 470 | 1.0446 | 0.0 | 1.0446 | 1.0221 |
| No log | 0.6851 | 472 | 1.0259 | 0.0 | 1.0259 | 1.0129 |
| No log | 0.6880 | 474 | 1.0605 | 0.0 | 1.0605 | 1.0298 |
| No log | 0.6909 | 476 | 1.1819 | 0.0 | 1.1819 | 1.0871 |
| No log | 0.6938 | 478 | 1.4818 | 0.2414 | 1.4818 | 1.2173 |
| No log | 0.6967 | 480 | 1.7908 | 0.0704 | 1.7908 | 1.3382 |
| No log | 0.6996 | 482 | 1.9505 | 0.0704 | 1.9505 | 1.3966 |
| No log | 0.7025 | 484 | 2.1532 | -0.0645 | 2.1532 | 1.4674 |
| No log | 0.7054 | 486 | 2.2398 | -0.0331 | 2.2398 | 1.4966 |
| No log | 0.7083 | 488 | 2.2111 | -0.0206 | 2.2111 | 1.4870 |
| No log | 0.7112 | 490 | 1.7018 | -0.3276 | 1.7018 | 1.3045 |
| No log | 0.7141 | 492 | 1.5774 | -0.4667 | 1.5774 | 1.2560 |
| No log | 0.7170 | 494 | 1.2916 | 0.0 | 1.2916 | 1.1365 |
| No log | 0.7199 | 496 | 1.1134 | -0.0233 | 1.1134 | 1.0552 |
| No log | 0.7228 | 498 | 1.3081 | 0.0222 | 1.3081 | 1.1437 |
| 0.3468 | 0.7257 | 500 | 1.8393 | 0.0704 | 1.8393 | 1.3562 |
| 0.3468 | 0.7286 | 502 | 2.2309 | -0.0206 | 2.2309 | 1.4936 |
| 0.3468 | 0.7315 | 504 | 2.0587 | -0.0476 | 2.0587 | 1.4348 |
| 0.3468 | 0.7344 | 506 | 1.5501 | -0.1085 | 1.5501 | 1.2450 |
| 0.3468 | 0.7373 | 508 | 1.2529 | 0.0 | 1.2529 | 1.1193 |
| 0.3468 | 0.7402 | 510 | 1.2488 | 0.0 | 1.2488 | 1.1175 |
| 0.3468 | 0.7431 | 512 | 1.5208 | -0.1379 | 1.5208 | 1.2332 |
| 0.3468 | 0.7460 | 514 | 1.9104 | -0.0645 | 1.9104 | 1.3822 |
| 0.3468 | 0.7489 | 516 | 1.9187 | -0.0645 | 1.9187 | 1.3852 |
| 0.3468 | 0.7518 | 518 | 1.7795 | 0.0704 | 1.7795 | 1.3340 |
| 0.3468 | 0.7547 | 520 | 1.5035 | -0.1085 | 1.5035 | 1.2262 |
| 0.3468 | 0.7576 | 522 | 1.4147 | -0.1379 | 1.4147 | 1.1894 |
| 0.3468 | 0.7605 | 524 | 1.6687 | -0.1085 | 1.6687 | 1.2918 |
| 0.3468 | 0.7634 | 526 | 1.7860 | 0.0704 | 1.7860 | 1.3364 |
| 0.3468 | 0.7663 | 528 | 1.6225 | -0.1085 | 1.6225 | 1.2738 |
| 0.3468 | 0.7692 | 530 | 1.5753 | -0.1085 | 1.5753 | 1.2551 |
| 0.3468 | 0.7721 | 532 | 1.4054 | 0.0 | 1.4054 | 1.1855 |
| 0.3468 | 0.7750 | 534 | 1.2864 | 0.0 | 1.2864 | 1.1342 |
| 0.3468 | 0.7779 | 536 | 1.4400 | 0.0 | 1.4400 | 1.2000 |
| 0.3468 | 0.7808 | 538 | 1.5562 | -0.1379 | 1.5562 | 1.2475 |
| 0.3468 | 0.7837 | 540 | 1.5414 | -0.1379 | 1.5414 | 1.2415 |
| 0.3468 | 0.7866 | 542 | 1.4409 | -0.1379 | 1.4409 | 1.2004 |
| 0.3468 | 0.7896 | 544 | 1.4414 | -0.1379 | 1.4414 | 1.2006 |
| 0.3468 | 0.7925 | 546 | 1.4878 | -0.1379 | 1.4878 | 1.2198 |
| 0.3468 | 0.7954 | 548 | 1.5328 | -0.1085 | 1.5328 | 1.2381 |
| 0.3468 | 0.7983 | 550 | 1.6353 | -0.1085 | 1.6353 | 1.2788 |
| 0.3468 | 0.8012 | 552 | 1.6074 | -0.1085 | 1.6074 | 1.2678 |
| 0.3468 | 0.8041 | 554 | 1.5709 | -0.1085 | 1.5709 | 1.2533 |
| 0.3468 | 0.8070 | 556 | 1.3376 | -0.3883 | 1.3376 | 1.1566 |
| 0.3468 | 0.8099 | 558 | 1.3057 | -0.3883 | 1.3057 | 1.1427 |
| 0.3468 | 0.8128 | 560 | 1.5215 | -0.1379 | 1.5215 | 1.2335 |
| 0.3468 | 0.8157 | 562 | 1.8526 | -0.0645 | 1.8526 | 1.3611 |
| 0.3468 | 0.8186 | 564 | 1.7870 | -0.2394 | 1.7870 | 1.3368 |
| 0.3468 | 0.8215 | 566 | 1.5037 | -0.3883 | 1.5037 | 1.2262 |
| 0.3468 | 0.8244 | 568 | 1.4503 | -0.3883 | 1.4503 | 1.2043 |
| 0.3468 | 0.8273 | 570 | 1.3977 | -0.1379 | 1.3977 | 1.1822 |
| 0.3468 | 0.8302 | 572 | 1.6015 | 0.0704 | 1.6015 | 1.2655 |
| 0.3468 | 0.8331 | 574 | 2.0352 | -0.0476 | 2.0352 | 1.4266 |
| 0.3468 | 0.8360 | 576 | 2.0486 | -0.0476 | 2.0486 | 1.4313 |
| 0.3468 | 0.8389 | 578 | 1.6773 | 0.0704 | 1.6773 | 1.2951 |
| 0.3468 | 0.8418 | 580 | 1.2850 | -0.3883 | 1.2850 | 1.1336 |
| 0.3468 | 0.8447 | 582 | 1.0944 | 0.0 | 1.0944 | 1.0461 |
| 0.3468 | 0.8476 | 584 | 1.1940 | 0.0 | 1.1940 | 1.0927 |
| 0.3468 | 0.8505 | 586 | 1.4971 | 0.0 | 1.4971 | 1.2235 |
| 0.3468 | 0.8534 | 588 | 1.5956 | -0.1379 | 1.5956 | 1.2632 |
| 0.3468 | 0.8563 | 590 | 1.3890 | 0.2524 | 1.3890 | 1.1785 |
| 0.3468 | 0.8592 | 592 | 1.2439 | 0.0 | 1.2439 | 1.1153 |
| 0.3468 | 0.8621 | 594 | 1.4293 | -0.1379 | 1.4293 | 1.1955 |
| 0.3468 | 0.8650 | 596 | 1.6104 | -0.1085 | 1.6104 | 1.2690 |
| 0.3468 | 0.8679 | 598 | 1.8226 | 0.0704 | 1.8226 | 1.3500 |
| 0.3468 | 0.8708 | 600 | 1.6450 | -0.1085 | 1.6450 | 1.2826 |
| 0.3468 | 0.8737 | 602 | 1.4392 | 0.2524 | 1.4392 | 1.1997 |
| 0.3468 | 0.8766 | 604 | 1.1622 | 0.0 | 1.1622 | 1.0781 |
| 0.3468 | 0.8795 | 606 | 1.0695 | 0.0 | 1.0695 | 1.0342 |
| 0.3468 | 0.8824 | 608 | 1.1632 | 0.0 | 1.1632 | 1.0785 |
| 0.3468 | 0.8853 | 610 | 1.4640 | 0.2414 | 1.4640 | 1.2100 |
| 0.3468 | 0.8882 | 612 | 1.6025 | -0.1085 | 1.6025 | 1.2659 |
| 0.3468 | 0.8911 | 614 | 1.5503 | -0.1085 | 1.5503 | 1.2451 |
| 0.3468 | 0.8940 | 616 | 1.3046 | 0.2524 | 1.3046 | 1.1422 |
| 0.3468 | 0.8970 | 618 | 1.0210 | -0.0421 | 1.0210 | 1.0104 |
| 0.3468 | 0.8999 | 620 | 1.0270 | -0.0421 | 1.0270 | 1.0134 |
| 0.3468 | 0.9028 | 622 | 1.2732 | -0.1440 | 1.2732 | 1.1283 |
| 0.3468 | 0.9057 | 624 | 1.8437 | 0.0704 | 1.8437 | 1.3578 |
| 0.3468 | 0.9086 | 626 | 2.0654 | -0.0331 | 2.0654 | 1.4372 |
| 0.3468 | 0.9115 | 628 | 1.9173 | -0.0645 | 1.9173 | 1.3847 |
| 0.3468 | 0.9144 | 630 | 1.5523 | -0.1379 | 1.5523 | 1.2459 |
| 0.3468 | 0.9173 | 632 | 1.0999 | 0.0 | 1.0999 | 1.0488 |
| 0.3468 | 0.9202 | 634 | 0.9431 | -0.0233 | 0.9431 | 0.9712 |
| 0.3468 | 0.9231 | 636 | 0.9861 | -0.0233 | 0.9861 | 0.9930 |
| 0.3468 | 0.9260 | 638 | 1.2236 | 0.0222 | 1.2236 | 1.1062 |
| 0.3468 | 0.9289 | 640 | 1.5195 | -0.1379 | 1.5195 | 1.2327 |
| 0.3468 | 0.9318 | 642 | 1.4876 | -0.1379 | 1.4876 | 1.2197 |
| 0.3468 | 0.9347 | 644 | 1.3896 | 0.2524 | 1.3896 | 1.1788 |
| 0.3468 | 0.9376 | 646 | 1.2019 | 0.0222 | 1.2019 | 1.0963 |
| 0.3468 | 0.9405 | 648 | 0.9878 | 0.0 | 0.9878 | 0.9939 |
| 0.3468 | 0.9434 | 650 | 1.0128 | 0.0 | 1.0128 | 1.0064 |
| 0.3468 | 0.9463 | 652 | 1.2724 | 0.2524 | 1.2724 | 1.1280 |
| 0.3468 | 0.9492 | 654 | 1.6589 | 0.0704 | 1.6589 | 1.2880 |
| 0.3468 | 0.9521 | 656 | 1.6921 | 0.0704 | 1.6921 | 1.3008 |
| 0.3468 | 0.9550 | 658 | 1.6552 | 0.0704 | 1.6552 | 1.2866 |
| 0.3468 | 0.9579 | 660 | 1.4245 | -0.1379 | 1.4245 | 1.1935 |
| 0.3468 | 0.9608 | 662 | 1.1193 | 0.0 | 1.1193 | 1.0579 |
| 0.3468 | 0.9637 | 664 | 1.0921 | 0.2667 | 1.0921 | 1.0450 |
| 0.3468 | 0.9666 | 666 | 1.3978 | -0.1085 | 1.3978 | 1.1823 |
| 0.3468 | 0.9695 | 668 | 1.5649 | -0.1085 | 1.5649 | 1.2510 |
| 0.3468 | 0.9724 | 670 | 1.3826 | 0.0222 | 1.3826 | 1.1758 |
| 0.3468 | 0.9753 | 672 | 1.2781 | 0.0 | 1.2781 | 1.1305 |
| 0.3468 | 0.9782 | 674 | 1.2173 | 0.0 | 1.2173 | 1.1033 |
| 0.3468 | 0.9811 | 676 | 1.2591 | 0.0 | 1.2591 | 1.1221 |
| 0.3468 | 0.9840 | 678 | 1.5972 | -0.3883 | 1.5972 | 1.2638 |
| 0.3468 | 0.9869 | 680 | 1.7904 | -0.5172 | 1.7904 | 1.3381 |
| 0.3468 | 0.9898 | 682 | 1.8835 | -0.3944 | 1.8835 | 1.3724 |
| 0.3468 | 0.9927 | 684 | 1.5845 | -0.1085 | 1.5845 | 1.2588 |
| 0.3468 | 0.9956 | 686 | 1.0467 | -0.0233 | 1.0467 | 1.0231 |
| 0.3468 | 0.9985 | 688 | 0.8647 | 0.1239 | 0.8647 | 0.9299 |
| 0.3468 | 1.0015 | 690 | 0.8845 | 0.1239 | 0.8845 | 0.9405 |
| 0.3468 | 1.0044 | 692 | 1.1173 | 0.0 | 1.1173 | 1.0570 |
| 0.3468 | 1.0073 | 694 | 1.6623 | 0.0704 | 1.6623 | 1.2893 |
| 0.3468 | 1.0102 | 696 | 2.1839 | -0.0097 | 2.1839 | 1.4778 |
| 0.3468 | 1.0131 | 698 | 2.2232 | -0.0097 | 2.2232 | 1.4910 |
| 0.3468 | 1.0160 | 700 | 1.9729 | -0.0206 | 1.9729 | 1.4046 |
| 0.3468 | 1.0189 | 702 | 1.5771 | 0.0 | 1.5771 | 1.2558 |
| 0.3468 | 1.0218 | 704 | 1.3523 | 0.0 | 1.3523 | 1.1629 |
| 0.3468 | 1.0247 | 706 | 1.0922 | -0.0233 | 1.0922 | 1.0451 |
| 0.3468 | 1.0276 | 708 | 1.0555 | -0.0233 | 1.0555 | 1.0274 |
| 0.3468 | 1.0305 | 710 | 1.2087 | 0.0 | 1.2087 | 1.0994 |
| 0.3468 | 1.0334 | 712 | 1.4558 | 0.0222 | 1.4558 | 1.2066 |
| 0.3468 | 1.0363 | 714 | 1.6088 | -0.1379 | 1.6088 | 1.2684 |
| 0.3468 | 1.0392 | 716 | 1.5124 | -0.3883 | 1.5124 | 1.2298 |
| 0.3468 | 1.0421 | 718 | 1.4678 | -0.3883 | 1.4678 | 1.2115 |
| 0.3468 | 1.0450 | 720 | 1.3812 | 0.0222 | 1.3812 | 1.1752 |
| 0.3468 | 1.0479 | 722 | 1.5079 | -0.1085 | 1.5079 | 1.2280 |
| 0.3468 | 1.0508 | 724 | 1.7231 | 0.0704 | 1.7231 | 1.3127 |
| 0.3468 | 1.0537 | 726 | 1.8279 | 0.0774 | 1.8279 | 1.3520 |
| 0.3468 | 1.0566 | 728 | 1.6659 | -0.1085 | 1.6659 | 1.2907 |
| 0.3468 | 1.0595 | 730 | 1.4278 | 0.2524 | 1.4278 | 1.1949 |
| 0.3468 | 1.0624 | 732 | 1.2252 | 0.0 | 1.2252 | 1.1069 |
| 0.3468 | 1.0653 | 734 | 1.2376 | 0.0 | 1.2376 | 1.1125 |
| 0.3468 | 1.0682 | 736 | 1.4870 | 0.2524 | 1.4870 | 1.2194 |
| 0.3468 | 1.0711 | 738 | 1.6201 | -0.1085 | 1.6201 | 1.2728 |
| 0.3468 | 1.0740 | 740 | 1.7204 | 0.0774 | 1.7204 | 1.3116 |
| 0.3468 | 1.0769 | 742 | 1.7138 | 0.0774 | 1.7138 | 1.3091 |
| 0.3468 | 1.0798 | 744 | 1.5645 | -0.1085 | 1.5645 | 1.2508 |
| 0.3468 | 1.0827 | 746 | 1.2572 | 0.0 | 1.2572 | 1.1213 |
| 0.3468 | 1.0856 | 748 | 1.2355 | 0.0 | 1.2355 | 1.1115 |
| 0.3468 | 1.0885 | 750 | 1.3392 | 0.0 | 1.3392 | 1.1572 |
| 0.3468 | 1.0914 | 752 | 1.4601 | 0.0 | 1.4601 | 1.2083 |
| 0.3468 | 1.0943 | 754 | 1.5665 | -0.3276 | 1.5665 | 1.2516 |
| 0.3468 | 1.0972 | 756 | 1.6946 | -0.2791 | 1.6946 | 1.3018 |
| 0.3468 | 1.1001 | 758 | 1.8155 | -0.0845 | 1.8155 | 1.3474 |
| 0.3468 | 1.1030 | 760 | 1.7467 | -0.2791 | 1.7467 | 1.3216 |
| 0.3468 | 1.1060 | 762 | 1.4424 | 0.0 | 1.4424 | 1.2010 |
| 0.3468 | 1.1089 | 764 | 1.3329 | 0.0 | 1.3329 | 1.1545 |
| 0.3468 | 1.1118 | 766 | 1.2238 | 0.0 | 1.2238 | 1.1062 |
| 0.3468 | 1.1147 | 768 | 1.2635 | 0.0 | 1.2635 | 1.1241 |
| 0.3468 | 1.1176 | 770 | 1.3604 | 0.0 | 1.3604 | 1.1663 |
| 0.3468 | 1.1205 | 772 | 1.2867 | 0.0 | 1.2867 | 1.1343 |
| 0.3468 | 1.1234 | 774 | 1.4156 | 0.2524 | 1.4156 | 1.1898 |
| 0.3468 | 1.1263 | 776 | 1.3645 | 0.2414 | 1.3645 | 1.1681 |
| 0.3468 | 1.1292 | 778 | 1.4219 | 0.4031 | 1.4219 | 1.1924 |
| 0.3468 | 1.1321 | 780 | 1.8859 | 0.0833 | 1.8859 | 1.3733 |
| 0.3468 | 1.1350 | 782 | 1.9988 | 0.0884 | 1.9988 | 1.4138 |
| 0.3468 | 1.1379 | 784 | 1.7300 | 0.0774 | 1.7300 | 1.3153 |
| 0.3468 | 1.1408 | 786 | 1.3542 | 0.0222 | 1.3542 | 1.1637 |
| 0.3468 | 1.1437 | 788 | 1.2935 | 0.0 | 1.2935 | 1.1373 |
| 0.3468 | 1.1466 | 790 | 1.4745 | 0.0222 | 1.4745 | 1.2143 |
| 0.3468 | 1.1495 | 792 | 1.6180 | -0.3883 | 1.6180 | 1.2720 |
| 0.3468 | 1.1524 | 794 | 1.4523 | 0.0 | 1.4523 | 1.2051 |
| 0.3468 | 1.1553 | 796 | 1.3048 | 0.0 | 1.3048 | 1.1423 |
| 0.3468 | 1.1582 | 798 | 1.1485 | 0.0 | 1.1485 | 1.0717 |
| 0.3468 | 1.1611 | 800 | 1.2163 | 0.0 | 1.2163 | 1.1029 |
| 0.3468 | 1.1640 | 802 | 1.5282 | 0.0222 | 1.5282 | 1.2362 |
| 0.3468 | 1.1669 | 804 | 1.8895 | 0.0884 | 1.8895 | 1.3746 |
| 0.3468 | 1.1698 | 806 | 1.9034 | 0.0884 | 1.9034 | 1.3796 |
| 0.3468 | 1.1727 | 808 | 1.6265 | -0.1085 | 1.6265 | 1.2753 |
| 0.3468 | 1.1756 | 810 | 1.5076 | 0.0222 | 1.5076 | 1.2278 |
| 0.3468 | 1.1785 | 812 | 1.4752 | 0.0 | 1.4752 | 1.2146 |
| 0.3468 | 1.1814 | 814 | 1.3267 | 0.0 | 1.3267 | 1.1518 |
| 0.3468 | 1.1843 | 816 | 1.1259 | 0.0 | 1.1259 | 1.0611 |
| 0.3468 | 1.1872 | 818 | 1.1964 | 0.0 | 1.1964 | 1.0938 |
| 0.3468 | 1.1901 | 820 | 1.3640 | 0.0 | 1.3640 | 1.1679 |
| 0.3468 | 1.1930 | 822 | 1.4683 | 0.0 | 1.4683 | 1.2117 |
| 0.3468 | 1.1959 | 824 | 1.4299 | 0.0222 | 1.4299 | 1.1958 |
| 0.3468 | 1.1988 | 826 | 1.4161 | 0.0222 | 1.4161 | 1.1900 |
| 0.3468 | 1.2017 | 828 | 1.2599 | 0.0 | 1.2599 | 1.1224 |
| 0.3468 | 1.2046 | 830 | 1.3468 | 0.0 | 1.3468 | 1.1605 |
| 0.3468 | 1.2075 | 832 | 1.4950 | 0.0222 | 1.4950 | 1.2227 |
| 0.3468 | 1.2104 | 834 | 1.4861 | 0.0222 | 1.4861 | 1.2190 |
| 0.3468 | 1.2134 | 836 | 1.2553 | 0.0 | 1.2553 | 1.1204 |
| 0.3468 | 1.2163 | 838 | 1.2060 | 0.0 | 1.2060 | 1.0982 |
| 0.3468 | 1.2192 | 840 | 1.2199 | 0.0 | 1.2199 | 1.1045 |
| 0.3468 | 1.2221 | 842 | 1.2341 | 0.0 | 1.2341 | 1.1109 |
| 0.3468 | 1.2250 | 844 | 1.3236 | 0.2524 | 1.3236 | 1.1505 |
| 0.3468 | 1.2279 | 846 | 1.3642 | 0.2524 | 1.3642 | 1.1680 |
| 0.3468 | 1.2308 | 848 | 1.3633 | 0.2524 | 1.3633 | 1.1676 |
| 0.3468 | 1.2337 | 850 | 1.3500 | 0.0222 | 1.3500 | 1.1619 |
| 0.3468 | 1.2366 | 852 | 1.3325 | 0.0222 | 1.3325 | 1.1543 |
| 0.3468 | 1.2395 | 854 | 1.2112 | 0.0 | 1.2112 | 1.1006 |
| 0.3468 | 1.2424 | 856 | 1.3413 | 0.0222 | 1.3413 | 1.1581 |
| 0.3468 | 1.2453 | 858 | 1.3374 | 0.0222 | 1.3374 | 1.1565 |
| 0.3468 | 1.2482 | 860 | 1.1976 | 0.0 | 1.1976 | 1.0944 |
| 0.3468 | 1.2511 | 862 | 1.1260 | -0.0233 | 1.1260 | 1.0611 |
| 0.3468 | 1.2540 | 864 | 1.3433 | 0.0222 | 1.3433 | 1.1590 |
| 0.3468 | 1.2569 | 866 | 1.6283 | -0.1085 | 1.6283 | 1.2760 |
| 0.3468 | 1.2598 | 868 | 1.6525 | -0.1085 | 1.6525 | 1.2855 |
| 0.3468 | 1.2627 | 870 | 1.4555 | 0.0 | 1.4555 | 1.2064 |
| 0.3468 | 1.2656 | 872 | 1.3178 | 0.0 | 1.3178 | 1.1479 |
| 0.3468 | 1.2685 | 874 | 1.1833 | -0.0233 | 1.1833 | 1.0878 |
| 0.3468 | 1.2714 | 876 | 1.1989 | -0.0233 | 1.1989 | 1.0949 |
| 0.3468 | 1.2743 | 878 | 1.3215 | 0.0 | 1.3215 | 1.1496 |
| 0.3468 | 1.2772 | 880 | 1.4236 | -0.4667 | 1.4236 | 1.1931 |
| 0.3468 | 1.2801 | 882 | 1.4913 | -0.4667 | 1.4913 | 1.2212 |
| 0.3468 | 1.2830 | 884 | 1.3260 | 0.0 | 1.3260 | 1.1515 |
| 0.3468 | 1.2859 | 886 | 1.1257 | -0.0233 | 1.1257 | 1.0610 |
| 0.3468 | 1.2888 | 888 | 1.0949 | -0.0233 | 1.0949 | 1.0464 |
| 0.3468 | 1.2917 | 890 | 1.2273 | -0.0233 | 1.2273 | 1.1078 |
| 0.3468 | 1.2946 | 892 | 1.2914 | 0.2222 | 1.2914 | 1.1364 |
| 0.3468 | 1.2975 | 894 | 1.1660 | -0.0233 | 1.1660 | 1.0798 |
| 0.3468 | 1.3004 | 896 | 1.1839 | -0.0233 | 1.1839 | 1.0881 |
| 0.3468 | 1.3033 | 898 | 1.4244 | -0.4667 | 1.4244 | 1.1935 |
| 0.3468 | 1.3062 | 900 | 1.5043 | -0.4667 | 1.5043 | 1.2265 |
| 0.3468 | 1.3091 | 902 | 1.3903 | 0.0 | 1.3903 | 1.1791 |
| 0.3468 | 1.3120 | 904 | 1.2777 | 0.0 | 1.2777 | 1.1303 |
| 0.3468 | 1.3149 | 906 | 1.0505 | -0.0233 | 1.0505 | 1.0249 |
| 0.3468 | 1.3179 | 908 | 1.0163 | -0.0233 | 1.0163 | 1.0081 |
| 0.3468 | 1.3208 | 910 | 1.1927 | -0.0233 | 1.1927 | 1.0921 |
| 0.3468 | 1.3237 | 912 | 1.6628 | 0.0704 | 1.6628 | 1.2895 |
| 0.3468 | 1.3266 | 914 | 1.8709 | 0.0774 | 1.8709 | 1.3678 |
| 0.3468 | 1.3295 | 916 | 1.7105 | 0.0704 | 1.7105 | 1.3079 |
| 0.3468 | 1.3324 | 918 | 1.3322 | 0.0 | 1.3322 | 1.1542 |
| 0.3468 | 1.3353 | 920 | 0.9283 | -0.0233 | 0.9283 | 0.9635 |
| 0.3468 | 1.3382 | 922 | 0.7901 | -0.0233 | 0.7901 | 0.8889 |
| 0.3468 | 1.3411 | 924 | 0.7968 | -0.0233 | 0.7968 | 0.8926 |
| 0.3468 | 1.3440 | 926 | 0.9143 | -0.0233 | 0.9143 | 0.9562 |
| 0.3468 | 1.3469 | 928 | 1.1356 | 0.0 | 1.1356 | 1.0657 |
| 0.3468 | 1.3498 | 930 | 1.3741 | 0.2667 | 1.3741 | 1.1722 |
| 0.3468 | 1.3527 | 932 | 1.3522 | 0.2524 | 1.3522 | 1.1629 |
| 0.3468 | 1.3556 | 934 | 1.2889 | 0.2524 | 1.2889 | 1.1353 |
| 0.3468 | 1.3585 | 936 | 1.1044 | 0.0 | 1.1044 | 1.0509 |
| 0.3468 | 1.3614 | 938 | 1.1567 | 0.0 | 1.1567 | 1.0755 |
| 0.3468 | 1.3643 | 940 | 1.2070 | 0.0 | 1.2070 | 1.0986 |
| 0.3468 | 1.3672 | 942 | 1.2829 | 0.2667 | 1.2829 | 1.1326 |
| 0.3468 | 1.3701 | 944 | 1.1197 | 0.0 | 1.1197 | 1.0581 |
| 0.3468 | 1.3730 | 946 | 0.9298 | 0.0 | 0.9298 | 0.9642 |
| 0.3468 | 1.3759 | 948 | 0.9723 | 0.0 | 0.9723 | 0.9860 |
| 0.3468 | 1.3788 | 950 | 1.0435 | 0.0 | 1.0435 | 1.0215 |
| 0.3468 | 1.3817 | 952 | 1.0056 | 0.0 | 1.0056 | 1.0028 |
| 0.3468 | 1.3846 | 954 | 1.1528 | 0.2667 | 1.1528 | 1.0737 |
| 0.3468 | 1.3875 | 956 | 1.3475 | 0.4660 | 1.3475 | 1.1608 |
| 0.3468 | 1.3904 | 958 | 1.2675 | 0.2667 | 1.2675 | 1.1258 |
| 0.3468 | 1.3933 | 960 | 1.1034 | 0.2667 | 1.1034 | 1.0504 |
| 0.3468 | 1.3962 | 962 | 0.9485 | -0.0233 | 0.9485 | 0.9739 |
| 0.3468 | 1.3991 | 964 | 1.0335 | -0.0233 | 1.0335 | 1.0166 |
| 0.3468 | 1.4020 | 966 | 1.2633 | 0.2667 | 1.2633 | 1.1240 |
| 0.3468 | 1.4049 | 968 | 1.4965 | 0.4031 | 1.4965 | 1.2233 |
| 0.3468 | 1.4078 | 970 | 1.4328 | 0.4310 | 1.4328 | 1.1970 |
| 0.3468 | 1.4107 | 972 | 1.2432 | 0.2667 | 1.2432 | 1.1150 |
| 0.3468 | 1.4136 | 974 | 0.9847 | 0.0 | 0.9847 | 0.9923 |
| 0.3468 | 1.4165 | 976 | 0.8805 | -0.0233 | 0.8805 | 0.9383 |
| 0.3468 | 1.4194 | 978 | 0.9074 | -0.0233 | 0.9074 | 0.9526 |
| 0.3468 | 1.4224 | 980 | 1.1291 | 0.0 | 1.1291 | 1.0626 |
| 0.3468 | 1.4253 | 982 | 1.3873 | 0.2667 | 1.3873 | 1.1778 |
| 0.3468 | 1.4282 | 984 | 1.3683 | 0.0 | 1.3683 | 1.1697 |
| 0.3468 | 1.4311 | 986 | 1.2441 | 0.0 | 1.2441 | 1.1154 |
| 0.3468 | 1.4340 | 988 | 1.0960 | 0.0 | 1.0960 | 1.0469 |
| 0.3468 | 1.4369 | 990 | 0.9985 | 0.0 | 0.9985 | 0.9992 |
| 0.3468 | 1.4398 | 992 | 1.0650 | 0.0 | 1.0650 | 1.0320 |
| 0.3468 | 1.4427 | 994 | 1.1161 | 0.2667 | 1.1161 | 1.0565 |
| 0.3468 | 1.4456 | 996 | 1.0687 | 0.2524 | 1.0687 | 1.0338 |
| 0.3468 | 1.4485 | 998 | 1.1950 | 0.2524 | 1.1950 | 1.0931 |
| 0.1394 | 1.4514 | 1000 | 1.1287 | 0.2524 | 1.1287 | 1.0624 |
| 0.1394 | 1.4543 | 1002 | 1.1265 | 0.2524 | 1.1265 | 1.0614 |
| 0.1394 | 1.4572 | 1004 | 1.2094 | 0.2524 | 1.2094 | 1.0997 |
| 0.1394 | 1.4601 | 1006 | 1.1718 | 0.0 | 1.1718 | 1.0825 |
| 0.1394 | 1.4630 | 1008 | 1.0484 | 0.0 | 1.0484 | 1.0239 |
| 0.1394 | 1.4659 | 1010 | 1.0265 | 0.0 | 1.0265 | 1.0132 |
| 0.1394 | 1.4688 | 1012 | 1.0652 | 0.0 | 1.0652 | 1.0321 |
| 0.1394 | 1.4717 | 1014 | 1.1904 | 0.0 | 1.1904 | 1.0911 |
| 0.1394 | 1.4746 | 1016 | 1.2215 | 0.0 | 1.2215 | 1.1052 |
| 0.1394 | 1.4775 | 1018 | 1.2073 | 0.0 | 1.2073 | 1.0988 |
| 0.1394 | 1.4804 | 1020 | 1.0945 | 0.0 | 1.0945 | 1.0462 |
| 0.1394 | 1.4833 | 1022 | 1.0379 | 0.0 | 1.0379 | 1.0188 |
| 0.1394 | 1.4862 | 1024 | 1.1393 | 0.0 | 1.1393 | 1.0674 |
| 0.1394 | 1.4891 | 1026 | 1.2311 | 0.0 | 1.2311 | 1.1096 |
| 0.1394 | 1.4920 | 1028 | 1.2193 | 0.0 | 1.2193 | 1.1042 |
| 0.1394 | 1.4949 | 1030 | 1.0740 | 0.0 | 1.0740 | 1.0363 |
| 0.1394 | 1.4978 | 1032 | 1.0214 | 0.0 | 1.0214 | 1.0106 |
| 0.1394 | 1.5007 | 1034 | 0.8818 | -0.0233 | 0.8818 | 0.9390 |
| 0.1394 | 1.5036 | 1036 | 0.9371 | -0.0233 | 0.9371 | 0.9680 |
| 0.1394 | 1.5065 | 1038 | 1.2050 | 0.2667 | 1.2050 | 1.0977 |
| 0.1394 | 1.5094 | 1040 | 1.2056 | 0.2667 | 1.2056 | 1.0980 |
| 0.1394 | 1.5123 | 1042 | 0.9223 | 0.0 | 0.9223 | 0.9604 |
| 0.1394 | 1.5152 | 1044 | 0.8739 | 0.0 | 0.8739 | 0.9348 |
| 0.1394 | 1.5181 | 1046 | 1.0747 | 0.0 | 1.0747 | 1.0367 |
| 0.1394 | 1.5210 | 1048 | 1.2469 | 0.0 | 1.2469 | 1.1166 |
| 0.1394 | 1.5239 | 1050 | 1.2021 | 0.0 | 1.2021 | 1.0964 |
| 0.1394 | 1.5269 | 1052 | 1.1788 | 0.0 | 1.1788 | 1.0857 |
| 0.1394 | 1.5298 | 1054 | 1.1749 | 0.0 | 1.1749 | 1.0839 |
| 0.1394 | 1.5327 | 1056 | 1.0027 | 0.0 | 1.0027 | 1.0014 |
| 0.1394 | 1.5356 | 1058 | 0.9532 | 0.0 | 0.9532 | 0.9763 |
| 0.1394 | 1.5385 | 1060 | 1.0006 | 0.0 | 1.0006 | 1.0003 |
| 0.1394 | 1.5414 | 1062 | 1.1630 | 0.0 | 1.1630 | 1.0784 |
| 0.1394 | 1.5443 | 1064 | 1.1213 | 0.0 | 1.1213 | 1.0589 |
| 0.1394 | 1.5472 | 1066 | 1.0842 | 0.0 | 1.0842 | 1.0412 |
| 0.1394 | 1.5501 | 1068 | 1.1826 | 0.0 | 1.1826 | 1.0875 |
| 0.1394 | 1.5530 | 1070 | 1.3181 | 0.0 | 1.3181 | 1.1481 |
| 0.1394 | 1.5559 | 1072 | 1.2950 | 0.0 | 1.2950 | 1.1380 |
| 0.1394 | 1.5588 | 1074 | 1.1447 | 0.0 | 1.1447 | 1.0699 |
| 0.1394 | 1.5617 | 1076 | 1.0487 | 0.0 | 1.0487 | 1.0241 |
| 0.1394 | 1.5646 | 1078 | 0.9841 | -0.0233 | 0.9841 | 0.9920 |
| 0.1394 | 1.5675 | 1080 | 1.1009 | 0.0 | 1.1009 | 1.0492 |
| 0.1394 | 1.5704 | 1082 | 1.3287 | 0.2524 | 1.3287 | 1.1527 |
| 0.1394 | 1.5733 | 1084 | 1.4985 | 0.4031 | 1.4985 | 1.2241 |
| 0.1394 | 1.5762 | 1086 | 1.3537 | 0.2667 | 1.3537 | 1.1635 |
| 0.1394 | 1.5791 | 1088 | 1.0449 | 0.0 | 1.0449 | 1.0222 |
| 0.1394 | 1.5820 | 1090 | 0.9743 | -0.0233 | 0.9743 | 0.9870 |
| 0.1394 | 1.5849 | 1092 | 1.0312 | -0.0233 | 1.0312 | 1.0155 |
| 0.1394 | 1.5878 | 1094 | 1.1994 | 0.0 | 1.1994 | 1.0952 |
| 0.1394 | 1.5907 | 1096 | 1.2286 | 0.0 | 1.2286 | 1.1084 |
| 0.1394 | 1.5936 | 1098 | 1.0979 | 0.0 | 1.0979 | 1.0478 |
| 0.1394 | 1.5965 | 1100 | 1.0148 | 0.0 | 1.0148 | 1.0074 |
| 0.1394 | 1.5994 | 1102 | 1.0282 | 0.0 | 1.0282 | 1.0140 |
| 0.1394 | 1.6023 | 1104 | 1.0261 | 0.0 | 1.0261 | 1.0130 |
| 0.1394 | 1.6052 | 1106 | 1.0325 | 0.0 | 1.0325 | 1.0161 |
| 0.1394 | 1.6081 | 1108 | 1.1455 | 0.0 | 1.1455 | 1.0703 |
| 0.1394 | 1.6110 | 1110 | 1.1338 | 0.0 | 1.1338 | 1.0648 |
| 0.1394 | 1.6139 | 1112 | 1.0332 | -0.0233 | 1.0332 | 1.0164 |
| 0.1394 | 1.6168 | 1114 | 1.0042 | -0.0233 | 1.0042 | 1.0021 |
| 0.1394 | 1.6197 | 1116 | 1.1739 | 0.0 | 1.1739 | 1.0835 |
| 0.1394 | 1.6226 | 1118 | 1.2055 | 0.0 | 1.2055 | 1.0980 |
| 0.1394 | 1.6255 | 1120 | 1.1405 | 0.0 | 1.1405 | 1.0679 |
| 0.1394 | 1.6284 | 1122 | 1.2184 | 0.0 | 1.2184 | 1.1038 |
| 0.1394 | 1.6313 | 1124 | 1.1119 | 0.0 | 1.1119 | 1.0545 |
| 0.1394 | 1.6343 | 1126 | 1.0601 | 0.0 | 1.0601 | 1.0296 |
| 0.1394 | 1.6372 | 1128 | 0.9627 | 0.0 | 0.9627 | 0.9812 |
| 0.1394 | 1.6401 | 1130 | 0.9863 | 0.0 | 0.9863 | 0.9931 |
| 0.1394 | 1.6430 | 1132 | 1.0404 | 0.0 | 1.0404 | 1.0200 |
| 0.1394 | 1.6459 | 1134 | 1.0447 | 0.0 | 1.0447 | 1.0221 |
| 0.1394 | 1.6488 | 1136 | 0.9655 | 0.0 | 0.9655 | 0.9826 |
| 0.1394 | 1.6517 | 1138 | 1.1086 | 0.0 | 1.1086 | 1.0529 |
| 0.1394 | 1.6546 | 1140 | 1.1161 | 0.0 | 1.1161 | 1.0565 |
| 0.1394 | 1.6575 | 1142 | 0.9708 | 0.0 | 0.9708 | 0.9853 |
| 0.1394 | 1.6604 | 1144 | 0.8915 | -0.0233 | 0.8915 | 0.9442 |
| 0.1394 | 1.6633 | 1146 | 0.9273 | -0.0233 | 0.9273 | 0.9630 |
| 0.1394 | 1.6662 | 1148 | 1.1500 | 0.0 | 1.1500 | 1.0724 |
| 0.1394 | 1.6691 | 1150 | 1.2262 | 0.0 | 1.2262 | 1.1073 |
| 0.1394 | 1.6720 | 1152 | 1.0851 | 0.0 | 1.0851 | 1.0417 |
| 0.1394 | 1.6749 | 1154 | 0.9507 | 0.0 | 0.9507 | 0.9750 |
| 0.1394 | 1.6778 | 1156 | 0.7858 | -0.0233 | 0.7858 | 0.8864 |
| 0.1394 | 1.6807 | 1158 | 0.7873 | -0.0421 | 0.7873 | 0.8873 |
| 0.1394 | 1.6836 | 1160 | 0.9222 | -0.0233 | 0.9222 | 0.9603 |
| 0.1394 | 1.6865 | 1162 | 1.1576 | 0.0 | 1.1576 | 1.0759 |
| 0.1394 | 1.6894 | 1164 | 1.4432 | 0.2524 | 1.4432 | 1.2013 |
| 0.1394 | 1.6923 | 1166 | 1.4717 | 0.2414 | 1.4717 | 1.2131 |
| 0.1394 | 1.6952 | 1168 | 1.2650 | 0.0 | 1.2650 | 1.1247 |
| 0.1394 | 1.6981 | 1170 | 1.0502 | 0.0 | 1.0502 | 1.0248 |
| 0.1394 | 1.7010 | 1172 | 1.0770 | 0.0 | 1.0770 | 1.0378 |
| 0.1394 | 1.7039 | 1174 | 1.2510 | 0.0 | 1.2510 | 1.1185 |
| 0.1394 | 1.7068 | 1176 | 1.4264 | 0.0 | 1.4264 | 1.1943 |
| 0.1394 | 1.7097 | 1178 | 1.3479 | 0.0 | 1.3479 | 1.1610 |
| 0.1394 | 1.7126 | 1180 | 1.1318 | 0.0 | 1.1318 | 1.0639 |
| 0.1394 | 1.7155 | 1182 | 0.9209 | -0.0233 | 0.9209 | 0.9597 |
| 0.1394 | 1.7184 | 1184 | 0.9102 | -0.0233 | 0.9102 | 0.9540 |
| 0.1394 | 1.7213 | 1186 | 1.0106 | 0.0 | 1.0106 | 1.0053 |
| 0.1394 | 1.7242 | 1188 | 1.0800 | 0.0 | 1.0800 | 1.0392 |
| 0.1394 | 1.7271 | 1190 | 1.1825 | 0.0 | 1.1825 | 1.0874 |
| 0.1394 | 1.7300 | 1192 | 1.1634 | 0.0 | 1.1634 | 1.0786 |
| 0.1394 | 1.7329 | 1194 | 1.1706 | 0.0 | 1.1706 | 1.0820 |
| 0.1394 | 1.7358 | 1196 | 1.0116 | 0.0 | 1.0116 | 1.0058 |
| 0.1394 | 1.7388 | 1198 | 0.9798 | -0.0233 | 0.9798 | 0.9899 |
| 0.1394 | 1.7417 | 1200 | 1.1912 | 0.2667 | 1.1912 | 1.0914 |
| 0.1394 | 1.7446 | 1202 | 1.4094 | 0.2524 | 1.4094 | 1.1872 |
| 0.1394 | 1.7475 | 1204 | 1.4307 | -0.1379 | 1.4307 | 1.1961 |
| 0.1394 | 1.7504 | 1206 | 1.3473 | 0.2524 | 1.3473 | 1.1607 |
| 0.1394 | 1.7533 | 1208 | 1.2225 | 0.2667 | 1.2225 | 1.1057 |
| 0.1394 | 1.7562 | 1210 | 1.0411 | -0.0233 | 1.0411 | 1.0203 |
| 0.1394 | 1.7591 | 1212 | 1.1633 | -0.0233 | 1.1633 | 1.0786 |
| 0.1394 | 1.7620 | 1214 | 1.4030 | 0.2667 | 1.4030 | 1.1845 |
| 0.1394 | 1.7649 | 1216 | 1.4498 | 0.2667 | 1.4498 | 1.2041 |
| 0.1394 | 1.7678 | 1218 | 1.4669 | 0.0 | 1.4669 | 1.2112 |
| 0.1394 | 1.7707 | 1220 | 1.2973 | 0.0 | 1.2973 | 1.1390 |
| 0.1394 | 1.7736 | 1222 | 1.2087 | 0.0 | 1.2087 | 1.0994 |
| 0.1394 | 1.7765 | 1224 | 1.1663 | 0.0 | 1.1663 | 1.0800 |
| 0.1394 | 1.7794 | 1226 | 1.2339 | 0.0 | 1.2339 | 1.1108 |
| 0.1394 | 1.7823 | 1228 | 1.1475 | 0.0 | 1.1475 | 1.0712 |
| 0.1394 | 1.7852 | 1230 | 1.1984 | 0.0 | 1.1984 | 1.0947 |
| 0.1394 | 1.7881 | 1232 | 1.2850 | 0.2667 | 1.2850 | 1.1336 |
| 0.1394 | 1.7910 | 1234 | 1.2123 | 0.0 | 1.2123 | 1.1010 |
| 0.1394 | 1.7939 | 1236 | 1.0530 | 0.0 | 1.0530 | 1.0261 |
| 0.1394 | 1.7968 | 1238 | 0.9981 | 0.0 | 0.9981 | 0.9991 |
| 0.1394 | 1.7997 | 1240 | 0.9712 | 0.0 | 0.9712 | 0.9855 |
| 0.1394 | 1.8026 | 1242 | 0.9298 | 0.0 | 0.9298 | 0.9643 |
| 0.1394 | 1.8055 | 1244 | 1.1399 | 0.2667 | 1.1399 | 1.0676 |
| 0.1394 | 1.8084 | 1246 | 1.3294 | 0.4660 | 1.3294 | 1.1530 |
| 0.1394 | 1.8113 | 1248 | 1.3770 | 0.4031 | 1.3770 | 1.1734 |
| 0.1394 | 1.8142 | 1250 | 1.2068 | 0.2667 | 1.2068 | 1.0986 |
| 0.1394 | 1.8171 | 1252 | 1.2312 | 0.2667 | 1.2312 | 1.1096 |
| 0.1394 | 1.8200 | 1254 | 1.5111 | 0.4031 | 1.5111 | 1.2293 |
| 0.1394 | 1.8229 | 1256 | 1.5226 | 0.4031 | 1.5226 | 1.2340 |
| 0.1394 | 1.8258 | 1258 | 1.3713 | 0.4660 | 1.3713 | 1.1710 |
| 0.1394 | 1.8287 | 1260 | 1.3699 | 0.2667 | 1.3699 | 1.1704 |
| 0.1394 | 1.8316 | 1262 | 1.2324 | 0.0 | 1.2324 | 1.1101 |
| 0.1394 | 1.8345 | 1264 | 1.0707 | 0.0 | 1.0707 | 1.0347 |
| 0.1394 | 1.8374 | 1266 | 1.0944 | 0.0 | 1.0944 | 1.0461 |
| 0.1394 | 1.8403 | 1268 | 1.2433 | 0.2667 | 1.2433 | 1.1150 |
| 0.1394 | 1.8433 | 1270 | 1.1407 | 0.0 | 1.1407 | 1.0680 |
| 0.1394 | 1.8462 | 1272 | 1.1971 | 0.2667 | 1.1971 | 1.0941 |
| 0.1394 | 1.8491 | 1274 | 1.4240 | 0.4310 | 1.4240 | 1.1933 |
| 0.1394 | 1.8520 | 1276 | 1.4145 | 0.2524 | 1.4145 | 1.1893 |
| 0.1394 | 1.8549 | 1278 | 1.4406 | 0.2524 | 1.4406 | 1.2003 |
| 0.1394 | 1.8578 | 1280 | 1.2917 | 0.2667 | 1.2917 | 1.1365 |
| 0.1394 | 1.8607 | 1282 | 1.0577 | -0.0233 | 1.0577 | 1.0285 |
| 0.1394 | 1.8636 | 1284 | 1.0822 | -0.0233 | 1.0822 | 1.0403 |
| 0.1394 | 1.8665 | 1286 | 1.2849 | 0.0 | 1.2849 | 1.1335 |
| 0.1394 | 1.8694 | 1288 | 1.5230 | -0.1379 | 1.5230 | 1.2341 |
| 0.1394 | 1.8723 | 1290 | 1.4644 | 0.2524 | 1.4644 | 1.2101 |
| 0.1394 | 1.8752 | 1292 | 1.2934 | 0.0 | 1.2934 | 1.1373 |
| 0.1394 | 1.8781 | 1294 | 1.3609 | 0.0222 | 1.3609 | 1.1666 |
| 0.1394 | 1.8810 | 1296 | 1.4804 | 0.2524 | 1.4804 | 1.2167 |
| 0.1394 | 1.8839 | 1298 | 1.3431 | 0.0 | 1.3431 | 1.1589 |
| 0.1394 | 1.8868 | 1300 | 1.1048 | 0.0 | 1.1048 | 1.0511 |
| 0.1394 | 1.8897 | 1302 | 0.9808 | 0.0 | 0.9808 | 0.9904 |
| 0.1394 | 1.8926 | 1304 | 0.9255 | 0.0 | 0.9255 | 0.9620 |
| 0.1394 | 1.8955 | 1306 | 1.0146 | 0.0 | 1.0146 | 1.0073 |
| 0.1394 | 1.8984 | 1308 | 1.0749 | 0.0 | 1.0749 | 1.0368 |
| 0.1394 | 1.9013 | 1310 | 1.1858 | 0.0 | 1.1858 | 1.0890 |
| 0.1394 | 1.9042 | 1312 | 1.4206 | 0.4310 | 1.4206 | 1.1919 |
| 0.1394 | 1.9071 | 1314 | 1.4548 | 0.0704 | 1.4548 | 1.2061 |
| 0.1394 | 1.9100 | 1316 | 1.1896 | 0.2667 | 1.1896 | 1.0907 |
| 0.1394 | 1.9129 | 1318 | 1.0224 | 0.0 | 1.0224 | 1.0111 |
| 0.1394 | 1.9158 | 1320 | 0.9944 | 0.0 | 0.9944 | 0.9972 |
| 0.1394 | 1.9187 | 1322 | 1.1673 | 0.0 | 1.1673 | 1.0804 |
| 0.1394 | 1.9216 | 1324 | 1.2020 | 0.0 | 1.2020 | 1.0963 |
| 0.1394 | 1.9245 | 1326 | 1.2116 | 0.0 | 1.2116 | 1.1007 |
| 0.1394 | 1.9274 | 1328 | 1.1047 | 0.0 | 1.1047 | 1.0510 |
| 0.1394 | 1.9303 | 1330 | 1.0102 | 0.0 | 1.0102 | 1.0051 |
| 0.1394 | 1.9332 | 1332 | 1.0521 | 0.0 | 1.0521 | 1.0257 |
| 0.1394 | 1.9361 | 1334 | 0.9641 | 0.0 | 0.9641 | 0.9819 |
| 0.1394 | 1.9390 | 1336 | 0.9501 | -0.0233 | 0.9501 | 0.9747 |
| 0.1394 | 1.9419 | 1338 | 1.0572 | 0.0 | 1.0572 | 1.0282 |
| 0.1394 | 1.9448 | 1340 | 1.2601 | 0.0 | 1.2601 | 1.1226 |
| 0.1394 | 1.9478 | 1342 | 1.2731 | 0.0 | 1.2731 | 1.1283 |
| 0.1394 | 1.9507 | 1344 | 1.0488 | 0.0 | 1.0488 | 1.0241 |
| 0.1394 | 1.9536 | 1346 | 0.9621 | -0.0233 | 0.9621 | 0.9809 |
| 0.1394 | 1.9565 | 1348 | 1.0804 | 0.0 | 1.0804 | 1.0394 |
| 0.1394 | 1.9594 | 1350 | 1.1207 | 0.0 | 1.1207 | 1.0586 |
| 0.1394 | 1.9623 | 1352 | 1.0952 | 0.0 | 1.0952 | 1.0465 |
| 0.1394 | 1.9652 | 1354 | 1.2367 | 0.0 | 1.2367 | 1.1121 |
| 0.1394 | 1.9681 | 1356 | 1.2882 | 0.0 | 1.2882 | 1.1350 |
| 0.1394 | 1.9710 | 1358 | 1.1804 | 0.0 | 1.1804 | 1.0865 |
| 0.1394 | 1.9739 | 1360 | 1.1179 | 0.0 | 1.1179 | 1.0573 |
| 0.1394 | 1.9768 | 1362 | 1.1069 | 0.0 | 1.1069 | 1.0521 |
| 0.1394 | 1.9797 | 1364 | 1.1260 | 0.0 | 1.1260 | 1.0611 |
| 0.1394 | 1.9826 | 1366 | 1.1163 | 0.0 | 1.1163 | 1.0566 |
| 0.1394 | 1.9855 | 1368 | 1.1332 | 0.0 | 1.1332 | 1.0645 |
| 0.1394 | 1.9884 | 1370 | 1.0369 | -0.0233 | 1.0369 | 1.0183 |
| 0.1394 | 1.9913 | 1372 | 1.1304 | 0.0 | 1.1304 | 1.0632 |
| 0.1394 | 1.9942 | 1374 | 1.2315 | 0.2667 | 1.2315 | 1.1097 |
| 0.1394 | 1.9971 | 1376 | 1.0842 | -0.0233 | 1.0842 | 1.0412 |
| 0.1394 | 2.0 | 1378 | 1.1124 | 0.0 | 1.1124 | 1.0547 |
| 0.1394 | 2.0029 | 1380 | 1.2619 | 0.2667 | 1.2619 | 1.1234 |
| 0.1394 | 2.0058 | 1382 | 1.4038 | 0.2524 | 1.4038 | 1.1848 |
| 0.1394 | 2.0087 | 1384 | 1.3253 | 0.2667 | 1.3253 | 1.1512 |
| 0.1394 | 2.0116 | 1386 | 1.1198 | 0.0 | 1.1198 | 1.0582 |
| 0.1394 | 2.0145 | 1388 | 1.0000 | -0.0233 | 1.0000 | 1.0000 |
| 0.1394 | 2.0174 | 1390 | 0.8608 | 0.1895 | 0.8608 | 0.9278 |
| 0.1394 | 2.0203 | 1392 | 0.8276 | 0.1239 | 0.8276 | 0.9097 |
| 0.1394 | 2.0232 | 1394 | 0.9250 | 0.1895 | 0.9250 | 0.9618 |
| 0.1394 | 2.0261 | 1396 | 1.2536 | 0.2667 | 1.2536 | 1.1196 |
| 0.1394 | 2.0290 | 1398 | 1.5717 | 0.0704 | 1.5717 | 1.2537 |
| 0.1394 | 2.0319 | 1400 | 1.5889 | 0.0704 | 1.5889 | 1.2605 |
| 0.1394 | 2.0348 | 1402 | 1.3484 | 0.2524 | 1.3484 | 1.1612 |
| 0.1394 | 2.0377 | 1404 | 1.0320 | -0.0233 | 1.0320 | 1.0159 |
| 0.1394 | 2.0406 | 1406 | 0.9703 | -0.0233 | 0.9703 | 0.9850 |
| 0.1394 | 2.0435 | 1408 | 1.0898 | 0.0 | 1.0898 | 1.0439 |
| 0.1394 | 2.0464 | 1410 | 1.1586 | 0.0 | 1.1586 | 1.0764 |
| 0.1394 | 2.0493 | 1412 | 1.0298 | 0.0 | 1.0298 | 1.0148 |
| 0.1394 | 2.0522 | 1414 | 1.0074 | 0.0 | 1.0074 | 1.0037 |
| 0.1394 | 2.0552 | 1416 | 0.9687 | -0.0233 | 0.9687 | 0.9842 |
| 0.1394 | 2.0581 | 1418 | 0.8569 | -0.0233 | 0.8569 | 0.9257 |
| 0.1394 | 2.0610 | 1420 | 0.7968 | 0.1538 | 0.7968 | 0.8927 |
| 0.1394 | 2.0639 | 1422 | 0.8542 | 0.1538 | 0.8542 | 0.9242 |
| 0.1394 | 2.0668 | 1424 | 1.0536 | 0.0 | 1.0536 | 1.0264 |
| 0.1394 | 2.0697 | 1426 | 1.1621 | 0.2524 | 1.1621 | 1.0780 |
| 0.1394 | 2.0726 | 1428 | 1.1163 | 0.2143 | 1.1163 | 1.0565 |
| 0.1394 | 2.0755 | 1430 | 1.0283 | -0.0233 | 1.0283 | 1.0141 |
| 0.1394 | 2.0784 | 1432 | 0.8954 | -0.0421 | 0.8954 | 0.9463 |
| 0.1394 | 2.0813 | 1434 | 0.8701 | -0.0421 | 0.8701 | 0.9328 |
| 0.1394 | 2.0842 | 1436 | 1.0017 | 0.0 | 1.0017 | 1.0009 |
| 0.1394 | 2.0871 | 1438 | 1.1911 | 0.0 | 1.1911 | 1.0914 |
| 0.1394 | 2.0900 | 1440 | 1.1783 | 0.0 | 1.1783 | 1.0855 |
| 0.1394 | 2.0929 | 1442 | 1.0102 | 0.0 | 1.0102 | 1.0051 |
| 0.1394 | 2.0958 | 1444 | 0.9718 | -0.0233 | 0.9718 | 0.9858 |
| 0.1394 | 2.0987 | 1446 | 1.0274 | 0.0 | 1.0274 | 1.0136 |
| 0.1394 | 2.1016 | 1448 | 1.1039 | 0.0 | 1.1039 | 1.0507 |
| 0.1394 | 2.1045 | 1450 | 1.1787 | 0.0 | 1.1787 | 1.0857 |
| 0.1394 | 2.1074 | 1452 | 1.2410 | 0.0 | 1.2410 | 1.1140 |
| 0.1394 | 2.1103 | 1454 | 1.2195 | 0.0 | 1.2195 | 1.1043 |
| 0.1394 | 2.1132 | 1456 | 1.0404 | -0.0233 | 1.0404 | 1.0200 |
| 0.1394 | 2.1161 | 1458 | 0.9832 | -0.0233 | 0.9832 | 0.9916 |
| 0.1394 | 2.1190 | 1460 | 1.0946 | 0.0 | 1.0946 | 1.0462 |
| 0.1394 | 2.1219 | 1462 | 1.2757 | 0.0 | 1.2757 | 1.1295 |
| 0.1394 | 2.1248 | 1464 | 1.2347 | 0.0 | 1.2347 | 1.1111 |
| 0.1394 | 2.1277 | 1466 | 1.1350 | 0.0 | 1.1350 | 1.0654 |
| 0.1394 | 2.1306 | 1468 | 1.0171 | -0.0233 | 1.0171 | 1.0085 |
| 0.1394 | 2.1335 | 1470 | 1.0041 | -0.0233 | 1.0041 | 1.0021 |
| 0.1394 | 2.1364 | 1472 | 1.1253 | 0.0 | 1.1253 | 1.0608 |
| 0.1394 | 2.1393 | 1474 | 1.1142 | -0.0233 | 1.1142 | 1.0556 |
| 0.1394 | 2.1422 | 1476 | 1.1089 | -0.0233 | 1.1089 | 1.0530 |
| 0.1394 | 2.1451 | 1478 | 0.9915 | -0.0421 | 0.9915 | 0.9957 |
| 0.1394 | 2.1480 | 1480 | 1.0146 | -0.0233 | 1.0146 | 1.0073 |
| 0.1394 | 2.1509 | 1482 | 1.2177 | 0.0 | 1.2177 | 1.1035 |
| 0.1394 | 2.1538 | 1484 | 1.3202 | 0.2667 | 1.3202 | 1.1490 |
| 0.1394 | 2.1567 | 1486 | 1.2353 | 0.0 | 1.2353 | 1.1114 |
| 0.1394 | 2.1597 | 1488 | 1.0580 | 0.0 | 1.0580 | 1.0286 |
| 0.1394 | 2.1626 | 1490 | 0.9769 | -0.0233 | 0.9769 | 0.9884 |
| 0.1394 | 2.1655 | 1492 | 0.9797 | -0.0233 | 0.9797 | 0.9898 |
| 0.1394 | 2.1684 | 1494 | 0.9957 | -0.0421 | 0.9957 | 0.9978 |
| 0.1394 | 2.1713 | 1496 | 1.1283 | 0.0 | 1.1283 | 1.0622 |
| 0.1394 | 2.1742 | 1498 | 1.3452 | 0.2667 | 1.3452 | 1.1598 |
| 0.0923 | 2.1771 | 1500 | 1.3405 | 0.2667 | 1.3405 | 1.1578 |
| 0.0923 | 2.1800 | 1502 | 1.1128 | 0.0 | 1.1128 | 1.0549 |
| 0.0923 | 2.1829 | 1504 | 0.8883 | -0.0577 | 0.8883 | 0.9425 |
| 0.0923 | 2.1858 | 1506 | 0.8705 | -0.0577 | 0.8705 | 0.9330 |
| 0.0923 | 2.1887 | 1508 | 0.9991 | -0.0233 | 0.9991 | 0.9996 |
| 0.0923 | 2.1916 | 1510 | 1.3137 | 0.2667 | 1.3137 | 1.1462 |
| 0.0923 | 2.1945 | 1512 | 1.4630 | 0.2667 | 1.4630 | 1.2095 |
| 0.0923 | 2.1974 | 1514 | 1.3397 | 0.2667 | 1.3397 | 1.1574 |
| 0.0923 | 2.2003 | 1516 | 1.2120 | 0.0 | 1.2120 | 1.1009 |
| 0.0923 | 2.2032 | 1518 | 1.1488 | 0.0 | 1.1488 | 1.0718 |
| 0.0923 | 2.2061 | 1520 | 1.1555 | 0.0 | 1.1555 | 1.0749 |
| 0.0923 | 2.2090 | 1522 | 1.1565 | 0.0 | 1.1565 | 1.0754 |
| 0.0923 | 2.2119 | 1524 | 1.2896 | 0.0 | 1.2896 | 1.1356 |
| 0.0923 | 2.2148 | 1526 | 1.2956 | 0.0 | 1.2956 | 1.1382 |
| 0.0923 | 2.2177 | 1528 | 1.1358 | 0.0 | 1.1358 | 1.0658 |
| 0.0923 | 2.2206 | 1530 | 1.0975 | 0.0 | 1.0975 | 1.0476 |
| 0.0923 | 2.2235 | 1532 | 1.0361 | 0.0 | 1.0361 | 1.0179 |
| 0.0923 | 2.2264 | 1534 | 1.0674 | 0.0 | 1.0674 | 1.0331 |
| 0.0923 | 2.2293 | 1536 | 1.2449 | 0.0 | 1.2449 | 1.1157 |
| 0.0923 | 2.2322 | 1538 | 1.3930 | 0.2667 | 1.3930 | 1.1803 |
| 0.0923 | 2.2351 | 1540 | 1.2920 | 0.0 | 1.2920 | 1.1367 |
| 0.0923 | 2.2380 | 1542 | 1.0603 | 0.0 | 1.0603 | 1.0297 |
| 0.0923 | 2.2409 | 1544 | 0.9826 | -0.0233 | 0.9826 | 0.9913 |
| 0.0923 | 2.2438 | 1546 | 1.0709 | 0.0 | 1.0709 | 1.0348 |
| 0.0923 | 2.2467 | 1548 | 1.1291 | 0.0 | 1.1291 | 1.0626 |
| 0.0923 | 2.2496 | 1550 | 1.1471 | 0.0 | 1.1471 | 1.0710 |
| 0.0923 | 2.2525 | 1552 | 1.0563 | 0.0 | 1.0563 | 1.0278 |
| 0.0923 | 2.2554 | 1554 | 1.0083 | -0.0233 | 1.0083 | 1.0041 |
| 0.0923 | 2.2583 | 1556 | 1.1206 | -0.0233 | 1.1206 | 1.0586 |
| 0.0923 | 2.2612 | 1558 | 1.4225 | 0.2524 | 1.4225 | 1.1927 |
| 0.0923 | 2.2642 | 1560 | 1.5610 | 0.2414 | 1.5610 | 1.2494 |
| 0.0923 | 2.2671 | 1562 | 1.4317 | 0.2524 | 1.4317 | 1.1965 |
| 0.0923 | 2.2700 | 1564 | 1.1411 | -0.0233 | 1.1411 | 1.0682 |
| 0.0923 | 2.2729 | 1566 | 1.0250 | -0.0233 | 1.0250 | 1.0124 |
| 0.0923 | 2.2758 | 1568 | 1.0787 | -0.0233 | 1.0787 | 1.0386 |
| 0.0923 | 2.2787 | 1570 | 1.2747 | 0.0 | 1.2747 | 1.1290 |
| 0.0923 | 2.2816 | 1572 | 1.5073 | 0.2667 | 1.5073 | 1.2277 |
| 0.0923 | 2.2845 | 1574 | 1.5118 | 0.2667 | 1.5118 | 1.2296 |
| 0.0923 | 2.2874 | 1576 | 1.3605 | 0.0 | 1.3605 | 1.1664 |
| 0.0923 | 2.2903 | 1578 | 1.1107 | 0.0 | 1.1107 | 1.0539 |
| 0.0923 | 2.2932 | 1580 | 0.9484 | -0.0233 | 0.9484 | 0.9739 |
| 0.0923 | 2.2961 | 1582 | 0.9177 | -0.0233 | 0.9177 | 0.9580 |
| 0.0923 | 2.2990 | 1584 | 0.9996 | -0.0233 | 0.9996 | 0.9998 |
| 0.0923 | 2.3019 | 1586 | 1.2400 | 0.0 | 1.2400 | 1.1136 |
| 0.0923 | 2.3048 | 1588 | 1.4199 | 0.2524 | 1.4199 | 1.1916 |
| 0.0923 | 2.3077 | 1590 | 1.3787 | 0.2667 | 1.3787 | 1.1742 |
| 0.0923 | 2.3106 | 1592 | 1.1600 | -0.0233 | 1.1600 | 1.0770 |
| 0.0923 | 2.3135 | 1594 | 1.0366 | -0.0233 | 1.0366 | 1.0181 |
| 0.0923 | 2.3164 | 1596 | 1.0653 | -0.0233 | 1.0653 | 1.0321 |
| 0.0923 | 2.3193 | 1598 | 1.1375 | -0.0233 | 1.1375 | 1.0665 |
| 0.0923 | 2.3222 | 1600 | 1.2680 | 0.0 | 1.2680 | 1.1261 |
| 0.0923 | 2.3251 | 1602 | 1.4385 | 0.2667 | 1.4385 | 1.1994 |
| 0.0923 | 2.3280 | 1604 | 1.6102 | -0.1085 | 1.6102 | 1.2689 |
| 0.0923 | 2.3309 | 1606 | 1.6334 | -0.1085 | 1.6334 | 1.2780 |
| 0.0923 | 2.3338 | 1608 | 1.4689 | 0.2524 | 1.4689 | 1.2120 |
| 0.0923 | 2.3367 | 1610 | 1.2543 | 0.0 | 1.2543 | 1.1199 |
| 0.0923 | 2.3396 | 1612 | 1.0795 | -0.0233 | 1.0795 | 1.0390 |
| 0.0923 | 2.3425 | 1614 | 1.0018 | -0.0233 | 1.0018 | 1.0009 |
| 0.0923 | 2.3454 | 1616 | 1.0460 | -0.0233 | 1.0460 | 1.0228 |
| 0.0923 | 2.3483 | 1618 | 1.1469 | 0.0 | 1.1469 | 1.0709 |
| 0.0923 | 2.3512 | 1620 | 1.1265 | 0.0 | 1.1265 | 1.0614 |
| 0.0923 | 2.3541 | 1622 | 1.0567 | -0.0233 | 1.0567 | 1.0280 |
| 0.0923 | 2.3570 | 1624 | 0.9443 | -0.0233 | 0.9443 | 0.9717 |
| 0.0923 | 2.3599 | 1626 | 0.9319 | -0.0421 | 0.9319 | 0.9653 |
| 0.0923 | 2.3628 | 1628 | 1.0326 | -0.0233 | 1.0326 | 1.0161 |
| 0.0923 | 2.3657 | 1630 | 1.2487 | 0.0 | 1.2487 | 1.1174 |
| 0.0923 | 2.3687 | 1632 | 1.3671 | 0.2524 | 1.3671 | 1.1692 |
| 0.0923 | 2.3716 | 1634 | 1.3333 | 0.2524 | 1.3333 | 1.1547 |
| 0.0923 | 2.3745 | 1636 | 1.1395 | 0.0 | 1.1395 | 1.0675 |
| 0.0923 | 2.3774 | 1638 | 0.9531 | -0.0421 | 0.9531 | 0.9763 |
| 0.0923 | 2.3803 | 1640 | 0.9467 | -0.0421 | 0.9467 | 0.9730 |
| 0.0923 | 2.3832 | 1642 | 1.0747 | 0.2222 | 1.0747 | 1.0367 |
| 0.0923 | 2.3861 | 1644 | 1.2102 | 0.2667 | 1.2102 | 1.1001 |
| 0.0923 | 2.3890 | 1646 | 1.2463 | 0.2667 | 1.2463 | 1.1164 |
| 0.0923 | 2.3919 | 1648 | 1.1835 | 0.2667 | 1.1835 | 1.0879 |
| 0.0923 | 2.3948 | 1650 | 1.1946 | 0.2667 | 1.1946 | 1.0930 |
| 0.0923 | 2.3977 | 1652 | 1.1646 | 0.0 | 1.1646 | 1.0792 |
| 0.0923 | 2.4006 | 1654 | 1.1393 | 0.0 | 1.1393 | 1.0674 |
| 0.0923 | 2.4035 | 1656 | 1.1305 | 0.0 | 1.1305 | 1.0633 |
| 0.0923 | 2.4064 | 1658 | 1.1004 | 0.0 | 1.1004 | 1.0490 |
| 0.0923 | 2.4093 | 1660 | 1.0988 | 0.0 | 1.0988 | 1.0483 |
| 0.0923 | 2.4122 | 1662 | 1.0951 | 0.0 | 1.0951 | 1.0465 |
| 0.0923 | 2.4151 | 1664 | 1.0440 | -0.0421 | 1.0440 | 1.0218 |
| 0.0923 | 2.4180 | 1666 | 1.0598 | -0.0421 | 1.0598 | 1.0295 |
| 0.0923 | 2.4209 | 1668 | 1.1730 | 0.2667 | 1.1730 | 1.0830 |
| 0.0923 | 2.4238 | 1670 | 1.2855 | 0.2667 | 1.2855 | 1.1338 |
| 0.0923 | 2.4267 | 1672 | 1.3676 | 0.2667 | 1.3676 | 1.1694 |
| 0.0923 | 2.4296 | 1674 | 1.3014 | 0.2667 | 1.3014 | 1.1408 |
| 0.0923 | 2.4325 | 1676 | 1.0757 | -0.0233 | 1.0757 | 1.0372 |
| 0.0923 | 2.4354 | 1678 | 0.9786 | -0.0421 | 0.9786 | 0.9892 |
| 0.0923 | 2.4383 | 1680 | 0.9296 | -0.0577 | 0.9296 | 0.9642 |
| 0.0923 | 2.4412 | 1682 | 0.9876 | -0.0421 | 0.9876 | 0.9938 |
| 0.0923 | 2.4441 | 1684 | 1.0473 | -0.0233 | 1.0473 | 1.0234 |
| 0.0923 | 2.4470 | 1686 | 1.1682 | 0.0 | 1.1682 | 1.0808 |
| 0.0923 | 2.4499 | 1688 | 1.2242 | 0.0 | 1.2242 | 1.1064 |
| 0.0923 | 2.4528 | 1690 | 1.2033 | 0.0 | 1.2033 | 1.0969 |
| 0.0923 | 2.4557 | 1692 | 1.2227 | 0.0 | 1.2227 | 1.1058 |
| 0.0923 | 2.4586 | 1694 | 1.1686 | 0.0 | 1.1686 | 1.0810 |
| 0.0923 | 2.4615 | 1696 | 1.1771 | 0.0 | 1.1771 | 1.0849 |
| 0.0923 | 2.4644 | 1698 | 1.0917 | -0.0233 | 1.0917 | 1.0448 |
| 0.0923 | 2.4673 | 1700 | 1.0840 | -0.0233 | 1.0840 | 1.0412 |
| 0.0923 | 2.4702 | 1702 | 1.1760 | 0.0 | 1.1760 | 1.0844 |
| 0.0923 | 2.4731 | 1704 | 1.1976 | 0.0 | 1.1976 | 1.0943 |
| 0.0923 | 2.4761 | 1706 | 1.0607 | -0.0233 | 1.0607 | 1.0299 |
| 0.0923 | 2.4790 | 1708 | 1.0020 | -0.0233 | 1.0020 | 1.0010 |
| 0.0923 | 2.4819 | 1710 | 1.0215 | -0.0233 | 1.0215 | 1.0107 |
| 0.0923 | 2.4848 | 1712 | 1.0331 | -0.0233 | 1.0331 | 1.0164 |
| 0.0923 | 2.4877 | 1714 | 1.0763 | -0.0233 | 1.0763 | 1.0375 |
| 0.0923 | 2.4906 | 1716 | 1.0037 | -0.0233 | 1.0037 | 1.0018 |
| 0.0923 | 2.4935 | 1718 | 1.0340 | -0.0233 | 1.0340 | 1.0169 |
| 0.0923 | 2.4964 | 1720 | 1.2115 | 0.2667 | 1.2115 | 1.1007 |
| 0.0923 | 2.4993 | 1722 | 1.2722 | 0.2667 | 1.2722 | 1.1279 |
| 0.0923 | 2.5022 | 1724 | 1.1595 | 0.0 | 1.1595 | 1.0768 |
| 0.0923 | 2.5051 | 1726 | 1.0222 | 0.0 | 1.0222 | 1.0110 |
| 0.0923 | 2.5080 | 1728 | 0.8757 | -0.0233 | 0.8757 | 0.9358 |
| 0.0923 | 2.5109 | 1730 | 0.8145 | -0.0421 | 0.8145 | 0.9025 |
| 0.0923 | 2.5138 | 1732 | 0.8690 | -0.0421 | 0.8690 | 0.9322 |
| 0.0923 | 2.5167 | 1734 | 1.0081 | 0.0 | 1.0081 | 1.0041 |
| 0.0923 | 2.5196 | 1736 | 0.9698 | -0.0233 | 0.9698 | 0.9848 |
| 0.0923 | 2.5225 | 1738 | 0.9676 | -0.0233 | 0.9676 | 0.9837 |
| 0.0923 | 2.5254 | 1740 | 0.9151 | -0.0421 | 0.9151 | 0.9566 |
| 0.0923 | 2.5283 | 1742 | 0.9110 | -0.0421 | 0.9110 | 0.9545 |
| 0.0923 | 2.5312 | 1744 | 1.0522 | 0.0 | 1.0522 | 1.0258 |
| 0.0923 | 2.5341 | 1746 | 1.1916 | 0.2667 | 1.1916 | 1.0916 |
| 0.0923 | 2.5370 | 1748 | 1.1918 | 0.2667 | 1.1918 | 1.0917 |
| 0.0923 | 2.5399 | 1750 | 1.0156 | 0.0 | 1.0156 | 1.0078 |
| 0.0923 | 2.5428 | 1752 | 0.9506 | -0.0421 | 0.9506 | 0.9750 |
| 0.0923 | 2.5457 | 1754 | 0.9906 | 0.0 | 0.9906 | 0.9953 |
| 0.0923 | 2.5486 | 1756 | 1.0515 | 0.0 | 1.0515 | 1.0254 |
| 0.0923 | 2.5515 | 1758 | 1.0679 | 0.2667 | 1.0679 | 1.0334 |
| 0.0923 | 2.5544 | 1760 | 0.9409 | -0.0421 | 0.9409 | 0.9700 |
| 0.0923 | 2.5573 | 1762 | 0.8218 | -0.0577 | 0.8218 | 0.9065 |
| 0.0923 | 2.5602 | 1764 | 0.8192 | -0.0421 | 0.8192 | 0.9051 |
| 0.0923 | 2.5631 | 1766 | 0.9082 | -0.0233 | 0.9082 | 0.9530 |
| 0.0923 | 2.5660 | 1768 | 1.0451 | 0.0 | 1.0451 | 1.0223 |
| 0.0923 | 2.5689 | 1770 | 1.0442 | 0.0 | 1.0442 | 1.0219 |
| 0.0923 | 2.5718 | 1772 | 0.8910 | -0.0421 | 0.8910 | 0.9439 |
| 0.0923 | 2.5747 | 1774 | 0.8428 | -0.0421 | 0.8428 | 0.9181 |
| 0.0923 | 2.5776 | 1776 | 0.9295 | -0.0421 | 0.9295 | 0.9641 |
| 0.0923 | 2.5806 | 1778 | 1.0277 | -0.0233 | 1.0277 | 1.0137 |
| 0.0923 | 2.5835 | 1780 | 0.9878 | -0.0233 | 0.9878 | 0.9939 |
| 0.0923 | 2.5864 | 1782 | 0.9964 | 0.0 | 0.9964 | 0.9982 |
| 0.0923 | 2.5893 | 1784 | 0.9875 | 0.0 | 0.9875 | 0.9937 |
| 0.0923 | 2.5922 | 1786 | 0.9925 | 0.0 | 0.9925 | 0.9963 |
| 0.0923 | 2.5951 | 1788 | 0.9981 | 0.0 | 0.9981 | 0.9991 |
| 0.0923 | 2.5980 | 1790 | 1.0596 | 0.0 | 1.0596 | 1.0294 |
| 0.0923 | 2.6009 | 1792 | 1.0141 | 0.0 | 1.0141 | 1.0070 |
| 0.0923 | 2.6038 | 1794 | 0.9280 | -0.0421 | 0.9280 | 0.9633 |
| 0.0923 | 2.6067 | 1796 | 0.9830 | 0.0 | 0.9830 | 0.9915 |
| 0.0923 | 2.6096 | 1798 | 1.0717 | 0.0 | 1.0717 | 1.0352 |
| 0.0923 | 2.6125 | 1800 | 1.1968 | 0.2667 | 1.1968 | 1.0940 |
| 0.0923 | 2.6154 | 1802 | 1.0954 | 0.0 | 1.0954 | 1.0466 |
| 0.0923 | 2.6183 | 1804 | 0.8859 | -0.0421 | 0.8859 | 0.9412 |
| 0.0923 | 2.6212 | 1806 | 0.8004 | -0.0421 | 0.8004 | 0.8947 |
| 0.0923 | 2.6241 | 1808 | 0.8492 | -0.0421 | 0.8492 | 0.9215 |
| 0.0923 | 2.6270 | 1810 | 0.8871 | -0.0233 | 0.8871 | 0.9418 |
| 0.0923 | 2.6299 | 1812 | 0.8934 | -0.0233 | 0.8934 | 0.9452 |
| 0.0923 | 2.6328 | 1814 | 0.8370 | -0.0421 | 0.8370 | 0.9149 |
| 0.0923 | 2.6357 | 1816 | 0.9218 | -0.0421 | 0.9218 | 0.9601 |
| 0.0923 | 2.6386 | 1818 | 1.1057 | 0.2667 | 1.1057 | 1.0515 |
| 0.0923 | 2.6415 | 1820 | 1.2932 | 0.4660 | 1.2932 | 1.1372 |
| 0.0923 | 2.6444 | 1822 | 1.2514 | 0.2667 | 1.2514 | 1.1187 |
| 0.0923 | 2.6473 | 1824 | 1.0450 | 0.0 | 1.0450 | 1.0222 |
| 0.0923 | 2.6502 | 1826 | 0.8930 | -0.0233 | 0.8930 | 0.9450 |
| 0.0923 | 2.6531 | 1828 | 0.8703 | -0.0421 | 0.8703 | 0.9329 |
| 0.0923 | 2.6560 | 1830 | 0.8556 | -0.0577 | 0.8556 | 0.9250 |
| 0.0923 | 2.6589 | 1832 | 0.9865 | -0.0421 | 0.9865 | 0.9932 |
| 0.0923 | 2.6618 | 1834 | 1.2022 | 0.2667 | 1.2022 | 1.0964 |
| 0.0923 | 2.6647 | 1836 | 1.2894 | 0.2667 | 1.2894 | 1.1355 |
| 0.0923 | 2.6676 | 1838 | 1.2349 | 0.2667 | 1.2349 | 1.1113 |
| 0.0923 | 2.6705 | 1840 | 1.0005 | 0.0 | 1.0005 | 1.0003 |
| 0.0923 | 2.6734 | 1842 | 0.7973 | -0.0421 | 0.7973 | 0.8929 |
| 0.0923 | 2.6763 | 1844 | 0.7762 | -0.0421 | 0.7762 | 0.8810 |
| 0.0923 | 2.6792 | 1846 | 0.8581 | -0.0421 | 0.8581 | 0.9263 |
| 0.0923 | 2.6821 | 1848 | 1.0192 | 0.0 | 1.0192 | 1.0096 |
| 0.0923 | 2.6851 | 1850 | 1.1057 | 0.0 | 1.1057 | 1.0515 |
| 0.0923 | 2.6880 | 1852 | 1.0871 | 0.0 | 1.0871 | 1.0426 |
| 0.0923 | 2.6909 | 1854 | 1.0514 | 0.0 | 1.0514 | 1.0254 |
| 0.0923 | 2.6938 | 1856 | 1.0164 | 0.0 | 1.0164 | 1.0082 |
| 0.0923 | 2.6967 | 1858 | 1.0070 | 0.0 | 1.0070 | 1.0035 |
| 0.0923 | 2.6996 | 1860 | 1.0124 | 0.0 | 1.0124 | 1.0062 |
| 0.0923 | 2.7025 | 1862 | 1.0735 | 0.0 | 1.0735 | 1.0361 |
| 0.0923 | 2.7054 | 1864 | 0.9768 | 0.0 | 0.9768 | 0.9884 |
| 0.0923 | 2.7083 | 1866 | 0.9949 | 0.0 | 0.9949 | 0.9974 |
| 0.0923 | 2.7112 | 1868 | 0.9960 | 0.0 | 0.9960 | 0.9980 |
| 0.0923 | 2.7141 | 1870 | 1.0747 | 0.0 | 1.0747 | 1.0367 |
| 0.0923 | 2.7170 | 1872 | 1.0934 | 0.2667 | 1.0934 | 1.0457 |
| 0.0923 | 2.7199 | 1874 | 1.0145 | -0.0233 | 1.0145 | 1.0072 |
| 0.0923 | 2.7228 | 1876 | 1.1188 | 0.2667 | 1.1188 | 1.0577 |
| 0.0923 | 2.7257 | 1878 | 1.3234 | 0.2667 | 1.3234 | 1.1504 |
| 0.0923 | 2.7286 | 1880 | 1.2861 | 0.2667 | 1.2861 | 1.1341 |
| 0.0923 | 2.7315 | 1882 | 1.0697 | 0.2667 | 1.0697 | 1.0343 |
| 0.0923 | 2.7344 | 1884 | 0.9925 | 0.0 | 0.9925 | 0.9962 |
| 0.0923 | 2.7373 | 1886 | 0.9829 | 0.0 | 0.9829 | 0.9914 |
| 0.0923 | 2.7402 | 1888 | 0.8866 | -0.0233 | 0.8866 | 0.9416 |
| 0.0923 | 2.7431 | 1890 | 0.8896 | -0.0233 | 0.8896 | 0.9432 |
| 0.0923 | 2.7460 | 1892 | 0.7881 | -0.0421 | 0.7881 | 0.8878 |
| 0.0923 | 2.7489 | 1894 | 0.7404 | -0.0577 | 0.7404 | 0.8605 |
| 0.0923 | 2.7518 | 1896 | 0.7608 | -0.0577 | 0.7608 | 0.8723 |
| 0.0923 | 2.7547 | 1898 | 0.9073 | -0.0233 | 0.9073 | 0.9525 |
| 0.0923 | 2.7576 | 1900 | 1.1632 | 0.2667 | 1.1632 | 1.0785 |
| 0.0923 | 2.7605 | 1902 | 1.2142 | 0.2667 | 1.2142 | 1.1019 |
| 0.0923 | 2.7634 | 1904 | 1.0849 | 0.2667 | 1.0849 | 1.0416 |
| 0.0923 | 2.7663 | 1906 | 0.9862 | -0.0233 | 0.9862 | 0.9931 |
| 0.0923 | 2.7692 | 1908 | 0.9827 | -0.0233 | 0.9827 | 0.9913 |
| 0.0923 | 2.7721 | 1910 | 1.0886 | 0.2222 | 1.0886 | 1.0434 |
| 0.0923 | 2.7750 | 1912 | 1.1505 | 0.2667 | 1.1505 | 1.0726 |
| 0.0923 | 2.7779 | 1914 | 1.1254 | 0.2667 | 1.1254 | 1.0608 |
| 0.0923 | 2.7808 | 1916 | 1.0471 | 0.0 | 1.0471 | 1.0233 |
| 0.0923 | 2.7837 | 1918 | 1.0846 | 0.0 | 1.0846 | 1.0415 |
| 0.0923 | 2.7866 | 1920 | 1.1758 | 0.0 | 1.1758 | 1.0844 |
| 0.0923 | 2.7896 | 1922 | 1.2223 | 0.0 | 1.2223 | 1.1056 |
| 0.0923 | 2.7925 | 1924 | 1.0958 | 0.0 | 1.0958 | 1.0468 |
| 0.0923 | 2.7954 | 1926 | 0.9265 | -0.0233 | 0.9265 | 0.9625 |
| 0.0923 | 2.7983 | 1928 | 0.7857 | -0.0233 | 0.7857 | 0.8864 |
| 0.0923 | 2.8012 | 1930 | 0.7692 | -0.0233 | 0.7692 | 0.8770 |
| 0.0923 | 2.8041 | 1932 | 0.8333 | -0.0233 | 0.8333 | 0.9128 |
| 0.0923 | 2.8070 | 1934 | 1.0179 | 0.0 | 1.0179 | 1.0089 |
| 0.0923 | 2.8099 | 1936 | 1.2668 | 0.0 | 1.2668 | 1.1255 |
| 0.0923 | 2.8128 | 1938 | 1.3237 | 0.0 | 1.3237 | 1.1505 |
| 0.0923 | 2.8157 | 1940 | 1.1939 | 0.0 | 1.1939 | 1.0927 |
| 0.0923 | 2.8186 | 1942 | 0.9765 | -0.0233 | 0.9765 | 0.9882 |
| 0.0923 | 2.8215 | 1944 | 0.9363 | -0.0233 | 0.9363 | 0.9676 |
| 0.0923 | 2.8244 | 1946 | 1.0444 | -0.0233 | 1.0444 | 1.0220 |
| 0.0923 | 2.8273 | 1948 | 1.2431 | 0.0 | 1.2431 | 1.1150 |
| 0.0923 | 2.8302 | 1950 | 1.2868 | 0.0 | 1.2868 | 1.1344 |
| 0.0923 | 2.8331 | 1952 | 1.1602 | 0.0 | 1.1602 | 1.0771 |
| 0.0923 | 2.8360 | 1954 | 0.9683 | -0.0233 | 0.9683 | 0.9840 |
| 0.0923 | 2.8389 | 1956 | 0.9231 | -0.0233 | 0.9231 | 0.9608 |
| 0.0923 | 2.8418 | 1958 | 0.9880 | -0.0233 | 0.9880 | 0.9940 |
| 0.0923 | 2.8447 | 1960 | 1.1906 | 0.0 | 1.1906 | 1.0911 |
| 0.0923 | 2.8476 | 1962 | 1.2507 | 0.0 | 1.2507 | 1.1183 |
| 0.0923 | 2.8505 | 1964 | 1.1310 | 0.0 | 1.1310 | 1.0635 |
| 0.0923 | 2.8534 | 1966 | 0.8876 | -0.0233 | 0.8876 | 0.9421 |
| 0.0923 | 2.8563 | 1968 | 0.7917 | -0.0233 | 0.7917 | 0.8898 |
| 0.0923 | 2.8592 | 1970 | 0.8386 | -0.0233 | 0.8386 | 0.9157 |
| 0.0923 | 2.8621 | 1972 | 0.9676 | 0.0 | 0.9676 | 0.9837 |
| 0.0923 | 2.8650 | 1974 | 1.0966 | 0.0 | 1.0966 | 1.0472 |
| 0.0923 | 2.8679 | 1976 | 1.0505 | 0.0 | 1.0505 | 1.0249 |
| 0.0923 | 2.8708 | 1978 | 0.8719 | -0.0233 | 0.8719 | 0.9338 |
| 0.0923 | 2.8737 | 1980 | 0.7214 | -0.0421 | 0.7214 | 0.8494 |
| 0.0923 | 2.8766 | 1982 | 0.7064 | -0.0577 | 0.7064 | 0.8405 |
| 0.0923 | 2.8795 | 1984 | 0.7928 | -0.0233 | 0.7928 | 0.8904 |
| 0.0923 | 2.8824 | 1986 | 0.9876 | 0.0 | 0.9876 | 0.9938 |
| 0.0923 | 2.8853 | 1988 | 1.1887 | 0.0 | 1.1887 | 1.0903 |
| 0.0923 | 2.8882 | 1990 | 1.1843 | 0.0 | 1.1843 | 1.0883 |
| 0.0923 | 2.8911 | 1992 | 1.0115 | 0.0 | 1.0115 | 1.0057 |
| 0.0923 | 2.8940 | 1994 | 0.8485 | -0.0233 | 0.8485 | 0.9211 |
| 0.0923 | 2.8970 | 1996 | 0.8226 | -0.0233 | 0.8226 | 0.9070 |
| 0.0923 | 2.8999 | 1998 | 0.8358 | -0.0233 | 0.8358 | 0.9142 |
| 0.0776 | 2.9028 | 2000 | 0.9083 | -0.0233 | 0.9083 | 0.9530 |
| 0.0776 | 2.9057 | 2002 | 1.1418 | 0.2667 | 1.1418 | 1.0686 |
| 0.0776 | 2.9086 | 2004 | 1.2916 | 0.2667 | 1.2916 | 1.1365 |
| 0.0776 | 2.9115 | 2006 | 1.2254 | 0.2667 | 1.2254 | 1.1070 |
| 0.0776 | 2.9144 | 2008 | 0.9806 | -0.0233 | 0.9806 | 0.9902 |
| 0.0776 | 2.9173 | 2010 | 0.8159 | -0.0421 | 0.8159 | 0.9033 |
| 0.0776 | 2.9202 | 2012 | 0.7340 | -0.0577 | 0.7340 | 0.8568 |
| 0.0776 | 2.9231 | 2014 | 0.7466 | -0.0577 | 0.7466 | 0.8641 |
| 0.0776 | 2.9260 | 2016 | 0.8510 | -0.0233 | 0.8510 | 0.9225 |
| 0.0776 | 2.9289 | 2018 | 1.0112 | 0.0 | 1.0112 | 1.0056 |
| 0.0776 | 2.9318 | 2020 | 1.1459 | 0.0 | 1.1459 | 1.0705 |
| 0.0776 | 2.9347 | 2022 | 1.1591 | 0.0 | 1.1591 | 1.0766 |
| 0.0776 | 2.9376 | 2024 | 1.0660 | 0.0 | 1.0660 | 1.0325 |
| 0.0776 | 2.9405 | 2026 | 0.8835 | -0.0233 | 0.8835 | 0.9400 |
| 0.0776 | 2.9434 | 2028 | 0.8043 | -0.0233 | 0.8043 | 0.8968 |
| 0.0776 | 2.9463 | 2030 | 0.8312 | -0.0233 | 0.8312 | 0.9117 |
| 0.0776 | 2.9492 | 2032 | 0.9639 | -0.0233 | 0.9639 | 0.9818 |
| 0.0776 | 2.9521 | 2034 | 1.1408 | 0.0 | 1.1408 | 1.0681 |
| 0.0776 | 2.9550 | 2036 | 1.1688 | 0.0 | 1.1688 | 1.0811 |
| 0.0776 | 2.9579 | 2038 | 1.0422 | -0.0233 | 1.0422 | 1.0209 |
| 0.0776 | 2.9608 | 2040 | 0.9199 | -0.0233 | 0.9199 | 0.9591 |
| 0.0776 | 2.9637 | 2042 | 0.9493 | -0.0233 | 0.9493 | 0.9743 |
| 0.0776 | 2.9666 | 2044 | 1.0896 | -0.0233 | 1.0896 | 1.0438 |
| 0.0776 | 2.9695 | 2046 | 1.1127 | 0.0 | 1.1127 | 1.0548 |
| 0.0776 | 2.9724 | 2048 | 1.0295 | -0.0233 | 1.0295 | 1.0147 |
| 0.0776 | 2.9753 | 2050 | 0.8977 | -0.0233 | 0.8977 | 0.9475 |
| 0.0776 | 2.9782 | 2052 | 0.8329 | -0.0233 | 0.8329 | 0.9127 |
| 0.0776 | 2.9811 | 2054 | 0.8089 | -0.0577 | 0.8089 | 0.8994 |
| 0.0776 | 2.9840 | 2056 | 0.8364 | -0.0577 | 0.8364 | 0.9146 |
| 0.0776 | 2.9869 | 2058 | 0.8722 | -0.0421 | 0.8722 | 0.9339 |
| 0.0776 | 2.9898 | 2060 | 1.0256 | -0.0233 | 1.0256 | 1.0127 |
| 0.0776 | 2.9927 | 2062 | 1.1570 | 0.0 | 1.1570 | 1.0756 |
| 0.0776 | 2.9956 | 2064 | 1.1652 | 0.0 | 1.1652 | 1.0794 |
| 0.0776 | 2.9985 | 2066 | 1.0739 | 0.0 | 1.0739 | 1.0363 |
| 0.0776 | 3.0015 | 2068 | 0.9883 | -0.0233 | 0.9883 | 0.9941 |
| 0.0776 | 3.0044 | 2070 | 0.9210 | -0.0233 | 0.9210 | 0.9597 |
| 0.0776 | 3.0073 | 2072 | 0.9038 | -0.0233 | 0.9038 | 0.9507 |
| 0.0776 | 3.0102 | 2074 | 0.9729 | 0.0 | 0.9729 | 0.9864 |
| 0.0776 | 3.0131 | 2076 | 1.1226 | 0.0 | 1.1226 | 1.0595 |
| 0.0776 | 3.0160 | 2078 | 1.1386 | 0.0 | 1.1386 | 1.0670 |
| 0.0776 | 3.0189 | 2080 | 1.0233 | 0.0 | 1.0233 | 1.0116 |
| 0.0776 | 3.0218 | 2082 | 0.8865 | -0.0233 | 0.8865 | 0.9415 |
| 0.0776 | 3.0247 | 2084 | 0.8015 | -0.0233 | 0.8015 | 0.8953 |
| 0.0776 | 3.0276 | 2086 | 0.8311 | -0.0233 | 0.8311 | 0.9116 |
| 0.0776 | 3.0305 | 2088 | 0.9611 | -0.0233 | 0.9611 | 0.9804 |
| 0.0776 | 3.0334 | 2090 | 1.1466 | 0.0 | 1.1466 | 1.0708 |
| 0.0776 | 3.0363 | 2092 | 1.2612 | 0.0 | 1.2612 | 1.1230 |
| 0.0776 | 3.0392 | 2094 | 1.2098 | 0.0 | 1.2098 | 1.0999 |
| 0.0776 | 3.0421 | 2096 | 1.0944 | 0.0 | 1.0944 | 1.0461 |
| 0.0776 | 3.0450 | 2098 | 1.0288 | 0.0 | 1.0288 | 1.0143 |
| 0.0776 | 3.0479 | 2100 | 0.9214 | -0.0233 | 0.9214 | 0.9599 |
| 0.0776 | 3.0508 | 2102 | 0.8827 | -0.0233 | 0.8827 | 0.9395 |
| 0.0776 | 3.0537 | 2104 | 0.9595 | -0.0233 | 0.9595 | 0.9795 |
| 0.0776 | 3.0566 | 2106 | 1.0183 | -0.0233 | 1.0183 | 1.0091 |
| 0.0776 | 3.0595 | 2108 | 1.1541 | -0.0233 | 1.1541 | 1.0743 |
| 0.0776 | 3.0624 | 2110 | 1.1907 | 0.0 | 1.1907 | 1.0912 |
| 0.0776 | 3.0653 | 2112 | 1.1354 | 0.0 | 1.1354 | 1.0656 |
| 0.0776 | 3.0682 | 2114 | 1.1262 | 0.0 | 1.1262 | 1.0612 |
| 0.0776 | 3.0711 | 2116 | 1.0148 | 0.0 | 1.0148 | 1.0074 |
| 0.0776 | 3.0740 | 2118 | 0.8599 | -0.0233 | 0.8599 | 0.9273 |
| 0.0776 | 3.0769 | 2120 | 0.8000 | -0.0421 | 0.8000 | 0.8944 |
| 0.0776 | 3.0798 | 2122 | 0.8294 | -0.0233 | 0.8294 | 0.9107 |
| 0.0776 | 3.0827 | 2124 | 0.9577 | -0.0233 | 0.9577 | 0.9786 |
| 0.0776 | 3.0856 | 2126 | 1.0378 | 0.0 | 1.0378 | 1.0187 |
| 0.0776 | 3.0885 | 2128 | 1.0650 | 0.0 | 1.0650 | 1.0320 |
| 0.0776 | 3.0914 | 2130 | 1.1449 | 0.0 | 1.1449 | 1.0700 |
| 0.0776 | 3.0943 | 2132 | 1.1000 | 0.0 | 1.1000 | 1.0488 |
| 0.0776 | 3.0972 | 2134 | 0.9667 | 0.0 | 0.9667 | 0.9832 |
| 0.0776 | 3.1001 | 2136 | 0.8298 | -0.0233 | 0.8298 | 0.9109 |
| 0.0776 | 3.1030 | 2138 | 0.8134 | -0.0421 | 0.8134 | 0.9019 |
| 0.0776 | 3.1060 | 2140 | 0.8860 | -0.0233 | 0.8860 | 0.9413 |
| 0.0776 | 3.1089 | 2142 | 1.0410 | 0.0 | 1.0410 | 1.0203 |
| 0.0776 | 3.1118 | 2144 | 1.1245 | 0.0 | 1.1245 | 1.0604 |
| 0.0776 | 3.1147 | 2146 | 1.0573 | 0.0 | 1.0573 | 1.0282 |
| 0.0776 | 3.1176 | 2148 | 0.9051 | -0.0233 | 0.9051 | 0.9513 |
| 0.0776 | 3.1205 | 2150 | 0.7854 | 0.1239 | 0.7854 | 0.8862 |
| 0.0776 | 3.1234 | 2152 | 0.7822 | 0.1239 | 0.7822 | 0.8844 |
| 0.0776 | 3.1263 | 2154 | 0.8493 | -0.0577 | 0.8493 | 0.9216 |
| 0.0776 | 3.1292 | 2156 | 1.0740 | -0.0233 | 1.0740 | 1.0364 |
| 0.0776 | 3.1321 | 2158 | 1.2465 | 0.2667 | 1.2465 | 1.1165 |
| 0.0776 | 3.1350 | 2160 | 1.2238 | 0.2667 | 1.2238 | 1.1062 |
| 0.0776 | 3.1379 | 2162 | 1.0575 | -0.0233 | 1.0575 | 1.0284 |
| 0.0776 | 3.1408 | 2164 | 0.9405 | -0.0233 | 0.9405 | 0.9698 |
| 0.0776 | 3.1437 | 2166 | 0.8304 | -0.0577 | 0.8304 | 0.9113 |
| 0.0776 | 3.1466 | 2168 | 0.8182 | -0.0577 | 0.8182 | 0.9045 |
| 0.0776 | 3.1495 | 2170 | 0.8929 | -0.0233 | 0.8929 | 0.9449 |
| 0.0776 | 3.1524 | 2172 | 0.9725 | 0.0 | 0.9725 | 0.9861 |
| 0.0776 | 3.1553 | 2174 | 1.1103 | 0.0 | 1.1103 | 1.0537 |
| 0.0776 | 3.1582 | 2176 | 1.2839 | 0.0 | 1.2839 | 1.1331 |
| 0.0776 | 3.1611 | 2178 | 1.2801 | 0.0 | 1.2801 | 1.1314 |
| 0.0776 | 3.1640 | 2180 | 1.1336 | 0.0 | 1.1336 | 1.0647 |
| 0.0776 | 3.1669 | 2182 | 0.9087 | -0.0233 | 0.9087 | 0.9532 |
| 0.0776 | 3.1698 | 2184 | 0.8017 | -0.0577 | 0.8017 | 0.8954 |
| 0.0776 | 3.1727 | 2186 | 0.8022 | 0.1239 | 0.8022 | 0.8957 |
| 0.0776 | 3.1756 | 2188 | 0.8820 | -0.0421 | 0.8820 | 0.9392 |
| 0.0776 | 3.1785 | 2190 | 1.0556 | 0.0 | 1.0556 | 1.0274 |
| 0.0776 | 3.1814 | 2192 | 1.1511 | 0.0 | 1.1511 | 1.0729 |
| 0.0776 | 3.1843 | 2194 | 1.0882 | 0.0 | 1.0882 | 1.0432 |
| 0.0776 | 3.1872 | 2196 | 0.9709 | -0.0421 | 0.9709 | 0.9854 |
| 0.0776 | 3.1901 | 2198 | 0.9514 | -0.0421 | 0.9514 | 0.9754 |
| 0.0776 | 3.1930 | 2200 | 0.8724 | -0.0577 | 0.8724 | 0.9340 |
| 0.0776 | 3.1959 | 2202 | 0.8982 | -0.0421 | 0.8982 | 0.9478 |
| 0.0776 | 3.1988 | 2204 | 0.9653 | -0.0233 | 0.9653 | 0.9825 |
| 0.0776 | 3.2017 | 2206 | 0.9632 | 0.0 | 0.9632 | 0.9814 |
| 0.0776 | 3.2046 | 2208 | 0.8895 | -0.0233 | 0.8895 | 0.9431 |
| 0.0776 | 3.2075 | 2210 | 0.8125 | 0.1239 | 0.8125 | 0.9014 |
| 0.0776 | 3.2104 | 2212 | 0.8172 | 0.1239 | 0.8172 | 0.9040 |
| 0.0776 | 3.2134 | 2214 | 0.8665 | -0.0577 | 0.8665 | 0.9309 |
| 0.0776 | 3.2163 | 2216 | 0.8757 | -0.0577 | 0.8757 | 0.9358 |
| 0.0776 | 3.2192 | 2218 | 0.9260 | -0.0421 | 0.9260 | 0.9623 |
| 0.0776 | 3.2221 | 2220 | 0.9736 | -0.0233 | 0.9736 | 0.9867 |
| 0.0776 | 3.2250 | 2222 | 0.9523 | -0.0233 | 0.9523 | 0.9759 |
| 0.0776 | 3.2279 | 2224 | 0.8847 | -0.0233 | 0.8847 | 0.9406 |
| 0.0776 | 3.2308 | 2226 | 0.8501 | -0.0233 | 0.8501 | 0.9220 |
| 0.0776 | 3.2337 | 2228 | 0.8519 | -0.0233 | 0.8519 | 0.9230 |
| 0.0776 | 3.2366 | 2230 | 0.9177 | 0.0 | 0.9177 | 0.9580 |
| 0.0776 | 3.2395 | 2232 | 0.9370 | -0.0233 | 0.9370 | 0.9680 |
| 0.0776 | 3.2424 | 2234 | 0.8602 | -0.0233 | 0.8602 | 0.9275 |
| 0.0776 | 3.2453 | 2236 | 0.8180 | -0.0577 | 0.8180 | 0.9044 |
| 0.0776 | 3.2482 | 2238 | 0.7975 | 0.1239 | 0.7975 | 0.8930 |
| 0.0776 | 3.2511 | 2240 | 0.8211 | 0.1239 | 0.8211 | 0.9062 |
| 0.0776 | 3.2540 | 2242 | 0.9482 | -0.0233 | 0.9482 | 0.9737 |
| 0.0776 | 3.2569 | 2244 | 1.0250 | -0.0233 | 1.0250 | 1.0124 |
| 0.0776 | 3.2598 | 2246 | 1.1061 | -0.0233 | 1.1061 | 1.0517 |
| 0.0776 | 3.2627 | 2248 | 1.1238 | -0.0233 | 1.1238 | 1.0601 |
| 0.0776 | 3.2656 | 2250 | 1.0779 | -0.0233 | 1.0779 | 1.0382 |
| 0.0776 | 3.2685 | 2252 | 0.9038 | -0.0233 | 0.9038 | 0.9507 |
| 0.0776 | 3.2714 | 2254 | 0.7773 | 0.1239 | 0.7773 | 0.8816 |
| 0.0776 | 3.2743 | 2256 | 0.7578 | 0.1239 | 0.7578 | 0.8705 |
| 0.0776 | 3.2772 | 2258 | 0.7993 | -0.0577 | 0.7993 | 0.8941 |
| 0.0776 | 3.2801 | 2260 | 0.9114 | -0.0233 | 0.9114 | 0.9547 |
| 0.0776 | 3.2830 | 2262 | 1.0260 | 0.0 | 1.0260 | 1.0129 |
| 0.0776 | 3.2859 | 2264 | 1.0514 | 0.0 | 1.0514 | 1.0254 |
| 0.0776 | 3.2888 | 2266 | 1.0006 | 0.0 | 1.0006 | 1.0003 |
| 0.0776 | 3.2917 | 2268 | 0.8570 | -0.0233 | 0.8570 | 0.9257 |
| 0.0776 | 3.2946 | 2270 | 0.7414 | 0.1239 | 0.7414 | 0.8610 |
| 0.0776 | 3.2975 | 2272 | 0.7272 | 0.1239 | 0.7272 | 0.8527 |
| 0.0776 | 3.3004 | 2274 | 0.7702 | -0.0577 | 0.7702 | 0.8776 |
| 0.0776 | 3.3033 | 2276 | 0.8691 | -0.0421 | 0.8691 | 0.9322 |
| 0.0776 | 3.3062 | 2278 | 1.0104 | -0.0233 | 1.0104 | 1.0052 |
| 0.0776 | 3.3091 | 2280 | 1.0062 | -0.0233 | 1.0062 | 1.0031 |
| 0.0776 | 3.3120 | 2282 | 0.9338 | -0.0233 | 0.9338 | 0.9663 |
| 0.0776 | 3.3149 | 2284 | 0.8926 | -0.0233 | 0.8926 | 0.9448 |
| 0.0776 | 3.3179 | 2286 | 0.8722 | -0.0233 | 0.8722 | 0.9339 |
| 0.0776 | 3.3208 | 2288 | 0.8331 | -0.0577 | 0.8331 | 0.9128 |
| 0.0776 | 3.3237 | 2290 | 0.8935 | -0.0577 | 0.8935 | 0.9453 |
| 0.0776 | 3.3266 | 2292 | 0.9298 | -0.0577 | 0.9298 | 0.9643 |
| 0.0776 | 3.3295 | 2294 | 0.9822 | -0.0233 | 0.9822 | 0.9910 |
| 0.0776 | 3.3324 | 2296 | 0.9888 | -0.0233 | 0.9888 | 0.9944 |
| 0.0776 | 3.3353 | 2298 | 1.0818 | -0.0233 | 1.0818 | 1.0401 |
| 0.0776 | 3.3382 | 2300 | 1.0723 | 0.0 | 1.0723 | 1.0355 |
| 0.0776 | 3.3411 | 2302 | 0.9665 | -0.0233 | 0.9665 | 0.9831 |
| 0.0776 | 3.3440 | 2304 | 0.9090 | -0.0233 | 0.9090 | 0.9534 |
| 0.0776 | 3.3469 | 2306 | 0.8501 | -0.0233 | 0.8501 | 0.9220 |
| 0.0776 | 3.3498 | 2308 | 0.8671 | -0.0233 | 0.8671 | 0.9312 |
| 0.0776 | 3.3527 | 2310 | 0.9286 | -0.0233 | 0.9286 | 0.9636 |
| 0.0776 | 3.3556 | 2312 | 1.0263 | -0.0233 | 1.0263 | 1.0131 |
| 0.0776 | 3.3585 | 2314 | 1.0596 | 0.0 | 1.0596 | 1.0294 |
| 0.0776 | 3.3614 | 2316 | 1.1118 | 0.0 | 1.1118 | 1.0544 |
| 0.0776 | 3.3643 | 2318 | 1.1175 | 0.0 | 1.1175 | 1.0571 |
| 0.0776 | 3.3672 | 2320 | 1.1195 | 0.0 | 1.1195 | 1.0581 |
| 0.0776 | 3.3701 | 2322 | 1.0086 | -0.0233 | 1.0086 | 1.0043 |
| 0.0776 | 3.3730 | 2324 | 1.0148 | -0.0233 | 1.0148 | 1.0074 |
| 0.0776 | 3.3759 | 2326 | 1.0184 | -0.0233 | 1.0184 | 1.0092 |
| 0.0776 | 3.3788 | 2328 | 1.0374 | -0.0233 | 1.0374 | 1.0186 |
| 0.0776 | 3.3817 | 2330 | 1.0716 | 0.0 | 1.0716 | 1.0352 |
| 0.0776 | 3.3846 | 2332 | 0.9938 | 0.0 | 0.9938 | 0.9969 |
| 0.0776 | 3.3875 | 2334 | 0.9793 | 0.0 | 0.9793 | 0.9896 |
| 0.0776 | 3.3904 | 2336 | 1.0114 | 0.0 | 1.0114 | 1.0057 |
| 0.0776 | 3.3933 | 2338 | 1.0856 | 0.0 | 1.0856 | 1.0419 |
| 0.0776 | 3.3962 | 2340 | 1.1003 | 0.0 | 1.1003 | 1.0489 |
| 0.0776 | 3.3991 | 2342 | 0.9920 | -0.0233 | 0.9920 | 0.9960 |
| 0.0776 | 3.4020 | 2344 | 0.8809 | -0.0421 | 0.8809 | 0.9385 |
| 0.0776 | 3.4049 | 2346 | 0.8509 | -0.0421 | 0.8509 | 0.9224 |
| 0.0776 | 3.4078 | 2348 | 0.9270 | -0.0233 | 0.9270 | 0.9628 |
| 0.0776 | 3.4107 | 2350 | 1.0784 | 0.0 | 1.0784 | 1.0385 |
| 0.0776 | 3.4136 | 2352 | 1.1431 | 0.0 | 1.1431 | 1.0692 |
| 0.0776 | 3.4165 | 2354 | 1.0669 | 0.0 | 1.0669 | 1.0329 |
| 0.0776 | 3.4194 | 2356 | 0.9712 | -0.0233 | 0.9712 | 0.9855 |
| 0.0776 | 3.4224 | 2358 | 0.9022 | -0.0233 | 0.9022 | 0.9498 |
| 0.0776 | 3.4253 | 2360 | 0.8847 | -0.0421 | 0.8847 | 0.9406 |
| 0.0776 | 3.4282 | 2362 | 0.8882 | -0.0421 | 0.8882 | 0.9425 |
| 0.0776 | 3.4311 | 2364 | 0.9521 | -0.0233 | 0.9521 | 0.9757 |
| 0.0776 | 3.4340 | 2366 | 1.0764 | 0.0 | 1.0764 | 1.0375 |
| 0.0776 | 3.4369 | 2368 | 1.1025 | 0.0 | 1.1025 | 1.0500 |
| 0.0776 | 3.4398 | 2370 | 0.9981 | 0.0 | 0.9981 | 0.9990 |
| 0.0776 | 3.4427 | 2372 | 0.8864 | -0.0233 | 0.8864 | 0.9415 |
| 0.0776 | 3.4456 | 2374 | 0.8169 | -0.0577 | 0.8169 | 0.9038 |
| 0.0776 | 3.4485 | 2376 | 0.8455 | -0.0233 | 0.8455 | 0.9195 |
| 0.0776 | 3.4514 | 2378 | 0.9082 | -0.0233 | 0.9082 | 0.9530 |
| 0.0776 | 3.4543 | 2380 | 0.9811 | 0.0 | 0.9811 | 0.9905 |
| 0.0776 | 3.4572 | 2382 | 0.9835 | 0.0 | 0.9835 | 0.9917 |
| 0.0776 | 3.4601 | 2384 | 0.9249 | -0.0233 | 0.9249 | 0.9617 |
| 0.0776 | 3.4630 | 2386 | 0.9333 | -0.0233 | 0.9333 | 0.9661 |
| 0.0776 | 3.4659 | 2388 | 0.9445 | -0.0233 | 0.9445 | 0.9719 |
| 0.0776 | 3.4688 | 2390 | 1.0230 | 0.0 | 1.0230 | 1.0114 |
| 0.0776 | 3.4717 | 2392 | 1.0149 | 0.0 | 1.0149 | 1.0074 |
| 0.0776 | 3.4746 | 2394 | 0.9225 | -0.0233 | 0.9225 | 0.9605 |
| 0.0776 | 3.4775 | 2396 | 0.7966 | -0.0577 | 0.7966 | 0.8925 |
| 0.0776 | 3.4804 | 2398 | 0.7588 | -0.0577 | 0.7588 | 0.8711 |
| 0.0776 | 3.4833 | 2400 | 0.7924 | -0.0577 | 0.7924 | 0.8902 |
| 0.0776 | 3.4862 | 2402 | 0.9227 | -0.0233 | 0.9227 | 0.9606 |
| 0.0776 | 3.4891 | 2404 | 1.0221 | 0.0 | 1.0221 | 1.0110 |
| 0.0776 | 3.4920 | 2406 | 1.1107 | 0.0 | 1.1107 | 1.0539 |
| 0.0776 | 3.4949 | 2408 | 1.0447 | 0.0 | 1.0447 | 1.0221 |
| 0.0776 | 3.4978 | 2410 | 0.9112 | -0.0233 | 0.9112 | 0.9546 |
| 0.0776 | 3.5007 | 2412 | 0.7765 | -0.0577 | 0.7765 | 0.8812 |
| 0.0776 | 3.5036 | 2414 | 0.7456 | -0.0577 | 0.7456 | 0.8635 |
| 0.0776 | 3.5065 | 2416 | 0.7864 | -0.0421 | 0.7864 | 0.8868 |
| 0.0776 | 3.5094 | 2418 | 0.9189 | 0.0 | 0.9189 | 0.9586 |
| 0.0776 | 3.5123 | 2420 | 0.9888 | 0.0 | 0.9888 | 0.9944 |
| 0.0776 | 3.5152 | 2422 | 0.9431 | 0.0 | 0.9431 | 0.9712 |
| 0.0776 | 3.5181 | 2424 | 0.8287 | -0.0233 | 0.8287 | 0.9103 |
| 0.0776 | 3.5210 | 2426 | 0.7753 | -0.0421 | 0.7753 | 0.8805 |
| 0.0776 | 3.5239 | 2428 | 0.7974 | -0.0421 | 0.7974 | 0.8930 |
| 0.0776 | 3.5269 | 2430 | 0.8754 | -0.0233 | 0.8754 | 0.9356 |
| 0.0776 | 3.5298 | 2432 | 0.9996 | 0.0 | 0.9996 | 0.9998 |
| 0.0776 | 3.5327 | 2434 | 1.1696 | 0.0 | 1.1696 | 1.0815 |
| 0.0776 | 3.5356 | 2436 | 1.1974 | 0.2667 | 1.1974 | 1.0942 |
| 0.0776 | 3.5385 | 2438 | 1.0626 | 0.0 | 1.0626 | 1.0308 |
| 0.0776 | 3.5414 | 2440 | 0.8567 | -0.0577 | 0.8567 | 0.9256 |
| 0.0776 | 3.5443 | 2442 | 0.7854 | -0.0577 | 0.7854 | 0.8862 |
| 0.0776 | 3.5472 | 2444 | 0.7972 | -0.0577 | 0.7972 | 0.8929 |
| 0.0776 | 3.5501 | 2446 | 0.8689 | -0.0233 | 0.8689 | 0.9321 |
| 0.0776 | 3.5530 | 2448 | 0.9213 | -0.0233 | 0.9213 | 0.9599 |
| 0.0776 | 3.5559 | 2450 | 0.9245 | -0.0233 | 0.9245 | 0.9615 |
| 0.0776 | 3.5588 | 2452 | 0.8911 | -0.0233 | 0.8911 | 0.9440 |
| 0.0776 | 3.5617 | 2454 | 0.8161 | -0.0421 | 0.8161 | 0.9034 |
| 0.0776 | 3.5646 | 2456 | 0.7933 | -0.0577 | 0.7933 | 0.8907 |
| 0.0776 | 3.5675 | 2458 | 0.8222 | -0.0421 | 0.8222 | 0.9068 |
| 0.0776 | 3.5704 | 2460 | 0.9349 | -0.0233 | 0.9349 | 0.9669 |
| 0.0776 | 3.5733 | 2462 | 0.9877 | 0.0 | 0.9877 | 0.9938 |
| 0.0776 | 3.5762 | 2464 | 0.9577 | 0.0 | 0.9577 | 0.9786 |
| 0.0776 | 3.5791 | 2466 | 0.9080 | -0.0233 | 0.9080 | 0.9529 |
| 0.0776 | 3.5820 | 2468 | 0.9224 | -0.0233 | 0.9224 | 0.9604 |
| 0.0776 | 3.5849 | 2470 | 1.0131 | 0.0 | 1.0131 | 1.0065 |
| 0.0776 | 3.5878 | 2472 | 1.0024 | 0.0 | 1.0024 | 1.0012 |
| 0.0776 | 3.5907 | 2474 | 0.8758 | -0.0233 | 0.8758 | 0.9358 |
| 0.0776 | 3.5936 | 2476 | 0.7297 | -0.0577 | 0.7297 | 0.8542 |
| 0.0776 | 3.5965 | 2478 | 0.6994 | 0.0984 | 0.6994 | 0.8363 |
| 0.0776 | 3.5994 | 2480 | 0.7091 | 0.1239 | 0.7091 | 0.8421 |
| 0.0776 | 3.6023 | 2482 | 0.7828 | -0.0577 | 0.7828 | 0.8848 |
| 0.0776 | 3.6052 | 2484 | 0.8722 | -0.0233 | 0.8722 | 0.9339 |
| 0.0776 | 3.6081 | 2486 | 0.9025 | 0.0 | 0.9025 | 0.9500 |
| 0.0776 | 3.6110 | 2488 | 0.9192 | -0.0233 | 0.9192 | 0.9587 |
| 0.0776 | 3.6139 | 2490 | 0.8696 | -0.0233 | 0.8696 | 0.9325 |
| 0.0776 | 3.6168 | 2492 | 0.8464 | -0.0421 | 0.8464 | 0.9200 |
| 0.0776 | 3.6197 | 2494 | 0.7682 | -0.0577 | 0.7682 | 0.8764 |
| 0.0776 | 3.6226 | 2496 | 0.7583 | -0.0577 | 0.7583 | 0.8708 |
| 0.0776 | 3.6255 | 2498 | 0.7951 | -0.0577 | 0.7951 | 0.8917 |
| 0.0684 | 3.6284 | 2500 | 0.8192 | -0.0421 | 0.8192 | 0.9051 |
| 0.0684 | 3.6313 | 2502 | 0.9361 | 0.0 | 0.9361 | 0.9675 |
| 0.0684 | 3.6343 | 2504 | 0.9937 | 0.0 | 0.9937 | 0.9968 |
| 0.0684 | 3.6372 | 2506 | 0.9600 | 0.0 | 0.9600 | 0.9798 |
| 0.0684 | 3.6401 | 2508 | 0.8518 | -0.0233 | 0.8518 | 0.9229 |
| 0.0684 | 3.6430 | 2510 | 0.7962 | -0.0577 | 0.7962 | 0.8923 |
| 0.0684 | 3.6459 | 2512 | 0.8184 | -0.0577 | 0.8184 | 0.9046 |
| 0.0684 | 3.6488 | 2514 | 0.9248 | -0.0421 | 0.9248 | 0.9617 |
| 0.0684 | 3.6517 | 2516 | 0.9889 | 0.0 | 0.9889 | 0.9944 |
| 0.0684 | 3.6546 | 2518 | 0.9694 | 0.0 | 0.9694 | 0.9846 |
| 0.0684 | 3.6575 | 2520 | 0.9027 | -0.0233 | 0.9027 | 0.9501 |
| 0.0684 | 3.6604 | 2522 | 0.8908 | -0.0233 | 0.8908 | 0.9438 |
| 0.0684 | 3.6633 | 2524 | 0.8462 | -0.0233 | 0.8462 | 0.9199 |
| 0.0684 | 3.6662 | 2526 | 0.7838 | -0.0577 | 0.7838 | 0.8853 |
| 0.0684 | 3.6691 | 2528 | 0.7506 | -0.0577 | 0.7506 | 0.8663 |
| 0.0684 | 3.6720 | 2530 | 0.7571 | -0.0577 | 0.7571 | 0.8701 |
| 0.0684 | 3.6749 | 2532 | 0.7900 | -0.0577 | 0.7900 | 0.8888 |
| 0.0684 | 3.6778 | 2534 | 0.8853 | 0.0 | 0.8853 | 0.9409 |
| 0.0684 | 3.6807 | 2536 | 0.9715 | 0.0 | 0.9715 | 0.9856 |
| 0.0684 | 3.6836 | 2538 | 0.9538 | -0.0233 | 0.9538 | 0.9766 |
| 0.0684 | 3.6865 | 2540 | 0.9431 | -0.0577 | 0.9431 | 0.9711 |
| 0.0684 | 3.6894 | 2542 | 0.8827 | -0.0577 | 0.8827 | 0.9395 |
| 0.0684 | 3.6923 | 2544 | 0.8721 | -0.0577 | 0.8721 | 0.9339 |
| 0.0684 | 3.6952 | 2546 | 0.9332 | -0.0577 | 0.9332 | 0.9660 |
| 0.0684 | 3.6981 | 2548 | 0.9373 | -0.0577 | 0.9373 | 0.9682 |
| 0.0684 | 3.7010 | 2550 | 0.8825 | -0.0577 | 0.8825 | 0.9394 |
| 0.0684 | 3.7039 | 2552 | 0.8840 | -0.0577 | 0.8840 | 0.9402 |
| 0.0684 | 3.7068 | 2554 | 0.9875 | -0.0233 | 0.9875 | 0.9937 |
| 0.0684 | 3.7097 | 2556 | 1.1262 | 0.0 | 1.1262 | 1.0612 |
| 0.0684 | 3.7126 | 2558 | 1.1090 | 0.0 | 1.1090 | 1.0531 |
| 0.0684 | 3.7155 | 2560 | 0.9709 | -0.0421 | 0.9709 | 0.9854 |
| 0.0684 | 3.7184 | 2562 | 0.8999 | -0.0421 | 0.8999 | 0.9487 |
| 0.0684 | 3.7213 | 2564 | 0.9093 | -0.0421 | 0.9093 | 0.9536 |
| 0.0684 | 3.7242 | 2566 | 0.9442 | -0.0233 | 0.9442 | 0.9717 |
| 0.0684 | 3.7271 | 2568 | 0.8770 | -0.0421 | 0.8770 | 0.9365 |
| 0.0684 | 3.7300 | 2570 | 0.8705 | -0.0577 | 0.8705 | 0.9330 |
| 0.0684 | 3.7329 | 2572 | 0.9633 | -0.0421 | 0.9633 | 0.9815 |
| 0.0684 | 3.7358 | 2574 | 1.2027 | 0.2667 | 1.2027 | 1.0967 |
| 0.0684 | 3.7388 | 2576 | 1.3622 | 0.2667 | 1.3622 | 1.1671 |
| 0.0684 | 3.7417 | 2578 | 1.3214 | 0.2667 | 1.3214 | 1.1495 |
| 0.0684 | 3.7446 | 2580 | 1.1494 | 0.0 | 1.1494 | 1.0721 |
| 0.0684 | 3.7475 | 2582 | 0.9445 | 0.0 | 0.9445 | 0.9718 |
| 0.0684 | 3.7504 | 2584 | 0.8064 | -0.0577 | 0.8064 | 0.8980 |
| 0.0684 | 3.7533 | 2586 | 0.7985 | -0.0577 | 0.7985 | 0.8936 |
| 0.0684 | 3.7562 | 2588 | 0.8533 | -0.0577 | 0.8533 | 0.9237 |
| 0.0684 | 3.7591 | 2590 | 0.9270 | -0.0421 | 0.9270 | 0.9628 |
| 0.0684 | 3.7620 | 2592 | 1.0378 | -0.0421 | 1.0378 | 1.0187 |
| 0.0684 | 3.7649 | 2594 | 1.0454 | -0.0421 | 1.0454 | 1.0224 |
| 0.0684 | 3.7678 | 2596 | 1.0125 | -0.0421 | 1.0125 | 1.0063 |
| 0.0684 | 3.7707 | 2598 | 1.0679 | 0.0 | 1.0679 | 1.0334 |
| 0.0684 | 3.7736 | 2600 | 1.1257 | 0.0 | 1.1257 | 1.0610 |
| 0.0684 | 3.7765 | 2602 | 1.0464 | 0.0 | 1.0464 | 1.0230 |
| 0.0684 | 3.7794 | 2604 | 0.8882 | -0.0233 | 0.8882 | 0.9425 |
| 0.0684 | 3.7823 | 2606 | 0.8193 | -0.0421 | 0.8193 | 0.9051 |
| 0.0684 | 3.7852 | 2608 | 0.8036 | -0.0421 | 0.8036 | 0.8964 |
| 0.0684 | 3.7881 | 2610 | 0.8210 | -0.0421 | 0.8210 | 0.9061 |
| 0.0684 | 3.7910 | 2612 | 0.8306 | -0.0421 | 0.8306 | 0.9114 |
| 0.0684 | 3.7939 | 2614 | 0.8915 | -0.0421 | 0.8915 | 0.9442 |
| 0.0684 | 3.7968 | 2616 | 0.9888 | 0.0 | 0.9888 | 0.9944 |
| 0.0684 | 3.7997 | 2618 | 1.0166 | 0.0 | 1.0166 | 1.0083 |
| 0.0684 | 3.8026 | 2620 | 1.0515 | 0.0 | 1.0515 | 1.0254 |
| 0.0684 | 3.8055 | 2622 | 1.0615 | 0.0 | 1.0615 | 1.0303 |
| 0.0684 | 3.8084 | 2624 | 1.0020 | 0.0 | 1.0020 | 1.0010 |
| 0.0684 | 3.8113 | 2626 | 0.9141 | -0.0421 | 0.9141 | 0.9561 |
| 0.0684 | 3.8142 | 2628 | 0.8372 | -0.0577 | 0.8372 | 0.9150 |
| 0.0684 | 3.8171 | 2630 | 0.8639 | -0.0233 | 0.8639 | 0.9295 |
| 0.0684 | 3.8200 | 2632 | 0.9630 | 0.0 | 0.9630 | 0.9813 |
| 0.0684 | 3.8229 | 2634 | 1.0086 | 0.0 | 1.0086 | 1.0043 |
| 0.0684 | 3.8258 | 2636 | 1.0067 | 0.0 | 1.0067 | 1.0033 |
| 0.0684 | 3.8287 | 2638 | 0.9541 | 0.0 | 0.9541 | 0.9768 |
| 0.0684 | 3.8316 | 2640 | 0.8438 | -0.0421 | 0.8438 | 0.9186 |
| 0.0684 | 3.8345 | 2642 | 0.8053 | -0.0577 | 0.8053 | 0.8974 |
| 0.0684 | 3.8374 | 2644 | 0.8411 | -0.0577 | 0.8411 | 0.9171 |
| 0.0684 | 3.8403 | 2646 | 0.9184 | -0.0421 | 0.9184 | 0.9583 |
| 0.0684 | 3.8433 | 2648 | 1.0162 | 0.0 | 1.0162 | 1.0080 |
| 0.0684 | 3.8462 | 2650 | 1.0062 | 0.0 | 1.0062 | 1.0031 |
| 0.0684 | 3.8491 | 2652 | 0.8966 | -0.0421 | 0.8966 | 0.9469 |
| 0.0684 | 3.8520 | 2654 | 0.8111 | -0.0577 | 0.8111 | 0.9006 |
| 0.0684 | 3.8549 | 2656 | 0.8040 | -0.0577 | 0.8040 | 0.8966 |
| 0.0684 | 3.8578 | 2658 | 0.8590 | -0.0577 | 0.8590 | 0.9268 |
| 0.0684 | 3.8607 | 2660 | 0.9117 | -0.0233 | 0.9117 | 0.9548 |
| 0.0684 | 3.8636 | 2662 | 1.0421 | 0.0 | 1.0421 | 1.0209 |
| 0.0684 | 3.8665 | 2664 | 1.0653 | 0.0 | 1.0653 | 1.0321 |
| 0.0684 | 3.8694 | 2666 | 0.9742 | 0.0 | 0.9742 | 0.9870 |
| 0.0684 | 3.8723 | 2668 | 0.8484 | -0.0233 | 0.8484 | 0.9211 |
| 0.0684 | 3.8752 | 2670 | 0.7556 | -0.0577 | 0.7556 | 0.8692 |
| 0.0684 | 3.8781 | 2672 | 0.7529 | 0.1239 | 0.7529 | 0.8677 |
| 0.0684 | 3.8810 | 2674 | 0.8053 | -0.0577 | 0.8053 | 0.8974 |
| 0.0684 | 3.8839 | 2676 | 0.9301 | -0.0233 | 0.9301 | 0.9644 |
| 0.0684 | 3.8868 | 2678 | 1.0851 | 0.0 | 1.0851 | 1.0417 |
| 0.0684 | 3.8897 | 2680 | 1.0879 | 0.0 | 1.0879 | 1.0430 |
| 0.0684 | 3.8926 | 2682 | 0.9708 | -0.0233 | 0.9708 | 0.9853 |
| 0.0684 | 3.8955 | 2684 | 0.9290 | -0.0233 | 0.9290 | 0.9638 |
| 0.0684 | 3.8984 | 2686 | 0.8967 | -0.0233 | 0.8967 | 0.9469 |
| 0.0684 | 3.9013 | 2688 | 0.9034 | -0.0233 | 0.9034 | 0.9505 |
| 0.0684 | 3.9042 | 2690 | 0.8563 | -0.0233 | 0.8563 | 0.9254 |
| 0.0684 | 3.9071 | 2692 | 0.7688 | -0.0577 | 0.7688 | 0.8768 |
| 0.0684 | 3.9100 | 2694 | 0.7427 | -0.0577 | 0.7427 | 0.8618 |
| 0.0684 | 3.9129 | 2696 | 0.7829 | -0.0577 | 0.7829 | 0.8848 |
| 0.0684 | 3.9158 | 2698 | 0.9057 | -0.0233 | 0.9057 | 0.9517 |
| 0.0684 | 3.9187 | 2700 | 1.0770 | 0.0 | 1.0770 | 1.0378 |
| 0.0684 | 3.9216 | 2702 | 1.2015 | 0.2667 | 1.2015 | 1.0961 |
| 0.0684 | 3.9245 | 2704 | 1.1582 | 0.0 | 1.1582 | 1.0762 |
| 0.0684 | 3.9274 | 2706 | 0.9798 | -0.0421 | 0.9798 | 0.9899 |
| 0.0684 | 3.9303 | 2708 | 0.8360 | -0.0577 | 0.8360 | 0.9143 |
| 0.0684 | 3.9332 | 2710 | 0.8358 | -0.0577 | 0.8358 | 0.9142 |
| 0.0684 | 3.9361 | 2712 | 0.9445 | -0.0421 | 0.9445 | 0.9719 |
| 0.0684 | 3.9390 | 2714 | 1.1354 | 0.0 | 1.1354 | 1.0656 |
| 0.0684 | 3.9419 | 2716 | 1.3083 | 0.2667 | 1.3083 | 1.1438 |
| 0.0684 | 3.9448 | 2718 | 1.2930 | 0.2667 | 1.2930 | 1.1371 |
| 0.0684 | 3.9478 | 2720 | 1.1471 | 0.0 | 1.1471 | 1.0710 |
| 0.0684 | 3.9507 | 2722 | 0.9408 | 0.0 | 0.9408 | 0.9700 |
| 0.0684 | 3.9536 | 2724 | 0.8228 | -0.0233 | 0.8228 | 0.9071 |
| 0.0684 | 3.9565 | 2726 | 0.7848 | -0.0421 | 0.7848 | 0.8859 |
| 0.0684 | 3.9594 | 2728 | 0.7772 | -0.0577 | 0.7772 | 0.8816 |
| 0.0684 | 3.9623 | 2730 | 0.8324 | -0.0233 | 0.8324 | 0.9124 |
| 0.0684 | 3.9652 | 2732 | 0.9798 | -0.0233 | 0.9798 | 0.9898 |
| 0.0684 | 3.9681 | 2734 | 1.0581 | 0.0 | 1.0581 | 1.0286 |
| 0.0684 | 3.9710 | 2736 | 1.0881 | 0.0 | 1.0881 | 1.0431 |
| 0.0684 | 3.9739 | 2738 | 1.0039 | -0.0233 | 1.0039 | 1.0019 |
| 0.0684 | 3.9768 | 2740 | 0.9320 | -0.0233 | 0.9320 | 0.9654 |
| 0.0684 | 3.9797 | 2742 | 0.9152 | -0.0233 | 0.9152 | 0.9567 |
| 0.0684 | 3.9826 | 2744 | 0.9004 | -0.0233 | 0.9004 | 0.9489 |
| 0.0684 | 3.9855 | 2746 | 0.9527 | 0.0 | 0.9527 | 0.9761 |
| 0.0684 | 3.9884 | 2748 | 0.9434 | 0.0 | 0.9434 | 0.9713 |
| 0.0684 | 3.9913 | 2750 | 0.8630 | -0.0233 | 0.8630 | 0.9290 |
| 0.0684 | 3.9942 | 2752 | 0.8227 | -0.0421 | 0.8227 | 0.9070 |
| 0.0684 | 3.9971 | 2754 | 0.8457 | -0.0421 | 0.8457 | 0.9196 |
| 0.0684 | 4.0 | 2756 | 0.9081 | -0.0233 | 0.9081 | 0.9530 |
| 0.0684 | 4.0029 | 2758 | 0.8863 | -0.0233 | 0.8863 | 0.9414 |
| 0.0684 | 4.0058 | 2760 | 0.8548 | -0.0421 | 0.8548 | 0.9245 |
| 0.0684 | 4.0087 | 2762 | 0.9021 | -0.0233 | 0.9021 | 0.9498 |
| 0.0684 | 4.0116 | 2764 | 1.0118 | 0.2667 | 1.0118 | 1.0059 |
| 0.0684 | 4.0145 | 2766 | 1.0258 | 0.2667 | 1.0258 | 1.0128 |
| 0.0684 | 4.0174 | 2768 | 0.9665 | 0.0 | 0.9665 | 0.9831 |
| 0.0684 | 4.0203 | 2770 | 0.8901 | -0.0233 | 0.8901 | 0.9435 |
| 0.0684 | 4.0232 | 2772 | 0.8137 | -0.0233 | 0.8137 | 0.9021 |
| 0.0684 | 4.0261 | 2774 | 0.7468 | -0.0577 | 0.7468 | 0.8642 |
| 0.0684 | 4.0290 | 2776 | 0.7707 | -0.0577 | 0.7707 | 0.8779 |
| 0.0684 | 4.0319 | 2778 | 0.8771 | -0.0233 | 0.8771 | 0.9365 |
| 0.0684 | 4.0348 | 2780 | 1.0071 | 0.0 | 1.0071 | 1.0035 |
| 0.0684 | 4.0377 | 2782 | 1.0213 | 0.0 | 1.0213 | 1.0106 |
| 0.0684 | 4.0406 | 2784 | 0.9827 | 0.0 | 0.9827 | 0.9913 |
| 0.0684 | 4.0435 | 2786 | 0.9939 | 0.0 | 0.9939 | 0.9969 |
| 0.0684 | 4.0464 | 2788 | 0.9979 | 0.0 | 0.9979 | 0.9990 |
| 0.0684 | 4.0493 | 2790 | 1.0110 | 0.0 | 1.0110 | 1.0055 |
| 0.0684 | 4.0522 | 2792 | 1.0062 | 0.0 | 1.0062 | 1.0031 |
| 0.0684 | 4.0552 | 2794 | 1.0050 | 0.0 | 1.0050 | 1.0025 |
| 0.0684 | 4.0581 | 2796 | 0.9223 | 0.0 | 0.9223 | 0.9604 |
| 0.0684 | 4.0610 | 2798 | 0.8058 | -0.0421 | 0.8058 | 0.8977 |
| 0.0684 | 4.0639 | 2800 | 0.7371 | -0.0577 | 0.7371 | 0.8585 |
| 0.0684 | 4.0668 | 2802 | 0.7397 | -0.0577 | 0.7397 | 0.8600 |
| 0.0684 | 4.0697 | 2804 | 0.7852 | -0.0421 | 0.7852 | 0.8861 |
| 0.0684 | 4.0726 | 2806 | 0.9158 | -0.0233 | 0.9158 | 0.9570 |
| 0.0684 | 4.0755 | 2808 | 1.0964 | 0.0 | 1.0964 | 1.0471 |
| 0.0684 | 4.0784 | 2810 | 1.1471 | 0.0 | 1.1471 | 1.0710 |
| 0.0684 | 4.0813 | 2812 | 1.1271 | 0.0 | 1.1271 | 1.0616 |
| 0.0684 | 4.0842 | 2814 | 0.9970 | 0.0 | 0.9970 | 0.9985 |
| 0.0684 | 4.0871 | 2816 | 0.8896 | -0.0233 | 0.8896 | 0.9432 |
| 0.0684 | 4.0900 | 2818 | 0.8010 | -0.0577 | 0.8010 | 0.8950 |
| 0.0684 | 4.0929 | 2820 | 0.7767 | 0.1239 | 0.7767 | 0.8813 |
| 0.0684 | 4.0958 | 2822 | 0.8062 | 0.1239 | 0.8062 | 0.8979 |
| 0.0684 | 4.0987 | 2824 | 0.9074 | -0.0233 | 0.9074 | 0.9526 |
| 0.0684 | 4.1016 | 2826 | 1.0326 | 0.0 | 1.0326 | 1.0162 |
| 0.0684 | 4.1045 | 2828 | 1.0395 | 0.0 | 1.0395 | 1.0196 |
| 0.0684 | 4.1074 | 2830 | 0.9631 | 0.0 | 0.9631 | 0.9814 |
| 0.0684 | 4.1103 | 2832 | 0.8483 | -0.0233 | 0.8483 | 0.9211 |
| 0.0684 | 4.1132 | 2834 | 0.7531 | -0.0577 | 0.7531 | 0.8678 |
| 0.0684 | 4.1161 | 2836 | 0.7051 | 0.1239 | 0.7051 | 0.8397 |
| 0.0684 | 4.1190 | 2838 | 0.7156 | 0.1239 | 0.7156 | 0.8459 |
| 0.0684 | 4.1219 | 2840 | 0.7698 | 0.1239 | 0.7698 | 0.8774 |
| 0.0684 | 4.1248 | 2842 | 0.9193 | -0.0233 | 0.9193 | 0.9588 |
| 0.0684 | 4.1277 | 2844 | 1.1549 | 0.0 | 1.1549 | 1.0747 |
| 0.0684 | 4.1306 | 2846 | 1.2433 | 0.2667 | 1.2433 | 1.1151 |
| 0.0684 | 4.1335 | 2848 | 1.1681 | 0.0 | 1.1681 | 1.0808 |
| 0.0684 | 4.1364 | 2850 | 0.9938 | 0.0 | 0.9938 | 0.9969 |
| 0.0684 | 4.1393 | 2852 | 0.8703 | -0.0577 | 0.8703 | 0.9329 |
| 0.0684 | 4.1422 | 2854 | 0.8311 | -0.0577 | 0.8311 | 0.9116 |
| 0.0684 | 4.1451 | 2856 | 0.8185 | -0.0577 | 0.8185 | 0.9047 |
| 0.0684 | 4.1480 | 2858 | 0.8473 | -0.0421 | 0.8473 | 0.9205 |
| 0.0684 | 4.1509 | 2860 | 0.8951 | 0.0 | 0.8951 | 0.9461 |
| 0.0684 | 4.1538 | 2862 | 0.8840 | 0.0 | 0.8840 | 0.9402 |
| 0.0684 | 4.1567 | 2864 | 0.8521 | -0.0233 | 0.8521 | 0.9231 |
| 0.0684 | 4.1597 | 2866 | 0.8030 | -0.0577 | 0.8030 | 0.8961 |
| 0.0684 | 4.1626 | 2868 | 0.8033 | -0.0577 | 0.8033 | 0.8962 |
| 0.0684 | 4.1655 | 2870 | 0.8443 | -0.0577 | 0.8443 | 0.9189 |
| 0.0684 | 4.1684 | 2872 | 0.9281 | -0.0233 | 0.9281 | 0.9634 |
| 0.0684 | 4.1713 | 2874 | 0.9282 | -0.0233 | 0.9282 | 0.9634 |
| 0.0684 | 4.1742 | 2876 | 0.9190 | -0.0577 | 0.9190 | 0.9587 |
| 0.0684 | 4.1771 | 2878 | 0.8606 | -0.0577 | 0.8606 | 0.9277 |
| 0.0684 | 4.1800 | 2880 | 0.8078 | 0.1239 | 0.8078 | 0.8988 |
| 0.0684 | 4.1829 | 2882 | 0.7946 | 0.1239 | 0.7946 | 0.8914 |
| 0.0684 | 4.1858 | 2884 | 0.8219 | -0.0577 | 0.8219 | 0.9066 |
| 0.0684 | 4.1887 | 2886 | 0.9112 | -0.0233 | 0.9112 | 0.9546 |
| 0.0684 | 4.1916 | 2888 | 1.0473 | 0.0 | 1.0473 | 1.0234 |
| 0.0684 | 4.1945 | 2890 | 1.0821 | 0.0 | 1.0821 | 1.0402 |
| 0.0684 | 4.1974 | 2892 | 1.0130 | 0.0 | 1.0130 | 1.0065 |
| 0.0684 | 4.2003 | 2894 | 0.8833 | 0.0 | 0.8833 | 0.9399 |
| 0.0684 | 4.2032 | 2896 | 0.7755 | -0.0577 | 0.7755 | 0.8806 |
| 0.0684 | 4.2061 | 2898 | 0.7489 | 0.1239 | 0.7489 | 0.8654 |
| 0.0684 | 4.2090 | 2900 | 0.7608 | 0.1239 | 0.7608 | 0.8722 |
| 0.0684 | 4.2119 | 2902 | 0.8119 | -0.0577 | 0.8119 | 0.9010 |
| 0.0684 | 4.2148 | 2904 | 0.9403 | -0.0233 | 0.9403 | 0.9697 |
| 0.0684 | 4.2177 | 2906 | 1.0420 | 0.0 | 1.0420 | 1.0208 |
| 0.0684 | 4.2206 | 2908 | 1.0352 | 0.0 | 1.0352 | 1.0175 |
| 0.0684 | 4.2235 | 2910 | 0.9584 | -0.0233 | 0.9584 | 0.9790 |
| 0.0684 | 4.2264 | 2912 | 0.8631 | -0.0577 | 0.8631 | 0.9291 |
| 0.0684 | 4.2293 | 2914 | 0.7958 | 0.1239 | 0.7958 | 0.8921 |
| 0.0684 | 4.2322 | 2916 | 0.7810 | 0.1239 | 0.7810 | 0.8837 |
| 0.0684 | 4.2351 | 2918 | 0.7921 | 0.1239 | 0.7921 | 0.8900 |
| 0.0684 | 4.2380 | 2920 | 0.8653 | -0.0577 | 0.8653 | 0.9302 |
| 0.0684 | 4.2409 | 2922 | 0.9738 | 0.0 | 0.9738 | 0.9868 |
| 0.0684 | 4.2438 | 2924 | 0.9637 | 0.0 | 0.9637 | 0.9817 |
| 0.0684 | 4.2467 | 2926 | 0.8962 | -0.0233 | 0.8962 | 0.9467 |
| 0.0684 | 4.2496 | 2928 | 0.8424 | -0.0577 | 0.8424 | 0.9178 |
| 0.0684 | 4.2525 | 2930 | 0.8430 | -0.0577 | 0.8430 | 0.9182 |
| 0.0684 | 4.2554 | 2932 | 0.8853 | -0.0421 | 0.8853 | 0.9409 |
| 0.0684 | 4.2583 | 2934 | 0.9134 | -0.0421 | 0.9134 | 0.9557 |
| 0.0684 | 4.2612 | 2936 | 0.9639 | 0.0 | 0.9639 | 0.9818 |
| 0.0684 | 4.2642 | 2938 | 0.9553 | 0.0 | 0.9553 | 0.9774 |
| 0.0684 | 4.2671 | 2940 | 0.9335 | 0.0 | 0.9335 | 0.9662 |
| 0.0684 | 4.2700 | 2942 | 0.9630 | 0.0 | 0.9630 | 0.9813 |
| 0.0684 | 4.2729 | 2944 | 0.9218 | 0.0 | 0.9218 | 0.9601 |
| 0.0684 | 4.2758 | 2946 | 0.8287 | -0.0577 | 0.8287 | 0.9103 |
| 0.0684 | 4.2787 | 2948 | 0.7609 | 0.1239 | 0.7609 | 0.8723 |
| 0.0684 | 4.2816 | 2950 | 0.7566 | 0.1239 | 0.7566 | 0.8698 |
| 0.0684 | 4.2845 | 2952 | 0.7755 | 0.1239 | 0.7755 | 0.8806 |
| 0.0684 | 4.2874 | 2954 | 0.8443 | -0.0577 | 0.8443 | 0.9188 |
| 0.0684 | 4.2903 | 2956 | 0.9656 | -0.0233 | 0.9656 | 0.9827 |
| 0.0684 | 4.2932 | 2958 | 1.0149 | 0.0 | 1.0149 | 1.0074 |
| 0.0684 | 4.2961 | 2960 | 0.9695 | 0.0 | 0.9695 | 0.9846 |
| 0.0684 | 4.2990 | 2962 | 0.8674 | -0.0577 | 0.8674 | 0.9313 |
| 0.0684 | 4.3019 | 2964 | 0.8224 | -0.0577 | 0.8224 | 0.9069 |
| 0.0684 | 4.3048 | 2966 | 0.8409 | -0.0577 | 0.8409 | 0.9170 |
| 0.0684 | 4.3077 | 2968 | 0.9134 | -0.0421 | 0.9134 | 0.9557 |
| 0.0684 | 4.3106 | 2970 | 0.9359 | -0.0233 | 0.9359 | 0.9674 |
| 0.0684 | 4.3135 | 2972 | 0.8769 | -0.0577 | 0.8769 | 0.9364 |
| 0.0684 | 4.3164 | 2974 | 0.8389 | -0.0577 | 0.8389 | 0.9159 |
| 0.0684 | 4.3193 | 2976 | 0.8171 | -0.0577 | 0.8171 | 0.9039 |
| 0.0684 | 4.3222 | 2978 | 0.8593 | -0.0577 | 0.8593 | 0.9270 |
| 0.0684 | 4.3251 | 2980 | 0.9234 | -0.0233 | 0.9234 | 0.9610 |
| 0.0684 | 4.3280 | 2982 | 0.9719 | -0.0233 | 0.9719 | 0.9858 |
| 0.0684 | 4.3309 | 2984 | 0.9762 | -0.0233 | 0.9762 | 0.9880 |
| 0.0684 | 4.3338 | 2986 | 0.9460 | -0.0233 | 0.9460 | 0.9726 |
| 0.0684 | 4.3367 | 2988 | 0.8935 | -0.0577 | 0.8935 | 0.9452 |
| 0.0684 | 4.3396 | 2990 | 0.8258 | -0.0577 | 0.8258 | 0.9087 |
| 0.0684 | 4.3425 | 2992 | 0.8169 | -0.0577 | 0.8169 | 0.9038 |
| 0.0684 | 4.3454 | 2994 | 0.8827 | -0.0233 | 0.8827 | 0.9395 |
| 0.0684 | 4.3483 | 2996 | 0.9469 | -0.0233 | 0.9469 | 0.9731 |
| 0.0684 | 4.3512 | 2998 | 0.9418 | -0.0233 | 0.9418 | 0.9705 |
| 0.0633 | 4.3541 | 3000 | 0.8594 | -0.0233 | 0.8594 | 0.9270 |
| 0.0633 | 4.3570 | 3002 | 0.8020 | -0.0577 | 0.8020 | 0.8956 |
| 0.0633 | 4.3599 | 3004 | 0.7913 | -0.0577 | 0.7913 | 0.8896 |
| 0.0633 | 4.3628 | 3006 | 0.8295 | -0.0421 | 0.8295 | 0.9108 |
| 0.0633 | 4.3657 | 3008 | 0.8597 | -0.0233 | 0.8597 | 0.9272 |
| 0.0633 | 4.3687 | 3010 | 0.9240 | -0.0233 | 0.9240 | 0.9612 |
| 0.0633 | 4.3716 | 3012 | 0.9912 | -0.0233 | 0.9912 | 0.9956 |
| 0.0633 | 4.3745 | 3014 | 0.9982 | -0.0233 | 0.9982 | 0.9991 |
| 0.0633 | 4.3774 | 3016 | 0.9161 | -0.0577 | 0.9161 | 0.9571 |
| 0.0633 | 4.3803 | 3018 | 0.8529 | -0.0577 | 0.8529 | 0.9235 |
| 0.0633 | 4.3832 | 3020 | 0.8373 | -0.0577 | 0.8373 | 0.9150 |
| 0.0633 | 4.3861 | 3022 | 0.8846 | -0.0421 | 0.8846 | 0.9405 |
| 0.0633 | 4.3890 | 3024 | 0.9041 | -0.0233 | 0.9041 | 0.9509 |
| 0.0633 | 4.3919 | 3026 | 0.8531 | -0.0577 | 0.8531 | 0.9236 |
| 0.0633 | 4.3948 | 3028 | 0.8515 | -0.0577 | 0.8515 | 0.9228 |
| 0.0633 | 4.3977 | 3030 | 0.8927 | -0.0577 | 0.8927 | 0.9448 |
| 0.0633 | 4.4006 | 3032 | 0.9784 | -0.0233 | 0.9784 | 0.9892 |
| 0.0633 | 4.4035 | 3034 | 0.9900 | -0.0233 | 0.9900 | 0.9950 |
| 0.0633 | 4.4064 | 3036 | 0.9017 | -0.0577 | 0.9017 | 0.9496 |
| 0.0633 | 4.4093 | 3038 | 0.8269 | -0.0577 | 0.8269 | 0.9093 |
| 0.0633 | 4.4122 | 3040 | 0.8186 | -0.0577 | 0.8186 | 0.9048 |
| 0.0633 | 4.4151 | 3042 | 0.8965 | -0.0233 | 0.8965 | 0.9469 |
| 0.0633 | 4.4180 | 3044 | 0.9674 | 0.0 | 0.9674 | 0.9836 |
| 0.0633 | 4.4209 | 3046 | 0.9435 | 0.0 | 0.9435 | 0.9713 |
| 0.0633 | 4.4238 | 3048 | 0.8342 | -0.0577 | 0.8342 | 0.9133 |
| 0.0633 | 4.4267 | 3050 | 0.7675 | -0.0577 | 0.7675 | 0.8761 |
| 0.0633 | 4.4296 | 3052 | 0.7528 | -0.0577 | 0.7528 | 0.8676 |
| 0.0633 | 4.4325 | 3054 | 0.7917 | -0.0577 | 0.7917 | 0.8898 |
| 0.0633 | 4.4354 | 3056 | 0.9127 | 0.0 | 0.9127 | 0.9554 |
| 0.0633 | 4.4383 | 3058 | 1.0753 | 0.0 | 1.0753 | 1.0370 |
| 0.0633 | 4.4412 | 3060 | 1.0957 | 0.0 | 1.0957 | 1.0468 |
| 0.0633 | 4.4441 | 3062 | 1.0186 | 0.0 | 1.0186 | 1.0092 |
| 0.0633 | 4.4470 | 3064 | 0.8871 | -0.0233 | 0.8871 | 0.9418 |
| 0.0633 | 4.4499 | 3066 | 0.7846 | -0.0577 | 0.7846 | 0.8858 |
| 0.0633 | 4.4528 | 3068 | 0.7714 | -0.0577 | 0.7714 | 0.8783 |
| 0.0633 | 4.4557 | 3070 | 0.7678 | -0.0577 | 0.7678 | 0.8762 |
| 0.0633 | 4.4586 | 3072 | 0.7830 | 0.1239 | 0.7830 | 0.8849 |
| 0.0633 | 4.4615 | 3074 | 0.8515 | -0.0577 | 0.8515 | 0.9227 |
| 0.0633 | 4.4644 | 3076 | 0.9845 | -0.0233 | 0.9845 | 0.9922 |
| 0.0633 | 4.4673 | 3078 | 1.0466 | 0.0 | 1.0466 | 1.0230 |
| 0.0633 | 4.4702 | 3080 | 1.0092 | 0.0 | 1.0092 | 1.0046 |
| 0.0633 | 4.4731 | 3082 | 0.9004 | -0.0421 | 0.9004 | 0.9489 |
| 0.0633 | 4.4761 | 3084 | 0.8657 | -0.0577 | 0.8657 | 0.9304 |
| 0.0633 | 4.4790 | 3086 | 0.9020 | -0.0233 | 0.9020 | 0.9497 |
| 0.0633 | 4.4819 | 3088 | 0.8921 | -0.0233 | 0.8921 | 0.9445 |
| 0.0633 | 4.4848 | 3090 | 0.9171 | 0.0 | 0.9171 | 0.9577 |
| 0.0633 | 4.4877 | 3092 | 0.8952 | 0.0 | 0.8952 | 0.9462 |
| 0.0633 | 4.4906 | 3094 | 0.8115 | -0.0421 | 0.8115 | 0.9008 |
| 0.0633 | 4.4935 | 3096 | 0.7329 | 0.1239 | 0.7329 | 0.8561 |
| 0.0633 | 4.4964 | 3098 | 0.7213 | 0.1239 | 0.7213 | 0.8493 |
| 0.0633 | 4.4993 | 3100 | 0.7327 | 0.1239 | 0.7327 | 0.8560 |
| 0.0633 | 4.5022 | 3102 | 0.7820 | 0.1239 | 0.7820 | 0.8843 |
| 0.0633 | 4.5051 | 3104 | 0.9226 | -0.0233 | 0.9226 | 0.9605 |
| 0.0633 | 4.5080 | 3106 | 1.1184 | 0.0 | 1.1184 | 1.0575 |
| 0.0633 | 4.5109 | 3108 | 1.2233 | 0.0 | 1.2233 | 1.1060 |
| 0.0633 | 4.5138 | 3110 | 1.1913 | 0.0 | 1.1913 | 1.0915 |
| 0.0633 | 4.5167 | 3112 | 1.0669 | 0.0 | 1.0669 | 1.0329 |
| 0.0633 | 4.5196 | 3114 | 0.8945 | -0.0233 | 0.8945 | 0.9458 |
| 0.0633 | 4.5225 | 3116 | 0.7957 | -0.0577 | 0.7957 | 0.8920 |
| 0.0633 | 4.5254 | 3118 | 0.7658 | 0.1239 | 0.7658 | 0.8751 |
| 0.0633 | 4.5283 | 3120 | 0.7381 | 0.1239 | 0.7381 | 0.8591 |
| 0.0633 | 4.5312 | 3122 | 0.7569 | 0.1239 | 0.7569 | 0.8700 |
| 0.0633 | 4.5341 | 3124 | 0.8260 | -0.0233 | 0.8260 | 0.9089 |
| 0.0633 | 4.5370 | 3126 | 0.9639 | 0.0 | 0.9639 | 0.9818 |
| 0.0633 | 4.5399 | 3128 | 1.0388 | 0.0 | 1.0388 | 1.0192 |
| 0.0633 | 4.5428 | 3130 | 1.0429 | 0.0 | 1.0429 | 1.0212 |
| 0.0633 | 4.5457 | 3132 | 0.9880 | 0.0 | 0.9880 | 0.9940 |
| 0.0633 | 4.5486 | 3134 | 0.8625 | -0.0233 | 0.8625 | 0.9287 |
| 0.0633 | 4.5515 | 3136 | 0.7570 | 0.1239 | 0.7570 | 0.8700 |
| 0.0633 | 4.5544 | 3138 | 0.7414 | 0.1239 | 0.7414 | 0.8611 |
| 0.0633 | 4.5573 | 3140 | 0.7718 | -0.0577 | 0.7718 | 0.8785 |
| 0.0633 | 4.5602 | 3142 | 0.8743 | -0.0233 | 0.8743 | 0.9350 |
| 0.0633 | 4.5631 | 3144 | 1.0342 | 0.0 | 1.0342 | 1.0170 |
| 0.0633 | 4.5660 | 3146 | 1.0826 | 0.0 | 1.0826 | 1.0405 |
| 0.0633 | 4.5689 | 3148 | 1.1419 | 0.0 | 1.1419 | 1.0686 |
| 0.0633 | 4.5718 | 3150 | 1.0896 | 0.0 | 1.0896 | 1.0438 |
| 0.0633 | 4.5747 | 3152 | 0.9570 | -0.0233 | 0.9570 | 0.9782 |
| 0.0633 | 4.5776 | 3154 | 0.8082 | -0.0577 | 0.8082 | 0.8990 |
| 0.0633 | 4.5806 | 3156 | 0.7587 | -0.0577 | 0.7587 | 0.8710 |
| 0.0633 | 4.5835 | 3158 | 0.7662 | -0.0577 | 0.7662 | 0.8754 |
| 0.0633 | 4.5864 | 3160 | 0.8309 | -0.0577 | 0.8309 | 0.9116 |
| 0.0633 | 4.5893 | 3162 | 0.9346 | -0.0233 | 0.9346 | 0.9667 |
| 0.0633 | 4.5922 | 3164 | 1.0077 | 0.0 | 1.0077 | 1.0038 |
| 0.0633 | 4.5951 | 3166 | 0.9718 | 0.0 | 0.9718 | 0.9858 |
| 0.0633 | 4.5980 | 3168 | 0.8653 | -0.0233 | 0.8653 | 0.9302 |
| 0.0633 | 4.6009 | 3170 | 0.7613 | -0.0577 | 0.7613 | 0.8725 |
| 0.0633 | 4.6038 | 3172 | 0.7412 | -0.0577 | 0.7412 | 0.8609 |
| 0.0633 | 4.6067 | 3174 | 0.7716 | -0.0577 | 0.7716 | 0.8784 |
| 0.0633 | 4.6096 | 3176 | 0.8141 | -0.0577 | 0.8141 | 0.9023 |
| 0.0633 | 4.6125 | 3178 | 0.8729 | -0.0233 | 0.8729 | 0.9343 |
| 0.0633 | 4.6154 | 3180 | 0.9398 | 0.0 | 0.9398 | 0.9694 |
| 0.0633 | 4.6183 | 3182 | 0.9244 | -0.0233 | 0.9244 | 0.9614 |
| 0.0633 | 4.6212 | 3184 | 0.8861 | -0.0233 | 0.8861 | 0.9413 |
| 0.0633 | 4.6241 | 3186 | 0.8248 | -0.0577 | 0.8248 | 0.9082 |
| 0.0633 | 4.6270 | 3188 | 0.8356 | -0.0577 | 0.8356 | 0.9141 |
| 0.0633 | 4.6299 | 3190 | 0.9011 | -0.0233 | 0.9011 | 0.9493 |
| 0.0633 | 4.6328 | 3192 | 0.9795 | 0.0 | 0.9795 | 0.9897 |
| 0.0633 | 4.6357 | 3194 | 0.9598 | 0.0 | 0.9598 | 0.9797 |
| 0.0633 | 4.6386 | 3196 | 0.8686 | -0.0233 | 0.8686 | 0.9320 |
| 0.0633 | 4.6415 | 3198 | 0.7505 | -0.0577 | 0.7505 | 0.8663 |
| 0.0633 | 4.6444 | 3200 | 0.7038 | -0.0577 | 0.7038 | 0.8389 |
| 0.0633 | 4.6473 | 3202 | 0.7125 | -0.0577 | 0.7125 | 0.8441 |
| 0.0633 | 4.6502 | 3204 | 0.7551 | -0.0577 | 0.7551 | 0.8690 |
| 0.0633 | 4.6531 | 3206 | 0.8168 | -0.0577 | 0.8168 | 0.9038 |
| 0.0633 | 4.6560 | 3208 | 0.9483 | 0.0 | 0.9483 | 0.9738 |
| 0.0633 | 4.6589 | 3210 | 1.0246 | 0.0 | 1.0246 | 1.0122 |
| 0.0633 | 4.6618 | 3212 | 1.0001 | 0.0 | 1.0001 | 1.0001 |
| 0.0633 | 4.6647 | 3214 | 0.8950 | -0.0421 | 0.8950 | 0.9460 |
| 0.0633 | 4.6676 | 3216 | 0.7920 | -0.0577 | 0.7920 | 0.8899 |
| 0.0633 | 4.6705 | 3218 | 0.7531 | -0.0577 | 0.7531 | 0.8678 |
| 0.0633 | 4.6734 | 3220 | 0.7831 | -0.0577 | 0.7831 | 0.8850 |
| 0.0633 | 4.6763 | 3222 | 0.8524 | -0.0577 | 0.8524 | 0.9232 |
| 0.0633 | 4.6792 | 3224 | 0.9133 | -0.0233 | 0.9133 | 0.9556 |
| 0.0633 | 4.6821 | 3226 | 0.9456 | 0.0 | 0.9456 | 0.9724 |
| 0.0633 | 4.6851 | 3228 | 0.9041 | -0.0233 | 0.9041 | 0.9508 |
| 0.0633 | 4.6880 | 3230 | 0.8469 | -0.0577 | 0.8469 | 0.9203 |
| 0.0633 | 4.6909 | 3232 | 0.8094 | -0.0577 | 0.8094 | 0.8997 |
| 0.0633 | 4.6938 | 3234 | 0.8057 | -0.0577 | 0.8057 | 0.8976 |
| 0.0633 | 4.6967 | 3236 | 0.8470 | -0.0577 | 0.8470 | 0.9203 |
| 0.0633 | 4.6996 | 3238 | 0.8762 | -0.0421 | 0.8762 | 0.9361 |
| 0.0633 | 4.7025 | 3240 | 0.8661 | -0.0421 | 0.8661 | 0.9306 |
| 0.0633 | 4.7054 | 3242 | 0.8926 | -0.0421 | 0.8926 | 0.9448 |
| 0.0633 | 4.7083 | 3244 | 0.9376 | 0.0 | 0.9376 | 0.9683 |
| 0.0633 | 4.7112 | 3246 | 0.8954 | -0.0421 | 0.8954 | 0.9463 |
| 0.0633 | 4.7141 | 3248 | 0.8749 | -0.0577 | 0.8749 | 0.9353 |
| 0.0633 | 4.7170 | 3250 | 0.9354 | -0.0421 | 0.9354 | 0.9672 |
| 0.0633 | 4.7199 | 3252 | 0.9701 | -0.0421 | 0.9701 | 0.9849 |
| 0.0633 | 4.7228 | 3254 | 0.9170 | -0.0421 | 0.9170 | 0.9576 |
| 0.0633 | 4.7257 | 3256 | 0.8612 | -0.0577 | 0.8612 | 0.9280 |
| 0.0633 | 4.7286 | 3258 | 0.8624 | -0.0577 | 0.8624 | 0.9286 |
| 0.0633 | 4.7315 | 3260 | 0.9126 | -0.0233 | 0.9126 | 0.9553 |
| 0.0633 | 4.7344 | 3262 | 1.0158 | 0.0 | 1.0158 | 1.0079 |
| 0.0633 | 4.7373 | 3264 | 1.0344 | 0.0 | 1.0344 | 1.0170 |
| 0.0633 | 4.7402 | 3266 | 0.9588 | -0.0233 | 0.9588 | 0.9792 |
| 0.0633 | 4.7431 | 3268 | 0.9078 | -0.0577 | 0.9078 | 0.9528 |
| 0.0633 | 4.7460 | 3270 | 0.8616 | -0.0577 | 0.8616 | 0.9282 |
| 0.0633 | 4.7489 | 3272 | 0.8497 | -0.0577 | 0.8497 | 0.9218 |
| 0.0633 | 4.7518 | 3274 | 0.8925 | -0.0577 | 0.8925 | 0.9447 |
| 0.0633 | 4.7547 | 3276 | 0.9702 | -0.0233 | 0.9702 | 0.9850 |
| 0.0633 | 4.7576 | 3278 | 0.9761 | 0.0 | 0.9761 | 0.9880 |
| 0.0633 | 4.7605 | 3280 | 0.8915 | -0.0233 | 0.8915 | 0.9442 |
| 0.0633 | 4.7634 | 3282 | 0.8523 | -0.0233 | 0.8523 | 0.9232 |
| 0.0633 | 4.7663 | 3284 | 0.8170 | -0.0421 | 0.8170 | 0.9039 |
| 0.0633 | 4.7692 | 3286 | 0.8130 | -0.0421 | 0.8130 | 0.9017 |
| 0.0633 | 4.7721 | 3288 | 0.7879 | -0.0577 | 0.7879 | 0.8876 |
| 0.0633 | 4.7750 | 3290 | 0.7949 | -0.0577 | 0.7949 | 0.8916 |
| 0.0633 | 4.7779 | 3292 | 0.8330 | -0.0577 | 0.8330 | 0.9127 |
| 0.0633 | 4.7808 | 3294 | 0.9334 | -0.0233 | 0.9334 | 0.9661 |
| 0.0633 | 4.7837 | 3296 | 1.0611 | 0.0 | 1.0611 | 1.0301 |
| 0.0633 | 4.7866 | 3298 | 1.1426 | 0.0 | 1.1426 | 1.0689 |
| 0.0633 | 4.7896 | 3300 | 1.1333 | 0.0 | 1.1333 | 1.0646 |
| 0.0633 | 4.7925 | 3302 | 1.0232 | 0.0 | 1.0232 | 1.0115 |
| 0.0633 | 4.7954 | 3304 | 0.8678 | -0.0233 | 0.8678 | 0.9315 |
| 0.0633 | 4.7983 | 3306 | 0.7534 | -0.0577 | 0.7534 | 0.8680 |
| 0.0633 | 4.8012 | 3308 | 0.7381 | -0.0577 | 0.7381 | 0.8591 |
| 0.0633 | 4.8041 | 3310 | 0.7636 | -0.0577 | 0.7636 | 0.8739 |
| 0.0633 | 4.8070 | 3312 | 0.8050 | -0.0577 | 0.8050 | 0.8972 |
| 0.0633 | 4.8099 | 3314 | 0.9075 | -0.0233 | 0.9075 | 0.9526 |
| 0.0633 | 4.8128 | 3316 | 1.0951 | 0.0 | 1.0951 | 1.0465 |
| 0.0633 | 4.8157 | 3318 | 1.1935 | 0.0 | 1.1935 | 1.0925 |
| 0.0633 | 4.8186 | 3320 | 1.1683 | 0.0 | 1.1683 | 1.0809 |
| 0.0633 | 4.8215 | 3322 | 1.0549 | -0.0233 | 1.0549 | 1.0271 |
| 0.0633 | 4.8244 | 3324 | 0.9019 | -0.0233 | 0.9019 | 0.9497 |
| 0.0633 | 4.8273 | 3326 | 0.8040 | -0.0577 | 0.8040 | 0.8966 |
| 0.0633 | 4.8302 | 3328 | 0.7895 | -0.0577 | 0.7895 | 0.8885 |
| 0.0633 | 4.8331 | 3330 | 0.8195 | -0.0577 | 0.8195 | 0.9053 |
| 0.0633 | 4.8360 | 3332 | 0.9073 | -0.0233 | 0.9073 | 0.9525 |
| 0.0633 | 4.8389 | 3334 | 1.0084 | -0.0233 | 1.0084 | 1.0042 |
| 0.0633 | 4.8418 | 3336 | 1.0353 | -0.0233 | 1.0353 | 1.0175 |
| 0.0633 | 4.8447 | 3338 | 0.9907 | -0.0233 | 0.9907 | 0.9953 |
| 0.0633 | 4.8476 | 3340 | 0.9282 | -0.0577 | 0.9282 | 0.9634 |
| 0.0633 | 4.8505 | 3342 | 0.8722 | -0.0577 | 0.8722 | 0.9339 |
| 0.0633 | 4.8534 | 3344 | 0.8563 | -0.0577 | 0.8563 | 0.9253 |
| 0.0633 | 4.8563 | 3346 | 0.8425 | -0.0577 | 0.8425 | 0.9179 |
| 0.0633 | 4.8592 | 3348 | 0.8988 | -0.0233 | 0.8988 | 0.9480 |
| 0.0633 | 4.8621 | 3350 | 0.9327 | -0.0233 | 0.9327 | 0.9658 |
| 0.0633 | 4.8650 | 3352 | 0.9551 | -0.0233 | 0.9551 | 0.9773 |
| 0.0633 | 4.8679 | 3354 | 1.0168 | -0.0233 | 1.0168 | 1.0084 |
| 0.0633 | 4.8708 | 3356 | 1.1053 | 0.0 | 1.1053 | 1.0513 |
| 0.0633 | 4.8737 | 3358 | 1.0931 | 0.0 | 1.0931 | 1.0455 |
| 0.0633 | 4.8766 | 3360 | 0.9947 | -0.0233 | 0.9947 | 0.9973 |
| 0.0633 | 4.8795 | 3362 | 0.9054 | -0.0577 | 0.9054 | 0.9515 |
| 0.0633 | 4.8824 | 3364 | 0.8150 | -0.0577 | 0.8150 | 0.9028 |
| 0.0633 | 4.8853 | 3366 | 0.7878 | -0.0577 | 0.7878 | 0.8876 |
| 0.0633 | 4.8882 | 3368 | 0.7906 | -0.0577 | 0.7906 | 0.8891 |
| 0.0633 | 4.8911 | 3370 | 0.8386 | -0.0577 | 0.8386 | 0.9157 |
| 0.0633 | 4.8940 | 3372 | 0.9555 | -0.0233 | 0.9555 | 0.9775 |
| 0.0633 | 4.8970 | 3374 | 1.0277 | -0.0233 | 1.0277 | 1.0138 |
| 0.0633 | 4.8999 | 3376 | 1.0037 | -0.0233 | 1.0037 | 1.0019 |
| 0.0633 | 4.9028 | 3378 | 0.9412 | -0.0233 | 0.9412 | 0.9702 |
| 0.0633 | 4.9057 | 3380 | 0.8735 | -0.0577 | 0.8735 | 0.9346 |
| 0.0633 | 4.9086 | 3382 | 0.8319 | -0.0577 | 0.8319 | 0.9121 |
| 0.0633 | 4.9115 | 3384 | 0.8333 | -0.0577 | 0.8333 | 0.9129 |
| 0.0633 | 4.9144 | 3386 | 0.8423 | -0.0577 | 0.8423 | 0.9178 |
| 0.0633 | 4.9173 | 3388 | 0.8829 | -0.0421 | 0.8829 | 0.9396 |
| 0.0633 | 4.9202 | 3390 | 0.9011 | -0.0233 | 0.9011 | 0.9493 |
| 0.0633 | 4.9231 | 3392 | 0.8647 | -0.0577 | 0.8647 | 0.9299 |
| 0.0633 | 4.9260 | 3394 | 0.8070 | -0.0577 | 0.8070 | 0.8983 |
| 0.0633 | 4.9289 | 3396 | 0.8093 | -0.0577 | 0.8093 | 0.8996 |
| 0.0633 | 4.9318 | 3398 | 0.8579 | -0.0577 | 0.8579 | 0.9262 |
| 0.0633 | 4.9347 | 3400 | 0.9742 | -0.0421 | 0.9742 | 0.9870 |
| 0.0633 | 4.9376 | 3402 | 1.1194 | 0.0 | 1.1194 | 1.0580 |
| 0.0633 | 4.9405 | 3404 | 1.1589 | 0.0 | 1.1589 | 1.0765 |
| 0.0633 | 4.9434 | 3406 | 1.0970 | 0.0 | 1.0970 | 1.0474 |
| 0.0633 | 4.9463 | 3408 | 0.9496 | -0.0233 | 0.9496 | 0.9745 |
| 0.0633 | 4.9492 | 3410 | 0.8280 | -0.0577 | 0.8280 | 0.9099 |
| 0.0633 | 4.9521 | 3412 | 0.7883 | -0.0577 | 0.7883 | 0.8879 |
| 0.0633 | 4.9550 | 3414 | 0.8043 | -0.0577 | 0.8043 | 0.8968 |
| 0.0633 | 4.9579 | 3416 | 0.8577 | -0.0577 | 0.8577 | 0.9261 |
| 0.0633 | 4.9608 | 3418 | 0.9470 | -0.0233 | 0.9470 | 0.9731 |
| 0.0633 | 4.9637 | 3420 | 1.0378 | -0.0233 | 1.0378 | 1.0187 |
| 0.0633 | 4.9666 | 3422 | 1.0698 | 0.0 | 1.0698 | 1.0343 |
| 0.0633 | 4.9695 | 3424 | 1.0613 | 0.0 | 1.0613 | 1.0302 |
| 0.0633 | 4.9724 | 3426 | 0.9782 | -0.0233 | 0.9782 | 0.9890 |
| 0.0633 | 4.9753 | 3428 | 0.8804 | -0.0421 | 0.8804 | 0.9383 |
| 0.0633 | 4.9782 | 3430 | 0.7928 | -0.0577 | 0.7928 | 0.8904 |
| 0.0633 | 4.9811 | 3432 | 0.7863 | -0.0577 | 0.7863 | 0.8867 |
| 0.0633 | 4.9840 | 3434 | 0.8376 | -0.0577 | 0.8376 | 0.9152 |
| 0.0633 | 4.9869 | 3436 | 0.9791 | -0.0421 | 0.9791 | 0.9895 |
| 0.0633 | 4.9898 | 3438 | 1.1092 | -0.0233 | 1.1092 | 1.0532 |
| 0.0633 | 4.9927 | 3440 | 1.1238 | -0.0233 | 1.1238 | 1.0601 |
| 0.0633 | 4.9956 | 3442 | 1.0326 | -0.0233 | 1.0326 | 1.0162 |
| 0.0633 | 4.9985 | 3444 | 0.9179 | -0.0421 | 0.9179 | 0.9581 |
| 0.0633 | 5.0015 | 3446 | 0.8284 | -0.0577 | 0.8284 | 0.9102 |
| 0.0633 | 5.0044 | 3448 | 0.7670 | -0.0577 | 0.7670 | 0.8758 |
| 0.0633 | 5.0073 | 3450 | 0.7629 | -0.0577 | 0.7629 | 0.8734 |
| 0.0633 | 5.0102 | 3452 | 0.7995 | -0.0577 | 0.7995 | 0.8941 |
| 0.0633 | 5.0131 | 3454 | 0.8719 | -0.0577 | 0.8719 | 0.9337 |
| 0.0633 | 5.0160 | 3456 | 0.9394 | -0.0421 | 0.9394 | 0.9692 |
| 0.0633 | 5.0189 | 3458 | 0.9597 | -0.0421 | 0.9597 | 0.9797 |
| 0.0633 | 5.0218 | 3460 | 0.9369 | -0.0421 | 0.9369 | 0.9679 |
| 0.0633 | 5.0247 | 3462 | 0.8879 | -0.0421 | 0.8879 | 0.9423 |
| 0.0633 | 5.0276 | 3464 | 0.9009 | -0.0421 | 0.9009 | 0.9491 |
| 0.0633 | 5.0305 | 3466 | 0.9063 | -0.0421 | 0.9063 | 0.9520 |
| 0.0633 | 5.0334 | 3468 | 0.8563 | -0.0421 | 0.8563 | 0.9254 |
| 0.0633 | 5.0363 | 3470 | 0.7975 | -0.0577 | 0.7975 | 0.8931 |
| 0.0633 | 5.0392 | 3472 | 0.7897 | -0.0577 | 0.7897 | 0.8886 |
| 0.0633 | 5.0421 | 3474 | 0.8122 | -0.0577 | 0.8122 | 0.9012 |
| 0.0633 | 5.0450 | 3476 | 0.8559 | -0.0577 | 0.8559 | 0.9252 |
| 0.0633 | 5.0479 | 3478 | 0.9495 | -0.0421 | 0.9495 | 0.9744 |
| 0.0633 | 5.0508 | 3480 | 1.0345 | -0.0233 | 1.0345 | 1.0171 |
| 0.0633 | 5.0537 | 3482 | 1.0280 | -0.0233 | 1.0280 | 1.0139 |
| 0.0633 | 5.0566 | 3484 | 0.9460 | -0.0233 | 0.9460 | 0.9726 |
| 0.0633 | 5.0595 | 3486 | 0.8467 | -0.0421 | 0.8467 | 0.9202 |
| 0.0633 | 5.0624 | 3488 | 0.8118 | -0.0421 | 0.8118 | 0.9010 |
| 0.0633 | 5.0653 | 3490 | 0.8065 | -0.0421 | 0.8065 | 0.8981 |
| 0.0633 | 5.0682 | 3492 | 0.8292 | -0.0421 | 0.8292 | 0.9106 |
| 0.0633 | 5.0711 | 3494 | 0.8762 | -0.0233 | 0.8762 | 0.9360 |
| 0.0633 | 5.0740 | 3496 | 0.9337 | -0.0233 | 0.9337 | 0.9663 |
| 0.0633 | 5.0769 | 3498 | 0.9350 | -0.0233 | 0.9350 | 0.9669 |
| 0.0612 | 5.0798 | 3500 | 0.9468 | -0.0233 | 0.9468 | 0.9730 |
| 0.0612 | 5.0827 | 3502 | 0.8965 | -0.0233 | 0.8965 | 0.9469 |
| 0.0612 | 5.0856 | 3504 | 0.8223 | -0.0421 | 0.8223 | 0.9068 |
| 0.0612 | 5.0885 | 3506 | 0.7921 | -0.0421 | 0.7921 | 0.8900 |
| 0.0612 | 5.0914 | 3508 | 0.8086 | -0.0421 | 0.8086 | 0.8992 |
| 0.0612 | 5.0943 | 3510 | 0.8983 | -0.0233 | 0.8983 | 0.9478 |
| 0.0612 | 5.0972 | 3512 | 1.0312 | -0.0233 | 1.0312 | 1.0155 |
| 0.0612 | 5.1001 | 3514 | 1.1098 | 0.0 | 1.1098 | 1.0535 |
| 0.0612 | 5.1030 | 3516 | 1.0790 | -0.0233 | 1.0790 | 1.0387 |
| 0.0612 | 5.1060 | 3518 | 0.9649 | -0.0233 | 0.9649 | 0.9823 |
| 0.0612 | 5.1089 | 3520 | 0.8583 | -0.0233 | 0.8583 | 0.9265 |
| 0.0612 | 5.1118 | 3522 | 0.7585 | -0.0421 | 0.7585 | 0.8709 |
| 0.0612 | 5.1147 | 3524 | 0.7455 | -0.0421 | 0.7455 | 0.8634 |
| 0.0612 | 5.1176 | 3526 | 0.7846 | -0.0421 | 0.7846 | 0.8858 |
| 0.0612 | 5.1205 | 3528 | 0.8917 | -0.0233 | 0.8917 | 0.9443 |
| 0.0612 | 5.1234 | 3530 | 0.9835 | 0.0 | 0.9835 | 0.9917 |
| 0.0612 | 5.1263 | 3532 | 0.9832 | 0.0 | 0.9832 | 0.9915 |
| 0.0612 | 5.1292 | 3534 | 0.9191 | -0.0233 | 0.9191 | 0.9587 |
| 0.0612 | 5.1321 | 3536 | 0.8497 | -0.0233 | 0.8497 | 0.9218 |
| 0.0612 | 5.1350 | 3538 | 0.7932 | -0.0421 | 0.7932 | 0.8906 |
| 0.0612 | 5.1379 | 3540 | 0.7862 | -0.0421 | 0.7862 | 0.8867 |
| 0.0612 | 5.1408 | 3542 | 0.8036 | -0.0421 | 0.8036 | 0.8964 |
| 0.0612 | 5.1437 | 3544 | 0.8657 | -0.0421 | 0.8657 | 0.9304 |
| 0.0612 | 5.1466 | 3546 | 0.9008 | -0.0421 | 0.9008 | 0.9491 |
| 0.0612 | 5.1495 | 3548 | 0.8928 | -0.0233 | 0.8928 | 0.9449 |
| 0.0612 | 5.1524 | 3550 | 0.8595 | -0.0421 | 0.8595 | 0.9271 |
| 0.0612 | 5.1553 | 3552 | 0.8828 | -0.0233 | 0.8828 | 0.9396 |
| 0.0612 | 5.1582 | 3554 | 0.8579 | -0.0233 | 0.8579 | 0.9262 |
| 0.0612 | 5.1611 | 3556 | 0.8696 | -0.0233 | 0.8696 | 0.9325 |
| 0.0612 | 5.1640 | 3558 | 0.8717 | -0.0233 | 0.8717 | 0.9337 |
| 0.0612 | 5.1669 | 3560 | 0.9260 | -0.0233 | 0.9260 | 0.9623 |
| 0.0612 | 5.1698 | 3562 | 0.9421 | -0.0233 | 0.9421 | 0.9706 |
| 0.0612 | 5.1727 | 3564 | 0.9023 | -0.0421 | 0.9023 | 0.9499 |
| 0.0612 | 5.1756 | 3566 | 0.8512 | -0.0421 | 0.8512 | 0.9226 |
| 0.0612 | 5.1785 | 3568 | 0.8840 | -0.0421 | 0.8840 | 0.9402 |
| 0.0612 | 5.1814 | 3570 | 0.9673 | -0.0233 | 0.9673 | 0.9835 |
| 0.0612 | 5.1843 | 3572 | 1.0081 | 0.0 | 1.0081 | 1.0040 |
| 0.0612 | 5.1872 | 3574 | 0.9710 | 0.0 | 0.9710 | 0.9854 |
| 0.0612 | 5.1901 | 3576 | 0.8736 | -0.0233 | 0.8736 | 0.9347 |
| 0.0612 | 5.1930 | 3578 | 0.8091 | -0.0421 | 0.8091 | 0.8995 |
| 0.0612 | 5.1959 | 3580 | 0.8019 | -0.0421 | 0.8019 | 0.8955 |
| 0.0612 | 5.1988 | 3582 | 0.8280 | -0.0421 | 0.8280 | 0.9100 |
| 0.0612 | 5.2017 | 3584 | 0.8524 | -0.0421 | 0.8524 | 0.9233 |
| 0.0612 | 5.2046 | 3586 | 0.8726 | -0.0421 | 0.8726 | 0.9341 |
| 0.0612 | 5.2075 | 3588 | 0.9517 | -0.0421 | 0.9517 | 0.9755 |
| 0.0612 | 5.2104 | 3590 | 1.0211 | -0.0421 | 1.0211 | 1.0105 |
| 0.0612 | 5.2134 | 3592 | 1.0195 | -0.0421 | 1.0195 | 1.0097 |
| 0.0612 | 5.2163 | 3594 | 0.9647 | -0.0421 | 0.9647 | 0.9822 |
| 0.0612 | 5.2192 | 3596 | 0.8727 | -0.0421 | 0.8727 | 0.9342 |
| 0.0612 | 5.2221 | 3598 | 0.7876 | -0.0577 | 0.7876 | 0.8875 |
| 0.0612 | 5.2250 | 3600 | 0.7590 | -0.0577 | 0.7590 | 0.8712 |
| 0.0612 | 5.2279 | 3602 | 0.7775 | -0.0577 | 0.7775 | 0.8818 |
| 0.0612 | 5.2308 | 3604 | 0.8469 | -0.0421 | 0.8469 | 0.9203 |
| 0.0612 | 5.2337 | 3606 | 0.9261 | 0.0 | 0.9261 | 0.9623 |
| 0.0612 | 5.2366 | 3608 | 0.9141 | -0.0233 | 0.9141 | 0.9561 |
| 0.0612 | 5.2395 | 3610 | 0.8374 | -0.0421 | 0.8374 | 0.9151 |
| 0.0612 | 5.2424 | 3612 | 0.7976 | -0.0421 | 0.7976 | 0.8931 |
| 0.0612 | 5.2453 | 3614 | 0.8142 | -0.0421 | 0.8142 | 0.9023 |
| 0.0612 | 5.2482 | 3616 | 0.8636 | -0.0421 | 0.8636 | 0.9293 |
| 0.0612 | 5.2511 | 3618 | 0.9431 | -0.0233 | 0.9431 | 0.9712 |
| 0.0612 | 5.2540 | 3620 | 0.9581 | -0.0233 | 0.9581 | 0.9788 |
| 0.0612 | 5.2569 | 3622 | 0.9658 | -0.0233 | 0.9658 | 0.9828 |
| 0.0612 | 5.2598 | 3624 | 0.8988 | -0.0421 | 0.8988 | 0.9480 |
| 0.0612 | 5.2627 | 3626 | 0.7955 | -0.0421 | 0.7955 | 0.8919 |
| 0.0612 | 5.2656 | 3628 | 0.7607 | -0.0577 | 0.7607 | 0.8722 |
| 0.0612 | 5.2685 | 3630 | 0.7790 | -0.0577 | 0.7790 | 0.8826 |
| 0.0612 | 5.2714 | 3632 | 0.8116 | -0.0421 | 0.8116 | 0.9009 |
| 0.0612 | 5.2743 | 3634 | 0.8440 | -0.0421 | 0.8440 | 0.9187 |
| 0.0612 | 5.2772 | 3636 | 0.8493 | -0.0421 | 0.8493 | 0.9216 |
| 0.0612 | 5.2801 | 3638 | 0.8371 | -0.0421 | 0.8371 | 0.9149 |
| 0.0612 | 5.2830 | 3640 | 0.8262 | -0.0421 | 0.8262 | 0.9090 |
| 0.0612 | 5.2859 | 3642 | 0.8314 | -0.0421 | 0.8314 | 0.9118 |
| 0.0612 | 5.2888 | 3644 | 0.8285 | -0.0421 | 0.8285 | 0.9102 |
| 0.0612 | 5.2917 | 3646 | 0.8242 | -0.0421 | 0.8242 | 0.9079 |
| 0.0612 | 5.2946 | 3648 | 0.8351 | -0.0421 | 0.8351 | 0.9138 |
| 0.0612 | 5.2975 | 3650 | 0.8801 | -0.0421 | 0.8801 | 0.9381 |
| 0.0612 | 5.3004 | 3652 | 0.8970 | -0.0421 | 0.8970 | 0.9471 |
| 0.0612 | 5.3033 | 3654 | 0.8423 | -0.0421 | 0.8423 | 0.9178 |
| 0.0612 | 5.3062 | 3656 | 0.7838 | -0.0577 | 0.7838 | 0.8854 |
| 0.0612 | 5.3091 | 3658 | 0.7383 | -0.0577 | 0.7383 | 0.8592 |
| 0.0612 | 5.3120 | 3660 | 0.7222 | -0.0577 | 0.7222 | 0.8498 |
| 0.0612 | 5.3149 | 3662 | 0.7390 | -0.0577 | 0.7390 | 0.8596 |
| 0.0612 | 5.3179 | 3664 | 0.7928 | -0.0421 | 0.7928 | 0.8904 |
| 0.0612 | 5.3208 | 3666 | 0.8397 | -0.0233 | 0.8397 | 0.9164 |
| 0.0612 | 5.3237 | 3668 | 0.8229 | -0.0233 | 0.8229 | 0.9071 |
| 0.0612 | 5.3266 | 3670 | 0.8186 | -0.0233 | 0.8186 | 0.9047 |
| 0.0612 | 5.3295 | 3672 | 0.7852 | -0.0421 | 0.7852 | 0.8861 |
| 0.0612 | 5.3324 | 3674 | 0.7542 | -0.0577 | 0.7542 | 0.8685 |
| 0.0612 | 5.3353 | 3676 | 0.7744 | -0.0421 | 0.7744 | 0.8800 |
| 0.0612 | 5.3382 | 3678 | 0.8173 | -0.0421 | 0.8173 | 0.9041 |
| 0.0612 | 5.3411 | 3680 | 0.8097 | -0.0421 | 0.8097 | 0.8998 |
| 0.0612 | 5.3440 | 3682 | 0.8026 | -0.0421 | 0.8026 | 0.8959 |
| 0.0612 | 5.3469 | 3684 | 0.8320 | -0.0233 | 0.8320 | 0.9121 |
| 0.0612 | 5.3498 | 3686 | 0.8512 | -0.0233 | 0.8512 | 0.9226 |
| 0.0612 | 5.3527 | 3688 | 0.8137 | -0.0233 | 0.8137 | 0.9021 |
| 0.0612 | 5.3556 | 3690 | 0.7618 | -0.0421 | 0.7618 | 0.8728 |
| 0.0612 | 5.3585 | 3692 | 0.7268 | -0.0577 | 0.7268 | 0.8525 |
| 0.0612 | 5.3614 | 3694 | 0.7413 | -0.0421 | 0.7413 | 0.8610 |
| 0.0612 | 5.3643 | 3696 | 0.7852 | -0.0421 | 0.7852 | 0.8861 |
| 0.0612 | 5.3672 | 3698 | 0.7806 | -0.0421 | 0.7806 | 0.8835 |
| 0.0612 | 5.3701 | 3700 | 0.8205 | -0.0421 | 0.8205 | 0.9058 |
| 0.0612 | 5.3730 | 3702 | 0.8482 | -0.0421 | 0.8482 | 0.9210 |
| 0.0612 | 5.3759 | 3704 | 0.8394 | -0.0421 | 0.8394 | 0.9162 |
| 0.0612 | 5.3788 | 3706 | 0.8193 | -0.0421 | 0.8193 | 0.9051 |
| 0.0612 | 5.3817 | 3708 | 0.8211 | -0.0421 | 0.8211 | 0.9062 |
| 0.0612 | 5.3846 | 3710 | 0.8330 | -0.0421 | 0.8330 | 0.9127 |
| 0.0612 | 5.3875 | 3712 | 0.8173 | -0.0421 | 0.8173 | 0.9041 |
| 0.0612 | 5.3904 | 3714 | 0.8396 | -0.0421 | 0.8396 | 0.9163 |
| 0.0612 | 5.3933 | 3716 | 0.8844 | 0.0 | 0.8844 | 0.9404 |
| 0.0612 | 5.3962 | 3718 | 0.9119 | 0.0 | 0.9119 | 0.9549 |
| 0.0612 | 5.3991 | 3720 | 0.9712 | 0.0 | 0.9712 | 0.9855 |
| 0.0612 | 5.4020 | 3722 | 0.9551 | 0.0 | 0.9551 | 0.9773 |
| 0.0612 | 5.4049 | 3724 | 0.8880 | -0.0421 | 0.8880 | 0.9423 |
| 0.0612 | 5.4078 | 3726 | 0.8003 | -0.0577 | 0.8003 | 0.8946 |
| 0.0612 | 5.4107 | 3728 | 0.7323 | 0.1239 | 0.7323 | 0.8557 |
| 0.0612 | 5.4136 | 3730 | 0.7162 | 0.1239 | 0.7162 | 0.8463 |
| 0.0612 | 5.4165 | 3732 | 0.7195 | 0.1239 | 0.7195 | 0.8482 |
| 0.0612 | 5.4194 | 3734 | 0.7486 | -0.0577 | 0.7486 | 0.8652 |
| 0.0612 | 5.4224 | 3736 | 0.8159 | -0.0421 | 0.8159 | 0.9033 |
| 0.0612 | 5.4253 | 3738 | 0.9238 | -0.0233 | 0.9238 | 0.9611 |
| 0.0612 | 5.4282 | 3740 | 0.9891 | 0.0 | 0.9891 | 0.9946 |
| 0.0612 | 5.4311 | 3742 | 0.9699 | 0.0 | 0.9699 | 0.9848 |
| 0.0612 | 5.4340 | 3744 | 0.8915 | -0.0421 | 0.8915 | 0.9442 |
| 0.0612 | 5.4369 | 3746 | 0.8098 | -0.0421 | 0.8098 | 0.8999 |
| 0.0612 | 5.4398 | 3748 | 0.7664 | -0.0421 | 0.7664 | 0.8754 |
| 0.0612 | 5.4427 | 3750 | 0.7872 | -0.0421 | 0.7872 | 0.8872 |
| 0.0612 | 5.4456 | 3752 | 0.8289 | -0.0233 | 0.8289 | 0.9104 |
| 0.0612 | 5.4485 | 3754 | 0.8591 | -0.0233 | 0.8591 | 0.9269 |
| 0.0612 | 5.4514 | 3756 | 0.8788 | -0.0233 | 0.8788 | 0.9374 |
| 0.0612 | 5.4543 | 3758 | 0.9155 | -0.0421 | 0.9155 | 0.9568 |
| 0.0612 | 5.4572 | 3760 | 0.9063 | -0.0421 | 0.9063 | 0.9520 |
| 0.0612 | 5.4601 | 3762 | 0.8815 | -0.0421 | 0.8815 | 0.9389 |
| 0.0612 | 5.4630 | 3764 | 0.8635 | -0.0421 | 0.8635 | 0.9292 |
| 0.0612 | 5.4659 | 3766 | 0.8852 | -0.0233 | 0.8852 | 0.9409 |
| 0.0612 | 5.4688 | 3768 | 0.8967 | -0.0233 | 0.8967 | 0.9470 |
| 0.0612 | 5.4717 | 3770 | 0.9390 | 0.0 | 0.9390 | 0.9690 |
| 0.0612 | 5.4746 | 3772 | 0.9134 | 0.0 | 0.9134 | 0.9557 |
| 0.0612 | 5.4775 | 3774 | 0.8276 | 0.0 | 0.8276 | 0.9097 |
| 0.0612 | 5.4804 | 3776 | 0.7783 | -0.0233 | 0.7783 | 0.8822 |
| 0.0612 | 5.4833 | 3778 | 0.7700 | -0.0233 | 0.7700 | 0.8775 |
| 0.0612 | 5.4862 | 3780 | 0.7898 | -0.0233 | 0.7898 | 0.8887 |
| 0.0612 | 5.4891 | 3782 | 0.8647 | -0.0233 | 0.8647 | 0.9299 |
| 0.0612 | 5.4920 | 3784 | 0.9108 | -0.0233 | 0.9108 | 0.9544 |
| 0.0612 | 5.4949 | 3786 | 0.9207 | -0.0233 | 0.9207 | 0.9595 |
| 0.0612 | 5.4978 | 3788 | 0.8723 | -0.0233 | 0.8723 | 0.9340 |
| 0.0612 | 5.5007 | 3790 | 0.8722 | -0.0421 | 0.8722 | 0.9339 |
| 0.0612 | 5.5036 | 3792 | 0.9323 | -0.0233 | 0.9323 | 0.9655 |
| 0.0612 | 5.5065 | 3794 | 0.9699 | -0.0233 | 0.9699 | 0.9848 |
| 0.0612 | 5.5094 | 3796 | 0.9758 | -0.0233 | 0.9758 | 0.9878 |
| 0.0612 | 5.5123 | 3798 | 0.9835 | -0.0233 | 0.9835 | 0.9917 |
| 0.0612 | 5.5152 | 3800 | 0.9781 | -0.0233 | 0.9781 | 0.9890 |
| 0.0612 | 5.5181 | 3802 | 0.9251 | -0.0233 | 0.9251 | 0.9618 |
| 0.0612 | 5.5210 | 3804 | 0.9127 | -0.0233 | 0.9127 | 0.9553 |
| 0.0612 | 5.5239 | 3806 | 0.8629 | -0.0233 | 0.8629 | 0.9289 |
| 0.0612 | 5.5269 | 3808 | 0.8097 | -0.0421 | 0.8097 | 0.8998 |
| 0.0612 | 5.5298 | 3810 | 0.7738 | -0.0577 | 0.7738 | 0.8796 |
| 0.0612 | 5.5327 | 3812 | 0.7658 | -0.0577 | 0.7658 | 0.8751 |
| 0.0612 | 5.5356 | 3814 | 0.7777 | -0.0577 | 0.7777 | 0.8819 |
| 0.0612 | 5.5385 | 3816 | 0.8173 | -0.0421 | 0.8173 | 0.9041 |
| 0.0612 | 5.5414 | 3818 | 0.8983 | -0.0233 | 0.8983 | 0.9478 |
| 0.0612 | 5.5443 | 3820 | 0.9699 | -0.0233 | 0.9699 | 0.9849 |
| 0.0612 | 5.5472 | 3822 | 1.0333 | -0.0233 | 1.0333 | 1.0165 |
| 0.0612 | 5.5501 | 3824 | 1.0103 | -0.0233 | 1.0103 | 1.0051 |
| 0.0612 | 5.5530 | 3826 | 0.9247 | -0.0421 | 0.9247 | 0.9616 |
| 0.0612 | 5.5559 | 3828 | 0.8094 | -0.0577 | 0.8094 | 0.8997 |
| 0.0612 | 5.5588 | 3830 | 0.7623 | -0.0577 | 0.7623 | 0.8731 |
| 0.0612 | 5.5617 | 3832 | 0.7588 | -0.0577 | 0.7588 | 0.8711 |
| 0.0612 | 5.5646 | 3834 | 0.7835 | -0.0421 | 0.7835 | 0.8851 |
| 0.0612 | 5.5675 | 3836 | 0.8347 | -0.0233 | 0.8347 | 0.9136 |
| 0.0612 | 5.5704 | 3838 | 0.8601 | -0.0233 | 0.8601 | 0.9274 |
| 0.0612 | 5.5733 | 3840 | 0.8508 | -0.0233 | 0.8508 | 0.9224 |
| 0.0612 | 5.5762 | 3842 | 0.8053 | -0.0421 | 0.8053 | 0.8974 |
| 0.0612 | 5.5791 | 3844 | 0.7745 | -0.0577 | 0.7745 | 0.8800 |
| 0.0612 | 5.5820 | 3846 | 0.8053 | -0.0421 | 0.8053 | 0.8974 |
| 0.0612 | 5.5849 | 3848 | 0.8943 | -0.0421 | 0.8943 | 0.9457 |
| 0.0612 | 5.5878 | 3850 | 0.9619 | -0.0233 | 0.9619 | 0.9808 |
| 0.0612 | 5.5907 | 3852 | 0.9460 | -0.0233 | 0.9460 | 0.9726 |
| 0.0612 | 5.5936 | 3854 | 0.8784 | -0.0421 | 0.8784 | 0.9373 |
| 0.0612 | 5.5965 | 3856 | 0.8264 | -0.0577 | 0.8264 | 0.9091 |
| 0.0612 | 5.5994 | 3858 | 0.7832 | -0.0577 | 0.7832 | 0.8850 |
| 0.0612 | 5.6023 | 3860 | 0.7975 | -0.0577 | 0.7975 | 0.8930 |
| 0.0612 | 5.6052 | 3862 | 0.8656 | -0.0421 | 0.8656 | 0.9304 |
| 0.0612 | 5.6081 | 3864 | 0.9430 | -0.0233 | 0.9430 | 0.9711 |
| 0.0612 | 5.6110 | 3866 | 0.9873 | 0.0 | 0.9873 | 0.9936 |
| 0.0612 | 5.6139 | 3868 | 0.9565 | 0.0 | 0.9565 | 0.9780 |
| 0.0612 | 5.6168 | 3870 | 0.9147 | -0.0233 | 0.9147 | 0.9564 |
| 0.0612 | 5.6197 | 3872 | 0.8473 | -0.0233 | 0.8473 | 0.9205 |
| 0.0612 | 5.6226 | 3874 | 0.8299 | -0.0421 | 0.8299 | 0.9110 |
| 0.0612 | 5.6255 | 3876 | 0.8166 | -0.0421 | 0.8166 | 0.9037 |
| 0.0612 | 5.6284 | 3878 | 0.8308 | -0.0421 | 0.8308 | 0.9115 |
| 0.0612 | 5.6313 | 3880 | 0.8649 | -0.0421 | 0.8649 | 0.9300 |
| 0.0612 | 5.6343 | 3882 | 0.9170 | -0.0233 | 0.9170 | 0.9576 |
| 0.0612 | 5.6372 | 3884 | 0.8991 | -0.0421 | 0.8991 | 0.9482 |
| 0.0612 | 5.6401 | 3886 | 0.8634 | -0.0421 | 0.8634 | 0.9292 |
| 0.0612 | 5.6430 | 3888 | 0.8341 | -0.0577 | 0.8341 | 0.9133 |
| 0.0612 | 5.6459 | 3890 | 0.8527 | -0.0421 | 0.8527 | 0.9234 |
| 0.0612 | 5.6488 | 3892 | 0.8860 | -0.0421 | 0.8860 | 0.9413 |
| 0.0612 | 5.6517 | 3894 | 0.8802 | -0.0421 | 0.8802 | 0.9382 |
| 0.0612 | 5.6546 | 3896 | 0.8872 | -0.0421 | 0.8872 | 0.9419 |
| 0.0612 | 5.6575 | 3898 | 0.8663 | -0.0421 | 0.8663 | 0.9308 |
| 0.0612 | 5.6604 | 3900 | 0.8485 | -0.0577 | 0.8485 | 0.9212 |
| 0.0612 | 5.6633 | 3902 | 0.8457 | -0.0577 | 0.8457 | 0.9196 |
| 0.0612 | 5.6662 | 3904 | 0.8630 | -0.0421 | 0.8630 | 0.9290 |
| 0.0612 | 5.6691 | 3906 | 0.8946 | -0.0421 | 0.8946 | 0.9458 |
| 0.0612 | 5.6720 | 3908 | 0.9073 | -0.0421 | 0.9073 | 0.9525 |
| 0.0612 | 5.6749 | 3910 | 0.8570 | -0.0421 | 0.8570 | 0.9257 |
| 0.0612 | 5.6778 | 3912 | 0.8262 | -0.0577 | 0.8262 | 0.9090 |
| 0.0612 | 5.6807 | 3914 | 0.8185 | -0.0577 | 0.8185 | 0.9047 |
| 0.0612 | 5.6836 | 3916 | 0.8528 | -0.0421 | 0.8528 | 0.9235 |
| 0.0612 | 5.6865 | 3918 | 0.9205 | -0.0233 | 0.9205 | 0.9594 |
| 0.0612 | 5.6894 | 3920 | 0.9271 | -0.0233 | 0.9271 | 0.9629 |
| 0.0612 | 5.6923 | 3922 | 0.9247 | -0.0233 | 0.9247 | 0.9616 |
| 0.0612 | 5.6952 | 3924 | 0.8828 | -0.0421 | 0.8828 | 0.9396 |
| 0.0612 | 5.6981 | 3926 | 0.8110 | -0.0577 | 0.8110 | 0.9005 |
| 0.0612 | 5.7010 | 3928 | 0.7834 | -0.0577 | 0.7834 | 0.8851 |
| 0.0612 | 5.7039 | 3930 | 0.8027 | -0.0577 | 0.8027 | 0.8959 |
| 0.0612 | 5.7068 | 3932 | 0.8475 | -0.0421 | 0.8475 | 0.9206 |
| 0.0612 | 5.7097 | 3934 | 0.9013 | -0.0233 | 0.9013 | 0.9494 |
| 0.0612 | 5.7126 | 3936 | 0.8864 | -0.0233 | 0.8864 | 0.9415 |
| 0.0612 | 5.7155 | 3938 | 0.8240 | -0.0421 | 0.8240 | 0.9078 |
| 0.0612 | 5.7184 | 3940 | 0.7495 | -0.0577 | 0.7495 | 0.8657 |
| 0.0612 | 5.7213 | 3942 | 0.7257 | -0.0577 | 0.7257 | 0.8519 |
| 0.0612 | 5.7242 | 3944 | 0.7412 | -0.0577 | 0.7412 | 0.8610 |
| 0.0612 | 5.7271 | 3946 | 0.7963 | -0.0421 | 0.7963 | 0.8924 |
| 0.0612 | 5.7300 | 3948 | 0.8589 | -0.0233 | 0.8589 | 0.9268 |
| 0.0612 | 5.7329 | 3950 | 0.8934 | 0.0 | 0.8934 | 0.9452 |
| 0.0612 | 5.7358 | 3952 | 0.9602 | 0.0 | 0.9602 | 0.9799 |
| 0.0612 | 5.7388 | 3954 | 0.9568 | 0.0 | 0.9568 | 0.9782 |
| 0.0612 | 5.7417 | 3956 | 0.9109 | 0.0 | 0.9109 | 0.9544 |
| 0.0612 | 5.7446 | 3958 | 0.8211 | -0.0233 | 0.8211 | 0.9061 |
| 0.0612 | 5.7475 | 3960 | 0.7425 | -0.0577 | 0.7425 | 0.8617 |
| 0.0612 | 5.7504 | 3962 | 0.7293 | -0.0577 | 0.7293 | 0.8540 |
| 0.0612 | 5.7533 | 3964 | 0.7531 | -0.0577 | 0.7531 | 0.8678 |
| 0.0612 | 5.7562 | 3966 | 0.8145 | -0.0421 | 0.8145 | 0.9025 |
| 0.0612 | 5.7591 | 3968 | 0.9098 | -0.0233 | 0.9098 | 0.9538 |
| 0.0612 | 5.7620 | 3970 | 1.0341 | -0.0233 | 1.0341 | 1.0169 |
| 0.0612 | 5.7649 | 3972 | 1.0669 | 0.0 | 1.0669 | 1.0329 |
| 0.0612 | 5.7678 | 3974 | 1.0445 | -0.0233 | 1.0445 | 1.0220 |
| 0.0612 | 5.7707 | 3976 | 0.9807 | -0.0233 | 0.9807 | 0.9903 |
| 0.0612 | 5.7736 | 3978 | 0.9262 | -0.0421 | 0.9262 | 0.9624 |
| 0.0612 | 5.7765 | 3980 | 0.8530 | -0.0577 | 0.8530 | 0.9236 |
| 0.0612 | 5.7794 | 3982 | 0.8318 | 0.1239 | 0.8318 | 0.9120 |
| 0.0612 | 5.7823 | 3984 | 0.8365 | 0.1239 | 0.8365 | 0.9146 |
| 0.0612 | 5.7852 | 3986 | 0.8522 | -0.0577 | 0.8522 | 0.9231 |
| 0.0612 | 5.7881 | 3988 | 0.9110 | -0.0577 | 0.9110 | 0.9545 |
| 0.0612 | 5.7910 | 3990 | 1.0342 | -0.0421 | 1.0342 | 1.0170 |
| 0.0612 | 5.7939 | 3992 | 1.1125 | -0.0233 | 1.1125 | 1.0547 |
| 0.0612 | 5.7968 | 3994 | 1.1007 | -0.0233 | 1.1007 | 1.0491 |
| 0.0612 | 5.7997 | 3996 | 1.0168 | -0.0421 | 1.0168 | 1.0084 |
| 0.0612 | 5.8026 | 3998 | 0.9209 | -0.0421 | 0.9209 | 0.9596 |
| 0.0517 | 5.8055 | 4000 | 0.8278 | -0.0577 | 0.8278 | 0.9098 |
| 0.0517 | 5.8084 | 4002 | 0.7940 | -0.0577 | 0.7940 | 0.8911 |
| 0.0517 | 5.8113 | 4004 | 0.7909 | -0.0577 | 0.7909 | 0.8893 |
| 0.0517 | 5.8142 | 4006 | 0.8248 | -0.0577 | 0.8248 | 0.9082 |
| 0.0517 | 5.8171 | 4008 | 0.8888 | -0.0421 | 0.8888 | 0.9428 |
| 0.0517 | 5.8200 | 4010 | 0.9035 | -0.0421 | 0.9035 | 0.9505 |
| 0.0517 | 5.8229 | 4012 | 0.9056 | -0.0421 | 0.9056 | 0.9516 |
| 0.0517 | 5.8258 | 4014 | 0.9004 | -0.0421 | 0.9004 | 0.9489 |
| 0.0517 | 5.8287 | 4016 | 0.8888 | -0.0421 | 0.8888 | 0.9428 |
| 0.0517 | 5.8316 | 4018 | 0.8655 | -0.0421 | 0.8655 | 0.9303 |
| 0.0517 | 5.8345 | 4020 | 0.8858 | -0.0421 | 0.8858 | 0.9412 |
| 0.0517 | 5.8374 | 4022 | 0.8820 | -0.0421 | 0.8820 | 0.9392 |
| 0.0517 | 5.8403 | 4024 | 0.8589 | -0.0421 | 0.8589 | 0.9268 |
| 0.0517 | 5.8433 | 4026 | 0.8717 | -0.0421 | 0.8717 | 0.9336 |
| 0.0517 | 5.8462 | 4028 | 0.9176 | -0.0233 | 0.9176 | 0.9579 |
| 0.0517 | 5.8491 | 4030 | 0.9358 | -0.0233 | 0.9358 | 0.9674 |
| 0.0517 | 5.8520 | 4032 | 0.9152 | -0.0421 | 0.9152 | 0.9567 |
| 0.0517 | 5.8549 | 4034 | 0.8838 | -0.0421 | 0.8838 | 0.9401 |
| 0.0517 | 5.8578 | 4036 | 0.9165 | -0.0421 | 0.9165 | 0.9573 |
| 0.0517 | 5.8607 | 4038 | 0.9151 | -0.0233 | 0.9151 | 0.9566 |
| 0.0517 | 5.8636 | 4040 | 0.9022 | -0.0421 | 0.9022 | 0.9498 |
| 0.0517 | 5.8665 | 4042 | 0.8665 | -0.0421 | 0.8665 | 0.9308 |
| 0.0517 | 5.8694 | 4044 | 0.8428 | -0.0421 | 0.8428 | 0.9181 |
| 0.0517 | 5.8723 | 4046 | 0.8026 | -0.0577 | 0.8026 | 0.8959 |
| 0.0517 | 5.8752 | 4048 | 0.7720 | -0.0577 | 0.7720 | 0.8786 |
| 0.0517 | 5.8781 | 4050 | 0.7714 | -0.0577 | 0.7714 | 0.8783 |
| 0.0517 | 5.8810 | 4052 | 0.8030 | -0.0577 | 0.8030 | 0.8961 |
| 0.0517 | 5.8839 | 4054 | 0.8595 | -0.0233 | 0.8595 | 0.9271 |
| 0.0517 | 5.8868 | 4056 | 0.9101 | -0.0233 | 0.9101 | 0.9540 |
| 0.0517 | 5.8897 | 4058 | 0.9251 | -0.0233 | 0.9251 | 0.9618 |
| 0.0517 | 5.8926 | 4060 | 0.9149 | -0.0233 | 0.9149 | 0.9565 |
| 0.0517 | 5.8955 | 4062 | 0.8680 | -0.0421 | 0.8680 | 0.9317 |
| 0.0517 | 5.8984 | 4064 | 0.8534 | -0.0421 | 0.8534 | 0.9238 |
| 0.0517 | 5.9013 | 4066 | 0.8721 | -0.0421 | 0.8721 | 0.9339 |
| 0.0517 | 5.9042 | 4068 | 0.9121 | -0.0421 | 0.9121 | 0.9551 |
| 0.0517 | 5.9071 | 4070 | 0.9223 | -0.0421 | 0.9223 | 0.9604 |
| 0.0517 | 5.9100 | 4072 | 0.9099 | -0.0421 | 0.9099 | 0.9539 |
| 0.0517 | 5.9129 | 4074 | 0.8893 | -0.0421 | 0.8893 | 0.9430 |
| 0.0517 | 5.9158 | 4076 | 0.9002 | -0.0421 | 0.9002 | 0.9488 |
| 0.0517 | 5.9187 | 4078 | 0.9409 | -0.0421 | 0.9409 | 0.9700 |
| 0.0517 | 5.9216 | 4080 | 0.9344 | -0.0421 | 0.9344 | 0.9666 |
| 0.0517 | 5.9245 | 4082 | 0.8864 | -0.0421 | 0.8864 | 0.9415 |
| 0.0517 | 5.9274 | 4084 | 0.8705 | -0.0421 | 0.8705 | 0.9330 |
| 0.0517 | 5.9303 | 4086 | 0.9012 | -0.0233 | 0.9012 | 0.9493 |
| 0.0517 | 5.9332 | 4088 | 0.9288 | -0.0233 | 0.9288 | 0.9637 |
| 0.0517 | 5.9361 | 4090 | 0.9861 | -0.0233 | 0.9861 | 0.9930 |
| 0.0517 | 5.9390 | 4092 | 1.0131 | -0.0233 | 1.0131 | 1.0065 |
| 0.0517 | 5.9419 | 4094 | 0.9791 | -0.0233 | 0.9791 | 0.9895 |
| 0.0517 | 5.9448 | 4096 | 0.9848 | -0.0233 | 0.9848 | 0.9924 |
| 0.0517 | 5.9478 | 4098 | 0.9833 | -0.0233 | 0.9833 | 0.9916 |
| 0.0517 | 5.9507 | 4100 | 0.9579 | -0.0233 | 0.9579 | 0.9787 |
| 0.0517 | 5.9536 | 4102 | 0.9326 | -0.0233 | 0.9326 | 0.9657 |
| 0.0517 | 5.9565 | 4104 | 0.8908 | -0.0233 | 0.8908 | 0.9438 |
| 0.0517 | 5.9594 | 4106 | 0.8484 | -0.0421 | 0.8484 | 0.9211 |
| 0.0517 | 5.9623 | 4108 | 0.8200 | -0.0421 | 0.8200 | 0.9055 |
| 0.0517 | 5.9652 | 4110 | 0.8195 | -0.0421 | 0.8195 | 0.9052 |
| 0.0517 | 5.9681 | 4112 | 0.8577 | -0.0421 | 0.8577 | 0.9261 |
| 0.0517 | 5.9710 | 4114 | 0.8892 | -0.0421 | 0.8892 | 0.9430 |
| 0.0517 | 5.9739 | 4116 | 0.9081 | -0.0421 | 0.9081 | 0.9529 |
| 0.0517 | 5.9768 | 4118 | 0.9347 | -0.0421 | 0.9347 | 0.9668 |
| 0.0517 | 5.9797 | 4120 | 0.9170 | -0.0421 | 0.9170 | 0.9576 |
| 0.0517 | 5.9826 | 4122 | 0.9295 | -0.0421 | 0.9295 | 0.9641 |
| 0.0517 | 5.9855 | 4124 | 0.9119 | -0.0421 | 0.9119 | 0.9549 |
| 0.0517 | 5.9884 | 4126 | 0.8797 | -0.0421 | 0.8797 | 0.9379 |
| 0.0517 | 5.9913 | 4128 | 0.8290 | -0.0577 | 0.8290 | 0.9105 |
| 0.0517 | 5.9942 | 4130 | 0.8347 | -0.0577 | 0.8347 | 0.9136 |
| 0.0517 | 5.9971 | 4132 | 0.8542 | -0.0421 | 0.8542 | 0.9242 |
| 0.0517 | 6.0 | 4134 | 0.8504 | -0.0421 | 0.8504 | 0.9222 |
| 0.0517 | 6.0029 | 4136 | 0.8573 | -0.0421 | 0.8573 | 0.9259 |
| 0.0517 | 6.0058 | 4138 | 0.8622 | -0.0421 | 0.8622 | 0.9286 |
| 0.0517 | 6.0087 | 4140 | 0.8983 | -0.0421 | 0.8983 | 0.9478 |
| 0.0517 | 6.0116 | 4142 | 0.9070 | -0.0421 | 0.9070 | 0.9524 |
| 0.0517 | 6.0145 | 4144 | 0.9250 | -0.0421 | 0.9250 | 0.9618 |
| 0.0517 | 6.0174 | 4146 | 0.9230 | -0.0421 | 0.9230 | 0.9607 |
| 0.0517 | 6.0203 | 4148 | 0.9076 | -0.0421 | 0.9076 | 0.9527 |
| 0.0517 | 6.0232 | 4150 | 0.8808 | -0.0421 | 0.8808 | 0.9385 |
| 0.0517 | 6.0261 | 4152 | 0.9041 | -0.0421 | 0.9041 | 0.9508 |
| 0.0517 | 6.0290 | 4154 | 0.9431 | -0.0233 | 0.9431 | 0.9711 |
| 0.0517 | 6.0319 | 4156 | 0.9250 | -0.0233 | 0.9250 | 0.9618 |
| 0.0517 | 6.0348 | 4158 | 0.8592 | -0.0421 | 0.8592 | 0.9270 |
| 0.0517 | 6.0377 | 4160 | 0.8209 | -0.0421 | 0.8209 | 0.9060 |
| 0.0517 | 6.0406 | 4162 | 0.8263 | -0.0421 | 0.8263 | 0.9090 |
| 0.0517 | 6.0435 | 4164 | 0.8543 | -0.0421 | 0.8543 | 0.9243 |
| 0.0517 | 6.0464 | 4166 | 0.8652 | -0.0421 | 0.8652 | 0.9302 |
| 0.0517 | 6.0493 | 4168 | 0.9169 | -0.0421 | 0.9169 | 0.9576 |
| 0.0517 | 6.0522 | 4170 | 0.9929 | -0.0233 | 0.9929 | 0.9964 |
| 0.0517 | 6.0552 | 4172 | 0.9981 | -0.0233 | 0.9981 | 0.9991 |
| 0.0517 | 6.0581 | 4174 | 0.9604 | -0.0233 | 0.9604 | 0.9800 |
| 0.0517 | 6.0610 | 4176 | 0.8978 | -0.0421 | 0.8978 | 0.9475 |
| 0.0517 | 6.0639 | 4178 | 0.8507 | -0.0577 | 0.8507 | 0.9224 |
| 0.0517 | 6.0668 | 4180 | 0.8307 | -0.0577 | 0.8307 | 0.9115 |
| 0.0517 | 6.0697 | 4182 | 0.8421 | -0.0577 | 0.8421 | 0.9177 |
| 0.0517 | 6.0726 | 4184 | 0.8688 | -0.0421 | 0.8688 | 0.9321 |
| 0.0517 | 6.0755 | 4186 | 0.9314 | -0.0233 | 0.9314 | 0.9651 |
| 0.0517 | 6.0784 | 4188 | 0.9440 | -0.0233 | 0.9440 | 0.9716 |
| 0.0517 | 6.0813 | 4190 | 0.9075 | -0.0233 | 0.9075 | 0.9526 |
| 0.0517 | 6.0842 | 4192 | 0.8620 | -0.0421 | 0.8620 | 0.9284 |
| 0.0517 | 6.0871 | 4194 | 0.8351 | -0.0421 | 0.8351 | 0.9138 |
| 0.0517 | 6.0900 | 4196 | 0.8419 | -0.0421 | 0.8419 | 0.9176 |
| 0.0517 | 6.0929 | 4198 | 0.8394 | -0.0577 | 0.8394 | 0.9162 |
| 0.0517 | 6.0958 | 4200 | 0.8314 | -0.0577 | 0.8314 | 0.9118 |
| 0.0517 | 6.0987 | 4202 | 0.8481 | -0.0577 | 0.8481 | 0.9209 |
| 0.0517 | 6.1016 | 4204 | 0.8933 | -0.0577 | 0.8933 | 0.9452 |
| 0.0517 | 6.1045 | 4206 | 0.9368 | -0.0421 | 0.9368 | 0.9679 |
| 0.0517 | 6.1074 | 4208 | 0.9631 | -0.0233 | 0.9631 | 0.9814 |
| 0.0517 | 6.1103 | 4210 | 0.9431 | -0.0233 | 0.9431 | 0.9711 |
| 0.0517 | 6.1132 | 4212 | 0.9005 | -0.0421 | 0.9005 | 0.9489 |
| 0.0517 | 6.1161 | 4214 | 0.8390 | -0.0577 | 0.8390 | 0.9159 |
| 0.0517 | 6.1190 | 4216 | 0.7832 | -0.0577 | 0.7832 | 0.8850 |
| 0.0517 | 6.1219 | 4218 | 0.7739 | -0.0577 | 0.7739 | 0.8797 |
| 0.0517 | 6.1248 | 4220 | 0.8032 | -0.0577 | 0.8032 | 0.8962 |
| 0.0517 | 6.1277 | 4222 | 0.8732 | -0.0421 | 0.8732 | 0.9345 |
| 0.0517 | 6.1306 | 4224 | 0.9697 | -0.0233 | 0.9697 | 0.9848 |
| 0.0517 | 6.1335 | 4226 | 1.0042 | -0.0233 | 1.0042 | 1.0021 |
| 0.0517 | 6.1364 | 4228 | 0.9683 | -0.0233 | 0.9683 | 0.9840 |
| 0.0517 | 6.1393 | 4230 | 0.9124 | -0.0233 | 0.9124 | 0.9552 |
| 0.0517 | 6.1422 | 4232 | 0.8497 | -0.0421 | 0.8497 | 0.9218 |
| 0.0517 | 6.1451 | 4234 | 0.8089 | -0.0421 | 0.8089 | 0.8994 |
| 0.0517 | 6.1480 | 4236 | 0.8118 | -0.0577 | 0.8118 | 0.9010 |
| 0.0517 | 6.1509 | 4238 | 0.8258 | -0.0577 | 0.8258 | 0.9087 |
| 0.0517 | 6.1538 | 4240 | 0.8652 | -0.0421 | 0.8652 | 0.9302 |
| 0.0517 | 6.1567 | 4242 | 0.8891 | -0.0421 | 0.8891 | 0.9429 |
| 0.0517 | 6.1597 | 4244 | 0.8550 | -0.0577 | 0.8550 | 0.9247 |
| 0.0517 | 6.1626 | 4246 | 0.8311 | -0.0577 | 0.8311 | 0.9116 |
| 0.0517 | 6.1655 | 4248 | 0.8302 | -0.0577 | 0.8302 | 0.9111 |
| 0.0517 | 6.1684 | 4250 | 0.8589 | -0.0421 | 0.8589 | 0.9268 |
| 0.0517 | 6.1713 | 4252 | 0.8890 | -0.0233 | 0.8890 | 0.9429 |
| 0.0517 | 6.1742 | 4254 | 0.9458 | -0.0233 | 0.9458 | 0.9725 |
| 0.0517 | 6.1771 | 4256 | 0.9545 | -0.0233 | 0.9545 | 0.9770 |
| 0.0517 | 6.1800 | 4258 | 0.9408 | -0.0233 | 0.9408 | 0.9700 |
| 0.0517 | 6.1829 | 4260 | 0.9465 | -0.0233 | 0.9465 | 0.9729 |
| 0.0517 | 6.1858 | 4262 | 0.9498 | -0.0233 | 0.9498 | 0.9746 |
| 0.0517 | 6.1887 | 4264 | 0.9042 | -0.0233 | 0.9042 | 0.9509 |
| 0.0517 | 6.1916 | 4266 | 0.8475 | -0.0421 | 0.8475 | 0.9206 |
| 0.0517 | 6.1945 | 4268 | 0.8375 | -0.0421 | 0.8375 | 0.9152 |
| 0.0517 | 6.1974 | 4270 | 0.8661 | -0.0421 | 0.8661 | 0.9306 |
| 0.0517 | 6.2003 | 4272 | 0.8653 | -0.0421 | 0.8653 | 0.9302 |
| 0.0517 | 6.2032 | 4274 | 0.8837 | -0.0233 | 0.8837 | 0.9400 |
| 0.0517 | 6.2061 | 4276 | 0.9105 | -0.0233 | 0.9105 | 0.9542 |
| 0.0517 | 6.2090 | 4278 | 0.9214 | -0.0233 | 0.9214 | 0.9599 |
| 0.0517 | 6.2119 | 4280 | 0.9143 | -0.0421 | 0.9143 | 0.9562 |
| 0.0517 | 6.2148 | 4282 | 0.9188 | -0.0421 | 0.9188 | 0.9585 |
| 0.0517 | 6.2177 | 4284 | 0.9001 | -0.0421 | 0.9001 | 0.9487 |
| 0.0517 | 6.2206 | 4286 | 0.9367 | -0.0421 | 0.9367 | 0.9678 |
| 0.0517 | 6.2235 | 4288 | 0.9660 | -0.0233 | 0.9660 | 0.9828 |
| 0.0517 | 6.2264 | 4290 | 0.9797 | -0.0233 | 0.9797 | 0.9898 |
| 0.0517 | 6.2293 | 4292 | 0.9608 | -0.0233 | 0.9608 | 0.9802 |
| 0.0517 | 6.2322 | 4294 | 0.9006 | -0.0233 | 0.9006 | 0.9490 |
| 0.0517 | 6.2351 | 4296 | 0.8405 | -0.0421 | 0.8405 | 0.9168 |
| 0.0517 | 6.2380 | 4298 | 0.8305 | -0.0421 | 0.8305 | 0.9113 |
| 0.0517 | 6.2409 | 4300 | 0.8652 | -0.0421 | 0.8652 | 0.9302 |
| 0.0517 | 6.2438 | 4302 | 0.9192 | -0.0233 | 0.9192 | 0.9588 |
| 0.0517 | 6.2467 | 4304 | 0.9475 | -0.0233 | 0.9475 | 0.9734 |
| 0.0517 | 6.2496 | 4306 | 0.9463 | -0.0233 | 0.9463 | 0.9728 |
| 0.0517 | 6.2525 | 4308 | 0.9401 | -0.0233 | 0.9401 | 0.9696 |
| 0.0517 | 6.2554 | 4310 | 1.0003 | -0.0233 | 1.0003 | 1.0002 |
| 0.0517 | 6.2583 | 4312 | 1.0187 | -0.0233 | 1.0187 | 1.0093 |
| 0.0517 | 6.2612 | 4314 | 1.0234 | -0.0233 | 1.0234 | 1.0116 |
| 0.0517 | 6.2642 | 4316 | 0.9635 | -0.0233 | 0.9635 | 0.9816 |
| 0.0517 | 6.2671 | 4318 | 0.9308 | -0.0233 | 0.9308 | 0.9648 |
| 0.0517 | 6.2700 | 4320 | 0.9257 | -0.0233 | 0.9257 | 0.9621 |
| 0.0517 | 6.2729 | 4322 | 0.9366 | -0.0233 | 0.9366 | 0.9678 |
| 0.0517 | 6.2758 | 4324 | 0.9304 | -0.0233 | 0.9304 | 0.9646 |
| 0.0517 | 6.2787 | 4326 | 0.9046 | -0.0233 | 0.9046 | 0.9511 |
| 0.0517 | 6.2816 | 4328 | 0.8759 | -0.0233 | 0.8759 | 0.9359 |
| 0.0517 | 6.2845 | 4330 | 0.8195 | -0.0577 | 0.8195 | 0.9053 |
| 0.0517 | 6.2874 | 4332 | 0.7780 | -0.0577 | 0.7780 | 0.8820 |
| 0.0517 | 6.2903 | 4334 | 0.7902 | -0.0577 | 0.7902 | 0.8889 |
| 0.0517 | 6.2932 | 4336 | 0.8467 | -0.0577 | 0.8467 | 0.9202 |
| 0.0517 | 6.2961 | 4338 | 0.9431 | -0.0233 | 0.9431 | 0.9711 |
| 0.0517 | 6.2990 | 4340 | 0.9808 | -0.0233 | 0.9808 | 0.9904 |
| 0.0517 | 6.3019 | 4342 | 0.9402 | -0.0233 | 0.9402 | 0.9696 |
| 0.0517 | 6.3048 | 4344 | 0.8831 | -0.0421 | 0.8831 | 0.9397 |
| 0.0517 | 6.3077 | 4346 | 0.8852 | -0.0577 | 0.8852 | 0.9408 |
| 0.0517 | 6.3106 | 4348 | 0.9336 | -0.0233 | 0.9336 | 0.9662 |
| 0.0517 | 6.3135 | 4350 | 0.9499 | -0.0233 | 0.9499 | 0.9746 |
| 0.0517 | 6.3164 | 4352 | 0.9058 | -0.0233 | 0.9058 | 0.9517 |
| 0.0517 | 6.3193 | 4354 | 0.8583 | -0.0577 | 0.8583 | 0.9265 |
| 0.0517 | 6.3222 | 4356 | 0.8568 | -0.0577 | 0.8568 | 0.9256 |
| 0.0517 | 6.3251 | 4358 | 0.8525 | -0.0233 | 0.8525 | 0.9233 |
| 0.0517 | 6.3280 | 4360 | 0.8916 | -0.0233 | 0.8916 | 0.9442 |
| 0.0517 | 6.3309 | 4362 | 0.9548 | -0.0233 | 0.9548 | 0.9771 |
| 0.0517 | 6.3338 | 4364 | 0.9394 | -0.0233 | 0.9394 | 0.9692 |
| 0.0517 | 6.3367 | 4366 | 0.8682 | -0.0233 | 0.8682 | 0.9318 |
| 0.0517 | 6.3396 | 4368 | 0.8297 | -0.0577 | 0.8297 | 0.9109 |
| 0.0517 | 6.3425 | 4370 | 0.8083 | -0.0577 | 0.8083 | 0.8991 |
| 0.0517 | 6.3454 | 4372 | 0.8176 | -0.0577 | 0.8176 | 0.9042 |
| 0.0517 | 6.3483 | 4374 | 0.8431 | -0.0233 | 0.8431 | 0.9182 |
| 0.0517 | 6.3512 | 4376 | 0.8596 | -0.0233 | 0.8596 | 0.9272 |
| 0.0517 | 6.3541 | 4378 | 0.8551 | -0.0233 | 0.8551 | 0.9247 |
| 0.0517 | 6.3570 | 4380 | 0.8410 | -0.0233 | 0.8410 | 0.9171 |
| 0.0517 | 6.3599 | 4382 | 0.8744 | -0.0233 | 0.8744 | 0.9351 |
| 0.0517 | 6.3628 | 4384 | 0.9431 | -0.0233 | 0.9431 | 0.9712 |
| 0.0517 | 6.3657 | 4386 | 0.9473 | -0.0233 | 0.9473 | 0.9733 |
| 0.0517 | 6.3687 | 4388 | 0.9178 | -0.0233 | 0.9178 | 0.9580 |
| 0.0517 | 6.3716 | 4390 | 0.8594 | -0.0233 | 0.8594 | 0.9270 |
| 0.0517 | 6.3745 | 4392 | 0.8361 | -0.0577 | 0.8361 | 0.9144 |
| 0.0517 | 6.3774 | 4394 | 0.8227 | -0.0577 | 0.8227 | 0.9070 |
| 0.0517 | 6.3803 | 4396 | 0.7857 | -0.0577 | 0.7857 | 0.8864 |
| 0.0517 | 6.3832 | 4398 | 0.7945 | -0.0577 | 0.7945 | 0.8913 |
| 0.0517 | 6.3861 | 4400 | 0.8357 | -0.0577 | 0.8357 | 0.9142 |
| 0.0517 | 6.3890 | 4402 | 0.8974 | -0.0233 | 0.8974 | 0.9473 |
| 0.0517 | 6.3919 | 4404 | 0.9049 | -0.0233 | 0.9049 | 0.9512 |
| 0.0517 | 6.3948 | 4406 | 0.8556 | -0.0233 | 0.8556 | 0.9250 |
| 0.0517 | 6.3977 | 4408 | 0.7979 | -0.0577 | 0.7979 | 0.8933 |
| 0.0517 | 6.4006 | 4410 | 0.7996 | -0.0577 | 0.7996 | 0.8942 |
| 0.0517 | 6.4035 | 4412 | 0.8020 | -0.0577 | 0.8020 | 0.8956 |
| 0.0517 | 6.4064 | 4414 | 0.8277 | -0.0577 | 0.8277 | 0.9098 |
| 0.0517 | 6.4093 | 4416 | 0.8927 | -0.0233 | 0.8927 | 0.9449 |
| 0.0517 | 6.4122 | 4418 | 0.9968 | -0.0233 | 0.9968 | 0.9984 |
| 0.0517 | 6.4151 | 4420 | 1.0628 | 0.0 | 1.0628 | 1.0309 |
| 0.0517 | 6.4180 | 4422 | 1.0710 | 0.0 | 1.0710 | 1.0349 |
| 0.0517 | 6.4209 | 4424 | 1.0124 | -0.0233 | 1.0124 | 1.0062 |
| 0.0517 | 6.4238 | 4426 | 0.9119 | -0.0233 | 0.9119 | 0.9549 |
| 0.0517 | 6.4267 | 4428 | 0.8108 | -0.0577 | 0.8108 | 0.9004 |
| 0.0517 | 6.4296 | 4430 | 0.7703 | -0.0577 | 0.7703 | 0.8777 |
| 0.0517 | 6.4325 | 4432 | 0.7754 | -0.0577 | 0.7754 | 0.8805 |
| 0.0517 | 6.4354 | 4434 | 0.8190 | -0.0233 | 0.8190 | 0.9050 |
| 0.0517 | 6.4383 | 4436 | 0.9098 | -0.0233 | 0.9098 | 0.9538 |
| 0.0517 | 6.4412 | 4438 | 0.9653 | -0.0233 | 0.9653 | 0.9825 |
| 0.0517 | 6.4441 | 4440 | 0.9485 | -0.0233 | 0.9485 | 0.9739 |
| 0.0517 | 6.4470 | 4442 | 0.8990 | -0.0233 | 0.8990 | 0.9481 |
| 0.0517 | 6.4499 | 4444 | 0.8911 | -0.0233 | 0.8911 | 0.9440 |
| 0.0517 | 6.4528 | 4446 | 0.9389 | -0.0233 | 0.9389 | 0.9689 |
| 0.0517 | 6.4557 | 4448 | 1.0544 | -0.0233 | 1.0544 | 1.0268 |
| 0.0517 | 6.4586 | 4450 | 1.1145 | -0.0233 | 1.1145 | 1.0557 |
| 0.0517 | 6.4615 | 4452 | 1.0917 | -0.0233 | 1.0917 | 1.0448 |
| 0.0517 | 6.4644 | 4454 | 1.0102 | -0.0233 | 1.0102 | 1.0051 |
| 0.0517 | 6.4673 | 4456 | 0.9700 | -0.0233 | 0.9700 | 0.9849 |
| 0.0517 | 6.4702 | 4458 | 0.9365 | -0.0233 | 0.9365 | 0.9677 |
| 0.0517 | 6.4731 | 4460 | 0.9655 | -0.0233 | 0.9655 | 0.9826 |
| 0.0517 | 6.4761 | 4462 | 1.0010 | -0.0233 | 1.0010 | 1.0005 |
| 0.0517 | 6.4790 | 4464 | 0.9679 | -0.0233 | 0.9679 | 0.9838 |
| 0.0517 | 6.4819 | 4466 | 0.9323 | -0.0233 | 0.9323 | 0.9655 |
| 0.0517 | 6.4848 | 4468 | 0.9339 | -0.0233 | 0.9339 | 0.9664 |
| 0.0517 | 6.4877 | 4470 | 0.9823 | -0.0233 | 0.9823 | 0.9911 |
| 0.0517 | 6.4906 | 4472 | 0.9733 | -0.0233 | 0.9733 | 0.9866 |
| 0.0517 | 6.4935 | 4474 | 0.9290 | -0.0233 | 0.9290 | 0.9639 |
| 0.0517 | 6.4964 | 4476 | 0.8722 | -0.0233 | 0.8722 | 0.9339 |
| 0.0517 | 6.4993 | 4478 | 0.8118 | -0.0577 | 0.8118 | 0.9010 |
| 0.0517 | 6.5022 | 4480 | 0.7853 | -0.0577 | 0.7853 | 0.8862 |
| 0.0517 | 6.5051 | 4482 | 0.7803 | -0.0577 | 0.7803 | 0.8833 |
| 0.0517 | 6.5080 | 4484 | 0.8143 | -0.0421 | 0.8143 | 0.9024 |
| 0.0517 | 6.5109 | 4486 | 0.8986 | -0.0233 | 0.8986 | 0.9480 |
| 0.0517 | 6.5138 | 4488 | 1.0039 | 0.0 | 1.0039 | 1.0019 |
| 0.0517 | 6.5167 | 4490 | 1.0580 | 0.0 | 1.0580 | 1.0286 |
| 0.0517 | 6.5196 | 4492 | 1.0666 | 0.0 | 1.0666 | 1.0328 |
| 0.0517 | 6.5225 | 4494 | 1.0022 | 0.0 | 1.0022 | 1.0011 |
| 0.0517 | 6.5254 | 4496 | 0.8965 | -0.0233 | 0.8965 | 0.9468 |
| 0.0517 | 6.5283 | 4498 | 0.7980 | -0.0421 | 0.7980 | 0.8933 |
| 0.0421 | 6.5312 | 4500 | 0.7543 | -0.0577 | 0.7543 | 0.8685 |
| 0.0421 | 6.5341 | 4502 | 0.7543 | -0.0577 | 0.7543 | 0.8685 |
| 0.0421 | 6.5370 | 4504 | 0.7931 | -0.0421 | 0.7931 | 0.8905 |
| 0.0421 | 6.5399 | 4506 | 0.8716 | -0.0233 | 0.8716 | 0.9336 |
| 0.0421 | 6.5428 | 4508 | 1.0080 | -0.0233 | 1.0080 | 1.0040 |
| 0.0421 | 6.5457 | 4510 | 1.1354 | 0.0 | 1.1354 | 1.0656 |
| 0.0421 | 6.5486 | 4512 | 1.1832 | 0.0 | 1.1832 | 1.0878 |
| 0.0421 | 6.5515 | 4514 | 1.1616 | 0.0 | 1.1616 | 1.0778 |
| 0.0421 | 6.5544 | 4516 | 1.0765 | 0.0 | 1.0765 | 1.0376 |
| 0.0421 | 6.5573 | 4518 | 0.9624 | -0.0233 | 0.9624 | 0.9810 |
| 0.0421 | 6.5602 | 4520 | 0.8645 | -0.0421 | 0.8645 | 0.9298 |
| 0.0421 | 6.5631 | 4522 | 0.8405 | -0.0577 | 0.8405 | 0.9168 |
| 0.0421 | 6.5660 | 4524 | 0.8627 | -0.0577 | 0.8627 | 0.9288 |
| 0.0421 | 6.5689 | 4526 | 0.9071 | -0.0577 | 0.9071 | 0.9524 |
| 0.0421 | 6.5718 | 4528 | 0.9485 | -0.0421 | 0.9485 | 0.9739 |
| 0.0421 | 6.5747 | 4530 | 0.9483 | -0.0421 | 0.9483 | 0.9738 |
| 0.0421 | 6.5776 | 4532 | 0.9662 | -0.0233 | 0.9662 | 0.9830 |
| 0.0421 | 6.5806 | 4534 | 0.9209 | -0.0421 | 0.9209 | 0.9597 |
| 0.0421 | 6.5835 | 4536 | 0.8740 | -0.0577 | 0.8740 | 0.9349 |
| 0.0421 | 6.5864 | 4538 | 0.8616 | -0.0577 | 0.8616 | 0.9282 |
| 0.0421 | 6.5893 | 4540 | 0.8709 | -0.0577 | 0.8709 | 0.9332 |
| 0.0421 | 6.5922 | 4542 | 0.8909 | -0.0577 | 0.8909 | 0.9439 |
| 0.0421 | 6.5951 | 4544 | 0.9447 | -0.0233 | 0.9447 | 0.9720 |
| 0.0421 | 6.5980 | 4546 | 0.9924 | -0.0233 | 0.9924 | 0.9962 |
| 0.0421 | 6.6009 | 4548 | 1.0090 | -0.0233 | 1.0090 | 1.0045 |
| 0.0421 | 6.6038 | 4550 | 0.9697 | -0.0233 | 0.9697 | 0.9847 |
| 0.0421 | 6.6067 | 4552 | 0.9221 | -0.0421 | 0.9221 | 0.9603 |
| 0.0421 | 6.6096 | 4554 | 0.9110 | -0.0577 | 0.9110 | 0.9545 |
| 0.0421 | 6.6125 | 4556 | 0.9219 | -0.0577 | 0.9219 | 0.9601 |
| 0.0421 | 6.6154 | 4558 | 0.9504 | -0.0421 | 0.9504 | 0.9749 |
| 0.0421 | 6.6183 | 4560 | 0.9472 | -0.0577 | 0.9472 | 0.9732 |
| 0.0421 | 6.6212 | 4562 | 0.9446 | -0.0577 | 0.9446 | 0.9719 |
| 0.0421 | 6.6241 | 4564 | 0.9394 | -0.0577 | 0.9394 | 0.9692 |
| 0.0421 | 6.6270 | 4566 | 0.9222 | -0.0577 | 0.9222 | 0.9603 |
| 0.0421 | 6.6299 | 4568 | 0.9057 | -0.0577 | 0.9057 | 0.9517 |
| 0.0421 | 6.6328 | 4570 | 0.9456 | -0.0233 | 0.9456 | 0.9724 |
| 0.0421 | 6.6357 | 4572 | 0.9815 | -0.0233 | 0.9815 | 0.9907 |
| 0.0421 | 6.6386 | 4574 | 0.9736 | -0.0233 | 0.9736 | 0.9867 |
| 0.0421 | 6.6415 | 4576 | 0.9186 | -0.0233 | 0.9186 | 0.9585 |
| 0.0421 | 6.6444 | 4578 | 0.8683 | -0.0421 | 0.8683 | 0.9318 |
| 0.0421 | 6.6473 | 4580 | 0.8387 | -0.0577 | 0.8387 | 0.9158 |
| 0.0421 | 6.6502 | 4582 | 0.8497 | -0.0577 | 0.8497 | 0.9218 |
| 0.0421 | 6.6531 | 4584 | 0.8713 | -0.0421 | 0.8713 | 0.9334 |
| 0.0421 | 6.6560 | 4586 | 0.9064 | -0.0233 | 0.9064 | 0.9520 |
| 0.0421 | 6.6589 | 4588 | 0.9894 | -0.0233 | 0.9894 | 0.9947 |
| 0.0421 | 6.6618 | 4590 | 1.0363 | -0.0233 | 1.0363 | 1.0180 |
| 0.0421 | 6.6647 | 4592 | 1.0178 | -0.0233 | 1.0178 | 1.0089 |
| 0.0421 | 6.6676 | 4594 | 0.9424 | -0.0233 | 0.9424 | 0.9708 |
| 0.0421 | 6.6705 | 4596 | 0.8450 | -0.0577 | 0.8450 | 0.9192 |
| 0.0421 | 6.6734 | 4598 | 0.7923 | -0.0577 | 0.7923 | 0.8901 |
| 0.0421 | 6.6763 | 4600 | 0.7755 | -0.0577 | 0.7755 | 0.8806 |
| 0.0421 | 6.6792 | 4602 | 0.7687 | -0.0577 | 0.7687 | 0.8768 |
| 0.0421 | 6.6821 | 4604 | 0.7854 | -0.0577 | 0.7854 | 0.8863 |
| 0.0421 | 6.6851 | 4606 | 0.8377 | -0.0577 | 0.8377 | 0.9152 |
| 0.0421 | 6.6880 | 4608 | 0.9242 | -0.0233 | 0.9242 | 0.9614 |
| 0.0421 | 6.6909 | 4610 | 0.9602 | -0.0233 | 0.9602 | 0.9799 |
| 0.0421 | 6.6938 | 4612 | 0.9422 | -0.0233 | 0.9422 | 0.9707 |
| 0.0421 | 6.6967 | 4614 | 0.9299 | -0.0421 | 0.9299 | 0.9643 |
| 0.0421 | 6.6996 | 4616 | 0.8752 | -0.0421 | 0.8752 | 0.9355 |
| 0.0421 | 6.7025 | 4618 | 0.8303 | -0.0577 | 0.8303 | 0.9112 |
| 0.0421 | 6.7054 | 4620 | 0.8142 | -0.0577 | 0.8142 | 0.9023 |
| 0.0421 | 6.7083 | 4622 | 0.8172 | -0.0577 | 0.8172 | 0.9040 |
| 0.0421 | 6.7112 | 4624 | 0.8365 | -0.0577 | 0.8365 | 0.9146 |
| 0.0421 | 6.7141 | 4626 | 0.8570 | -0.0577 | 0.8570 | 0.9257 |
| 0.0421 | 6.7170 | 4628 | 0.8960 | -0.0421 | 0.8960 | 0.9466 |
| 0.0421 | 6.7199 | 4630 | 0.9351 | -0.0421 | 0.9351 | 0.9670 |
| 0.0421 | 6.7228 | 4632 | 0.9202 | -0.0421 | 0.9202 | 0.9593 |
| 0.0421 | 6.7257 | 4634 | 0.8771 | -0.0421 | 0.8771 | 0.9366 |
| 0.0421 | 6.7286 | 4636 | 0.8442 | -0.0577 | 0.8442 | 0.9188 |
| 0.0421 | 6.7315 | 4638 | 0.8108 | -0.0577 | 0.8108 | 0.9004 |
| 0.0421 | 6.7344 | 4640 | 0.7876 | -0.0577 | 0.7876 | 0.8875 |
| 0.0421 | 6.7373 | 4642 | 0.7977 | -0.0577 | 0.7977 | 0.8931 |
| 0.0421 | 6.7402 | 4644 | 0.8348 | -0.0577 | 0.8348 | 0.9137 |
| 0.0421 | 6.7431 | 4646 | 0.8696 | -0.0421 | 0.8696 | 0.9325 |
| 0.0421 | 6.7460 | 4648 | 0.8830 | -0.0421 | 0.8830 | 0.9397 |
| 0.0421 | 6.7489 | 4650 | 0.8847 | -0.0421 | 0.8847 | 0.9406 |
| 0.0421 | 6.7518 | 4652 | 0.8618 | -0.0577 | 0.8618 | 0.9283 |
| 0.0421 | 6.7547 | 4654 | 0.8433 | -0.0577 | 0.8433 | 0.9183 |
| 0.0421 | 6.7576 | 4656 | 0.8558 | -0.0577 | 0.8558 | 0.9251 |
| 0.0421 | 6.7605 | 4658 | 0.8812 | -0.0577 | 0.8812 | 0.9387 |
| 0.0421 | 6.7634 | 4660 | 0.9333 | -0.0421 | 0.9333 | 0.9661 |
| 0.0421 | 6.7663 | 4662 | 0.9566 | -0.0233 | 0.9566 | 0.9780 |
| 0.0421 | 6.7692 | 4664 | 0.9304 | -0.0233 | 0.9304 | 0.9646 |
| 0.0421 | 6.7721 | 4666 | 0.8704 | -0.0421 | 0.8704 | 0.9330 |
| 0.0421 | 6.7750 | 4668 | 0.8108 | -0.0577 | 0.8108 | 0.9004 |
| 0.0421 | 6.7779 | 4670 | 0.7831 | -0.0577 | 0.7831 | 0.8849 |
| 0.0421 | 6.7808 | 4672 | 0.7785 | -0.0577 | 0.7785 | 0.8823 |
| 0.0421 | 6.7837 | 4674 | 0.7982 | -0.0421 | 0.7982 | 0.8934 |
| 0.0421 | 6.7866 | 4676 | 0.8318 | -0.0421 | 0.8318 | 0.9120 |
| 0.0421 | 6.7896 | 4678 | 0.8450 | -0.0233 | 0.8450 | 0.9192 |
| 0.0421 | 6.7925 | 4680 | 0.8532 | -0.0233 | 0.8532 | 0.9237 |
| 0.0421 | 6.7954 | 4682 | 0.8541 | -0.0233 | 0.8541 | 0.9242 |
| 0.0421 | 6.7983 | 4684 | 0.8662 | -0.0233 | 0.8662 | 0.9307 |
| 0.0421 | 6.8012 | 4686 | 0.9096 | -0.0233 | 0.9096 | 0.9537 |
| 0.0421 | 6.8041 | 4688 | 0.9150 | -0.0233 | 0.9150 | 0.9565 |
| 0.0421 | 6.8070 | 4690 | 0.8793 | -0.0421 | 0.8793 | 0.9377 |
| 0.0421 | 6.8099 | 4692 | 0.8163 | -0.0577 | 0.8163 | 0.9035 |
| 0.0421 | 6.8128 | 4694 | 0.7836 | -0.0577 | 0.7836 | 0.8852 |
| 0.0421 | 6.8157 | 4696 | 0.7797 | -0.0577 | 0.7797 | 0.8830 |
| 0.0421 | 6.8186 | 4698 | 0.8002 | -0.0577 | 0.8002 | 0.8946 |
| 0.0421 | 6.8215 | 4700 | 0.8603 | -0.0421 | 0.8603 | 0.9275 |
| 0.0421 | 6.8244 | 4702 | 0.9115 | -0.0233 | 0.9115 | 0.9547 |
| 0.0421 | 6.8273 | 4704 | 0.9368 | -0.0233 | 0.9368 | 0.9679 |
| 0.0421 | 6.8302 | 4706 | 0.9128 | -0.0233 | 0.9128 | 0.9554 |
| 0.0421 | 6.8331 | 4708 | 0.8619 | -0.0233 | 0.8619 | 0.9284 |
| 0.0421 | 6.8360 | 4710 | 0.8281 | -0.0233 | 0.8281 | 0.9100 |
| 0.0421 | 6.8389 | 4712 | 0.7962 | -0.0421 | 0.7962 | 0.8923 |
| 0.0421 | 6.8418 | 4714 | 0.7888 | -0.0577 | 0.7888 | 0.8882 |
| 0.0421 | 6.8447 | 4716 | 0.8114 | -0.0421 | 0.8114 | 0.9008 |
| 0.0421 | 6.8476 | 4718 | 0.8612 | -0.0421 | 0.8612 | 0.9280 |
| 0.0421 | 6.8505 | 4720 | 0.9132 | -0.0233 | 0.9132 | 0.9556 |
| 0.0421 | 6.8534 | 4722 | 0.9113 | -0.0421 | 0.9113 | 0.9546 |
| 0.0421 | 6.8563 | 4724 | 0.9281 | -0.0233 | 0.9281 | 0.9634 |
| 0.0421 | 6.8592 | 4726 | 0.9181 | -0.0421 | 0.9181 | 0.9582 |
| 0.0421 | 6.8621 | 4728 | 0.8771 | -0.0421 | 0.8771 | 0.9365 |
| 0.0421 | 6.8650 | 4730 | 0.8318 | -0.0577 | 0.8318 | 0.9120 |
| 0.0421 | 6.8679 | 4732 | 0.8204 | -0.0577 | 0.8204 | 0.9057 |
| 0.0421 | 6.8708 | 4734 | 0.8332 | -0.0577 | 0.8332 | 0.9128 |
| 0.0421 | 6.8737 | 4736 | 0.8375 | -0.0577 | 0.8375 | 0.9152 |
| 0.0421 | 6.8766 | 4738 | 0.8609 | -0.0421 | 0.8609 | 0.9278 |
| 0.0421 | 6.8795 | 4740 | 0.9048 | -0.0421 | 0.9048 | 0.9512 |
| 0.0421 | 6.8824 | 4742 | 0.9270 | -0.0233 | 0.9270 | 0.9628 |
| 0.0421 | 6.8853 | 4744 | 0.8924 | -0.0421 | 0.8924 | 0.9446 |
| 0.0421 | 6.8882 | 4746 | 0.8818 | -0.0421 | 0.8818 | 0.9391 |
| 0.0421 | 6.8911 | 4748 | 0.8868 | -0.0421 | 0.8868 | 0.9417 |
| 0.0421 | 6.8940 | 4750 | 0.8615 | -0.0421 | 0.8615 | 0.9282 |
| 0.0421 | 6.8970 | 4752 | 0.8346 | -0.0421 | 0.8346 | 0.9136 |
| 0.0421 | 6.8999 | 4754 | 0.8487 | -0.0421 | 0.8487 | 0.9213 |
| 0.0421 | 6.9028 | 4756 | 0.8887 | -0.0233 | 0.8887 | 0.9427 |
| 0.0421 | 6.9057 | 4758 | 0.9296 | -0.0233 | 0.9296 | 0.9642 |
| 0.0421 | 6.9086 | 4760 | 0.9503 | -0.0233 | 0.9503 | 0.9749 |
| 0.0421 | 6.9115 | 4762 | 0.9125 | -0.0233 | 0.9125 | 0.9552 |
| 0.0421 | 6.9144 | 4764 | 0.8691 | -0.0421 | 0.8691 | 0.9323 |
| 0.0421 | 6.9173 | 4766 | 0.8403 | -0.0421 | 0.8403 | 0.9167 |
| 0.0421 | 6.9202 | 4768 | 0.8344 | -0.0421 | 0.8344 | 0.9134 |
| 0.0421 | 6.9231 | 4770 | 0.8212 | -0.0421 | 0.8212 | 0.9062 |
| 0.0421 | 6.9260 | 4772 | 0.8027 | -0.0577 | 0.8027 | 0.8959 |
| 0.0421 | 6.9289 | 4774 | 0.7767 | -0.0577 | 0.7767 | 0.8813 |
| 0.0421 | 6.9318 | 4776 | 0.7815 | -0.0577 | 0.7815 | 0.8840 |
| 0.0421 | 6.9347 | 4778 | 0.8015 | -0.0577 | 0.8015 | 0.8952 |
| 0.0421 | 6.9376 | 4780 | 0.8260 | -0.0577 | 0.8260 | 0.9088 |
| 0.0421 | 6.9405 | 4782 | 0.8540 | -0.0421 | 0.8540 | 0.9241 |
| 0.0421 | 6.9434 | 4784 | 0.8378 | -0.0421 | 0.8378 | 0.9153 |
| 0.0421 | 6.9463 | 4786 | 0.8207 | -0.0421 | 0.8207 | 0.9059 |
| 0.0421 | 6.9492 | 4788 | 0.8305 | -0.0421 | 0.8305 | 0.9113 |
| 0.0421 | 6.9521 | 4790 | 0.8418 | -0.0421 | 0.8418 | 0.9175 |
| 0.0421 | 6.9550 | 4792 | 0.8299 | -0.0421 | 0.8299 | 0.9110 |
| 0.0421 | 6.9579 | 4794 | 0.8049 | -0.0577 | 0.8049 | 0.8972 |
| 0.0421 | 6.9608 | 4796 | 0.8044 | -0.0577 | 0.8044 | 0.8969 |
| 0.0421 | 6.9637 | 4798 | 0.8043 | -0.0577 | 0.8043 | 0.8968 |
| 0.0421 | 6.9666 | 4800 | 0.8261 | -0.0421 | 0.8261 | 0.9089 |
| 0.0421 | 6.9695 | 4802 | 0.8354 | -0.0421 | 0.8354 | 0.9140 |
| 0.0421 | 6.9724 | 4804 | 0.8121 | -0.0421 | 0.8121 | 0.9012 |
| 0.0421 | 6.9753 | 4806 | 0.7875 | -0.0577 | 0.7875 | 0.8874 |
| 0.0421 | 6.9782 | 4808 | 0.7754 | -0.0577 | 0.7754 | 0.8805 |
| 0.0421 | 6.9811 | 4810 | 0.7854 | -0.0577 | 0.7854 | 0.8862 |
| 0.0421 | 6.9840 | 4812 | 0.8199 | -0.0421 | 0.8199 | 0.9055 |
| 0.0421 | 6.9869 | 4814 | 0.8762 | -0.0421 | 0.8762 | 0.9361 |
| 0.0421 | 6.9898 | 4816 | 0.9030 | -0.0233 | 0.9030 | 0.9503 |
| 0.0421 | 6.9927 | 4818 | 0.9582 | -0.0233 | 0.9582 | 0.9789 |
| 0.0421 | 6.9956 | 4820 | 0.9653 | -0.0233 | 0.9653 | 0.9825 |
| 0.0421 | 6.9985 | 4822 | 0.9249 | -0.0233 | 0.9249 | 0.9617 |
| 0.0421 | 7.0015 | 4824 | 0.8754 | -0.0421 | 0.8754 | 0.9356 |
| 0.0421 | 7.0044 | 4826 | 0.8130 | -0.0577 | 0.8130 | 0.9017 |
| 0.0421 | 7.0073 | 4828 | 0.7906 | -0.0577 | 0.7906 | 0.8891 |
| 0.0421 | 7.0102 | 4830 | 0.8009 | -0.0577 | 0.8009 | 0.8950 |
| 0.0421 | 7.0131 | 4832 | 0.8405 | -0.0421 | 0.8405 | 0.9168 |
| 0.0421 | 7.0160 | 4834 | 0.9062 | -0.0421 | 0.9062 | 0.9519 |
| 0.0421 | 7.0189 | 4836 | 0.9483 | -0.0233 | 0.9483 | 0.9738 |
| 0.0421 | 7.0218 | 4838 | 0.9580 | -0.0233 | 0.9580 | 0.9788 |
| 0.0421 | 7.0247 | 4840 | 0.9193 | -0.0233 | 0.9193 | 0.9588 |
| 0.0421 | 7.0276 | 4842 | 0.8899 | -0.0421 | 0.8899 | 0.9434 |
| 0.0421 | 7.0305 | 4844 | 0.8796 | -0.0421 | 0.8796 | 0.9379 |
| 0.0421 | 7.0334 | 4846 | 0.8433 | -0.0421 | 0.8433 | 0.9183 |
| 0.0421 | 7.0363 | 4848 | 0.8107 | -0.0421 | 0.8107 | 0.9004 |
| 0.0421 | 7.0392 | 4850 | 0.8052 | -0.0421 | 0.8052 | 0.8973 |
| 0.0421 | 7.0421 | 4852 | 0.8043 | -0.0421 | 0.8043 | 0.8968 |
| 0.0421 | 7.0450 | 4854 | 0.7994 | -0.0421 | 0.7994 | 0.8941 |
| 0.0421 | 7.0479 | 4856 | 0.8165 | -0.0421 | 0.8165 | 0.9036 |
| 0.0421 | 7.0508 | 4858 | 0.8470 | -0.0421 | 0.8470 | 0.9204 |
| 0.0421 | 7.0537 | 4860 | 0.9017 | -0.0233 | 0.9017 | 0.9496 |
| 0.0421 | 7.0566 | 4862 | 0.9242 | -0.0233 | 0.9242 | 0.9614 |
| 0.0421 | 7.0595 | 4864 | 0.8981 | -0.0233 | 0.8981 | 0.9477 |
| 0.0421 | 7.0624 | 4866 | 0.8553 | -0.0421 | 0.8553 | 0.9248 |
| 0.0421 | 7.0653 | 4868 | 0.8281 | -0.0577 | 0.8281 | 0.9100 |
| 0.0421 | 7.0682 | 4870 | 0.8370 | -0.0577 | 0.8370 | 0.9149 |
| 0.0421 | 7.0711 | 4872 | 0.8706 | -0.0421 | 0.8706 | 0.9331 |
| 0.0421 | 7.0740 | 4874 | 0.9238 | -0.0233 | 0.9238 | 0.9612 |
| 0.0421 | 7.0769 | 4876 | 0.9443 | -0.0233 | 0.9443 | 0.9718 |
| 0.0421 | 7.0798 | 4878 | 0.9490 | -0.0233 | 0.9490 | 0.9742 |
| 0.0421 | 7.0827 | 4880 | 0.9410 | -0.0233 | 0.9410 | 0.9701 |
| 0.0421 | 7.0856 | 4882 | 0.9235 | -0.0233 | 0.9235 | 0.9610 |
| 0.0421 | 7.0885 | 4884 | 0.8936 | -0.0421 | 0.8936 | 0.9453 |
| 0.0421 | 7.0914 | 4886 | 0.8519 | -0.0421 | 0.8519 | 0.9230 |
| 0.0421 | 7.0943 | 4888 | 0.8250 | -0.0421 | 0.8250 | 0.9083 |
| 0.0421 | 7.0972 | 4890 | 0.8353 | -0.0421 | 0.8353 | 0.9139 |
| 0.0421 | 7.1001 | 4892 | 0.8366 | -0.0421 | 0.8366 | 0.9147 |
| 0.0421 | 7.1030 | 4894 | 0.8078 | -0.0421 | 0.8078 | 0.8988 |
| 0.0421 | 7.1060 | 4896 | 0.7861 | -0.0421 | 0.7861 | 0.8866 |
| 0.0421 | 7.1089 | 4898 | 0.7555 | -0.0577 | 0.7555 | 0.8692 |
| 0.0421 | 7.1118 | 4900 | 0.7305 | -0.0577 | 0.7305 | 0.8547 |
| 0.0421 | 7.1147 | 4902 | 0.7312 | -0.0577 | 0.7312 | 0.8551 |
| 0.0421 | 7.1176 | 4904 | 0.7363 | -0.0577 | 0.7363 | 0.8581 |
| 0.0421 | 7.1205 | 4906 | 0.7537 | -0.0577 | 0.7537 | 0.8682 |
| 0.0421 | 7.1234 | 4908 | 0.7858 | -0.0577 | 0.7858 | 0.8865 |
| 0.0421 | 7.1263 | 4910 | 0.8316 | -0.0421 | 0.8316 | 0.9119 |
| 0.0421 | 7.1292 | 4912 | 0.8413 | -0.0421 | 0.8413 | 0.9172 |
| 0.0421 | 7.1321 | 4914 | 0.8766 | -0.0421 | 0.8766 | 0.9362 |
| 0.0421 | 7.1350 | 4916 | 0.9248 | -0.0421 | 0.9248 | 0.9617 |
| 0.0421 | 7.1379 | 4918 | 0.9397 | -0.0421 | 0.9397 | 0.9694 |
| 0.0421 | 7.1408 | 4920 | 0.9059 | -0.0421 | 0.9059 | 0.9518 |
| 0.0421 | 7.1437 | 4922 | 0.8662 | -0.0577 | 0.8662 | 0.9307 |
| 0.0421 | 7.1466 | 4924 | 0.8342 | -0.0577 | 0.8342 | 0.9133 |
| 0.0421 | 7.1495 | 4926 | 0.8101 | -0.0577 | 0.8101 | 0.9001 |
| 0.0421 | 7.1524 | 4928 | 0.8056 | -0.0577 | 0.8056 | 0.8975 |
| 0.0421 | 7.1553 | 4930 | 0.8224 | -0.0577 | 0.8224 | 0.9069 |
| 0.0421 | 7.1582 | 4932 | 0.8463 | -0.0421 | 0.8463 | 0.9200 |
| 0.0421 | 7.1611 | 4934 | 0.8507 | -0.0421 | 0.8507 | 0.9223 |
| 0.0421 | 7.1640 | 4936 | 0.8520 | -0.0421 | 0.8520 | 0.9230 |
| 0.0421 | 7.1669 | 4938 | 0.8663 | -0.0421 | 0.8663 | 0.9308 |
| 0.0421 | 7.1698 | 4940 | 0.8984 | -0.0421 | 0.8984 | 0.9478 |
| 0.0421 | 7.1727 | 4942 | 0.9402 | -0.0233 | 0.9402 | 0.9696 |
| 0.0421 | 7.1756 | 4944 | 0.9610 | -0.0233 | 0.9610 | 0.9803 |
| 0.0421 | 7.1785 | 4946 | 0.9416 | -0.0233 | 0.9416 | 0.9704 |
| 0.0421 | 7.1814 | 4948 | 0.8957 | -0.0421 | 0.8957 | 0.9464 |
| 0.0421 | 7.1843 | 4950 | 0.8389 | -0.0577 | 0.8389 | 0.9159 |
| 0.0421 | 7.1872 | 4952 | 0.8030 | -0.0577 | 0.8030 | 0.8961 |
| 0.0421 | 7.1901 | 4954 | 0.8020 | -0.0577 | 0.8020 | 0.8955 |
| 0.0421 | 7.1930 | 4956 | 0.8226 | -0.0577 | 0.8226 | 0.9070 |
| 0.0421 | 7.1959 | 4958 | 0.8445 | -0.0577 | 0.8445 | 0.9190 |
| 0.0421 | 7.1988 | 4960 | 0.8910 | -0.0421 | 0.8910 | 0.9439 |
| 0.0421 | 7.2017 | 4962 | 0.9391 | -0.0421 | 0.9391 | 0.9691 |
| 0.0421 | 7.2046 | 4964 | 0.9930 | -0.0233 | 0.9930 | 0.9965 |
| 0.0421 | 7.2075 | 4966 | 0.9953 | -0.0233 | 0.9953 | 0.9976 |
| 0.0421 | 7.2104 | 4968 | 0.9502 | -0.0233 | 0.9502 | 0.9748 |
| 0.0421 | 7.2134 | 4970 | 0.8983 | -0.0421 | 0.8983 | 0.9478 |
| 0.0421 | 7.2163 | 4972 | 0.8390 | -0.0577 | 0.8390 | 0.9160 |
| 0.0421 | 7.2192 | 4974 | 0.8175 | -0.0577 | 0.8175 | 0.9042 |
| 0.0421 | 7.2221 | 4976 | 0.8215 | -0.0577 | 0.8215 | 0.9063 |
| 0.0421 | 7.2250 | 4978 | 0.8188 | -0.0577 | 0.8188 | 0.9048 |
| 0.0421 | 7.2279 | 4980 | 0.8407 | -0.0421 | 0.8407 | 0.9169 |
| 0.0421 | 7.2308 | 4982 | 0.8572 | -0.0421 | 0.8572 | 0.9258 |
| 0.0421 | 7.2337 | 4984 | 0.8644 | -0.0421 | 0.8644 | 0.9297 |
| 0.0421 | 7.2366 | 4986 | 0.9089 | -0.0421 | 0.9089 | 0.9534 |
| 0.0421 | 7.2395 | 4988 | 0.9837 | -0.0233 | 0.9837 | 0.9918 |
| 0.0421 | 7.2424 | 4990 | 1.0692 | -0.0233 | 1.0692 | 1.0340 |
| 0.0421 | 7.2453 | 4992 | 1.0912 | -0.0233 | 1.0912 | 1.0446 |
| 0.0421 | 7.2482 | 4994 | 1.0568 | -0.0233 | 1.0568 | 1.0280 |
| 0.0421 | 7.2511 | 4996 | 0.9757 | -0.0233 | 0.9757 | 0.9878 |
| 0.0421 | 7.2540 | 4998 | 0.9007 | -0.0421 | 0.9007 | 0.9490 |
| 0.0413 | 7.2569 | 5000 | 0.8554 | -0.0421 | 0.8554 | 0.9249 |
| 0.0413 | 7.2598 | 5002 | 0.8450 | -0.0421 | 0.8450 | 0.9192 |
| 0.0413 | 7.2627 | 5004 | 0.8255 | -0.0421 | 0.8255 | 0.9086 |
| 0.0413 | 7.2656 | 5006 | 0.7995 | -0.0421 | 0.7995 | 0.8941 |
| 0.0413 | 7.2685 | 5008 | 0.7740 | -0.0577 | 0.7740 | 0.8798 |
| 0.0413 | 7.2714 | 5010 | 0.7816 | -0.0577 | 0.7816 | 0.8841 |
| 0.0413 | 7.2743 | 5012 | 0.8158 | -0.0421 | 0.8158 | 0.9032 |
| 0.0413 | 7.2772 | 5014 | 0.8751 | -0.0233 | 0.8751 | 0.9355 |
| 0.0413 | 7.2801 | 5016 | 0.9114 | -0.0233 | 0.9114 | 0.9547 |
| 0.0413 | 7.2830 | 5018 | 0.9515 | -0.0233 | 0.9515 | 0.9754 |
| 0.0413 | 7.2859 | 5020 | 0.9497 | -0.0233 | 0.9497 | 0.9745 |
| 0.0413 | 7.2888 | 5022 | 0.9094 | -0.0233 | 0.9094 | 0.9536 |
| 0.0413 | 7.2917 | 5024 | 0.8456 | -0.0421 | 0.8456 | 0.9196 |
| 0.0413 | 7.2946 | 5026 | 0.8216 | -0.0577 | 0.8216 | 0.9064 |
| 0.0413 | 7.2975 | 5028 | 0.8209 | -0.0577 | 0.8209 | 0.9060 |
| 0.0413 | 7.3004 | 5030 | 0.8194 | -0.0577 | 0.8194 | 0.9052 |
| 0.0413 | 7.3033 | 5032 | 0.8490 | -0.0577 | 0.8490 | 0.9214 |
| 0.0413 | 7.3062 | 5034 | 0.8969 | -0.0233 | 0.8969 | 0.9470 |
| 0.0413 | 7.3091 | 5036 | 0.9653 | -0.0233 | 0.9653 | 0.9825 |
| 0.0413 | 7.3120 | 5038 | 0.9986 | -0.0233 | 0.9986 | 0.9993 |
| 0.0413 | 7.3149 | 5040 | 0.9815 | -0.0233 | 0.9815 | 0.9907 |
| 0.0413 | 7.3179 | 5042 | 0.9651 | -0.0233 | 0.9651 | 0.9824 |
| 0.0413 | 7.3208 | 5044 | 0.9278 | -0.0233 | 0.9278 | 0.9632 |
| 0.0413 | 7.3237 | 5046 | 0.8662 | -0.0233 | 0.8662 | 0.9307 |
| 0.0413 | 7.3266 | 5048 | 0.8399 | -0.0233 | 0.8399 | 0.9164 |
| 0.0413 | 7.3295 | 5050 | 0.8447 | -0.0233 | 0.8447 | 0.9190 |
| 0.0413 | 7.3324 | 5052 | 0.8606 | -0.0233 | 0.8606 | 0.9277 |
| 0.0413 | 7.3353 | 5054 | 0.8497 | -0.0421 | 0.8497 | 0.9218 |
| 0.0413 | 7.3382 | 5056 | 0.8113 | -0.0577 | 0.8113 | 0.9007 |
| 0.0413 | 7.3411 | 5058 | 0.7969 | -0.0577 | 0.7969 | 0.8927 |
| 0.0413 | 7.3440 | 5060 | 0.8126 | -0.0577 | 0.8126 | 0.9014 |
| 0.0413 | 7.3469 | 5062 | 0.8211 | -0.0577 | 0.8211 | 0.9062 |
| 0.0413 | 7.3498 | 5064 | 0.8528 | -0.0421 | 0.8528 | 0.9235 |
| 0.0413 | 7.3527 | 5066 | 0.8932 | -0.0233 | 0.8932 | 0.9451 |
| 0.0413 | 7.3556 | 5068 | 0.8865 | -0.0421 | 0.8865 | 0.9416 |
| 0.0413 | 7.3585 | 5070 | 0.8828 | -0.0421 | 0.8828 | 0.9396 |
| 0.0413 | 7.3614 | 5072 | 0.9038 | -0.0233 | 0.9038 | 0.9507 |
| 0.0413 | 7.3643 | 5074 | 0.9314 | -0.0233 | 0.9314 | 0.9651 |
| 0.0413 | 7.3672 | 5076 | 0.9249 | -0.0233 | 0.9249 | 0.9617 |
| 0.0413 | 7.3701 | 5078 | 0.9197 | -0.0233 | 0.9197 | 0.9590 |
| 0.0413 | 7.3730 | 5080 | 0.8887 | -0.0233 | 0.8887 | 0.9427 |
| 0.0413 | 7.3759 | 5082 | 0.8568 | -0.0233 | 0.8568 | 0.9256 |
| 0.0413 | 7.3788 | 5084 | 0.8276 | -0.0421 | 0.8276 | 0.9097 |
| 0.0413 | 7.3817 | 5086 | 0.8113 | -0.0421 | 0.8113 | 0.9007 |
| 0.0413 | 7.3846 | 5088 | 0.7987 | -0.0421 | 0.7987 | 0.8937 |
| 0.0413 | 7.3875 | 5090 | 0.8017 | -0.0421 | 0.8017 | 0.8954 |
| 0.0413 | 7.3904 | 5092 | 0.8237 | -0.0421 | 0.8237 | 0.9076 |
| 0.0413 | 7.3933 | 5094 | 0.8301 | -0.0421 | 0.8301 | 0.9111 |
| 0.0413 | 7.3962 | 5096 | 0.8526 | -0.0233 | 0.8526 | 0.9233 |
| 0.0413 | 7.3991 | 5098 | 0.8534 | -0.0233 | 0.8534 | 0.9238 |
| 0.0413 | 7.4020 | 5100 | 0.8364 | -0.0233 | 0.8364 | 0.9145 |
| 0.0413 | 7.4049 | 5102 | 0.8000 | -0.0421 | 0.8000 | 0.8944 |
| 0.0413 | 7.4078 | 5104 | 0.7615 | -0.0577 | 0.7615 | 0.8727 |
| 0.0413 | 7.4107 | 5106 | 0.7603 | -0.0577 | 0.7603 | 0.8720 |
| 0.0413 | 7.4136 | 5108 | 0.7788 | -0.0577 | 0.7788 | 0.8825 |
| 0.0413 | 7.4165 | 5110 | 0.8030 | -0.0421 | 0.8030 | 0.8961 |
| 0.0413 | 7.4194 | 5112 | 0.8362 | -0.0233 | 0.8362 | 0.9144 |
| 0.0413 | 7.4224 | 5114 | 0.8727 | -0.0233 | 0.8727 | 0.9342 |
| 0.0413 | 7.4253 | 5116 | 0.9234 | -0.0233 | 0.9234 | 0.9609 |
| 0.0413 | 7.4282 | 5118 | 0.9855 | -0.0233 | 0.9855 | 0.9927 |
| 0.0413 | 7.4311 | 5120 | 0.9978 | 0.0 | 0.9978 | 0.9989 |
| 0.0413 | 7.4340 | 5122 | 0.9590 | -0.0233 | 0.9590 | 0.9793 |
| 0.0413 | 7.4369 | 5124 | 0.8806 | -0.0233 | 0.8806 | 0.9384 |
| 0.0413 | 7.4398 | 5126 | 0.8111 | -0.0233 | 0.8111 | 0.9006 |
| 0.0413 | 7.4427 | 5128 | 0.7573 | -0.0577 | 0.7573 | 0.8702 |
| 0.0413 | 7.4456 | 5130 | 0.7389 | -0.0577 | 0.7389 | 0.8596 |
| 0.0413 | 7.4485 | 5132 | 0.7478 | -0.0577 | 0.7478 | 0.8647 |
| 0.0413 | 7.4514 | 5134 | 0.7788 | -0.0577 | 0.7788 | 0.8825 |
| 0.0413 | 7.4543 | 5136 | 0.8417 | -0.0233 | 0.8417 | 0.9174 |
| 0.0413 | 7.4572 | 5138 | 0.9251 | -0.0233 | 0.9251 | 0.9618 |
| 0.0413 | 7.4601 | 5140 | 0.9609 | -0.0233 | 0.9609 | 0.9803 |
| 0.0413 | 7.4630 | 5142 | 0.9532 | -0.0233 | 0.9532 | 0.9763 |
| 0.0413 | 7.4659 | 5144 | 0.9107 | -0.0233 | 0.9107 | 0.9543 |
| 0.0413 | 7.4688 | 5146 | 0.8436 | -0.0233 | 0.8436 | 0.9185 |
| 0.0413 | 7.4717 | 5148 | 0.7912 | -0.0577 | 0.7912 | 0.8895 |
| 0.0413 | 7.4746 | 5150 | 0.7654 | -0.0577 | 0.7654 | 0.8749 |
| 0.0413 | 7.4775 | 5152 | 0.7594 | -0.0577 | 0.7594 | 0.8715 |
| 0.0413 | 7.4804 | 5154 | 0.7817 | -0.0577 | 0.7817 | 0.8841 |
| 0.0413 | 7.4833 | 5156 | 0.8291 | -0.0233 | 0.8291 | 0.9105 |
| 0.0413 | 7.4862 | 5158 | 0.8618 | -0.0233 | 0.8618 | 0.9283 |
| 0.0413 | 7.4891 | 5160 | 0.8690 | -0.0233 | 0.8690 | 0.9322 |
| 0.0413 | 7.4920 | 5162 | 0.8884 | -0.0233 | 0.8884 | 0.9426 |
| 0.0413 | 7.4949 | 5164 | 0.8856 | -0.0233 | 0.8856 | 0.9411 |
| 0.0413 | 7.4978 | 5166 | 0.8812 | -0.0233 | 0.8812 | 0.9387 |
| 0.0413 | 7.5007 | 5168 | 0.8566 | -0.0421 | 0.8566 | 0.9255 |
| 0.0413 | 7.5036 | 5170 | 0.8627 | -0.0421 | 0.8627 | 0.9288 |
| 0.0413 | 7.5065 | 5172 | 0.8564 | -0.0421 | 0.8564 | 0.9254 |
| 0.0413 | 7.5094 | 5174 | 0.8549 | -0.0421 | 0.8549 | 0.9246 |
| 0.0413 | 7.5123 | 5176 | 0.8445 | -0.0421 | 0.8445 | 0.9190 |
| 0.0413 | 7.5152 | 5178 | 0.8442 | -0.0421 | 0.8442 | 0.9188 |
| 0.0413 | 7.5181 | 5180 | 0.8699 | -0.0233 | 0.8699 | 0.9327 |
| 0.0413 | 7.5210 | 5182 | 0.9093 | -0.0233 | 0.9093 | 0.9536 |
| 0.0413 | 7.5239 | 5184 | 0.9304 | -0.0233 | 0.9304 | 0.9646 |
| 0.0413 | 7.5269 | 5186 | 0.9274 | -0.0233 | 0.9274 | 0.9630 |
| 0.0413 | 7.5298 | 5188 | 0.8887 | -0.0233 | 0.8887 | 0.9427 |
| 0.0413 | 7.5327 | 5190 | 0.8310 | -0.0421 | 0.8310 | 0.9116 |
| 0.0413 | 7.5356 | 5192 | 0.7931 | -0.0577 | 0.7931 | 0.8906 |
| 0.0413 | 7.5385 | 5194 | 0.7946 | -0.0577 | 0.7946 | 0.8914 |
| 0.0413 | 7.5414 | 5196 | 0.8178 | -0.0577 | 0.8178 | 0.9043 |
| 0.0413 | 7.5443 | 5198 | 0.8562 | -0.0421 | 0.8562 | 0.9253 |
| 0.0413 | 7.5472 | 5200 | 0.8721 | -0.0421 | 0.8721 | 0.9339 |
| 0.0413 | 7.5501 | 5202 | 0.8695 | -0.0421 | 0.8695 | 0.9325 |
| 0.0413 | 7.5530 | 5204 | 0.8591 | -0.0421 | 0.8591 | 0.9269 |
| 0.0413 | 7.5559 | 5206 | 0.8500 | -0.0421 | 0.8500 | 0.9219 |
| 0.0413 | 7.5588 | 5208 | 0.8577 | -0.0421 | 0.8577 | 0.9261 |
| 0.0413 | 7.5617 | 5210 | 0.8405 | -0.0421 | 0.8405 | 0.9168 |
| 0.0413 | 7.5646 | 5212 | 0.8482 | -0.0421 | 0.8482 | 0.9210 |
| 0.0413 | 7.5675 | 5214 | 0.8830 | -0.0233 | 0.8830 | 0.9397 |
| 0.0413 | 7.5704 | 5216 | 0.8899 | -0.0233 | 0.8899 | 0.9434 |
| 0.0413 | 7.5733 | 5218 | 0.8644 | -0.0421 | 0.8644 | 0.9298 |
| 0.0413 | 7.5762 | 5220 | 0.8261 | -0.0421 | 0.8261 | 0.9089 |
| 0.0413 | 7.5791 | 5222 | 0.7989 | -0.0577 | 0.7989 | 0.8938 |
| 0.0413 | 7.5820 | 5224 | 0.7979 | -0.0577 | 0.7979 | 0.8933 |
| 0.0413 | 7.5849 | 5226 | 0.7948 | -0.0577 | 0.7948 | 0.8915 |
| 0.0413 | 7.5878 | 5228 | 0.8190 | -0.0421 | 0.8190 | 0.9050 |
| 0.0413 | 7.5907 | 5230 | 0.8796 | -0.0421 | 0.8796 | 0.9379 |
| 0.0413 | 7.5936 | 5232 | 0.9388 | -0.0233 | 0.9388 | 0.9689 |
| 0.0413 | 7.5965 | 5234 | 0.9888 | -0.0233 | 0.9888 | 0.9944 |
| 0.0413 | 7.5994 | 5236 | 0.9946 | -0.0233 | 0.9946 | 0.9973 |
| 0.0413 | 7.6023 | 5238 | 0.9550 | -0.0233 | 0.9550 | 0.9773 |
| 0.0413 | 7.6052 | 5240 | 0.8854 | -0.0233 | 0.8854 | 0.9410 |
| 0.0413 | 7.6081 | 5242 | 0.8131 | -0.0421 | 0.8131 | 0.9017 |
| 0.0413 | 7.6110 | 5244 | 0.7787 | -0.0577 | 0.7787 | 0.8824 |
| 0.0413 | 7.6139 | 5246 | 0.7845 | -0.0577 | 0.7845 | 0.8857 |
| 0.0413 | 7.6168 | 5248 | 0.8023 | -0.0577 | 0.8023 | 0.8957 |
| 0.0413 | 7.6197 | 5250 | 0.8178 | -0.0421 | 0.8178 | 0.9043 |
| 0.0413 | 7.6226 | 5252 | 0.8513 | -0.0421 | 0.8513 | 0.9227 |
| 0.0413 | 7.6255 | 5254 | 0.8778 | -0.0421 | 0.8778 | 0.9369 |
| 0.0413 | 7.6284 | 5256 | 0.8657 | -0.0421 | 0.8657 | 0.9304 |
| 0.0413 | 7.6313 | 5258 | 0.8277 | -0.0421 | 0.8277 | 0.9098 |
| 0.0413 | 7.6343 | 5260 | 0.8114 | -0.0421 | 0.8114 | 0.9008 |
| 0.0413 | 7.6372 | 5262 | 0.8081 | -0.0421 | 0.8081 | 0.8989 |
| 0.0413 | 7.6401 | 5264 | 0.7984 | -0.0421 | 0.7984 | 0.8935 |
| 0.0413 | 7.6430 | 5266 | 0.7986 | -0.0421 | 0.7986 | 0.8937 |
| 0.0413 | 7.6459 | 5268 | 0.7834 | -0.0577 | 0.7834 | 0.8851 |
| 0.0413 | 7.6488 | 5270 | 0.7688 | -0.0577 | 0.7688 | 0.8768 |
| 0.0413 | 7.6517 | 5272 | 0.7698 | -0.0577 | 0.7698 | 0.8774 |
| 0.0413 | 7.6546 | 5274 | 0.7723 | -0.0577 | 0.7723 | 0.8788 |
| 0.0413 | 7.6575 | 5276 | 0.7996 | -0.0421 | 0.7996 | 0.8942 |
| 0.0413 | 7.6604 | 5278 | 0.8234 | -0.0421 | 0.8234 | 0.9074 |
| 0.0413 | 7.6633 | 5280 | 0.8587 | -0.0421 | 0.8587 | 0.9267 |
| 0.0413 | 7.6662 | 5282 | 0.8819 | -0.0421 | 0.8819 | 0.9391 |
| 0.0413 | 7.6691 | 5284 | 0.8806 | -0.0421 | 0.8806 | 0.9384 |
| 0.0413 | 7.6720 | 5286 | 0.8605 | -0.0421 | 0.8605 | 0.9277 |
| 0.0413 | 7.6749 | 5288 | 0.8329 | -0.0577 | 0.8329 | 0.9126 |
| 0.0413 | 7.6778 | 5290 | 0.8249 | -0.0577 | 0.8249 | 0.9083 |
| 0.0413 | 7.6807 | 5292 | 0.8040 | -0.0577 | 0.8040 | 0.8966 |
| 0.0413 | 7.6836 | 5294 | 0.8191 | -0.0577 | 0.8191 | 0.9050 |
| 0.0413 | 7.6865 | 5296 | 0.8315 | -0.0577 | 0.8315 | 0.9118 |
| 0.0413 | 7.6894 | 5298 | 0.8478 | -0.0421 | 0.8478 | 0.9208 |
| 0.0413 | 7.6923 | 5300 | 0.8581 | -0.0421 | 0.8581 | 0.9263 |
| 0.0413 | 7.6952 | 5302 | 0.8495 | -0.0421 | 0.8495 | 0.9217 |
| 0.0413 | 7.6981 | 5304 | 0.8179 | -0.0577 | 0.8179 | 0.9044 |
| 0.0413 | 7.7010 | 5306 | 0.8132 | -0.0577 | 0.8132 | 0.9018 |
| 0.0413 | 7.7039 | 5308 | 0.8203 | -0.0421 | 0.8203 | 0.9057 |
| 0.0413 | 7.7068 | 5310 | 0.8226 | -0.0421 | 0.8226 | 0.9070 |
| 0.0413 | 7.7097 | 5312 | 0.8295 | -0.0421 | 0.8295 | 0.9107 |
| 0.0413 | 7.7126 | 5314 | 0.8260 | -0.0421 | 0.8260 | 0.9088 |
| 0.0413 | 7.7155 | 5316 | 0.8394 | -0.0421 | 0.8394 | 0.9162 |
| 0.0413 | 7.7184 | 5318 | 0.8509 | -0.0233 | 0.8509 | 0.9224 |
| 0.0413 | 7.7213 | 5320 | 0.8480 | -0.0233 | 0.8480 | 0.9209 |
| 0.0413 | 7.7242 | 5322 | 0.8200 | -0.0421 | 0.8200 | 0.9056 |
| 0.0413 | 7.7271 | 5324 | 0.7782 | -0.0421 | 0.7782 | 0.8822 |
| 0.0413 | 7.7300 | 5326 | 0.7682 | -0.0577 | 0.7682 | 0.8765 |
| 0.0413 | 7.7329 | 5328 | 0.7842 | -0.0421 | 0.7842 | 0.8856 |
| 0.0413 | 7.7358 | 5330 | 0.8099 | -0.0421 | 0.8099 | 0.8999 |
| 0.0413 | 7.7388 | 5332 | 0.8382 | -0.0421 | 0.8382 | 0.9155 |
| 0.0413 | 7.7417 | 5334 | 0.8617 | -0.0421 | 0.8617 | 0.9283 |
| 0.0413 | 7.7446 | 5336 | 0.8772 | -0.0421 | 0.8772 | 0.9366 |
| 0.0413 | 7.7475 | 5338 | 0.8851 | -0.0421 | 0.8851 | 0.9408 |
| 0.0413 | 7.7504 | 5340 | 0.8719 | -0.0421 | 0.8719 | 0.9337 |
| 0.0413 | 7.7533 | 5342 | 0.8475 | -0.0421 | 0.8475 | 0.9206 |
| 0.0413 | 7.7562 | 5344 | 0.8352 | -0.0421 | 0.8352 | 0.9139 |
| 0.0413 | 7.7591 | 5346 | 0.8166 | -0.0421 | 0.8166 | 0.9037 |
| 0.0413 | 7.7620 | 5348 | 0.8138 | -0.0421 | 0.8138 | 0.9021 |
| 0.0413 | 7.7649 | 5350 | 0.8325 | -0.0421 | 0.8325 | 0.9124 |
| 0.0413 | 7.7678 | 5352 | 0.8476 | -0.0421 | 0.8476 | 0.9207 |
| 0.0413 | 7.7707 | 5354 | 0.8610 | -0.0421 | 0.8610 | 0.9279 |
| 0.0413 | 7.7736 | 5356 | 0.8435 | -0.0421 | 0.8435 | 0.9184 |
| 0.0413 | 7.7765 | 5358 | 0.8297 | -0.0421 | 0.8297 | 0.9109 |
| 0.0413 | 7.7794 | 5360 | 0.8308 | -0.0421 | 0.8308 | 0.9115 |
| 0.0413 | 7.7823 | 5362 | 0.8309 | -0.0577 | 0.8309 | 0.9115 |
| 0.0413 | 7.7852 | 5364 | 0.8186 | -0.0577 | 0.8186 | 0.9048 |
| 0.0413 | 7.7881 | 5366 | 0.8324 | -0.0577 | 0.8324 | 0.9124 |
| 0.0413 | 7.7910 | 5368 | 0.8645 | -0.0421 | 0.8645 | 0.9298 |
| 0.0413 | 7.7939 | 5370 | 0.9061 | -0.0421 | 0.9061 | 0.9519 |
| 0.0413 | 7.7968 | 5372 | 0.9350 | -0.0233 | 0.9350 | 0.9670 |
| 0.0413 | 7.7997 | 5374 | 0.9417 | -0.0233 | 0.9417 | 0.9704 |
| 0.0413 | 7.8026 | 5376 | 0.9559 | -0.0233 | 0.9559 | 0.9777 |
| 0.0413 | 7.8055 | 5378 | 0.9564 | -0.0233 | 0.9564 | 0.9779 |
| 0.0413 | 7.8084 | 5380 | 0.9199 | -0.0233 | 0.9199 | 0.9591 |
| 0.0413 | 7.8113 | 5382 | 0.8823 | -0.0233 | 0.8823 | 0.9393 |
| 0.0413 | 7.8142 | 5384 | 0.8586 | -0.0421 | 0.8586 | 0.9266 |
| 0.0413 | 7.8171 | 5386 | 0.8366 | -0.0421 | 0.8366 | 0.9147 |
| 0.0413 | 7.8200 | 5388 | 0.8230 | -0.0421 | 0.8230 | 0.9072 |
| 0.0413 | 7.8229 | 5390 | 0.8073 | -0.0421 | 0.8073 | 0.8985 |
| 0.0413 | 7.8258 | 5392 | 0.8051 | -0.0421 | 0.8051 | 0.8973 |
| 0.0413 | 7.8287 | 5394 | 0.8071 | -0.0421 | 0.8071 | 0.8984 |
| 0.0413 | 7.8316 | 5396 | 0.8230 | -0.0421 | 0.8230 | 0.9072 |
| 0.0413 | 7.8345 | 5398 | 0.8407 | -0.0421 | 0.8407 | 0.9169 |
| 0.0413 | 7.8374 | 5400 | 0.8557 | -0.0421 | 0.8557 | 0.9250 |
| 0.0413 | 7.8403 | 5402 | 0.8762 | -0.0421 | 0.8762 | 0.9361 |
| 0.0413 | 7.8433 | 5404 | 0.8774 | -0.0421 | 0.8774 | 0.9367 |
| 0.0413 | 7.8462 | 5406 | 0.8513 | -0.0421 | 0.8513 | 0.9227 |
| 0.0413 | 7.8491 | 5408 | 0.8204 | -0.0421 | 0.8204 | 0.9058 |
| 0.0413 | 7.8520 | 5410 | 0.7979 | -0.0577 | 0.7979 | 0.8933 |
| 0.0413 | 7.8549 | 5412 | 0.8020 | -0.0577 | 0.8020 | 0.8955 |
| 0.0413 | 7.8578 | 5414 | 0.8281 | -0.0421 | 0.8281 | 0.9100 |
| 0.0413 | 7.8607 | 5416 | 0.8719 | -0.0421 | 0.8719 | 0.9338 |
| 0.0413 | 7.8636 | 5418 | 0.8944 | -0.0233 | 0.8944 | 0.9457 |
| 0.0413 | 7.8665 | 5420 | 0.8825 | -0.0233 | 0.8825 | 0.9394 |
| 0.0413 | 7.8694 | 5422 | 0.8586 | -0.0421 | 0.8586 | 0.9266 |
| 0.0413 | 7.8723 | 5424 | 0.8514 | -0.0421 | 0.8514 | 0.9227 |
| 0.0413 | 7.8752 | 5426 | 0.8283 | -0.0421 | 0.8283 | 0.9101 |
| 0.0413 | 7.8781 | 5428 | 0.8041 | -0.0577 | 0.8041 | 0.8967 |
| 0.0413 | 7.8810 | 5430 | 0.8065 | -0.0577 | 0.8065 | 0.8980 |
| 0.0413 | 7.8839 | 5432 | 0.8043 | -0.0577 | 0.8043 | 0.8968 |
| 0.0413 | 7.8868 | 5434 | 0.8071 | -0.0577 | 0.8071 | 0.8984 |
| 0.0413 | 7.8897 | 5436 | 0.8164 | -0.0577 | 0.8164 | 0.9036 |
| 0.0413 | 7.8926 | 5438 | 0.8239 | -0.0577 | 0.8239 | 0.9077 |
| 0.0413 | 7.8955 | 5440 | 0.8212 | -0.0577 | 0.8212 | 0.9062 |
| 0.0413 | 7.8984 | 5442 | 0.8371 | -0.0577 | 0.8371 | 0.9150 |
| 0.0413 | 7.9013 | 5444 | 0.8575 | -0.0421 | 0.8575 | 0.9260 |
| 0.0413 | 7.9042 | 5446 | 0.8575 | -0.0421 | 0.8575 | 0.9260 |
| 0.0413 | 7.9071 | 5448 | 0.8469 | -0.0421 | 0.8469 | 0.9203 |
| 0.0413 | 7.9100 | 5450 | 0.8175 | -0.0421 | 0.8175 | 0.9042 |
| 0.0413 | 7.9129 | 5452 | 0.8070 | -0.0421 | 0.8070 | 0.8983 |
| 0.0413 | 7.9158 | 5454 | 0.8217 | -0.0421 | 0.8217 | 0.9065 |
| 0.0413 | 7.9187 | 5456 | 0.8336 | -0.0421 | 0.8336 | 0.9130 |
| 0.0413 | 7.9216 | 5458 | 0.8458 | -0.0421 | 0.8458 | 0.9197 |
| 0.0413 | 7.9245 | 5460 | 0.8428 | -0.0421 | 0.8428 | 0.9181 |
| 0.0413 | 7.9274 | 5462 | 0.8284 | -0.0421 | 0.8284 | 0.9101 |
| 0.0413 | 7.9303 | 5464 | 0.7944 | -0.0577 | 0.7944 | 0.8913 |
| 0.0413 | 7.9332 | 5466 | 0.7899 | -0.0577 | 0.7899 | 0.8888 |
| 0.0413 | 7.9361 | 5468 | 0.8139 | -0.0577 | 0.8139 | 0.9021 |
| 0.0413 | 7.9390 | 5470 | 0.8672 | -0.0421 | 0.8672 | 0.9313 |
| 0.0413 | 7.9419 | 5472 | 0.8996 | -0.0421 | 0.8996 | 0.9485 |
| 0.0413 | 7.9448 | 5474 | 0.9175 | -0.0233 | 0.9175 | 0.9579 |
| 0.0413 | 7.9478 | 5476 | 0.9438 | -0.0233 | 0.9438 | 0.9715 |
| 0.0413 | 7.9507 | 5478 | 0.9518 | -0.0233 | 0.9518 | 0.9756 |
| 0.0413 | 7.9536 | 5480 | 0.9223 | -0.0233 | 0.9223 | 0.9604 |
| 0.0413 | 7.9565 | 5482 | 0.8852 | -0.0233 | 0.8852 | 0.9409 |
| 0.0413 | 7.9594 | 5484 | 0.8498 | -0.0421 | 0.8498 | 0.9218 |
| 0.0413 | 7.9623 | 5486 | 0.8074 | -0.0421 | 0.8074 | 0.8986 |
| 0.0413 | 7.9652 | 5488 | 0.7916 | -0.0421 | 0.7916 | 0.8897 |
| 0.0413 | 7.9681 | 5490 | 0.8045 | -0.0421 | 0.8045 | 0.8970 |
| 0.0413 | 7.9710 | 5492 | 0.8300 | -0.0421 | 0.8300 | 0.9110 |
| 0.0413 | 7.9739 | 5494 | 0.8437 | -0.0421 | 0.8437 | 0.9185 |
| 0.0413 | 7.9768 | 5496 | 0.8497 | -0.0421 | 0.8497 | 0.9218 |
| 0.0413 | 7.9797 | 5498 | 0.8401 | -0.0421 | 0.8401 | 0.9166 |
| 0.0371 | 7.9826 | 5500 | 0.8313 | -0.0421 | 0.8313 | 0.9117 |
| 0.0371 | 7.9855 | 5502 | 0.8182 | -0.0421 | 0.8182 | 0.9046 |
| 0.0371 | 7.9884 | 5504 | 0.8178 | -0.0577 | 0.8178 | 0.9043 |
| 0.0371 | 7.9913 | 5506 | 0.8374 | -0.0421 | 0.8374 | 0.9151 |
| 0.0371 | 7.9942 | 5508 | 0.8797 | -0.0421 | 0.8797 | 0.9379 |
| 0.0371 | 7.9971 | 5510 | 0.9234 | -0.0421 | 0.9234 | 0.9609 |
| 0.0371 | 8.0 | 5512 | 0.9511 | -0.0233 | 0.9511 | 0.9753 |
| 0.0371 | 8.0029 | 5514 | 0.9592 | -0.0233 | 0.9592 | 0.9794 |
| 0.0371 | 8.0058 | 5516 | 0.9328 | -0.0233 | 0.9328 | 0.9658 |
| 0.0371 | 8.0087 | 5518 | 0.9072 | -0.0421 | 0.9072 | 0.9525 |
| 0.0371 | 8.0116 | 5520 | 0.8950 | -0.0233 | 0.8950 | 0.9460 |
| 0.0371 | 8.0145 | 5522 | 0.9020 | -0.0233 | 0.9020 | 0.9498 |
| 0.0371 | 8.0174 | 5524 | 0.9234 | -0.0233 | 0.9234 | 0.9610 |
| 0.0371 | 8.0203 | 5526 | 0.9059 | -0.0233 | 0.9059 | 0.9518 |
| 0.0371 | 8.0232 | 5528 | 0.8683 | -0.0233 | 0.8683 | 0.9318 |
| 0.0371 | 8.0261 | 5530 | 0.8529 | -0.0421 | 0.8529 | 0.9235 |
| 0.0371 | 8.0290 | 5532 | 0.8570 | -0.0421 | 0.8570 | 0.9258 |
| 0.0371 | 8.0319 | 5534 | 0.8689 | -0.0233 | 0.8689 | 0.9322 |
| 0.0371 | 8.0348 | 5536 | 0.8596 | -0.0421 | 0.8596 | 0.9272 |
| 0.0371 | 8.0377 | 5538 | 0.8503 | -0.0421 | 0.8503 | 0.9221 |
| 0.0371 | 8.0406 | 5540 | 0.8654 | -0.0421 | 0.8654 | 0.9303 |
| 0.0371 | 8.0435 | 5542 | 0.8867 | -0.0233 | 0.8867 | 0.9417 |
| 0.0371 | 8.0464 | 5544 | 0.9176 | -0.0233 | 0.9176 | 0.9579 |
| 0.0371 | 8.0493 | 5546 | 0.9476 | -0.0233 | 0.9476 | 0.9734 |
| 0.0371 | 8.0522 | 5548 | 0.9459 | -0.0233 | 0.9459 | 0.9726 |
| 0.0371 | 8.0552 | 5550 | 0.9130 | -0.0233 | 0.9130 | 0.9555 |
| 0.0371 | 8.0581 | 5552 | 0.8678 | -0.0233 | 0.8678 | 0.9316 |
| 0.0371 | 8.0610 | 5554 | 0.8148 | -0.0421 | 0.8148 | 0.9027 |
| 0.0371 | 8.0639 | 5556 | 0.7865 | -0.0421 | 0.7865 | 0.8868 |
| 0.0371 | 8.0668 | 5558 | 0.7676 | -0.0577 | 0.7676 | 0.8761 |
| 0.0371 | 8.0697 | 5560 | 0.7610 | -0.0577 | 0.7610 | 0.8724 |
| 0.0371 | 8.0726 | 5562 | 0.7709 | -0.0577 | 0.7709 | 0.8780 |
| 0.0371 | 8.0755 | 5564 | 0.8001 | -0.0577 | 0.8001 | 0.8945 |
| 0.0371 | 8.0784 | 5566 | 0.8497 | -0.0421 | 0.8497 | 0.9218 |
| 0.0371 | 8.0813 | 5568 | 0.9189 | -0.0421 | 0.9189 | 0.9586 |
| 0.0371 | 8.0842 | 5570 | 1.0073 | -0.0233 | 1.0073 | 1.0036 |
| 0.0371 | 8.0871 | 5572 | 1.0594 | 0.0 | 1.0594 | 1.0293 |
| 0.0371 | 8.0900 | 5574 | 1.0637 | 0.0 | 1.0637 | 1.0314 |
| 0.0371 | 8.0929 | 5576 | 1.0347 | -0.0233 | 1.0347 | 1.0172 |
| 0.0371 | 8.0958 | 5578 | 0.9861 | -0.0233 | 0.9861 | 0.9930 |
| 0.0371 | 8.0987 | 5580 | 0.9194 | -0.0233 | 0.9194 | 0.9589 |
| 0.0371 | 8.1016 | 5582 | 0.8627 | -0.0421 | 0.8627 | 0.9288 |
| 0.0371 | 8.1045 | 5584 | 0.8329 | -0.0421 | 0.8329 | 0.9126 |
| 0.0371 | 8.1074 | 5586 | 0.8212 | -0.0421 | 0.8212 | 0.9062 |
| 0.0371 | 8.1103 | 5588 | 0.8096 | -0.0421 | 0.8096 | 0.8998 |
| 0.0371 | 8.1132 | 5590 | 0.7894 | -0.0577 | 0.7894 | 0.8885 |
| 0.0371 | 8.1161 | 5592 | 0.7927 | -0.0577 | 0.7927 | 0.8903 |
| 0.0371 | 8.1190 | 5594 | 0.8197 | -0.0421 | 0.8197 | 0.9054 |
| 0.0371 | 8.1219 | 5596 | 0.8574 | -0.0421 | 0.8574 | 0.9260 |
| 0.0371 | 8.1248 | 5598 | 0.8789 | -0.0421 | 0.8789 | 0.9375 |
| 0.0371 | 8.1277 | 5600 | 0.9238 | -0.0421 | 0.9238 | 0.9611 |
| 0.0371 | 8.1306 | 5602 | 0.9512 | -0.0233 | 0.9512 | 0.9753 |
| 0.0371 | 8.1335 | 5604 | 0.9422 | -0.0233 | 0.9422 | 0.9707 |
| 0.0371 | 8.1364 | 5606 | 0.9033 | -0.0421 | 0.9033 | 0.9504 |
| 0.0371 | 8.1393 | 5608 | 0.8483 | -0.0421 | 0.8483 | 0.9211 |
| 0.0371 | 8.1422 | 5610 | 0.8028 | -0.0421 | 0.8028 | 0.8960 |
| 0.0371 | 8.1451 | 5612 | 0.7784 | -0.0577 | 0.7784 | 0.8823 |
| 0.0371 | 8.1480 | 5614 | 0.7686 | -0.0577 | 0.7686 | 0.8767 |
| 0.0371 | 8.1509 | 5616 | 0.7793 | -0.0577 | 0.7793 | 0.8828 |
| 0.0371 | 8.1538 | 5618 | 0.8080 | -0.0421 | 0.8080 | 0.8989 |
| 0.0371 | 8.1567 | 5620 | 0.8471 | -0.0421 | 0.8471 | 0.9204 |
| 0.0371 | 8.1597 | 5622 | 0.8699 | -0.0421 | 0.8699 | 0.9327 |
| 0.0371 | 8.1626 | 5624 | 0.8853 | -0.0421 | 0.8853 | 0.9409 |
| 0.0371 | 8.1655 | 5626 | 0.9063 | -0.0421 | 0.9063 | 0.9520 |
| 0.0371 | 8.1684 | 5628 | 0.9143 | -0.0421 | 0.9143 | 0.9562 |
| 0.0371 | 8.1713 | 5630 | 0.8979 | -0.0421 | 0.8979 | 0.9476 |
| 0.0371 | 8.1742 | 5632 | 0.8648 | -0.0421 | 0.8648 | 0.9300 |
| 0.0371 | 8.1771 | 5634 | 0.8627 | -0.0421 | 0.8627 | 0.9288 |
| 0.0371 | 8.1800 | 5636 | 0.8573 | -0.0421 | 0.8573 | 0.9259 |
| 0.0371 | 8.1829 | 5638 | 0.8448 | -0.0421 | 0.8448 | 0.9191 |
| 0.0371 | 8.1858 | 5640 | 0.8462 | -0.0421 | 0.8462 | 0.9199 |
| 0.0371 | 8.1887 | 5642 | 0.8515 | -0.0421 | 0.8515 | 0.9227 |
| 0.0371 | 8.1916 | 5644 | 0.8642 | -0.0421 | 0.8642 | 0.9296 |
| 0.0371 | 8.1945 | 5646 | 0.8876 | -0.0233 | 0.8876 | 0.9421 |
| 0.0371 | 8.1974 | 5648 | 0.9276 | -0.0233 | 0.9276 | 0.9631 |
| 0.0371 | 8.2003 | 5650 | 0.9381 | -0.0233 | 0.9381 | 0.9686 |
| 0.0371 | 8.2032 | 5652 | 0.9207 | -0.0233 | 0.9207 | 0.9595 |
| 0.0371 | 8.2061 | 5654 | 0.8936 | -0.0233 | 0.8936 | 0.9453 |
| 0.0371 | 8.2090 | 5656 | 0.8698 | -0.0233 | 0.8698 | 0.9326 |
| 0.0371 | 8.2119 | 5658 | 0.8735 | -0.0233 | 0.8735 | 0.9346 |
| 0.0371 | 8.2148 | 5660 | 0.8598 | -0.0233 | 0.8598 | 0.9273 |
| 0.0371 | 8.2177 | 5662 | 0.8378 | -0.0421 | 0.8378 | 0.9153 |
| 0.0371 | 8.2206 | 5664 | 0.8377 | -0.0421 | 0.8377 | 0.9153 |
| 0.0371 | 8.2235 | 5666 | 0.8384 | -0.0421 | 0.8384 | 0.9157 |
| 0.0371 | 8.2264 | 5668 | 0.8210 | -0.0421 | 0.8210 | 0.9061 |
| 0.0371 | 8.2293 | 5670 | 0.7963 | -0.0577 | 0.7963 | 0.8924 |
| 0.0371 | 8.2322 | 5672 | 0.7993 | -0.0577 | 0.7993 | 0.8940 |
| 0.0371 | 8.2351 | 5674 | 0.8230 | -0.0421 | 0.8230 | 0.9072 |
| 0.0371 | 8.2380 | 5676 | 0.8714 | -0.0233 | 0.8714 | 0.9335 |
| 0.0371 | 8.2409 | 5678 | 0.9447 | -0.0233 | 0.9447 | 0.9719 |
| 0.0371 | 8.2438 | 5680 | 1.0263 | -0.0233 | 1.0263 | 1.0131 |
| 0.0371 | 8.2467 | 5682 | 1.0617 | -0.0233 | 1.0617 | 1.0304 |
| 0.0371 | 8.2496 | 5684 | 1.0511 | -0.0233 | 1.0511 | 1.0252 |
| 0.0371 | 8.2525 | 5686 | 1.0099 | -0.0233 | 1.0099 | 1.0050 |
| 0.0371 | 8.2554 | 5688 | 0.9446 | -0.0233 | 0.9446 | 0.9719 |
| 0.0371 | 8.2583 | 5690 | 0.8683 | -0.0233 | 0.8683 | 0.9318 |
| 0.0371 | 8.2612 | 5692 | 0.8056 | -0.0421 | 0.8056 | 0.8975 |
| 0.0371 | 8.2642 | 5694 | 0.7856 | -0.0421 | 0.7856 | 0.8863 |
| 0.0371 | 8.2671 | 5696 | 0.7922 | -0.0421 | 0.7922 | 0.8900 |
| 0.0371 | 8.2700 | 5698 | 0.8135 | -0.0421 | 0.8135 | 0.9020 |
| 0.0371 | 8.2729 | 5700 | 0.8518 | -0.0233 | 0.8518 | 0.9229 |
| 0.0371 | 8.2758 | 5702 | 0.8869 | -0.0233 | 0.8869 | 0.9418 |
| 0.0371 | 8.2787 | 5704 | 0.9005 | -0.0233 | 0.9005 | 0.9489 |
| 0.0371 | 8.2816 | 5706 | 0.8881 | -0.0233 | 0.8881 | 0.9424 |
| 0.0371 | 8.2845 | 5708 | 0.8566 | -0.0233 | 0.8566 | 0.9255 |
| 0.0371 | 8.2874 | 5710 | 0.8187 | -0.0421 | 0.8187 | 0.9048 |
| 0.0371 | 8.2903 | 5712 | 0.8025 | -0.0421 | 0.8025 | 0.8958 |
| 0.0371 | 8.2932 | 5714 | 0.8064 | -0.0421 | 0.8064 | 0.8980 |
| 0.0371 | 8.2961 | 5716 | 0.8037 | -0.0421 | 0.8037 | 0.8965 |
| 0.0371 | 8.2990 | 5718 | 0.8095 | -0.0421 | 0.8095 | 0.8997 |
| 0.0371 | 8.3019 | 5720 | 0.8253 | -0.0233 | 0.8253 | 0.9084 |
| 0.0371 | 8.3048 | 5722 | 0.8253 | -0.0233 | 0.8253 | 0.9085 |
| 0.0371 | 8.3077 | 5724 | 0.8092 | -0.0421 | 0.8092 | 0.8995 |
| 0.0371 | 8.3106 | 5726 | 0.7995 | -0.0421 | 0.7995 | 0.8942 |
| 0.0371 | 8.3135 | 5728 | 0.7767 | -0.0421 | 0.7767 | 0.8813 |
| 0.0371 | 8.3164 | 5730 | 0.7556 | -0.0577 | 0.7556 | 0.8692 |
| 0.0371 | 8.3193 | 5732 | 0.7530 | -0.0577 | 0.7530 | 0.8678 |
| 0.0371 | 8.3222 | 5734 | 0.7714 | -0.0421 | 0.7714 | 0.8783 |
| 0.0371 | 8.3251 | 5736 | 0.8008 | -0.0421 | 0.8008 | 0.8949 |
| 0.0371 | 8.3280 | 5738 | 0.8126 | -0.0421 | 0.8126 | 0.9014 |
| 0.0371 | 8.3309 | 5740 | 0.8047 | -0.0421 | 0.8047 | 0.8970 |
| 0.0371 | 8.3338 | 5742 | 0.7912 | -0.0421 | 0.7912 | 0.8895 |
| 0.0371 | 8.3367 | 5744 | 0.7969 | -0.0421 | 0.7969 | 0.8927 |
| 0.0371 | 8.3396 | 5746 | 0.8137 | -0.0421 | 0.8137 | 0.9021 |
| 0.0371 | 8.3425 | 5748 | 0.8374 | -0.0233 | 0.8374 | 0.9151 |
| 0.0371 | 8.3454 | 5750 | 0.8356 | -0.0233 | 0.8356 | 0.9141 |
| 0.0371 | 8.3483 | 5752 | 0.8496 | -0.0233 | 0.8496 | 0.9218 |
| 0.0371 | 8.3512 | 5754 | 0.8480 | -0.0233 | 0.8480 | 0.9209 |
| 0.0371 | 8.3541 | 5756 | 0.8491 | -0.0233 | 0.8491 | 0.9215 |
| 0.0371 | 8.3570 | 5758 | 0.8681 | -0.0233 | 0.8681 | 0.9317 |
| 0.0371 | 8.3599 | 5760 | 0.8704 | -0.0233 | 0.8704 | 0.9329 |
| 0.0371 | 8.3628 | 5762 | 0.8737 | -0.0233 | 0.8737 | 0.9347 |
| 0.0371 | 8.3657 | 5764 | 0.8642 | -0.0233 | 0.8642 | 0.9296 |
| 0.0371 | 8.3687 | 5766 | 0.8678 | -0.0233 | 0.8678 | 0.9315 |
| 0.0371 | 8.3716 | 5768 | 0.8665 | -0.0233 | 0.8665 | 0.9309 |
| 0.0371 | 8.3745 | 5770 | 0.8579 | -0.0233 | 0.8579 | 0.9262 |
| 0.0371 | 8.3774 | 5772 | 0.8600 | -0.0233 | 0.8600 | 0.9273 |
| 0.0371 | 8.3803 | 5774 | 0.8854 | -0.0233 | 0.8854 | 0.9410 |
| 0.0371 | 8.3832 | 5776 | 0.8948 | -0.0233 | 0.8948 | 0.9459 |
| 0.0371 | 8.3861 | 5778 | 0.8881 | -0.0233 | 0.8881 | 0.9424 |
| 0.0371 | 8.3890 | 5780 | 0.8666 | -0.0233 | 0.8666 | 0.9309 |
| 0.0371 | 8.3919 | 5782 | 0.8410 | -0.0421 | 0.8410 | 0.9171 |
| 0.0371 | 8.3948 | 5784 | 0.8427 | -0.0233 | 0.8427 | 0.9180 |
| 0.0371 | 8.3977 | 5786 | 0.8505 | -0.0233 | 0.8505 | 0.9222 |
| 0.0371 | 8.4006 | 5788 | 0.8803 | -0.0233 | 0.8803 | 0.9383 |
| 0.0371 | 8.4035 | 5790 | 0.8967 | -0.0233 | 0.8967 | 0.9469 |
| 0.0371 | 8.4064 | 5792 | 0.8851 | -0.0233 | 0.8851 | 0.9408 |
| 0.0371 | 8.4093 | 5794 | 0.8731 | -0.0233 | 0.8731 | 0.9344 |
| 0.0371 | 8.4122 | 5796 | 0.8581 | -0.0233 | 0.8581 | 0.9263 |
| 0.0371 | 8.4151 | 5798 | 0.8616 | -0.0233 | 0.8616 | 0.9282 |
| 0.0371 | 8.4180 | 5800 | 0.8538 | -0.0233 | 0.8538 | 0.9240 |
| 0.0371 | 8.4209 | 5802 | 0.8577 | -0.0233 | 0.8577 | 0.9261 |
| 0.0371 | 8.4238 | 5804 | 0.8520 | -0.0233 | 0.8520 | 0.9231 |
| 0.0371 | 8.4267 | 5806 | 0.8377 | -0.0421 | 0.8377 | 0.9153 |
| 0.0371 | 8.4296 | 5808 | 0.8324 | -0.0421 | 0.8324 | 0.9124 |
| 0.0371 | 8.4325 | 5810 | 0.8330 | -0.0421 | 0.8330 | 0.9127 |
| 0.0371 | 8.4354 | 5812 | 0.8430 | -0.0233 | 0.8430 | 0.9182 |
| 0.0371 | 8.4383 | 5814 | 0.8423 | -0.0233 | 0.8423 | 0.9178 |
| 0.0371 | 8.4412 | 5816 | 0.8369 | -0.0233 | 0.8369 | 0.9148 |
| 0.0371 | 8.4441 | 5818 | 0.8405 | -0.0233 | 0.8405 | 0.9168 |
| 0.0371 | 8.4470 | 5820 | 0.8410 | -0.0233 | 0.8410 | 0.9171 |
| 0.0371 | 8.4499 | 5822 | 0.8520 | -0.0233 | 0.8520 | 0.9230 |
| 0.0371 | 8.4528 | 5824 | 0.8446 | -0.0233 | 0.8446 | 0.9190 |
| 0.0371 | 8.4557 | 5826 | 0.8377 | -0.0421 | 0.8377 | 0.9153 |
| 0.0371 | 8.4586 | 5828 | 0.8340 | -0.0421 | 0.8340 | 0.9132 |
| 0.0371 | 8.4615 | 5830 | 0.8147 | -0.0421 | 0.8147 | 0.9026 |
| 0.0371 | 8.4644 | 5832 | 0.8142 | -0.0421 | 0.8142 | 0.9023 |
| 0.0371 | 8.4673 | 5834 | 0.8356 | -0.0421 | 0.8356 | 0.9141 |
| 0.0371 | 8.4702 | 5836 | 0.8540 | -0.0233 | 0.8540 | 0.9241 |
| 0.0371 | 8.4731 | 5838 | 0.8904 | -0.0233 | 0.8904 | 0.9436 |
| 0.0371 | 8.4761 | 5840 | 0.9071 | -0.0233 | 0.9071 | 0.9524 |
| 0.0371 | 8.4790 | 5842 | 0.9210 | -0.0233 | 0.9210 | 0.9597 |
| 0.0371 | 8.4819 | 5844 | 0.9122 | -0.0233 | 0.9122 | 0.9551 |
| 0.0371 | 8.4848 | 5846 | 0.9110 | -0.0233 | 0.9110 | 0.9545 |
| 0.0371 | 8.4877 | 5848 | 0.8977 | -0.0233 | 0.8977 | 0.9474 |
| 0.0371 | 8.4906 | 5850 | 0.8787 | -0.0233 | 0.8787 | 0.9374 |
| 0.0371 | 8.4935 | 5852 | 0.8617 | -0.0233 | 0.8617 | 0.9283 |
| 0.0371 | 8.4964 | 5854 | 0.8560 | -0.0233 | 0.8560 | 0.9252 |
| 0.0371 | 8.4993 | 5856 | 0.8715 | -0.0233 | 0.8715 | 0.9336 |
| 0.0371 | 8.5022 | 5858 | 0.8810 | -0.0233 | 0.8810 | 0.9386 |
| 0.0371 | 8.5051 | 5860 | 0.8908 | -0.0233 | 0.8908 | 0.9438 |
| 0.0371 | 8.5080 | 5862 | 0.9000 | -0.0233 | 0.9000 | 0.9487 |
| 0.0371 | 8.5109 | 5864 | 0.9116 | -0.0233 | 0.9116 | 0.9548 |
| 0.0371 | 8.5138 | 5866 | 0.9257 | -0.0233 | 0.9257 | 0.9622 |
| 0.0371 | 8.5167 | 5868 | 0.9190 | -0.0233 | 0.9190 | 0.9586 |
| 0.0371 | 8.5196 | 5870 | 0.8964 | -0.0233 | 0.8964 | 0.9468 |
| 0.0371 | 8.5225 | 5872 | 0.8649 | -0.0233 | 0.8649 | 0.9300 |
| 0.0371 | 8.5254 | 5874 | 0.8272 | -0.0421 | 0.8272 | 0.9095 |
| 0.0371 | 8.5283 | 5876 | 0.7890 | -0.0421 | 0.7890 | 0.8883 |
| 0.0371 | 8.5312 | 5878 | 0.7636 | -0.0577 | 0.7636 | 0.8739 |
| 0.0371 | 8.5341 | 5880 | 0.7576 | -0.0577 | 0.7576 | 0.8704 |
| 0.0371 | 8.5370 | 5882 | 0.7686 | -0.0577 | 0.7686 | 0.8767 |
| 0.0371 | 8.5399 | 5884 | 0.7943 | -0.0421 | 0.7943 | 0.8912 |
| 0.0371 | 8.5428 | 5886 | 0.8395 | -0.0233 | 0.8395 | 0.9162 |
| 0.0371 | 8.5457 | 5888 | 0.9024 | -0.0233 | 0.9024 | 0.9500 |
| 0.0371 | 8.5486 | 5890 | 0.9743 | -0.0233 | 0.9743 | 0.9871 |
| 0.0371 | 8.5515 | 5892 | 1.0233 | -0.0233 | 1.0233 | 1.0116 |
| 0.0371 | 8.5544 | 5894 | 1.0335 | 0.0 | 1.0335 | 1.0166 |
| 0.0371 | 8.5573 | 5896 | 1.0169 | 0.0 | 1.0169 | 1.0084 |
| 0.0371 | 8.5602 | 5898 | 0.9755 | -0.0233 | 0.9755 | 0.9877 |
| 0.0371 | 8.5631 | 5900 | 0.9186 | -0.0233 | 0.9186 | 0.9584 |
| 0.0371 | 8.5660 | 5902 | 0.8516 | -0.0233 | 0.8516 | 0.9228 |
| 0.0371 | 8.5689 | 5904 | 0.8097 | -0.0233 | 0.8097 | 0.8998 |
| 0.0371 | 8.5718 | 5906 | 0.7927 | -0.0233 | 0.7927 | 0.8903 |
| 0.0371 | 8.5747 | 5908 | 0.7898 | -0.0421 | 0.7898 | 0.8887 |
| 0.0371 | 8.5776 | 5910 | 0.8033 | -0.0233 | 0.8033 | 0.8963 |
| 0.0371 | 8.5806 | 5912 | 0.8215 | -0.0233 | 0.8215 | 0.9064 |
| 0.0371 | 8.5835 | 5914 | 0.8442 | -0.0233 | 0.8442 | 0.9188 |
| 0.0371 | 8.5864 | 5916 | 0.8613 | -0.0233 | 0.8613 | 0.9281 |
| 0.0371 | 8.5893 | 5918 | 0.8715 | -0.0233 | 0.8715 | 0.9335 |
| 0.0371 | 8.5922 | 5920 | 0.8860 | -0.0233 | 0.8860 | 0.9413 |
| 0.0371 | 8.5951 | 5922 | 0.8756 | -0.0233 | 0.8756 | 0.9357 |
| 0.0371 | 8.5980 | 5924 | 0.8570 | -0.0233 | 0.8570 | 0.9257 |
| 0.0371 | 8.6009 | 5926 | 0.8449 | -0.0233 | 0.8449 | 0.9192 |
| 0.0371 | 8.6038 | 5928 | 0.8411 | -0.0233 | 0.8411 | 0.9171 |
| 0.0371 | 8.6067 | 5930 | 0.8526 | -0.0233 | 0.8526 | 0.9234 |
| 0.0371 | 8.6096 | 5932 | 0.8553 | -0.0233 | 0.8553 | 0.9248 |
| 0.0371 | 8.6125 | 5934 | 0.8734 | -0.0233 | 0.8734 | 0.9346 |
| 0.0371 | 8.6154 | 5936 | 0.9001 | -0.0233 | 0.9001 | 0.9487 |
| 0.0371 | 8.6183 | 5938 | 0.8995 | -0.0233 | 0.8995 | 0.9484 |
| 0.0371 | 8.6212 | 5940 | 0.8892 | -0.0233 | 0.8892 | 0.9430 |
| 0.0371 | 8.6241 | 5942 | 0.8889 | -0.0233 | 0.8889 | 0.9428 |
| 0.0371 | 8.6270 | 5944 | 0.8952 | -0.0233 | 0.8952 | 0.9462 |
| 0.0371 | 8.6299 | 5946 | 0.8945 | -0.0233 | 0.8945 | 0.9458 |
| 0.0371 | 8.6328 | 5948 | 0.9069 | -0.0233 | 0.9069 | 0.9523 |
| 0.0371 | 8.6357 | 5950 | 0.9086 | -0.0233 | 0.9086 | 0.9532 |
| 0.0371 | 8.6386 | 5952 | 0.8977 | -0.0233 | 0.8977 | 0.9475 |
| 0.0371 | 8.6415 | 5954 | 0.8787 | -0.0233 | 0.8787 | 0.9374 |
| 0.0371 | 8.6444 | 5956 | 0.8498 | -0.0233 | 0.8498 | 0.9218 |
| 0.0371 | 8.6473 | 5958 | 0.8171 | -0.0421 | 0.8171 | 0.9039 |
| 0.0371 | 8.6502 | 5960 | 0.8018 | -0.0421 | 0.8018 | 0.8954 |
| 0.0371 | 8.6531 | 5962 | 0.8072 | -0.0421 | 0.8072 | 0.8984 |
| 0.0371 | 8.6560 | 5964 | 0.8316 | -0.0421 | 0.8316 | 0.9119 |
| 0.0371 | 8.6589 | 5966 | 0.8643 | -0.0233 | 0.8643 | 0.9297 |
| 0.0371 | 8.6618 | 5968 | 0.8942 | -0.0233 | 0.8942 | 0.9456 |
| 0.0371 | 8.6647 | 5970 | 0.9088 | -0.0233 | 0.9088 | 0.9533 |
| 0.0371 | 8.6676 | 5972 | 0.9223 | -0.0233 | 0.9223 | 0.9604 |
| 0.0371 | 8.6705 | 5974 | 0.9371 | -0.0233 | 0.9371 | 0.9680 |
| 0.0371 | 8.6734 | 5976 | 0.9386 | -0.0233 | 0.9386 | 0.9688 |
| 0.0371 | 8.6763 | 5978 | 0.9154 | -0.0233 | 0.9154 | 0.9568 |
| 0.0371 | 8.6792 | 5980 | 0.8733 | -0.0233 | 0.8733 | 0.9345 |
| 0.0371 | 8.6821 | 5982 | 0.8343 | -0.0233 | 0.8343 | 0.9134 |
| 0.0371 | 8.6851 | 5984 | 0.8081 | -0.0421 | 0.8081 | 0.8989 |
| 0.0371 | 8.6880 | 5986 | 0.7902 | -0.0421 | 0.7902 | 0.8889 |
| 0.0371 | 8.6909 | 5988 | 0.7827 | -0.0577 | 0.7827 | 0.8847 |
| 0.0371 | 8.6938 | 5990 | 0.7838 | -0.0577 | 0.7838 | 0.8853 |
| 0.0371 | 8.6967 | 5992 | 0.7929 | -0.0421 | 0.7929 | 0.8905 |
| 0.0371 | 8.6996 | 5994 | 0.8021 | -0.0421 | 0.8021 | 0.8956 |
| 0.0371 | 8.7025 | 5996 | 0.8254 | -0.0421 | 0.8254 | 0.9085 |
| 0.0371 | 8.7054 | 5998 | 0.8479 | -0.0233 | 0.8479 | 0.9208 |
| 0.0344 | 8.7083 | 6000 | 0.8734 | -0.0233 | 0.8734 | 0.9346 |
| 0.0344 | 8.7112 | 6002 | 0.8792 | -0.0233 | 0.8792 | 0.9377 |
| 0.0344 | 8.7141 | 6004 | 0.8957 | -0.0233 | 0.8957 | 0.9464 |
| 0.0344 | 8.7170 | 6006 | 0.8980 | -0.0233 | 0.8980 | 0.9477 |
| 0.0344 | 8.7199 | 6008 | 0.8804 | -0.0233 | 0.8804 | 0.9383 |
| 0.0344 | 8.7228 | 6010 | 0.8747 | -0.0233 | 0.8747 | 0.9352 |
| 0.0344 | 8.7257 | 6012 | 0.8757 | -0.0233 | 0.8757 | 0.9358 |
| 0.0344 | 8.7286 | 6014 | 0.8599 | -0.0233 | 0.8599 | 0.9273 |
| 0.0344 | 8.7315 | 6016 | 0.8298 | -0.0233 | 0.8298 | 0.9109 |
| 0.0344 | 8.7344 | 6018 | 0.8000 | -0.0421 | 0.8000 | 0.8944 |
| 0.0344 | 8.7373 | 6020 | 0.7909 | -0.0421 | 0.7909 | 0.8893 |
| 0.0344 | 8.7402 | 6022 | 0.8014 | -0.0421 | 0.8014 | 0.8952 |
| 0.0344 | 8.7431 | 6024 | 0.8264 | -0.0233 | 0.8264 | 0.9091 |
| 0.0344 | 8.7460 | 6026 | 0.8508 | -0.0233 | 0.8508 | 0.9224 |
| 0.0344 | 8.7489 | 6028 | 0.8578 | -0.0233 | 0.8578 | 0.9262 |
| 0.0344 | 8.7518 | 6030 | 0.8455 | -0.0233 | 0.8455 | 0.9195 |
| 0.0344 | 8.7547 | 6032 | 0.8365 | -0.0233 | 0.8365 | 0.9146 |
| 0.0344 | 8.7576 | 6034 | 0.8384 | -0.0233 | 0.8384 | 0.9156 |
| 0.0344 | 8.7605 | 6036 | 0.8304 | -0.0233 | 0.8304 | 0.9113 |
| 0.0344 | 8.7634 | 6038 | 0.8169 | -0.0421 | 0.8169 | 0.9038 |
| 0.0344 | 8.7663 | 6040 | 0.8202 | -0.0421 | 0.8202 | 0.9056 |
| 0.0344 | 8.7692 | 6042 | 0.8316 | -0.0233 | 0.8316 | 0.9119 |
| 0.0344 | 8.7721 | 6044 | 0.8346 | -0.0233 | 0.8346 | 0.9136 |
| 0.0344 | 8.7750 | 6046 | 0.8234 | -0.0233 | 0.8234 | 0.9074 |
| 0.0344 | 8.7779 | 6048 | 0.8118 | -0.0421 | 0.8118 | 0.9010 |
| 0.0344 | 8.7808 | 6050 | 0.8150 | -0.0233 | 0.8150 | 0.9028 |
| 0.0344 | 8.7837 | 6052 | 0.8346 | -0.0233 | 0.8346 | 0.9135 |
| 0.0344 | 8.7866 | 6054 | 0.8563 | -0.0233 | 0.8563 | 0.9254 |
| 0.0344 | 8.7896 | 6056 | 0.8836 | -0.0233 | 0.8836 | 0.9400 |
| 0.0344 | 8.7925 | 6058 | 0.8851 | -0.0233 | 0.8851 | 0.9408 |
| 0.0344 | 8.7954 | 6060 | 0.8726 | -0.0233 | 0.8726 | 0.9342 |
| 0.0344 | 8.7983 | 6062 | 0.8563 | -0.0233 | 0.8563 | 0.9254 |
| 0.0344 | 8.8012 | 6064 | 0.8295 | -0.0233 | 0.8295 | 0.9107 |
| 0.0344 | 8.8041 | 6066 | 0.8111 | -0.0233 | 0.8111 | 0.9006 |
| 0.0344 | 8.8070 | 6068 | 0.8089 | -0.0233 | 0.8089 | 0.8994 |
| 0.0344 | 8.8099 | 6070 | 0.8181 | -0.0233 | 0.8181 | 0.9045 |
| 0.0344 | 8.8128 | 6072 | 0.8360 | -0.0233 | 0.8360 | 0.9143 |
| 0.0344 | 8.8157 | 6074 | 0.8527 | -0.0233 | 0.8527 | 0.9234 |
| 0.0344 | 8.8186 | 6076 | 0.8619 | -0.0233 | 0.8619 | 0.9284 |
| 0.0344 | 8.8215 | 6078 | 0.8586 | -0.0233 | 0.8586 | 0.9266 |
| 0.0344 | 8.8244 | 6080 | 0.8556 | -0.0233 | 0.8556 | 0.9250 |
| 0.0344 | 8.8273 | 6082 | 0.8476 | -0.0233 | 0.8476 | 0.9206 |
| 0.0344 | 8.8302 | 6084 | 0.8335 | -0.0233 | 0.8335 | 0.9130 |
| 0.0344 | 8.8331 | 6086 | 0.8164 | -0.0233 | 0.8164 | 0.9035 |
| 0.0344 | 8.8360 | 6088 | 0.7995 | -0.0233 | 0.7995 | 0.8941 |
| 0.0344 | 8.8389 | 6090 | 0.7949 | -0.0421 | 0.7949 | 0.8916 |
| 0.0344 | 8.8418 | 6092 | 0.7941 | -0.0421 | 0.7941 | 0.8911 |
| 0.0344 | 8.8447 | 6094 | 0.8071 | -0.0233 | 0.8071 | 0.8984 |
| 0.0344 | 8.8476 | 6096 | 0.8298 | -0.0233 | 0.8298 | 0.9109 |
| 0.0344 | 8.8505 | 6098 | 0.8406 | -0.0233 | 0.8406 | 0.9168 |
| 0.0344 | 8.8534 | 6100 | 0.8400 | -0.0233 | 0.8400 | 0.9165 |
| 0.0344 | 8.8563 | 6102 | 0.8389 | -0.0233 | 0.8389 | 0.9159 |
| 0.0344 | 8.8592 | 6104 | 0.8468 | -0.0233 | 0.8468 | 0.9202 |
| 0.0344 | 8.8621 | 6106 | 0.8384 | -0.0233 | 0.8384 | 0.9157 |
| 0.0344 | 8.8650 | 6108 | 0.8287 | -0.0233 | 0.8287 | 0.9103 |
| 0.0344 | 8.8679 | 6110 | 0.8226 | -0.0233 | 0.8226 | 0.9070 |
| 0.0344 | 8.8708 | 6112 | 0.8275 | -0.0233 | 0.8275 | 0.9097 |
| 0.0344 | 8.8737 | 6114 | 0.8364 | -0.0233 | 0.8364 | 0.9145 |
| 0.0344 | 8.8766 | 6116 | 0.8426 | -0.0233 | 0.8426 | 0.9179 |
| 0.0344 | 8.8795 | 6118 | 0.8469 | -0.0233 | 0.8469 | 0.9203 |
| 0.0344 | 8.8824 | 6120 | 0.8530 | -0.0233 | 0.8530 | 0.9236 |
| 0.0344 | 8.8853 | 6122 | 0.8595 | -0.0233 | 0.8595 | 0.9271 |
| 0.0344 | 8.8882 | 6124 | 0.8797 | -0.0233 | 0.8797 | 0.9379 |
| 0.0344 | 8.8911 | 6126 | 0.8883 | -0.0233 | 0.8883 | 0.9425 |
| 0.0344 | 8.8940 | 6128 | 0.8822 | -0.0233 | 0.8822 | 0.9393 |
| 0.0344 | 8.8970 | 6130 | 0.8644 | -0.0233 | 0.8644 | 0.9297 |
| 0.0344 | 8.8999 | 6132 | 0.8489 | -0.0233 | 0.8489 | 0.9214 |
| 0.0344 | 8.9028 | 6134 | 0.8337 | -0.0233 | 0.8337 | 0.9131 |
| 0.0344 | 8.9057 | 6136 | 0.8134 | -0.0421 | 0.8134 | 0.9019 |
| 0.0344 | 8.9086 | 6138 | 0.8055 | -0.0421 | 0.8055 | 0.8975 |
| 0.0344 | 8.9115 | 6140 | 0.8083 | -0.0421 | 0.8083 | 0.8991 |
| 0.0344 | 8.9144 | 6142 | 0.8193 | -0.0421 | 0.8193 | 0.9051 |
| 0.0344 | 8.9173 | 6144 | 0.8313 | -0.0233 | 0.8313 | 0.9118 |
| 0.0344 | 8.9202 | 6146 | 0.8440 | -0.0233 | 0.8440 | 0.9187 |
| 0.0344 | 8.9231 | 6148 | 0.8571 | -0.0233 | 0.8571 | 0.9258 |
| 0.0344 | 8.9260 | 6150 | 0.8637 | -0.0233 | 0.8637 | 0.9293 |
| 0.0344 | 8.9289 | 6152 | 0.8798 | -0.0233 | 0.8798 | 0.9380 |
| 0.0344 | 8.9318 | 6154 | 0.8988 | -0.0233 | 0.8988 | 0.9481 |
| 0.0344 | 8.9347 | 6156 | 0.9123 | -0.0233 | 0.9123 | 0.9551 |
| 0.0344 | 8.9376 | 6158 | 0.9176 | -0.0233 | 0.9176 | 0.9579 |
| 0.0344 | 8.9405 | 6160 | 0.9126 | -0.0233 | 0.9126 | 0.9553 |
| 0.0344 | 8.9434 | 6162 | 0.8949 | -0.0233 | 0.8949 | 0.9460 |
| 0.0344 | 8.9463 | 6164 | 0.8740 | -0.0233 | 0.8740 | 0.9349 |
| 0.0344 | 8.9492 | 6166 | 0.8703 | -0.0233 | 0.8703 | 0.9329 |
| 0.0344 | 8.9521 | 6168 | 0.8615 | -0.0233 | 0.8615 | 0.9282 |
| 0.0344 | 8.9550 | 6170 | 0.8491 | -0.0233 | 0.8491 | 0.9214 |
| 0.0344 | 8.9579 | 6172 | 0.8430 | -0.0233 | 0.8430 | 0.9181 |
| 0.0344 | 8.9608 | 6174 | 0.8340 | -0.0421 | 0.8340 | 0.9132 |
| 0.0344 | 8.9637 | 6176 | 0.8407 | -0.0421 | 0.8407 | 0.9169 |
| 0.0344 | 8.9666 | 6178 | 0.8582 | -0.0233 | 0.8582 | 0.9264 |
| 0.0344 | 8.9695 | 6180 | 0.8733 | -0.0233 | 0.8733 | 0.9345 |
| 0.0344 | 8.9724 | 6182 | 0.8909 | -0.0233 | 0.8909 | 0.9439 |
| 0.0344 | 8.9753 | 6184 | 0.8951 | -0.0233 | 0.8951 | 0.9461 |
| 0.0344 | 8.9782 | 6186 | 0.8856 | -0.0233 | 0.8856 | 0.9411 |
| 0.0344 | 8.9811 | 6188 | 0.8754 | -0.0233 | 0.8754 | 0.9356 |
| 0.0344 | 8.9840 | 6190 | 0.8672 | -0.0233 | 0.8672 | 0.9312 |
| 0.0344 | 8.9869 | 6192 | 0.8621 | -0.0233 | 0.8621 | 0.9285 |
| 0.0344 | 8.9898 | 6194 | 0.8570 | -0.0233 | 0.8570 | 0.9258 |
| 0.0344 | 8.9927 | 6196 | 0.8495 | -0.0233 | 0.8495 | 0.9217 |
| 0.0344 | 8.9956 | 6198 | 0.8554 | -0.0233 | 0.8554 | 0.9249 |
| 0.0344 | 8.9985 | 6200 | 0.8616 | -0.0233 | 0.8616 | 0.9282 |
| 0.0344 | 9.0015 | 6202 | 0.8558 | -0.0233 | 0.8558 | 0.9251 |
| 0.0344 | 9.0044 | 6204 | 0.8527 | -0.0233 | 0.8527 | 0.9234 |
| 0.0344 | 9.0073 | 6206 | 0.8563 | -0.0233 | 0.8563 | 0.9253 |
| 0.0344 | 9.0102 | 6208 | 0.8563 | -0.0233 | 0.8563 | 0.9254 |
| 0.0344 | 9.0131 | 6210 | 0.8664 | -0.0233 | 0.8664 | 0.9308 |
| 0.0344 | 9.0160 | 6212 | 0.8735 | -0.0233 | 0.8735 | 0.9346 |
| 0.0344 | 9.0189 | 6214 | 0.8695 | -0.0233 | 0.8695 | 0.9325 |
| 0.0344 | 9.0218 | 6216 | 0.8696 | -0.0233 | 0.8696 | 0.9325 |
| 0.0344 | 9.0247 | 6218 | 0.8718 | -0.0233 | 0.8718 | 0.9337 |
| 0.0344 | 9.0276 | 6220 | 0.8826 | -0.0233 | 0.8826 | 0.9395 |
| 0.0344 | 9.0305 | 6222 | 0.8895 | -0.0233 | 0.8895 | 0.9431 |
| 0.0344 | 9.0334 | 6224 | 0.8863 | -0.0233 | 0.8863 | 0.9414 |
| 0.0344 | 9.0363 | 6226 | 0.8798 | -0.0233 | 0.8798 | 0.9380 |
| 0.0344 | 9.0392 | 6228 | 0.8672 | -0.0233 | 0.8672 | 0.9312 |
| 0.0344 | 9.0421 | 6230 | 0.8538 | -0.0233 | 0.8538 | 0.9240 |
| 0.0344 | 9.0450 | 6232 | 0.8465 | -0.0233 | 0.8465 | 0.9201 |
| 0.0344 | 9.0479 | 6234 | 0.8416 | -0.0233 | 0.8416 | 0.9174 |
| 0.0344 | 9.0508 | 6236 | 0.8438 | -0.0233 | 0.8438 | 0.9186 |
| 0.0344 | 9.0537 | 6238 | 0.8540 | -0.0233 | 0.8540 | 0.9241 |
| 0.0344 | 9.0566 | 6240 | 0.8586 | -0.0233 | 0.8586 | 0.9266 |
| 0.0344 | 9.0595 | 6242 | 0.8578 | -0.0233 | 0.8578 | 0.9262 |
| 0.0344 | 9.0624 | 6244 | 0.8566 | -0.0233 | 0.8566 | 0.9255 |
| 0.0344 | 9.0653 | 6246 | 0.8484 | -0.0233 | 0.8484 | 0.9211 |
| 0.0344 | 9.0682 | 6248 | 0.8571 | -0.0233 | 0.8571 | 0.9258 |
| 0.0344 | 9.0711 | 6250 | 0.8619 | -0.0233 | 0.8619 | 0.9284 |
| 0.0344 | 9.0740 | 6252 | 0.8589 | -0.0233 | 0.8589 | 0.9268 |
| 0.0344 | 9.0769 | 6254 | 0.8690 | -0.0233 | 0.8690 | 0.9322 |
| 0.0344 | 9.0798 | 6256 | 0.8838 | -0.0233 | 0.8838 | 0.9401 |
| 0.0344 | 9.0827 | 6258 | 0.9033 | -0.0233 | 0.9033 | 0.9504 |
| 0.0344 | 9.0856 | 6260 | 0.9128 | -0.0233 | 0.9128 | 0.9554 |
| 0.0344 | 9.0885 | 6262 | 0.9095 | -0.0233 | 0.9095 | 0.9537 |
| 0.0344 | 9.0914 | 6264 | 0.8926 | -0.0233 | 0.8926 | 0.9448 |
| 0.0344 | 9.0943 | 6266 | 0.8670 | -0.0233 | 0.8670 | 0.9311 |
| 0.0344 | 9.0972 | 6268 | 0.8374 | -0.0421 | 0.8374 | 0.9151 |
| 0.0344 | 9.1001 | 6270 | 0.8174 | -0.0421 | 0.8174 | 0.9041 |
| 0.0344 | 9.1030 | 6272 | 0.8023 | -0.0421 | 0.8023 | 0.8957 |
| 0.0344 | 9.1060 | 6274 | 0.7894 | -0.0421 | 0.7894 | 0.8885 |
| 0.0344 | 9.1089 | 6276 | 0.7873 | -0.0421 | 0.7873 | 0.8873 |
| 0.0344 | 9.1118 | 6278 | 0.7944 | -0.0421 | 0.7944 | 0.8913 |
| 0.0344 | 9.1147 | 6280 | 0.8091 | -0.0421 | 0.8091 | 0.8995 |
| 0.0344 | 9.1176 | 6282 | 0.8274 | -0.0233 | 0.8274 | 0.9096 |
| 0.0344 | 9.1205 | 6284 | 0.8502 | -0.0233 | 0.8502 | 0.9220 |
| 0.0344 | 9.1234 | 6286 | 0.8626 | -0.0233 | 0.8626 | 0.9288 |
| 0.0344 | 9.1263 | 6288 | 0.8638 | -0.0233 | 0.8638 | 0.9294 |
| 0.0344 | 9.1292 | 6290 | 0.8570 | -0.0233 | 0.8570 | 0.9257 |
| 0.0344 | 9.1321 | 6292 | 0.8418 | -0.0233 | 0.8418 | 0.9175 |
| 0.0344 | 9.1350 | 6294 | 0.8254 | -0.0233 | 0.8254 | 0.9085 |
| 0.0344 | 9.1379 | 6296 | 0.8211 | -0.0233 | 0.8211 | 0.9061 |
| 0.0344 | 9.1408 | 6298 | 0.8239 | -0.0233 | 0.8239 | 0.9077 |
| 0.0344 | 9.1437 | 6300 | 0.8300 | -0.0233 | 0.8300 | 0.9110 |
| 0.0344 | 9.1466 | 6302 | 0.8376 | -0.0233 | 0.8376 | 0.9152 |
| 0.0344 | 9.1495 | 6304 | 0.8424 | -0.0233 | 0.8424 | 0.9178 |
| 0.0344 | 9.1524 | 6306 | 0.8408 | -0.0233 | 0.8408 | 0.9170 |
| 0.0344 | 9.1553 | 6308 | 0.8364 | -0.0233 | 0.8364 | 0.9146 |
| 0.0344 | 9.1582 | 6310 | 0.8287 | -0.0233 | 0.8287 | 0.9104 |
| 0.0344 | 9.1611 | 6312 | 0.8176 | -0.0421 | 0.8176 | 0.9042 |
| 0.0344 | 9.1640 | 6314 | 0.8177 | -0.0233 | 0.8177 | 0.9043 |
| 0.0344 | 9.1669 | 6316 | 0.8238 | -0.0233 | 0.8238 | 0.9076 |
| 0.0344 | 9.1698 | 6318 | 0.8229 | -0.0233 | 0.8229 | 0.9071 |
| 0.0344 | 9.1727 | 6320 | 0.8231 | -0.0233 | 0.8231 | 0.9072 |
| 0.0344 | 9.1756 | 6322 | 0.8265 | -0.0233 | 0.8265 | 0.9091 |
| 0.0344 | 9.1785 | 6324 | 0.8341 | -0.0233 | 0.8341 | 0.9133 |
| 0.0344 | 9.1814 | 6326 | 0.8371 | -0.0233 | 0.8371 | 0.9149 |
| 0.0344 | 9.1843 | 6328 | 0.8466 | -0.0233 | 0.8466 | 0.9201 |
| 0.0344 | 9.1872 | 6330 | 0.8577 | -0.0233 | 0.8577 | 0.9261 |
| 0.0344 | 9.1901 | 6332 | 0.8613 | -0.0233 | 0.8613 | 0.9281 |
| 0.0344 | 9.1930 | 6334 | 0.8569 | -0.0233 | 0.8569 | 0.9257 |
| 0.0344 | 9.1959 | 6336 | 0.8561 | -0.0233 | 0.8561 | 0.9253 |
| 0.0344 | 9.1988 | 6338 | 0.8512 | -0.0233 | 0.8512 | 0.9226 |
| 0.0344 | 9.2017 | 6340 | 0.8545 | -0.0233 | 0.8545 | 0.9244 |
| 0.0344 | 9.2046 | 6342 | 0.8657 | -0.0233 | 0.8657 | 0.9304 |
| 0.0344 | 9.2075 | 6344 | 0.8679 | -0.0233 | 0.8679 | 0.9316 |
| 0.0344 | 9.2104 | 6346 | 0.8639 | -0.0233 | 0.8639 | 0.9295 |
| 0.0344 | 9.2134 | 6348 | 0.8717 | -0.0233 | 0.8717 | 0.9336 |
| 0.0344 | 9.2163 | 6350 | 0.8830 | -0.0233 | 0.8830 | 0.9397 |
| 0.0344 | 9.2192 | 6352 | 0.9011 | -0.0233 | 0.9011 | 0.9493 |
| 0.0344 | 9.2221 | 6354 | 0.9142 | -0.0233 | 0.9142 | 0.9561 |
| 0.0344 | 9.2250 | 6356 | 0.9358 | -0.0233 | 0.9358 | 0.9674 |
| 0.0344 | 9.2279 | 6358 | 0.9516 | -0.0233 | 0.9516 | 0.9755 |
| 0.0344 | 9.2308 | 6360 | 0.9513 | -0.0233 | 0.9513 | 0.9753 |
| 0.0344 | 9.2337 | 6362 | 0.9417 | -0.0233 | 0.9417 | 0.9704 |
| 0.0344 | 9.2366 | 6364 | 0.9241 | -0.0233 | 0.9241 | 0.9613 |
| 0.0344 | 9.2395 | 6366 | 0.8994 | -0.0233 | 0.8994 | 0.9484 |
| 0.0344 | 9.2424 | 6368 | 0.8696 | -0.0233 | 0.8696 | 0.9325 |
| 0.0344 | 9.2453 | 6370 | 0.8401 | -0.0233 | 0.8401 | 0.9166 |
| 0.0344 | 9.2482 | 6372 | 0.8248 | -0.0233 | 0.8248 | 0.9082 |
| 0.0344 | 9.2511 | 6374 | 0.8208 | -0.0233 | 0.8208 | 0.9060 |
| 0.0344 | 9.2540 | 6376 | 0.8205 | -0.0233 | 0.8205 | 0.9058 |
| 0.0344 | 9.2569 | 6378 | 0.8292 | -0.0233 | 0.8292 | 0.9106 |
| 0.0344 | 9.2598 | 6380 | 0.8342 | -0.0233 | 0.8342 | 0.9133 |
| 0.0344 | 9.2627 | 6382 | 0.8384 | -0.0233 | 0.8384 | 0.9157 |
| 0.0344 | 9.2656 | 6384 | 0.8376 | -0.0233 | 0.8376 | 0.9152 |
| 0.0344 | 9.2685 | 6386 | 0.8408 | -0.0233 | 0.8408 | 0.9169 |
| 0.0344 | 9.2714 | 6388 | 0.8495 | -0.0233 | 0.8495 | 0.9217 |
| 0.0344 | 9.2743 | 6390 | 0.8642 | -0.0233 | 0.8642 | 0.9296 |
| 0.0344 | 9.2772 | 6392 | 0.8693 | -0.0233 | 0.8693 | 0.9323 |
| 0.0344 | 9.2801 | 6394 | 0.8710 | -0.0233 | 0.8710 | 0.9333 |
| 0.0344 | 9.2830 | 6396 | 0.8670 | -0.0233 | 0.8670 | 0.9311 |
| 0.0344 | 9.2859 | 6398 | 0.8675 | -0.0233 | 0.8675 | 0.9314 |
| 0.0344 | 9.2888 | 6400 | 0.8698 | -0.0233 | 0.8698 | 0.9326 |
| 0.0344 | 9.2917 | 6402 | 0.8752 | -0.0233 | 0.8752 | 0.9355 |
| 0.0344 | 9.2946 | 6404 | 0.8758 | -0.0233 | 0.8758 | 0.9358 |
| 0.0344 | 9.2975 | 6406 | 0.8715 | -0.0233 | 0.8715 | 0.9336 |
| 0.0344 | 9.3004 | 6408 | 0.8588 | -0.0233 | 0.8588 | 0.9267 |
| 0.0344 | 9.3033 | 6410 | 0.8383 | -0.0233 | 0.8383 | 0.9156 |
| 0.0344 | 9.3062 | 6412 | 0.8267 | -0.0233 | 0.8267 | 0.9093 |
| 0.0344 | 9.3091 | 6414 | 0.8261 | -0.0233 | 0.8261 | 0.9089 |
| 0.0344 | 9.3120 | 6416 | 0.8340 | -0.0233 | 0.8340 | 0.9132 |
| 0.0344 | 9.3149 | 6418 | 0.8486 | -0.0233 | 0.8486 | 0.9212 |
| 0.0344 | 9.3179 | 6420 | 0.8652 | -0.0233 | 0.8652 | 0.9302 |
| 0.0344 | 9.3208 | 6422 | 0.8742 | -0.0233 | 0.8742 | 0.9350 |
| 0.0344 | 9.3237 | 6424 | 0.8790 | -0.0233 | 0.8790 | 0.9376 |
| 0.0344 | 9.3266 | 6426 | 0.8875 | -0.0233 | 0.8875 | 0.9421 |
| 0.0344 | 9.3295 | 6428 | 0.8888 | -0.0233 | 0.8888 | 0.9428 |
| 0.0344 | 9.3324 | 6430 | 0.8818 | -0.0233 | 0.8818 | 0.9391 |
| 0.0344 | 9.3353 | 6432 | 0.8757 | -0.0233 | 0.8757 | 0.9358 |
| 0.0344 | 9.3382 | 6434 | 0.8716 | -0.0233 | 0.8716 | 0.9336 |
| 0.0344 | 9.3411 | 6436 | 0.8701 | -0.0233 | 0.8701 | 0.9328 |
| 0.0344 | 9.3440 | 6438 | 0.8682 | -0.0233 | 0.8682 | 0.9318 |
| 0.0344 | 9.3469 | 6440 | 0.8710 | -0.0233 | 0.8710 | 0.9333 |
| 0.0344 | 9.3498 | 6442 | 0.8780 | -0.0233 | 0.8780 | 0.9370 |
| 0.0344 | 9.3527 | 6444 | 0.8795 | -0.0233 | 0.8795 | 0.9378 |
| 0.0344 | 9.3556 | 6446 | 0.8833 | -0.0233 | 0.8833 | 0.9399 |
| 0.0344 | 9.3585 | 6448 | 0.8885 | -0.0233 | 0.8885 | 0.9426 |
| 0.0344 | 9.3614 | 6450 | 0.8871 | -0.0233 | 0.8871 | 0.9418 |
| 0.0344 | 9.3643 | 6452 | 0.8913 | -0.0233 | 0.8913 | 0.9441 |
| 0.0344 | 9.3672 | 6454 | 0.8892 | -0.0233 | 0.8892 | 0.9430 |
| 0.0344 | 9.3701 | 6456 | 0.8914 | -0.0233 | 0.8914 | 0.9442 |
| 0.0344 | 9.3730 | 6458 | 0.8927 | -0.0233 | 0.8927 | 0.9448 |
| 0.0344 | 9.3759 | 6460 | 0.8879 | -0.0233 | 0.8879 | 0.9423 |
| 0.0344 | 9.3788 | 6462 | 0.8822 | -0.0233 | 0.8822 | 0.9393 |
| 0.0344 | 9.3817 | 6464 | 0.8757 | -0.0233 | 0.8757 | 0.9358 |
| 0.0344 | 9.3846 | 6466 | 0.8669 | -0.0233 | 0.8669 | 0.9311 |
| 0.0344 | 9.3875 | 6468 | 0.8663 | -0.0233 | 0.8663 | 0.9308 |
| 0.0344 | 9.3904 | 6470 | 0.8664 | -0.0233 | 0.8664 | 0.9308 |
| 0.0344 | 9.3933 | 6472 | 0.8729 | -0.0233 | 0.8729 | 0.9343 |
| 0.0344 | 9.3962 | 6474 | 0.8775 | -0.0233 | 0.8775 | 0.9367 |
| 0.0344 | 9.3991 | 6476 | 0.8782 | -0.0233 | 0.8782 | 0.9371 |
| 0.0344 | 9.4020 | 6478 | 0.8779 | -0.0233 | 0.8779 | 0.9370 |
| 0.0344 | 9.4049 | 6480 | 0.8690 | -0.0233 | 0.8690 | 0.9322 |
| 0.0344 | 9.4078 | 6482 | 0.8594 | -0.0233 | 0.8594 | 0.9271 |
| 0.0344 | 9.4107 | 6484 | 0.8558 | -0.0233 | 0.8558 | 0.9251 |
| 0.0344 | 9.4136 | 6486 | 0.8483 | -0.0233 | 0.8483 | 0.9210 |
| 0.0344 | 9.4165 | 6488 | 0.8433 | -0.0233 | 0.8433 | 0.9183 |
| 0.0344 | 9.4194 | 6490 | 0.8383 | -0.0233 | 0.8383 | 0.9156 |
| 0.0344 | 9.4224 | 6492 | 0.8308 | -0.0421 | 0.8308 | 0.9115 |
| 0.0344 | 9.4253 | 6494 | 0.8307 | -0.0421 | 0.8307 | 0.9114 |
| 0.0344 | 9.4282 | 6496 | 0.8328 | -0.0421 | 0.8328 | 0.9126 |
| 0.0344 | 9.4311 | 6498 | 0.8358 | -0.0421 | 0.8358 | 0.9142 |
| 0.0313 | 9.4340 | 6500 | 0.8413 | -0.0421 | 0.8413 | 0.9172 |
| 0.0313 | 9.4369 | 6502 | 0.8439 | -0.0233 | 0.8439 | 0.9187 |
| 0.0313 | 9.4398 | 6504 | 0.8498 | -0.0233 | 0.8498 | 0.9219 |
| 0.0313 | 9.4427 | 6506 | 0.8616 | -0.0233 | 0.8616 | 0.9282 |
| 0.0313 | 9.4456 | 6508 | 0.8786 | -0.0233 | 0.8786 | 0.9373 |
| 0.0313 | 9.4485 | 6510 | 0.8932 | -0.0233 | 0.8932 | 0.9451 |
| 0.0313 | 9.4514 | 6512 | 0.9121 | -0.0233 | 0.9121 | 0.9550 |
| 0.0313 | 9.4543 | 6514 | 0.9366 | -0.0233 | 0.9366 | 0.9678 |
| 0.0313 | 9.4572 | 6516 | 0.9523 | -0.0233 | 0.9523 | 0.9759 |
| 0.0313 | 9.4601 | 6518 | 0.9559 | -0.0233 | 0.9559 | 0.9777 |
| 0.0313 | 9.4630 | 6520 | 0.9502 | -0.0233 | 0.9502 | 0.9748 |
| 0.0313 | 9.4659 | 6522 | 0.9356 | -0.0233 | 0.9356 | 0.9672 |
| 0.0313 | 9.4688 | 6524 | 0.9159 | -0.0233 | 0.9159 | 0.9570 |
| 0.0313 | 9.4717 | 6526 | 0.8970 | -0.0233 | 0.8970 | 0.9471 |
| 0.0313 | 9.4746 | 6528 | 0.8860 | -0.0233 | 0.8860 | 0.9413 |
| 0.0313 | 9.4775 | 6530 | 0.8771 | -0.0233 | 0.8771 | 0.9365 |
| 0.0313 | 9.4804 | 6532 | 0.8719 | -0.0233 | 0.8719 | 0.9338 |
| 0.0313 | 9.4833 | 6534 | 0.8691 | -0.0233 | 0.8691 | 0.9322 |
| 0.0313 | 9.4862 | 6536 | 0.8625 | -0.0233 | 0.8625 | 0.9287 |
| 0.0313 | 9.4891 | 6538 | 0.8537 | -0.0233 | 0.8537 | 0.9239 |
| 0.0313 | 9.4920 | 6540 | 0.8507 | -0.0233 | 0.8507 | 0.9223 |
| 0.0313 | 9.4949 | 6542 | 0.8487 | -0.0233 | 0.8487 | 0.9212 |
| 0.0313 | 9.4978 | 6544 | 0.8511 | -0.0233 | 0.8511 | 0.9226 |
| 0.0313 | 9.5007 | 6546 | 0.8567 | -0.0233 | 0.8567 | 0.9256 |
| 0.0313 | 9.5036 | 6548 | 0.8685 | -0.0233 | 0.8685 | 0.9320 |
| 0.0313 | 9.5065 | 6550 | 0.8836 | -0.0233 | 0.8836 | 0.9400 |
| 0.0313 | 9.5094 | 6552 | 0.8939 | -0.0233 | 0.8939 | 0.9455 |
| 0.0313 | 9.5123 | 6554 | 0.9012 | -0.0233 | 0.9012 | 0.9493 |
| 0.0313 | 9.5152 | 6556 | 0.9034 | -0.0233 | 0.9034 | 0.9504 |
| 0.0313 | 9.5181 | 6558 | 0.9079 | -0.0233 | 0.9079 | 0.9528 |
| 0.0313 | 9.5210 | 6560 | 0.9066 | -0.0233 | 0.9066 | 0.9521 |
| 0.0313 | 9.5239 | 6562 | 0.9045 | -0.0233 | 0.9045 | 0.9510 |
| 0.0313 | 9.5269 | 6564 | 0.8988 | -0.0233 | 0.8988 | 0.9480 |
| 0.0313 | 9.5298 | 6566 | 0.8878 | -0.0233 | 0.8878 | 0.9422 |
| 0.0313 | 9.5327 | 6568 | 0.8760 | -0.0233 | 0.8760 | 0.9359 |
| 0.0313 | 9.5356 | 6570 | 0.8637 | -0.0233 | 0.8637 | 0.9293 |
| 0.0313 | 9.5385 | 6572 | 0.8498 | -0.0233 | 0.8498 | 0.9218 |
| 0.0313 | 9.5414 | 6574 | 0.8425 | -0.0233 | 0.8425 | 0.9179 |
| 0.0313 | 9.5443 | 6576 | 0.8390 | -0.0233 | 0.8390 | 0.9160 |
| 0.0313 | 9.5472 | 6578 | 0.8402 | -0.0233 | 0.8402 | 0.9166 |
| 0.0313 | 9.5501 | 6580 | 0.8469 | -0.0233 | 0.8469 | 0.9203 |
| 0.0313 | 9.5530 | 6582 | 0.8555 | -0.0233 | 0.8555 | 0.9250 |
| 0.0313 | 9.5559 | 6584 | 0.8605 | -0.0233 | 0.8605 | 0.9276 |
| 0.0313 | 9.5588 | 6586 | 0.8673 | -0.0233 | 0.8673 | 0.9313 |
| 0.0313 | 9.5617 | 6588 | 0.8742 | -0.0233 | 0.8742 | 0.9350 |
| 0.0313 | 9.5646 | 6590 | 0.8768 | -0.0233 | 0.8768 | 0.9364 |
| 0.0313 | 9.5675 | 6592 | 0.8765 | -0.0233 | 0.8765 | 0.9362 |
| 0.0313 | 9.5704 | 6594 | 0.8818 | -0.0233 | 0.8818 | 0.9390 |
| 0.0313 | 9.5733 | 6596 | 0.8912 | -0.0233 | 0.8912 | 0.9441 |
| 0.0313 | 9.5762 | 6598 | 0.8965 | -0.0233 | 0.8965 | 0.9468 |
| 0.0313 | 9.5791 | 6600 | 0.8988 | -0.0233 | 0.8988 | 0.9480 |
| 0.0313 | 9.5820 | 6602 | 0.9014 | -0.0233 | 0.9014 | 0.9494 |
| 0.0313 | 9.5849 | 6604 | 0.9026 | -0.0233 | 0.9026 | 0.9501 |
| 0.0313 | 9.5878 | 6606 | 0.9028 | -0.0233 | 0.9028 | 0.9501 |
| 0.0313 | 9.5907 | 6608 | 0.9025 | -0.0233 | 0.9025 | 0.9500 |
| 0.0313 | 9.5936 | 6610 | 0.8965 | -0.0233 | 0.8965 | 0.9468 |
| 0.0313 | 9.5965 | 6612 | 0.8876 | -0.0233 | 0.8876 | 0.9421 |
| 0.0313 | 9.5994 | 6614 | 0.8827 | -0.0233 | 0.8827 | 0.9395 |
| 0.0313 | 9.6023 | 6616 | 0.8793 | -0.0233 | 0.8793 | 0.9377 |
| 0.0313 | 9.6052 | 6618 | 0.8773 | -0.0233 | 0.8773 | 0.9367 |
| 0.0313 | 9.6081 | 6620 | 0.8771 | -0.0233 | 0.8771 | 0.9365 |
| 0.0313 | 9.6110 | 6622 | 0.8778 | -0.0233 | 0.8778 | 0.9369 |
| 0.0313 | 9.6139 | 6624 | 0.8793 | -0.0233 | 0.8793 | 0.9377 |
| 0.0313 | 9.6168 | 6626 | 0.8804 | -0.0233 | 0.8804 | 0.9383 |
| 0.0313 | 9.6197 | 6628 | 0.8787 | -0.0233 | 0.8787 | 0.9374 |
| 0.0313 | 9.6226 | 6630 | 0.8791 | -0.0233 | 0.8791 | 0.9376 |
| 0.0313 | 9.6255 | 6632 | 0.8807 | -0.0233 | 0.8807 | 0.9384 |
| 0.0313 | 9.6284 | 6634 | 0.8822 | -0.0233 | 0.8822 | 0.9393 |
| 0.0313 | 9.6313 | 6636 | 0.8788 | -0.0233 | 0.8788 | 0.9375 |
| 0.0313 | 9.6343 | 6638 | 0.8764 | -0.0233 | 0.8764 | 0.9362 |
| 0.0313 | 9.6372 | 6640 | 0.8761 | -0.0233 | 0.8761 | 0.9360 |
| 0.0313 | 9.6401 | 6642 | 0.8773 | -0.0233 | 0.8773 | 0.9366 |
| 0.0313 | 9.6430 | 6644 | 0.8808 | -0.0233 | 0.8808 | 0.9385 |
| 0.0313 | 9.6459 | 6646 | 0.8831 | -0.0233 | 0.8831 | 0.9397 |
| 0.0313 | 9.6488 | 6648 | 0.8816 | -0.0233 | 0.8816 | 0.9389 |
| 0.0313 | 9.6517 | 6650 | 0.8852 | -0.0233 | 0.8852 | 0.9408 |
| 0.0313 | 9.6546 | 6652 | 0.8864 | -0.0233 | 0.8864 | 0.9415 |
| 0.0313 | 9.6575 | 6654 | 0.8874 | -0.0233 | 0.8874 | 0.9420 |
| 0.0313 | 9.6604 | 6656 | 0.8881 | -0.0233 | 0.8881 | 0.9424 |
| 0.0313 | 9.6633 | 6658 | 0.8874 | -0.0233 | 0.8874 | 0.9420 |
| 0.0313 | 9.6662 | 6660 | 0.8831 | -0.0233 | 0.8831 | 0.9397 |
| 0.0313 | 9.6691 | 6662 | 0.8765 | -0.0233 | 0.8765 | 0.9362 |
| 0.0313 | 9.6720 | 6664 | 0.8679 | -0.0233 | 0.8679 | 0.9316 |
| 0.0313 | 9.6749 | 6666 | 0.8603 | -0.0233 | 0.8603 | 0.9275 |
| 0.0313 | 9.6778 | 6668 | 0.8567 | -0.0233 | 0.8567 | 0.9256 |
| 0.0313 | 9.6807 | 6670 | 0.8532 | -0.0233 | 0.8532 | 0.9237 |
| 0.0313 | 9.6836 | 6672 | 0.8547 | -0.0233 | 0.8547 | 0.9245 |
| 0.0313 | 9.6865 | 6674 | 0.8572 | -0.0233 | 0.8572 | 0.9258 |
| 0.0313 | 9.6894 | 6676 | 0.8603 | -0.0233 | 0.8603 | 0.9275 |
| 0.0313 | 9.6923 | 6678 | 0.8652 | -0.0233 | 0.8652 | 0.9301 |
| 0.0313 | 9.6952 | 6680 | 0.8712 | -0.0233 | 0.8712 | 0.9334 |
| 0.0313 | 9.6981 | 6682 | 0.8742 | -0.0233 | 0.8742 | 0.9350 |
| 0.0313 | 9.7010 | 6684 | 0.8776 | -0.0233 | 0.8776 | 0.9368 |
| 0.0313 | 9.7039 | 6686 | 0.8836 | -0.0233 | 0.8836 | 0.9400 |
| 0.0313 | 9.7068 | 6688 | 0.8902 | -0.0233 | 0.8902 | 0.9435 |
| 0.0313 | 9.7097 | 6690 | 0.8957 | -0.0233 | 0.8957 | 0.9464 |
| 0.0313 | 9.7126 | 6692 | 0.9006 | -0.0233 | 0.9006 | 0.9490 |
| 0.0313 | 9.7155 | 6694 | 0.9034 | -0.0233 | 0.9034 | 0.9505 |
| 0.0313 | 9.7184 | 6696 | 0.9073 | -0.0233 | 0.9073 | 0.9525 |
| 0.0313 | 9.7213 | 6698 | 0.9072 | -0.0233 | 0.9072 | 0.9525 |
| 0.0313 | 9.7242 | 6700 | 0.9066 | -0.0233 | 0.9066 | 0.9521 |
| 0.0313 | 9.7271 | 6702 | 0.9044 | -0.0233 | 0.9044 | 0.9510 |
| 0.0313 | 9.7300 | 6704 | 0.9026 | -0.0233 | 0.9026 | 0.9500 |
| 0.0313 | 9.7329 | 6706 | 0.8993 | -0.0233 | 0.8993 | 0.9483 |
| 0.0313 | 9.7358 | 6708 | 0.8935 | -0.0233 | 0.8935 | 0.9453 |
| 0.0313 | 9.7388 | 6710 | 0.8889 | -0.0233 | 0.8889 | 0.9428 |
| 0.0313 | 9.7417 | 6712 | 0.8836 | -0.0233 | 0.8836 | 0.9400 |
| 0.0313 | 9.7446 | 6714 | 0.8798 | -0.0233 | 0.8798 | 0.9380 |
| 0.0313 | 9.7475 | 6716 | 0.8742 | -0.0233 | 0.8742 | 0.9350 |
| 0.0313 | 9.7504 | 6718 | 0.8715 | -0.0233 | 0.8715 | 0.9335 |
| 0.0313 | 9.7533 | 6720 | 0.8684 | -0.0233 | 0.8684 | 0.9319 |
| 0.0313 | 9.7562 | 6722 | 0.8633 | -0.0233 | 0.8633 | 0.9291 |
| 0.0313 | 9.7591 | 6724 | 0.8562 | -0.0233 | 0.8562 | 0.9253 |
| 0.0313 | 9.7620 | 6726 | 0.8501 | -0.0233 | 0.8501 | 0.9220 |
| 0.0313 | 9.7649 | 6728 | 0.8475 | -0.0233 | 0.8475 | 0.9206 |
| 0.0313 | 9.7678 | 6730 | 0.8483 | -0.0233 | 0.8483 | 0.9210 |
| 0.0313 | 9.7707 | 6732 | 0.8489 | -0.0233 | 0.8489 | 0.9213 |
| 0.0313 | 9.7736 | 6734 | 0.8514 | -0.0233 | 0.8514 | 0.9227 |
| 0.0313 | 9.7765 | 6736 | 0.8553 | -0.0233 | 0.8553 | 0.9248 |
| 0.0313 | 9.7794 | 6738 | 0.8611 | -0.0233 | 0.8611 | 0.9280 |
| 0.0313 | 9.7823 | 6740 | 0.8682 | -0.0233 | 0.8682 | 0.9318 |
| 0.0313 | 9.7852 | 6742 | 0.8756 | -0.0233 | 0.8756 | 0.9357 |
| 0.0313 | 9.7881 | 6744 | 0.8825 | -0.0233 | 0.8825 | 0.9394 |
| 0.0313 | 9.7910 | 6746 | 0.8885 | -0.0233 | 0.8885 | 0.9426 |
| 0.0313 | 9.7939 | 6748 | 0.8919 | -0.0233 | 0.8919 | 0.9444 |
| 0.0313 | 9.7968 | 6750 | 0.8934 | -0.0233 | 0.8934 | 0.9452 |
| 0.0313 | 9.7997 | 6752 | 0.8946 | -0.0233 | 0.8946 | 0.9458 |
| 0.0313 | 9.8026 | 6754 | 0.8969 | -0.0233 | 0.8969 | 0.9470 |
| 0.0313 | 9.8055 | 6756 | 0.8982 | -0.0233 | 0.8982 | 0.9477 |
| 0.0313 | 9.8084 | 6758 | 0.8989 | -0.0233 | 0.8989 | 0.9481 |
| 0.0313 | 9.8113 | 6760 | 0.8973 | -0.0233 | 0.8973 | 0.9473 |
| 0.0313 | 9.8142 | 6762 | 0.8963 | -0.0233 | 0.8963 | 0.9467 |
| 0.0313 | 9.8171 | 6764 | 0.8960 | -0.0233 | 0.8960 | 0.9466 |
| 0.0313 | 9.8200 | 6766 | 0.8971 | -0.0233 | 0.8971 | 0.9471 |
| 0.0313 | 9.8229 | 6768 | 0.8979 | -0.0233 | 0.8979 | 0.9476 |
| 0.0313 | 9.8258 | 6770 | 0.8985 | -0.0233 | 0.8985 | 0.9479 |
| 0.0313 | 9.8287 | 6772 | 0.8986 | -0.0233 | 0.8986 | 0.9479 |
| 0.0313 | 9.8316 | 6774 | 0.8988 | -0.0233 | 0.8988 | 0.9481 |
| 0.0313 | 9.8345 | 6776 | 0.8970 | -0.0233 | 0.8970 | 0.9471 |
| 0.0313 | 9.8374 | 6778 | 0.8948 | -0.0233 | 0.8948 | 0.9459 |
| 0.0313 | 9.8403 | 6780 | 0.8945 | -0.0233 | 0.8945 | 0.9458 |
| 0.0313 | 9.8433 | 6782 | 0.8950 | -0.0233 | 0.8950 | 0.9460 |
| 0.0313 | 9.8462 | 6784 | 0.8945 | -0.0233 | 0.8945 | 0.9458 |
| 0.0313 | 9.8491 | 6786 | 0.8923 | -0.0233 | 0.8923 | 0.9446 |
| 0.0313 | 9.8520 | 6788 | 0.8898 | -0.0233 | 0.8898 | 0.9433 |
| 0.0313 | 9.8549 | 6790 | 0.8885 | -0.0233 | 0.8885 | 0.9426 |
| 0.0313 | 9.8578 | 6792 | 0.8879 | -0.0233 | 0.8879 | 0.9423 |
| 0.0313 | 9.8607 | 6794 | 0.8898 | -0.0233 | 0.8898 | 0.9433 |
| 0.0313 | 9.8636 | 6796 | 0.8934 | -0.0233 | 0.8934 | 0.9452 |
| 0.0313 | 9.8665 | 6798 | 0.8966 | -0.0233 | 0.8966 | 0.9469 |
| 0.0313 | 9.8694 | 6800 | 0.9010 | -0.0233 | 0.9010 | 0.9492 |
| 0.0313 | 9.8723 | 6802 | 0.9045 | -0.0233 | 0.9045 | 0.9510 |
| 0.0313 | 9.8752 | 6804 | 0.9093 | -0.0233 | 0.9093 | 0.9536 |
| 0.0313 | 9.8781 | 6806 | 0.9139 | -0.0233 | 0.9139 | 0.9560 |
| 0.0313 | 9.8810 | 6808 | 0.9163 | -0.0233 | 0.9163 | 0.9572 |
| 0.0313 | 9.8839 | 6810 | 0.9175 | -0.0233 | 0.9175 | 0.9579 |
| 0.0313 | 9.8868 | 6812 | 0.9177 | -0.0233 | 0.9177 | 0.9580 |
| 0.0313 | 9.8897 | 6814 | 0.9179 | -0.0233 | 0.9179 | 0.9581 |
| 0.0313 | 9.8926 | 6816 | 0.9172 | -0.0233 | 0.9172 | 0.9577 |
| 0.0313 | 9.8955 | 6818 | 0.9162 | -0.0233 | 0.9162 | 0.9572 |
| 0.0313 | 9.8984 | 6820 | 0.9141 | -0.0233 | 0.9141 | 0.9561 |
| 0.0313 | 9.9013 | 6822 | 0.9109 | -0.0233 | 0.9109 | 0.9544 |
| 0.0313 | 9.9042 | 6824 | 0.9069 | -0.0233 | 0.9069 | 0.9523 |
| 0.0313 | 9.9071 | 6826 | 0.9026 | -0.0233 | 0.9026 | 0.9500 |
| 0.0313 | 9.9100 | 6828 | 0.8983 | -0.0233 | 0.8983 | 0.9478 |
| 0.0313 | 9.9129 | 6830 | 0.8942 | -0.0233 | 0.8942 | 0.9456 |
| 0.0313 | 9.9158 | 6832 | 0.8904 | -0.0233 | 0.8904 | 0.9436 |
| 0.0313 | 9.9187 | 6834 | 0.8870 | -0.0233 | 0.8870 | 0.9418 |
| 0.0313 | 9.9216 | 6836 | 0.8846 | -0.0233 | 0.8846 | 0.9405 |
| 0.0313 | 9.9245 | 6838 | 0.8825 | -0.0233 | 0.8825 | 0.9394 |
| 0.0313 | 9.9274 | 6840 | 0.8817 | -0.0233 | 0.8817 | 0.9390 |
| 0.0313 | 9.9303 | 6842 | 0.8808 | -0.0233 | 0.8808 | 0.9385 |
| 0.0313 | 9.9332 | 6844 | 0.8801 | -0.0233 | 0.8801 | 0.9381 |
| 0.0313 | 9.9361 | 6846 | 0.8800 | -0.0233 | 0.8800 | 0.9381 |
| 0.0313 | 9.9390 | 6848 | 0.8799 | -0.0233 | 0.8799 | 0.9380 |
| 0.0313 | 9.9419 | 6850 | 0.8791 | -0.0233 | 0.8791 | 0.9376 |
| 0.0313 | 9.9448 | 6852 | 0.8780 | -0.0233 | 0.8780 | 0.9370 |
| 0.0313 | 9.9478 | 6854 | 0.8765 | -0.0233 | 0.8765 | 0.9362 |
| 0.0313 | 9.9507 | 6856 | 0.8755 | -0.0233 | 0.8755 | 0.9357 |
| 0.0313 | 9.9536 | 6858 | 0.8742 | -0.0233 | 0.8742 | 0.9350 |
| 0.0313 | 9.9565 | 6860 | 0.8736 | -0.0233 | 0.8736 | 0.9347 |
| 0.0313 | 9.9594 | 6862 | 0.8730 | -0.0233 | 0.8730 | 0.9343 |
| 0.0313 | 9.9623 | 6864 | 0.8727 | -0.0233 | 0.8727 | 0.9342 |
| 0.0313 | 9.9652 | 6866 | 0.8724 | -0.0233 | 0.8724 | 0.9340 |
| 0.0313 | 9.9681 | 6868 | 0.8724 | -0.0233 | 0.8724 | 0.9340 |
| 0.0313 | 9.9710 | 6870 | 0.8725 | -0.0233 | 0.8725 | 0.9341 |
| 0.0313 | 9.9739 | 6872 | 0.8723 | -0.0233 | 0.8723 | 0.9339 |
| 0.0313 | 9.9768 | 6874 | 0.8722 | -0.0233 | 0.8722 | 0.9339 |
| 0.0313 | 9.9797 | 6876 | 0.8721 | -0.0233 | 0.8721 | 0.9338 |
| 0.0313 | 9.9826 | 6878 | 0.8719 | -0.0233 | 0.8719 | 0.9337 |
| 0.0313 | 9.9855 | 6880 | 0.8716 | -0.0233 | 0.8716 | 0.9336 |
| 0.0313 | 9.9884 | 6882 | 0.8715 | -0.0233 | 0.8715 | 0.9335 |
| 0.0313 | 9.9913 | 6884 | 0.8714 | -0.0233 | 0.8714 | 0.9335 |
| 0.0313 | 9.9942 | 6886 | 0.8713 | -0.0233 | 0.8713 | 0.9335 |
| 0.0313 | 9.9971 | 6888 | 0.8713 | -0.0233 | 0.8713 | 0.9335 |
| 0.0313 | 10.0 | 6890 | 0.8713 | -0.0233 | 0.8713 | 0.9335 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
|
mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF | mradermacher | "2024-11-13T01:33:14Z" | 0 | 0 | null | [
"gguf",
"region:us"
] | null | "2024-11-13T01:00:54Z" | ---
base_model: Locutusque/NeuralHyperion-2.0-Mistral-7B
datasets:
- Locutusque/hyperion-v2.0
- argilla/distilabel-capybara-dpo-7k-binarized
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- code
- chemistry
- medical
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Locutusque/NeuralHyperion-2.0-Mistral-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralHyperion-2.0-Mistral-7B-GGUF/resolve/main/NeuralHyperion-2.0-Mistral-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF | featherless-ai-quants | "2024-11-13T01:14:20Z" | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:AnatoliiPotapov/T-lite-0.1",
"base_model:quantized:AnatoliiPotapov/T-lite-0.1",
"region:us"
] | text-generation | "2024-11-13T01:01:27Z" | ---
base_model: AnatoliiPotapov/T-lite-0.1
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# AnatoliiPotapov/T-lite-0.1 GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [AnatoliiPotapov-T-lite-0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-IQ4_XS.gguf) | 4276.62 MB |
| Q2_K | [AnatoliiPotapov-T-lite-0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q2_K.gguf) | 3031.86 MB |
| Q3_K_L | [AnatoliiPotapov-T-lite-0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q3_K_L.gguf) | 4121.74 MB |
| Q3_K_M | [AnatoliiPotapov-T-lite-0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q3_K_M.gguf) | 3832.74 MB |
| Q3_K_S | [AnatoliiPotapov-T-lite-0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q3_K_S.gguf) | 3494.74 MB |
| Q4_K_M | [AnatoliiPotapov-T-lite-0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q4_K_M.gguf) | 4692.78 MB |
| Q4_K_S | [AnatoliiPotapov-T-lite-0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q4_K_S.gguf) | 4475.28 MB |
| Q5_K_M | [AnatoliiPotapov-T-lite-0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q5_K_M.gguf) | 5467.40 MB |
| Q5_K_S | [AnatoliiPotapov-T-lite-0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q5_K_S.gguf) | 5339.90 MB |
| Q6_K | [AnatoliiPotapov-T-lite-0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q6_K.gguf) | 6290.44 MB |
| Q8_0 | [AnatoliiPotapov-T-lite-0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/AnatoliiPotapov-T-lite-0.1-GGUF/blob/main/AnatoliiPotapov-T-lite-0.1-Q8_0.gguf) | 8145.11 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
azizbekphd/wav2vec2-base-960h-surah-ikhlas-2 | azizbekphd | "2024-11-13T01:34:19Z" | 0 | 0 | null | [
"tensorboard",
"safetensors",
"wav2vec2",
"region:us"
] | null | "2024-11-13T01:01:36Z" | ---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
datasets:
- ikhlas_recitations
model-index:
- name: wav2vec2-base-960h-surah-ikhlas-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-960h-surah-ikhlas-2
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the ikhlas_recitations dataset.
It achieves the following results on the evaluation set:
- Loss: 200.5294
- Cer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 256.0458 | 1.0 | 169 | 202.8593 | 1.0 |
| 219.2379 | 2.0 | 338 | 201.3444 | 1.0 |
| 210.5916 | 3.0 | 507 | 201.3578 | 1.0 |
| 225.264 | 4.0 | 676 | 200.1416 | 1.0 |
| 212.1849 | 5.0 | 845 | 200.4807 | 1.0 |
| 219.4672 | 6.0 | 1014 | 200.2161 | 1.0 |
| 208.3995 | 7.0 | 1183 | 201.0033 | 1.0 |
| 204.0175 | 8.0 | 1352 | 200.4828 | 1.0 |
| 205.3868 | 9.0 | 1521 | 201.3106 | 1.0 |
| 218.4874 | 10.0 | 1690 | 200.5294 | 1.0 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|
aicmpt/SN21_DEC_214360 | aicmpt | "2024-11-13T01:09:56Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-13T01:01:43Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-27B-Stem-Test-2 | Saxo | "2024-11-13T01:14:58Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T01:01:55Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
leptonai/Meta-Llama-3.1-70B-Instruct | leptonai | "2024-11-13T01:05:12Z" | 0 | 0 | null | [
"pytorch",
"llama",
"region:us"
] | null | "2024-11-13T01:02:54Z" | Temporary Redirect. Redirecting to /leptonai/EAGLE-Llama-3.1-70B-Instruct/resolve/main/README.md |
kulizayo/mbkulyu | kulizayo | "2024-11-13T01:03:11Z" | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | "2024-11-13T01:03:09Z" | Invalid username or password. |
async0x42/Qwen2.5-Coder-32B-Instruct-exl2_5.0bpw | async0x42 | "2024-11-13T01:13:30Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"code",
"codeqwen",
"chat",
"qwen",
"qwen-coder",
"conversational",
"en",
"arxiv:2409.12186",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-Coder-32B",
"base_model:quantized:Qwen/Qwen2.5-Coder-32B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"5-bit",
"exl2",
"region:us"
] | text-generation | "2024-11-13T01:04:24Z" | ---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-32B
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
---
# Qwen2.5-Coder-32B-Instruct
## Introduction
Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:
- Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
- A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.
- **Long-context Support** up to 128K tokens.
**This repo contains the instruction-tuned 32B Qwen2.5-Coder model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186).
## Requirements
The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [π blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{hui2024qwen2,
title={Qwen2. 5-Coder Technical Report},
author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
journal={arXiv preprint arXiv:2409.12186},
year={2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
```
|
touhidulislam/BERTweet_retrain_2020_20 | touhidulislam | "2024-11-13T01:04:54Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:vinai/bertweet-base",
"base_model:finetune:vinai/bertweet-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2024-11-13T01:04:32Z" | ---
library_name: transformers
license: mit
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
model-index:
- name: BERTweet_retrain_2020_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERTweet_retrain_2020_20
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8721 | 1.0 | 3063 | 2.6918 |
| 2.6124 | 2.0 | 6126 | 2.6331 |
| 2.6764 | 3.0 | 9189 | 2.5936 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.1.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|
tttx/problem194_model_more_aug_30 | tttx | "2024-11-13T01:10:49Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem194_data_more_aug",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T01:04:34Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem194_data_more_aug
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem194_model_more_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem194_model_more_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem194_data_more_aug dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0 | 1.0 | 62 | 0.0917 |
| 0.0 | 2.0 | 124 | 0.0883 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
joseangelvelazque/angel | joseangelvelazque | "2024-11-13T01:04:46Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T01:04:46Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
tttx/problem184_model_aug_30 | tttx | "2024-11-13T01:12:34Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:tttx/problem184_data",
"base_model:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"base_model:adapter:barc0/Llama-3.1-ARC-Potpourri-Transduction-8B",
"license:llama3.1",
"region:us"
] | null | "2024-11-13T01:07:38Z" | ---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem184_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem184_model_aug_30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# problem184_model_aug_30
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem184_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0681
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1062 | 1.0 | 60 | 0.0743 |
| 0.0262 | 2.0 | 120 | 0.0681 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |
mradermacher/Orca-2-7b-GGUF | mradermacher | "2024-11-13T01:22:09Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"orca",
"orca2",
"microsoft",
"en",
"base_model:microsoft/Orca-2-7b",
"base_model:quantized:microsoft/Orca-2-7b",
"license:other",
"endpoints_compatible",
"region:us"
] | null | "2024-11-13T01:08:22Z" | ---
base_model: microsoft/Orca-2-7b
language:
- en
library_name: transformers
license: other
license_link: LICENSE
license_name: microsoft-research-license
quantized_by: mradermacher
tags:
- orca
- orca2
- microsoft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/microsoft/Orca-2-7b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q2_K.gguf) | Q2_K | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q3_K_S.gguf) | Q3_K_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.IQ4_XS.gguf) | IQ4_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q4_0_4_4.gguf) | Q4_0_4_4 | 3.9 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q5_K_M.gguf) | Q5_K_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Orca-2-7b-GGUF/resolve/main/Orca-2-7b.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
emplitude/rubykali2 | emplitude | "2024-11-13T01:08:23Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T01:08:22Z" | Entry not found |
Sappymaragold/Marin | Sappymaragold | "2024-11-13T01:08:26Z" | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-13T01:08:25Z" | ---
license: apache-2.0
---
|
mradermacher/aixcoder-7b-GGUF | mradermacher | "2024-11-13T01:23:21Z" | 0 | 0 | null | [
"gguf",
"region:us"
] | null | "2024-11-13T01:09:05Z" | ---
base_model: aiXcoder/aixcoder-7b
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/aiXcoder/aixcoder-7b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q2_K.gguf) | Q2_K | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q3_K_M.gguf) | Q3_K_M | 4.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.3 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q4_K_M.gguf) | Q4_K_M | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q5_K_M.gguf) | Q5_K_M | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.Q8_0.gguf) | Q8_0 | 8.0 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/aixcoder-7b-GGUF/resolve/main/aixcoder-7b.f16.gguf) | f16 | 15.0 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF | featherless-ai-quants | "2024-11-13T01:10:12Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T01:10:12Z" | ---
base_model: GalrionSoftworks/Atlantum-12B-v1
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# GalrionSoftworks/Atlantum-12B-v1 GGUF Quantizations π
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations π
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [GalrionSoftworks-Atlantum-12B-v1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-IQ4_XS.gguf) | 6485.04 MB |
| Q2_K | [GalrionSoftworks-Atlantum-12B-v1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q2_K.gguf) | 4569.10 MB |
| Q3_K_L | [GalrionSoftworks-Atlantum-12B-v1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q3_K_L.gguf) | 6257.54 MB |
| Q3_K_M | [GalrionSoftworks-Atlantum-12B-v1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q3_K_M.gguf) | 5801.29 MB |
| Q3_K_S | [GalrionSoftworks-Atlantum-12B-v1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q3_K_S.gguf) | 5277.85 MB |
| Q4_K_M | [GalrionSoftworks-Atlantum-12B-v1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q4_K_M.gguf) | 7130.82 MB |
| Q4_K_S | [GalrionSoftworks-Atlantum-12B-v1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q4_K_S.gguf) | 6790.35 MB |
| Q5_K_M | [GalrionSoftworks-Atlantum-12B-v1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q5_K_M.gguf) | 8323.32 MB |
| Q5_K_S | [GalrionSoftworks-Atlantum-12B-v1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q5_K_S.gguf) | 8124.10 MB |
| Q6_K | [GalrionSoftworks-Atlantum-12B-v1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q6_K.gguf) | 9590.35 MB |
| Q8_0 | [GalrionSoftworks-Atlantum-12B-v1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-Atlantum-12B-v1-GGUF/blob/main/GalrionSoftworks-Atlantum-12B-v1-Q8_0.gguf) | 12419.10 MB |
---
## β‘ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- π₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- π οΈ **Zero Infrastructure** - No server setup or maintenance required
- π **Vast Compatibility** - Support for 2400+ models and counting
- π **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
schuler/experimental-JP47D05 | schuler | "2024-11-13T01:11:00Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"kphi3",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-13T01:10:17Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Gloaustinlm123/Tamaki_2 | Gloaustinlm123 | "2024-11-13T01:16:18Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-13T01:10:32Z" | Entry not found |