modelId
stringlengths 4
122
| author
stringlengths 2
42
⌀ | last_modified
unknown | downloads
int64 0
74.7M
| likes
int64 0
9.67k
| library_name
stringlengths 2
84
⌀ | tags
sequence | pipeline_tag
stringlengths 5
30
⌀ | createdAt
unknown | card
stringlengths 1
901k
| embedding
sequence |
---|---|---|---|---|---|---|---|---|---|---|
cardiffnlp/twitter-roberta-base-emotion-multilabel-latest | cardiffnlp | "2023-05-28T05:08:45Z" | 198,854 | 11 | transformers | [
"transformers",
"pytorch",
"tf",
"roberta",
"text-classification",
"generated_from_keras_callback",
"en",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2023-03-01T21:14:01Z" | ---
tags:
- generated_from_keras_callback
model-index:
- name: twitter-roberta-base-emotion-multilabel-latest
results: []
pipeline_tag: text-classification
language:
- en
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-emotion-multilabel-latest
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m) on the
[`SemEval 2018 - Task 1 Affect in Tweets`](https://aclanthology.org/S18-1001/) `(subtask: E-c / multilabel classification)`.
## Performance
Following metrics are achieved on the test split:
- F1 (micro): 0.7169
- F1 (macro): 0.5464
- Jaccard Index (samples): 0.5970:
### Usage
#### 1. [tweetnlp](https://pypi.org/project/tweetnlp/)
Install tweetnlp via pip.
```shell
pip install tweetnlp
```
Load the model in python.
```python
import tweetnlp
model = tweetnlp.load_model('topic_classification', model_name='cardiffnlp/twitter-roberta-base-emotion-multilabel-latest')
model.predict("I bet everything will work out in the end :)")
>> {'label': ['joy', 'optimism']}
```
#### 2. pipeline
```shell
pip install -U tensorflow==2.10
```
```python
from transformers import pipeline
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True)
pipe("I bet everything will work out in the end :)")
>> [[{'label': 'anger', 'score': 0.018903767690062523},
{'label': 'anticipation', 'score': 0.28172484040260315},
{'label': 'disgust', 'score': 0.011607927270233631},
{'label': 'fear', 'score': 0.036411102861166},
{'label': 'joy', 'score': 0.8812029361724854},
{'label': 'love', 'score': 0.09591569006443024},
{'label': 'optimism', 'score': 0.9810988306999207},
{'label': 'pessimism', 'score': 0.016823478043079376},
{'label': 'sadness', 'score': 0.01889917254447937},
{'label': 'surprise', 'score': 0.02702752873301506},
{'label': 'trust', 'score': 0.4155798852443695}]]
```
### Reference
```
@inproceedings{camacho-collados-etal-2022-tweetnlp,
title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia},
author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{\'\i}nez-C{\'a}mara, Eugenio and others},
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
``` | [
-0.3585977554321289,
-0.67137610912323,
0.2777843773365021,
0.324400931596756,
-0.31714457273483276,
0.1045844629406929,
-0.33633890748023987,
-0.4673064947128296,
0.48929351568222046,
0.08672063052654266,
-0.6025846600532532,
-0.7181972861289978,
-0.9699586033821106,
-0.07776542752981186,
-0.2948019504547119,
1.1015639305114746,
-0.03282671049237251,
-0.1650184839963913,
0.24377962946891785,
-0.22918614745140076,
-0.09918951988220215,
-0.5333852171897888,
-0.8837458491325378,
-0.42205268144607544,
0.6459439992904663,
0.16254574060440063,
0.6363330483436584,
0.4360901415348053,
0.5439925789833069,
0.3434695601463318,
-0.3281088173389435,
-0.03754057735204697,
-0.35264214873313904,
-0.06808370351791382,
0.14049582183361053,
-0.2830811142921448,
-0.602817952632904,
0.013843112625181675,
0.8037517070770264,
0.4833780825138092,
0.024838348850607872,
0.3162491023540497,
0.1516522467136383,
0.19071616232395172,
-0.3736427426338196,
0.2877471148967743,
-0.5049321055412292,
-0.09507400542497635,
-0.2675701379776001,
-0.17595624923706055,
-0.18767166137695312,
-0.3070533871650696,
0.04994500055909157,
-0.35348525643348694,
0.1785431057214737,
0.09084584563970566,
1.4224679470062256,
0.2662738561630249,
-0.12096643447875977,
-0.1812049299478531,
-0.40122318267822266,
0.9754037261009216,
-1.1452854871749878,
0.14117056131362915,
0.27031490206718445,
0.019894815981388092,
-0.14752669632434845,
-0.6268600225448608,
-0.5849484801292419,
-0.01271059736609459,
-0.03233149275183678,
0.2626897096633911,
-0.36561283469200134,
-0.10763703286647797,
0.2588368058204651,
0.15168657898902893,
-0.3997337222099304,
0.03410449996590614,
-0.41751500964164734,
-0.16976399719715118,
0.7148609757423401,
0.022315971553325653,
0.22452987730503082,
-0.43172353506088257,
-0.3134070932865143,
-0.3019808828830719,
-0.14666588604450226,
0.020588288083672523,
0.25488170981407166,
0.517294704914093,
-0.5017539262771606,
0.7018467783927917,
0.014102463610470295,
0.39814674854278564,
-0.13560611009597778,
-0.22637876868247986,
0.6703705191612244,
-0.1667955070734024,
-0.413851261138916,
0.11439713835716248,
1.3509738445281982,
0.4059446454048157,
0.2653083801269531,
0.08606310933828354,
-0.06495817750692368,
0.18010829389095306,
-0.058180373162031174,
-0.8350024223327637,
-0.12950636446475983,
0.42260754108428955,
-0.4945205748081207,
-0.5428892970085144,
0.057515308260917664,
-1.0827558040618896,
-0.11193861067295074,
-0.11363019049167633,
0.6421047449111938,
-0.5055316686630249,
-0.4039846956729889,
0.05099554732441902,
-0.15623751282691956,
0.07705294340848923,
0.03390367329120636,
-0.6316946744918823,
0.1634092926979065,
0.5983104705810547,
0.8626332879066467,
0.1549392193555832,
-0.24635274708271027,
-0.1913200169801712,
-0.11057474464178085,
-0.27565041184425354,
0.7295370101928711,
-0.4724733531475067,
-0.19160613417625427,
-0.11600234359502792,
-0.08667045086622238,
-0.3092135488986969,
-0.15652447938919067,
0.895622730255127,
-0.22470252215862274,
0.2469957321882248,
-0.17108023166656494,
-0.6523956060409546,
-0.18116295337677002,
0.22662825882434845,
-0.5480102300643921,
1.127349615097046,
-0.11045782268047333,
-1.0263807773590088,
0.24487753212451935,
-0.881507158279419,
-0.22627004981040955,
-0.1328728049993515,
0.15944217145442963,
-0.646802544593811,
-0.05614416301250458,
0.1674623042345047,
0.6630967259407043,
-0.36451855301856995,
0.29034310579299927,
-0.6647108197212219,
-0.033709317445755005,
0.22658632695674896,
-0.26999399065971375,
1.2342190742492676,
0.3134080171585083,
-0.37576934695243835,
-0.028821393847465515,
-0.928185760974884,
0.2472815215587616,
0.17289188504219055,
-0.3696610927581787,
-0.009331880137324333,
-0.15250983834266663,
0.27300402522087097,
0.2541605532169342,
0.19396738708019257,
-0.6305012106895447,
0.0810898095369339,
-0.29196253418922424,
0.5907949209213257,
0.7849327325820923,
0.10605371743440628,
0.24333052337169647,
-0.2856661081314087,
0.4466492235660553,
-0.04382280632853508,
0.11001154780387878,
0.042625222355127335,
-0.7697449922561646,
-0.8263348937034607,
-0.23518536984920502,
0.4043162167072296,
0.4731298089027405,
-0.48419785499572754,
0.5818018317222595,
-0.3118796646595001,
-0.7603470087051392,
-0.661845326423645,
-0.19620099663734436,
0.3053593039512634,
0.625314474105835,
0.47153908014297485,
0.055673569440841675,
-0.8401415348052979,
-0.800052285194397,
-0.4065859913825989,
-0.2942296266555786,
0.20487083494663239,
0.26775965094566345,
0.5612817406654358,
-0.26176705956459045,
0.7699413895606995,
-0.4707093834877014,
-0.18666386604309082,
-0.16098631918430328,
0.4739423096179962,
0.5374205708503723,
0.569901168346405,
0.5104625225067139,
-0.6241868734359741,
-0.6049827933311462,
-0.21769091486930847,
-0.7606562376022339,
-0.22170880436897278,
0.05498185381293297,
-0.3165901303291321,
0.36446237564086914,
0.2751550078392029,
-0.6573380827903748,
0.44643035531044006,
0.5095227956771851,
-0.6388860940933228,
0.43764981627464294,
-0.12249080091714859,
0.1477411389350891,
-1.381108283996582,
0.13255256414413452,
0.3162400424480438,
-0.06962016224861145,
-0.8341329097747803,
-0.16678652167320251,
-0.07029532641172409,
0.29513299465179443,
-0.3871678113937378,
0.6731264591217041,
-0.15966209769248962,
0.21654292941093445,
-0.07114297151565552,
-0.06674231588840485,
-0.11970891803503036,
0.6342898011207581,
-0.1253785341978073,
0.3311917781829834,
0.4883419871330261,
-0.5867302417755127,
0.26652371883392334,
0.16352097690105438,
-0.34732070565223694,
0.4575733542442322,
-0.6493159532546997,
-0.03167562931776047,
-0.150005504488945,
0.012463352642953396,
-1.18135404586792,
-0.2918857932090759,
0.5450877547264099,
-0.7991244196891785,
0.4274115264415741,
0.013128924183547497,
-0.6886177659034729,
-0.584722101688385,
-0.18965277075767517,
0.22924217581748962,
0.5660720467567444,
-0.37314778566360474,
0.7200038433074951,
0.37352254986763,
0.14168083667755127,
-0.6164669394493103,
-1.0158634185791016,
0.16159294545650482,
-0.3244945704936981,
-0.6872342824935913,
0.43800148367881775,
-0.3000016212463379,
-0.15175963938236237,
0.1716749519109726,
0.07107533514499664,
-0.1294495314359665,
0.01640617661178112,
0.18848474323749542,
0.3583221137523651,
-0.12438040226697922,
0.12468628585338593,
-0.1286875158548355,
-0.09224176406860352,
0.15070070326328278,
-0.13439121842384338,
0.6992449164390564,
-0.22198687493801117,
-0.029270149767398834,
-0.5208854079246521,
0.09497744590044022,
0.4416913688182831,
-0.03268264979124069,
0.898673415184021,
1.017224907875061,
-0.5537521243095398,
0.014006126672029495,
-0.5207619667053223,
0.08496014773845673,
-0.44307494163513184,
0.44653093814849854,
-0.42560863494873047,
-0.6700150966644287,
0.7391335368156433,
0.19857069849967957,
0.027047932147979736,
1.094287633895874,
0.7106491327285767,
-0.18438395857810974,
0.9769426584243774,
0.379936158657074,
-0.13973210752010345,
0.39843690395355225,
-0.6097761392593384,
0.32716837525367737,
-0.8353770971298218,
-0.4647860825061798,
-0.7080921530723572,
-0.3708246052265167,
-0.8151052594184875,
-0.28359413146972656,
0.15566186606884003,
0.09557817876338959,
-0.5127079486846924,
0.40947225689888,
-0.6389395594596863,
0.09227017313241959,
0.6937195658683777,
0.2918587327003479,
-0.12318134307861328,
-0.07462570816278458,
-0.21838395297527313,
-0.2002621442079544,
-0.7693327069282532,
-0.37421491742134094,
1.0577501058578491,
0.535053551197052,
0.47216272354125977,
0.19376279413700104,
0.7913005948066711,
0.12303794175386429,
0.3705553710460663,
-0.6935747861862183,
0.5488297939300537,
-0.15989413857460022,
-0.6718647480010986,
-0.16096393764019012,
-0.465056449174881,
-0.8953568935394287,
0.11900795996189117,
-0.33706530928611755,
-1.0247454643249512,
0.22672142088413239,
-0.10522262006998062,
-0.4026115834712982,
0.5703164935112,
-0.7505420446395874,
0.7882723212242126,
-0.09759851545095444,
-0.341619610786438,
0.07584407925605774,
-0.5084384679794312,
0.2701917588710785,
-0.04917813464999199,
0.3806300163269043,
-0.363259494304657,
-0.09974218159914017,
1.1906218528747559,
-0.44779226183891296,
0.9630956053733826,
-0.08444631844758987,
0.032792530953884125,
0.37157952785491943,
-0.043165840208530426,
0.4113759696483612,
-0.011632682755589485,
-0.2869102656841278,
0.1238417774438858,
-0.03365454450249672,
-0.45489969849586487,
-0.27666985988616943,
0.7436913847923279,
-0.9134043455123901,
-0.2826017439365387,
-0.5951196551322937,
-0.4093051552772522,
0.028529148548841476,
0.3298894762992859,
0.6164340972900391,
0.544075071811676,
-0.02544301189482212,
0.21798305213451385,
0.47657784819602966,
-0.21171291172504425,
0.8104098439216614,
0.03571762144565582,
0.04825934022665024,
-0.7083691954612732,
0.7562680840492249,
0.14442914724349976,
0.10395338386297226,
0.43971630930900574,
0.4010833203792572,
-0.43708449602127075,
-0.2548883855342865,
0.022478381171822548,
0.36334049701690674,
-0.6984296441078186,
-0.37880653142929077,
-0.8142613172531128,
-0.4195784330368042,
-0.6155584454536438,
0.05525337532162666,
-0.4256497323513031,
-0.48208358883857727,
-0.611777126789093,
-0.0540921650826931,
0.5610936284065247,
0.752824604511261,
-0.2802145183086395,
0.24096858501434326,
-0.6747168898582458,
0.21916645765304565,
0.025648120790719986,
0.5262818336486816,
0.22750939428806305,
-0.7793360948562622,
-0.23402367532253265,
0.24282939732074738,
-0.3319098949432373,
-0.9594612121582031,
0.7421009540557861,
0.18231208622455597,
0.5737835764884949,
0.4346834123134613,
0.03461591899394989,
0.7436562776565552,
-0.22484460473060608,
0.7432206273078918,
0.33673036098480225,
-0.9364849328994751,
0.5149498581886292,
-0.46769359707832336,
0.3704768419265747,
0.3268522620201111,
0.30471542477607727,
-0.6784963607788086,
-0.5039724707603455,
-1.1428484916687012,
-0.9363774657249451,
0.9063800573348999,
0.5012635588645935,
0.12015951424837112,
-0.12954305112361908,
0.14323006570339203,
-0.20930397510528564,
0.2566051781177521,
-0.781519889831543,
-0.7373643517494202,
-0.26485925912857056,
-0.45688214898109436,
-0.27647635340690613,
-0.4949657618999481,
-0.0028461480978876352,
-0.47470393776893616,
0.9694488048553467,
0.21048249304294586,
0.7363057136535645,
0.15811263024806976,
0.2539643347263336,
0.011864987201988697,
0.24007254838943481,
0.6905273199081421,
0.37605711817741394,
-0.62506502866745,
0.010853039100766182,
0.12143450230360031,
-0.38424283266067505,
-0.11434212327003479,
0.2797139585018158,
-0.038330335170030594,
0.260679692029953,
0.5797561407089233,
1.0428094863891602,
0.2748447358608246,
-0.11927156150341034,
0.3117012679576874,
0.09244118630886078,
-0.5927506685256958,
-0.4123075008392334,
-0.139332115650177,
0.1584787517786026,
0.24707143008708954,
0.42730870842933655,
0.4741017818450928,
-0.007494592573493719,
-0.5549036264419556,
0.19304697215557098,
0.1977842152118683,
-0.5239568948745728,
-0.4391705095767975,
0.9324002265930176,
-0.1753109097480774,
-0.5652535557746887,
0.37968289852142334,
-0.2951931655406952,
-0.871482253074646,
0.7876011729240417,
0.33468520641326904,
1.1568597555160522,
-0.07818623632192612,
0.2732335031032562,
0.8550296425819397,
0.2759050130844116,
-0.1207534596323967,
0.43740883469581604,
0.25438204407691956,
-0.9049684405326843,
-0.2942606806755066,
-0.6850350499153137,
-0.10975312441587448,
0.22681213915348053,
-0.493607759475708,
0.3150000274181366,
-0.5024687647819519,
-0.433620423078537,
0.2928021252155304,
0.17189531028270721,
-0.8607483506202698,
0.4166606664657593,
0.2929065525531769,
0.8125991821289062,
-0.8299828171730042,
0.862209141254425,
0.6832931041717529,
-0.5351159572601318,
-1.080575942993164,
-0.08734210580587387,
-0.15642327070236206,
-0.590883731842041,
0.6827135682106018,
0.16756834089756012,
0.23324938118457794,
0.07011083513498306,
-0.7147575616836548,
-1.1425436735153198,
1.0598174333572388,
0.16649319231510162,
-0.2433415800333023,
0.12533296644687653,
0.14405225217342377,
0.7637702822685242,
-0.282209187746048,
0.6252580285072327,
0.4465879797935486,
0.620936393737793,
0.38609597086906433,
-0.8245241045951843,
0.11552432924509048,
-0.5324342846870422,
-0.14356105029582977,
0.14495931565761566,
-0.9324154257774353,
1.0932912826538086,
-0.04991130158305168,
-0.04759307578206062,
-0.04134056344628334,
0.5535112023353577,
0.38100606203079224,
0.24677234888076782,
0.3745667040348053,
0.8319655060768127,
0.84051513671875,
-0.4164770543575287,
1.1233738660812378,
-0.3152589499950409,
0.7864333987236023,
1.017939567565918,
0.2768685817718506,
0.9343593120574951,
0.45949482917785645,
-0.3701603412628174,
0.5571516156196594,
0.8174466490745544,
-0.1399020403623581,
0.46718740463256836,
-0.0011760322377085686,
-0.07214391976594925,
-0.26805025339126587,
-0.12968014180660248,
-0.25958362221717834,
0.3526381850242615,
0.2434382140636444,
-0.4753899872303009,
-0.21682171523571014,
-0.2868484556674957,
0.3138740658760071,
-0.12960027158260345,
-0.26049429178237915,
0.4871066212654114,
0.22482943534851074,
-0.6101619601249695,
0.6301229000091553,
0.08283574134111404,
0.9251408576965332,
-0.38261061906814575,
0.14082744717597961,
0.13791799545288086,
0.3319033086299896,
-0.2286556214094162,
-0.9967628717422485,
0.2569895386695862,
-0.10368675738573074,
-0.012643630616366863,
-0.1969650834798813,
0.6548839807510376,
-0.34094440937042236,
-0.872434675693512,
0.5586596131324768,
0.16701152920722961,
0.18763583898544312,
0.0540425144135952,
-1.1133006811141968,
0.07806909084320068,
0.18802671134471893,
-0.5918075442314148,
-0.08956515789031982,
0.43968465924263,
0.3055838942527771,
0.7432058453559875,
0.5410208106040955,
0.20146456360816956,
0.275674045085907,
0.08026736974716187,
0.759958803653717,
-0.6779565811157227,
-0.3837521970272064,
-1.1071852445602417,
0.6839953660964966,
-0.1877276599407196,
-0.5580452084541321,
0.614221453666687,
0.5688439607620239,
0.5693832635879517,
0.17394039034843445,
0.8182530999183655,
-0.4115181565284729,
0.6046299934387207,
-0.3023887574672699,
0.6146724224090576,
-0.7757241725921631,
0.11648513376712799,
-0.41545963287353516,
-0.759966254234314,
-0.47043317556381226,
0.6296716332435608,
-0.30568429827690125,
0.27913904190063477,
0.7400321364402771,
0.649825394153595,
0.02730621211230755,
-0.0613439604640007,
0.005425440147519112,
0.5087278485298157,
0.3558694124221802,
0.6383101344108582,
0.33158618211746216,
-0.8698849081993103,
0.5885857343673706,
-0.6574541926383972,
0.016870535910129547,
-0.2060716301202774,
-1.0999760627746582,
-1.0387119054794312,
-0.7423213124275208,
-0.457124799489975,
-0.7721138596534729,
-0.18131645023822784,
0.9775851368904114,
0.5349714756011963,
-0.9503808617591858,
-0.14475323259830475,
-0.19779720902442932,
0.03987891599535942,
-0.053225476294755936,
-0.3189433217048645,
0.6242652535438538,
-0.18216806650161743,
-0.8878947496414185,
-0.17246422171592712,
-0.1243009865283966,
0.2590065598487854,
0.16654500365257263,
-0.13810701668262482,
-0.5282211303710938,
-0.017827674746513367,
0.3569331169128418,
0.14333373308181763,
-0.7307007908821106,
-0.28905099630355835,
-0.06776488572359085,
-0.1813788264989853,
0.15949468314647675,
0.030831174924969673,
-0.36055999994277954,
0.2976647615432739,
0.6574527621269226,
0.2833786904811859,
0.6766244173049927,
-0.08499888330698013,
0.388145387172699,
-0.612618088722229,
0.15137985348701477,
0.2708413600921631,
0.43669548630714417,
0.2528631091117859,
-0.2821027338504791,
0.5272282958030701,
0.34863919019699097,
-0.4947583079338074,
-0.8151813745498657,
-0.3060223460197449,
-1.1843857765197754,
-0.1513209044933319,
1.3399977684020996,
0.10083118081092834,
-0.5152643322944641,
0.24256274104118347,
-0.0323406346142292,
0.5669392347335815,
-0.7201576232910156,
0.7189077138900757,
0.8623574376106262,
0.1638006716966629,
-0.2813586890697479,
-0.6008533835411072,
0.47890400886535645,
0.31424298882484436,
-0.4836239218711853,
-0.2809426784515381,
-0.12316904217004776,
0.2848998010158539,
0.2939969301223755,
0.7474395632743835,
0.06278549879789352,
0.022618206217885017,
0.042330726981163025,
0.4550947844982147,
0.09163408726453781,
0.06563539057970047,
-0.23518581688404083,
0.06688564270734787,
-0.17051060497760773,
-0.39202630519866943
] |
cross-encoder/nli-deberta-base | cross-encoder | "2021-08-05T08:40:53Z" | 198,042 | 14 | transformers | [
"transformers",
"pytorch",
"deberta",
"text-classification",
"deberta-base-base",
"zero-shot-classification",
"en",
"dataset:multi_nli",
"dataset:snli",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | zero-shot-classification | "2022-03-02T23:29:05Z" | ---
language: en
pipeline_tag: zero-shot-classification
tags:
- deberta-base-base
datasets:
- multi_nli
- snli
metrics:
- accuracy
license: apache-2.0
---
# Cross-Encoder for Natural Language Inference
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
## Performance
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
## Usage
Pre-trained models can be used like this:
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/nli-deberta-base')
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
#Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
```
## Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-base')
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-base')
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
print(labels)
```
## Zero-Shot Classification
This model can also be used for zero-shot-classification:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-base')
sent = "Apple just announced the newest iPhone X"
candidate_labels = ["technology", "sports", "politics"]
res = classifier(sent, candidate_labels)
print(res)
``` | [
-0.2190271019935608,
-0.7582046985626221,
0.29419034719467163,
0.23903530836105347,
-0.0006176960305310786,
-0.08028573542833328,
-0.0835094153881073,
-0.2994881272315979,
0.1720382124185562,
0.4532301127910614,
-0.531319797039032,
-0.5169288516044617,
-0.5582992434501648,
0.1888684183359146,
-0.5669906139373779,
1.1193524599075317,
-0.07304201275110245,
0.01245375256985426,
-0.14748790860176086,
-0.11638014763593674,
-0.24419282376766205,
-0.419143944978714,
-0.40508610010147095,
-0.5823631882667542,
0.35809797048568726,
0.1617138683795929,
0.5846303105354309,
0.36582255363464355,
0.1351441890001297,
0.3784272074699402,
0.08032409846782684,
-0.20772823691368103,
-0.17908450961112976,
-0.08340306580066681,
-0.014925597235560417,
-0.5570203065872192,
-0.064977265894413,
0.21902421116828918,
0.3035071790218353,
0.40033626556396484,
0.006523569114506245,
0.2505945563316345,
-0.15575125813484192,
0.17698846757411957,
-0.6339559555053711,
0.08000093698501587,
-0.5202825665473938,
0.19692009687423706,
0.10467822849750519,
-0.026578908786177635,
-0.4473227560520172,
-0.364834189414978,
0.09445483237504959,
-0.4648531675338745,
0.32733601331710815,
0.0298563614487648,
1.2920528650283813,
0.41447216272354126,
-0.31881657242774963,
-0.4017364978790283,
-0.5326830744743347,
0.9095917344093323,
-0.9944697618484497,
0.2859727740287781,
0.21593216061592102,
0.01766345649957657,
0.10821451991796494,
-0.7545990347862244,
-0.9343746304512024,
-0.18307068943977356,
-0.21911686658859253,
0.40665748715400696,
-0.3347133696079254,
-0.09085080027580261,
0.38118916749954224,
0.4016129672527313,
-0.7725126147270203,
-0.003815780393779278,
-0.39652347564697266,
-0.13883498311042786,
0.7467367649078369,
0.12616032361984253,
0.24456435441970825,
-0.42710521817207336,
-0.3879052698612213,
-0.14566893875598907,
-0.14275096356868744,
0.1294652670621872,
0.27881351113319397,
-0.006385022774338722,
-0.2598077356815338,
0.8314816951751709,
-0.36571794748306274,
0.8221373558044434,
0.24051490426063538,
-0.07154658436775208,
0.7161707282066345,
-0.3132101595401764,
-0.4697971045970917,
0.33579152822494507,
1.0324457883834839,
0.4086938500404358,
0.32005250453948975,
-0.13919413089752197,
-0.08929745852947235,
0.4178673326969147,
-0.0895605981349945,
-0.748488187789917,
-0.24105367064476013,
0.35074251890182495,
-0.30819079279899597,
-0.3446294367313385,
0.06861799955368042,
-0.7821727395057678,
-0.005151561927050352,
-0.1281479001045227,
0.8159543871879578,
-0.5388172268867493,
0.14684318006038666,
0.3763546049594879,
-0.32072004675865173,
0.44173455238342285,
-0.21064549684524536,
-0.8111560940742493,
0.050000231713056564,
0.2927223742008209,
0.7708023190498352,
0.22239439189434052,
-0.4909999668598175,
-0.351428359746933,
0.015568344853818417,
0.01944493129849434,
0.4608334004878998,
-0.4090757668018341,
-0.04027019068598747,
-0.1726342886686325,
0.08304191380739212,
-0.34607210755348206,
-0.31968483328819275,
0.6992253065109253,
-0.2646331489086151,
0.5980055332183838,
0.3108828663825989,
-0.8077005743980408,
-0.3655036985874176,
0.27985110878944397,
-0.4058583080768585,
1.1350640058517456,
0.10600010305643082,
-0.8502315282821655,
0.1697601079940796,
-0.5587995052337646,
-0.48215213418006897,
-0.28195908665657043,
-0.061513908207416534,
-0.6060092449188232,
0.0908639132976532,
0.40877431631088257,
0.44756990671157837,
-0.22630253434181213,
0.49142906069755554,
-0.2902575433254242,
-0.37330231070518494,
0.31887301802635193,
-0.5515963435173035,
1.1504656076431274,
0.11743024736642838,
-0.574253261089325,
0.18438249826431274,
-0.783708393573761,
0.10114232450723648,
0.15113107860088348,
-0.2730681896209717,
-0.03992592170834541,
-0.283444881439209,
0.1525551825761795,
0.2891853451728821,
-0.0029116596560925245,
-0.7838789820671082,
0.005358362570405006,
-0.4867492616176605,
0.6359570026397705,
0.3452516496181488,
-0.03456556797027588,
0.3265175521373749,
-0.21781140565872192,
0.25373151898384094,
0.007417704444378614,
0.07302405685186386,
-0.10009657591581345,
-0.6392653584480286,
-1.0082335472106934,
-0.004238127265125513,
0.45301398634910583,
0.8724088072776794,
-0.8461788892745972,
0.9573198556900024,
-0.2073599398136139,
-0.6181173920631409,
-0.7151844501495361,
-0.23693735897541046,
0.20910844206809998,
0.5883963108062744,
0.6011549830436707,
-0.042115822434425354,
-0.7101441025733948,
-0.7465210556983948,
-0.34822896122932434,
-0.03393873572349548,
-0.1541784554719925,
-0.015041843988001347,
0.8212174773216248,
-0.4057292938232422,
1.0845472812652588,
-0.5336086750030518,
-0.19082841277122498,
-0.4977949261665344,
0.38421499729156494,
0.48131275177001953,
0.6862227916717529,
0.38635122776031494,
-0.5797864198684692,
-0.3686690330505371,
-0.2832798361778259,
-0.8260689973831177,
-0.15119753777980804,
-0.34491437673568726,
0.03289545327425003,
0.09524708986282349,
0.31359684467315674,
-0.5772566795349121,
0.6621927618980408,
0.4284195899963379,
-0.48728400468826294,
0.50862056016922,
-0.12327773123979568,
0.03075067140161991,
-1.0338506698608398,
-0.1278383433818817,
0.21674588322639465,
-0.11278234422206879,
-0.7519669532775879,
-0.17808577418327332,
-0.13446581363677979,
-0.06847504526376724,
-0.4097084403038025,
0.5627343058586121,
-0.23626334965229034,
0.09614524245262146,
-0.016725150868296623,
0.1264437735080719,
0.24329011142253876,
0.5923000574111938,
0.27312323451042175,
0.4743293225765228,
0.7737804055213928,
-0.5438039898872375,
0.5037884712219238,
0.3201751410961151,
-0.4422462284564972,
0.2808307409286499,
-0.8366471529006958,
-0.099431611597538,
-0.17908188700675964,
0.23498624563217163,
-0.9105604887008667,
-0.16521751880645752,
0.41388776898384094,
-0.6435720920562744,
-0.0031414730474352837,
0.21629908680915833,
-0.4274265170097351,
-0.4843331575393677,
-0.07414841651916504,
0.3357173204421997,
0.46923738718032837,
-0.45899417996406555,
0.7526354789733887,
0.11848589777946472,
0.36385348439216614,
-0.525819718837738,
-1.1236226558685303,
-0.007724421564489603,
-0.18666115403175354,
-0.46016162633895874,
0.2942165434360504,
0.05095890536904335,
0.02015385404229164,
0.14200621843338013,
0.022128969430923462,
-0.21313448250293732,
-0.03599615767598152,
0.2130211442708969,
0.26506999135017395,
-0.22594329714775085,
-0.0152638154104352,
-0.10944721102714539,
-0.1794261634349823,
0.16673442721366882,
-0.2800440192222595,
0.5472944974899292,
-0.2637900114059448,
-0.2832237482070923,
-0.6341606974601746,
0.23054201900959015,
0.2814796566963196,
-0.21863296627998352,
0.7017553448677063,
0.963657021522522,
-0.3694811463356018,
-0.007664044387638569,
-0.4777330458164215,
-0.20063580572605133,
-0.40387097001075745,
0.460443377494812,
-0.2974012792110443,
-0.6396162509918213,
0.3527827858924866,
0.2763025462627411,
-0.15721431374549866,
0.6051822900772095,
0.4470735788345337,
0.03830309584736824,
0.9297080039978027,
0.35547834634780884,
-0.2647378444671631,
0.2889315187931061,
-0.5844008326530457,
0.3252749443054199,
-0.6231149435043335,
-0.24706801772117615,
-0.49512743949890137,
-0.26715415716171265,
-0.5682477355003357,
-0.3234322667121887,
0.11510960012674332,
0.12783579528331757,
-0.3338605463504791,
0.4890720248222351,
-0.5263017416000366,
0.4567694664001465,
0.7528284788131714,
0.0846647098660469,
0.08148152381181717,
-0.005731094162911177,
-0.07676155120134354,
0.06145137920975685,
-0.8281625509262085,
-0.42690011858940125,
0.8234794735908508,
0.3006553053855896,
0.7957774996757507,
-0.1861012727022171,
0.8404102325439453,
-0.05387505143880844,
0.21507158875465393,
-0.7240946888923645,
0.4558523893356323,
-0.2759559452533722,
-0.7750146389007568,
-0.2303863763809204,
-0.46920421719551086,
-0.8532112836837769,
0.2017177939414978,
-0.3892611861228943,
-0.7692703604698181,
0.2770342230796814,
-0.19039343297481537,
-0.48527613282203674,
0.33571624755859375,
-0.8013899922370911,
1.2219408750534058,
-0.40965980291366577,
-0.2488851547241211,
0.15585799515247345,
-0.740204930305481,
0.3502427935600281,
0.13698391616344452,
0.02651166543364525,
-0.19605527818202972,
0.3005983531475067,
0.7977822422981262,
-0.1319950371980667,
0.9674580097198486,
-0.0649360716342926,
0.19177879393100739,
0.433318555355072,
-0.2734709084033966,
0.10285507142543793,
0.10673055797815323,
-0.3563076853752136,
0.3780772089958191,
-0.1149531677365303,
-0.3293350636959076,
-0.6057723164558411,
0.47237154841423035,
-0.9188905954360962,
-0.34323060512542725,
-0.5405769348144531,
-0.4460388123989105,
0.20646913349628448,
0.21629109978675842,
0.7056507468223572,
0.5047212243080139,
-0.022949524223804474,
0.06696287542581558,
0.3502053916454315,
-0.39163804054260254,
0.6893611550331116,
0.12568596005439758,
-0.1327618807554245,
-0.4627596139907837,
0.8140392899513245,
-0.05019865185022354,
0.16454878449440002,
0.4501681625843048,
0.26966336369514465,
-0.5532606244087219,
-0.17622080445289612,
-0.40283048152923584,
0.2354709506034851,
-0.5606461763381958,
-0.18937426805496216,
-0.6689659357070923,
-0.6040037274360657,
-0.6080902218818665,
-0.12251216918230057,
-0.20800204575061798,
-0.33000725507736206,
-0.4847903847694397,
-0.11750778555870056,
0.3333778977394104,
0.47602394223213196,
-0.02980891987681389,
0.40467602014541626,
-0.6944404244422913,
0.44955742359161377,
0.18115182220935822,
0.13367058336734772,
-0.10477092862129211,
-0.6874270439147949,
-0.1111595556139946,
-0.002844642149284482,
-0.41126278042793274,
-0.9801879525184631,
0.627642810344696,
0.28099048137664795,
0.6508920192718506,
0.2310929149389267,
0.22119250893592834,
0.6494070887565613,
-0.2974967062473297,
0.71751469373703,
0.36104616522789,
-1.250274896621704,
0.5815101861953735,
0.1431586742401123,
0.448078989982605,
0.46796104311943054,
0.4747655391693115,
-0.7078485488891602,
-0.47761115431785583,
-0.5658310055732727,
-0.8749836087226868,
0.6970983743667603,
0.4578762352466583,
0.11296984553337097,
-0.1326221525669098,
0.20436851680278778,
0.057067546993494034,
0.1975819170475006,
-1.3595877885818481,
-0.484786719083786,
-0.6786741018295288,
-0.5429206490516663,
-0.3201338052749634,
0.040960539132356644,
0.11776213347911835,
-0.5901297330856323,
0.8514886498451233,
0.022025810554623604,
0.3408573865890503,
0.592619776725769,
-0.2220975011587143,
0.3285888731479645,
0.35171908140182495,
0.5325555801391602,
0.23902933299541473,
-0.27818170189857483,
0.10488308221101761,
0.3471200168132782,
-0.2500101625919342,
0.26299455761909485,
0.24470961093902588,
-0.4003196656703949,
0.22932371497154236,
0.5517587661743164,
1.294216275215149,
0.0018825848819687963,
-0.44836199283599854,
0.5076041221618652,
0.04744778200984001,
-0.2692430317401886,
-0.4036088287830353,
0.0749921128153801,
-0.04395991936326027,
0.3171778619289398,
0.24703064560890198,
0.17666682600975037,
0.09010398387908936,
-0.5985686182975769,
0.3206513822078705,
0.13404539227485657,
-0.5522173047065735,
-0.20659342408180237,
0.8173643350601196,
0.06406766176223755,
-0.4434547424316406,
0.665904700756073,
-0.3040635883808136,
-0.7025765776634216,
0.6526433825492859,
0.5933524370193481,
1.0027124881744385,
-0.02155500277876854,
0.3689231276512146,
0.6760271191596985,
0.3913539946079254,
-0.05749194696545601,
0.10153035819530487,
0.028469961136579514,
-0.9727969169616699,
-0.3653392195701599,
-0.703894317150116,
-0.05747107043862343,
0.14369119703769684,
-0.6635830998420715,
0.16917577385902405,
-0.18532943725585938,
-0.0540245957672596,
0.09689930081367493,
-0.22003324329853058,
-0.638562023639679,
0.31754517555236816,
0.24409154057502747,
0.8542739152908325,
-1.0860636234283447,
0.914335310459137,
0.49983280897140503,
-0.6735782027244568,
-0.8176289796829224,
0.14841154217720032,
-0.22822609543800354,
-0.68926602602005,
0.6990129947662354,
0.5235849618911743,
0.09856042265892029,
0.14955121278762817,
-0.38490599393844604,
-0.6857962012290955,
0.9535155892372131,
0.12847228348255157,
-0.47288763523101807,
-0.07799074798822403,
0.3197896182537079,
0.5996327996253967,
-0.40685155987739563,
0.7356352806091309,
0.7032985687255859,
0.46692073345184326,
-0.029171248897910118,
-0.6561645865440369,
0.0706016942858696,
-0.12425251305103302,
-0.09877695143222809,
-0.11503235250711441,
-0.35874488949775696,
0.9047566056251526,
-0.27385175228118896,
0.006967960391193628,
0.13881435990333557,
0.6907978653907776,
0.2878756523132324,
0.5169353485107422,
0.5061547756195068,
0.8341531157493591,
0.5553030967712402,
-0.24089698493480682,
0.9004111289978027,
-0.1885368824005127,
0.7392041683197021,
1.0556610822677612,
-0.20642459392547607,
0.8320766687393188,
0.44963377714157104,
-0.1107669398188591,
0.7134090065956116,
0.6423920392990112,
-0.417135089635849,
0.5156440138816833,
0.2851126790046692,
-0.1021687239408493,
-0.2593710124492645,
0.15863779187202454,
-0.3089882433414459,
0.7891190052032471,
0.07402259856462479,
-0.4330376982688904,
-0.28650015592575073,
0.16090601682662964,
-0.23412305116653442,
-0.02169894240796566,
-0.1550903171300888,
0.5319018363952637,
-0.11650523543357849,
-0.6562330722808838,
0.7118649482727051,
0.05363939702510834,
0.9286284446716309,
-0.3842366933822632,
0.07206936180591583,
0.008291304111480713,
0.2856912314891815,
-0.27461567521095276,
-0.8963013291358948,
0.3241889774799347,
-0.07636110484600067,
-0.1117032989859581,
-0.03307866305112839,
0.4596603810787201,
-0.689658522605896,
-0.8250917792320251,
0.4866548478603363,
0.2642572224140167,
0.23371745645999908,
0.06827244907617569,
-0.991077721118927,
-0.07499174773693085,
0.21297408640384674,
-0.21586330235004425,
-0.12870287895202637,
0.38391008973121643,
0.3113308548927307,
0.48338279128074646,
0.46428367495536804,
-0.1556776612997055,
0.3408318758010864,
0.20918983221054077,
0.5867524147033691,
-0.839043378829956,
-0.34732818603515625,
-0.972112238407135,
0.6256296634674072,
-0.1503848135471344,
-0.5389373302459717,
0.8608910441398621,
0.7971459627151489,
0.9480406045913696,
-0.2750285267829895,
0.6782018542289734,
-0.2411714792251587,
0.2760952413082123,
-0.595247209072113,
0.6071884036064148,
-0.5750850439071655,
0.03981875628232956,
-0.10798482596874237,
-0.6950317025184631,
-0.46772661805152893,
0.8957169055938721,
-0.3861648142337799,
0.1144150048494339,
0.6149383187294006,
0.9225432276725769,
-0.062478017061948776,
0.10041138529777527,
0.1416194587945938,
0.31297749280929565,
0.07356986403465271,
0.6881186962127686,
0.7816243171691895,
-0.917999804019928,
0.6617749333381653,
-0.5215856432914734,
-0.019831785932183266,
-0.03642956539988518,
-0.6962084174156189,
-0.9209970235824585,
-0.432064950466156,
-0.5288606286048889,
-0.355466365814209,
-0.1228911355137825,
0.7427880764007568,
0.7354909181594849,
-1.042399525642395,
-0.25041088461875916,
-0.2743542492389679,
0.24727989733219147,
-0.2648812532424927,
-0.34912368655204773,
0.2029939442873001,
-0.261962354183197,
-0.8292852640151978,
0.2576078772544861,
-0.033538781106472015,
0.05435311049222946,
-0.08602352440357208,
-0.09030872583389282,
-0.5916714072227478,
0.004903981927782297,
0.4333913028240204,
0.17736828327178955,
-0.9648946523666382,
-0.3389917016029358,
-0.03143160790205002,
-0.17633134126663208,
0.17981237173080444,
0.4178912043571472,
-0.8530109524726868,
0.2028706669807434,
0.4708688259124756,
0.6261886954307556,
0.7111600041389465,
-0.14202800393104553,
0.33020898699760437,
-0.7068235278129578,
0.11560793966054916,
0.15377026796340942,
0.41893792152404785,
0.3078751564025879,
-0.20172953605651855,
0.4936959147453308,
0.43309563398361206,
-0.5577555894851685,
-0.5934457182884216,
0.07225287705659866,
-0.9376457929611206,
-0.3608681261539459,
1.0081652402877808,
-0.09890694916248322,
-0.46033576130867004,
-0.13123168051242828,
-0.12465465813875198,
0.5966978669166565,
-0.28164491057395935,
0.6047582030296326,
0.43489402532577515,
-0.24144995212554932,
-0.22253075242042542,
-0.47394859790802,
0.23773549497127533,
0.5319604873657227,
-0.7889618277549744,
-0.27084416151046753,
0.14097194373607635,
0.43448904156684875,
0.371535986661911,
0.369802862405777,
0.1715773493051529,
-0.013840636238455772,
0.21531979739665985,
0.3545626997947693,
0.0896170437335968,
-0.09091314673423767,
-0.46532922983169556,
0.13717074692249298,
-0.590859591960907,
-0.5985272526741028
] |
SimianLuo/LCM_Dreamshaper_v7 | SimianLuo | "2023-11-08T04:08:49Z" | 198,000 | 282 | diffusers | [
"diffusers",
"onnx",
"text-to-image",
"en",
"arxiv:2310.04378",
"license:mit",
"has_space",
"diffusers:LatentConsistencyModelPipeline",
"region:us"
] | text-to-image | "2023-10-14T08:26:52Z" | ---
license: mit
language:
- en
pipeline_tag: text-to-image
tags:
- text-to-image
---
# Latent Consistency Models
Official Repository of the paper: *[Latent Consistency Models](https://arxiv.org/abs/2310.04378)*.
Project Page: https://latent-consistency-models.github.io
## Try our Hugging Face demos:
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)
## Model Descriptions:
Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine-tune of [Stable-Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with only 4,000 training iterations (~32 A100 GPU Hours).
## Generation Results:
<p align="center">
<img src="teaser.png">
</p>
By distilling classifier-free guidance into the model's input, LCM can generate high-quality images in very short inference time. We compare the inference time at the setting of 768 x 768 resolution, CFG scale w=8, batchsize=4, using a A800 GPU.
<p align="center">
<img src="speed_fid.png">
</p>
## Usage
You can try out Latency Consistency Models directly on:
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)
To run the model yourself, you can leverage the 🧨 Diffusers library:
1. Install the library:
```
pip install --upgrade diffusers # make sure to use at least diffusers >= 0.22
pip install transformers accelerate
```
2. Run the model:
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4
images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```
For more information, please have a look at the official docs:
👉 https://huggingface.co/docs/diffusers/api/pipelines/latent_consistency_models#latent-consistency-models
## Usage (Deprecated)
1. Install the library:
```
pip install diffusers transformers accelerate
```
2. Run the model:
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main", revision="fb9c5d")
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4
images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, output_type="pil").images
```
## BibTeX
```bibtex
@misc{luo2023latent,
title={Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference},
author={Simian Luo and Yiqin Tan and Longbo Huang and Jian Li and Hang Zhao},
year={2023},
eprint={2310.04378},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` | [
-0.2595561146736145,
-0.6310124397277832,
0.42262107133865356,
0.2975512444972992,
-0.11273723840713501,
-0.14043989777565002,
-0.1287986934185028,
-0.41032058000564575,
0.13952982425689697,
0.5156678557395935,
-0.45723724365234375,
-0.5257269740104675,
-0.5107524394989014,
-0.13935533165931702,
-0.09365566074848175,
0.9668196439743042,
-0.17190596461296082,
-0.13553591072559357,
-0.035744648426771164,
-0.03584212809801102,
-0.08242227882146835,
-0.053898513317108154,
-0.7962980270385742,
-0.30912306904792786,
0.37719982862472534,
-0.10944671183824539,
0.6834705471992493,
0.3137019872665405,
0.28895822167396545,
0.3391287326812744,
-0.3334253132343292,
0.15799517929553986,
-0.5501567721366882,
0.03559448570013046,
0.19317029416561127,
-0.3180430829524994,
-0.7490581274032593,
0.12366805225610733,
0.7902150750160217,
0.31663691997528076,
-0.29578080773353577,
0.023442067205905914,
0.43489986658096313,
0.9040448069572449,
-0.4536499083042145,
0.11890753358602524,
-0.3953406810760498,
0.1507769674062729,
0.011590718291699886,
0.2964232563972473,
-0.31192758679389954,
-0.44003477692604065,
-0.06328737735748291,
-0.7664352059364319,
0.3745209574699402,
-0.1408790647983551,
1.367909550666809,
0.431770384311676,
-0.18440912663936615,
0.10073956102132797,
-0.574908435344696,
0.727067768573761,
-0.7317261695861816,
0.6302456855773926,
0.20640809834003448,
0.21471168100833893,
-0.11253286153078079,
-0.9256017208099365,
-0.7616741061210632,
0.0684676468372345,
-0.07350290566682816,
0.4098471403121948,
-0.0733087882399559,
0.11578700691461563,
0.4570413827896118,
0.32699263095855713,
-0.5594955086708069,
-0.3562493324279785,
-0.33317312598228455,
-0.3240330219268799,
0.6374984979629517,
0.043378692120313644,
0.08754881471395493,
-0.11441992968320847,
-0.39786580204963684,
-0.2621828615665436,
-0.37920287251472473,
0.057561978697776794,
0.2965395450592041,
0.018218349665403366,
-0.6913619041442871,
0.690020740032196,
0.0858873501420021,
0.5733739733695984,
0.3251354992389679,
-0.2846454083919525,
0.3721921741962433,
-0.19973868131637573,
-0.3457508385181427,
-0.3076707720756531,
0.9374222159385681,
0.3989742696285248,
-0.0393432192504406,
0.06055193766951561,
-0.2442566156387329,
0.11968962103128433,
-0.06662067025899887,
-1.0002436637878418,
-0.4205634295940399,
0.3627246916294098,
-0.5955740809440613,
-0.23460759222507477,
-0.08558069169521332,
-0.7262284159660339,
-0.19112122058868408,
-0.2843162715435028,
0.5288774371147156,
-0.5953248143196106,
-0.42930591106414795,
0.06242900714278221,
0.06443355977535248,
0.29866236448287964,
0.4157765209674835,
-0.5808818936347961,
0.25163015723228455,
0.3466227948665619,
1.0815520286560059,
-0.2411668598651886,
-0.07092337310314178,
-0.2525027096271515,
-0.03505437448620796,
-0.41642388701438904,
0.5396946668624878,
-0.044887974858284,
-0.17112727463245392,
-0.34728190302848816,
0.26641735434532166,
-0.23847584426403046,
-0.5805093050003052,
0.616684079170227,
-0.3309940695762634,
0.1767737716436386,
-0.07243286073207855,
-0.815191388130188,
-0.013195009902119637,
0.16368229687213898,
-0.43548667430877686,
1.079472303390503,
0.24308201670646667,
-1.0432853698730469,
0.018809126690030098,
-0.47012513875961304,
0.17682035267353058,
-0.27072808146476746,
-0.18462879955768585,
-0.7890824675559998,
-0.057724013924598694,
-0.06889510154724121,
0.425519198179245,
0.11343834549188614,
0.17676806449890137,
-0.42976832389831543,
-0.5029982924461365,
0.0627460703253746,
-0.2910314202308655,
1.1463626623153687,
0.37968307733535767,
-0.28597456216812134,
0.01292182132601738,
-0.6208106875419617,
0.021507006138563156,
0.19092334806919098,
-0.16294609010219574,
0.09883055090904236,
-0.30556249618530273,
0.30262553691864014,
0.2968055009841919,
0.3723597228527069,
-0.5707868337631226,
0.10554254800081253,
-0.294105589389801,
0.09904398769140244,
0.761135458946228,
-0.13483044505119324,
0.1691226214170456,
-0.6050146222114563,
0.4363402724266052,
0.41381344199180603,
-0.060978472232818604,
0.11378049105405807,
-0.5703004002571106,
-1.0900239944458008,
-0.1663561910390854,
0.28164753317832947,
0.3055965304374695,
-0.6437003016471863,
0.4391290843486786,
-0.05191913619637489,
-0.7903005480766296,
-0.5253141522407532,
-0.0496520921587944,
0.4340747594833374,
0.6399522423744202,
0.38113537430763245,
-0.3489825427532196,
-0.534400999546051,
-0.7684841156005859,
0.051719680428504944,
-0.19507820904254913,
-0.03187039867043495,
0.2927398383617401,
0.47186079621315,
-0.3236168920993805,
0.8410864472389221,
-0.6060553789138794,
-0.316081702709198,
0.05964946374297142,
0.07500437647104263,
0.4080037474632263,
0.8439122438430786,
0.6735222339630127,
-0.7007108330726624,
-0.8296266198158264,
-0.2732214331626892,
-0.8882906436920166,
0.06836444139480591,
0.04390239343047142,
-0.29577380418777466,
0.43876299262046814,
0.37604084610939026,
-0.5824848413467407,
0.37999439239501953,
0.9225384593009949,
-0.44310128688812256,
0.9074522256851196,
-0.2353367656469345,
0.13785628974437714,
-1.16920804977417,
0.17043834924697876,
0.2542353570461273,
-0.4202720820903778,
-0.4253619611263275,
-0.046624843031167984,
-0.022645987570285797,
-0.04214413836598396,
-0.5518777966499329,
0.7852660417556763,
-0.4213349521160126,
0.12862449884414673,
-0.2384769171476364,
-0.09777846187353134,
0.013590705581009388,
0.6240941286087036,
0.22783006727695465,
0.589143693447113,
0.8652468323707581,
-0.4858970642089844,
-0.0363885797560215,
0.22994191944599152,
-0.05840585380792618,
0.6291110515594482,
-0.9595610499382019,
0.3127802908420563,
-0.03873153775930405,
0.3163849711418152,
-1.0158698558807373,
-0.1289273500442505,
0.43918541073799133,
-0.35963571071624756,
0.39135339856147766,
-0.3310418725013733,
-0.43837758898735046,
-0.38091596961021423,
-0.13695542514324188,
0.2555850148200989,
0.9587504267692566,
-0.3824068307876587,
0.7481548190116882,
0.16321717202663422,
0.30205652117729187,
-0.6912345886230469,
-0.5102239847183228,
-0.29078739881515503,
-0.20715779066085815,
-0.7887229919433594,
0.5309700965881348,
-0.6358127593994141,
-0.17849306762218475,
0.030465390533208847,
-0.07393217086791992,
-0.06392224133014679,
-0.22491483390331268,
0.40120264887809753,
0.3596414029598236,
-0.32746973633766174,
-0.23285731673240662,
-0.0335322767496109,
-0.08938723057508469,
-0.09635535627603531,
-0.29330816864967346,
0.3583487570285797,
-0.41452494263648987,
-0.23026162385940552,
-0.8917185068130493,
-0.0316544771194458,
0.38754507899284363,
0.29326537251472473,
0.7648645043373108,
0.9831618070602417,
-0.6332581639289856,
0.06399030983448029,
-0.7019924521446228,
-0.2610640525817871,
-0.5045303106307983,
-0.004051311407238245,
-0.46399185061454773,
-0.5944339632987976,
0.6472507119178772,
0.14144638180732727,
0.10889270156621933,
0.5758496522903442,
0.48965781927108765,
-0.46682459115982056,
0.9122268557548523,
0.7604398727416992,
0.36138132214546204,
0.412546306848526,
-0.7380087375640869,
-0.28147757053375244,
-0.9428982734680176,
-0.18771985173225403,
-0.10564925521612167,
-0.258852481842041,
-0.46729543805122375,
-0.7595154047012329,
0.2930733263492584,
0.4004265367984772,
-0.3736056983470917,
0.3351161777973175,
-0.5500690340995789,
0.38361692428588867,
0.14309769868850708,
0.46247613430023193,
0.26142963767051697,
0.06069337949156761,
-0.3125981390476227,
-0.38146674633026123,
-0.47401610016822815,
-0.603065013885498,
0.9042505621910095,
0.31456032395362854,
0.8229463696479797,
-0.05815841257572174,
0.812553882598877,
0.033551692962646484,
0.2839028537273407,
-0.3745085597038269,
0.5937959551811218,
-0.24053511023521423,
-0.516785740852356,
0.027812080457806587,
-0.369724303483963,
-0.9790330529212952,
0.12995027005672455,
-0.40029141306877136,
-0.7016993165016174,
0.24709969758987427,
0.4610610604286194,
-0.29326507449150085,
0.5331055521965027,
-0.5373603701591492,
0.892270565032959,
0.04407292604446411,
-0.8137689828872681,
0.03503132238984108,
-0.6702194809913635,
0.4847170114517212,
0.015404907055199146,
-0.2093956023454666,
-0.26008549332618713,
-0.06779094785451889,
0.7778670787811279,
-0.4702732264995575,
0.8982509970664978,
-0.44995996356010437,
-0.06529177725315094,
0.5406426787376404,
-0.02052239328622818,
0.3848388195037842,
-0.054870933294296265,
-0.242671936750412,
0.42288339138031006,
0.04083772003650665,
-0.6126604080200195,
-0.46000561118125916,
0.7104766964912415,
-0.9342964291572571,
-0.20332252979278564,
-0.44336655735969543,
-0.5453111529350281,
0.009741580113768578,
0.2612682580947876,
0.5535073280334473,
0.04782312363386154,
-0.2247736006975174,
0.06947915256023407,
0.9492428302764893,
-0.0900961309671402,
0.4131847023963928,
0.23689815402030945,
-0.33866506814956665,
-0.3514789938926697,
0.7532063126564026,
0.19378389418125153,
0.34898704290390015,
0.005628497805446386,
0.273811399936676,
-0.3706786632537842,
-0.44164469838142395,
-0.2531472146511078,
0.6043397188186646,
-0.48290395736694336,
-0.19231952726840973,
-0.8832147121429443,
-0.5838099718093872,
-0.3769600987434387,
-0.14663636684417725,
-0.7394615411758423,
-0.2413969188928604,
-0.4058527648448944,
0.4312537610530853,
0.33375734090805054,
0.6403961181640625,
-0.18074120581150055,
0.22981548309326172,
-0.5487070679664612,
0.3935708701610565,
0.10722056776285172,
0.38421377539634705,
0.04801425710320473,
-0.7202432751655579,
-0.2624029815196991,
0.21536850929260254,
-0.6647119522094727,
-0.7650880813598633,
0.39027681946754456,
0.1012423038482666,
0.43397220969200134,
0.4238983988761902,
-0.09298796951770782,
0.8389133810997009,
-0.2581738829612732,
0.7054959535598755,
0.3572632968425751,
-0.8620455265045166,
0.5268855094909668,
-0.4314342141151428,
0.04929608106613159,
0.24803069233894348,
0.49316754937171936,
-0.44764646887779236,
-0.4119783043861389,
-1.080581545829773,
-0.6153810620307922,
0.41808196902275085,
0.5316929817199707,
-0.17529843747615814,
0.25486433506011963,
0.6027917861938477,
-0.10325147211551666,
-0.09972623735666275,
-0.9344198703765869,
-0.4433898627758026,
-0.2609209716320038,
-0.2698173522949219,
-0.110808826982975,
0.008937050588428974,
-0.07019421458244324,
-0.31786495447158813,
0.9160555005073547,
-0.2925751507282257,
0.4375961422920227,
0.5196408629417419,
0.06806633621454239,
-0.14965826272964478,
-0.18615035712718964,
0.40157321095466614,
0.2886151075363159,
-0.3627592921257019,
0.009577357210218906,
0.12127452343702316,
-0.4863841235637665,
0.234683096408844,
0.2466050684452057,
-0.320381760597229,
0.0967998281121254,
-0.029991069808602333,
0.6560230255126953,
-0.1558278650045395,
-0.45700690150260925,
0.49665555357933044,
-0.2811695635318756,
-0.24021755158901215,
-0.48787304759025574,
0.28467318415641785,
0.5473094582557678,
0.4369269907474518,
0.1441669762134552,
0.5212239623069763,
-0.09892488270998001,
-0.09404788166284561,
0.18194760382175446,
0.38216090202331543,
-0.5800092220306396,
-0.41549795866012573,
1.0701704025268555,
-0.22924013435840607,
-0.06975187361240387,
0.5793538689613342,
-0.44084954261779785,
-0.16041608154773712,
0.8065590262413025,
0.5883378982543945,
0.7866122722625732,
-0.06315319985151291,
0.11414984613656998,
0.8295537233352661,
-0.08984434604644775,
-0.44069454073905945,
0.4394315779209137,
0.29527217149734497,
-0.8282437324523926,
-0.17538747191429138,
-0.7831181883811951,
-0.30768153071403503,
0.20586490631103516,
-0.3914257287979126,
0.587207019329071,
-0.3331685960292816,
-0.21078692376613617,
-0.09528074413537979,
0.28977757692337036,
-0.8237847089767456,
0.3303462564945221,
0.2206558883190155,
0.7801411151885986,
-0.8733965158462524,
0.9589751958847046,
0.4893063008785248,
-0.5280066132545471,
-1.0251047611236572,
0.10872838646173477,
0.11911316961050034,
-0.5673431754112244,
0.33097201585769653,
0.1703503429889679,
-0.09205862879753113,
0.10889453440904617,
-0.6645252704620361,
-0.715022623538971,
1.301663875579834,
0.7068654298782349,
-0.6892534494400024,
-0.07408098876476288,
-0.4030594229698181,
0.6989433169364929,
-0.5494686961174011,
0.30594873428344727,
0.27802518010139465,
0.335471510887146,
0.26162469387054443,
-0.7169284820556641,
0.10906976461410522,
-0.2590755820274353,
0.12380120903253555,
-0.1296069175004959,
-0.8776649832725525,
0.9012600779533386,
-0.7065267562866211,
-0.2153671681880951,
0.5109224915504456,
1.1045799255371094,
0.7388931512832642,
0.38245928287506104,
0.6932767629623413,
0.9297114610671997,
0.6974316239356995,
-0.141496479511261,
0.8330805897712708,
-0.35857337713241577,
0.6657711267471313,
1.076324224472046,
0.07676568627357483,
0.8988904356956482,
0.32953372597694397,
-0.4146682322025299,
0.7111940979957581,
0.8700494766235352,
-0.12428408116102219,
0.1858261376619339,
0.08614613860845566,
-0.15890814363956451,
-0.13018573820590973,
-0.10133219510316849,
-0.5259668827056885,
0.1958196461200714,
0.24936164915561676,
-0.409767746925354,
0.06494806706905365,
-0.12177817523479462,
0.02513924427330494,
-0.07342813909053802,
0.07753325998783112,
0.4633695185184479,
0.11307266354560852,
-0.5416609048843384,
0.8747434020042419,
-0.3532237708568573,
0.9767350554466248,
-0.44227829575538635,
-0.08528424799442291,
-0.19827936589717865,
0.2582121789455414,
-0.3724798858165741,
-0.8186580538749695,
0.4376242160797119,
-0.18158116936683655,
-0.012525469064712524,
-0.14447259902954102,
0.7072716951370239,
-0.6945475935935974,
-0.6480229496955872,
0.3774091303348541,
0.448222279548645,
0.6345374584197998,
0.061082880944013596,
-1.2030303478240967,
0.23519720137119293,
0.04162761941552162,
-0.44731301069259644,
0.13547182083129883,
0.23257896304130554,
0.3739248514175415,
0.4994540512561798,
0.5284416079521179,
0.1341668963432312,
-0.041603486984968185,
-0.08407880365848541,
0.671174943447113,
-0.4618283808231354,
-0.11330411583185196,
-0.5702469944953918,
0.6796592473983765,
-0.06093081831932068,
-0.19772754609584808,
0.6392309665679932,
0.8432844877243042,
0.7179428935050964,
-0.0732482373714447,
0.5778626203536987,
-0.2794860899448395,
0.32044360041618347,
-0.42675137519836426,
0.8701453804969788,
-0.8933123350143433,
0.09343928843736649,
-0.4754685163497925,
-1.082087755203247,
-0.07776203006505966,
0.7643943428993225,
0.12749318778514862,
0.3784978985786438,
0.4823244512081146,
1.0561109781265259,
-0.3703228235244751,
-0.4175311326980591,
0.33886516094207764,
0.5129639506340027,
0.11677378416061401,
0.5434067845344543,
0.44544416666030884,
-0.8932982683181763,
0.4126903712749481,
-0.6761823296546936,
-0.10717335343360901,
0.02624981477856636,
-0.9306401014328003,
-0.6831781268119812,
-0.6927348971366882,
-0.816551148891449,
-1.1192097663879395,
0.08270497620105743,
0.7381631731987,
1.011484146118164,
-0.6486684083938599,
-0.26893752813339233,
-0.2202834188938141,
0.04669727012515068,
-0.41920357942581177,
-0.28296786546707153,
0.4928731322288513,
-0.11184889823198318,
-1.136857509613037,
-0.1151987612247467,
0.024933788925409317,
0.723404586315155,
-0.25687381625175476,
-0.5166122913360596,
-0.1900576800107956,
-0.07493068277835846,
0.2870798707008362,
0.22425808012485504,
-0.808301568031311,
-0.046853285282850266,
0.08815028518438339,
-0.36171454191207886,
0.39438149333000183,
0.34620341658592224,
-0.707890510559082,
0.4670761525630951,
0.4401616156101227,
0.12848755717277527,
0.891946017742157,
-0.14264585077762604,
0.23468095064163208,
-0.5252732038497925,
0.1953304260969162,
0.1860227882862091,
0.5515483021736145,
0.43683698773384094,
-0.3109237551689148,
0.7630814909934998,
0.6649889349937439,
-0.7498323321342468,
-0.5880915522575378,
0.04032342880964279,
-1.4201158285140991,
-0.11518362909555435,
0.9610404372215271,
-0.4355798661708832,
-0.29648876190185547,
0.12073242664337158,
-0.29360002279281616,
0.5206406116485596,
-0.2919391393661499,
0.6315001845359802,
0.4028318524360657,
-0.3472713828086853,
-0.3613415062427521,
-0.4093715250492096,
0.6089468002319336,
0.43108275532722473,
-0.6468737125396729,
-0.052076466381549835,
0.2937198877334595,
0.6410082578659058,
0.3102959096431732,
1.008619785308838,
-0.23639757931232452,
0.03714704513549805,
0.20817409455776215,
0.24415667355060577,
0.39814844727516174,
-0.04746570810675621,
-0.2537982165813446,
-0.06278841197490692,
-0.10586325824260712,
0.1169033944606781
] |
neggles/animatediff-modules | neggles | "2023-09-14T08:22:29Z" | 195,285 | 1 | diffusers | [
"diffusers",
"region:us"
] | null | "2023-07-18T11:51:21Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
allenai/wmt19-de-en-6-6-big | allenai | "2023-01-24T16:28:51Z" | 195,107 | 5 | transformers | [
"transformers",
"pytorch",
"fsmt",
"text2text-generation",
"translation",
"wmt19",
"allenai",
"de",
"en",
"dataset:wmt19",
"arxiv:2006.10369",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | "2022-03-02T23:29:05Z" |
---
language:
- de
- en
thumbnail:
tags:
- translation
- wmt19
- allenai
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for de-en.
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
2 models are available:
* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/wmt19-de-en-6-6-big"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "Maschinelles Lernen ist großartig, nicht wahr?"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # Machine learning is great, isn't it?
```
#### Limitations and bias
## Training data
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
## Eval results
Here are the BLEU scores:
model | transformers
-------|---------
wmt19-de-en-6-6-big | 39.9
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt19-de-en-6-6-big $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```
@misc{kasai2020deep,
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
year={2020},
eprint={2006.10369},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| [
-0.3772696554660797,
-0.629909873008728,
0.19242794811725616,
0.31376177072525024,
-0.27637264132499695,
-0.1392284631729126,
-0.40854135155677795,
-0.3032252788543701,
0.07745421677827835,
0.10206727683544159,
-0.6346998810768127,
-0.2752375304698944,
-0.8827099204063416,
0.33902838826179504,
-0.2558664083480835,
0.8531085848808289,
-0.23229160904884338,
0.24964579939842224,
0.22672882676124573,
-0.03801937401294708,
-0.2634583115577698,
-0.15033961832523346,
-0.5075112581253052,
-0.4984552562236786,
0.24381281435489655,
0.1749776303768158,
0.7898469567298889,
0.352281779050827,
0.7898879647254944,
0.42333346605300903,
-0.213211789727211,
0.03324470669031143,
-0.4366720914840698,
-0.18023990094661713,
-0.06853368878364563,
-0.2960929274559021,
-0.5297436714172363,
-0.09083334356546402,
0.63429194688797,
0.6799948215484619,
0.12371451407670975,
0.3914179503917694,
0.03786651790142059,
0.5961449146270752,
-0.32520321011543274,
-0.005981083493679762,
-0.5560004711151123,
0.17318281531333923,
-0.10535590350627899,
-0.2929084599018097,
-0.5364186763763428,
-0.20417122542858124,
-0.06106247752904892,
-0.3000315725803375,
0.2503003776073456,
-0.15484890341758728,
1.3537476062774658,
0.4613775908946991,
-0.5547101497650146,
0.11212723702192307,
-0.6622365713119507,
0.8769799470901489,
-1.0052409172058105,
0.7712920904159546,
0.22238481044769287,
0.3051936626434326,
-0.06596790254116058,
-0.7470232844352722,
-0.3081936240196228,
-0.07246275246143341,
-0.25746816396713257,
0.3143525719642639,
-0.3339805006980896,
-0.11895935982465744,
0.5771850943565369,
0.6934010982513428,
-0.7679996490478516,
-0.04539065062999725,
-0.7248033881187439,
-0.32111403346061707,
0.8039765954017639,
0.07886382937431335,
-0.07301566004753113,
-0.20984141528606415,
-0.45670679211616516,
-0.3212835490703583,
-0.3450935184955597,
0.08937273174524307,
0.20352543890476227,
0.19629043340682983,
-0.3701273798942566,
0.6802240014076233,
-0.3727496862411499,
0.5150436758995056,
0.31600406765937805,
0.012771775014698505,
0.896354615688324,
-0.4037419259548187,
-0.2720092833042145,
-0.01787683553993702,
1.1528531312942505,
0.3724048137664795,
0.13781248033046722,
-0.17338469624519348,
-0.42317822575569153,
-0.14921611547470093,
0.19758909940719604,
-1.2671390771865845,
0.08089949935674667,
0.1254487782716751,
-0.5882117748260498,
-0.05717451870441437,
0.3192577362060547,
-0.6939505934715271,
0.21848253905773163,
-0.26766377687454224,
0.663526177406311,
-0.5306053161621094,
-0.10743434727191925,
0.16593331098556519,
-0.1914886236190796,
0.4409082531929016,
0.05735223367810249,
-0.5937101244926453,
0.1252465844154358,
0.24595431983470917,
0.9652946591377258,
0.11152108758687973,
-0.5141053795814514,
-0.3948570489883423,
-0.13729090988636017,
-0.28463509678840637,
0.319854199886322,
-0.19357334077358246,
-0.3077208399772644,
-0.22475379705429077,
0.44572874903678894,
-0.06850281357765198,
-0.22289735078811646,
0.7420671582221985,
-0.4378644824028015,
0.3432512581348419,
-0.1551341861486435,
-0.4102075397968292,
-0.16812531650066376,
0.06525193899869919,
-0.49421995878219604,
1.097588062286377,
0.4842652380466461,
-0.7051085233688354,
0.1469096839427948,
-0.5946382880210876,
-0.5825960636138916,
-0.04482056200504303,
0.24622216820716858,
-0.4201236665248871,
0.30415666103363037,
0.18134139478206635,
0.433663934469223,
-0.3842495083808899,
0.40434110164642334,
-0.1695968061685562,
-0.8209567666053772,
0.29662954807281494,
-0.7840588092803955,
0.872245728969574,
0.4131368398666382,
-0.4898375868797302,
0.058911602944135666,
-0.7013256549835205,
-0.0319768451154232,
0.28380098938941956,
-0.47810298204421997,
-0.016314323991537094,
-0.4105673134326935,
0.027917757630348206,
0.43094345927238464,
0.38762369751930237,
-0.5613813996315002,
0.131321519613266,
-0.708490252494812,
0.4783215820789337,
0.6908548474311829,
-0.1207958236336708,
0.3754335939884186,
-0.24582499265670776,
0.3766801059246063,
0.058608558028936386,
0.28176748752593994,
0.029252471402287483,
-0.526201069355011,
-0.7686855792999268,
-0.15930218994617462,
0.4191651940345764,
0.4606509804725647,
-0.7671268582344055,
0.7368210554122925,
-0.5686600208282471,
-0.8529821634292603,
-0.8656548857688904,
-0.20648187398910522,
0.35444796085357666,
0.31586846709251404,
0.8264251351356506,
-0.23271605372428894,
-0.6501657962799072,
-0.9772308468818665,
-0.2438254952430725,
0.26271069049835205,
-0.10763358324766159,
-0.10076413303613663,
0.7417038083076477,
-0.6546609997749329,
0.3723979592323303,
-0.5104455351829529,
-0.22509746253490448,
-0.2289784848690033,
-0.09869172424077988,
0.6866751909255981,
0.803281843662262,
0.49525102972984314,
-0.5634013414382935,
-0.4404408037662506,
-0.13380225002765656,
-0.7030275464057922,
-0.059443529695272446,
0.05225765332579613,
-0.3735751807689667,
0.1842687577009201,
0.2424938976764679,
-0.9466013312339783,
0.3000987470149994,
0.49158602952957153,
-0.6010782718658447,
0.476339727640152,
-0.1320335417985916,
0.4492816925048828,
-1.3737984895706177,
0.2950138747692108,
0.0554388202726841,
-0.12978239357471466,
-0.4894599914550781,
0.016484303399920464,
0.10748482495546341,
-0.039309658110141754,
-0.618076741695404,
0.5734591484069824,
-0.338004469871521,
-0.011766605079174042,
-0.010335402563214302,
-0.12735900282859802,
0.22437885403633118,
0.7359458804130554,
-0.19048233330249786,
0.6135488152503967,
0.38375163078308105,
-0.39632606506347656,
0.2367841750383377,
0.526013970375061,
-0.2031385749578476,
0.2876726984977722,
-0.853151798248291,
-0.009650012478232384,
0.09376998245716095,
0.2639012932777405,
-0.6998867392539978,
0.04907834157347679,
0.3622303009033203,
-0.6933480501174927,
0.44500839710235596,
-0.3345814347267151,
-0.45450347661972046,
-0.5749990940093994,
-0.3121252655982971,
0.38358065485954285,
0.787370502948761,
-0.35389676690101624,
0.3642498552799225,
-0.019199006259441376,
0.14960750937461853,
-0.72501540184021,
-1.16818368434906,
-0.27399104833602905,
-0.08220984786748886,
-0.4546915888786316,
0.4984024167060852,
-0.1748466044664383,
0.16575968265533447,
0.09638722240924835,
-0.3346395194530487,
-0.00008172747038770467,
-0.02671651355922222,
0.23310980200767517,
0.2063121199607849,
-0.30728843808174133,
-0.2482091784477234,
0.3116181790828705,
-0.316826194524765,
0.15323308110237122,
-0.3388201594352722,
0.6804580688476562,
-0.32434016466140747,
-0.1440691351890564,
-0.6262670755386353,
0.1222018375992775,
0.5425885319709778,
-0.42693060636520386,
0.7351216673851013,
1.2109348773956299,
-0.46594205498695374,
0.10305410623550415,
-0.2390449196100235,
-0.3285868465900421,
-0.5694148540496826,
0.5017052292823792,
-0.6522712707519531,
-0.8202787041664124,
0.364714652299881,
0.1385810524225235,
0.04254120960831642,
0.873523473739624,
0.7016470432281494,
0.12670958042144775,
1.1240733861923218,
0.09909021109342575,
0.09948524832725525,
0.4163556396961212,
-0.8608989119529724,
0.19977836310863495,
-0.7888028621673584,
-0.18883784115314484,
-0.4309205114841461,
-0.6515153050422668,
-0.6955240964889526,
-0.5058602094650269,
-0.05932416021823883,
0.27350834012031555,
-0.5937468409538269,
0.5676735043525696,
-0.6089707612991333,
0.19861407577991486,
0.4853183627128601,
0.004008033778518438,
0.09804600477218628,
-0.08869782835245132,
-0.11633390933275223,
-0.1961023360490799,
-0.5148666501045227,
-0.2555539011955261,
1.1104499101638794,
0.48897334933280945,
0.7555286884307861,
0.12558771669864655,
0.7403187155723572,
0.1571219563484192,
0.12807531654834747,
-0.777345597743988,
0.4649720788002014,
-0.21399353444576263,
-0.4113328158855438,
-0.13022758066654205,
-0.8455640077590942,
-0.9953590631484985,
0.4130815267562866,
-0.11026724427938461,
-0.5274254083633423,
0.10401648283004761,
-0.05802195519208908,
-0.0004919394850730896,
0.23866593837738037,
-0.7090770602226257,
1.1291059255599976,
-0.18023093044757843,
-0.2573201656341553,
-0.06751275807619095,
-0.6037198901176453,
0.31112226843833923,
0.05978097766637802,
0.10639983415603638,
-0.11895544826984406,
0.2693370580673218,
0.8677539229393005,
-0.4123927056789398,
0.4816523492336273,
-0.3652955889701843,
-0.10319792479276657,
0.18689268827438354,
0.20641730725765228,
0.477801114320755,
0.14724627137184143,
-0.22713933885097504,
0.5688855648040771,
0.14719808101654053,
-0.4568885862827301,
-0.3842703402042389,
0.8098888993263245,
-0.9230795502662659,
-0.39036881923675537,
-0.42775067687034607,
-0.6107779145240784,
0.11015724390745163,
0.46848252415657043,
0.5397963523864746,
0.5880160927772522,
0.08304060250520706,
0.44153979420661926,
0.33483269810676575,
-0.060830119997262955,
0.5393157601356506,
0.40223443508148193,
0.004187506623566151,
-0.5523287653923035,
0.9626294374465942,
0.09186801314353943,
0.0690079852938652,
0.6177921295166016,
0.29892417788505554,
-0.5176337957382202,
-0.5170326828956604,
-0.5164247751235962,
0.3389281630516052,
-0.6127251982688904,
-0.5963508486747742,
-0.5467293858528137,
-0.4274434745311737,
-0.387915700674057,
-0.11098193377256393,
-0.6018795967102051,
-0.4942631423473358,
-0.0248577781021595,
-0.15865181386470795,
0.3891795873641968,
0.4439816176891327,
-0.03139392286539078,
0.14858028292655945,
-0.9571213126182556,
0.23099656403064728,
-0.1058356836438179,
0.39587876200675964,
-0.02952267974615097,
-0.966058075428009,
-0.4915943741798401,
0.35087400674819946,
-0.3811848759651184,
-0.8896474242210388,
0.4231393039226532,
0.043871648609638214,
0.6067840456962585,
0.16809992492198944,
0.2010154128074646,
0.551642119884491,
-0.5437068343162537,
0.8411557674407959,
0.012728803791105747,
-1.0629292726516724,
0.5485422015190125,
-0.06811939924955368,
0.5063667297363281,
0.5128219723701477,
0.46434447169303894,
-0.40461617708206177,
-0.37489598989486694,
-0.5947070717811584,
-0.8801205158233643,
0.9130233526229858,
0.4145078957080841,
0.04739272594451904,
0.14473547041416168,
0.09155814349651337,
0.17370112240314484,
0.058976031839847565,
-0.7399560809135437,
-0.3471451997756958,
-0.570652425289154,
-0.5204455256462097,
-0.3304907977581024,
-0.04077279195189476,
-0.011453840881586075,
-0.5249562859535217,
0.8523107767105103,
-0.15022577345371246,
0.6654196381568909,
0.37514835596084595,
-0.47644200921058655,
-0.12312044203281403,
0.2357812523841858,
0.5374768376350403,
0.4395090937614441,
-0.3393128514289856,
0.1906737983226776,
0.4317878782749176,
-0.490126371383667,
0.14244335889816284,
0.41342833638191223,
-0.21247057616710663,
0.1830548197031021,
0.47436872124671936,
1.0375727415084839,
0.27477091550827026,
-0.447756826877594,
0.6284022927284241,
-0.04516129568219185,
-0.49708181619644165,
-0.09541015326976776,
-0.16604234278202057,
-0.026392566040158272,
0.43622857332229614,
0.38682061433792114,
0.3057763874530792,
0.19500508904457092,
-0.12859004735946655,
0.27691924571990967,
0.22039133310317993,
-0.5999788045883179,
-0.6145134568214417,
0.8218744993209839,
0.15834061801433563,
-0.3453213572502136,
0.46287447214126587,
-0.44204121828079224,
-0.4622129201889038,
0.4135105609893799,
0.5778217911720276,
0.8319513201713562,
-0.1900649517774582,
0.06978608667850494,
0.7519996762275696,
0.5138152837753296,
-0.11375785619020462,
0.3574945628643036,
0.021788502112030983,
-0.5321001410484314,
-0.5326129198074341,
-0.966943621635437,
0.039975572377443314,
0.19773325324058533,
-0.7331182360649109,
0.26842862367630005,
-0.06671968102455139,
-0.22732968628406525,
-0.19425266981124878,
0.2835998237133026,
-0.9471234083175659,
0.2321038544178009,
0.007631691172719002,
1.0285080671310425,
-0.7376015782356262,
0.8912397623062134,
0.7291470170021057,
-0.5727645754814148,
-0.6518868803977966,
0.058219410479068756,
-0.29329878091812134,
-0.5341254472732544,
0.42871883511543274,
0.3940824866294861,
0.02559385634958744,
0.18650193512439728,
-0.12175168097019196,
-0.9562512040138245,
1.2364039421081543,
0.4525241553783417,
-0.5251001715660095,
-0.013468043878674507,
0.12683066725730896,
0.5945687294006348,
0.08799085766077042,
0.4970235824584961,
0.512412965297699,
0.6999391913414001,
-0.21310949325561523,
-0.853439450263977,
0.5291972756385803,
-0.47425752878189087,
0.08750211447477341,
0.29416394233703613,
-0.8057803511619568,
0.8289458751678467,
-0.12448631972074509,
-0.020877545699477196,
0.043698787689208984,
0.6208668947219849,
0.18474596738815308,
0.10127519816160202,
0.2370741218328476,
0.5479165315628052,
0.3692534863948822,
-0.3746998906135559,
0.8985203504562378,
-0.30457019805908203,
0.7703997492790222,
0.6901713013648987,
0.15908411145210266,
0.6841200590133667,
0.5166605114936829,
-0.3732072114944458,
0.35875794291496277,
0.5393915772438049,
-0.4195919632911682,
0.5740494728088379,
0.041113849729299545,
0.39849212765693665,
-0.05760043486952782,
0.1297677904367447,
-0.7859405279159546,
0.43395814299583435,
0.0976548045873642,
-0.39645975828170776,
-0.09890817850828171,
-0.06882992386817932,
0.004055379889905453,
-0.08222789317369461,
-0.06367821991443634,
0.3411751389503479,
0.20929211378097534,
-0.5189855098724365,
1.0220695734024048,
0.2396925687789917,
0.9025427103042603,
-0.6895800828933716,
0.054372794926166534,
-0.3902784287929535,
0.34873124957084656,
-0.21179182827472687,
-0.8181504011154175,
0.48622262477874756,
-0.039081498980522156,
-0.16437208652496338,
-0.2983521521091461,
0.540966272354126,
-0.5268484950065613,
-0.6117629408836365,
0.5252076387405396,
0.4888095259666443,
0.22333493828773499,
0.03474568948149681,
-0.8601415753364563,
0.18491902947425842,
0.11235387623310089,
-0.6684472560882568,
0.18145820498466492,
0.4528881907463074,
0.188889279961586,
0.3609943389892578,
0.6815177798271179,
-0.1488865464925766,
0.1144663617014885,
0.17487557232379913,
0.6737401485443115,
-0.7754477262496948,
-0.24341179430484772,
-0.9025367498397827,
0.639406681060791,
0.0325036458671093,
-0.547735333442688,
0.7592384219169617,
0.7953651547431946,
0.9665302038192749,
-0.3545484244823456,
0.4701941907405853,
-0.23306748270988464,
0.06229115277528763,
-0.5818496346473694,
0.8125470876693726,
-0.7582851648330688,
-0.06980173289775848,
-0.37137505412101746,
-1.1153348684310913,
0.0020062492694705725,
0.602307915687561,
-0.09732355177402496,
0.19820091128349304,
0.790250837802887,
0.7541641592979431,
-0.18148496747016907,
-0.16492758691310883,
0.20405608415603638,
0.42017418146133423,
0.3257254362106323,
0.8959145545959473,
0.6857227683067322,
-1.1572699546813965,
0.7312781810760498,
-0.5032845735549927,
0.0022183044347912073,
-0.3335796296596527,
-0.38727590441703796,
-0.9050527215003967,
-0.6046930551528931,
-0.2769768238067627,
-0.4446776509284973,
-0.12434111535549164,
0.8696053624153137,
0.6289231777191162,
-0.7566744089126587,
0.0076840342953801155,
0.021314682438969612,
0.06766978651285172,
-0.5193182229995728,
-0.30337536334991455,
0.4251806437969208,
-0.18171575665473938,
-0.9850706458091736,
0.605181097984314,
-0.13654614984989166,
0.17413313686847687,
0.017144208773970604,
-0.5761595964431763,
-0.29197096824645996,
-0.07068990916013718,
0.5821694135665894,
-0.11985157430171967,
-0.6514678597450256,
-0.23556770384311676,
0.1296107918024063,
-0.2724992036819458,
0.02728363126516342,
0.35822340846061707,
-0.5413832068443298,
0.008764049969613552,
0.7110635042190552,
0.6578555107116699,
0.7321884036064148,
-0.12724338471889496,
0.40472421050071716,
-0.8084964156150818,
0.3957962095737457,
0.09616072475910187,
0.5671785473823547,
0.34153780341148376,
-0.22757352888584137,
0.6121968626976013,
0.4644012153148651,
-0.49533265829086304,
-1.0206964015960693,
-0.035856593400239944,
-1.0227198600769043,
-0.2541119158267975,
1.1014457941055298,
-0.028415236622095108,
-0.1862858682870865,
0.42540833353996277,
-0.2572232186794281,
0.5654038190841675,
-0.46102064847946167,
0.3722253143787384,
0.3090267777442932,
0.28204286098480225,
-0.02941575087606907,
-0.5078272819519043,
0.3539590537548065,
0.3393033742904663,
-0.5316233038902283,
-0.30935922265052795,
0.07951055467128754,
0.2930457592010498,
0.1951078474521637,
0.48491522669792175,
-0.19497892260551453,
0.13665339350700378,
0.1137775331735611,
0.18600469827651978,
-0.33207815885543823,
-0.11324585229158401,
-0.31207969784736633,
-0.15418095886707306,
-0.15579065680503845,
-0.32587510347366333
] |
hkunlp/instructor-large | hkunlp | "2023-04-21T06:04:33Z" | 194,052 | 352 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"t5",
"text-embedding",
"embeddings",
"information-retrieval",
"beir",
"text-classification",
"language-model",
"text-clustering",
"text-semantic-similarity",
"text-evaluation",
"prompt-retrieval",
"text-reranking",
"feature-extraction",
"sentence-similarity",
"transformers",
"English",
"Sentence Similarity",
"natural_questions",
"ms_marco",
"fever",
"hotpot_qa",
"mteb",
"en",
"arxiv:2212.09741",
"license:apache-2.0",
"model-index",
"has_space",
"text-generation-inference",
"region:us"
] | sentence-similarity | "2022-12-20T05:31:06Z" | ---
pipeline_tag: sentence-similarity
tags:
- text-embedding
- embeddings
- information-retrieval
- beir
- text-classification
- language-model
- text-clustering
- text-semantic-similarity
- text-evaluation
- prompt-retrieval
- text-reranking
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- t5
- English
- Sentence Similarity
- natural_questions
- ms_marco
- fever
- hotpot_qa
- mteb
language: en
inference: false
license: apache-2.0
model-index:
- name: INSTRUCTOR
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 88.13432835820896
- type: ap
value: 59.298209334395665
- type: f1
value: 83.31769058643586
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.526375
- type: ap
value: 88.16327709705504
- type: f1
value: 91.51095801287843
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.856
- type: f1
value: 45.41490917650942
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.223
- type: map_at_10
value: 47.947
- type: map_at_100
value: 48.742000000000004
- type: map_at_1000
value: 48.745
- type: map_at_3
value: 43.137
- type: map_at_5
value: 45.992
- type: mrr_at_1
value: 32.432
- type: mrr_at_10
value: 48.4
- type: mrr_at_100
value: 49.202
- type: mrr_at_1000
value: 49.205
- type: mrr_at_3
value: 43.551
- type: mrr_at_5
value: 46.467999999999996
- type: ndcg_at_1
value: 31.223
- type: ndcg_at_10
value: 57.045
- type: ndcg_at_100
value: 60.175
- type: ndcg_at_1000
value: 60.233000000000004
- type: ndcg_at_3
value: 47.171
- type: ndcg_at_5
value: 52.322
- type: precision_at_1
value: 31.223
- type: precision_at_10
value: 8.599
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 19.63
- type: precision_at_5
value: 14.282
- type: recall_at_1
value: 31.223
- type: recall_at_10
value: 85.989
- type: recall_at_100
value: 99.075
- type: recall_at_1000
value: 99.502
- type: recall_at_3
value: 58.89
- type: recall_at_5
value: 71.408
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 43.1621946393635
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 32.56417132407894
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 64.29539304390207
- type: mrr
value: 76.44484017060196
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_spearman
value: 84.38746499431112
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 78.51298701298701
- type: f1
value: 77.49041754069235
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 37.61848554098577
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 31.32623280148178
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.803000000000004
- type: map_at_10
value: 48.848
- type: map_at_100
value: 50.5
- type: map_at_1000
value: 50.602999999999994
- type: map_at_3
value: 45.111000000000004
- type: map_at_5
value: 47.202
- type: mrr_at_1
value: 44.635000000000005
- type: mrr_at_10
value: 55.593
- type: mrr_at_100
value: 56.169999999999995
- type: mrr_at_1000
value: 56.19499999999999
- type: mrr_at_3
value: 53.361999999999995
- type: mrr_at_5
value: 54.806999999999995
- type: ndcg_at_1
value: 44.635000000000005
- type: ndcg_at_10
value: 55.899
- type: ndcg_at_100
value: 60.958
- type: ndcg_at_1000
value: 62.302
- type: ndcg_at_3
value: 51.051
- type: ndcg_at_5
value: 53.351000000000006
- type: precision_at_1
value: 44.635000000000005
- type: precision_at_10
value: 10.786999999999999
- type: precision_at_100
value: 1.6580000000000001
- type: precision_at_1000
value: 0.213
- type: precision_at_3
value: 24.893
- type: precision_at_5
value: 17.740000000000002
- type: recall_at_1
value: 35.803000000000004
- type: recall_at_10
value: 68.657
- type: recall_at_100
value: 89.77199999999999
- type: recall_at_1000
value: 97.67
- type: recall_at_3
value: 54.066
- type: recall_at_5
value: 60.788
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 33.706
- type: map_at_10
value: 44.896
- type: map_at_100
value: 46.299
- type: map_at_1000
value: 46.44
- type: map_at_3
value: 41.721000000000004
- type: map_at_5
value: 43.486000000000004
- type: mrr_at_1
value: 41.592
- type: mrr_at_10
value: 50.529
- type: mrr_at_100
value: 51.22
- type: mrr_at_1000
value: 51.258
- type: mrr_at_3
value: 48.205999999999996
- type: mrr_at_5
value: 49.528
- type: ndcg_at_1
value: 41.592
- type: ndcg_at_10
value: 50.77199999999999
- type: ndcg_at_100
value: 55.383
- type: ndcg_at_1000
value: 57.288
- type: ndcg_at_3
value: 46.324
- type: ndcg_at_5
value: 48.346000000000004
- type: precision_at_1
value: 41.592
- type: precision_at_10
value: 9.516
- type: precision_at_100
value: 1.541
- type: precision_at_1000
value: 0.2
- type: precision_at_3
value: 22.399
- type: precision_at_5
value: 15.770999999999999
- type: recall_at_1
value: 33.706
- type: recall_at_10
value: 61.353
- type: recall_at_100
value: 80.182
- type: recall_at_1000
value: 91.896
- type: recall_at_3
value: 48.204
- type: recall_at_5
value: 53.89699999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 44.424
- type: map_at_10
value: 57.169000000000004
- type: map_at_100
value: 58.202
- type: map_at_1000
value: 58.242000000000004
- type: map_at_3
value: 53.825
- type: map_at_5
value: 55.714
- type: mrr_at_1
value: 50.470000000000006
- type: mrr_at_10
value: 60.489000000000004
- type: mrr_at_100
value: 61.096
- type: mrr_at_1000
value: 61.112
- type: mrr_at_3
value: 58.192
- type: mrr_at_5
value: 59.611999999999995
- type: ndcg_at_1
value: 50.470000000000006
- type: ndcg_at_10
value: 63.071999999999996
- type: ndcg_at_100
value: 66.964
- type: ndcg_at_1000
value: 67.659
- type: ndcg_at_3
value: 57.74399999999999
- type: ndcg_at_5
value: 60.367000000000004
- type: precision_at_1
value: 50.470000000000006
- type: precision_at_10
value: 10.019
- type: precision_at_100
value: 1.29
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 25.558999999999997
- type: precision_at_5
value: 17.467
- type: recall_at_1
value: 44.424
- type: recall_at_10
value: 77.02
- type: recall_at_100
value: 93.738
- type: recall_at_1000
value: 98.451
- type: recall_at_3
value: 62.888
- type: recall_at_5
value: 69.138
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.294
- type: map_at_10
value: 34.503
- type: map_at_100
value: 35.641
- type: map_at_1000
value: 35.724000000000004
- type: map_at_3
value: 31.753999999999998
- type: map_at_5
value: 33.190999999999995
- type: mrr_at_1
value: 28.362
- type: mrr_at_10
value: 36.53
- type: mrr_at_100
value: 37.541000000000004
- type: mrr_at_1000
value: 37.602000000000004
- type: mrr_at_3
value: 33.917
- type: mrr_at_5
value: 35.358000000000004
- type: ndcg_at_1
value: 28.362
- type: ndcg_at_10
value: 39.513999999999996
- type: ndcg_at_100
value: 44.815
- type: ndcg_at_1000
value: 46.839
- type: ndcg_at_3
value: 34.02
- type: ndcg_at_5
value: 36.522
- type: precision_at_1
value: 28.362
- type: precision_at_10
value: 6.101999999999999
- type: precision_at_100
value: 0.9129999999999999
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 14.161999999999999
- type: precision_at_5
value: 9.966
- type: recall_at_1
value: 26.294
- type: recall_at_10
value: 53.098
- type: recall_at_100
value: 76.877
- type: recall_at_1000
value: 91.834
- type: recall_at_3
value: 38.266
- type: recall_at_5
value: 44.287
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.407
- type: map_at_10
value: 25.185999999999996
- type: map_at_100
value: 26.533
- type: map_at_1000
value: 26.657999999999998
- type: map_at_3
value: 22.201999999999998
- type: map_at_5
value: 23.923
- type: mrr_at_1
value: 20.522000000000002
- type: mrr_at_10
value: 29.522
- type: mrr_at_100
value: 30.644
- type: mrr_at_1000
value: 30.713
- type: mrr_at_3
value: 26.679000000000002
- type: mrr_at_5
value: 28.483000000000004
- type: ndcg_at_1
value: 20.522000000000002
- type: ndcg_at_10
value: 30.656
- type: ndcg_at_100
value: 36.864999999999995
- type: ndcg_at_1000
value: 39.675
- type: ndcg_at_3
value: 25.319000000000003
- type: ndcg_at_5
value: 27.992
- type: precision_at_1
value: 20.522000000000002
- type: precision_at_10
value: 5.795999999999999
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.13999999999999999
- type: precision_at_3
value: 12.396
- type: precision_at_5
value: 9.328
- type: recall_at_1
value: 16.407
- type: recall_at_10
value: 43.164
- type: recall_at_100
value: 69.695
- type: recall_at_1000
value: 89.41900000000001
- type: recall_at_3
value: 28.634999999999998
- type: recall_at_5
value: 35.308
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.473
- type: map_at_10
value: 41.676
- type: map_at_100
value: 43.120999999999995
- type: map_at_1000
value: 43.230000000000004
- type: map_at_3
value: 38.306000000000004
- type: map_at_5
value: 40.355999999999995
- type: mrr_at_1
value: 37.536
- type: mrr_at_10
value: 47.643
- type: mrr_at_100
value: 48.508
- type: mrr_at_1000
value: 48.551
- type: mrr_at_3
value: 45.348
- type: mrr_at_5
value: 46.744
- type: ndcg_at_1
value: 37.536
- type: ndcg_at_10
value: 47.823
- type: ndcg_at_100
value: 53.395
- type: ndcg_at_1000
value: 55.271
- type: ndcg_at_3
value: 42.768
- type: ndcg_at_5
value: 45.373000000000005
- type: precision_at_1
value: 37.536
- type: precision_at_10
value: 8.681
- type: precision_at_100
value: 1.34
- type: precision_at_1000
value: 0.165
- type: precision_at_3
value: 20.468
- type: precision_at_5
value: 14.495
- type: recall_at_1
value: 30.473
- type: recall_at_10
value: 60.092999999999996
- type: recall_at_100
value: 82.733
- type: recall_at_1000
value: 94.875
- type: recall_at_3
value: 45.734
- type: recall_at_5
value: 52.691
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.976000000000003
- type: map_at_10
value: 41.097
- type: map_at_100
value: 42.547000000000004
- type: map_at_1000
value: 42.659000000000006
- type: map_at_3
value: 37.251
- type: map_at_5
value: 39.493
- type: mrr_at_1
value: 37.557
- type: mrr_at_10
value: 46.605000000000004
- type: mrr_at_100
value: 47.487
- type: mrr_at_1000
value: 47.54
- type: mrr_at_3
value: 43.721
- type: mrr_at_5
value: 45.411
- type: ndcg_at_1
value: 37.557
- type: ndcg_at_10
value: 47.449000000000005
- type: ndcg_at_100
value: 53.052
- type: ndcg_at_1000
value: 55.010999999999996
- type: ndcg_at_3
value: 41.439
- type: ndcg_at_5
value: 44.292
- type: precision_at_1
value: 37.557
- type: precision_at_10
value: 8.847
- type: precision_at_100
value: 1.357
- type: precision_at_1000
value: 0.16999999999999998
- type: precision_at_3
value: 20.091
- type: precision_at_5
value: 14.384
- type: recall_at_1
value: 29.976000000000003
- type: recall_at_10
value: 60.99099999999999
- type: recall_at_100
value: 84.245
- type: recall_at_1000
value: 96.97200000000001
- type: recall_at_3
value: 43.794
- type: recall_at_5
value: 51.778999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.099166666666665
- type: map_at_10
value: 38.1365
- type: map_at_100
value: 39.44491666666667
- type: map_at_1000
value: 39.55858333333334
- type: map_at_3
value: 35.03641666666666
- type: map_at_5
value: 36.79833333333334
- type: mrr_at_1
value: 33.39966666666667
- type: mrr_at_10
value: 42.42583333333333
- type: mrr_at_100
value: 43.28575
- type: mrr_at_1000
value: 43.33741666666667
- type: mrr_at_3
value: 39.94975
- type: mrr_at_5
value: 41.41633333333334
- type: ndcg_at_1
value: 33.39966666666667
- type: ndcg_at_10
value: 43.81741666666667
- type: ndcg_at_100
value: 49.08166666666667
- type: ndcg_at_1000
value: 51.121166666666674
- type: ndcg_at_3
value: 38.73575
- type: ndcg_at_5
value: 41.18158333333333
- type: precision_at_1
value: 33.39966666666667
- type: precision_at_10
value: 7.738916666666667
- type: precision_at_100
value: 1.2265833333333331
- type: precision_at_1000
value: 0.15983333333333336
- type: precision_at_3
value: 17.967416666666665
- type: precision_at_5
value: 12.78675
- type: recall_at_1
value: 28.099166666666665
- type: recall_at_10
value: 56.27049999999999
- type: recall_at_100
value: 78.93291666666667
- type: recall_at_1000
value: 92.81608333333334
- type: recall_at_3
value: 42.09775
- type: recall_at_5
value: 48.42533333333334
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.663
- type: map_at_10
value: 30.377
- type: map_at_100
value: 31.426
- type: map_at_1000
value: 31.519000000000002
- type: map_at_3
value: 28.069
- type: map_at_5
value: 29.256999999999998
- type: mrr_at_1
value: 26.687
- type: mrr_at_10
value: 33.107
- type: mrr_at_100
value: 34.055
- type: mrr_at_1000
value: 34.117999999999995
- type: mrr_at_3
value: 31.058000000000003
- type: mrr_at_5
value: 32.14
- type: ndcg_at_1
value: 26.687
- type: ndcg_at_10
value: 34.615
- type: ndcg_at_100
value: 39.776
- type: ndcg_at_1000
value: 42.05
- type: ndcg_at_3
value: 30.322
- type: ndcg_at_5
value: 32.157000000000004
- type: precision_at_1
value: 26.687
- type: precision_at_10
value: 5.491
- type: precision_at_100
value: 0.877
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 13.139000000000001
- type: precision_at_5
value: 9.049
- type: recall_at_1
value: 23.663
- type: recall_at_10
value: 45.035
- type: recall_at_100
value: 68.554
- type: recall_at_1000
value: 85.077
- type: recall_at_3
value: 32.982
- type: recall_at_5
value: 37.688
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.403
- type: map_at_10
value: 25.197000000000003
- type: map_at_100
value: 26.355
- type: map_at_1000
value: 26.487
- type: map_at_3
value: 22.733
- type: map_at_5
value: 24.114
- type: mrr_at_1
value: 21.37
- type: mrr_at_10
value: 29.091
- type: mrr_at_100
value: 30.018
- type: mrr_at_1000
value: 30.096
- type: mrr_at_3
value: 26.887
- type: mrr_at_5
value: 28.157
- type: ndcg_at_1
value: 21.37
- type: ndcg_at_10
value: 30.026000000000003
- type: ndcg_at_100
value: 35.416
- type: ndcg_at_1000
value: 38.45
- type: ndcg_at_3
value: 25.764
- type: ndcg_at_5
value: 27.742
- type: precision_at_1
value: 21.37
- type: precision_at_10
value: 5.609
- type: precision_at_100
value: 0.9860000000000001
- type: precision_at_1000
value: 0.14300000000000002
- type: precision_at_3
value: 12.423
- type: precision_at_5
value: 9.009
- type: recall_at_1
value: 17.403
- type: recall_at_10
value: 40.573
- type: recall_at_100
value: 64.818
- type: recall_at_1000
value: 86.53699999999999
- type: recall_at_3
value: 28.493000000000002
- type: recall_at_5
value: 33.660000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.639
- type: map_at_10
value: 38.951
- type: map_at_100
value: 40.238
- type: map_at_1000
value: 40.327
- type: map_at_3
value: 35.842
- type: map_at_5
value: 37.617
- type: mrr_at_1
value: 33.769
- type: mrr_at_10
value: 43.088
- type: mrr_at_100
value: 44.03
- type: mrr_at_1000
value: 44.072
- type: mrr_at_3
value: 40.656
- type: mrr_at_5
value: 42.138999999999996
- type: ndcg_at_1
value: 33.769
- type: ndcg_at_10
value: 44.676
- type: ndcg_at_100
value: 50.416000000000004
- type: ndcg_at_1000
value: 52.227999999999994
- type: ndcg_at_3
value: 39.494
- type: ndcg_at_5
value: 42.013
- type: precision_at_1
value: 33.769
- type: precision_at_10
value: 7.668
- type: precision_at_100
value: 1.18
- type: precision_at_1000
value: 0.145
- type: precision_at_3
value: 18.221
- type: precision_at_5
value: 12.966
- type: recall_at_1
value: 28.639
- type: recall_at_10
value: 57.687999999999995
- type: recall_at_100
value: 82.541
- type: recall_at_1000
value: 94.896
- type: recall_at_3
value: 43.651
- type: recall_at_5
value: 49.925999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.57
- type: map_at_10
value: 40.004
- type: map_at_100
value: 41.75
- type: map_at_1000
value: 41.97
- type: map_at_3
value: 36.788
- type: map_at_5
value: 38.671
- type: mrr_at_1
value: 35.375
- type: mrr_at_10
value: 45.121
- type: mrr_at_100
value: 45.994
- type: mrr_at_1000
value: 46.04
- type: mrr_at_3
value: 42.227
- type: mrr_at_5
value: 43.995
- type: ndcg_at_1
value: 35.375
- type: ndcg_at_10
value: 46.392
- type: ndcg_at_100
value: 52.196
- type: ndcg_at_1000
value: 54.274
- type: ndcg_at_3
value: 41.163
- type: ndcg_at_5
value: 43.813
- type: precision_at_1
value: 35.375
- type: precision_at_10
value: 8.676
- type: precision_at_100
value: 1.678
- type: precision_at_1000
value: 0.253
- type: precision_at_3
value: 19.104
- type: precision_at_5
value: 13.913
- type: recall_at_1
value: 29.57
- type: recall_at_10
value: 58.779
- type: recall_at_100
value: 83.337
- type: recall_at_1000
value: 95.979
- type: recall_at_3
value: 44.005
- type: recall_at_5
value: 50.975
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 20.832
- type: map_at_10
value: 29.733999999999998
- type: map_at_100
value: 30.727
- type: map_at_1000
value: 30.843999999999998
- type: map_at_3
value: 26.834999999999997
- type: map_at_5
value: 28.555999999999997
- type: mrr_at_1
value: 22.921
- type: mrr_at_10
value: 31.791999999999998
- type: mrr_at_100
value: 32.666000000000004
- type: mrr_at_1000
value: 32.751999999999995
- type: mrr_at_3
value: 29.144
- type: mrr_at_5
value: 30.622
- type: ndcg_at_1
value: 22.921
- type: ndcg_at_10
value: 34.915
- type: ndcg_at_100
value: 39.744
- type: ndcg_at_1000
value: 42.407000000000004
- type: ndcg_at_3
value: 29.421000000000003
- type: ndcg_at_5
value: 32.211
- type: precision_at_1
value: 22.921
- type: precision_at_10
value: 5.675
- type: precision_at_100
value: 0.872
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 12.753999999999998
- type: precision_at_5
value: 9.353
- type: recall_at_1
value: 20.832
- type: recall_at_10
value: 48.795
- type: recall_at_100
value: 70.703
- type: recall_at_1000
value: 90.187
- type: recall_at_3
value: 34.455000000000005
- type: recall_at_5
value: 40.967
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.334
- type: map_at_10
value: 19.009999999999998
- type: map_at_100
value: 21.129
- type: map_at_1000
value: 21.328
- type: map_at_3
value: 15.152
- type: map_at_5
value: 17.084
- type: mrr_at_1
value: 23.453
- type: mrr_at_10
value: 36.099
- type: mrr_at_100
value: 37.069
- type: mrr_at_1000
value: 37.104
- type: mrr_at_3
value: 32.096000000000004
- type: mrr_at_5
value: 34.451
- type: ndcg_at_1
value: 23.453
- type: ndcg_at_10
value: 27.739000000000004
- type: ndcg_at_100
value: 35.836
- type: ndcg_at_1000
value: 39.242
- type: ndcg_at_3
value: 21.263
- type: ndcg_at_5
value: 23.677
- type: precision_at_1
value: 23.453
- type: precision_at_10
value: 9.199
- type: precision_at_100
value: 1.791
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 16.2
- type: precision_at_5
value: 13.147
- type: recall_at_1
value: 10.334
- type: recall_at_10
value: 35.177
- type: recall_at_100
value: 63.009
- type: recall_at_1000
value: 81.938
- type: recall_at_3
value: 19.914
- type: recall_at_5
value: 26.077
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.212
- type: map_at_10
value: 17.386
- type: map_at_100
value: 24.234
- type: map_at_1000
value: 25.724999999999998
- type: map_at_3
value: 12.727
- type: map_at_5
value: 14.785
- type: mrr_at_1
value: 59.25
- type: mrr_at_10
value: 68.687
- type: mrr_at_100
value: 69.133
- type: mrr_at_1000
value: 69.14099999999999
- type: mrr_at_3
value: 66.917
- type: mrr_at_5
value: 67.742
- type: ndcg_at_1
value: 48.625
- type: ndcg_at_10
value: 36.675999999999995
- type: ndcg_at_100
value: 41.543
- type: ndcg_at_1000
value: 49.241
- type: ndcg_at_3
value: 41.373
- type: ndcg_at_5
value: 38.707
- type: precision_at_1
value: 59.25
- type: precision_at_10
value: 28.525
- type: precision_at_100
value: 9.027000000000001
- type: precision_at_1000
value: 1.8339999999999999
- type: precision_at_3
value: 44.833
- type: precision_at_5
value: 37.35
- type: recall_at_1
value: 8.212
- type: recall_at_10
value: 23.188
- type: recall_at_100
value: 48.613
- type: recall_at_1000
value: 73.093
- type: recall_at_3
value: 14.419
- type: recall_at_5
value: 17.798
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 52.725
- type: f1
value: 46.50743309855908
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 55.086
- type: map_at_10
value: 66.914
- type: map_at_100
value: 67.321
- type: map_at_1000
value: 67.341
- type: map_at_3
value: 64.75800000000001
- type: map_at_5
value: 66.189
- type: mrr_at_1
value: 59.28600000000001
- type: mrr_at_10
value: 71.005
- type: mrr_at_100
value: 71.304
- type: mrr_at_1000
value: 71.313
- type: mrr_at_3
value: 69.037
- type: mrr_at_5
value: 70.35
- type: ndcg_at_1
value: 59.28600000000001
- type: ndcg_at_10
value: 72.695
- type: ndcg_at_100
value: 74.432
- type: ndcg_at_1000
value: 74.868
- type: ndcg_at_3
value: 68.72200000000001
- type: ndcg_at_5
value: 71.081
- type: precision_at_1
value: 59.28600000000001
- type: precision_at_10
value: 9.499
- type: precision_at_100
value: 1.052
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 27.503
- type: precision_at_5
value: 17.854999999999997
- type: recall_at_1
value: 55.086
- type: recall_at_10
value: 86.453
- type: recall_at_100
value: 94.028
- type: recall_at_1000
value: 97.052
- type: recall_at_3
value: 75.821
- type: recall_at_5
value: 81.6
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.262999999999998
- type: map_at_10
value: 37.488
- type: map_at_100
value: 39.498
- type: map_at_1000
value: 39.687
- type: map_at_3
value: 32.529
- type: map_at_5
value: 35.455
- type: mrr_at_1
value: 44.907000000000004
- type: mrr_at_10
value: 53.239000000000004
- type: mrr_at_100
value: 54.086
- type: mrr_at_1000
value: 54.122
- type: mrr_at_3
value: 51.235
- type: mrr_at_5
value: 52.415
- type: ndcg_at_1
value: 44.907000000000004
- type: ndcg_at_10
value: 45.446
- type: ndcg_at_100
value: 52.429
- type: ndcg_at_1000
value: 55.169000000000004
- type: ndcg_at_3
value: 41.882000000000005
- type: ndcg_at_5
value: 43.178
- type: precision_at_1
value: 44.907000000000004
- type: precision_at_10
value: 12.931999999999999
- type: precision_at_100
value: 2.025
- type: precision_at_1000
value: 0.248
- type: precision_at_3
value: 28.652
- type: precision_at_5
value: 21.204
- type: recall_at_1
value: 22.262999999999998
- type: recall_at_10
value: 52.447
- type: recall_at_100
value: 78.045
- type: recall_at_1000
value: 94.419
- type: recall_at_3
value: 38.064
- type: recall_at_5
value: 44.769
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.519
- type: map_at_10
value: 45.831
- type: map_at_100
value: 46.815
- type: map_at_1000
value: 46.899
- type: map_at_3
value: 42.836
- type: map_at_5
value: 44.65
- type: mrr_at_1
value: 65.037
- type: mrr_at_10
value: 72.16
- type: mrr_at_100
value: 72.51100000000001
- type: mrr_at_1000
value: 72.53
- type: mrr_at_3
value: 70.682
- type: mrr_at_5
value: 71.54599999999999
- type: ndcg_at_1
value: 65.037
- type: ndcg_at_10
value: 55.17999999999999
- type: ndcg_at_100
value: 58.888
- type: ndcg_at_1000
value: 60.648
- type: ndcg_at_3
value: 50.501
- type: ndcg_at_5
value: 52.977
- type: precision_at_1
value: 65.037
- type: precision_at_10
value: 11.530999999999999
- type: precision_at_100
value: 1.4460000000000002
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 31.483
- type: precision_at_5
value: 20.845
- type: recall_at_1
value: 32.519
- type: recall_at_10
value: 57.657000000000004
- type: recall_at_100
value: 72.30199999999999
- type: recall_at_1000
value: 84.024
- type: recall_at_3
value: 47.225
- type: recall_at_5
value: 52.113
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 88.3168
- type: ap
value: 83.80165516037135
- type: f1
value: 88.29942471066407
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 20.724999999999998
- type: map_at_10
value: 32.736
- type: map_at_100
value: 33.938
- type: map_at_1000
value: 33.991
- type: map_at_3
value: 28.788000000000004
- type: map_at_5
value: 31.016
- type: mrr_at_1
value: 21.361
- type: mrr_at_10
value: 33.323
- type: mrr_at_100
value: 34.471000000000004
- type: mrr_at_1000
value: 34.518
- type: mrr_at_3
value: 29.453000000000003
- type: mrr_at_5
value: 31.629
- type: ndcg_at_1
value: 21.361
- type: ndcg_at_10
value: 39.649
- type: ndcg_at_100
value: 45.481
- type: ndcg_at_1000
value: 46.775
- type: ndcg_at_3
value: 31.594
- type: ndcg_at_5
value: 35.543
- type: precision_at_1
value: 21.361
- type: precision_at_10
value: 6.3740000000000006
- type: precision_at_100
value: 0.931
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 13.514999999999999
- type: precision_at_5
value: 10.100000000000001
- type: recall_at_1
value: 20.724999999999998
- type: recall_at_10
value: 61.034
- type: recall_at_100
value: 88.062
- type: recall_at_1000
value: 97.86399999999999
- type: recall_at_3
value: 39.072
- type: recall_at_5
value: 48.53
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.8919288645691
- type: f1
value: 93.57059586398059
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 67.97993616051072
- type: f1
value: 48.244319183606535
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.90047074646941
- type: f1
value: 66.48999056063725
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.34566240753195
- type: f1
value: 73.54164154290658
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 34.21866934757011
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 32.000936217235534
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.68189362520352
- type: mrr
value: 32.69603637784303
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.078
- type: map_at_10
value: 12.671
- type: map_at_100
value: 16.291
- type: map_at_1000
value: 17.855999999999998
- type: map_at_3
value: 9.610000000000001
- type: map_at_5
value: 11.152
- type: mrr_at_1
value: 43.963
- type: mrr_at_10
value: 53.173
- type: mrr_at_100
value: 53.718999999999994
- type: mrr_at_1000
value: 53.756
- type: mrr_at_3
value: 50.980000000000004
- type: mrr_at_5
value: 52.42
- type: ndcg_at_1
value: 42.415000000000006
- type: ndcg_at_10
value: 34.086
- type: ndcg_at_100
value: 32.545
- type: ndcg_at_1000
value: 41.144999999999996
- type: ndcg_at_3
value: 39.434999999999995
- type: ndcg_at_5
value: 37.888
- type: precision_at_1
value: 43.653
- type: precision_at_10
value: 25.014999999999997
- type: precision_at_100
value: 8.594
- type: precision_at_1000
value: 2.169
- type: precision_at_3
value: 37.049
- type: precision_at_5
value: 33.065
- type: recall_at_1
value: 6.078
- type: recall_at_10
value: 16.17
- type: recall_at_100
value: 34.512
- type: recall_at_1000
value: 65.447
- type: recall_at_3
value: 10.706
- type: recall_at_5
value: 13.158
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.378000000000004
- type: map_at_10
value: 42.178
- type: map_at_100
value: 43.32
- type: map_at_1000
value: 43.358000000000004
- type: map_at_3
value: 37.474000000000004
- type: map_at_5
value: 40.333000000000006
- type: mrr_at_1
value: 30.823
- type: mrr_at_10
value: 44.626
- type: mrr_at_100
value: 45.494
- type: mrr_at_1000
value: 45.519
- type: mrr_at_3
value: 40.585
- type: mrr_at_5
value: 43.146
- type: ndcg_at_1
value: 30.794
- type: ndcg_at_10
value: 50.099000000000004
- type: ndcg_at_100
value: 54.900999999999996
- type: ndcg_at_1000
value: 55.69499999999999
- type: ndcg_at_3
value: 41.238
- type: ndcg_at_5
value: 46.081
- type: precision_at_1
value: 30.794
- type: precision_at_10
value: 8.549
- type: precision_at_100
value: 1.124
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 18.926000000000002
- type: precision_at_5
value: 14.16
- type: recall_at_1
value: 27.378000000000004
- type: recall_at_10
value: 71.842
- type: recall_at_100
value: 92.565
- type: recall_at_1000
value: 98.402
- type: recall_at_3
value: 49.053999999999995
- type: recall_at_5
value: 60.207
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.557
- type: map_at_10
value: 84.729
- type: map_at_100
value: 85.369
- type: map_at_1000
value: 85.382
- type: map_at_3
value: 81.72
- type: map_at_5
value: 83.613
- type: mrr_at_1
value: 81.3
- type: mrr_at_10
value: 87.488
- type: mrr_at_100
value: 87.588
- type: mrr_at_1000
value: 87.589
- type: mrr_at_3
value: 86.53
- type: mrr_at_5
value: 87.18599999999999
- type: ndcg_at_1
value: 81.28999999999999
- type: ndcg_at_10
value: 88.442
- type: ndcg_at_100
value: 89.637
- type: ndcg_at_1000
value: 89.70700000000001
- type: ndcg_at_3
value: 85.55199999999999
- type: ndcg_at_5
value: 87.154
- type: precision_at_1
value: 81.28999999999999
- type: precision_at_10
value: 13.489999999999998
- type: precision_at_100
value: 1.54
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.553
- type: precision_at_5
value: 24.708
- type: recall_at_1
value: 70.557
- type: recall_at_10
value: 95.645
- type: recall_at_100
value: 99.693
- type: recall_at_1000
value: 99.995
- type: recall_at_3
value: 87.359
- type: recall_at_5
value: 91.89699999999999
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 63.65060114776209
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 64.63271250680617
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.263
- type: map_at_10
value: 10.801
- type: map_at_100
value: 12.888
- type: map_at_1000
value: 13.224
- type: map_at_3
value: 7.362
- type: map_at_5
value: 9.149000000000001
- type: mrr_at_1
value: 21
- type: mrr_at_10
value: 31.416
- type: mrr_at_100
value: 32.513
- type: mrr_at_1000
value: 32.58
- type: mrr_at_3
value: 28.116999999999997
- type: mrr_at_5
value: 29.976999999999997
- type: ndcg_at_1
value: 21
- type: ndcg_at_10
value: 18.551000000000002
- type: ndcg_at_100
value: 26.657999999999998
- type: ndcg_at_1000
value: 32.485
- type: ndcg_at_3
value: 16.834
- type: ndcg_at_5
value: 15.204999999999998
- type: precision_at_1
value: 21
- type: precision_at_10
value: 9.84
- type: precision_at_100
value: 2.16
- type: precision_at_1000
value: 0.35500000000000004
- type: precision_at_3
value: 15.667
- type: precision_at_5
value: 13.62
- type: recall_at_1
value: 4.263
- type: recall_at_10
value: 19.922
- type: recall_at_100
value: 43.808
- type: recall_at_1000
value: 72.14500000000001
- type: recall_at_3
value: 9.493
- type: recall_at_5
value: 13.767999999999999
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_spearman
value: 81.27446313317233
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_spearman
value: 76.27963301217527
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_spearman
value: 88.18495048450949
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_spearman
value: 81.91982338692046
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_spearman
value: 89.00896818385291
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_spearman
value: 85.48814644586132
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_spearman
value: 90.30116926966582
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_spearman
value: 67.74132963032342
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_spearman
value: 86.87741355780479
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 82.0019012295875
- type: mrr
value: 94.70267024188593
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 50.05
- type: map_at_10
value: 59.36
- type: map_at_100
value: 59.967999999999996
- type: map_at_1000
value: 60.023
- type: map_at_3
value: 56.515
- type: map_at_5
value: 58.272999999999996
- type: mrr_at_1
value: 53
- type: mrr_at_10
value: 61.102000000000004
- type: mrr_at_100
value: 61.476
- type: mrr_at_1000
value: 61.523
- type: mrr_at_3
value: 58.778
- type: mrr_at_5
value: 60.128
- type: ndcg_at_1
value: 53
- type: ndcg_at_10
value: 64.43100000000001
- type: ndcg_at_100
value: 66.73599999999999
- type: ndcg_at_1000
value: 68.027
- type: ndcg_at_3
value: 59.279
- type: ndcg_at_5
value: 61.888
- type: precision_at_1
value: 53
- type: precision_at_10
value: 8.767
- type: precision_at_100
value: 1.01
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 23.444000000000003
- type: precision_at_5
value: 15.667
- type: recall_at_1
value: 50.05
- type: recall_at_10
value: 78.511
- type: recall_at_100
value: 88.5
- type: recall_at_1000
value: 98.333
- type: recall_at_3
value: 64.117
- type: recall_at_5
value: 70.867
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.72178217821782
- type: cos_sim_ap
value: 93.0728601593541
- type: cos_sim_f1
value: 85.6727976766699
- type: cos_sim_precision
value: 83.02063789868667
- type: cos_sim_recall
value: 88.5
- type: dot_accuracy
value: 99.72178217821782
- type: dot_ap
value: 93.07287396168348
- type: dot_f1
value: 85.6727976766699
- type: dot_precision
value: 83.02063789868667
- type: dot_recall
value: 88.5
- type: euclidean_accuracy
value: 99.72178217821782
- type: euclidean_ap
value: 93.07285657982895
- type: euclidean_f1
value: 85.6727976766699
- type: euclidean_precision
value: 83.02063789868667
- type: euclidean_recall
value: 88.5
- type: manhattan_accuracy
value: 99.72475247524753
- type: manhattan_ap
value: 93.02792973059809
- type: manhattan_f1
value: 85.7727737973388
- type: manhattan_precision
value: 87.84067085953879
- type: manhattan_recall
value: 83.8
- type: max_accuracy
value: 99.72475247524753
- type: max_ap
value: 93.07287396168348
- type: max_f1
value: 85.7727737973388
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 68.77583615550819
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.151636938606956
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.16607939471187
- type: mrr
value: 52.95172046091163
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.314646669495666
- type: cos_sim_spearman
value: 31.83562491439455
- type: dot_pearson
value: 31.314590842874157
- type: dot_spearman
value: 31.83363065810437
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.198
- type: map_at_10
value: 1.3010000000000002
- type: map_at_100
value: 7.2139999999999995
- type: map_at_1000
value: 20.179
- type: map_at_3
value: 0.528
- type: map_at_5
value: 0.8019999999999999
- type: mrr_at_1
value: 72
- type: mrr_at_10
value: 83.39999999999999
- type: mrr_at_100
value: 83.39999999999999
- type: mrr_at_1000
value: 83.39999999999999
- type: mrr_at_3
value: 81.667
- type: mrr_at_5
value: 83.06700000000001
- type: ndcg_at_1
value: 66
- type: ndcg_at_10
value: 58.059000000000005
- type: ndcg_at_100
value: 44.316
- type: ndcg_at_1000
value: 43.147000000000006
- type: ndcg_at_3
value: 63.815999999999995
- type: ndcg_at_5
value: 63.005
- type: precision_at_1
value: 72
- type: precision_at_10
value: 61.4
- type: precision_at_100
value: 45.62
- type: precision_at_1000
value: 19.866
- type: precision_at_3
value: 70
- type: precision_at_5
value: 68.8
- type: recall_at_1
value: 0.198
- type: recall_at_10
value: 1.517
- type: recall_at_100
value: 10.587
- type: recall_at_1000
value: 41.233
- type: recall_at_3
value: 0.573
- type: recall_at_5
value: 0.907
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.894
- type: map_at_10
value: 8.488999999999999
- type: map_at_100
value: 14.445
- type: map_at_1000
value: 16.078
- type: map_at_3
value: 4.589
- type: map_at_5
value: 6.019
- type: mrr_at_1
value: 22.448999999999998
- type: mrr_at_10
value: 39.82
- type: mrr_at_100
value: 40.752
- type: mrr_at_1000
value: 40.771
- type: mrr_at_3
value: 34.354
- type: mrr_at_5
value: 37.721
- type: ndcg_at_1
value: 19.387999999999998
- type: ndcg_at_10
value: 21.563
- type: ndcg_at_100
value: 33.857
- type: ndcg_at_1000
value: 46.199
- type: ndcg_at_3
value: 22.296
- type: ndcg_at_5
value: 21.770999999999997
- type: precision_at_1
value: 22.448999999999998
- type: precision_at_10
value: 19.796
- type: precision_at_100
value: 7.142999999999999
- type: precision_at_1000
value: 1.541
- type: precision_at_3
value: 24.490000000000002
- type: precision_at_5
value: 22.448999999999998
- type: recall_at_1
value: 1.894
- type: recall_at_10
value: 14.931
- type: recall_at_100
value: 45.524
- type: recall_at_1000
value: 83.243
- type: recall_at_3
value: 5.712
- type: recall_at_5
value: 8.386000000000001
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.049
- type: ap
value: 13.85116971310922
- type: f1
value: 54.37504302487686
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 64.1312959818902
- type: f1
value: 64.11413877009383
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 54.13103431861502
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.327889372355
- type: cos_sim_ap
value: 77.42059895975699
- type: cos_sim_f1
value: 71.02706903250873
- type: cos_sim_precision
value: 69.75324344950394
- type: cos_sim_recall
value: 72.34828496042216
- type: dot_accuracy
value: 87.327889372355
- type: dot_ap
value: 77.4209479346677
- type: dot_f1
value: 71.02706903250873
- type: dot_precision
value: 69.75324344950394
- type: dot_recall
value: 72.34828496042216
- type: euclidean_accuracy
value: 87.327889372355
- type: euclidean_ap
value: 77.42096495861037
- type: euclidean_f1
value: 71.02706903250873
- type: euclidean_precision
value: 69.75324344950394
- type: euclidean_recall
value: 72.34828496042216
- type: manhattan_accuracy
value: 87.31000774870358
- type: manhattan_ap
value: 77.38930750711619
- type: manhattan_f1
value: 71.07935314027831
- type: manhattan_precision
value: 67.70957726295677
- type: manhattan_recall
value: 74.80211081794195
- type: max_accuracy
value: 87.327889372355
- type: max_ap
value: 77.42096495861037
- type: max_f1
value: 71.07935314027831
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.58939729110878
- type: cos_sim_ap
value: 87.17594155025475
- type: cos_sim_f1
value: 79.21146953405018
- type: cos_sim_precision
value: 76.8918527109307
- type: cos_sim_recall
value: 81.67539267015707
- type: dot_accuracy
value: 89.58939729110878
- type: dot_ap
value: 87.17593963273593
- type: dot_f1
value: 79.21146953405018
- type: dot_precision
value: 76.8918527109307
- type: dot_recall
value: 81.67539267015707
- type: euclidean_accuracy
value: 89.58939729110878
- type: euclidean_ap
value: 87.17592466925834
- type: euclidean_f1
value: 79.21146953405018
- type: euclidean_precision
value: 76.8918527109307
- type: euclidean_recall
value: 81.67539267015707
- type: manhattan_accuracy
value: 89.62626615438352
- type: manhattan_ap
value: 87.16589873161546
- type: manhattan_f1
value: 79.25143598295348
- type: manhattan_precision
value: 76.39494177323712
- type: manhattan_recall
value: 82.32984293193716
- type: max_accuracy
value: 89.62626615438352
- type: max_ap
value: 87.17594155025475
- type: max_f1
value: 79.25143598295348
---
# hkunlp/instructor-large
We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))!
The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)!
**************************** **Updates** ****************************
* 12/28: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-large) trained with hard negatives, which gives better performance.
* 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out!
## Quick start
<hr />
## Installation
```bash
pip install InstructorEmbedding
```
## Compute your customized embeddings
Then you can use the model like this to calculate domain-specific and task-aware embeddings:
```python
from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-large')
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
instruction = "Represent the Science title:"
embeddings = model.encode([[instruction,sentence]])
print(embeddings)
```
## Use cases
<hr />
## Calculate embeddings for your customized texts
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
## Calculate Sentence similarities
You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**.
```python
from sklearn.metrics.pairwise import cosine_similarity
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'],
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
embeddings_a = model.encode(sentences_a)
embeddings_b = model.encode(sentences_b)
similarities = cosine_similarity(embeddings_a,embeddings_b)
print(similarities)
```
## Information Retrieval
You can also use **customized embeddings** for information retrieval.
```python
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']]
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'],
['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"],
['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']]
query_embeddings = model.encode(query)
corpus_embeddings = model.encode(corpus)
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
retrieved_doc_id = np.argmax(similarities)
print(retrieved_doc_id)
```
## Clustering
Use **customized embeddings** for clustering texts in groups.
```python
import sklearn.cluster
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'],
['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'],
['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'],
['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"],
['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']]
embeddings = model.encode(sentences)
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
clustering_model.fit(embeddings)
cluster_assignment = clustering_model.labels_
print(cluster_assignment)
``` | [
-0.20094357430934906,
-0.9955211877822876,
0.47241920232772827,
0.024219727143645287,
-0.02076554298400879,
-0.18124936521053314,
-0.2674221992492676,
-0.11446360498666763,
0.2688613533973694,
0.2537739872932434,
-0.221552312374115,
-0.7845076322555542,
-0.4434840679168701,
-0.009519570507109165,
-0.2990616261959076,
1.0103163719177246,
-0.07924171537160873,
0.15783946216106415,
-0.5563210248947144,
-0.12151006609201431,
-0.3128606379032135,
-0.5091367363929749,
-0.17875918745994568,
-0.3188636302947998,
0.38521137833595276,
0.24002543091773987,
0.528816282749176,
0.6823075413703918,
0.37053486704826355,
0.3216058313846588,
-0.034095730632543564,
-0.11050624400377274,
-0.35174277424812317,
-0.21736367046833038,
-0.12646493315696716,
-0.5488669872283936,
-0.21565388143062592,
-0.005480149760842323,
0.6972581744194031,
0.7080939412117004,
-0.07419396936893463,
0.08946789056062698,
0.24964383244514465,
0.33191534876823425,
-0.5197288990020752,
0.2637872099876404,
-0.3330973982810974,
0.1288270652294159,
-0.028664136305451393,
0.008132551796734333,
-0.2135779708623886,
-0.2892521321773529,
0.20247747004032135,
-0.6791045069694519,
0.11166650056838989,
0.2182382047176361,
0.9067325592041016,
0.36906903982162476,
-0.4651522934436798,
-0.4682408571243286,
-0.06759849190711975,
1.0218092203140259,
-0.7529268264770508,
0.36512434482574463,
0.3954997956752777,
-0.09216950833797455,
-0.28299516439437866,
-0.8480952382087708,
-0.6408812999725342,
-0.23853105306625366,
-0.2730073630809784,
0.15102382004261017,
-0.03758630156517029,
-0.0032354563008993864,
0.24517980217933655,
0.4554685354232788,
-0.6268555521965027,
0.09702640026807785,
-0.40343308448791504,
-0.15849649906158447,
0.4687042534351349,
0.2501539885997772,
0.4075680375099182,
-0.44060495495796204,
-0.33818909525871277,
-0.2946537137031555,
-0.3930409550666809,
0.13694995641708374,
0.29825320839881897,
0.13257522881031036,
-0.3601432144641876,
0.8073710799217224,
0.0019709274638444185,
0.4722171723842621,
0.001977846957743168,
-0.2342415750026703,
0.4923578202724457,
-0.31933408975601196,
-0.12968569993972778,
0.06044221296906471,
0.801128625869751,
0.4127208888530731,
-0.1412936896085739,
0.026055924594402313,
0.04723338782787323,
0.15059760212898254,
0.03906743600964546,
-0.6611974835395813,
-0.28494811058044434,
0.23894180357456207,
-0.5481094717979431,
-0.3331902325153351,
0.08528988063335419,
-0.7838531732559204,
-0.16239291429519653,
-0.1362302601337433,
0.6897052526473999,
-0.5292820930480957,
0.09356748312711716,
0.18287840485572815,
-0.3255423307418823,
-0.032368775457143784,
0.047522708773612976,
-0.748400866985321,
0.33689776062965393,
0.6745414137840271,
0.7975597381591797,
-0.12476059794425964,
-0.42256563901901245,
-0.13673684000968933,
0.12116944789886475,
0.07960280030965805,
0.4351668655872345,
-0.6746349334716797,
-0.11044203490018845,
0.11463107913732529,
0.11588164418935776,
-0.18811406195163727,
-0.3226684331893921,
0.26307913661003113,
-0.10638059675693512,
0.4654228687286377,
-0.03990231826901436,
-0.9457349181175232,
-0.45990830659866333,
0.26706576347351074,
-0.464410662651062,
1.0698935985565186,
0.17106051743030548,
-0.9100178480148315,
-0.008707918226718903,
-0.7970349192619324,
-0.38938000798225403,
-0.27898597717285156,
-0.22313305735588074,
-0.41762688755989075,
-0.22711315751075745,
0.025672314688563347,
0.7203652858734131,
-0.05735258385539055,
0.13902893662452698,
-0.3469904959201813,
-0.3673765957355499,
0.3156759738922119,
0.057443611323833466,
0.9032807350158691,
0.13951583206653595,
-0.39910584688186646,
0.04804078862071037,
-0.5686492323875427,
-0.13849088549613953,
0.11756924539804459,
-0.4656415283679962,
-0.4697476327419281,
0.04122896119952202,
0.18496546149253845,
-0.15778155624866486,
0.47955432534217834,
-0.5849084854125977,
0.32467779517173767,
-0.25234949588775635,
0.6906842589378357,
0.6761500835418701,
0.11096485704183578,
0.44019126892089844,
-0.3449960947036743,
0.30339914560317993,
0.05831959843635559,
-0.012757767923176289,
-0.13378965854644775,
-0.5668429732322693,
-0.6055408716201782,
-0.30986523628234863,
0.35698458552360535,
0.5708422064781189,
-0.5136706233024597,
0.6398971080780029,
-0.1247444599866867,
-0.6514925360679626,
-0.5224614143371582,
-0.024005206301808357,
0.3548104763031006,
0.23793433606624603,
0.6127939224243164,
-0.10699914395809174,
-0.5756753087043762,
-0.6695072054862976,
-0.28528255224227905,
0.10489533096551895,
0.1793106347322464,
0.32745733857154846,
0.808801531791687,
-0.4870275557041168,
0.6812487244606018,
-0.9603071808815002,
-0.3187554180622101,
-0.19576498866081238,
-0.14973409473896027,
0.24074707925319672,
0.7706925272941589,
0.6883888840675354,
-0.7289808988571167,
-0.6070699691772461,
-0.09364021569490433,
-0.6296155452728271,
0.24398580193519592,
-0.1220938190817833,
-0.10812746733427048,
0.0021671010181307793,
0.5186880230903625,
-0.5469563603401184,
0.34837958216667175,
0.36480870842933655,
-0.3890244960784912,
0.5069026947021484,
-0.28352540731430054,
0.044680483639240265,
-1.3456076383590698,
-0.020180940628051758,
0.21470117568969727,
-0.11798145622015,
-0.44595423340797424,
0.2326323390007019,
-0.09271004050970078,
0.007151427678763866,
-0.3198292851448059,
0.5452688932418823,
-0.2920461595058441,
0.16203980147838593,
0.006119020748883486,
0.2782523036003113,
-0.13330164551734924,
0.6089842915534973,
-0.15335862338542938,
0.42149046063423157,
0.6167440414428711,
-0.6607741713523865,
0.3584013879299164,
0.527013897895813,
-0.39499878883361816,
0.2883000373840332,
-0.5525604486465454,
-0.06390680372714996,
0.023704614490270615,
0.30936071276664734,
-0.6480880379676819,
-0.18756172060966492,
0.33524733781814575,
-0.3932318389415741,
0.18532902002334595,
0.10851070284843445,
-0.47533202171325684,
-0.4231354892253876,
-0.5449732542037964,
0.27059173583984375,
0.5865651369094849,
-0.42010122537612915,
0.1840706467628479,
0.5505350232124329,
0.007067944388836622,
-0.7041393518447876,
-0.6559627652168274,
-0.14669790863990784,
-0.31335073709487915,
-0.2787717878818512,
0.529569685459137,
-0.2108127474784851,
-0.04594409838318825,
0.43923264741897583,
0.0696517676115036,
-0.19101208448410034,
0.16050629317760468,
0.31311944127082825,
0.20939627289772034,
-0.17709067463874817,
0.15826523303985596,
0.20708347856998444,
0.05161258205771446,
-0.014524877071380615,
-0.30988532304763794,
0.626785933971405,
-0.23694631457328796,
-0.239824578166008,
-0.4829910695552826,
0.37122875452041626,
0.23331868648529053,
0.06386055052280426,
0.6777589917182922,
0.8412682414054871,
-0.5514369606971741,
0.06408260762691498,
-0.34439095854759216,
-0.23710636794567108,
-0.4769798517227173,
0.6942632794380188,
-0.19338484108448029,
-1.064607858657837,
0.25121891498565674,
0.011292343959212303,
0.10580671578645706,
0.6278467178344727,
0.5413095355033875,
-0.1366249918937683,
0.7808825969696045,
0.7263246774673462,
-0.13571758568286896,
0.5640653967857361,
-0.5343649387359619,
0.3064817786216736,
-0.7810551524162292,
-0.4144102931022644,
-0.5085492134094238,
-0.4066806137561798,
-0.7884870767593384,
-0.5285474061965942,
0.15725432336330414,
0.24454332888126373,
-0.27873694896698,
0.554194450378418,
-0.5460408926010132,
0.2715294659137726,
0.6358540058135986,
0.1741858869791031,
-0.05965482071042061,
0.15218117833137512,
-0.2934154272079468,
-0.14364565908908844,
-0.7671095132827759,
-0.5210152864456177,
1.1565572023391724,
0.3677734136581421,
0.7381948232650757,
-0.20072788000106812,
0.9448309540748596,
0.2319190800189972,
0.05583735555410385,
-0.7315115332603455,
0.5396217107772827,
-0.37188783288002014,
-0.44070369005203247,
-0.1681373119354248,
-0.4605238735675812,
-1.0310475826263428,
0.28851258754730225,
-0.43429404497146606,
-0.7842294573783875,
0.10799524188041687,
-0.02258002944290638,
-0.24461700022220612,
0.4651242792606354,
-0.502402126789093,
1.0225681066513062,
-0.08800327777862549,
-0.1985388696193695,
-0.5027915239334106,
-0.3813934922218323,
0.05618099495768547,
0.04674004390835762,
0.27269747853279114,
-0.04092227295041084,
-0.06437135487794876,
1.0055012702941895,
-0.2981211245059967,
0.9494474530220032,
-0.15932059288024902,
0.26816847920417786,
0.3861558437347412,
-0.3388981819152832,
0.18156231939792633,
-0.035827793180942535,
-0.04978986829519272,
0.10027842968702316,
0.33308932185173035,
-0.5249170064926147,
-0.4805380702018738,
0.9182287454605103,
-0.8968001008033752,
-0.4297608435153961,
-0.4231266677379608,
-0.688245952129364,
0.2637937366962433,
0.2238227128982544,
0.23611848056316376,
0.32377320528030396,
-0.2610729932785034,
0.42451876401901245,
0.36518359184265137,
-0.46268734335899353,
0.28967514634132385,
0.14544251561164856,
-0.1040782704949379,
-0.5010239481925964,
1.0905061960220337,
0.13893163204193115,
-0.06562250107526779,
0.5143495798110962,
0.2932800352573395,
-0.23228676617145538,
-0.23223689198493958,
-0.09781455248594284,
0.38300567865371704,
-0.6121049523353577,
-0.1435294896364212,
-0.9715031385421753,
-0.16903044283390045,
-0.6795346140861511,
-0.37438222765922546,
-0.15685126185417175,
-0.5965497493743896,
-0.5272153615951538,
-0.11556129157543182,
0.3361680805683136,
0.9181910157203674,
-0.16510765254497528,
0.1979576200246811,
-0.6651679873466492,
0.15809957683086395,
0.012049621902406216,
0.028237029910087585,
0.11200710386037827,
-0.2883481979370117,
-0.6404592990875244,
0.11607980728149414,
-0.5871621966362,
-0.7538893222808838,
0.30629628896713257,
0.17741639912128448,
0.8214813470840454,
0.4925166964530945,
0.12028931826353073,
0.672005832195282,
-0.6117671132087708,
0.9776345491409302,
0.347355455160141,
-0.9106245636940002,
0.4535048305988312,
0.022648286074399948,
-0.13886480033397675,
0.3308362364768982,
0.6889681220054626,
-0.5099314451217651,
-0.4809359014034271,
-0.6938192844390869,
-0.9034643769264221,
0.44704294204711914,
0.13342134654521942,
0.32459521293640137,
-0.1519160270690918,
0.45970213413238525,
0.19163790345191956,
0.20132561028003693,
-0.9401382207870483,
-0.5270450711250305,
-0.33857420086860657,
-0.6285015344619751,
-0.10996502637863159,
-0.1231832429766655,
-0.028165986761450768,
-0.492527574300766,
0.5983988642692566,
0.06394313275814056,
0.4859151542186737,
0.2618709206581116,
-0.3030381202697754,
0.21870310604572296,
0.264749139547348,
0.49644219875335693,
0.3404555022716522,
-0.1876274049282074,
0.23295122385025024,
0.3537585139274597,
-0.6142483353614807,
0.08687137067317963,
0.12305367738008499,
-0.06998278200626373,
0.08232171833515167,
0.3613492548465729,
0.6136478185653687,
0.4328683614730835,
-0.6058225631713867,
0.5867557525634766,
0.20837798714637756,
-0.2757784426212311,
-0.39339733123779297,
0.2090228796005249,
0.05921433866024017,
0.44253480434417725,
0.25429895520210266,
-0.048010971397161484,
0.15585124492645264,
-0.7083507776260376,
0.17447319626808167,
0.16521713137626648,
-0.4296773374080658,
-0.35058602690696716,
0.5859037041664124,
0.008612077683210373,
-0.15901708602905273,
0.4451616406440735,
-0.24578268826007843,
-0.8041720390319824,
0.6870825886726379,
0.8243812918663025,
0.6338257193565369,
-0.027921458706259727,
0.20818781852722168,
0.6565276980400085,
0.18167084455490112,
-0.11586935073137283,
0.28153616189956665,
0.07203244417905807,
-0.5924144983291626,
-0.08005550503730774,
-0.5620763897895813,
-0.24986179172992706,
0.006751177366822958,
-0.7035143375396729,
0.16419173777103424,
-0.46706533432006836,
-0.13278312981128693,
-0.09845428168773651,
0.1974630206823349,
-0.7451341152191162,
0.07315612584352493,
-0.09984451532363892,
0.7263559699058533,
-0.8657535314559937,
0.7760758399963379,
1.0851526260375977,
-0.45779305696487427,
-0.5604069232940674,
0.05875087156891823,
-0.15767863392829895,
-0.6165435910224915,
0.43968382477760315,
0.4476897120475769,
0.4326004087924957,
0.07554524391889572,
-0.5684475302696228,
-0.7492265701293945,
1.323806881904602,
0.06853369623422623,
-0.3924853801727295,
-0.09750347584486008,
0.12485548853874207,
0.436904639005661,
-0.5509148240089417,
0.07279505580663681,
0.3361254930496216,
0.4866155683994293,
-0.48995593190193176,
-0.5927996039390564,
0.3812508285045624,
-0.2232212871313095,
-0.1796126812696457,
-0.12315435707569122,
-0.6161220073699951,
1.0242639780044556,
-0.3359961211681366,
-0.02603933773934841,
0.17307575047016144,
0.6257755160331726,
0.11448191851377487,
0.5031390190124512,
0.47758281230926514,
0.8925806283950806,
0.8975799679756165,
-0.030168501660227776,
1.1075519323349,
-0.42718467116355896,
0.6333447694778442,
0.8159892559051514,
0.15788181126117706,
0.9899332523345947,
0.34266626834869385,
-0.3493737280368805,
0.8013532757759094,
0.736223578453064,
-0.40966859459877014,
0.638906717300415,
0.24561773240566254,
-0.019264746457338333,
-0.060780324041843414,
-0.0878843441605568,
-0.6878868341445923,
0.28441959619522095,
0.37948718667030334,
-0.3107863962650299,
0.05227053165435791,
0.21269577741622925,
0.09435218572616577,
0.057454973459243774,
-0.16816645860671997,
0.6039432883262634,
0.3081776201725006,
-0.2717139720916748,
0.35976076126098633,
0.14790253341197968,
0.9178439378738403,
-0.3984071612358093,
-0.06501701474189758,
0.07496511191129684,
0.26710695028305054,
-0.40285003185272217,
-0.7646594643592834,
0.07861949503421783,
-0.09235414117574692,
-0.16193923354148865,
0.031434718519449234,
0.515005886554718,
-0.6487243175506592,
-0.3304804265499115,
0.3944014012813568,
0.24184516072273254,
0.36603331565856934,
0.13252459466457367,
-0.8543291687965393,
-0.1204959824681282,
0.13656900823116302,
-0.2132190316915512,
0.3717252016067505,
0.28431910276412964,
0.16269919276237488,
0.43074774742126465,
0.6675527095794678,
-0.12598253786563873,
0.12239484488964081,
-0.11988730728626251,
0.8403109908103943,
-0.8396481871604919,
-0.6374134421348572,
-0.7144391536712646,
0.45324286818504333,
-0.0813538059592247,
-0.20329062640666962,
0.738568902015686,
0.8193624019622803,
0.9867063164710999,
-0.18761903047561646,
0.741729199886322,
-0.2116922289133072,
0.27798646688461304,
-0.4654540717601776,
0.8603534698486328,
-0.871850311756134,
-0.1028832197189331,
-0.384037584066391,
-0.9319664239883423,
-0.1865515112876892,
0.9651654362678528,
-0.2669668197631836,
-0.09427889436483383,
0.8499253392219543,
0.7184681296348572,
-0.10007157921791077,
-0.13322556018829346,
0.16667300462722778,
0.3517117500305176,
0.17822265625,
0.5146615505218506,
0.6288813352584839,
-0.618963897228241,
0.5896913409233093,
-0.5002384781837463,
-0.05605759844183922,
-0.459357887506485,
-0.6260247826576233,
-0.9835325479507446,
-0.7730451226234436,
-0.5603987574577332,
-0.37735500931739807,
-0.007920283824205399,
0.9767308831214905,
0.42999976873397827,
-0.904308021068573,
-0.2360675036907196,
0.09002408385276794,
0.2838791310787201,
-0.3219105303287506,
-0.3008995056152344,
0.6214783787727356,
-0.26048576831817627,
-0.7416518926620483,
0.2021537572145462,
-0.06887943297624588,
0.1360085904598236,
-0.10121550410985947,
-0.13772687315940857,
-0.45146051049232483,
-0.07492013275623322,
0.5465962886810303,
0.02426389791071415,
-0.7787813544273376,
-0.3472455143928528,
-0.0730864405632019,
-0.32933107018470764,
0.004908264614641666,
0.5809664726257324,
-0.438578724861145,
0.10504410415887833,
0.5272255539894104,
0.6878982782363892,
0.4942178726196289,
-0.27737516164779663,
0.2716962993144989,
-0.5513843894004822,
0.15542146563529968,
0.08514633029699326,
0.513541579246521,
0.17996788024902344,
-0.3883454501628876,
0.522200882434845,
0.3209092319011688,
-0.5786245465278625,
-0.8325577974319458,
-0.11985520273447037,
-1.0063563585281372,
-0.4694855213165283,
0.8268776535987854,
-0.47498002648353577,
-0.3389870226383209,
0.023571152240037918,
-0.23685337603092194,
0.47025954723358154,
-0.42240649461746216,
0.7510276436805725,
0.6067333817481995,
0.028550446033477783,
0.07196745276451111,
-0.5229178667068481,
0.23812884092330933,
0.514521062374115,
-0.6384859681129456,
-0.42316365242004395,
0.27490830421447754,
0.5089026093482971,
0.3342132866382599,
0.27624645829200745,
0.04254445433616638,
0.15544363856315613,
0.1681518405675888,
0.06413279473781586,
-0.08761302381753922,
-0.014472784474492073,
-0.14134396612644196,
0.13024745881557465,
-0.3834991753101349,
-0.33456650376319885
] |
oliverguhr/german-sentiment-bert | oliverguhr | "2023-03-16T18:09:30Z" | 193,882 | 40 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"text-classification",
"sentiment",
"de",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2022-03-02T23:29:05Z" | ---
language:
- de
tags:
- sentiment
- bert
license: mit
widget:
- text: "Das ist gar nicht mal so schlecht"
metrics:
- f1
---
# German Sentiment Classification with Bert
This model was trained for sentiment classification of German language texts. To achieve the best results all model inputs needs to be preprocessed with the same procedure, that was applied during the training. To simplify the usage of the model,
we provide a Python package that bundles the code need for the preprocessing and inferencing.
The model uses the Googles Bert architecture and was trained on 1.834 million German-language samples. The training data contains texts from various domains like Twitter, Facebook and movie, app and hotel reviews.
You can find more information about the dataset and the training process in the [paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.202.pdf).
## Using the Python package
To get started install the package from [pypi](https://pypi.org/project/germansentiment/):
```bash
pip install germansentiment
```
```python
from germansentiment import SentimentModel
model = SentimentModel()
texts = [
"Mit keinem guten Ergebniss","Das ist gar nicht mal so gut",
"Total awesome!","nicht so schlecht wie erwartet",
"Der Test verlief positiv.","Sie fährt ein grünes Auto."]
result = model.predict_sentiment(texts)
print(result)
```
The code above will output following list:
```python
["negative","negative","positive","positive","neutral", "neutral"]
```
### Output class probabilities
```python
from germansentiment import SentimentModel
model = SentimentModel()
classes, probabilities = model.predict_sentiment(["das ist super"], output_probabilities = True)
print(classes, probabilities)
```
```python
['positive'] [[['positive', 0.9761366844177246], ['negative', 0.023540444672107697], ['neutral', 0.00032294404809363186]]]
```
## Model and Data
If you are interested in code and data that was used to train this model please have a look at [this repository](https://github.com/oliverguhr/german-sentiment) and our [paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.202.pdf). Here is a table of the F1 scores that this model achieves on different datasets. Since we trained this model with a newer version of the transformer library, the results are slightly better than reported in the paper.
| Dataset | F1 micro Score |
| :----------------------------------------------------------- | -------------: |
| [holidaycheck](https://github.com/oliverguhr/german-sentiment) | 0.9568 |
| [scare](https://www.romanklinger.de/scare/) | 0.9418 |
| [filmstarts](https://github.com/oliverguhr/german-sentiment) | 0.9021 |
| [germeval](https://sites.google.com/view/germeval2017-absa/home) | 0.7536 |
| [PotTS](https://www.aclweb.org/anthology/L16-1181/) | 0.6780 |
| [emotions](https://github.com/oliverguhr/german-sentiment) | 0.9649 |
| [sb10k](https://www.spinningbytes.com/resources/germansentiment/) | 0.7376 |
| [Leipzig Wikipedia Corpus 2016](https://wortschatz.uni-leipzig.de/de/download/german) | 0.9967 |
| all | 0.9639 |
## Cite
For feedback and questions contact me view mail or Twitter [@oliverguhr](https://twitter.com/oliverguhr). Please cite us if you found this useful:
```
@InProceedings{guhr-EtAl:2020:LREC,
author = {Guhr, Oliver and Schumann, Anne-Kathrin and Bahrmann, Frank and Böhme, Hans Joachim},
title = {Training a Broad-Coverage German Sentiment Classification Model for Dialog Systems},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {1620--1625},
url = {https://www.aclweb.org/anthology/2020.lrec-1.202}
}
```
| [
-0.608660876750946,
-0.5304542183876038,
0.24601450562477112,
0.16138887405395508,
-0.1942005306482315,
-0.1344209462404251,
-0.3465490937232971,
-0.4161987602710724,
0.11005418002605438,
-0.10895206779241562,
-0.5426932573318481,
-0.809325635433197,
-0.49903327226638794,
-0.08273136615753174,
-0.19522058963775635,
1.5054270029067993,
0.05656706914305687,
0.5592600703239441,
-0.22080428898334503,
-0.18618522584438324,
0.24608714878559113,
-0.8801993727684021,
-0.4878759980201721,
-0.6215923428535461,
0.5423832535743713,
0.09947743266820908,
0.4362991750240326,
-0.07374505698680878,
0.570110023021698,
0.27598634362220764,
-0.2970108985900879,
-0.2802113890647888,
-0.2935028076171875,
-0.09400171786546707,
0.14371085166931152,
-0.2217618077993393,
-0.518915057182312,
0.25932490825653076,
0.42604878544807434,
0.4074597954750061,
-0.0024341512471437454,
0.19342903792858124,
0.21306851506233215,
0.4251503050327301,
-0.26267752051353455,
0.3710362911224365,
-0.17695719003677368,
0.0638776570558548,
0.057498082518577576,
0.10135709494352341,
-0.5061081647872925,
-0.5541089177131653,
0.2962415814399719,
0.010255126282572746,
0.33173438906669617,
-0.19905123114585876,
1.2522313594818115,
-0.09653749316930771,
-0.31503093242645264,
-0.2905419170856476,
-0.4866120219230652,
0.9110586643218994,
-0.99384605884552,
0.2551613450050354,
-0.01602078601717949,
0.045146822929382324,
0.12790456414222717,
-0.501060962677002,
-0.5443686246871948,
-0.20386482775211334,
-0.08936992287635803,
0.4620387554168701,
-0.31704792380332947,
-0.06032079830765724,
0.12758289277553558,
0.6046239137649536,
-0.46253007650375366,
-0.059301409870386124,
-0.1949053853750229,
-0.22732044756412506,
0.734626829624176,
0.0322616770863533,
-0.11005251854658127,
-0.41045036911964417,
-0.30294346809387207,
-0.536896288394928,
-0.1465328484773636,
0.4395518898963928,
0.39233365654945374,
0.31720486283302307,
-0.38487306237220764,
0.31829318404197693,
-0.15282893180847168,
0.4482969045639038,
0.009660492651164532,
-0.16284899413585663,
0.8159492611885071,
-0.09609922021627426,
-0.18298427760601044,
-0.22895248234272003,
1.0208866596221924,
0.5905153155326843,
0.4977150559425354,
0.1315377652645111,
-0.3917241096496582,
0.2061859667301178,
0.01957242749631405,
-0.9523292183876038,
-0.30038872361183167,
0.248940110206604,
-0.5887446999549866,
-0.6772905588150024,
0.29023295640945435,
-0.7846354246139526,
-0.1508396565914154,
-0.18093568086624146,
0.3591274917125702,
-0.564035177230835,
-0.2034330815076828,
0.09214802831411362,
-0.2703052759170532,
0.3489358723163605,
0.25518307089805603,
-0.558124840259552,
-0.053829893469810486,
0.32561397552490234,
0.6850836277008057,
0.0940796285867691,
-0.16722288727760315,
-0.06084425747394562,
-0.5276643633842468,
-0.2151447832584381,
0.7413625717163086,
-0.2722930610179901,
-0.45893147587776184,
0.2872750163078308,
0.13941816985607147,
0.10347145050764084,
-0.2752085328102112,
0.7639622092247009,
-0.554110050201416,
0.7818013429641724,
0.03319711610674858,
-0.7872778177261353,
-0.4394344985485077,
0.2179247885942459,
-0.4079810380935669,
0.991144061088562,
0.14524777233600616,
-0.9460086226463318,
0.08582130074501038,
-0.6778951287269592,
-0.5041062235832214,
-0.34332698583602905,
0.18205749988555908,
-0.5603834390640259,
0.09550905972719193,
0.15996327996253967,
0.7254874110221863,
-0.1019587367773056,
0.29910722374916077,
-0.5100311040878296,
-0.1253046989440918,
0.514045774936676,
-0.3838922679424286,
1.0923569202423096,
0.23515872657299042,
-0.2934308648109436,
0.039695341140031815,
-0.7287644147872925,
0.1468801647424698,
0.12825332581996918,
-0.49048885703086853,
-0.12143158912658691,
-0.08978044241666794,
0.38401535153388977,
0.44582468271255493,
0.30509153008461,
-0.5437830090522766,
0.014393423683941364,
-0.4243299663066864,
0.26605451107025146,
0.8447198867797852,
0.049202222377061844,
0.5108649730682373,
-0.2958884835243225,
0.45123058557510376,
0.22558467090129852,
0.2384660691022873,
-0.008266300894320011,
-0.548377275466919,
-0.7863105535507202,
-0.2634100914001465,
0.41293084621429443,
0.7627193331718445,
-0.426172137260437,
0.848728358745575,
-0.2796834111213684,
-0.9482062458992004,
-0.5232016444206238,
-0.12491779029369354,
0.2837727963924408,
0.6335377097129822,
0.3007536828517914,
-0.08574319630861282,
-0.5501415729522705,
-0.8378042578697205,
-0.09295008331537247,
-0.3389936685562134,
-0.022921526804566383,
0.21278108656406403,
0.6508165597915649,
-0.46089473366737366,
0.8423067331314087,
-0.6499054431915283,
-0.20536364614963531,
-0.24513626098632812,
0.2845062017440796,
0.6407350897789001,
0.4391552209854126,
0.5910124778747559,
-0.6335599422454834,
-0.624600887298584,
-0.12931713461875916,
-0.8274064064025879,
0.010443520732223988,
0.204702690243721,
0.01298937015235424,
0.6114851832389832,
0.19472268223762512,
-0.49407655000686646,
0.12252785265445709,
0.42682334780693054,
-0.42824676632881165,
0.5092759132385254,
0.10026921331882477,
-0.001225750893354416,
-1.1361664533615112,
0.02509189397096634,
0.44295093417167664,
-0.2462388277053833,
-0.699260413646698,
-0.07098658382892609,
-0.08755557239055634,
0.11044841259717941,
-0.4887737035751343,
0.6368498206138611,
0.06293132901191711,
0.4260242283344269,
0.0917123556137085,
-0.25558775663375854,
-0.06235475093126297,
0.6957578063011169,
0.12742528319358826,
0.5156092047691345,
0.5350251197814941,
-0.30879804491996765,
0.36007899045944214,
0.2608608305454254,
-0.4674608111381531,
0.4372994899749756,
-0.47307759523391724,
0.024147162213921547,
-0.20609571039676666,
0.33949747681617737,
-0.9862538576126099,
-0.20758573710918427,
0.34339165687561035,
-0.7453603744506836,
0.3273354768753052,
0.06753745675086975,
-0.5329248905181885,
-0.376857191324234,
-0.5437515377998352,
-0.11885487288236618,
0.8979284167289734,
-0.37140125036239624,
0.5475220680236816,
0.2861543595790863,
-0.18278715014457703,
-0.5427980422973633,
-0.714972734451294,
-0.3636970818042755,
-0.3371630907058716,
-0.5754859447479248,
0.11841052025556564,
-0.18322643637657166,
-0.24672654271125793,
0.026296071708202362,
-0.025026850402355194,
0.000622910913079977,
-0.12079206854104996,
0.25500577688217163,
0.5303019285202026,
-0.11521019786596298,
0.336442768573761,
-0.19941239058971405,
-0.08222436904907227,
0.17927448451519012,
-0.04084280878305435,
0.7201818823814392,
-0.726829469203949,
0.04870029166340828,
-0.44523513317108154,
0.2878333628177643,
0.566964864730835,
0.06353306770324707,
0.7043958306312561,
0.9361005425453186,
-0.2516450583934784,
-0.06759677827358246,
-0.43116530776023865,
-0.3354976177215576,
-0.43434810638427734,
0.35615548491477966,
-0.2622099816799164,
-0.9029238224029541,
0.615513801574707,
0.08200431615114212,
-0.018965868279337883,
0.8072836399078369,
0.5428457856178284,
-0.5848386883735657,
1.171912431716919,
0.6289113759994507,
-0.48110443353652954,
0.6196064949035645,
-0.5432331562042236,
0.2783425748348236,
-0.36637774109840393,
-0.12088724225759506,
-0.5462865233421326,
-0.19430112838745117,
-0.7980155944824219,
-0.149019256234169,
0.36358243227005005,
0.08095073699951172,
-0.4192197620868683,
0.06937958300113678,
-0.43080055713653564,
0.08794588595628738,
0.6311169266700745,
0.17091621458530426,
0.023416124284267426,
0.3390853703022003,
-0.08468662202358246,
-0.17461469769477844,
-0.6688241362571716,
-0.6780444383621216,
0.933738112449646,
0.6556509733200073,
0.7264841198921204,
-0.15296098589897156,
0.903108537197113,
0.3855782449245453,
0.5340842604637146,
-0.9264035224914551,
0.6927577257156372,
-0.3827913701534271,
-0.671988308429718,
-0.15282779932022095,
-0.4195515811443329,
-0.5165209770202637,
0.019266504794359207,
-0.14705955982208252,
-0.5578601956367493,
0.2470076084136963,
-0.00016556179616600275,
-0.24725690484046936,
0.2500208914279938,
-0.7504674196243286,
0.8753492832183838,
-0.0989694893360138,
-0.09885824471712112,
-0.29437902569770813,
-0.6349485516548157,
0.06657963246107101,
0.06540564447641373,
0.3684976100921631,
-0.08882325142621994,
0.27394261956214905,
0.8472172021865845,
-0.20850113034248352,
1.0816644430160522,
-0.3666324317455292,
-0.22875572741031647,
0.3104931712150574,
-0.21425463259220123,
0.46407511830329895,
-0.08120083063840866,
-0.261700302362442,
0.531833827495575,
-0.09694524109363556,
-0.30294734239578247,
-0.2628140449523926,
0.6321800351142883,
-1.0039198398590088,
-0.3612167239189148,
-0.7267743349075317,
-0.3670150339603424,
-0.14765536785125732,
0.14217665791511536,
0.5656096935272217,
0.42011457681655884,
-0.2641269564628601,
0.2427312731742859,
0.6284359097480774,
-0.37702837586402893,
0.492353618144989,
0.4894872307777405,
-0.2958446145057678,
-0.5298742651939392,
0.9511558413505554,
0.0907820388674736,
0.10801953822374344,
0.3968421220779419,
0.1683044731616974,
-0.3690758943557739,
-0.11456599086523056,
-0.09832599014043808,
0.27221131324768066,
-1.035448431968689,
-0.2886000871658325,
-0.5046335458755493,
-0.5363721251487732,
-0.5633285641670227,
-0.2429729849100113,
-0.07111474126577377,
-0.4040065407752991,
-0.382007896900177,
-0.3455083966255188,
0.4860762059688568,
0.5031161308288574,
-0.20364288985729218,
0.36123111844062805,
-0.6891917586326599,
-0.09621290862560272,
0.20532557368278503,
0.34438207745552063,
-0.01535018440335989,
-0.6488494277000427,
-0.45006880164146423,
0.018252456560730934,
-0.45904117822647095,
-0.8575758337974548,
0.5302068591117859,
0.14774413406848907,
0.2936016321182251,
0.593984842300415,
0.08010411262512207,
0.315777450799942,
-0.31439781188964844,
0.9204593896865845,
0.23129688203334808,
-0.8786152005195618,
0.6027243137359619,
-0.3808676600456238,
0.310016006231308,
0.4293208718299866,
0.5486939549446106,
-0.5180214047431946,
-0.503016471862793,
-0.9439127445220947,
-0.8274844884872437,
0.8537043929100037,
-0.039206020534038544,
0.23675689101219177,
-0.010617578402161598,
0.003513114992529154,
0.002483790274709463,
0.3070119321346283,
-1.1081151962280273,
-0.38282787799835205,
-0.37515562772750854,
-0.5024411082267761,
-0.43449413776397705,
-0.32627633213996887,
-0.19798395037651062,
-0.6184723377227783,
1.0620639324188232,
0.06665799766778946,
0.6241030097007751,
0.2436952143907547,
0.009036293253302574,
-0.0279278215020895,
0.3749396800994873,
0.390049546957016,
0.10513028502464294,
-0.5926744937896729,
-0.007448730990290642,
0.36791709065437317,
-0.3480493724346161,
0.18246077001094818,
0.2063792645931244,
-0.304646760225296,
0.3042526841163635,
0.474239319562912,
0.8963897228240967,
-0.1035577729344368,
-0.42973601818084717,
0.6326387524604797,
-0.019765561446547508,
-0.39383137226104736,
-0.6377677321434021,
0.0006726611754857004,
0.018204761669039726,
0.29534250497817993,
0.3129621148109436,
0.269320011138916,
0.10430257767438889,
-0.3973744809627533,
0.07821007817983627,
0.4252593219280243,
-0.5436898469924927,
-0.43715617060661316,
0.29953208565711975,
0.2012873888015747,
-0.12974774837493896,
0.6115972399711609,
-0.3635028004646301,
-0.7818976044654846,
0.4937182068824768,
0.2652198076248169,
1.019413948059082,
-0.14537839591503143,
0.5006251931190491,
0.5622497200965881,
0.21151690185070038,
-0.011058632284402847,
0.5015778541564941,
0.12774068117141724,
-0.9189955592155457,
-0.19358772039413452,
-0.793874979019165,
-0.21252645552158356,
0.26256194710731506,
-0.7213698625564575,
0.2042078673839569,
-0.37228524684906006,
-0.4577854573726654,
-0.022496512159705162,
0.11530230939388275,
-0.7204086184501648,
0.4202612042427063,
0.35703256726264954,
1.193089485168457,
-1.0623841285705566,
0.8894500732421875,
0.9901286363601685,
-0.5440033674240112,
-0.7117840647697449,
0.08628620952367783,
-0.1275622695684433,
-0.4335557818412781,
0.4631389379501343,
0.32630297541618347,
-0.0628989115357399,
-0.017777763307094574,
-0.614626407623291,
-0.5534676313400269,
0.7605034708976746,
-0.06368064880371094,
-0.3751507103443146,
0.014453437179327011,
0.09334642440080643,
0.9002713561058044,
-0.3618003726005554,
0.3138549327850342,
0.41984227299690247,
0.5013097524642944,
-0.18394392728805542,
-0.5176167488098145,
-0.13457702100276947,
-0.5162532329559326,
-0.14560900628566742,
-0.03731415793299675,
-0.7141209244728088,
0.8049209713935852,
0.010348048992455006,
-0.04188484326004982,
-0.10332341492176056,
0.6614513993263245,
0.05919773504137993,
0.3576671779155731,
0.6192899942398071,
0.745919406414032,
0.6778133511543274,
-0.37431851029396057,
1.2022557258605957,
-0.36200976371765137,
0.7140635251998901,
0.7627459168434143,
-0.03793604299426079,
0.9576408863067627,
0.32118290662765503,
-0.4702683091163635,
0.830619752407074,
0.7579852342605591,
-0.2262934446334839,
0.7527267336845398,
-0.049138158559799194,
-0.3647559881210327,
-0.3395158648490906,
0.06335826218128204,
-0.4138606786727905,
0.25703951716423035,
0.18889972567558289,
-0.45248720049858093,
-0.25272247195243835,
0.16605700552463531,
0.2704133987426758,
-0.2803228199481964,
-0.16425776481628418,
0.7744126319885254,
0.19364620745182037,
-0.5988934636116028,
0.6189458966255188,
0.015317780897021294,
0.83202064037323,
-0.5216636061668396,
0.3361741006374359,
-0.28234970569610596,
0.4344971776008606,
-0.30651164054870605,
-0.9055860638618469,
0.08273067325353622,
0.22442036867141724,
-0.44542166590690613,
-0.33889538049697876,
0.7168720364570618,
-0.26498815417289734,
-0.7709270119667053,
0.47063422203063965,
0.45060017704963684,
0.15519729256629944,
0.0866912454366684,
-0.8084702491760254,
-0.21109502017498016,
0.3385348618030548,
-0.639682948589325,
0.2645663022994995,
0.29334935545921326,
0.14096321165561676,
0.3787404000759125,
0.48925328254699707,
-0.07053670287132263,
-0.18927690386772156,
0.25625529885292053,
0.8790667653083801,
-0.7415321469306946,
-0.5534622669219971,
-0.8688889145851135,
0.8406095504760742,
-0.16385088860988617,
-0.32225745916366577,
0.8108581304550171,
0.571397602558136,
0.9873740077018738,
-0.4960348308086395,
0.9702973961830139,
-0.24899640679359436,
0.6803500056266785,
-0.13263355195522308,
0.6018680334091187,
-0.5833572745323181,
-0.03762448951601982,
-0.3208468556404114,
-0.8015682101249695,
-0.2050609141588211,
0.8246015310287476,
-0.5411924719810486,
0.10117396712303162,
0.47557777166366577,
0.7891610860824585,
0.1465664803981781,
0.05505136027932167,
-0.006847189273685217,
0.4486679136753082,
0.22746910154819489,
0.3650330901145935,
0.7915108799934387,
-0.4549277126789093,
0.5302643775939941,
-0.5149020552635193,
-0.3177180886268616,
-0.3330110013484955,
-0.7078478932380676,
-0.892020046710968,
-0.6401236057281494,
-0.3829610049724579,
-0.6702632904052734,
-0.19114258885383606,
0.918856143951416,
0.43681803345680237,
-1.142956018447876,
-0.3275080621242523,
0.03025190532207489,
-0.10437965393066406,
-0.15720273554325104,
-0.36236435174942017,
0.3702891170978546,
-0.5131132006645203,
-0.819003701210022,
-0.0506846159696579,
-0.15909741818904877,
0.22578109800815582,
-0.09029857814311981,
-0.2360302358865738,
-0.06989887356758118,
0.05872214958071709,
0.6033322811126709,
-0.02293507754802704,
-0.640857458114624,
-0.30176007747650146,
0.10950008779764175,
-0.34909379482269287,
0.14618465304374695,
0.2484208047389984,
-0.5636498928070068,
0.13196231424808502,
0.6606755256652832,
0.27316275238990784,
0.4087311327457428,
-0.1400345265865326,
0.31909337639808655,
-0.7281612157821655,
0.08333256095647812,
0.30401307344436646,
0.5234290361404419,
0.3347298502922058,
-0.19574618339538574,
0.48866814374923706,
0.20997154712677002,
-0.6387402415275574,
-0.7670719623565674,
-0.06163583695888519,
-1.030310034751892,
-0.34478333592414856,
1.141018271446228,
-0.2450631707906723,
-0.12591059505939484,
0.3861355781555176,
-0.22831274569034576,
0.3692140281200409,
-0.6958864331245422,
0.810262143611908,
1.1171953678131104,
-0.09044521301984787,
0.0019180412637069821,
-0.3670971989631653,
0.5353415012359619,
0.3996221721172333,
-0.6008909940719604,
-0.18730370700359344,
0.42149046063423157,
0.32091569900512695,
0.36903610825538635,
0.48452138900756836,
-0.07182808220386505,
0.1941724270582199,
-0.21908657252788544,
0.4963850975036621,
0.35604676604270935,
-0.09753774106502533,
-0.7318474650382996,
0.2637222707271576,
-0.16296441853046417,
-0.08130495250225067
] |
Jean-Baptiste/roberta-large-ner-english | Jean-Baptiste | "2023-03-22T02:19:36Z" | 193,168 | 58 | transformers | [
"transformers",
"pytorch",
"tf",
"onnx",
"safetensors",
"roberta",
"token-classification",
"en",
"dataset:conll2003",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | token-classification | "2022-03-02T23:29:04Z" | ---
language: en
datasets:
- conll2003
widget:
- text: "My name is jean-baptiste and I live in montreal"
- text: "My name is clara and I live in berkeley, california."
- text: "My name is wolfgang and I live in berlin"
train-eval-index:
- config: conll2003
task: token-classification
task_id: entity_extraction
splits:
eval_split: validation
col_mapping:
tokens: tokens
ner_tags: tags
license: mit
---
# roberta-large-ner-english: model fine-tuned from roberta-large for NER task
## Introduction
[roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset.
Model was validated on emails/chat data and outperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
## Training data
Training data was classified as follow:
Abbreviation|Description
-|-
O |Outside of a named entity
MISC |Miscellaneous entity
PER |Person’s name
ORG |Organization
LOC |Location
In order to simplify, the prefix B- or I- from original conll2003 was removed.
I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size:
Train | Validation
-|-
17494 | 3250
## How to use roberta-large-ner-english with HuggingFace
##### Load roberta-large-ner-english and its sub-word tokenizer :
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
##### Process text sample (from wikipedia)
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer")
[{'entity_group': 'ORG',
'score': 0.99381506,
'word': ' Apple',
'start': 0,
'end': 5},
{'entity_group': 'PER',
'score': 0.99970853,
'word': ' Steve Jobs',
'start': 29,
'end': 39},
{'entity_group': 'PER',
'score': 0.99981767,
'word': ' Steve Wozniak',
'start': 41,
'end': 54},
{'entity_group': 'PER',
'score': 0.99956465,
'word': ' Ronald Wayne',
'start': 59,
'end': 71},
{'entity_group': 'PER',
'score': 0.9997918,
'word': ' Wozniak',
'start': 92,
'end': 99},
{'entity_group': 'MISC',
'score': 0.99956393,
'word': ' Apple I',
'start': 102,
'end': 109}]
```
## Model performances
Model performances computed on conll2003 validation dataset (computed on the tokens predictions)
entity|precision|recall|f1
-|-|-|-
PER|0.9914|0.9927|0.9920
ORG|0.9627|0.9661|0.9644
LOC|0.9795|0.9862|0.9828
MISC|0.9292|0.9262|0.9277
Overall|0.9740|0.9766|0.9753
On private dataset (email, chat, informal discussion), computed on word predictions:
entity|precision|recall|f1
-|-|-|-
PER|0.8823|0.9116|0.8967
ORG|0.7694|0.7292|0.7487
LOC|0.8619|0.7768|0.8171
By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving:
entity|precision|recall|f1
-|-|-|-
PER|0.9146|0.8287|0.8695
ORG|0.7655|0.6437|0.6993
LOC|0.8727|0.6180|0.7236
For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
| [
-0.3839075267314911,
-0.7836662530899048,
0.2517189085483551,
0.015905208885669708,
-0.17812170088291168,
-0.17702266573905945,
-0.48993119597435,
-0.4142419993877411,
0.35758236050605774,
0.4774792790412903,
-0.5687316656112671,
-0.7830798029899597,
-0.9868322014808655,
0.29073989391326904,
-0.4626702666282654,
1.306173324584961,
0.10049295425415039,
0.09180189669132233,
0.1329808533191681,
-0.2987971305847168,
-0.47822099924087524,
-0.7710548639297485,
-0.8726068139076233,
-0.3484666347503662,
0.467892587184906,
0.39631372690200806,
0.49211981892585754,
0.3632035553455353,
0.533562421798706,
0.282200425863266,
-0.3008536398410797,
0.17695030570030212,
-0.4057382047176361,
-0.1242152526974678,
-0.004324251785874367,
-0.4976103603839874,
-0.5879976749420166,
0.10594210028648376,
0.5687031149864197,
0.528631865978241,
-0.16100247204303741,
0.3363974690437317,
0.039821382611989975,
0.6210502982139587,
-0.3349878787994385,
0.2738237679004669,
-0.9284326434135437,
-0.0011194627732038498,
-0.23652204871177673,
0.11792519688606262,
-0.42953693866729736,
-0.16801710426807404,
-0.026291675865650177,
-0.3958873152732849,
0.20704714953899384,
0.37841570377349854,
1.3860050439834595,
0.17854170501232147,
-0.30122441053390503,
-0.34300321340560913,
-0.586835503578186,
0.9263134598731995,
-0.9685487747192383,
0.38858604431152344,
0.41698309779167175,
0.13449597358703613,
-0.26186880469322205,
-0.7396030426025391,
-0.9254018664360046,
-0.19242331385612488,
-0.21288222074508667,
0.15992216765880585,
-0.32282891869544983,
0.07121764868497849,
0.44963791966438293,
0.49853676557540894,
-0.7452991008758545,
0.2852957844734192,
-0.5092385411262512,
-0.2632991075515747,
0.6857798099517822,
0.08430121093988419,
0.11987995356321335,
-0.1840374767780304,
-0.26393386721611023,
-0.26066190004348755,
-0.5585191249847412,
0.10841763019561768,
0.2939926087856293,
0.44329142570495605,
-0.2704883813858032,
0.8479830026626587,
-0.24799837172031403,
0.7817978858947754,
0.19232667982578278,
-0.1555185168981552,
0.5786184072494507,
-0.269466757774353,
-0.29402127861976624,
0.007234723772853613,
1.1866110563278198,
0.36588045954704285,
0.39864301681518555,
0.03720622882246971,
-0.3612775206565857,
0.07281704246997833,
-0.09611577540636063,
-0.7933580279350281,
-0.16915540397167206,
0.27036553621292114,
-0.4111320674419403,
-0.07979468256235123,
0.23663105070590973,
-0.5239028930664062,
-0.11079855263233185,
-0.419857919216156,
0.6215042471885681,
-0.6154257655143738,
-0.009128803387284279,
0.2580839693546295,
-0.1239120364189148,
0.05418280512094498,
0.04763728007674217,
-0.7962014675140381,
0.31244364380836487,
0.7422133684158325,
0.6815574765205383,
-0.018007051199674606,
-0.36713024973869324,
-0.4998707175254822,
-0.13343757390975952,
-0.1952185183763504,
0.5548771023750305,
-0.32658475637435913,
-0.1744682937860489,
-0.1717081367969513,
0.25888681411743164,
-0.23885959386825562,
-0.3751943111419678,
0.7833792567253113,
-0.36360451579093933,
0.6281724572181702,
0.054134342819452286,
-0.8000311255455017,
-0.2911278009414673,
0.5967116951942444,
-0.7395873665809631,
1.2706960439682007,
0.08735939860343933,
-0.9031823873519897,
0.6585339903831482,
-0.6424298882484436,
-0.311907559633255,
-0.1240323930978775,
-0.1260322481393814,
-0.6232314705848694,
0.11124394834041595,
0.3122325837612152,
0.6659731864929199,
-0.5050264596939087,
0.29323023557662964,
-0.13954678177833557,
-0.27279239892959595,
0.3223848342895508,
-0.39965733885765076,
0.7959908246994019,
-0.0731232613325119,
-0.5679091811180115,
0.0004342507163528353,
-1.064064621925354,
0.22903971374034882,
0.04368288069963455,
-0.38985154032707214,
-0.2697948217391968,
-0.2933613657951355,
0.08409137278795242,
0.3758618235588074,
0.30701833963394165,
-0.5588437914848328,
0.14030297100543976,
-0.7154639363288879,
0.391575425863266,
0.6502191424369812,
-0.004699023440480232,
0.29363664984703064,
-0.23903726041316986,
0.48637112975120544,
0.10598896443843842,
0.11212065070867538,
0.10214288532733917,
-0.6177382469177246,
-0.8003363609313965,
-0.26009657979011536,
0.6819502115249634,
0.6070904731750488,
-0.38931703567504883,
0.9148916006088257,
-0.6987313628196716,
-0.609563946723938,
-0.6336168646812439,
-0.011235311627388,
0.5032345056533813,
0.5767933130264282,
0.4743630886077881,
-0.28241556882858276,
-0.6485574245452881,
-1.1475071907043457,
-0.33554184436798096,
-0.15696878731250763,
0.08435752242803574,
0.38270342350006104,
0.8398500084877014,
-0.12721852958202362,
0.7252493500709534,
-0.41123783588409424,
-0.5501275658607483,
-0.2906406819820404,
0.21121001243591309,
0.8691327571868896,
0.5439035296440125,
0.3216085135936737,
-0.6744343042373657,
-0.6923384070396423,
-0.007601757533848286,
-0.4873354732990265,
0.25088295340538025,
-0.04147450625896454,
-0.048680007457733154,
0.4934235215187073,
0.48306724429130554,
-0.7640168070793152,
0.4990306496620178,
0.6902069449424744,
-0.5551453232765198,
0.5597518682479858,
-0.39796486496925354,
0.1446104198694229,
-1.3790403604507446,
0.14668135344982147,
0.029943937435746193,
0.004164706449955702,
-0.542686939239502,
-0.10271020233631134,
0.04494435340166092,
0.1931493580341339,
-0.35500380396842957,
0.7181952595710754,
-0.6658321619033813,
0.16187313199043274,
0.03447210043668747,
0.1293541043996811,
0.012854200787842274,
0.35929161310195923,
-0.025640446692705154,
0.742014467716217,
0.4673983156681061,
-0.5957121253013611,
0.2931007444858551,
0.2930311858654022,
-0.4974417984485626,
0.6297585964202881,
-0.7572042346000671,
0.1023469939827919,
0.024854116141796112,
0.15643370151519775,
-0.8332785964012146,
-0.0822007805109024,
0.0405304953455925,
-0.7143298983573914,
0.3892355263233185,
-0.17084528505802155,
-0.7939605116844177,
-0.6607670187950134,
0.005679169669747353,
0.1282998025417328,
0.4709124267101288,
-0.3341217339038849,
0.7584185600280762,
0.35796093940734863,
0.20159569382667542,
-0.602664053440094,
-1.0166436433792114,
0.1986304670572281,
-0.2914649546146393,
-0.7260929942131042,
0.4895420968532562,
-0.11155972629785538,
-0.11462166905403137,
-0.022504214197397232,
0.15432538092136383,
-0.15972237288951874,
0.0285811647772789,
0.25842466950416565,
0.379122257232666,
-0.20009233057498932,
0.09353961795568466,
-0.16410791873931885,
-0.27375683188438416,
-0.015455875545740128,
-0.267284095287323,
0.7628015875816345,
-0.05945613235235214,
-0.20666120946407318,
-0.39159396290779114,
0.1270943582057953,
0.6011933088302612,
-0.23900824785232544,
1.219671368598938,
0.7915627956390381,
-0.6711752414703369,
0.01530823390930891,
-0.7516435384750366,
-0.3440745174884796,
-0.4068109393119812,
0.4998163878917694,
-0.5487661361694336,
-0.9229723811149597,
0.5625867247581482,
0.3371173143386841,
0.04703424498438835,
0.9366239905357361,
0.5459077954292297,
0.18785163760185242,
1.1608262062072754,
0.38352319598197937,
-0.32415562868118286,
0.2677830755710602,
-0.5290847420692444,
0.40508684515953064,
-0.8581787347793579,
-0.3657795786857605,
-0.7544592618942261,
-0.43231379985809326,
-0.7770069241523743,
-0.26880398392677307,
0.16315746307373047,
0.10408912599086761,
-0.3264799118041992,
0.5613852143287659,
-0.8300392031669617,
0.33411070704460144,
0.7205027341842651,
0.060962431132793427,
0.07058870792388916,
0.03175198286771774,
-0.2926071882247925,
-0.30380722880363464,
-0.6458659172058105,
-0.4123135209083557,
1.1860040426254272,
0.21610881388187408,
0.4939137101173401,
0.023917175829410553,
0.8166884183883667,
0.05618184804916382,
0.23831859230995178,
-0.7586542963981628,
0.6151497960090637,
-0.38988569378852844,
-0.8011514544487,
-0.32550108432769775,
-0.427848219871521,
-1.051825761795044,
0.007090386934578419,
-0.5340143442153931,
-0.9673782587051392,
-0.06833137571811676,
0.01740604266524315,
-0.20921234786510468,
0.35922887921333313,
-0.5670702457427979,
0.937309205532074,
-0.2715940773487091,
-0.04861786961555481,
-0.17071661353111267,
-0.5449087023735046,
0.1938486546278,
-0.07303133606910706,
0.39044705033302307,
-0.1611185073852539,
0.052839793264865875,
0.9068710207939148,
-0.5192985534667969,
0.7517698407173157,
-0.0424809530377388,
0.1459733247756958,
0.08619506657123566,
0.0025490091647952795,
0.8604522347450256,
-0.13019508123397827,
-0.2923305332660675,
0.2983148992061615,
-0.06929978728294373,
-0.10272648185491562,
-0.4949447810649872,
0.7903684377670288,
-0.7669869065284729,
-0.40223559737205505,
-0.6182944774627686,
-0.35550403594970703,
-0.03892363980412483,
0.38292619585990906,
0.6747674942016602,
0.38930511474609375,
-0.04977760836482048,
0.5503972768783569,
0.6424561738967896,
-0.14823037385940552,
0.33158260583877563,
0.5725515484809875,
0.000610153132583946,
-0.6960529088973999,
0.6991170644760132,
0.21977980434894562,
-0.01320690754801035,
0.4242730438709259,
0.2032874971628189,
-0.5304710268974304,
-0.5967320799827576,
-0.21873004734516144,
0.45098236203193665,
-0.5536641478538513,
-0.26365163922309875,
-0.8206320405006409,
-0.4054238200187683,
-0.5474434494972229,
0.19891005754470825,
-0.2386123687028885,
-0.47941404581069946,
-0.5478295683860779,
-0.20066513121128082,
0.4856351613998413,
0.6954243779182434,
0.1781904697418213,
0.17629942297935486,
-0.7768492698669434,
0.10427099466323853,
-0.07230202853679657,
0.285668283700943,
-0.19139891862869263,
-1.0307703018188477,
-0.36279794573783875,
0.10052826255559921,
-0.1709926426410675,
-0.8884984254837036,
0.5436277389526367,
0.4241044223308563,
0.5587988495826721,
0.2008877545595169,
-0.13432817161083221,
0.8487216234207153,
-0.5071606636047363,
1.1050361394882202,
0.2914339601993561,
-0.9377926588058472,
0.6142769455909729,
-0.06400217115879059,
0.09833770245313644,
0.6317410469055176,
0.33849450945854187,
-0.7191404700279236,
-0.4989147484302521,
-1.1817920207977295,
-1.1373642683029175,
0.6796066164970398,
0.2558380961418152,
0.18175636231899261,
-0.1482473760843277,
0.39761561155319214,
0.015394352376461029,
0.2468271106481552,
-1.013784646987915,
-0.5102950930595398,
0.1652257740497589,
-0.5241755247116089,
-0.32797670364379883,
-0.3105684220790863,
-0.05011269822716713,
-0.4120869040489197,
1.2043125629425049,
-0.03803293779492378,
0.15727664530277252,
0.17051962018013,
-0.12746822834014893,
0.28899985551834106,
0.35017266869544983,
0.578236997127533,
0.41077661514282227,
0.03748011216521263,
-0.10692603886127472,
0.4998326301574707,
-0.512255072593689,
-0.12932920455932617,
0.2652139961719513,
-0.21566051244735718,
0.1670605093240738,
0.3100610375404358,
0.9408499002456665,
0.21049708127975464,
-0.46625688672065735,
0.6417414546012878,
-0.1588307023048401,
-0.4473372995853424,
-0.7210806608200073,
-0.05577464774250984,
-0.06429756432771683,
0.0579611100256443,
0.31950435042381287,
-0.05396334454417229,
0.08023223280906677,
-0.32410693168640137,
0.13892503082752228,
0.5590009689331055,
-0.5573408007621765,
-0.3311944901943207,
0.7233383655548096,
-0.2328079789876938,
-0.32969748973846436,
0.699523389339447,
-0.28318968415260315,
-0.7037527561187744,
0.6807472109794617,
0.573249876499176,
0.8858999609947205,
0.02547050081193447,
-0.05914417654275894,
0.8723694682121277,
0.507462739944458,
-0.27370116114616394,
0.4884163737297058,
0.39673155546188354,
-0.7510491609573364,
-0.22762906551361084,
-0.7656508684158325,
-0.00121578190010041,
0.47645804286003113,
-0.6523246169090271,
0.4640592634677887,
-0.4514147937297821,
-0.5029533505439758,
0.07729916274547577,
0.19378408789634705,
-0.9486297965049744,
0.621993899345398,
-0.06243514642119408,
1.0359190702438354,
-0.858966588973999,
0.6948951482772827,
0.8457340002059937,
-0.528150200843811,
-1.4760162830352783,
-0.24048881232738495,
-0.10379441827535629,
-0.7632513046264648,
0.8244689702987671,
0.2778109908103943,
0.42099177837371826,
-0.06037849932909012,
-0.38096022605895996,
-1.183358073234558,
1.1597801446914673,
0.09044145047664642,
-0.7232204079627991,
-0.03971552476286888,
0.15158551931381226,
0.6976726651191711,
-0.3746583163738251,
0.48952510952949524,
0.5011842250823975,
0.5869720578193665,
-0.07945767045021057,
-1.105853796005249,
0.1546163111925125,
-0.3674579858779907,
-0.12341179698705673,
0.31872987747192383,
-0.6278658509254456,
1.0164904594421387,
0.07036861777305603,
0.016846053302288055,
0.17889896035194397,
0.6736176609992981,
0.3388950228691101,
0.2177666276693344,
0.5565441846847534,
0.9127771258354187,
0.9503527283668518,
-0.4306648075580597,
0.9950834512710571,
-0.6965175867080688,
0.5570588707923889,
1.122796893119812,
0.09220950305461884,
0.989913821220398,
0.47360968589782715,
-0.2039688378572464,
0.7041787505149841,
0.6190668344497681,
-0.2557881772518158,
0.1558706909418106,
0.19377849996089935,
-0.03197910264134407,
-0.13807234168052673,
0.07532644271850586,
-0.29806196689605713,
0.5745235085487366,
0.3138788640499115,
-0.6766222715377808,
0.18270155787467957,
-0.2112770676612854,
0.23991084098815918,
-0.0027411598712205887,
-0.21151095628738403,
0.7939332723617554,
0.04062603414058685,
-0.8294521570205688,
0.6031596064567566,
0.06918136030435562,
0.8652480840682983,
-0.47184816002845764,
0.07061474025249481,
-0.008679819293320179,
0.32172849774360657,
-0.22667613625526428,
-0.8150812983512878,
0.16639985144138336,
-0.01562519371509552,
-0.27331405878067017,
0.026907172054052353,
0.6023346185684204,
-0.4690764546394348,
-0.759819746017456,
0.2508699893951416,
0.25132104754447937,
0.31302958726882935,
-0.19689993560314178,
-1.0679079294204712,
-0.19134318828582764,
0.07173865288496017,
-0.3665822744369507,
0.04390598088502884,
0.6772880554199219,
-0.001216817181557417,
0.5944604873657227,
0.7865604758262634,
0.3935536742210388,
-0.01841796189546585,
0.18324200809001923,
0.6141579151153564,
-0.7739093899726868,
-0.6153571605682373,
-0.9419663548469543,
0.6302681565284729,
-0.27109894156455994,
-0.6560205221176147,
0.7950459122657776,
0.9180042743682861,
0.7381859421730042,
0.0832817554473877,
0.5916380882263184,
-0.27093419432640076,
0.7154825925827026,
-0.6317299008369446,
0.8121092915534973,
-0.7589315176010132,
0.121956966817379,
-0.18545490503311157,
-0.985788106918335,
-0.2760210633277893,
0.593003511428833,
-0.3924669623374939,
0.32846924662590027,
0.7348287105560303,
0.9345594048500061,
-0.033237848430871964,
-0.1563081294298172,
0.23208312690258026,
0.5985345244407654,
0.22426508367061615,
0.60956871509552,
0.40960949659347534,
-0.8009716272354126,
0.5717358589172363,
-0.3475971817970276,
-0.12830370664596558,
-0.21861812472343445,
-0.9393771886825562,
-0.9692500829696655,
-0.7704652547836304,
-0.3061491847038269,
-0.802118182182312,
-0.08540081232786179,
1.0396431684494019,
0.6872208714485168,
-0.9724723100662231,
-0.02100827731192112,
-0.1638965755701065,
-0.15389028191566467,
-0.08538532257080078,
-0.3060038983821869,
0.43006888031959534,
-0.07246149331331253,
-0.7681283950805664,
0.15728063881397247,
-0.030354050919413567,
0.22535260021686554,
-0.04625852033495903,
-0.16701430082321167,
-0.166282519698143,
0.022816725075244904,
0.43872249126434326,
0.15475896000862122,
-0.8549243807792664,
-0.3713870048522949,
0.11564929038286209,
-0.31350964307785034,
0.07310578972101212,
0.3204571008682251,
-0.6067790389060974,
0.18834979832172394,
0.3200523257255554,
0.29237136244773865,
0.7249684929847717,
-0.15937846899032593,
0.38180744647979736,
-0.7581300735473633,
0.1443726271390915,
0.2949582040309906,
0.635417640209198,
0.4656537175178528,
-0.4891758859157562,
0.47729071974754333,
0.19797179102897644,
-0.6423789262771606,
-0.8173701167106628,
-0.11340375244617462,
-1.0005265474319458,
-0.03282317891716957,
1.194930911064148,
-0.0724964365363121,
-0.4505906403064728,
0.16131672263145447,
-0.15997545421123505,
0.2543000876903534,
-0.41189590096473694,
0.8649040460586548,
0.8979284167289734,
0.2221631407737732,
-0.060603391379117966,
-0.33476945757865906,
0.4088559150695801,
0.47504618763923645,
-0.6650411486625671,
-0.1876683086156845,
0.3509034812450409,
0.5169715881347656,
0.2363653928041458,
0.6328912973403931,
-0.1724187433719635,
0.18199025094509125,
-0.19371792674064636,
0.23234887421131134,
0.007091624662280083,
-0.059092044830322266,
-0.3961453437805176,
-0.056381355971097946,
0.03180215507745743,
-0.08497117459774017
] |
swl-models/xiaolxl-guofeng-v2 | swl-models | "2023-02-28T08:58:28Z" | 193,012 | 4 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-01-31T15:44:54Z" | ---
license: creativeml-openrail-m
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
duplicated_from: xiaolxl/Gf_style2
---
# Gf_style2 - 介绍
欢迎使用Gf_style2模型 - 这是一个中国华丽古风风格模型,也可以说是一个古风游戏角色模型,具有2.5D的质感。第二代相对与第一代减少了上手难度,不需要固定的配置也能生成好看的图片。同时也改进了上一代脸崩坏的问题。
这是一个模型系列,会在未来不断更新模型。
--
Welcome to Gf_ Style2 model - This is a Chinese gorgeous antique style model, which can also be said to be an antique game role model with a 2.5D texture. Compared with the first generation, the second generation reduces the difficulty of getting started and can generate beautiful pictures without fixed configuration. At the same time, it also improved the problem of face collapse of the previous generation.
This is a series of models that will be updated in the future.
3.0版本已发布:[https://huggingface.co/xiaolxl/Gf_style3](https://huggingface.co/xiaolxl/Gf_style3)
# install - 安装教程
1. 将XXX.ckpt模型放入SD目录 - Put XXX.ckpt model into SD directory
2. 模型自带VAE如果你的程序无法加载请记住选择任意一个VAE文件,否则图形将为灰色 - The model comes with VAE. If your program cannot be loaded, please remember to select any VAE file, otherwise the drawing will be gray
# How to use - 如何使用
(TIP:人物是竖图炼制,理论上生成竖图效果更好)
简单:第二代上手更加简单,你只需要下方3个设置即可 - simple:The second generation is easier to use. You only need the following three settings:
- The size of the picture should be at least **768**, otherwise it will collapse - 图片大小至少768,不然会崩图
- **key word(Start):**
```
{best quality}, {{masterpiece}}, {highres}, {an extremely delicate and beautiful}, original, extremely detailed wallpaper,1girl
```
- **Negative words - 感谢群友提供的负面词:**
```
(((simple background))),monochrome ,lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, lowres, bad anatomy, bad hands, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ugly,pregnant,vore,duplicate,morbid,mut ilated,tran nsexual, hermaphrodite,long neck,mutated hands,poorly drawn hands,poorly drawn face,mutation,deformed,blurry,bad anatomy,bad proportions,malformed limbs,extra limbs,cloned face,disfigured,gross proportions, (((missing arms))),(((missing legs))), (((extra arms))),(((extra legs))),pubic hair, plump,bad legs,error legs,username,blurry,bad feet
```
高级:如果您还想使图片尽可能更好,请尝试以下配置 - senior:If you also want to make the picture as better as possible, please try the following configuration
- Sampling steps:**30 or 50**
- Sampler:**DPM++ SDE Karras**
- The size of the picture should be at least **768**, otherwise it will collapse - 图片大小至少768,不然会崩图
- If the face is deformed, try to Open **face repair**
- **如果想元素更丰富,可以添加下方关键词 - If you want to enrich the elements, you can add the following keywords**
```
strapless dress,
smile,
china dress,dress,hair ornament, necklace, jewelry, long hair, earrings, chinese clothes,
```
# Examples - 例图
(可在文件列表中找到原图,并放入WebUi查看关键词等信息) - (You can find the original image in the file list, and put WebUi to view keywords and other information)
<img src=https://huggingface.co/xiaolxl/Gf_style2/resolve/main/examples/a1.png>
<img src=https://huggingface.co/xiaolxl/Gf_style2/resolve/main/examples/a2.png> | [
-0.5095592737197876,
-0.6852905750274658,
0.10561680048704147,
0.5388149619102478,
-0.7274728417396545,
-0.3572872281074524,
0.3206418752670288,
-0.7636647820472717,
0.44118139147758484,
0.6690725684165955,
-0.7168760299682617,
-0.6037635803222656,
-0.45196032524108887,
-0.07471464574337006,
0.055056702345609665,
0.6889060139656067,
0.039788227528333664,
0.0344085656106472,
0.2064637988805771,
0.17924582958221436,
-0.5053294897079468,
0.21176664531230927,
-0.6939166784286499,
-0.35055530071258545,
-0.2855857014656067,
0.41764622926712036,
0.7693265676498413,
0.7429069876670837,
0.565687894821167,
0.27639761567115784,
-0.17463696002960205,
0.1282050907611847,
-0.5167859196662903,
-0.4482760727405548,
0.1028638482093811,
-0.48389536142349243,
-0.9565294981002808,
0.21818497776985168,
0.23756542801856995,
0.06089215353131294,
0.07706129550933838,
0.1240139976143837,
0.23984676599502563,
0.918173611164093,
-0.22906947135925293,
0.16479742527008057,
-0.056677479296922684,
0.09130768477916718,
-0.23462660610675812,
-0.13966913521289825,
-0.012782122008502483,
-0.5040228962898254,
-0.20688603818416595,
-0.8138553500175476,
0.2946733236312866,
-0.06757999211549759,
1.6016720533370972,
-0.12457381933927536,
-0.4881551265716553,
0.14148135483264923,
-0.5921002626419067,
0.6267437934875488,
-0.6830098628997803,
0.08308278024196625,
0.32731297612190247,
0.38443100452423096,
-0.26658129692077637,
-0.7096071839332581,
-0.5162875056266785,
0.06380467116832733,
-0.4235030710697174,
0.2655714750289917,
-0.14557617902755737,
-0.3005111813545227,
0.2407548874616623,
0.5829886198043823,
-0.6753358840942383,
-0.22785234451293945,
-0.6118080019950867,
-0.2877499759197235,
0.9301934838294983,
-0.0450991727411747,
0.8319709897041321,
-0.2014007866382599,
-0.7113807797431946,
-0.17932091653347015,
-0.815240204334259,
0.24383544921875,
0.16338539123535156,
-0.1492382436990738,
-0.8011012077331543,
0.2547113299369812,
-0.16130892932415009,
0.4077938199043274,
0.20121538639068604,
-0.42752325534820557,
0.4011457860469818,
-0.39564335346221924,
-0.2310558408498764,
-0.5993574261665344,
0.7200051546096802,
1.083493947982788,
0.03180506080389023,
0.31149131059646606,
-0.15779292583465576,
-0.35936444997787476,
-0.19497458636760712,
-1.157771110534668,
-0.44700369238853455,
0.3755662739276886,
-0.9207432866096497,
-0.32467320561408997,
0.26328834891319275,
-0.9898967742919922,
0.02892710641026497,
-0.057500213384628296,
0.2991212010383606,
-0.41442883014678955,
-0.611497163772583,
-0.23609866201877594,
-0.2650641202926636,
0.45609042048454285,
0.5895332098007202,
-0.8407660722732544,
0.11732760071754456,
0.1898587942123413,
0.6796796917915344,
0.28656309843063354,
0.11455848067998886,
0.034655820578336716,
0.19784976541996002,
-0.708808958530426,
0.7029290795326233,
0.05023952201008797,
-0.7984163761138916,
-0.18380403518676758,
0.4497480094432831,
0.324024498462677,
-0.575128436088562,
0.652133047580719,
-0.28041884303092957,
0.31504350900650024,
-0.4691552519798279,
-0.033261507749557495,
-0.30904847383499146,
0.010051512159407139,
-0.7518702149391174,
0.8500597476959229,
0.4887257218360901,
-0.8801119923591614,
0.24418845772743225,
-0.4814373552799225,
-0.26341283321380615,
0.042510226368904114,
-0.07676070183515549,
-0.5933099389076233,
-0.07150030136108398,
0.1743314117193222,
0.3285452723503113,
-0.16068311035633087,
-0.4157601296901703,
-0.3061394989490509,
-0.4978468120098114,
-0.08309786021709442,
0.10780241340398788,
1.1974540948867798,
0.22529618442058563,
-0.42297235131263733,
-0.07945450395345688,
-0.5857314467430115,
0.009136178530752659,
0.8662101030349731,
-0.05536496639251709,
-0.33296799659729004,
-0.2816091775894165,
0.41443493962287903,
0.625420868396759,
0.6284064650535583,
-0.3793327510356903,
0.43932026624679565,
-0.44779184460639954,
0.39506661891937256,
0.7377037405967712,
-0.015068144537508488,
0.30416855216026306,
-0.7833013534545898,
0.3567488491535187,
-0.03092089295387268,
0.3658002018928528,
-0.10571937263011932,
-0.5290670394897461,
-0.8974342346191406,
-0.3381710946559906,
0.06712985783815384,
0.6599611639976501,
-0.8512269854545593,
0.49013203382492065,
0.09330568462610245,
-0.6717205047607422,
-0.20230916142463684,
0.0950033888220787,
0.6344011425971985,
0.11806116998195648,
0.418606698513031,
-0.48651742935180664,
-0.553899884223938,
-1.112019658088684,
0.2453455924987793,
-0.23346416652202606,
-0.3141082525253296,
0.6237333416938782,
0.5868560075759888,
-0.21340517699718475,
0.5482494831085205,
-0.6286872625350952,
-0.6059262752532959,
-0.1588757485151291,
0.03352122753858566,
0.24553744494915009,
0.6856834292411804,
1.075635313987732,
-0.8245893120765686,
-0.44714468717575073,
-0.06535391509532928,
-0.8350711464881897,
0.1007140651345253,
0.14147047698497772,
-0.4488931894302368,
0.3860642611980438,
0.07851120829582214,
-0.45521605014801025,
0.4461996555328369,
0.4149307906627655,
-0.6160496473312378,
1.008545160293579,
-0.3926975727081299,
0.39465460181236267,
-1.256246566772461,
0.23613594472408295,
0.14868445694446564,
-0.10994305461645126,
-0.5358520746231079,
0.5975702404975891,
0.09927594661712646,
0.1701338291168213,
-0.5215418338775635,
0.7709022164344788,
-0.7780935168266296,
0.1971980482339859,
-0.37216562032699585,
-0.04142184928059578,
0.22300851345062256,
0.4126417338848114,
0.06286270171403885,
0.5531389117240906,
0.42224806547164917,
-0.36656200885772705,
0.39564093947410583,
0.5107852220535278,
-0.2846737802028656,
0.6620360612869263,
-0.7429214119911194,
0.30268773436546326,
-0.059349432587623596,
0.29093116521835327,
-0.9906373023986816,
-0.6352198719978333,
0.5865769982337952,
-0.48802846670150757,
0.6061019897460938,
0.02297513745725155,
-0.10877946764230728,
-0.7673187851905823,
-0.7203320860862732,
0.08756500482559204,
0.6885586380958557,
-0.4453388452529907,
0.4064221978187561,
0.2820054888725281,
-0.048977550119161606,
-0.37892621755599976,
-0.8180805444717407,
-0.14443351328372955,
-0.130966454744339,
-0.9937562942504883,
0.7857558131217957,
0.08929412066936493,
-0.08401279896497726,
0.031054817140102386,
0.1119571253657341,
-0.19591310620307922,
-0.1809496283531189,
0.1392364501953125,
0.846001386642456,
-0.34171926975250244,
-0.487370103597641,
-0.09495346248149872,
0.030291477218270302,
-0.09664995968341827,
0.25185972452163696,
0.4855386018753052,
-0.10356662422418594,
-0.14124126732349396,
-0.7553703188896179,
0.34979280829429626,
0.6048299670219421,
0.014808186329901218,
0.18480418622493744,
0.754353940486908,
-0.5977353453636169,
0.023191804066300392,
-0.5321261286735535,
-0.2109491378068924,
-0.490184485912323,
0.28556376695632935,
-0.40217941999435425,
-0.775784432888031,
0.605504035949707,
0.15390655398368835,
0.13870351016521454,
0.8384584784507751,
0.24538134038448334,
-0.17363202571868896,
1.1992138624191284,
0.9070022702217102,
-0.12732820212841034,
0.4301416575908661,
-0.6852606534957886,
-0.213483527302742,
-0.7876754403114319,
-0.39095428586006165,
-0.11981577426195145,
-0.5030978322029114,
-0.6711825728416443,
-0.5732867121696472,
0.4079867899417877,
0.36814993619918823,
-0.35154926776885986,
0.4910795986652374,
-0.7706036567687988,
0.18901078402996063,
0.4282799959182739,
0.6016342639923096,
0.12759259343147278,
-0.045873526483774185,
0.2668083608150482,
-0.09019429981708527,
-0.09076783061027527,
-0.4410055875778198,
0.6085212826728821,
0.4588512182235718,
0.5744388103485107,
0.23575669527053833,
0.5277840495109558,
-0.19651754200458527,
0.11836201697587967,
-0.44932109117507935,
0.5458155274391174,
-0.47674548625946045,
-0.7376468777656555,
-0.15061475336551666,
-0.12658828496932983,
-0.6864412426948547,
0.1930461972951889,
-0.4128396213054657,
-1.0644153356552124,
0.3338505029678345,
0.39256030321121216,
-0.5189656615257263,
0.32176002860069275,
-0.4750406742095947,
0.7048090100288391,
-0.27356261014938354,
-0.4750106930732727,
-0.003050000872462988,
-0.718780517578125,
0.967681884765625,
0.18977081775665283,
0.20734891295433044,
-0.28162726759910583,
0.09541275352239609,
0.6275219917297363,
-0.6103960871696472,
0.4712071418762207,
-0.37841200828552246,
0.057434502989053726,
0.4175930917263031,
0.0937947928905487,
0.6312668919563293,
0.15704569220542908,
0.25687798857688904,
0.10821758210659027,
0.21287225186824799,
-0.39025595784187317,
-0.4810294806957245,
0.6067211627960205,
-0.7685556411743164,
-0.7533313035964966,
-0.33019736409187317,
-0.12393409758806229,
0.19896391034126282,
0.22074800729751587,
0.8974609375,
0.19021444022655487,
-0.2652151882648468,
0.15984536707401276,
0.4510743319988251,
-0.28365662693977356,
0.38263213634490967,
0.27623605728149414,
-0.6324531435966492,
-0.48948732018470764,
0.939131498336792,
0.3270118534564972,
0.2163972109556198,
0.12377817928791046,
0.22887852787971497,
-0.16086295247077942,
-0.12458035349845886,
-0.7755889892578125,
0.34389352798461914,
-0.297612726688385,
-0.06810421496629715,
-0.28154289722442627,
-0.4449448585510254,
-0.6250424385070801,
-0.22380124032497406,
-0.307732492685318,
-0.17795690894126892,
-0.48139163851737976,
0.2671400010585785,
0.3871998190879822,
0.37724143266677856,
-0.1676965206861496,
0.18017318844795227,
-0.7148502469062805,
0.5297755599021912,
0.4577411711215973,
0.27413493394851685,
-0.12590129673480988,
-0.5065513849258423,
0.003946004901081324,
0.06337794661521912,
-0.661192774772644,
-0.8916720151901245,
0.6352012753486633,
0.036990463733673096,
0.36707913875579834,
0.6940160989761353,
-0.16482512652873993,
0.5872342586517334,
-0.19731657207012177,
0.9036622047424316,
0.46061205863952637,
-0.5996460914611816,
0.6958025097846985,
-0.6276332139968872,
0.18033593893051147,
0.31624165177345276,
0.18807952105998993,
-0.4938160181045532,
-0.0007544003310613334,
-0.7337085008621216,
-0.8146483898162842,
0.7711549997329712,
0.25965723395347595,
0.22747884690761566,
0.40966498851776123,
0.3968598246574402,
-0.24458599090576172,
0.08013537526130676,
-0.640438973903656,
-0.6242429614067078,
-0.47701823711395264,
0.3267236053943634,
0.2983607053756714,
-0.3941482901573181,
-0.0655026063323021,
-0.49324047565460205,
1.062633991241455,
-0.03761214017868042,
0.7277189493179321,
0.2188660204410553,
0.388606458902359,
-0.28164994716644287,
-0.10655421763658524,
0.6912686824798584,
0.513752818107605,
-0.35047417879104614,
-0.2775444984436035,
0.13362091779708862,
-0.5434775948524475,
0.04640066996216774,
0.15778401494026184,
-0.5301982760429382,
0.10603494197130203,
0.1663273721933365,
0.6854045987129211,
-0.180010125041008,
-0.17040106654167175,
0.6863853931427002,
-0.058612316846847534,
-0.18868328630924225,
-0.3914879858493805,
0.16293734312057495,
0.13038408756256104,
0.20194539427757263,
0.5221497416496277,
0.07428006827831268,
0.3828110992908478,
-0.7899335026741028,
0.2550419867038727,
0.5279383063316345,
-0.2810293436050415,
-0.20773547887802124,
0.8290001153945923,
0.17242653667926788,
-0.2868645489215851,
0.4164555072784424,
-0.5756047368049622,
-0.4630744159221649,
1.0289396047592163,
0.6158036589622498,
0.6805310249328613,
-0.6155580878257751,
0.4056374728679657,
0.9611543416976929,
0.24958619475364685,
-0.29050999879837036,
0.7704159617424011,
0.4635559916496277,
-0.5522940158843994,
-0.11041150242090225,
-0.635668158531189,
-0.15904662013053894,
0.6496204137802124,
-0.3282637298107147,
0.7074922919273376,
-0.8151944875717163,
-0.14077074825763702,
-0.21789970993995667,
0.14645834267139435,
-0.39007651805877686,
0.6288912296295166,
0.10684063285589218,
1.012851595878601,
-0.7689111232757568,
0.7962435483932495,
0.512054979801178,
-0.6843723058700562,
-1.051609754562378,
-0.014891314320266247,
0.5634461641311646,
-0.8654263615608215,
0.4027891159057617,
0.4883210361003876,
0.03848846256732941,
-0.1690790057182312,
-0.8519784808158875,
-0.8365939855575562,
1.398599624633789,
0.3262532353401184,
-0.42375221848487854,
-0.3330428898334503,
-0.4098237156867981,
0.3308984041213989,
-0.47830456495285034,
0.27492138743400574,
0.4567249119281769,
0.5020481944084167,
0.5318142771720886,
-0.9015691876411438,
0.3441708981990814,
-0.8126211762428284,
0.37667983770370483,
-0.09567087143659592,
-1.1242200136184692,
1.1464612483978271,
-0.3972683846950531,
-0.42460018396377563,
0.5215511918067932,
0.7668159604072571,
0.3277701437473297,
0.29547959566116333,
0.5637809038162231,
0.5434385538101196,
0.3258478045463562,
-0.3568494915962219,
0.8206326961517334,
-0.24030904471874237,
0.47251978516578674,
0.8254451155662537,
0.2067665010690689,
0.59400475025177,
-0.09365982562303543,
-0.46409618854522705,
0.6802074909210205,
0.9859126210212708,
-0.5418724417686462,
0.49340298771858215,
-0.038206472992897034,
-0.16648517549037933,
-0.0532839410007,
-0.17725740373134613,
-0.622468888759613,
0.5246337652206421,
0.2116781622171402,
-0.48348936438560486,
-0.14193640649318695,
-0.19063398241996765,
0.2248750627040863,
-0.13399465382099152,
-0.23844926059246063,
0.7149544954299927,
0.10321775823831558,
-0.2852054536342621,
0.6110433340072632,
0.24880237877368927,
0.8458369970321655,
-0.5014239549636841,
-0.365154892206192,
-0.34607547521591187,
-0.06833826005458832,
-0.39393436908721924,
-0.778113067150116,
0.25337886810302734,
-0.39932337403297424,
0.010075817815959454,
0.11543940752744675,
0.9737790822982788,
-0.23969866335391998,
-0.6987366080284119,
0.37798890471458435,
0.3215445578098297,
0.36902037262916565,
0.1143871620297432,
-0.9491278529167175,
0.014009552076458931,
0.17365626990795135,
-0.5215629935264587,
0.20644336938858032,
0.20961852371692657,
-0.02210664004087448,
0.3356687128543854,
0.4272451400756836,
0.0005401235539466143,
-0.6363106369972229,
-0.3086152970790863,
0.9501726031303406,
-0.5244773626327515,
-0.39875680208206177,
-0.7097418904304504,
0.7720592617988586,
-0.415610671043396,
-0.504562497138977,
0.5148928165435791,
0.43296536803245544,
0.9073347449302673,
-0.2682711184024811,
0.9218558073043823,
-0.45573538541793823,
0.33254948258399963,
-0.5109638571739197,
0.9809694290161133,
-0.978669285774231,
-0.32138633728027344,
-0.5826960206031799,
-0.6472974419593811,
-0.20827236771583557,
1.0307106971740723,
0.032971855252981186,
0.3010634183883667,
0.3202952742576599,
1.057405948638916,
0.16180601716041565,
-0.15123383700847626,
0.21242578327655792,
0.16275383532047272,
0.055812470614910126,
0.8131584525108337,
0.4315962493419647,
-0.7455488443374634,
0.295544296503067,
-0.9291729927062988,
-0.5283448696136475,
-0.5119956731796265,
-0.7012554407119751,
-0.6392443180084229,
-0.6020377278327942,
-0.3271426856517792,
-0.6948641538619995,
-0.11838974058628082,
0.8541589379310608,
0.8984063267707825,
-0.8061504364013672,
-0.13965439796447754,
0.23827588558197021,
0.020510433241724968,
-0.4420470595359802,
-0.24238228797912598,
0.4658135771751404,
0.3810703456401825,
-1.0230128765106201,
-0.0559011846780777,
0.33198580145835876,
0.6179621815681458,
-0.1547204554080963,
-0.07030073553323746,
0.010846131481230259,
-0.11230625957250595,
0.5036859512329102,
0.466564804315567,
-0.7593334913253784,
-0.3773338496685028,
0.08807064592838287,
-0.2848498523235321,
0.2204529047012329,
0.25934430956840515,
-0.11342020332813263,
0.3380497097969055,
0.5900759100914001,
-0.2664692997932434,
0.32746127247810364,
0.07249841839075089,
0.34634873270988464,
-0.4327801764011383,
0.07645715773105621,
-0.2618499994277954,
0.5701919198036194,
0.2272760421037674,
-0.5856754779815674,
0.6878995299339294,
0.6322514414787292,
-0.3919592499732971,
-0.44581273198127747,
0.19197465479373932,
-1.231858491897583,
-0.538601279258728,
1.0869417190551758,
-0.052488405257463455,
-0.41566625237464905,
0.16441072523593903,
-0.6891395449638367,
0.4440552890300751,
-0.19614462554454803,
0.7561836242675781,
0.663170337677002,
-0.08990050107240677,
-0.30676019191741943,
-0.6608899235725403,
0.5830928683280945,
-0.09186408668756485,
-0.6873016357421875,
-0.3122791349887848,
0.6556863784790039,
0.2650980055332184,
0.5312149524688721,
0.8288933038711548,
-0.4646707773208618,
0.6513378620147705,
-0.05114003270864487,
0.5423915386199951,
-0.09666600078344345,
-0.055988725274801254,
-0.10269220173358917,
0.10747671872377396,
-0.12191380560398102,
-0.3123002350330353
] |
sentence-transformers/paraphrase-albert-small-v2 | sentence-transformers | "2022-07-08T04:07:04Z" | 191,457 | 4 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"tf",
"rust",
"albert",
"feature-extraction",
"sentence-similarity",
"transformers",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:s2orc",
"dataset:ms_marco",
"dataset:wiki_atomic_edits",
"dataset:snli",
"dataset:multi_nli",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/coco_captions",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/QQP",
"dataset:yahoo_answers_topics",
"arxiv:1908.10084",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- flax-sentence-embeddings/stackexchange_xml
- s2orc
- ms_marco
- wiki_atomic_edits
- snli
- multi_nli
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/flickr30k-captions
- embedding-data/coco_captions
- embedding-data/sentence-compression
- embedding-data/QQP
- yahoo_answers_topics
---
# sentence-transformers/paraphrase-albert-small-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-albert-small-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-albert-small-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-albert-small-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-albert-small-v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: AlbertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` | [
-0.2591642737388611,
-0.7494550347328186,
0.3757637143135071,
0.3721117377281189,
-0.33213844895362854,
-0.4774395227432251,
-0.21529565751552582,
0.02212819829583168,
0.15623493492603302,
0.49966537952423096,
-0.44378662109375,
-0.3679116368293762,
-0.643391489982605,
0.1433255970478058,
-0.5374401807785034,
0.9078312516212463,
-0.21735979616641998,
-0.05422734096646309,
-0.38951730728149414,
-0.2525470554828644,
-0.22369831800460815,
-0.3013189733028412,
-0.37063929438591003,
-0.23155957460403442,
0.23906035721302032,
0.23738090693950653,
0.6058065295219421,
0.5188537836074829,
0.4041341543197632,
0.4495309293270111,
-0.02702352963387966,
0.016665451228618622,
-0.26882728934288025,
-0.016335569322109222,
-0.02206455171108246,
-0.450872004032135,
0.016623767092823982,
0.11068139225244522,
0.596778929233551,
0.4680555462837219,
-0.1022651419043541,
0.16269685328006744,
0.12216157466173172,
0.22730489075183868,
-0.45666807889938354,
0.4833512306213379,
-0.6387739181518555,
0.12011124193668365,
0.09955094009637833,
0.001780083985067904,
-0.48577171564102173,
-0.12442653626203537,
0.31447452306747437,
-0.443389892578125,
0.29201775789260864,
0.2825113832950592,
1.1243247985839844,
0.3738546669483185,
-0.1916247457265854,
-0.33867016434669495,
-0.3082312047481537,
0.9142540693283081,
-0.8879901766777039,
0.12348853051662445,
0.3302604854106903,
-0.030519185587763786,
0.11659210920333862,
-1.1519414186477661,
-0.7825071811676025,
-0.1788438856601715,
-0.5682528614997864,
0.08513349294662476,
-0.389981210231781,
-0.04584832489490509,
0.15902861952781677,
0.2152068018913269,
-0.716360867023468,
-0.2271769791841507,
-0.4788488447666168,
-0.1522013545036316,
0.4223513603210449,
0.09963935613632202,
0.3716285228729248,
-0.6515930891036987,
-0.41945281624794006,
-0.41605615615844727,
-0.19092229008674622,
-0.06908321380615234,
-0.013263903558254242,
0.1536940485239029,
-0.3480347990989685,
0.8364403247833252,
-0.15144723653793335,
0.4759625494480133,
-0.00878791231662035,
0.2373334765434265,
0.5825344920158386,
-0.3908480405807495,
-0.2074296772480011,
-0.10456593334674835,
1.2243411540985107,
0.4039897918701172,
0.24817906320095062,
-0.09035475552082062,
-0.1630742996931076,
-0.043893132358789444,
0.13877014815807343,
-0.8736593127250671,
-0.4776509404182434,
0.10113721340894699,
-0.4622841775417328,
-0.3019954562187195,
0.12096626311540604,
-0.8024133443832397,
-0.0010674605146050453,
0.057769183069467545,
0.7843660116195679,
-0.6515581011772156,
0.1995062232017517,
0.17614400386810303,
-0.37175142765045166,
0.23764069378376007,
-0.33278530836105347,
-0.7281123399734497,
0.23776063323020935,
0.27985578775405884,
1.1255531311035156,
0.11793530732393265,
-0.5385854244232178,
-0.30613645911216736,
0.013496963307261467,
0.07126343250274658,
0.7300488352775574,
-0.4249519407749176,
-0.02425987832248211,
0.09685871005058289,
0.20867472887039185,
-0.5688678622245789,
-0.41956955194473267,
0.6572484970092773,
-0.30197054147720337,
0.661691427230835,
0.07892785221338272,
-0.7945082783699036,
-0.11400433629751205,
0.02772928960621357,
-0.5049359798431396,
1.0141444206237793,
0.17322739958763123,
-0.9829850792884827,
-0.014587046578526497,
-0.7289745807647705,
-0.2741848826408386,
-0.08075270801782608,
-0.0202980637550354,
-0.7235501408576965,
0.12692584097385406,
0.5522061586380005,
0.7448257803916931,
-0.010091899894177914,
0.18684323132038116,
-0.3680000901222229,
-0.4396192133426666,
0.38048282265663147,
-0.3293982446193695,
1.0767920017242432,
0.13424696028232574,
-0.3691346347332001,
0.05908359959721565,
-0.4852261543273926,
-0.12868079543113708,
0.35085269808769226,
-0.07042428851127625,
-0.29833152890205383,
-0.06505146622657776,
0.27645012736320496,
0.3136235177516937,
0.32542526721954346,
-0.6028010249137878,
0.03710620477795601,
-0.5674401521682739,
1.0035579204559326,
0.49275150895118713,
0.176885187625885,
0.6508902907371521,
-0.41384297609329224,
0.21053099632263184,
0.23970170319080353,
-0.01603148691356182,
-0.18613509833812714,
-0.47351741790771484,
-0.9864680767059326,
-0.2862786650657654,
0.28216853737831116,
0.5752576589584351,
-0.8717839121818542,
0.9564555883407593,
-0.5001131296157837,
-0.5188772082328796,
-0.7699465751647949,
0.06665276736021042,
0.13443365693092346,
0.4455987811088562,
0.7496567368507385,
-0.007355649024248123,
-0.5874708294868469,
-1.01800537109375,
-0.11366841197013855,
-0.06087840348482132,
-0.07178990542888641,
0.16099794209003448,
0.8156037330627441,
-0.35143834352493286,
1.035131573677063,
-0.5842044949531555,
-0.41080740094184875,
-0.4457545578479767,
0.3187422752380371,
0.17789483070373535,
0.6149393916130066,
0.5505463480949402,
-0.70923912525177,
-0.47879624366760254,
-0.5581521391868591,
-0.8056981563568115,
-0.04485352709889412,
-0.286184698343277,
-0.2192777395248413,
-0.006079093087464571,
0.5705182552337646,
-0.9391362071037292,
0.3079240322113037,
0.49382323026657104,
-0.46845051646232605,
0.29186832904815674,
-0.3165842294692993,
-0.2010936737060547,
-1.3290845155715942,
0.0051515488885343075,
0.053206875920295715,
-0.17892129719257355,
-0.34105703234672546,
0.10986809432506561,
0.18752270936965942,
-0.06419873982667923,
-0.43106576800346375,
0.4944479465484619,
-0.393372118473053,
0.17365461587905884,
-0.03586515784263611,
0.478739857673645,
0.021172959357500076,
0.7107487916946411,
-0.06862597912549973,
0.7440977692604065,
0.5371676087379456,
-0.5843896865844727,
0.3584662079811096,
0.7429590225219727,
-0.537251889705658,
0.24765607714653015,
-0.943523108959198,
-0.04747903347015381,
-0.03856225684285164,
0.3874930143356323,
-1.1634483337402344,
-0.10653190314769745,
0.34202489256858826,
-0.5217732191085815,
0.021099340170621872,
0.3153357207775116,
-0.7346892356872559,
-0.614554226398468,
-0.46741610765457153,
0.1508253663778305,
0.6684280037879944,
-0.5200954675674438,
0.5133776664733887,
0.19683808088302612,
-0.18950670957565308,
-0.40797188878059387,
-1.0634477138519287,
0.06679719686508179,
-0.34399402141571045,
-0.656566321849823,
0.5258987545967102,
-0.12129146605730057,
0.1317145824432373,
0.2660221457481384,
0.24936740100383759,
-0.04362081363797188,
-0.09736428409814835,
-0.05287742614746094,
0.15962369740009308,
-0.10570616275072098,
0.10333891957998276,
0.276212215423584,
-0.07349017262458801,
0.12413526326417923,
-0.12249384075403214,
0.6992858648300171,
-0.22270388901233673,
-0.02457934059202671,
-0.525244951248169,
0.22215968370437622,
0.4409306049346924,
-0.20620372891426086,
1.1323668956756592,
0.9979013800621033,
-0.34108734130859375,
-0.03576890751719475,
-0.40184909105300903,
-0.35058829188346863,
-0.5036580562591553,
0.6422527432441711,
-0.2525160312652588,
-0.881051778793335,
0.3733249008655548,
0.30778202414512634,
0.06346668303012848,
0.7410966157913208,
0.6579542756080627,
-0.20781560242176056,
0.8885544538497925,
0.4737868905067444,
-0.10563212633132935,
0.5511839985847473,
-0.5519849061965942,
0.29174187779426575,
-0.9398745894432068,
-0.006308294367045164,
-0.32759207487106323,
-0.28230899572372437,
-0.6406426429748535,
-0.48658183217048645,
0.23425184190273285,
0.029697872698307037,
-0.29614993929862976,
0.7449337840080261,
-0.5561268925666809,
0.20799605548381805,
0.682098388671875,
0.1770196110010147,
-0.06283655762672424,
0.05240672826766968,
-0.3895205557346344,
-0.0911216139793396,
-0.7710822224617004,
-0.6110134124755859,
0.903081476688385,
0.36338281631469727,
0.45597589015960693,
-0.1562695950269699,
0.7896311283111572,
0.012964832596480846,
0.06675875931978226,
-0.6101788878440857,
0.6575562357902527,
-0.16802041232585907,
-0.4828692674636841,
-0.3512781858444214,
-0.3689662218093872,
-0.8956566452980042,
0.45486798882484436,
-0.14194254577159882,
-0.7998566031455994,
0.07197042554616928,
-0.1811600774526596,
-0.4041758179664612,
0.14986415207386017,
-0.8357547521591187,
1.1238646507263184,
0.15531425178050995,
-0.08711255341768265,
-0.09032154828310013,
-0.8008333444595337,
0.2164791077375412,
0.10722600668668747,
0.1198689416050911,
-0.018382670357823372,
-0.14003591239452362,
1.0380767583847046,
-0.33867698907852173,
0.8402710556983948,
-0.07599443942308426,
0.3254345953464508,
0.3955395221710205,
-0.24775616824626923,
0.3642106056213379,
0.01336677186191082,
0.013954835943877697,
0.050783056765794754,
0.032944004982709885,
-0.4317280650138855,
-0.5732880234718323,
0.6954666376113892,
-0.9678722023963928,
-0.35657763481140137,
-0.44878318905830383,
-0.6925022006034851,
-0.07305144518613815,
0.1661229431629181,
0.4615054726600647,
0.33225712180137634,
-0.0640663430094719,
0.6640059351921082,
0.48920950293540955,
-0.3066852390766144,
0.7557857632637024,
0.061171144247055054,
0.04621578007936478,
-0.5341020226478577,
0.6803987622261047,
0.009300580248236656,
0.06441617757081985,
0.5834160447120667,
0.2646559774875641,
-0.4239564538002014,
-0.21638333797454834,
-0.2607341706752777,
0.5399317741394043,
-0.6062548160552979,
-0.19076089560985565,
-1.1134294271469116,
-0.4567311704158783,
-0.6413470506668091,
-0.04873913526535034,
-0.18776832520961761,
-0.4213421940803528,
-0.49504438042640686,
-0.20456667244434357,
0.35764867067337036,
0.39070311188697815,
-0.011248345486819744,
0.522874653339386,
-0.7064942717552185,
0.26734811067581177,
0.25183308124542236,
-0.06213853135704994,
-0.10365628451108932,
-0.8414171934127808,
-0.3533753454685211,
0.03427214175462723,
-0.4863273799419403,
-0.8382289409637451,
0.6895519495010376,
0.2658401429653168,
0.5025643706321716,
0.17727108299732208,
0.16191419959068298,
0.6391018033027649,
-0.6209756731987,
0.9070277214050293,
0.08142517507076263,
-1.011330246925354,
0.3789774179458618,
-0.09746213257312775,
0.34016305208206177,
0.5392183661460876,
0.26795247197151184,
-0.4820924997329712,
-0.5278427004814148,
-0.8268572688102722,
-1.077483892440796,
0.7444747686386108,
0.6300538778305054,
0.5495114326477051,
-0.29855504631996155,
0.27154505252838135,
-0.26053717732429504,
0.20483502745628357,
-1.122218132019043,
-0.4549705386161804,
-0.3319201171398163,
-0.6585900783538818,
-0.37102746963500977,
-0.24196776747703552,
0.09655696898698807,
-0.4420204162597656,
0.7415927648544312,
0.06242801994085312,
0.8669747710227966,
0.2420458048582077,
-0.5053528547286987,
0.19046249985694885,
0.15834003686904907,
0.4706507623195648,
0.2424769401550293,
-0.1308411955833435,
0.18371066451072693,
0.29698553681373596,
-0.26378142833709717,
-0.06621461361646652,
0.49212950468063354,
-0.20110833644866943,
0.2819254696369171,
0.49142834544181824,
1.0141514539718628,
0.5279133915901184,
-0.5338783860206604,
0.7842103242874146,
-0.07497329264879227,
-0.30617424845695496,
-0.36914142966270447,
-0.07886385172605515,
0.3201103210449219,
0.3810194730758667,
0.2494402825832367,
-0.009149685502052307,
0.046497296541929245,
-0.356225848197937,
0.3838791847229004,
0.23793166875839233,
-0.2883545756340027,
-0.09304267913103104,
0.8399990797042847,
-0.030446050688624382,
-0.2367856800556183,
0.8785168528556824,
-0.22668534517288208,
-0.6323282718658447,
0.41329190135002136,
0.5993256568908691,
0.9747576117515564,
0.07791540026664734,
0.3064171373844147,
0.4557848870754242,
0.33897334337234497,
-0.1791144162416458,
-0.12555435299873352,
-0.03636115789413452,
-0.8352072834968567,
-0.1489567905664444,
-0.6888002157211304,
-0.01256735622882843,
0.08144105970859528,
-0.6461754441261292,
0.2718508541584015,
-0.1044689267873764,
0.061444591730833054,
-0.0805441290140152,
-0.09393835067749023,
-0.7356037497520447,
0.028464917093515396,
0.01252253632992506,
0.753099799156189,
-1.0015548467636108,
0.8013890385627747,
0.6590247750282288,
-0.7478660345077515,
-0.6793605089187622,
0.07125049084424973,
-0.49524086713790894,
-0.9011529684066772,
0.44297564029693604,
0.4433566629886627,
0.3455888628959656,
0.2294086068868637,
-0.6015989184379578,
-0.8794203400611877,
1.3924891948699951,
0.27058425545692444,
-0.33823859691619873,
-0.3525218963623047,
0.11805564910173416,
0.5359230637550354,
-0.41568464040756226,
0.37656858563423157,
0.5313580632209778,
0.3041619062423706,
-0.08011088520288467,
-0.657207190990448,
0.2367318719625473,
-0.19600647687911987,
0.27115634083747864,
-0.15556904673576355,
-0.5678431987762451,
0.9871874451637268,
0.035084258764982224,
-0.028430679813027382,
0.37026694416999817,
0.9942513108253479,
0.31465235352516174,
-0.0190645270049572,
0.4521973729133606,
0.7594736218452454,
0.44481179118156433,
-0.03836658224463463,
0.9789513349533081,
-0.3901679515838623,
0.8978832364082336,
0.9809318780899048,
0.165782168507576,
1.104202389717102,
0.5785042643547058,
-0.16060294210910797,
0.7532128095626831,
0.4484686553478241,
-0.23369133472442627,
0.8179616928100586,
0.08397205173969269,
0.0030447873286902905,
-0.045124731957912445,
0.2549823522567749,
-0.1908193677663803,
0.404348760843277,
0.2321651130914688,
-0.7169274687767029,
-0.1567060947418213,
0.13756898045539856,
0.03129960969090462,
-0.04975230619311333,
0.05131051316857338,
0.5417507290840149,
0.2720078229904175,
-0.5224284529685974,
0.4039649963378906,
0.220470130443573,
0.9469473958015442,
-0.3917714059352875,
0.19690687954425812,
-0.05517227202653885,
0.3786802589893341,
0.12031155824661255,
-0.5966781973838806,
0.3877588212490082,
-0.1531481146812439,
-0.011062808334827423,
-0.25543105602264404,
0.5387417078018188,
-0.6555773019790649,
-0.6488207578659058,
0.2666325569152832,
0.4974882900714874,
0.10372216254472733,
-0.006808319129049778,
-1.1746913194656372,
-0.13545580208301544,
0.0006276521016843617,
-0.5774523019790649,
0.2094777673482895,
0.42862316966056824,
0.35801059007644653,
0.5555752515792847,
0.29334181547164917,
-0.22122403979301453,
0.19851231575012207,
-0.03404306620359421,
0.7266503572463989,
-0.6180219054222107,
-0.5663362741470337,
-1.0051716566085815,
0.5871478319168091,
-0.2438102662563324,
-0.3524675965309143,
0.8420704007148743,
0.5248859524726868,
0.878537118434906,
-0.2844364047050476,
0.6261962056159973,
-0.2556028366088867,
0.299823135137558,
-0.45356452465057373,
0.7957502007484436,
-0.5005439519882202,
-0.14361423254013062,
-0.3248322606086731,
-0.9561957716941833,
-0.282199501991272,
1.2395029067993164,
-0.44032806158065796,
0.12426770478487015,
1.0634608268737793,
0.8785954713821411,
-0.15529629588127136,
-0.10058871656656265,
0.14772042632102966,
0.4062562584877014,
0.20386943221092224,
0.5129818916320801,
0.4173957407474518,
-0.8985843658447266,
0.8557653427124023,
-0.6228266358375549,
0.017682237550616264,
-0.20854482054710388,
-0.673751175403595,
-1.0197904109954834,
-0.8536352515220642,
-0.45266425609588623,
-0.36121413111686707,
-0.14560917019844055,
0.9877355694770813,
0.51225745677948,
-0.7819699645042419,
-0.06057322770357132,
-0.38910001516342163,
-0.20558463037014008,
-0.16911108791828156,
-0.34258052706718445,
0.5412792563438416,
-0.5587835311889648,
-0.9083988666534424,
0.1054384857416153,
-0.10369345545768738,
0.011260118335485458,
-0.2331053912639618,
0.09112174063920975,
-0.5763757824897766,
0.1671610027551651,
0.5004122853279114,
-0.1633821278810501,
-0.7239896059036255,
-0.33772435784339905,
-0.08251884579658508,
-0.4466326832771301,
-0.06815070658922195,
0.3602202534675598,
-0.6548022627830505,
0.13873399794101715,
0.42714375257492065,
0.5916683673858643,
0.7164318561553955,
-0.20928320288658142,
0.4030585289001465,
-0.7595946192741394,
0.26270851492881775,
0.1238328143954277,
0.7644800543785095,
0.42566511034965515,
-0.1482740193605423,
0.44637081027030945,
0.37206754088401794,
-0.5374702215194702,
-0.7266768217086792,
-0.202521413564682,
-1.0601842403411865,
-0.243845596909523,
1.2633633613586426,
-0.30926740169525146,
-0.39411062002182007,
0.18150289356708527,
-0.22974425554275513,
0.5482335686683655,
-0.34248802065849304,
0.6996690034866333,
0.8264676332473755,
0.04577827453613281,
-0.2576771080493927,
-0.39609014987945557,
0.1882089227437973,
0.5495378971099854,
-0.5401374101638794,
-0.17610497772693634,
0.1671365201473236,
0.41163089871406555,
0.26205775141716003,
0.3737572133541107,
0.006908325012773275,
0.007934057153761387,
0.09038018435239792,
0.03581646457314491,
-0.06732048094272614,
0.04295508190989494,
-0.35884007811546326,
0.19092044234275818,
-0.40095728635787964,
-0.43277397751808167
] |
microsoft/deberta-v2-xlarge | microsoft | "2022-09-26T08:59:06Z" | 186,545 | 18 | transformers | [
"transformers",
"pytorch",
"tf",
"deberta-v2",
"deberta",
"fill-mask",
"en",
"arxiv:2006.03654",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | fill-mask | "2022-03-02T23:29:05Z" | ---
language: en
tags:
- deberta
- fill-mask
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
This is the DeBERTa V2 xlarge model with 24 layers, 1536 hidden size. The total parameters are 900M and it is trained with 160GB raw data.
### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
| | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
| BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
| RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
| XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
| [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
| [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
| [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
|**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
--------
#### Notes.
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
```bash
cd transformers/examples/text-classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\\
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\\
--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
```
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```
| [
-0.48501935601234436,
-0.6653618216514587,
0.29452717304229736,
0.48848584294319153,
-0.19309893250465393,
0.20177245140075684,
0.016473818570375443,
-0.704197883605957,
0.2894420027732849,
0.1881134957075119,
-0.8842623829841614,
-0.3622885048389435,
-0.995908796787262,
-0.11913004517555237,
-0.028204776346683502,
0.9263073801994324,
-0.0751991793513298,
-0.2197416126728058,
-0.143637552857399,
-0.20584046840667725,
-0.6189854741096497,
-0.48119252920150757,
-0.5607467293739319,
-0.47804704308509827,
0.3316861689090729,
0.3501444160938263,
0.7257288098335266,
0.18084000051021576,
0.4972963035106659,
0.35948115587234497,
-0.4510807394981384,
0.38510894775390625,
-0.5542797446250916,
-0.09288423508405685,
0.1720387488603592,
-0.3631499707698822,
-0.9902715086936951,
0.11823011189699173,
0.3519897162914276,
0.426670104265213,
0.23935070633888245,
0.3501344919204712,
0.4278859496116638,
1.1087502241134644,
-0.5072202086448669,
0.16579952836036682,
-0.492671936750412,
0.0846288874745369,
0.1493641436100006,
-0.009942625649273396,
-0.21218141913414001,
-0.025726065039634705,
0.11767147481441498,
-0.41601037979125977,
0.02206660993397236,
-0.17736737430095673,
1.345526099205017,
0.5452353954315186,
-0.13184158504009247,
-0.11077618598937988,
-0.46839720010757446,
1.2241016626358032,
-0.7805864810943604,
0.3737848997116089,
0.354233056306839,
0.03343956917524338,
-0.19517844915390015,
-0.4614114761352539,
-0.39744848012924194,
-0.17313846945762634,
-0.23113639652729034,
0.3424812853336334,
-0.8320910930633545,
-0.15021070837974548,
0.43727898597717285,
0.14662016928195953,
-0.761272132396698,
0.2066008597612381,
-0.37729036808013916,
0.010315435007214546,
0.7602986097335815,
0.056939154863357544,
0.19686859846115112,
0.09908746927976608,
-0.5503843426704407,
-0.16215907037258148,
-0.5771051645278931,
0.27071258425712585,
0.15901651978492737,
0.013812540099024773,
-0.3311583399772644,
0.25697141885757446,
-0.2535145878791809,
0.9496438503265381,
0.43795284628868103,
-0.018839458003640175,
0.7637061476707458,
-0.18772295117378235,
-0.48935770988464355,
0.015971766784787178,
0.6954019069671631,
0.32927921414375305,
-0.05887981131672859,
-0.10972828418016434,
-0.22345490753650665,
0.07122170180082321,
0.09907225519418716,
-1.017582654953003,
-0.48196151852607727,
0.5947956442832947,
-0.6448440551757812,
-0.27486860752105713,
-0.05543366074562073,
-0.5571210384368896,
0.023778215050697327,
-0.6415309906005859,
0.42143091559410095,
-0.6111765503883362,
-0.3426987826824188,
0.07495306432247162,
-0.04951712489128113,
0.09192168712615967,
0.5299292206764221,
-0.8901090025901794,
0.04984480142593384,
0.4986407458782196,
0.7822148203849792,
-0.08758151531219482,
-0.17912913858890533,
-0.6332278847694397,
-0.2323140650987625,
-0.06157455965876579,
0.3256568908691406,
-0.19732649624347687,
0.13984276354312897,
-0.2023354023694992,
0.1757291704416275,
-0.3367382287979126,
-0.36827436089515686,
0.22376053035259247,
-0.5643295049667358,
-0.010569256730377674,
-0.41939401626586914,
-0.41132813692092896,
-0.31771206855773926,
0.4019480347633362,
-0.578513503074646,
1.205599308013916,
0.46728503704071045,
-0.964099645614624,
0.19878770411014557,
-0.6031654477119446,
-0.08027897775173187,
-0.2300831824541092,
-0.016193494200706482,
-0.5953965783119202,
-0.11114999651908875,
0.28084811568260193,
0.6267349123954773,
-0.07762562483549118,
-0.06760217994451523,
-0.2254023402929306,
-0.4420226812362671,
0.057900868356227875,
-0.0870244950056076,
1.3692119121551514,
0.3786224126815796,
-0.990742027759552,
0.023914344608783722,
-0.9672463536262512,
0.2759712040424347,
0.2560308873653412,
-0.30283322930336,
-0.18509621918201447,
-0.2109420746564865,
0.0559401698410511,
0.5982462167739868,
0.6284483075141907,
-0.6233572363853455,
0.3071805536746979,
-0.4300677478313446,
0.6137383580207825,
0.6075074076652527,
-0.3507467210292816,
0.24576224386692047,
-0.2627856433391571,
0.4528074562549591,
0.44973596930503845,
0.4106052815914154,
0.29182037711143494,
-0.6609436869621277,
-0.8060208559036255,
-0.6308080554008484,
0.3942430019378662,
0.7841914296150208,
-0.6557731628417969,
0.8083252906799316,
-0.09879500418901443,
-0.6880782842636108,
-0.5585808157920837,
0.2734783887863159,
0.653590977191925,
0.34979376196861267,
0.5334675908088684,
-0.07595571875572205,
-0.5935137271881104,
-1.2147077322006226,
0.09215819090604782,
0.004669250454753637,
-0.009477381594479084,
0.22756053507328033,
0.7574337124824524,
-0.3560310900211334,
0.9241148233413696,
-0.5051091909408569,
-0.5091754198074341,
-0.21666525304317474,
0.07032737135887146,
0.4641120731830597,
0.7982731461524963,
1.1522032022476196,
-0.7729548215866089,
-0.6981911659240723,
-0.2369738668203354,
-0.7173213958740234,
0.21513454616069794,
-0.006938192993402481,
-0.3037804663181305,
0.6384376287460327,
0.25557228922843933,
-0.6410843133926392,
0.5206024050712585,
0.7816514372825623,
-0.5059859156608582,
0.2533712089061737,
-0.367694228887558,
0.1757967472076416,
-1.0873608589172363,
0.2508091926574707,
-0.01209136750549078,
-0.3097693622112274,
-0.6022453904151917,
-0.09757732599973679,
0.18749965727329254,
0.33224478363990784,
-0.3705797791481018,
0.3566725254058838,
-0.7200086116790771,
0.09743283689022064,
-0.23804660141468048,
0.2935091555118561,
0.1428995281457901,
0.9032655954360962,
-0.046433378010988235,
0.6990485787391663,
0.6259644627571106,
-0.479890376329422,
0.2807035446166992,
0.6189604997634888,
-0.3532775640487671,
0.46478691697120667,
-0.9425079822540283,
0.22807523608207703,
-0.219449982047081,
0.21841280162334442,
-1.1683582067489624,
0.14656059443950653,
0.3669997453689575,
-0.5472036004066467,
0.6322265863418579,
-0.15879419445991516,
-0.5575230717658997,
-0.5969671010971069,
-0.4125134348869324,
-0.011623728089034557,
0.8297562003135681,
-0.751496434211731,
0.2624976634979248,
0.4209343492984772,
0.11973915994167328,
-0.7943989038467407,
-0.8699933886528015,
-0.12108874320983887,
-0.2126670479774475,
-0.948680579662323,
0.7788784503936768,
-0.20436319708824158,
-0.11057446151971817,
-0.06785135716199875,
-0.10161444544792175,
-0.2120555341243744,
0.3249669671058655,
0.3659834861755371,
0.4842071831226349,
-0.07043629139661789,
-0.07391384989023209,
0.11923924833536148,
0.04361541196703911,
-0.1451437771320343,
-0.006731483619660139,
0.5665799975395203,
-0.3433636426925659,
-0.03492350876331329,
-0.41571763157844543,
0.28913190960884094,
0.6282307505607605,
-0.3988361060619354,
0.8846275806427002,
0.9956538677215576,
-0.3123067617416382,
0.007108386605978012,
-0.5504665374755859,
-0.2127443253993988,
-0.49795547127723694,
0.2884828746318817,
-0.45146724581718445,
-0.8309547305107117,
0.7511330842971802,
0.23375985026359558,
0.2964625358581543,
0.6835678219795227,
0.6222904324531555,
-0.13356894254684448,
1.3001590967178345,
0.6973823308944702,
-0.3618326485157013,
0.6053840517997742,
-0.8350394368171692,
-0.03935324400663376,
-1.0788172483444214,
-0.27187779545783997,
-0.47807228565216064,
-0.7247917056083679,
-0.5361530780792236,
-0.24421992897987366,
0.2307792454957962,
0.4763384759426117,
-0.3303242027759552,
0.8640630841255188,
-1.1427429914474487,
0.024495074525475502,
0.790100634098053,
0.5596612691879272,
-0.06323022395372391,
0.09531368315219879,
0.15632036328315735,
-0.09569484740495682,
-0.8233534097671509,
-0.4534478187561035,
0.8244324922561646,
0.429565966129303,
0.5595508217811584,
0.20335711538791656,
0.9054940342903137,
0.1550876498222351,
-0.13532747328281403,
-0.36665287613868713,
0.4478807747364044,
-0.15571486949920654,
-0.590543806552887,
-0.18315766751766205,
-0.3732157051563263,
-1.2362083196640015,
0.22816333174705505,
-0.14638195931911469,
-1.237421989440918,
0.43874314427375793,
0.4353024959564209,
-0.513262927532196,
0.20211967825889587,
-0.5722126364707947,
0.9735793471336365,
-0.18282745778560638,
-0.41910460591316223,
-0.2753845155239105,
-0.7583200335502625,
0.234549418091774,
0.24737605452537537,
-0.17840231955051422,
-0.28515490889549255,
0.07967586070299149,
0.9119216799736023,
-0.3458830714225769,
0.8462018966674805,
-0.4167236387729645,
-0.3254658281803131,
0.4254889488220215,
-0.03416009992361069,
0.7940687537193298,
-0.05217492952942848,
-0.010326956398785114,
0.2548692524433136,
0.31810885667800903,
-0.47928327322006226,
-0.4817158877849579,
0.8685711622238159,
-0.9552081227302551,
-0.374134361743927,
-0.49358507990837097,
-0.6200544834136963,
-0.27086615562438965,
-0.016304314136505127,
0.3549253046512604,
0.4857516884803772,
0.06976209580898285,
0.24078625440597534,
0.9122255444526672,
-0.15090148150920868,
0.5200521349906921,
0.5401821732521057,
0.21326500177383423,
-0.14467506110668182,
0.850533664226532,
0.14411596953868866,
0.07992546260356903,
0.5072205662727356,
-0.32201218605041504,
-0.3487139940261841,
-0.5716536045074463,
-0.5310450196266174,
0.10519693791866302,
-0.580118715763092,
-0.411653071641922,
-0.779585599899292,
-0.1188439130783081,
-0.38638535141944885,
0.07579182833433151,
-0.4233647882938385,
-0.6237055659294128,
-0.7937901616096497,
0.2703162133693695,
0.7121589779853821,
0.5892173647880554,
-0.06058569625020027,
0.15880802273750305,
-0.9663031101226807,
0.16615064442157745,
0.11742673814296722,
0.24932175874710083,
0.00388474203646183,
-0.6266957521438599,
-0.266486793756485,
0.353344589471817,
-0.6216583847999573,
-0.8656757473945618,
0.5010708570480347,
0.02089562453329563,
0.6773071885108948,
0.029750606045126915,
0.0916045755147934,
0.6745389699935913,
-0.4419104754924774,
0.8374096751213074,
0.34973061084747314,
-0.8764946460723877,
0.7525244355201721,
-0.2618342339992523,
0.27616074681282043,
0.6259886026382446,
0.49638158082962036,
-0.02093495987355709,
-0.3083455264568329,
-0.8720200061798096,
-0.8310979604721069,
1.1058146953582764,
0.5588537454605103,
-0.1395111382007599,
0.1305307149887085,
0.21085406839847565,
-0.19313503801822662,
0.2199438512325287,
-0.4208281934261322,
-0.5189138650894165,
-0.20512545108795166,
-0.3025481104850769,
-0.01867063343524933,
-0.34390789270401,
-0.09670644998550415,
-0.49336087703704834,
0.9742553234100342,
-0.016969099640846252,
0.617111325263977,
0.5077483654022217,
-0.2791749835014343,
-0.00739702396094799,
-0.030808772891759872,
0.8953326940536499,
0.8913475275039673,
-0.4639647603034973,
-0.23228228092193604,
0.2155669629573822,
-0.45824408531188965,
-0.020404459908604622,
0.24284769594669342,
0.03331264480948448,
0.18967251479625702,
0.26803892850875854,
1.0354644060134888,
0.022922970354557037,
-0.5289751291275024,
0.40108591318130493,
0.06565075367689133,
-0.4878877103328705,
-0.26621368527412415,
-0.005224281921982765,
-0.030053121969103813,
0.611187756061554,
0.2996186316013336,
0.16409170627593994,
0.16993927955627441,
-0.40471160411834717,
0.20699359476566315,
0.692304790019989,
-0.6083093285560608,
-0.324705570936203,
0.7432618737220764,
0.09774218499660492,
0.033853672444820404,
0.5600957870483398,
-0.2455163449048996,
-0.7244604229927063,
0.920691728591919,
0.3721570372581482,
0.8476136922836304,
-0.1581191122531891,
0.08308307826519012,
0.7350013852119446,
0.3631763756275177,
0.09188845008611679,
0.6100248098373413,
0.08432978391647339,
-0.3690980076789856,
-0.2789480984210968,
-0.691983699798584,
-0.031480614095926285,
0.3283423185348511,
-0.7366738319396973,
0.03727081045508385,
-0.14598849415779114,
-0.35450881719589233,
0.19080178439617157,
0.4258555471897125,
-0.92890864610672,
0.2121409773826599,
0.15500032901763916,
1.0466176271438599,
-0.5865353941917419,
0.8954406976699829,
0.7606639862060547,
-0.46568775177001953,
-0.7284332513809204,
-0.31629976630210876,
-0.13394010066986084,
-0.9114009141921997,
1.1062848567962646,
0.19902130961418152,
0.08508723974227905,
-0.008884073235094547,
-0.4246901869773865,
-1.0423470735549927,
1.3670132160186768,
0.3618515729904175,
-0.9861261248588562,
-0.07393650710582733,
0.017370209097862244,
0.49038153886795044,
-0.2508222460746765,
0.2894582152366638,
0.60842365026474,
0.5103347301483154,
-0.05789318308234215,
-1.1631439924240112,
0.3905927538871765,
-0.3561461567878723,
0.10394012182950974,
0.20653939247131348,
-1.0110304355621338,
1.1528630256652832,
-0.14444860816001892,
0.20503371953964233,
0.17095628380775452,
0.6267591118812561,
0.2817904055118561,
0.06109236180782318,
0.6298630237579346,
0.7213399410247803,
0.6414242386817932,
-0.21225649118423462,
0.9786516427993774,
-0.5296260118484497,
0.6879778504371643,
0.9588230848312378,
0.14929310977458954,
0.6963835954666138,
0.467224657535553,
-0.46701622009277344,
0.4721931219100952,
0.7108193039894104,
-0.19946543872356415,
0.4874902367591858,
0.16268640756607056,
0.08977699279785156,
-0.2498062551021576,
0.37360748648643494,
-0.4977646470069885,
0.478283554315567,
0.12623010575771332,
-0.542426347732544,
-0.21917693316936493,
0.08175688982009888,
0.11542203277349472,
-0.1646820604801178,
-0.2747480273246765,
0.682732343673706,
-0.03981928899884224,
-0.7487859725952148,
1.1812306642532349,
-0.22269181907176971,
0.8702359795570374,
-0.5445817708969116,
-0.1252821683883667,
-0.07237915694713593,
0.552952229976654,
-0.3617111146450043,
-0.807840883731842,
0.240386500954628,
-0.09658894687891006,
-0.32629483938217163,
-0.11754155158996582,
0.6959062218666077,
-0.39310339093208313,
-0.45593875646591187,
0.43082568049430847,
0.4131525754928589,
0.1589019000530243,
-0.32175880670547485,
-1.291393518447876,
0.3732984960079193,
0.26509565114974976,
-0.5835199952125549,
0.5261145830154419,
0.16177161037921906,
0.18572881817817688,
0.5065130591392517,
0.20384036004543304,
-0.4318692982196808,
0.008043620735406876,
-0.26271140575408936,
1.0738530158996582,
-0.31430140137672424,
-0.28734588623046875,
-0.8883797526359558,
0.6758177280426025,
-0.22428978979587555,
-0.38803336024284363,
0.9844947457313538,
0.5014376640319824,
0.5583639144897461,
-0.27145346999168396,
0.586671769618988,
-0.4462434947490692,
0.37419357895851135,
-0.492423415184021,
0.8204556107521057,
-0.9856710433959961,
-0.12642371654510498,
-0.5045718550682068,
-0.9850383996963501,
0.03759697824716568,
0.7825421690940857,
-0.025204364210367203,
0.15455225110054016,
0.2380089908838272,
0.7024813890457153,
-0.1306886374950409,
-0.28007832169532776,
0.16331014037132263,
0.1881513148546219,
0.2724808156490326,
1.0871461629867554,
0.5148855447769165,
-0.8757158517837524,
0.5430717468261719,
-0.5622982978820801,
-0.4750201106071472,
-0.40972861647605896,
-0.8198873996734619,
-1.195051670074463,
-0.7744424939155579,
-0.758838951587677,
-0.5431687235832214,
-0.07232435792684555,
0.9559437036514282,
1.0132520198822021,
-0.9070971012115479,
0.2266676276922226,
-0.2026037722826004,
-0.1511014848947525,
-0.5502876043319702,
-0.23794634640216827,
0.5957979559898376,
-0.42650124430656433,
-1.1117008924484253,
0.3230455219745636,
-0.13712213933467865,
0.3555702567100525,
-0.13249725103378296,
-0.2415919452905655,
-0.32204899191856384,
-0.017510881647467613,
0.8312947154045105,
0.2584797739982605,
-0.6827705502510071,
-0.25026148557662964,
0.1112239882349968,
-0.15292608737945557,
0.11217396706342697,
0.0955006405711174,
-0.804996132850647,
0.05232810229063034,
0.606950581073761,
0.21559196710586548,
0.6347416043281555,
-0.2362358421087265,
0.14620982110500336,
-0.8304607272148132,
0.45118024945259094,
0.22912666201591492,
0.4711860120296478,
0.044834885746240616,
-0.5070584416389465,
0.6406986713409424,
-0.15405237674713135,
-0.6501069664955139,
-0.9380247592926025,
0.10125065594911575,
-1.56662917137146,
-0.33381056785583496,
1.044734001159668,
-0.3638339042663574,
-0.30251675844192505,
0.12403982132673264,
-0.40831559896469116,
0.1618322879076004,
-0.4310441315174103,
0.7763274908065796,
0.5200591683387756,
-0.2766113579273224,
0.013066447339951992,
-0.5167146325111389,
0.772841215133667,
0.5639260411262512,
-0.623005747795105,
0.018205804750323296,
0.3497902452945709,
0.2860473096370697,
0.5816726684570312,
0.5859465003013611,
-0.041760899126529694,
0.3927857577800751,
-0.13157843053340912,
0.001996205421164632,
-0.37663933634757996,
-0.25501757860183716,
-0.16264411807060242,
-0.20432591438293457,
-0.13693200051784515,
-0.6081817746162415
] |
openai/whisper-medium | openai | "2023-09-08T13:08:09Z" | 186,372 | 132 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-09-26T06:52:52Z" | ---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: whisper-medium
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.9
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 5.9
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args:
language: hi
metrics:
- name: Test WER
type: wer
value: 53.87
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
# Usage
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
The `WhisperProcessor` is used to:
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
2. Post-process the model outputs (converting them from tokens to text)
The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
1. The transcription always starts with the `<|startoftranscript|>` token
2. The second token is the language token (e.g. `<|en|>` for English)
3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
Thus, a typical sequence of context tokens might look as follows:
```
<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
```
Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
the Whisper model will automatically predict the output langauge and task itself.
The context tokens can be set accordingly:
```python
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
```
Which forces the model to predict in English under the task of speech recognition.
## Transcription
### English to English
In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
(English) and task (transcribe).
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
>>> model.config.forced_decoder_ids = None
>>> # load dummy dataset and read audio files
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
### French to French
The following example demonstrates French to French transcription by setting the decoder ids appropriately.
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids)
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
```
## Translation
Setting the task to "translate" forces the Whisper model to perform speech translation.
### French to English
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' A very interesting work, we will finally be given on this subject.']
```
## Evaluation
This code snippet shows how to evaluate Whisper Medium on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from evaluate import load
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium").to("cuda")
>>> def map_to_pred(batch):
>>> audio = batch["audio"]
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
>>>
>>> with torch.no_grad():
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
>>> transcription = processor.decode(predicted_ids)
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
>>> return batch
>>> result = librispeech_test_clean.map(map_to_pred)
>>> wer = load("wer")
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
2.900409225488902
```
## Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
```python
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="openai/whisper-medium",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
```
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
| [
-0.19642607867717743,
-0.5910000801086426,
0.10293380171060562,
0.47936323285102844,
-0.12850865721702576,
-0.12719357013702393,
-0.3274206519126892,
-0.5453280806541443,
0.21030154824256897,
0.48301342129707336,
-0.8496614694595337,
-0.6084718108177185,
-0.7931869626045227,
-0.007301189936697483,
-0.5696068406105042,
1.0483324527740479,
0.09124676883220673,
-0.004679066129028797,
0.16679199039936066,
-0.11277347803115845,
-0.44512689113616943,
-0.48122668266296387,
-0.7171227931976318,
-0.21520313620567322,
0.131043940782547,
0.1692020148038864,
0.40641888976097107,
0.5164473056793213,
0.11147554218769073,
0.4243035614490509,
-0.43006980419158936,
-0.030618082731962204,
-0.43067222833633423,
-0.060324981808662415,
0.3621992766857147,
-0.5349995493888855,
-0.6064561009407043,
0.09250617027282715,
0.7499945759773254,
0.5375417470932007,
-0.268392950296402,
0.40184837579727173,
0.24347978830337524,
0.3435860872268677,
-0.26069319248199463,
0.3034936785697937,
-0.6322465538978577,
-0.13992644846439362,
-0.2797030806541443,
-0.052220214158296585,
-0.32734769582748413,
-0.27301904559135437,
0.5470780730247498,
-0.5794670581817627,
0.2926711142063141,
0.014008822850883007,
1.0534414052963257,
0.22426006197929382,
-0.16789831221103668,
-0.38704007863998413,
-0.7372999787330627,
1.0621373653411865,
-0.9029876589775085,
0.499996542930603,
0.5126425623893738,
0.1854022592306137,
-0.07359764724969864,
-0.8991544246673584,
-0.7194556593894958,
-0.01364404708147049,
-0.10914766043424606,
0.30325740575790405,
-0.48166024684906006,
0.006270396523177624,
0.2385607361793518,
0.28010401129722595,
-0.5064132809638977,
-0.00856007169932127,
-0.6652573943138123,
-0.7275164127349854,
0.5880348086357117,
-0.011331608518958092,
0.3616417348384857,
-0.2720740735530853,
-0.21806849539279938,
-0.3284667134284973,
-0.314939022064209,
0.4770667850971222,
0.37839770317077637,
0.48224368691444397,
-0.668781042098999,
0.4117090106010437,
-0.13623733818531036,
0.6731380224227905,
0.16366046667099,
-0.6886143684387207,
0.6866328716278076,
-0.20758691430091858,
-0.1820060759782791,
0.37531378865242004,
1.028990387916565,
0.2912575304508209,
0.16810376942157745,
0.03972560539841652,
-0.24466004967689514,
0.11754576861858368,
-0.09400026500225067,
-0.7388233542442322,
0.08410514891147614,
0.5101927518844604,
-0.5684124827384949,
-0.3389012813568115,
-0.23925389349460602,
-0.519425630569458,
0.25420081615448,
-0.25087758898735046,
0.7253807187080383,
-0.5853748321533203,
-0.3853279650211334,
0.1679670512676239,
-0.4034119248390198,
0.2533479332923889,
0.019661257043480873,
-0.8425052762031555,
0.379673570394516,
0.4128633141517639,
0.9249340891838074,
0.06452149897813797,
-0.6805477142333984,
-0.5776517391204834,
0.08482348173856735,
0.05489687621593475,
0.4750165641307831,
-0.2634291648864746,
-0.5979412198066711,
-0.0884307399392128,
0.17962002754211426,
-0.4187961518764496,
-0.5215216875076294,
0.7215900421142578,
-0.12336701899766922,
0.4881472587585449,
-0.06577202677726746,
-0.501377522945404,
-0.2831077575683594,
-0.17243152856826782,
-0.4661490023136139,
0.9749972224235535,
0.16528092324733734,
-0.7315951585769653,
0.12458302080631256,
-0.5628525018692017,
-0.535248339176178,
-0.17903661727905273,
0.25102460384368896,
-0.4513848125934601,
-0.03230012580752373,
0.46474698185920715,
0.4887498915195465,
-0.12635505199432373,
0.12518540024757385,
0.11135713756084442,
-0.4210096299648285,
0.38033246994018555,
-0.4797239899635315,
1.040218472480774,
0.16724148392677307,
-0.4107533395290375,
0.19589726626873016,
-0.8057442307472229,
0.07622970640659332,
0.06547997146844864,
-0.27728983759880066,
0.10424704104661942,
-0.0014739381149411201,
0.2867458462715149,
0.1081395372748375,
0.19157712161540985,
-0.7143794298171997,
-0.0855281874537468,
-0.6919249296188354,
0.9018891453742981,
0.5845504999160767,
-0.04221159219741821,
0.36459794640541077,
-0.5626850128173828,
0.3247539699077606,
0.15404079854488373,
0.3651065528392792,
-0.25194716453552246,
-0.6424428820610046,
-0.8515499830245972,
-0.3938778340816498,
0.4564107656478882,
0.8288446068763733,
-0.4518641531467438,
0.6007529497146606,
-0.30162858963012695,
-0.6054483652114868,
-1.2971723079681396,
-0.08749602735042572,
0.5845236778259277,
0.6714169979095459,
0.6884114742279053,
-0.060805149376392365,
-0.682330846786499,
-0.8114194869995117,
-0.1532323658466339,
-0.29799985885620117,
-0.16885234415531158,
0.35683462023735046,
0.36733734607696533,
-0.40490415692329407,
0.7152272462844849,
-0.4107128381729126,
-0.5616330504417419,
-0.3514232039451599,
0.053755104541778564,
0.4722473919391632,
0.6527358889579773,
0.34826546907424927,
-0.7825154662132263,
-0.3909180760383606,
-0.20656973123550415,
-0.5772030353546143,
-0.1753486841917038,
-0.12266530096530914,
-0.018310928717255592,
0.21519893407821655,
0.4661192297935486,
-0.7146584391593933,
0.4916287660598755,
0.7045612931251526,
-0.20315927267074585,
0.6549693942070007,
0.06920035183429718,
-0.02596498280763626,
-1.2304463386535645,
0.02940823696553707,
-0.23358529806137085,
-0.17081628739833832,
-0.7421596050262451,
-0.24587027728557587,
-0.08786602318286896,
-0.09814725816249847,
-0.5978829264640808,
0.6264339685440063,
-0.349092572927475,
0.06664715707302094,
-0.05672299489378929,
0.13849793374538422,
-0.04569857567548752,
0.6787893772125244,
0.2645304501056671,
0.7160797715187073,
0.8634582757949829,
-0.596170961856842,
0.22758065164089203,
0.6009532809257507,
-0.2745746374130249,
0.30815568566322327,
-0.9873363375663757,
0.12011253833770752,
0.080299511551857,
0.16834834218025208,
-0.9238619804382324,
-0.10790721327066422,
0.08384950459003448,
-0.9805800318717957,
0.4364050030708313,
-0.34636932611465454,
-0.304471880197525,
-0.5413541197776794,
-0.09211046248674393,
0.07845906168222427,
0.8857061266899109,
-0.49934032559394836,
0.7404806017875671,
0.437829852104187,
-0.2336331158876419,
-0.5982680916786194,
-0.7282481789588928,
-0.08828064054250717,
-0.1410338282585144,
-0.7817592620849609,
0.5223910212516785,
-0.01753753237426281,
0.07502251118421555,
-0.09683342278003693,
-0.068702831864357,
0.11635585874319077,
-0.20503200590610504,
0.4846165180206299,
0.42137330770492554,
-0.0793045237660408,
-0.27990543842315674,
0.2521326541900635,
-0.25484398007392883,
0.008562666364014149,
-0.288293719291687,
0.6917155385017395,
-0.2399848848581314,
-0.019556647166609764,
-0.8045796155929565,
0.38232284784317017,
0.6514766216278076,
-0.37519773840904236,
0.6748332381248474,
0.7778084874153137,
-0.2799578607082367,
-0.1650540977716446,
-0.6518591046333313,
-0.17209888994693756,
-0.5471243262290955,
0.228807270526886,
-0.5013990998268127,
-0.8173909783363342,
0.817863404750824,
0.23042082786560059,
0.1707601398229599,
0.6707571148872375,
0.5333085656166077,
-0.1354994773864746,
1.090317964553833,
0.5043246150016785,
-0.28212499618530273,
0.26363405585289,
-0.7034283876419067,
-0.08721677213907242,
-1.038139820098877,
-0.4402482509613037,
-0.5662935376167297,
-0.19327479600906372,
-0.45618197321891785,
-0.2802707552909851,
0.47621017694473267,
0.1935068517923355,
-0.0056813606061041355,
0.5347110033035278,
-0.725714385509491,
0.01019870862364769,
0.6905726790428162,
0.014286477118730545,
0.05446447804570198,
-0.02175644412636757,
-0.2912428081035614,
0.0013917484320700169,
-0.5064083933830261,
-0.3981494903564453,
1.0146028995513916,
0.47630932927131653,
0.47277894616127014,
-0.03990336135029793,
0.7383145093917847,
-0.025136347860097885,
0.006636081263422966,
-0.8121347427368164,
0.51910400390625,
-0.13418669998645782,
-0.5278542637825012,
-0.4132530987262726,
-0.2671944200992584,
-0.8728615045547485,
0.173012375831604,
-0.17586836218833923,
-0.7483265399932861,
0.12584297358989716,
-0.01899772696197033,
-0.29199230670928955,
0.20107720792293549,
-0.734146773815155,
0.6524150371551514,
0.16442780196666718,
0.15277868509292603,
0.016607988625764847,
-0.7679596543312073,
0.14876888692378998,
0.09707797318696976,
0.12613949179649353,
-0.06858397275209427,
0.16368921101093292,
1.058181881904602,
-0.5136955976486206,
0.9735561013221741,
-0.3145478665828705,
0.033182527869939804,
0.460534930229187,
-0.10835453867912292,
0.36640700697898865,
-0.22430890798568726,
-0.10873493552207947,
0.5146661996841431,
0.3767796456813812,
-0.30075106024742126,
-0.2790849804878235,
0.5451525449752808,
-1.1115872859954834,
-0.3960905373096466,
-0.2623153328895569,
-0.3372485041618347,
-0.10227884352207184,
0.25833097100257874,
0.9336215257644653,
0.7775443196296692,
-0.154410719871521,
-0.03138557821512222,
0.4378775358200073,
-0.2613077759742737,
0.5876825451850891,
0.6584886312484741,
-0.2179414927959442,
-0.5228025317192078,
0.9374117851257324,
0.2981088161468506,
0.23798291385173798,
0.2857854664325714,
0.3544889986515045,
-0.4808279573917389,
-0.6890051960945129,
-0.5754421949386597,
0.3232085406780243,
-0.5388224124908447,
-0.15787886083126068,
-0.9496017098426819,
-0.5927132368087769,
-0.727448582649231,
0.034295033663511276,
-0.3715638518333435,
-0.29561710357666016,
-0.49686506390571594,
0.10420635342597961,
0.5701065063476562,
0.4325292110443115,
0.01539687067270279,
0.5717775821685791,
-1.0208358764648438,
0.43159863352775574,
0.3145884573459625,
0.10407450795173645,
0.021468400955200195,
-1.0488386154174805,
-0.0686088427901268,
0.22152599692344666,
-0.20879815518856049,
-0.7682000994682312,
0.5742810368537903,
0.36305418610572815,
0.5838990807533264,
0.2765524983406067,
-0.00018209709378425032,
0.8400034308433533,
-0.763063907623291,
0.8841199278831482,
0.15775281190872192,
-1.3066517114639282,
0.7540187835693359,
-0.34916868805885315,
0.35374733805656433,
0.40400710701942444,
0.3827299475669861,
-0.7459899187088013,
-0.500741183757782,
-0.6450117230415344,
-0.6668208241462708,
0.8555957078933716,
0.37741976976394653,
0.17454449832439423,
0.10357853770256042,
0.3082835078239441,
0.08057937771081924,
0.13562387228012085,
-0.5056593418121338,
-0.44924211502075195,
-0.4983692467212677,
-0.27122044563293457,
-0.1804417371749878,
-0.1475900560617447,
-0.03677639737725258,
-0.5452536940574646,
0.779254674911499,
-0.018031427636742592,
0.5804173946380615,
0.46569088101387024,
-0.056901853531599045,
-0.025960329920053482,
0.09411647170782089,
0.6047765612602234,
0.30405184626579285,
-0.19408369064331055,
-0.3690286874771118,
0.3121330440044403,
-0.8191632628440857,
-0.0004512098093982786,
0.2741047441959381,
-0.30040663480758667,
0.17713439464569092,
0.8212757110595703,
1.26537024974823,
0.21690237522125244,
-0.5058068037033081,
0.7421261668205261,
-0.12190557271242142,
-0.4303464889526367,
-0.5696776509284973,
0.04206690564751625,
0.30205440521240234,
0.208515465259552,
0.3571402132511139,
0.1322399228811264,
0.08242424577474594,
-0.48503562808036804,
0.07154420018196106,
0.27932295203208923,
-0.46310266852378845,
-0.5453774929046631,
0.8475040197372437,
0.16059094667434692,
-0.5154184699058533,
0.7422202825546265,
0.11459008604288101,
-0.8020195364952087,
0.49014803767204285,
0.7242961525917053,
1.0488759279251099,
-0.5290574431419373,
0.03753771260380745,
0.4608971178531647,
0.2382686585187912,
-0.07503499835729599,
0.5419798493385315,
-0.12321824580430984,
-0.7923885583877563,
-0.470083624124527,
-1.0361078977584839,
-0.24039040505886078,
0.17560593783855438,
-0.9640359878540039,
0.3171759247779846,
-0.24371808767318726,
-0.3015972673892975,
0.31088870763778687,
-0.010443734005093575,
-0.7948803901672363,
0.13691407442092896,
0.074183888733387,
1.0774677991867065,
-0.7693588733673096,
1.0549676418304443,
0.25564903020858765,
-0.27365681529045105,
-1.1306266784667969,
0.028495553880929947,
0.020461784675717354,
-1.0784651041030884,
0.4333118498325348,
0.34971415996551514,
-0.21120606362819672,
0.1981017291545868,
-0.5672944188117981,
-0.8771546483039856,
1.0126110315322876,
0.13445954024791718,
-0.7326166033744812,
-0.10556621849536896,
-0.03305203840136528,
0.5418002605438232,
-0.31297245621681213,
0.1449594497680664,
0.7500389814376831,
0.43759503960609436,
0.09104877710342407,
-1.4298256635665894,
-0.08963130414485931,
-0.28939056396484375,
-0.17664480209350586,
0.015054826624691486,
-0.7208453416824341,
0.8678128123283386,
-0.32962706685066223,
-0.26336002349853516,
0.26157641410827637,
0.6884433031082153,
0.21983708441257477,
0.22326558828353882,
0.6393434405326843,
0.5130540728569031,
0.7169956564903259,
-0.17096078395843506,
1.0323346853256226,
-0.28754812479019165,
0.13558270037174225,
0.8985002040863037,
-0.053175188601017,
1.16053307056427,
0.2907588481903076,
-0.38459476828575134,
0.597978949546814,
0.396611750125885,
-0.0018263377714902163,
0.558498203754425,
-0.09005525708198547,
-0.3047902286052704,
0.10054565966129303,
-0.04569331184029579,
-0.4353519678115845,
0.8043617606163025,
0.4214453101158142,
-0.2826099097728729,
0.33211997151374817,
0.32760119438171387,
0.11525696516036987,
-0.13772691786289215,
-0.26079151034355164,
0.9901485443115234,
0.13032521307468414,
-0.6267428398132324,
0.9194971323013306,
0.023797031491994858,
0.9967758059501648,
-0.8592461347579956,
0.21739529073238373,
0.054710615426301956,
0.1554591804742813,
-0.18245750665664673,
-0.6671869158744812,
0.34640640020370483,
-0.14918403327465057,
-0.32983118295669556,
-0.1960364282131195,
0.5628799200057983,
-0.7656735181808472,
-0.5435961484909058,
0.5851870179176331,
0.36594468355178833,
0.3397444188594818,
-0.1266423910856247,
-0.9183517098426819,
0.4059324860572815,
0.23495878279209137,
-0.2525912821292877,
0.17232225835323334,
0.18851624429225922,
0.2343229204416275,
0.6611917018890381,
0.8923463225364685,
0.4216432571411133,
0.1497316062450409,
0.1883184313774109,
0.8310673236846924,
-0.6543624997138977,
-0.6969738006591797,
-0.7063021659851074,
0.5002296566963196,
0.06030803918838501,
-0.47126227617263794,
0.8089021444320679,
0.5093323588371277,
0.7143611907958984,
-0.007815854623913765,
0.7952594757080078,
0.07282035797834396,
0.9713929295539856,
-0.5755137801170349,
0.8691670894622803,
-0.43120673298835754,
0.008621876128017902,
-0.3442286550998688,
-0.7677644491195679,
0.05884435772895813,
0.5974519848823547,
-0.06262629479169846,
-0.12293976545333862,
0.38934457302093506,
0.9223734140396118,
0.07925589382648468,
0.17077143490314484,
0.13897807896137238,
0.4140806198120117,
0.22833797335624695,
0.5619944334030151,
0.5897207260131836,
-0.7871177196502686,
0.6648346781730652,
-0.509066104888916,
-0.2539255917072296,
0.06300637125968933,
-0.6105484366416931,
-1.0259392261505127,
-0.9005816578865051,
-0.2744441628456116,
-0.5879210233688354,
-0.24042704701423645,
0.8159412741661072,
0.9158086776733398,
-0.872212290763855,
-0.34691211581230164,
0.28537505865097046,
-0.05390843376517296,
-0.4268735349178314,
-0.25630617141723633,
0.5881738662719727,
-0.033834900707006454,
-0.9193281531333923,
0.6415851712226868,
0.033699698746204376,
0.4021298587322235,
-0.19248974323272705,
-0.22670380771160126,
0.027065293863415718,
0.10812090337276459,
0.5629056096076965,
0.2915806174278259,
-0.8949733376502991,
-0.12583954632282257,
0.12220335751771927,
0.06326349824666977,
-0.022201914340257645,
0.4367229640483856,
-0.7387644052505493,
0.371479332447052,
0.3835381269454956,
0.13263164460659027,
0.836434543132782,
-0.2963113486766815,
0.3967750370502472,
-0.7655777335166931,
0.4661743938922882,
0.20944984257221222,
0.3341889977455139,
0.36409422755241394,
-0.3093428611755371,
0.15218551456928253,
0.3047514259815216,
-0.570874035358429,
-1.0597620010375977,
-0.13789382576942444,
-1.1503013372421265,
-0.16857735812664032,
1.0264748334884644,
0.015809714794158936,
-0.35953792929649353,
-0.11755235493183136,
-0.34872353076934814,
0.46221092343330383,
-0.48805221915245056,
0.3293345868587494,
0.5994763970375061,
0.056192804127931595,
-0.031628966331481934,
-0.6092026829719543,
0.7572855353355408,
0.226103276014328,
-0.2417057752609253,
-0.026127377524971962,
0.04200010001659393,
0.6316605806350708,
0.2728046774864197,
0.8730555772781372,
-0.23760858178138733,
0.17799866199493408,
0.1178983673453331,
0.1807112842798233,
-0.1194707527756691,
-0.19596725702285767,
-0.4729557931423187,
-0.06348686665296555,
-0.3532930016517639,
-0.43947288393974304
] |
facebook/mms-1b-all | facebook | "2023-06-15T10:45:44Z" | 185,950 | 62 | transformers | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"mms",
"ab",
"af",
"ak",
"am",
"ar",
"as",
"av",
"ay",
"az",
"ba",
"bm",
"be",
"bn",
"bi",
"bo",
"sh",
"br",
"bg",
"ca",
"cs",
"ce",
"cv",
"ku",
"cy",
"da",
"de",
"dv",
"dz",
"el",
"en",
"eo",
"et",
"eu",
"ee",
"fo",
"fa",
"fj",
"fi",
"fr",
"fy",
"ff",
"ga",
"gl",
"gn",
"gu",
"zh",
"ht",
"ha",
"he",
"hi",
"hu",
"hy",
"ig",
"ia",
"ms",
"is",
"it",
"jv",
"ja",
"kn",
"ka",
"kk",
"kr",
"km",
"ki",
"rw",
"ky",
"ko",
"kv",
"lo",
"la",
"lv",
"ln",
"lt",
"lb",
"lg",
"mh",
"ml",
"mr",
"mk",
"mg",
"mt",
"mn",
"mi",
"my",
"nl",
"no",
"ne",
"ny",
"oc",
"om",
"or",
"os",
"pa",
"pl",
"pt",
"ps",
"qu",
"ro",
"rn",
"ru",
"sg",
"sk",
"sl",
"sm",
"sn",
"sd",
"so",
"es",
"sq",
"su",
"sv",
"sw",
"ta",
"tt",
"te",
"tg",
"tl",
"th",
"ti",
"ts",
"tr",
"uk",
"vi",
"wo",
"xh",
"yo",
"zu",
"za",
"dataset:google/fleurs",
"arxiv:2305.13516",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2023-05-27T11:43:21Z" | ---
tags:
- mms
language:
- ab
- af
- ak
- am
- ar
- as
- av
- ay
- az
- ba
- bm
- be
- bn
- bi
- bo
- sh
- br
- bg
- ca
- cs
- ce
- cv
- ku
- cy
- da
- de
- dv
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- fj
- fi
- fr
- fy
- ff
- ga
- gl
- gn
- gu
- zh
- ht
- ha
- he
- hi
- sh
- hu
- hy
- ig
- ia
- ms
- is
- it
- jv
- ja
- kn
- ka
- kk
- kr
- km
- ki
- rw
- ky
- ko
- kv
- lo
- la
- lv
- ln
- lt
- lb
- lg
- mh
- ml
- mr
- ms
- mk
- mg
- mt
- mn
- mi
- my
- zh
- nl
- 'no'
- 'no'
- ne
- ny
- oc
- om
- or
- os
- pa
- pl
- pt
- ms
- ps
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- ro
- rn
- ru
- sg
- sk
- sl
- sm
- sn
- sd
- so
- es
- sq
- su
- sv
- sw
- ta
- tt
- te
- tg
- tl
- th
- ti
- ts
- tr
- uk
- ms
- vi
- wo
- xh
- ms
- yo
- ms
- zu
- za
license: cc-by-nc-4.0
datasets:
- google/fleurs
metrics:
- wer
---
# Massively Multilingual Speech (MMS) - Finetuned ASR - ALL
This checkpoint is a model fine-tuned for multi-lingual ASR and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and makes use of adapter models to transcribe 1000+ languages.
The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 1162 languages.
## Table Of Content
- [Example](#example)
- [Supported Languages](#supported-languages)
- [Model details](#model-details)
- [Additional links](#additional-links)
## Example
This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to transcribe audio of 1107 different
languages. Let's look at a simple example.
First, we install transformers and some other libraries
```
pip install torch accelerate torchaudio datasets
pip install --upgrade transformers
````
**Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
source:
```
pip install git+https://github.com/huggingface/transformers.git
```
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# French
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
fr_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model and transcribe the model output, just like we usually do for Wav2Vec2 models such as [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h)
```py
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# 'joe keton disapproved of films and buster also had reservations about the media'
```
We can now keep the same model in memory and simply switch out the language adapters by calling the convenient [`load_adapter()`]() function for the model and [`set_target_lang()`]() for the tokenizer. We pass the target language as an input - "fra" for French.
```py
processor.tokenizer.set_target_lang("fra")
model.load_adapter("fra")
inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# "ce dernier est volé tout au long de l'histoire romaine"
```
In the same way the language can be switched out for all other supported languages. Please have a look at:
```py
processor.tokenizer.vocab.keys()
```
For more details, please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
## Supported Languages
This model supports 1162 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
<details>
<summary>Click to toggle</summary>
- abi
- abk
- abp
- aca
- acd
- ace
- acf
- ach
- acn
- acr
- acu
- ade
- adh
- adj
- adx
- aeu
- afr
- agd
- agg
- agn
- agr
- agu
- agx
- aha
- ahk
- aia
- aka
- akb
- ake
- akp
- alj
- alp
- alt
- alz
- ame
- amf
- amh
- ami
- amk
- ann
- any
- aoz
- apb
- apr
- ara
- arl
- asa
- asg
- asm
- ast
- ata
- atb
- atg
- ati
- atq
- ava
- avn
- avu
- awa
- awb
- ayo
- ayr
- ayz
- azb
- azg
- azj-script_cyrillic
- azj-script_latin
- azz
- bak
- bam
- ban
- bao
- bas
- bav
- bba
- bbb
- bbc
- bbo
- bcc-script_arabic
- bcc-script_latin
- bcl
- bcw
- bdg
- bdh
- bdq
- bdu
- bdv
- beh
- bel
- bem
- ben
- bep
- bex
- bfa
- bfo
- bfy
- bfz
- bgc
- bgq
- bgr
- bgt
- bgw
- bha
- bht
- bhz
- bib
- bim
- bis
- biv
- bjr
- bjv
- bjw
- bjz
- bkd
- bkv
- blh
- blt
- blx
- blz
- bmq
- bmr
- bmu
- bmv
- bng
- bno
- bnp
- boa
- bod
- boj
- bom
- bor
- bos
- bov
- box
- bpr
- bps
- bqc
- bqi
- bqj
- bqp
- bre
- bru
- bsc
- bsq
- bss
- btd
- bts
- btt
- btx
- bud
- bul
- bus
- bvc
- bvz
- bwq
- bwu
- byr
- bzh
- bzi
- bzj
- caa
- cab
- cac-dialect_sanmateoixtatan
- cac-dialect_sansebastiancoatan
- cak-dialect_central
- cak-dialect_santamariadejesus
- cak-dialect_santodomingoxenacoj
- cak-dialect_southcentral
- cak-dialect_western
- cak-dialect_yepocapa
- cap
- car
- cas
- cat
- cax
- cbc
- cbi
- cbr
- cbs
- cbt
- cbu
- cbv
- cce
- cco
- cdj
- ceb
- ceg
- cek
- ces
- cfm
- cgc
- che
- chf
- chv
- chz
- cjo
- cjp
- cjs
- ckb
- cko
- ckt
- cla
- cle
- cly
- cme
- cmn-script_simplified
- cmo-script_khmer
- cmo-script_latin
- cmr
- cnh
- cni
- cnl
- cnt
- coe
- cof
- cok
- con
- cot
- cou
- cpa
- cpb
- cpu
- crh
- crk-script_latin
- crk-script_syllabics
- crn
- crq
- crs
- crt
- csk
- cso
- ctd
- ctg
- cto
- ctu
- cuc
- cui
- cuk
- cul
- cwa
- cwe
- cwt
- cya
- cym
- daa
- dah
- dan
- dar
- dbj
- dbq
- ddn
- ded
- des
- deu
- dga
- dgi
- dgk
- dgo
- dgr
- dhi
- did
- dig
- dik
- dip
- div
- djk
- dnj-dialect_blowowest
- dnj-dialect_gweetaawueast
- dnt
- dnw
- dop
- dos
- dsh
- dso
- dtp
- dts
- dug
- dwr
- dyi
- dyo
- dyu
- dzo
- eip
- eka
- ell
- emp
- enb
- eng
- enx
- epo
- ese
- ess
- est
- eus
- evn
- ewe
- eza
- fal
- fao
- far
- fas
- fij
- fin
- flr
- fmu
- fon
- fra
- frd
- fry
- ful
- gag-script_cyrillic
- gag-script_latin
- gai
- gam
- gau
- gbi
- gbk
- gbm
- gbo
- gde
- geb
- gej
- gil
- gjn
- gkn
- gld
- gle
- glg
- glk
- gmv
- gna
- gnd
- gng
- gof-script_latin
- gog
- gor
- gqr
- grc
- gri
- grn
- grt
- gso
- gub
- guc
- gud
- guh
- guj
- guk
- gum
- guo
- guq
- guu
- gux
- gvc
- gvl
- gwi
- gwr
- gym
- gyr
- had
- hag
- hak
- hap
- hat
- hau
- hay
- heb
- heh
- hif
- hig
- hil
- hin
- hlb
- hlt
- hne
- hnn
- hns
- hoc
- hoy
- hrv
- hsb
- hto
- hub
- hui
- hun
- hus-dialect_centralveracruz
- hus-dialect_westernpotosino
- huu
- huv
- hvn
- hwc
- hye
- hyw
- iba
- ibo
- icr
- idd
- ifa
- ifb
- ife
- ifk
- ifu
- ify
- ign
- ikk
- ilb
- ilo
- imo
- ina
- inb
- ind
- iou
- ipi
- iqw
- iri
- irk
- isl
- ita
- itl
- itv
- ixl-dialect_sangasparchajul
- ixl-dialect_sanjuancotzal
- ixl-dialect_santamarianebaj
- izr
- izz
- jac
- jam
- jav
- jbu
- jen
- jic
- jiv
- jmc
- jmd
- jpn
- jun
- juy
- jvn
- kaa
- kab
- kac
- kak
- kam
- kan
- kao
- kaq
- kat
- kay
- kaz
- kbo
- kbp
- kbq
- kbr
- kby
- kca
- kcg
- kdc
- kde
- kdh
- kdi
- kdj
- kdl
- kdn
- kdt
- kea
- kek
- ken
- keo
- ker
- key
- kez
- kfb
- kff-script_telugu
- kfw
- kfx
- khg
- khm
- khq
- kia
- kij
- kik
- kin
- kir
- kjb
- kje
- kjg
- kjh
- kki
- kkj
- kle
- klu
- klv
- klw
- kma
- kmd
- kml
- kmr-script_arabic
- kmr-script_cyrillic
- kmr-script_latin
- kmu
- knb
- kne
- knf
- knj
- knk
- kno
- kog
- kor
- kpq
- kps
- kpv
- kpy
- kpz
- kqe
- kqp
- kqr
- kqy
- krc
- kri
- krj
- krl
- krr
- krs
- kru
- ksb
- ksr
- kss
- ktb
- ktj
- kub
- kue
- kum
- kus
- kvn
- kvw
- kwd
- kwf
- kwi
- kxc
- kxf
- kxm
- kxv
- kyb
- kyc
- kyf
- kyg
- kyo
- kyq
- kyu
- kyz
- kzf
- lac
- laj
- lam
- lao
- las
- lat
- lav
- law
- lbj
- lbw
- lcp
- lee
- lef
- lem
- lew
- lex
- lgg
- lgl
- lhu
- lia
- lid
- lif
- lin
- lip
- lis
- lit
- lje
- ljp
- llg
- lln
- lme
- lnd
- lns
- lob
- lok
- lom
- lon
- loq
- lsi
- lsm
- ltz
- luc
- lug
- luo
- lwo
- lww
- lzz
- maa-dialect_sanantonio
- maa-dialect_sanjeronimo
- mad
- mag
- mah
- mai
- maj
- mak
- mal
- mam-dialect_central
- mam-dialect_northern
- mam-dialect_southern
- mam-dialect_western
- maq
- mar
- maw
- maz
- mbb
- mbc
- mbh
- mbj
- mbt
- mbu
- mbz
- mca
- mcb
- mcd
- mco
- mcp
- mcq
- mcu
- mda
- mdf
- mdv
- mdy
- med
- mee
- mej
- men
- meq
- met
- mev
- mfe
- mfh
- mfi
- mfk
- mfq
- mfy
- mfz
- mgd
- mge
- mgh
- mgo
- mhi
- mhr
- mhu
- mhx
- mhy
- mib
- mie
- mif
- mih
- mil
- mim
- min
- mio
- mip
- miq
- mit
- miy
- miz
- mjl
- mjv
- mkd
- mkl
- mkn
- mlg
- mlt
- mmg
- mnb
- mnf
- mnk
- mnw
- mnx
- moa
- mog
- mon
- mop
- mor
- mos
- mox
- moz
- mpg
- mpm
- mpp
- mpx
- mqb
- mqf
- mqj
- mqn
- mri
- mrw
- msy
- mtd
- mtj
- mto
- muh
- mup
- mur
- muv
- muy
- mvp
- mwq
- mwv
- mxb
- mxq
- mxt
- mxv
- mya
- myb
- myk
- myl
- myv
- myx
- myy
- mza
- mzi
- mzj
- mzk
- mzm
- mzw
- nab
- nag
- nan
- nas
- naw
- nca
- nch
- ncj
- ncl
- ncu
- ndj
- ndp
- ndv
- ndy
- ndz
- neb
- new
- nfa
- nfr
- nga
- ngl
- ngp
- ngu
- nhe
- nhi
- nhu
- nhw
- nhx
- nhy
- nia
- nij
- nim
- nin
- nko
- nlc
- nld
- nlg
- nlk
- nmz
- nnb
- nno
- nnq
- nnw
- noa
- nob
- nod
- nog
- not
- npi
- npl
- npy
- nso
- nst
- nsu
- ntm
- ntr
- nuj
- nus
- nuz
- nwb
- nxq
- nya
- nyf
- nyn
- nyo
- nyy
- nzi
- obo
- oci
- ojb-script_latin
- ojb-script_syllabics
- oku
- old
- omw
- onb
- ood
- orm
- ory
- oss
- ote
- otq
- ozm
- pab
- pad
- pag
- pam
- pan
- pao
- pap
- pau
- pbb
- pbc
- pbi
- pce
- pcm
- peg
- pez
- pib
- pil
- pir
- pis
- pjt
- pkb
- pls
- plw
- pmf
- pny
- poh-dialect_eastern
- poh-dialect_western
- poi
- pol
- por
- poy
- ppk
- pps
- prf
- prk
- prt
- pse
- pss
- ptu
- pui
- pus
- pwg
- pww
- pxm
- qub
- quc-dialect_central
- quc-dialect_east
- quc-dialect_north
- quf
- quh
- qul
- quw
- quy
- quz
- qvc
- qve
- qvh
- qvm
- qvn
- qvo
- qvs
- qvw
- qvz
- qwh
- qxh
- qxl
- qxn
- qxo
- qxr
- rah
- rai
- rap
- rav
- raw
- rej
- rel
- rgu
- rhg
- rif-script_arabic
- rif-script_latin
- ril
- rim
- rjs
- rkt
- rmc-script_cyrillic
- rmc-script_latin
- rmo
- rmy-script_cyrillic
- rmy-script_latin
- rng
- rnl
- roh-dialect_sursilv
- roh-dialect_vallader
- rol
- ron
- rop
- rro
- rub
- ruf
- rug
- run
- rus
- sab
- sag
- sah
- saj
- saq
- sas
- sat
- sba
- sbd
- sbl
- sbp
- sch
- sck
- sda
- sea
- seh
- ses
- sey
- sgb
- sgj
- sgw
- shi
- shk
- shn
- sho
- shp
- sid
- sig
- sil
- sja
- sjm
- sld
- slk
- slu
- slv
- sml
- smo
- sna
- snd
- sne
- snn
- snp
- snw
- som
- soy
- spa
- spp
- spy
- sqi
- sri
- srm
- srn
- srp-script_cyrillic
- srp-script_latin
- srx
- stn
- stp
- suc
- suk
- sun
- sur
- sus
- suv
- suz
- swe
- swh
- sxb
- sxn
- sya
- syl
- sza
- tac
- taj
- tam
- tao
- tap
- taq
- tat
- tav
- tbc
- tbg
- tbk
- tbl
- tby
- tbz
- tca
- tcc
- tcs
- tcz
- tdj
- ted
- tee
- tel
- tem
- teo
- ter
- tes
- tew
- tex
- tfr
- tgj
- tgk
- tgl
- tgo
- tgp
- tha
- thk
- thl
- tih
- tik
- tir
- tkr
- tlb
- tlj
- tly
- tmc
- tmf
- tna
- tng
- tnk
- tnn
- tnp
- tnr
- tnt
- tob
- toc
- toh
- tom
- tos
- tpi
- tpm
- tpp
- tpt
- trc
- tri
- trn
- trs
- tso
- tsz
- ttc
- tte
- ttq-script_tifinagh
- tue
- tuf
- tuk-script_arabic
- tuk-script_latin
- tuo
- tur
- tvw
- twb
- twe
- twu
- txa
- txq
- txu
- tye
- tzh-dialect_bachajon
- tzh-dialect_tenejapa
- tzj-dialect_eastern
- tzj-dialect_western
- tzo-dialect_chamula
- tzo-dialect_chenalho
- ubl
- ubu
- udm
- udu
- uig-script_arabic
- uig-script_cyrillic
- ukr
- umb
- unr
- upv
- ura
- urb
- urd-script_arabic
- urd-script_devanagari
- urd-script_latin
- urk
- urt
- ury
- usp
- uzb-script_cyrillic
- uzb-script_latin
- vag
- vid
- vie
- vif
- vmw
- vmy
- vot
- vun
- vut
- wal-script_ethiopic
- wal-script_latin
- wap
- war
- waw
- way
- wba
- wlo
- wlx
- wmw
- wob
- wol
- wsg
- wwa
- xal
- xdy
- xed
- xer
- xho
- xmm
- xnj
- xnr
- xog
- xon
- xrb
- xsb
- xsm
- xsr
- xsu
- xta
- xtd
- xte
- xtm
- xtn
- xua
- xuo
- yaa
- yad
- yal
- yam
- yao
- yas
- yat
- yaz
- yba
- ybb
- ycl
- ycn
- yea
- yka
- yli
- yor
- yre
- yua
- yue-script_traditional
- yuz
- yva
- zaa
- zab
- zac
- zad
- zae
- zai
- zam
- zao
- zaq
- zar
- zas
- zav
- zaw
- zca
- zga
- zim
- ziw
- zlm
- zmz
- zne
- zos
- zpc
- zpg
- zpi
- zpl
- zpm
- zpo
- zpt
- zpu
- zpz
- ztq
- zty
- zul
- zyb
- zyp
- zza
</details>
## Model details
- **Developed by:** Vineel Pratap et al.
- **Model type:** Multi-Lingual Automatic Speech Recognition model
- **Language(s):** 1000+ languages, see [supported languages](#supported-languages)
- **License:** CC-BY-NC 4.0 license
- **Num parameters**: 1 billion
- **Audio sampling rate**: 16,000 kHz
- **Cite as:**
@article{pratap2023mms,
title={Scaling Speech Technology to 1,000+ Languages},
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
journal={arXiv},
year={2023}
}
## Additional Links
- [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
- [Paper](https://arxiv.org/abs/2305.13516)
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
- MMS base checkpoints:
- [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
- [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
- [Official Space](https://huggingface.co/spaces/facebook/MMS)
| [
-0.5531454682350159,
-0.47688037157058716,
0.23551684617996216,
0.45927515625953674,
-0.26559197902679443,
0.08644669502973557,
-0.4169732928276062,
-0.2160322517156601,
0.5533683896064758,
0.4012594223022461,
-0.6392285227775574,
-0.6102564930915833,
-0.5599696636199951,
0.24342061579227448,
-0.12308644503355026,
0.753108024597168,
0.09068992733955383,
0.12336146831512451,
0.3947260081768036,
-0.16771076619625092,
-0.15717044472694397,
-0.2435852438211441,
-0.48004287481307983,
0.04563216492533684,
0.2573448121547699,
0.5034181475639343,
0.6475239992141724,
0.5053460001945496,
0.33899638056755066,
0.4029810130596161,
-0.21373961865901947,
-0.0715494453907013,
-0.06710277497768402,
-0.27542856335639954,
-0.039540790021419525,
-0.424969345331192,
-0.28330710530281067,
-0.04475843161344528,
0.7407721281051636,
0.6977776885032654,
-0.018013332039117813,
0.258822500705719,
-0.09742652624845505,
0.7784643173217773,
-0.3411613404750824,
0.218221053481102,
-0.34349605441093445,
-0.17990551888942719,
-0.24608618021011353,
-0.15210087597370148,
-0.2463417947292328,
-0.5793846845626831,
0.0076428665779531,
-0.5131850242614746,
0.016284732148051262,
-0.2327665388584137,
1.3898576498031616,
-0.08985032141208649,
-0.3890058398246765,
-0.34355419874191284,
-0.6262489557266235,
0.8999614119529724,
-0.7175137996673584,
0.5220089554786682,
0.5356637835502625,
0.22289790213108063,
-0.1757708489894867,
-0.6700687408447266,
-0.8686279058456421,
0.12404841929674149,
-0.07651233673095703,
0.429354190826416,
-0.3088618814945221,
-0.17487871646881104,
0.22672002017498016,
0.33465805649757385,
-0.6005355715751648,
-0.15902915596961975,
-0.8453591465950012,
-0.4239637851715088,
0.6243541836738586,
-0.04286294803023338,
0.5335708856582642,
-0.5051512718200684,
-0.3571782410144806,
-0.09804775565862656,
-0.5168933272361755,
0.35031452775001526,
0.4033515751361847,
0.3442753553390503,
-0.4865301251411438,
0.7133039236068726,
-0.43374118208885193,
0.6692224740982056,
0.12515543401241302,
-0.5004173517227173,
0.7277111411094666,
-0.6356608271598816,
-0.21727676689624786,
-0.010949959978461266,
1.0311137437820435,
0.5908044576644897,
0.0509357824921608,
0.052452340722084045,
-0.003267063060775399,
0.3761248290538788,
-0.36447304487228394,
-0.8341211676597595,
0.0022975862957537174,
0.4135282039642334,
-0.3508247137069702,
0.08373799175024033,
0.006383029278367758,
-0.9129770398139954,
0.1932397037744522,
-0.24937747418880463,
0.5268048048019409,
-0.7288925051689148,
-0.5026112794876099,
0.043674618005752563,
-0.22485564649105072,
0.28371334075927734,
0.1995099037885666,
-1.08243727684021,
0.07310530543327332,
0.3956550657749176,
1.0821107625961304,
0.0483747199177742,
-0.43080368638038635,
-0.23638473451137543,
0.23340058326721191,
-0.3103192150592804,
0.6560978889465332,
-0.3960488736629486,
-0.457586407661438,
0.05509589612483978,
0.3644411265850067,
-0.42201876640319824,
-0.4218190014362335,
0.5712551474571228,
-0.2680152654647827,
0.49808311462402344,
-0.40826186537742615,
-0.2447364628314972,
-0.15431402623653412,
-0.1017773449420929,
-0.5143411755561829,
1.2169466018676758,
0.4801439642906189,
-0.8054836392402649,
0.44619008898735046,
-0.41000428795814514,
-0.5251896977424622,
-0.14979994297027588,
-0.004331750795245171,
-0.44151434302330017,
-0.15109892189502716,
0.3512124717235565,
0.3116665482521057,
-0.16879257559776306,
0.07867564260959625,
0.06518342345952988,
-0.48097744584083557,
0.05735566467046738,
-0.2825533151626587,
1.447638988494873,
0.6914204359054565,
-0.5749557614326477,
0.013236705213785172,
-0.8766658902168274,
0.03480363264679909,
-0.04216036573052406,
-0.8324727416038513,
0.06260934472084045,
-0.3481185734272003,
0.24259807169437408,
0.5443472266197205,
0.20359349250793457,
-0.8441908359527588,
-0.01499305758625269,
-0.5349853038787842,
0.5513623952865601,
0.6643035411834717,
-0.08136186748743057,
0.4517070949077606,
-0.5542197227478027,
0.5715829133987427,
0.22887663543224335,
0.03759311884641647,
-0.27708426117897034,
-0.5088813304901123,
-0.8426867723464966,
-0.6014778017997742,
0.17464905977249146,
0.8620020747184753,
-0.7412121295928955,
0.617732048034668,
-0.3574243187904358,
-0.7422080039978027,
-0.7522600293159485,
-0.08698397874832153,
0.21814370155334473,
0.3803171217441559,
0.3390578329563141,
-0.2667442858219147,
-0.7754737138748169,
-0.868757426738739,
-0.15260152518749237,
-0.3422633409500122,
-0.035339534282684326,
0.4058911204338074,
0.65765380859375,
-0.28058061003685,
0.8723239302635193,
-0.227071151137352,
-0.6104146242141724,
-0.3764078915119171,
-0.309262752532959,
0.6165019869804382,
0.5067166686058044,
0.7314490079879761,
-0.7194352149963379,
-0.8189106583595276,
0.12317319959402084,
-0.6609763503074646,
-0.11719078570604324,
-0.06437074393033981,
0.1282566785812378,
0.5805361866950989,
0.4183141887187958,
-0.6786264181137085,
0.3994603157043457,
0.6725648045539856,
-0.5591513514518738,
0.6585439443588257,
-0.25005581974983215,
0.4712091386318207,
-1.2873120307922363,
0.029845310375094414,
-0.2763634920120239,
0.04783407226204872,
-0.5727474093437195,
-0.18412275612354279,
0.05261002108454704,
-0.117255799472332,
-0.581508994102478,
0.6480188369750977,
-0.6095138192176819,
0.09854637831449509,
0.09402851015329361,
0.195420503616333,
-0.22544343769550323,
0.6639096736907959,
0.15380775928497314,
0.914357602596283,
0.9468801021575928,
-0.5982257723808289,
0.4196365177631378,
0.2803480923175812,
-0.7056372165679932,
0.6309201121330261,
-0.5094934105873108,
-0.3120138943195343,
-0.10397415608167648,
0.2673315107822418,
-1.2574965953826904,
-0.30730703473091125,
0.3162837624549866,
-0.7990421056747437,
0.15685193240642548,
-0.2867630124092102,
-0.5092237591743469,
-0.5965352654457092,
-0.15586765110492706,
0.07274021953344345,
0.47632497549057007,
-0.36062681674957275,
0.5630073547363281,
0.51539146900177,
-0.2918379604816437,
-0.6882241368293762,
-0.9343823194503784,
0.17316550016403198,
-0.3194066882133484,
-0.9591696858406067,
0.24744296073913574,
-0.012065285816788673,
-0.0981544554233551,
-0.06942962110042572,
0.005431691184639931,
-0.09414198249578476,
-0.09755787998437881,
0.30137258768081665,
0.18844270706176758,
-0.28937599062919617,
-0.23350240290164948,
0.0587044283747673,
-0.11519259959459305,
-0.17824462056159973,
-0.20023950934410095,
0.9129974842071533,
-0.14324316382408142,
-0.12838830053806305,
-0.8237798810005188,
0.3876700699329376,
0.6933106780052185,
-0.5126951336860657,
0.889697253704071,
0.8609695434570312,
-0.28647947311401367,
0.24615730345249176,
-0.6470322012901306,
-0.08785954862833023,
-0.5082240104675293,
0.36595654487609863,
-0.6352398991584778,
-0.9320081472396851,
0.9221080541610718,
-0.17689476907253265,
-0.026250099763274193,
0.7311715483665466,
0.8631711006164551,
-0.08024291694164276,
0.8888672590255737,
0.36278584599494934,
-0.21705596148967743,
0.5969204306602478,
-0.6116435527801514,
-0.04964478686451912,
-0.7070806622505188,
-0.39845263957977295,
-0.8270246982574463,
-0.1488005369901657,
-0.7838912010192871,
-0.536128580570221,
0.47552886605262756,
0.03210188075900078,
-0.16763631999492645,
0.6112247705459595,
-0.4274483621120453,
0.29194268584251404,
0.4914264380931854,
-0.0383233018219471,
0.13899242877960205,
0.19153743982315063,
-0.5030779242515564,
-0.13502471148967743,
-0.4964887499809265,
-0.6397867202758789,
1.298708200454712,
0.1710415631532669,
0.4604182541370392,
0.47889038920402527,
0.828764796257019,
0.07478443533182144,
-0.06135009974241257,
-0.629870593547821,
0.48421207070350647,
-0.05794476717710495,
-0.8219385147094727,
-0.3884652256965637,
-0.27618080377578735,
-1.0065455436706543,
0.44881704449653625,
-0.001137560815550387,
-1.1463897228240967,
0.5392093062400818,
-0.20683594048023224,
-0.30980199575424194,
0.2306162714958191,
-0.7025683522224426,
0.7885482311248779,
0.20854143798351288,
-0.2889310121536255,
-0.34875768423080444,
-0.7691879272460938,
0.2874503433704376,
0.19420509040355682,
0.5107595920562744,
-0.21158820390701294,
0.15110696852207184,
0.9555740356445312,
-0.5174757242202759,
0.5284344553947449,
-0.2286384105682373,
-0.036745041608810425,
0.5289521813392639,
-0.06977493315935135,
0.33699262142181396,
0.17274467647075653,
-0.4353398382663727,
0.25284430384635925,
0.37685006856918335,
-0.4127224385738373,
-0.22524450719356537,
0.8877058625221252,
-0.9964504837989807,
-0.6209588646888733,
-0.7191182374954224,
-0.38684120774269104,
0.19063562154769897,
0.48003602027893066,
0.5307016968727112,
0.5333029627799988,
-0.03553425520658493,
0.23449216783046722,
0.4307401776313782,
-0.3511831760406494,
0.6436130404472351,
0.6706092953681946,
-0.2419501096010208,
-0.9133176803588867,
1.0073952674865723,
0.3095632791519165,
0.4359070956707001,
0.2805291712284088,
0.11954391002655029,
-0.38089871406555176,
-0.36485809087753296,
-0.6574180126190186,
0.3303685784339905,
-0.48346367478370667,
-0.009246709756553173,
-0.8220897912979126,
-0.06551753729581833,
-0.9082222580909729,
-0.1392194777727127,
-0.26484015583992004,
-0.6299352049827576,
-0.14994029700756073,
0.07134487479925156,
0.327229768037796,
0.32640159130096436,
-0.430136114358902,
0.4488055408000946,
-0.516055703163147,
0.48370733857154846,
0.020264940336346626,
0.13704830408096313,
-0.35037752985954285,
-0.8510185480117798,
-0.3656451404094696,
0.24300965666770935,
-0.37103867530822754,
-1.1412701606750488,
0.5948238372802734,
0.17511335015296936,
0.41632553935050964,
0.44215261936187744,
-0.053658194839954376,
0.7383171916007996,
-0.44041723012924194,
0.9843918681144714,
0.16805170476436615,
-1.0946533679962158,
0.6784026026725769,
-0.5124794840812683,
0.37724795937538147,
0.5679492354393005,
0.4345335364341736,
-0.9992575645446777,
-0.624319314956665,
-0.5479468703269958,
-0.9014813303947449,
1.1625808477401733,
0.38295724987983704,
0.2102195769548416,
-0.17212410271167755,
-0.036188188940286636,
-0.16856645047664642,
-0.010427006520330906,
-0.6465896368026733,
-0.6905372142791748,
-0.3020963966846466,
-0.17963089048862457,
-0.12205368280410767,
-0.16029299795627594,
-0.11201729625463486,
-0.6465659737586975,
0.8004845380783081,
0.21182633936405182,
0.5171622037887573,
0.5355067253112793,
-0.14698772132396698,
-0.2396038919687271,
0.44209519028663635,
0.9309676885604858,
0.6996970176696777,
-0.35636991262435913,
0.0959622710943222,
0.23497073352336884,
-0.7205809354782104,
0.2372320145368576,
-0.0007901674835011363,
-0.3665705621242523,
0.2915174067020416,
0.21420763432979584,
0.8741856217384338,
-0.09430914372205734,
-0.5597379207611084,
0.5604798197746277,
-0.08178374916315079,
-0.23337773978710175,
-0.7364107370376587,
-0.12987986207008362,
0.36933648586273193,
0.20199792087078094,
0.5408346056938171,
0.10331877321004868,
-0.07888469099998474,
-0.8977373242378235,
0.2961552143096924,
0.4611324071884155,
-0.5242834687232971,
-0.2555815279483795,
0.8492704033851624,
0.06453553587198257,
-0.15792319178581238,
0.4051741063594818,
-0.13863173127174377,
-0.772895097732544,
0.7453184127807617,
0.6442103981971741,
0.6510225534439087,
-0.659633219242096,
0.27308765053749084,
0.8216462731361389,
0.6039347648620605,
0.1008780226111412,
0.7007881999015808,
-0.001258242642506957,
-0.6355789303779602,
-0.155922532081604,
-0.8849219083786011,
-0.06914056092500687,
0.1273493468761444,
-0.6458433866500854,
0.4690043032169342,
-0.4999051094055176,
-0.23408523201942444,
0.0030533531680703163,
0.2193407118320465,
-0.6136083602905273,
0.29648953676223755,
-0.023527301847934723,
0.9567604064941406,
-1.1053156852722168,
1.1535013914108276,
0.5559523701667786,
-0.5520972013473511,
-0.9567156434059143,
-0.22022704780101776,
-0.009887848980724812,
-0.6558064222335815,
0.6531014442443848,
0.20215706527233124,
0.002484304131940007,
0.12192512303590775,
-0.22487665712833405,
-1.1189231872558594,
1.1363751888275146,
0.22442218661308289,
-0.40213868021965027,
0.3859585225582123,
0.2836873233318329,
0.514184832572937,
-0.18807104229927063,
0.5168516039848328,
0.8700377941131592,
0.7612819671630859,
0.1252380758523941,
-1.2196044921875,
0.14655761420726776,
-0.4869917631149292,
-0.31057968735694885,
0.09743855893611908,
-0.9536598920822144,
1.021316647529602,
-0.36250802874565125,
-0.4306528866291046,
0.06226081773638725,
0.8113523125648499,
0.3259270191192627,
0.2608926594257355,
0.39478325843811035,
0.5477989315986633,
0.5513783097267151,
-0.361153781414032,
0.9128103852272034,
-0.3839133679866791,
0.33526188135147095,
0.6304029822349548,
0.14749176800251007,
0.8457168340682983,
0.48578110337257385,
-0.5355963706970215,
0.47315412759780884,
0.6161819100379944,
-0.18708494305610657,
0.5821599960327148,
-0.04679837450385094,
-0.5086771845817566,
-0.033419448882341385,
-0.2722645103931427,
-0.49522146582603455,
0.6913552284240723,
0.4451836049556732,
-0.4137236773967743,
0.08416178822517395,
-0.003115032333880663,
0.4293923079967499,
-0.008737162686884403,
-0.16633756458759308,
0.632448136806488,
0.027988271787762642,
-0.7468739151954651,
0.870741605758667,
0.21434976160526276,
0.8557474613189697,
-0.6768184900283813,
0.25053054094314575,
-0.2158869355916977,
0.24687716364860535,
-0.3532535135746002,
-0.7979397177696228,
0.34665361046791077,
-0.22057197988033295,
-0.21174149215221405,
0.0463365763425827,
0.21047304570674896,
-0.7405330538749695,
-0.6480233669281006,
0.3584977686405182,
0.24028967320919037,
0.40201136469841003,
0.13133083283901215,
-0.6230350732803345,
0.12223539501428604,
0.30013182759284973,
-0.3070355951786041,
0.20594435930252075,
0.36249372363090515,
0.09033212065696716,
0.6148306131362915,
0.6976556777954102,
0.5325273275375366,
0.3053801655769348,
-0.11058489978313446,
0.8975130319595337,
-0.768442690372467,
-0.5759855508804321,
-0.8070882558822632,
0.41062846779823303,
0.08749731630086899,
-0.38627490401268005,
1.053170084953308,
0.9084779024124146,
1.0064417123794556,
-0.19291295111179352,
0.9788942337036133,
-0.41253840923309326,
0.6001479625701904,
-0.5003150105476379,
0.9629760384559631,
-0.5990012884140015,
0.02144942432641983,
-0.5646622180938721,
-0.9803548455238342,
-0.2759389877319336,
0.7711887955665588,
-0.2915199100971222,
0.033129461109638214,
0.8039637207984924,
1.102724313735962,
-0.020853154361248016,
-0.0702720582485199,
0.2517704665660858,
0.30389857292175293,
0.19890882074832916,
0.7691720128059387,
0.5654902458190918,
-0.7745828032493591,
0.7610647082328796,
-0.7467509508132935,
-0.1404377520084381,
-0.10491041094064713,
-0.5160320997238159,
-0.7473098039627075,
-0.9236522912979126,
-0.3126460611820221,
-0.5539994835853577,
-0.22150884568691254,
0.9160144925117493,
0.3552054762840271,
-0.9898689985275269,
-0.5925190448760986,
0.40725865960121155,
0.15648356080055237,
-0.4293220341205597,
-0.2525749206542969,
0.9793286323547363,
0.1247301995754242,
-1.060178518295288,
0.43820422887802124,
0.28064441680908203,
0.08615700155496597,
-0.037069037556648254,
-0.25533512234687805,
-0.4489726424217224,
0.23188982903957367,
0.4686046540737152,
0.42121630907058716,
-0.9070570468902588,
-0.15624243021011353,
-0.11832977831363678,
-0.35533207654953003,
0.10672569274902344,
0.4563475549221039,
-0.5230186581611633,
0.5229439735412598,
0.7469015121459961,
0.012968998402357101,
0.5563865303993225,
-0.12836900353431702,
0.25976037979125977,
-0.4234400987625122,
0.4879888892173767,
-0.09133902192115784,
0.48750680685043335,
0.18654431402683258,
-0.1587415486574173,
0.47336453199386597,
0.48286494612693787,
-0.5449376702308655,
-0.8774785995483398,
-0.014991935342550278,
-1.3289378881454468,
-0.07638320326805115,
1.3430712223052979,
-0.28507810831069946,
-0.3640514016151428,
-0.3642338514328003,
-0.4107198417186737,
0.6031199097633362,
-0.602989912033081,
0.6844430565834045,
0.5973320603370667,
0.08873840421438217,
-0.026896093040704727,
-0.6887692809104919,
0.5876932740211487,
0.45141997933387756,
-0.600842297077179,
-0.040776126086711884,
0.3588675260543823,
0.5401152968406677,
0.2746581733226776,
0.9382559061050415,
-0.41061919927597046,
0.40215200185775757,
0.04729520156979561,
0.16343258321285248,
0.11759926378726959,
-0.06238599121570587,
-0.330502986907959,
-0.023547684773802757,
-0.35992974042892456,
-0.21718592941761017
] |
fxmarty/tiny-llama-fast-tokenizer | fxmarty | "2023-10-16T09:01:43Z" | 182,553 | 9 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-04-17T07:52:39Z" | Note: this model has random weights and is useful only for testing purposes. | [
0.24043191969394684,
-0.5925667881965637,
0.40897414088249207,
0.7264919281005859,
-0.5606603622436523,
-0.8825579285621643,
0.3445756435394287,
-0.444088876247406,
0.10472507774829865,
0.6818320155143738,
-0.597088098526001,
-0.3564848005771637,
-0.20309296250343323,
-0.2536325752735138,
-1.3186311721801758,
1.3792598247528076,
0.1821315884590149,
0.8412119746208191,
-0.29130733013153076,
-0.3648681640625,
0.11085351556539536,
-0.37929797172546387,
-0.873799741268158,
-0.34014540910720825,
0.7755292654037476,
0.4148337244987488,
0.5185695886611938,
0.22103534638881683,
0.8187386989593506,
-0.003950027748942375,
0.2844526171684265,
-0.5072854161262512,
-0.6758207082748413,
-0.2794479429721832,
0.17224054038524628,
-0.9849656224250793,
-0.6395253539085388,
0.3019833266735077,
0.7590217590332031,
0.9261457920074463,
-0.5170187950134277,
0.607605516910553,
-0.6127750277519226,
0.17185303568840027,
-0.5808878540992737,
-0.19137504696846008,
-0.3237314820289612,
0.4699224531650543,
-0.2669418454170227,
0.05441158264875412,
-0.38602426648139954,
-0.3218722343444824,
-0.3418591022491455,
-0.5080797672271729,
0.6115023493766785,
0.6145089268684387,
1.3322287797927856,
-0.05199543014168739,
-0.3289777934551239,
0.11775626987218857,
-0.8725987076759338,
0.712623655796051,
-0.5974159836769104,
0.24514125287532806,
0.19007068872451782,
0.7548127770423889,
0.23692862689495087,
-0.5189249515533447,
-0.2892216444015503,
-0.7929299473762512,
0.48855388164520264,
0.06827782839536667,
0.28046512603759766,
0.20575562119483948,
0.5588784217834473,
0.49153977632522583,
-0.6194509267807007,
0.04546137526631355,
-0.6687584519386292,
-0.025370102375745773,
0.6858862638473511,
0.21314910054206848,
0.6101824045181274,
0.007528364658355713,
-1.0999681949615479,
-0.4108315110206604,
-0.5096563696861267,
0.49011242389678955,
0.5218951106071472,
0.28229770064353943,
-0.44807496666908264,
1.3464126586914062,
0.10825974494218826,
0.789857804775238,
-0.3917399048805237,
-0.03599048778414726,
0.45040902495384216,
0.10433744639158249,
-0.6027266383171082,
-0.10585597157478333,
0.5707472562789917,
0.35694533586502075,
0.6025528907775879,
-0.2883959412574768,
-0.40852585434913635,
-0.11025875061750412,
0.37967222929000854,
-0.9225404262542725,
-0.7966749668121338,
0.20945973694324493,
-0.6217811703681946,
-0.7662849426269531,
0.08658722043037415,
-0.3885834217071533,
-0.342941015958786,
0.547457754611969,
0.7292780876159668,
-0.24946829676628113,
-0.379610151052475,
0.14691776037216187,
-0.986116886138916,
-0.2364070564508438,
0.1517172008752823,
-0.294464111328125,
0.5701442956924438,
-0.11029895395040512,
0.4203098714351654,
-0.15813665091991425,
-0.6036109924316406,
-0.2692670226097107,
-0.3779795467853546,
-0.15995891392230988,
0.7848942279815674,
-0.26437100768089294,
-0.6554532647132874,
-0.42417967319488525,
0.2589004337787628,
-0.18072904646396637,
-0.32074087858200073,
0.9398576021194458,
-0.8372576236724854,
-0.21723313629627228,
-0.3778318166732788,
-0.6148272752761841,
-0.2987728416919708,
-0.3627135753631592,
-0.8641111254692078,
0.9285948276519775,
0.5828518867492676,
-0.6474997401237488,
0.8782904148101807,
-0.38434773683547974,
-0.4872523546218872,
0.232965886592865,
-0.3043154180049896,
-0.7742115259170532,
0.3951072096824646,
-0.650665283203125,
0.005276147276163101,
-0.15292908251285553,
0.145578533411026,
-0.9986065030097961,
-0.7627833485603333,
0.5207259058952332,
-0.21929152309894562,
0.780906617641449,
0.5480103492736816,
0.0673542469739914,
-0.26094233989715576,
-1.2731523513793945,
0.10727760195732117,
0.5056322813034058,
-0.27830955386161804,
-0.4889489412307739,
-0.012931045144796371,
0.5682113766670227,
-0.06454857438802719,
0.12194985151290894,
-0.6789946556091309,
0.20159311592578888,
0.19053876399993896,
-0.4002112150192261,
0.643160343170166,
-0.11145514994859695,
0.39353904128074646,
-1.0568008422851562,
0.8759346008300781,
0.5659645199775696,
-0.13572673499584198,
0.6425145864486694,
-0.9634956121444702,
-0.619427502155304,
-0.7274942398071289,
0.6943453550338745,
0.5184041857719421,
0.14623792469501495,
0.22803960740566254,
0.3817901015281677,
-0.7484526634216309,
-0.4682592451572418,
-0.05995991826057434,
0.3755151033401489,
0.2674746513366699,
-0.04825209826231003,
-0.325825035572052,
-0.6100215315818787,
-1.109267234802246,
-0.38279274106025696,
0.04862484335899353,
-0.2686114013195038,
0.11798729747533798,
0.7200764417648315,
0.274090975522995,
0.8696447610855103,
-0.6267806887626648,
0.03112976625561714,
-0.3817223310470581,
0.30595818161964417,
0.07682828605175018,
0.4276118874549866,
1.0278338193893433,
-0.7563181519508362,
0.14379173517227173,
-0.4442615211009979,
-0.6928116679191589,
-0.3632402718067169,
-0.2383987158536911,
0.09909426420927048,
-0.6499469876289368,
-0.07579093426465988,
-0.6626019477844238,
0.5428837537765503,
0.6303772926330566,
-0.11478608846664429,
0.30961915850639343,
-0.5752965211868286,
-0.23586761951446533,
-0.6779207587242126,
0.034557126462459564,
0.45740601420402527,
-0.39343786239624023,
-0.22356702387332916,
0.2418399453163147,
0.30595067143440247,
-0.7412300109863281,
-0.44002965092658997,
1.1562678813934326,
-0.02989998273551464,
-0.09233379364013672,
-0.42694950103759766,
0.07085129618644714,
-0.05965787544846535,
0.2707865536212921,
-0.06794136017560959,
0.564629077911377,
0.23031437397003174,
-0.9875436425209045,
-0.06098580360412598,
-0.13967835903167725,
-0.29284921288490295,
0.39061084389686584,
-0.42137959599494934,
-0.22618801891803741,
0.03736620396375656,
-0.1490173637866974,
-0.7565578818321228,
-0.35396355390548706,
0.35965538024902344,
-0.39536434412002563,
0.029631733894348145,
0.45092320442199707,
-0.2809550166130066,
-0.5406243801116943,
-0.35142776370048523,
0.4661201536655426,
0.557784914970398,
-0.35143131017684937,
0.49651408195495605,
0.30912894010543823,
0.3685040771961212,
-0.2602366805076599,
-1.1422231197357178,
-0.9246960878372192,
-0.4456120729446411,
-0.45714232325553894,
-0.15216875076293945,
-0.040689095854759216,
-0.4118671417236328,
0.24562154710292816,
-0.26477038860321045,
-0.5901780128479004,
0.5061120390892029,
0.4840421676635742,
-0.14192616939544678,
0.02730773389339447,
0.2742169201374054,
-0.007765591144561768,
0.17577902972698212,
0.10576260089874268,
-0.02037440985441208,
0.018243737518787384,
0.5610936284065247,
-0.7512744665145874,
-0.16458439826965332,
0.5280627012252808,
0.45563143491744995,
0.17621725797653198,
0.735615611076355,
0.5053089261054993,
-0.5992769598960876,
-0.828354001045227,
-0.5128092765808105,
-0.2182636857032776,
-0.31493619084358215,
0.8292214870452881,
-0.45198625326156616,
-0.7039564847946167,
0.8310660123825073,
0.1668388396501541,
-0.12576282024383545,
0.6784451007843018,
0.5434509515762329,
-0.3467921018600464,
1.357592225074768,
0.8033109307289124,
0.12194304168224335,
0.15016011893749237,
0.06146470084786415,
0.4512811601161957,
-0.9030080437660217,
0.05335631221532822,
-0.8119994401931763,
-0.4221511483192444,
-0.4866650402545929,
0.1110505759716034,
0.12807604670524597,
0.11377299576997757,
-0.5763620734214783,
0.34650251269340515,
-0.3590908646583557,
0.20743264257907867,
0.9801819920539856,
0.28287288546562195,
0.1994732767343521,
0.17293228209018707,
-0.3968217372894287,
-0.12619182467460632,
-0.7370261549949646,
-0.057348109781742096,
1.4787410497665405,
0.14352641999721527,
1.2823600769042969,
-0.3525395095348358,
0.46527957916259766,
0.33662891387939453,
0.5785011053085327,
-0.5876964926719666,
0.6167469024658203,
-0.09482016414403915,
-1.3997137546539307,
-0.3164677321910858,
-0.817788302898407,
-0.8670430183410645,
0.3646355867385864,
0.14569275081157684,
-0.6173114776611328,
0.019436482340097427,
-0.16687145829200745,
-0.4638955295085907,
0.6551582217216492,
-0.9824493527412415,
0.6032617092132568,
-0.2540648877620697,
0.4325717091560364,
0.2098139524459839,
0.08161236345767975,
0.6732835173606873,
-0.1590029001235962,
0.19069881737232208,
-0.28330978751182556,
0.1266239732503891,
0.8704362511634827,
-0.31031131744384766,
0.6642518043518066,
-0.2910364866256714,
0.49371540546417236,
0.4043426215648651,
0.16311681270599365,
0.5679871439933777,
0.18736158311367035,
-0.040208395570516586,
-0.3232194185256958,
0.15287159383296967,
-0.5668286681175232,
-0.018408413976430893,
0.7664506435394287,
-1.2116045951843262,
-0.3863425552845001,
-0.8677030205726624,
-0.8847306966781616,
0.2720644474029541,
0.1442403346300125,
0.22012460231781006,
0.3698965013027191,
-0.1684231460094452,
0.08743655681610107,
0.7819849848747253,
-0.030071809887886047,
0.11241604387760162,
0.6690770387649536,
-0.45829442143440247,
0.08836495876312256,
0.8218793272972107,
0.29587963223457336,
0.4196569323539734,
0.15294235944747925,
0.44984081387519836,
-0.02247823029756546,
-0.5958735346794128,
-0.09272906184196472,
0.07461099326610565,
-0.8413599729537964,
0.033732421696186066,
-0.5553634762763977,
-0.14639431238174438,
-0.25233736634254456,
0.11889001727104187,
-0.1646834909915924,
-1.0560598373413086,
-0.174399733543396,
-0.4470994174480438,
0.6317625641822815,
0.39748135209083557,
-0.25356703996658325,
0.387495219707489,
-0.5473109483718872,
0.38777846097946167,
0.5754840970039368,
0.22677330672740936,
-0.008637391030788422,
-0.3446980118751526,
-0.25548815727233887,
0.06927172094583511,
-0.403243750333786,
-0.9286208152770996,
0.3045177459716797,
-0.08400605618953705,
0.5880098938941956,
0.4529452621936798,
0.20470170676708221,
0.34925681352615356,
-0.06359695643186569,
0.9426788091659546,
0.0030335679184645414,
-0.23109519481658936,
0.0855443924665451,
-0.5823127031326294,
0.3370778262615204,
0.8938285112380981,
0.3751762807369232,
0.071199931204319,
-0.42853474617004395,
-1.1598570346832275,
-0.8409512042999268,
0.7917538285255432,
0.38803553581237793,
0.11241326481103897,
0.1251702606678009,
0.6123509407043457,
-0.271476149559021,
0.6374093294143677,
-1.20100998878479,
-0.22935378551483154,
0.22167794406414032,
-0.2145148515701294,
0.4499398469924927,
-0.3090181350708008,
-0.49099788069725037,
-0.2678077518939972,
0.5295283794403076,
0.36195436120033264,
0.30904000997543335,
0.2889817953109741,
-0.04423747956752777,
-0.9798591732978821,
-0.15130485594272614,
0.7377076745033264,
0.28497734665870667,
-0.9198592305183411,
-0.18235649168491364,
0.581163763999939,
-0.781665563583374,
0.1877674013376236,
0.3703392744064331,
-0.4326512813568115,
-0.06626157462596893,
-0.08495789021253586,
0.43483448028564453,
0.9586115479469299,
-0.43590545654296875,
0.5794437527656555,
-0.32104218006134033,
-0.13769090175628662,
-0.6908848881721497,
0.45092761516571045,
-0.02946200780570507,
0.05157117918133736,
0.30238932371139526,
0.6707406044006348,
0.05687705799937248,
-0.4487183392047882,
0.37082868814468384,
0.48664823174476624,
-0.35799887776374817,
-0.19579750299453735,
1.3011276721954346,
0.32641729712486267,
-0.5162948369979858,
0.9423636198043823,
-0.7238895297050476,
0.15442505478858948,
0.9910250306129456,
0.39381441473960876,
0.7299503684043884,
-0.25993138551712036,
-0.010893839411437511,
0.21523359417915344,
0.31799787282943726,
-0.3389914929866791,
0.8346388339996338,
0.14307807385921478,
-0.6715947389602661,
0.05584985390305519,
-0.8325270414352417,
-0.5687274932861328,
0.1720234900712967,
-0.7816540002822876,
0.5931002497673035,
-0.7070529460906982,
-0.4839051067829132,
-0.35907360911369324,
-0.035242680460214615,
-0.5783926844596863,
0.852197527885437,
-0.07145435363054276,
1.2210571765899658,
-1.0806925296783447,
0.7806686162948608,
0.7274472713470459,
-0.5280241966247559,
-1.0702006816864014,
-0.4775559902191162,
-0.13858868181705475,
-0.8687891364097595,
0.7138153910636902,
-0.0508226677775383,
0.41383278369903564,
-0.20976796746253967,
-0.6839198470115662,
-0.6735369563102722,
0.8178927302360535,
-0.05737057328224182,
-0.21593935787677765,
-0.7130825519561768,
0.07803232222795486,
0.20431223511695862,
-0.30215537548065186,
0.7470344305038452,
-0.2914176285266876,
0.48974913358688354,
-0.008410057984292507,
-0.7725844383239746,
-0.15731066465377808,
-0.25583893060684204,
0.12925057113170624,
-0.11153316497802734,
-0.7726923823356628,
1.8560551404953003,
0.14685966074466705,
-0.038158345967531204,
0.411740779876709,
0.5813016295433044,
0.820330023765564,
0.20877507328987122,
0.3895627558231354,
1.0058350563049316,
0.7947986721992493,
0.0475965291261673,
1.9971400499343872,
-0.17711348831653595,
0.7070098519325256,
1.1739280223846436,
-0.6334962248802185,
0.3149219751358032,
0.21267785131931305,
-0.15962040424346924,
0.040278203785419464,
0.899587869644165,
-0.4420666992664337,
0.5841575264930725,
0.8411349058151245,
0.2615165114402771,
-0.3236306309700012,
0.0940554216504097,
-0.6388731002807617,
0.16890347003936768,
-0.2514106333255768,
-0.48985469341278076,
-0.5240103006362915,
-0.04079696536064148,
0.24108721315860748,
-0.45713576674461365,
-0.1734766960144043,
-0.20245036482810974,
0.5714448094367981,
-0.15193071961402893,
0.13028281927108765,
-0.14805525541305542,
0.31158217787742615,
-1.187651515007019,
0.22504809498786926,
0.2503969371318817,
0.534345269203186,
-0.05748327821493149,
-0.10235152393579483,
0.13318000733852386,
-0.3210712969303131,
-0.12033627927303314,
0.08625710755586624,
0.5317473411560059,
-0.07789184153079987,
-1.0841708183288574,
0.26337331533432007,
0.18700414896011353,
0.14361675083637238,
-0.33956006169319153,
-0.6570558547973633,
-0.37730395793914795,
-0.34541845321655273,
-0.675091028213501,
0.4832442104816437,
0.4073769450187683,
-0.08504381030797958,
1.045477032661438,
0.5059919953346252,
0.5927824974060059,
-0.1260046362876892,
0.44001081585884094,
0.6351281404495239,
-0.5723419189453125,
-0.4603300094604492,
-0.2950831353664398,
0.6350032687187195,
0.0373823419213295,
-0.904384970664978,
1.1004987955093384,
0.6903721690177917,
1.0372700691223145,
-0.2927479147911072,
0.6598734855651855,
0.09341615438461304,
0.4430273175239563,
-0.3758065700531006,
1.0272645950317383,
-0.7960533499717712,
-0.37602120637893677,
-0.17001670598983765,
-0.6994384527206421,
-0.35911375284194946,
0.7172857522964478,
0.09825671464204788,
0.30732765793800354,
1.2433801889419556,
0.41057753562927246,
-0.022168802097439766,
0.32992905378341675,
0.423722505569458,
0.13765332102775574,
-0.062046002596616745,
0.3188855051994324,
0.3891963064670563,
-0.5676785111427307,
0.508231520652771,
-0.45931029319763184,
-0.33060717582702637,
-0.057154230773448944,
-0.4733334183692932,
-1.4913952350616455,
-0.31561020016670227,
-0.2111550271511078,
-0.4231550693511963,
-0.24166780710220337,
0.6950831413269043,
1.057562232017517,
-0.7536984086036682,
-0.5545267462730408,
-0.14054861664772034,
-0.1285109966993332,
-0.5090699195861816,
-0.17394183576107025,
-0.03254580497741699,
-0.04312124103307724,
-0.4149050712585449,
0.21257030963897705,
-0.4632932245731354,
0.1582297831773758,
-0.40519896149635315,
0.7465069890022278,
-0.2227630913257599,
0.036678753793239594,
-0.34959426522254944,
0.21855787932872772,
-0.20634514093399048,
-0.5501185059547424,
0.11432557553052902,
-0.19188305735588074,
-0.06635992974042892,
0.6328516602516174,
-0.04789719730615616,
0.4654540717601776,
0.6251636743545532,
0.12294157594442368,
0.6006964445114136,
0.060646239668130875,
0.7918230891227722,
-0.5496583580970764,
0.6821573972702026,
0.4047231078147888,
0.5244392156600952,
-0.18628709018230438,
-0.7769032716751099,
0.2900655269622803,
0.442817747592926,
-0.6044013500213623,
-1.000670313835144,
0.29250550270080566,
-1.3473198413848877,
0.11992150545120239,
1.0558518171310425,
-0.2832944095134735,
-0.8027966022491455,
0.5095669031143188,
0.05743420124053955,
0.3475940227508545,
-0.5946955680847168,
0.8382441401481628,
0.87433260679245,
0.14374257624149323,
-0.3112354874610901,
-1.1038891077041626,
0.4318383038043976,
0.383297860622406,
-0.542324960231781,
-0.6931402683258057,
-0.31241634488105774,
0.5325363278388977,
0.10045326501131058,
0.6407126188278198,
-0.13653342425823212,
0.4686211049556732,
0.20543015003204346,
0.35548412799835205,
-0.09991971403360367,
-0.2936733365058899,
-0.36841580271720886,
0.10935106128454208,
0.19797295331954956,
-0.3131982386112213
] |
cerebras/Cerebras-GPT-6.7B | cerebras | "2023-11-22T21:48:55Z" | 182,140 | 61 | transformers | [
"transformers",
"pytorch",
"gpt2",
"causal-lm",
"text-generation",
"en",
"dataset:the_pile",
"arxiv:2304.03208",
"arxiv:2203.15556",
"arxiv:2101.00027",
"license:apache-2.0",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-03-20T20:45:13Z" | ---
language:
- en
inference: false
tags:
- pytorch
- causal-lm
license: apache-2.0
datasets:
- the_pile
pipeline_tag: text-generation
---
# Cerebras-GPT 6.7B
Check out our [Blog Post](https://www.cerebras.net/cerebras-gpt) and [arXiv paper](https://arxiv.org/abs/2304.03208)!
## Model Description
The Cerebras-GPT family is released to facilitate research into LLM scaling laws using open architectures and data sets and demonstrate the simplicity of and scalability of training LLMs on the Cerebras software and hardware stack. All Cerebras-GPT models are available on Hugging Face.
The family includes 111M, 256M, 590M, 1.3B, 2.7B, 6.7B, and 13B models.
All models in the Cerebras-GPT family have been trained in accordance with [Chinchilla scaling laws](https://arxiv.org/abs/2203.15556) (20 tokens per model parameter) which is compute-optimal.
These models were trained on the [Andromeda](https://www.cerebras.net/andromeda/) AI supercomputer comprised of 16 CS-2 wafer scale systems. Cerebras' [weight streaming technology](https://www.cerebras.net/blog/linear-scaling-made-possible-with-weight-streaming) simplifies the training of LLMs by disaggregating compute from model storage. This allowed for efficient scaling of training across nodes using simple data parallelism.
Cerebras systems for pre-training and fine tuning are available in the cloud via the [Cerebras Model Studio](https://www.cerebras.net/product-cloud/). Cerebras CS-2 compatible checkpoints are available in [Cerebras Model Zoo](https://github.com/Cerebras/modelzoo).
## Model Details
* Developed by: [Cerebras Systems](https://www.cerebras.net/)
* License: Apache 2.0
* Model type: Transformer-based Language Model
* Architecture: GPT-3 style architecture
* Data set: The Pile
* Tokenizer: Byte Pair Encoding
* Vocabulary Size: 50257
* Sequence Length: 2048
* Optimizer: AdamW, (β1, β2) = (0.9, 0.95), adam_eps = 1e−8 (1e−9 for larger models)
* Positional Encoding: Learned
* Language: English
* Learn more: Dense Scaling Laws Paper for training procedure, config files, and details on how to use.
**Contact**: To ask questions about Cerebras-GPT models, join the [Cerebras Discord](https://discord.gg/q6bZcMWJVu).
This is the standard parameterization version of Cerebras-GPT with **6.7B** parameters
Related models: [Cerebras-GPT Models](https://huggingface.co/models?sort=downloads&search=cerebras-gpt)
<br><br>
| Model | Parameters | Layers | d_model | Heads | d_head | d_ffn | LR | BS (seq) | BS (tokens) |
|---------------|------------|--------|---------|-------|--------|--------|----------|----------|----------------|
| Cerebras-GPT | 111M | 10 | 768 | 12 | 64 | 3072 | 6.0E-04 | 120 | 246K |
| Cerebras-GPT | 256M | 14 | 1088 | 17 | 64 | 4352 | 6.0E-04 | 264 | 541K |
| Cerebras-GPT | 590M | 18 | 1536 | 12 | 128 | 6144 | 2.0E-04 | 264 | 541K |
| Cerebras-GPT | 1.3B | 24 | 2048 | 16 | 128 | 8192 | 2.0E-04 | 528 | 1.08M |
| Cerebras-GPT | 2.7B | 32 | 2560 | 32 | 80 | 10240 | 2.0E-04 | 528 | 1.08M |
| Cerebras-GPT | 6.7B | 32 | 4096 | 32 | 128 | 16384 | 1.2E-04 | 1040 | 2.13M |
| Cerebras-GPT | 13B | 40 | 5120 | 40 | 128 | 20480 | 1.2E-04 | 720 → 1080 | 1.47M → 2.21M |
<br><br>
## Quickstart
This model can be easily loaded using the AutoModelForCausalLM functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("cerebras/Cerebras-GPT-6.7B")
model = AutoModelForCausalLM.from_pretrained("cerebras/Cerebras-GPT-6.7B")
text = "Generative AI is "
```
And can be used with Hugging Face Pipelines
```python
from transformers import pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
generated_text = pipe(text, max_length=50, do_sample=False, no_repeat_ngram_size=2)[0]
print(generated_text['generated_text'])
```
or with `model.generate()`
```python
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, num_beams=5,
max_new_tokens=50, early_stopping=True,
no_repeat_ngram_size=2)
text_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(text_output[0])
```
<br><br>
## Training data
Cerebras-GPT is trained using [the Pile](https://pile.eleuther.ai) dataset from [EleutherAI](https://www.eleuther.ai). See the [Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed breakdown of data sources and methodology. The Pile was cleaned using the ftfy library to normalize the text, then filtered using scripts provided by Eleuther.
We tokenized the data using byte-pair encoding using the GPT-2 vocabulary. Our tokenized version of the Pile has 371B tokens. We include more details about the training dataset preprocessing in Appendix A.1 of our paper.
Recent works find significant duplicate data present in the Pile. Eleuther’s Pythia applies a deduplication process to reduce replicated data, decreasing the Pile dataset size. Pythia was trained on both the standard dataset and deduplicated dataset to characterize the impact. Our models are trained on the standard Pile without deduplication, which may present an opportunity for further improvement with the deduplicated data set.
<br><br>
## Training procedure
We use the GPT-3 style model architecture. All of our layers use full attention as opposed to the GPT-3 style sparse banded attention. The model shapes were selected to either follow aspect ratio 80 or are the same shape as GPT-3 models. Learning rate warmed up for 375M tokens (1500 steps for 111M and 256M models) and 10x cosine decayed. No dropout was used and weight decay was set to 0.1. All models are trained with MSL of 2048.
All models were trained to Chinchilla point: 20 tokens per model parameter. Number of steps was chosen based on optimal batch size (varied by model) and fixed sequence length (2048). See Training Table, below, for details.
<br>
Model Params | Sequence Length | Batch Size | Number of Steps | Tokens | Tokens per Parameter | Flops
------------ | -------------- | ---------- | --------------- | ------ | -------------------- | -----
111M | 2048 | 120 | 9037 | 2.22E+09 | 20 | 2.6E+18
256M | 2048 | 264 | 9468 | 5.12E+09 | 20 | 1.3E+19
590M | 2048 | 264 | 21836 | 1.18E+10 | 20 | 6.1E+19
1.3B | 2048 | 528 | 24334 | 2.63E+10 | 20 | 2.8E+20
2.7B | 2048 | 528 | 49041 | 5.30E+10 | 20 | 1.1E+21
6.7B | 2048 | 1040 | 62522 | 1.33E+11 | 20 | 6.3E+21
13B | 2048 | 720 | 174335 | 2.57E+11 | 20 | 2.3E+22
<br><br>
## Evaluations
We trained models from smallest to largest and fit a power law as we went along. The power law was helpful for extrapolating the validation loss of the next largest model we trained and provided confidence about whether the training run was going well.
We performed upstream (pre-training) evaluations of text prediction cross-entropy using the Pile validation and test splits. We performed downstream evaluations of text generation accuracy on standardized tasks using the [Eleuther lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). Results are compared against many publicly available large language models in Section 3 of the paper.
#### 0-shot Evaluation
| Model | Params | Training FLOPs | PILE test xent | Hella-Swag | PIQA | Wino-Grande | Lambada | ARC-e | ARC-c | OpenBookQA | Downstream Average |
| ------- | ----- | -------------- | -------------- | ---------- | ----- | ----------- | ------- | ----- | ----- | ---------- | ------------------ |
| Cerebras-GPT | 111M | 2.6E+18 | 2.566 | 0.268 | 0.594 | 0.488 | 0.194 | 0.380 | 0.166 | 0.118 | 0.315 |
| Cerebras-GPT | 256M | 1.3E+19 | 2.299 | 0.274 | 0.613 | 0.511 | 0.293 | 0.410 | 0.170 | 0.158 | 0.347 |
| Cerebras-GPT | 590M | 6.1E+19 | 2.184 | 0.291 | 0.627 | 0.498 | 0.366 | 0.464 | 0.190 | 0.158 | 0.370 |
| Cerebras-GPT | 1.3B | 2.8E+20 | 1.996 | 0.325 | 0.664 | 0.521 | 0.462 | 0.508 | 0.224 | 0.166 | 0.410 |
| Cerebras-GPT | 2.7B | 1.1E+21 | 1.834 | 0.386 | 0.701 | 0.559 | 0.567 | 0.571 | 0.246 | 0.206 | 0.462 |
| Cerebras-GPT | 6.7B | 6.3E+21 | 1.704 | 0.447 | 0.739 | 0.602 | 0.636 | 0.643 | 0.282 | 0.238 | 0.512 |
| Cerebras-GPT | 13B | 2.3E+22 | 1.575 | 0.513 | 0.766 | 0.646 | 0.696 | 0.714 | 0.367 | 0.286 | 0.570 |
#### 5-shot Evaluation
| Model | Params | Hella-Swag | PIQA | Wino-Grande | Lambada | ARC-e | ARC-c | OpenBookQA |
| -------- | ----- | ----------| ----- | ----------- | -------| ----- | ----- | ---------- |
| Cerebras-GPT | 111M | 0.267 | 0.588 | 0.475 | 0.158 | 0.356 | 0.166 | 0.136 |
| Cerebras-GPT | 256M | 0.278 | 0.606 | 0.522 | 0.225 | 0.422 | 0.183 | 0.164 |
| Cerebras-GPT | 590M | 0.291 | 0.634 | 0.479 | 0.281 | 0.475 | 0.206 | 0.152 |
| Cerebras-GPT | 1.3B | 0.326 | 0.668 | 0.536 | 0.395 | 0.529 | 0.241 | 0.174 |
| Cerebras-GPT | 2.7B | 0.382 | 0.697 | 0.543 | 0.487 | 0.590 | 0.267 | 0.224 |
| Cerebras-GPT | 6.7B | 0.444 | 0.736 | 0.590 | 0.591 | 0.667 | 0.314 | 0.270 |
| Cerebras-GPT | 13B | 0.514 | 0.768 | 0.674 | 0.655 | 0.743 | 0.398 | 0.318 |
<br><br>
## Uses and Limitations
### Intended Use
The primary intended use is to further research into large language models. These models can be used as a foundation model for NLP, applications, ethics, and alignment research. Our primary intended users are researchers who are working to improve LLMs and practitioners seeking reference implementations, training setups, hyperparameters, or pre-trained models. We release these models with a fully permissive Apache license for the community to use freely.
You may fine-tune and adapt Cerebras-GPT models for deployment via either Cerebras [Model Studio](https://www.cerebras.net/product-cloud/) or third-party libraries. Further safety-related testing and mitigations should be applied beore using the Cerebras-GPT model family in production downstream applications.
Due to financial and compute budgets, Cerebras-GPT models were only trained and evaluated following the approaches described in the paper.
### Out of Scope Use
Cerebras-GPT models are trained on the Pile, with English language only, and are not suitable for machine translation tasks.
Cerebras-GPT models have not been tuned for human-facing dialog applications like chatbots and will not respond to prompts in a similar way to models that have received instruction tuning or reinforcement learning from human feedback (RLHF) like Flan-T5 or ChatGPT. Cerebras-GPT models can be tuned using those methods.
### Risk, Bias, Ethical Considerations
* **Data**: The Pile dataset has been thoroughly analyzed from various ethical standpoints such as toxicity analysis, gender bias, pejorative content, racially sensitive content etc. Please refer to Pile dataset references.
* **Human life**: The outputs from this model may or may not align with human values. The risk needs to be thoroughly investigated before deploying this model in a production environment where it can directly impact human life.
* **Risks and harms**: There can be distributional bias in the Pile dataset that can manifest in various forms in the downstream model deployment. There are other risks associated with large language models such as amplifying stereotypes, memorizing training data, or revealing private or secure information.
* **Mitigations**: Only mitigations in standard Pile dataset pre-processing were employed when pre-training Cerebras-GPT.
<br><br>
## Acknowledgements
We are thankful to all Cerebras engineers, past and present, that made this work possible. | [
-0.3724236786365509,
-0.6379161477088928,
0.24574679136276245,
0.17581816017627716,
-0.260929137468338,
-0.20810005068778992,
-0.2133607566356659,
-0.4365503191947937,
0.1845605969429016,
0.2927558422088623,
-0.38647589087486267,
-0.416778564453125,
-0.7495461106300354,
-0.21156193315982819,
-0.4140297472476959,
1.1454031467437744,
-0.07282644510269165,
0.04219444468617439,
0.13985846936702728,
-0.07952028512954712,
-0.1995473951101303,
-0.5730435848236084,
-0.7840283513069153,
-0.4118117392063141,
0.48432472348213196,
-0.011462422087788582,
0.7686662673950195,
0.8055933117866516,
0.3573249280452728,
0.2975316345691681,
-0.38864272832870483,
-0.06599818915128708,
-0.3193058371543884,
-0.32006803154945374,
0.14061205089092255,
-0.24906876683235168,
-0.5561433434486389,
-0.10523905605077744,
0.6913940906524658,
0.6492738723754883,
-0.3622097373008728,
0.2500084340572357,
0.3318383991718292,
0.7396546006202698,
-0.49904102087020874,
0.17159441113471985,
-0.5043345093727112,
0.008885013870894909,
-0.25248193740844727,
0.012475447729229927,
-0.2934516370296478,
-0.20220139622688293,
0.022481320425868034,
-0.5360541343688965,
0.29596468806266785,
-0.045304153114557266,
1.2890719175338745,
0.23458172380924225,
-0.4360252618789673,
-0.2720334529876709,
-0.41702407598495483,
0.718756377696991,
-0.775496244430542,
0.3923220634460449,
0.17447607219219208,
-0.0024229104164987803,
-0.032380733639001846,
-0.862421989440918,
-0.5246948599815369,
-0.22469624876976013,
-0.21286998689174652,
0.15683065354824066,
-0.21082478761672974,
0.05926477909088135,
0.46296823024749756,
0.5334434509277344,
-0.7962416410446167,
0.21255101263523102,
-0.49925458431243896,
-0.2445923238992691,
0.6931941509246826,
0.14804190397262573,
0.21268092095851898,
-0.3597373962402344,
-0.42806771397590637,
-0.4015311896800995,
-0.5020363330841064,
0.3340936601161957,
0.41781678795814514,
0.20632681250572205,
-0.43039968609809875,
0.39520809054374695,
-0.17329128086566925,
0.6228454113006592,
0.2970373034477234,
-0.09870060533285141,
0.5633254051208496,
-0.2938844561576843,
-0.4492621123790741,
-0.06266357749700546,
1.0578364133834839,
0.17791414260864258,
0.16568708419799805,
0.09612618386745453,
-0.20359228551387787,
-0.14682580530643463,
0.00910869613289833,
-1.0989844799041748,
-0.35512861609458923,
0.1826269030570984,
-0.5927736163139343,
-0.39746132493019104,
0.03188883140683174,
-0.7044159770011902,
-0.2085728943347931,
-0.40698298811912537,
0.4976361095905304,
-0.4986937642097473,
-0.34223514795303345,
0.096151202917099,
0.02703564241528511,
0.4484088718891144,
0.26583296060562134,
-1.198980689048767,
0.28058376908302307,
0.39730700850486755,
0.8550509810447693,
0.04767833277583122,
-0.3819097876548767,
-0.2425331324338913,
-0.02017430029809475,
-0.14431993663311005,
0.48467233777046204,
-0.0357290580868721,
-0.36422598361968994,
-0.22542895376682281,
0.13100099563598633,
-0.4427589178085327,
-0.36038723587989807,
0.5130236148834229,
-0.34860631823539734,
0.223818838596344,
-0.14324979484081268,
-0.5400242805480957,
-0.38905978202819824,
0.17049548029899597,
-0.5648088455200195,
1.1301988363265991,
0.18960800766944885,
-0.941196084022522,
0.26753145456314087,
-0.4718514680862427,
-0.24910925328731537,
-0.08310877531766891,
-0.14163145422935486,
-0.6485570669174194,
-0.15635406970977783,
0.44207286834716797,
0.5840516090393066,
-0.3295888900756836,
0.35031387209892273,
-0.24066410958766937,
-0.28862231969833374,
-0.08783113211393356,
-0.5132157802581787,
1.1862521171569824,
0.28382399678230286,
-0.6243400573730469,
0.004736204631626606,
-0.747941255569458,
0.14089199900627136,
0.354944109916687,
-0.40743765234947205,
0.10754275321960449,
-0.22138215601444244,
0.11577235907316208,
0.2563619017601013,
0.37041178345680237,
-0.27068015933036804,
0.19754557311534882,
-0.45953962206840515,
0.5362260341644287,
0.7145741581916809,
0.04720708355307579,
0.3052537143230438,
-0.31759533286094666,
0.4473550319671631,
0.09156455099582672,
0.2491672784090042,
-0.14499835669994354,
-0.5314800143241882,
-0.7625589966773987,
-0.244068443775177,
0.4442286789417267,
0.5548010468482971,
-0.45926305651664734,
0.5075629949569702,
-0.3051450550556183,
-0.8071424961090088,
-0.22468312084674835,
0.07500384747982025,
0.4780232310295105,
0.5445739030838013,
0.44845589995384216,
-0.2672634422779083,
-0.49301931262016296,
-0.972466766834259,
-0.07751750946044922,
-0.24681034684181213,
-0.03979632630944252,
0.2017405778169632,
0.7859993577003479,
-0.05652797967195511,
0.7185519933700562,
-0.4696447551250458,
-0.06166764348745346,
-0.08168019354343414,
0.188726007938385,
0.45662158727645874,
0.6321537494659424,
0.6272011995315552,
-0.7735124230384827,
-0.5504665374755859,
0.020690126344561577,
-0.8179399371147156,
0.12321317940950394,
-0.19978107511997223,
0.04819469898939133,
0.30741286277770996,
0.4430347979068756,
-0.7367139458656311,
0.379266619682312,
0.6570868492126465,
-0.3394198417663574,
0.6442624926567078,
-0.27687498927116394,
-0.006172908470034599,
-1.085754632949829,
0.31236886978149414,
0.14710713922977448,
-0.03925039991736412,
-0.6026356220245361,
0.06730388849973679,
0.25362297892570496,
0.04651879891753197,
-0.6203190684318542,
0.5456474423408508,
-0.6153789162635803,
-0.0058686514385044575,
-0.0017948236782103777,
0.1291419416666031,
-0.09484023600816727,
0.8634904026985168,
0.09690909832715988,
0.6922180652618408,
0.6229367256164551,
-0.6465783715248108,
0.12204920500516891,
0.1567673683166504,
-0.22532308101654053,
0.36050888895988464,
-0.8385052680969238,
0.028988344594836235,
-0.03120735101401806,
0.36158543825149536,
-0.7257384061813354,
-0.17628715932369232,
0.24935612082481384,
-0.6027499437332153,
0.5042517185211182,
-0.27243128418922424,
-0.4206451177597046,
-0.652411162853241,
-0.3033248484134674,
0.3352130055427551,
0.7081773281097412,
-0.5882740020751953,
0.5751975178718567,
0.2587794363498688,
-0.030004987493157387,
-0.672858476638794,
-0.7252698540687561,
-0.04877008497714996,
-0.40707525610923767,
-0.8652717471122742,
0.5232680439949036,
-0.08061117678880692,
-0.0035870689898729324,
-0.2002313882112503,
0.04628782346844673,
0.038552284240722656,
0.03192949667572975,
0.30711647868156433,
0.28354576230049133,
-0.13781575858592987,
-0.10676901787519455,
0.014667226001620293,
-0.08355524390935898,
0.0818944200873375,
-0.3478471636772156,
0.7081987261772156,
-0.3968886435031891,
-0.2380155771970749,
-0.533680260181427,
-0.16654901206493378,
0.591587245464325,
-0.1853211522102356,
0.8525428771972656,
0.8265905976295471,
-0.5406481027603149,
0.16803395748138428,
-0.47930288314819336,
-0.031509410589933395,
-0.5039224028587341,
0.49209731817245483,
-0.3950735926628113,
-0.7212337255477905,
0.7509415745735168,
0.30924293398857117,
0.11466225236654282,
0.8535855412483215,
0.7635242938995361,
0.12004353106021881,
1.129866600036621,
0.3901049494743347,
-0.19801731407642365,
0.502228856086731,
-0.7076212167739868,
-0.0015934749972075224,
-0.9637489318847656,
-0.26711493730545044,
-0.4500279724597931,
-0.18648038804531097,
-0.7090092301368713,
-0.2945357859134674,
0.24968376755714417,
0.3595610558986664,
-0.6769325137138367,
0.5021017789840698,
-0.7476267218589783,
0.2253231704235077,
0.48213618993759155,
0.1871717870235443,
0.08088027685880661,
0.010056821629405022,
-0.32860931754112244,
0.0032377191819250584,
-0.7170740365982056,
-0.4728407859802246,
1.243412971496582,
0.5579126477241516,
0.4557206630706787,
-0.10939711332321167,
0.789806067943573,
-0.0213481392711401,
0.39557063579559326,
-0.6285216808319092,
0.4498099386692047,
-0.08383457362651825,
-0.631420910358429,
-0.32198116183280945,
-0.5832536816596985,
-1.016884446144104,
0.5219516158103943,
0.018092138692736626,
-1.0008864402770996,
0.2664004862308502,
0.12273842841386795,
-0.45715761184692383,
0.6008585691452026,
-0.5929559469223022,
0.9456222653388977,
-0.26831045746803284,
-0.3846486210823059,
-0.14806681871414185,
-0.7395776510238647,
0.4871736764907837,
-0.025116322562098503,
0.24120701849460602,
0.14161080121994019,
0.08249152451753616,
0.9633397459983826,
-0.6828635931015015,
0.7326104044914246,
-0.34017807245254517,
-0.16232416033744812,
0.5533514022827148,
-0.13131248950958252,
0.7776204347610474,
-0.00977210234850645,
-0.07130391895771027,
0.25439396500587463,
0.006609873380511999,
-0.41170534491539,
-0.262193500995636,
0.7767281532287598,
-1.089012622833252,
-0.47397762537002563,
-0.5330912470817566,
-0.5151317715644836,
0.07084035873413086,
0.16810370981693268,
0.5152985453605652,
0.3973224461078644,
0.04016539826989174,
0.3884334862232208,
0.6512894630432129,
-0.1844361424446106,
0.692517876625061,
0.29337912797927856,
-0.2325773537158966,
-0.631321370601654,
0.8314102292060852,
0.30318954586982727,
0.25447893142700195,
0.19474536180496216,
0.11488669365644455,
-0.41019895672798157,
-0.6214253902435303,
-0.5672241449356079,
0.32617393136024475,
-0.6430755257606506,
-0.13711492717266083,
-0.8119208812713623,
-0.43217724561691284,
-0.4741462171077728,
-0.13140761852264404,
-0.33127832412719727,
-0.4089440405368805,
-0.329903244972229,
-0.08233452588319778,
0.35743117332458496,
0.5217598676681519,
-0.09893076121807098,
0.38341113924980164,
-0.7464802861213684,
0.08859202265739441,
0.30507466197013855,
0.1233457550406456,
0.20283439755439758,
-0.981291651725769,
-0.35811135172843933,
0.1197839304804802,
-0.6466600298881531,
-0.8309522867202759,
0.5974809527397156,
-0.05712193250656128,
0.46692955493927,
0.31245285272598267,
-0.2859829366207123,
0.7314921021461487,
-0.2862814664840698,
0.9737475514411926,
0.3418373763561249,
-0.9655146598815918,
0.5208917856216431,
-0.614151656627655,
0.21866802871227264,
0.4271810054779053,
0.3758217692375183,
-0.5061712861061096,
-0.18914996087551117,
-1.0057629346847534,
-0.999107301235199,
0.7546407580375671,
0.3567054271697998,
-0.021707087755203247,
0.16040979325771332,
0.4690745770931244,
-0.18365709483623505,
0.16146671772003174,
-1.0497251749038696,
-0.2809232473373413,
-0.3031295835971832,
-0.198587566614151,
-0.03732948750257492,
0.04168077930808067,
0.14714737236499786,
-0.48395416140556335,
0.8794501423835754,
-0.11355218291282654,
0.2430618554353714,
0.26322218775749207,
-0.18871347606182098,
-0.13160674273967743,
-0.04931851476430893,
0.5352635383605957,
0.5667468905448914,
-0.15637852251529694,
-0.26841920614242554,
0.4447660446166992,
-0.7562876343727112,
0.03655854985117912,
0.3065500855445862,
-0.3651031255722046,
-0.12554575502872467,
0.24994242191314697,
0.9492103457450867,
0.19511745870113373,
-0.31340163946151733,
0.46440303325653076,
0.0305195115506649,
-0.5758858919143677,
-0.4052044749259949,
0.010222438722848892,
0.21387392282485962,
0.20290607213974,
0.3719880282878876,
-0.011212264187633991,
0.021982364356517792,
-0.29354172945022583,
0.1333361268043518,
0.3585717976093292,
-0.2950794994831085,
-0.2727682292461395,
0.9639201164245605,
-0.02870427817106247,
-0.09191703051328659,
0.6851885914802551,
-0.17517180740833282,
-0.49807360768318176,
1.0182663202285767,
0.3277512788772583,
0.8471986055374146,
-0.28323379158973694,
0.13330678641796112,
0.8320856690406799,
0.38876673579216003,
-0.27340829372406006,
0.05050753429532051,
0.09428029507398605,
-0.4983997642993927,
-0.2885216474533081,
-0.8139623403549194,
-0.2081509381532669,
0.3416886031627655,
-0.7186444401741028,
0.49475517868995667,
-0.5105606317520142,
-0.11508353054523468,
-0.09043194353580475,
0.33903375267982483,
-0.76114422082901,
0.40381214022636414,
0.28422680497169495,
0.8668603301048279,
-0.8473954796791077,
0.9272353053092957,
0.5262230634689331,
-0.7430323958396912,
-1.2081643342971802,
-0.07226124405860901,
-0.02027449570596218,
-0.8535746335983276,
0.5389177799224854,
0.30374738574028015,
0.23098060488700867,
0.19990113377571106,
-0.5253908038139343,
-1.1977195739746094,
1.6086498498916626,
0.2505311965942383,
-0.7349302172660828,
-0.1998499184846878,
0.07257168740034103,
0.5697707533836365,
-0.11929901689291,
0.5267196297645569,
0.5319975018501282,
0.4638616442680359,
0.023544877767562866,
-1.0713666677474976,
0.2677105665206909,
-0.3036077916622162,
0.10785043239593506,
0.29623153805732727,
-1.087317705154419,
1.2098388671875,
-0.13228724896907806,
-0.024479540064930916,
0.12470819801092148,
0.7456510663032532,
0.5483283400535583,
0.1463373452425003,
0.5747458338737488,
0.839344322681427,
0.8449724912643433,
-0.08528023958206177,
1.168774962425232,
-0.6064584255218506,
0.726661741733551,
0.8915660381317139,
0.042586732655763626,
0.7439959049224854,
0.4292917251586914,
-0.4130310118198395,
0.6328659057617188,
0.93695467710495,
-0.17046424746513367,
0.26548129320144653,
0.26762187480926514,
-0.05401378497481346,
-0.10490992665290833,
0.20224638283252716,
-0.6198189854621887,
0.14381322264671326,
0.28451332449913025,
-0.5260194540023804,
-0.12344922870397568,
-0.030105752870440483,
0.2633771300315857,
-0.1846660077571869,
-0.42951345443725586,
0.39524275064468384,
0.16262423992156982,
-0.6079105734825134,
0.9276549220085144,
0.10316546261310577,
0.7234076857566833,
-0.532922089099884,
0.3161312937736511,
-0.16161686182022095,
0.22538310289382935,
-0.35707446932792664,
-0.654557466506958,
0.10225819796323776,
0.01505998894572258,
-0.037731800228357315,
-0.21187859773635864,
0.5525751709938049,
-0.21891222894191742,
-0.5039690732955933,
0.41980257630348206,
0.3672536015510559,
0.1892746090888977,
-0.15742923319339752,
-0.9686445593833923,
-0.11236273497343063,
0.08031577616930008,
-0.8796394467353821,
0.42450377345085144,
0.3523365557193756,
-0.08416273444890976,
0.6197398900985718,
0.610725462436676,
-0.03086734004318714,
0.12774959206581116,
0.1277858465909958,
0.9995255470275879,
-0.6267369985580444,
-0.43203625082969666,
-0.8626506328582764,
0.6899362206459045,
-0.025586334988474846,
-0.5605282187461853,
0.7488794922828674,
0.6572629809379578,
0.7918426990509033,
0.14663399755954742,
0.6395155191421509,
-0.3083273768424988,
0.2432202249765396,
-0.6029894948005676,
0.6940279603004456,
-0.6014530658721924,
0.14392651617527008,
-0.2831025719642639,
-0.9829282164573669,
-0.12927304208278656,
0.5971925258636475,
-0.4822724759578705,
0.4687284529209137,
0.8004879951477051,
0.8533281087875366,
0.057052455842494965,
0.06435173749923706,
0.06596021354198456,
0.30753639340400696,
0.3116503953933716,
0.8539614081382751,
0.48143652081489563,
-0.8711703419685364,
0.7717611789703369,
-0.4169146418571472,
-0.1998147964477539,
-0.1463560312986374,
-0.6999199390411377,
-0.7781151533126831,
-0.5251349806785583,
-0.4373769760131836,
-0.42275938391685486,
-0.03525490313768387,
0.7911962270736694,
0.7049673199653625,
-0.669890820980072,
-0.2666139304637909,
-0.3984537720680237,
-0.18429134786128998,
-0.2285231649875641,
-0.2767845392227173,
0.6721593141555786,
-0.27022433280944824,
-0.7582078576087952,
0.0751679390668869,
-0.09891589730978012,
0.292574942111969,
-0.3129744529724121,
-0.37152084708213806,
-0.21773874759674072,
-0.00407076720148325,
0.33824193477630615,
0.3375367224216461,
-0.584403395652771,
-0.2342124730348587,
-0.048369672149419785,
-0.32173454761505127,
0.11848330497741699,
0.45604777336120605,
-0.6362154483795166,
-0.001883423887193203,
0.4570939540863037,
0.3093515932559967,
0.9619695544242859,
-0.12548749148845673,
0.21692955493927002,
-0.5036180019378662,
0.2269642949104309,
0.10899440199136734,
0.5753321051597595,
0.2283640205860138,
-0.41527843475341797,
0.6644670963287354,
0.39459002017974854,
-0.7898834943771362,
-0.8172173500061035,
-0.08858836442232132,
-0.976952314376831,
-0.19959823787212372,
1.1170916557312012,
-0.1450139582157135,
-0.4065745770931244,
0.2402050793170929,
-0.1812707781791687,
0.37344488501548767,
-0.25465014576911926,
0.6151053309440613,
0.7094418406486511,
-0.04991835355758667,
-0.18570701777935028,
-0.7220141887664795,
0.3731115460395813,
0.543705940246582,
-0.7324291467666626,
-0.010915286839008331,
0.29823824763298035,
0.41873136162757874,
0.20378676056861877,
0.685408353805542,
-0.3067682385444641,
0.21090345084667206,
0.10628730058670044,
0.2900320291519165,
-0.010592742823064327,
-0.07915033400058746,
-0.5595767498016357,
0.15659965574741364,
-0.07127612829208374,
-0.057997845113277435
] |
openai/whisper-large-v3 | openai | "2023-11-21T22:22:50Z" | 181,711 | 1,024 | transformers | [
"transformers",
"pytorch",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"arxiv:2311.00430",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2023-11-07T18:41:14Z" | ---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
Whisper `large-v3` has the same architecture as the previous large models except the following minor differences:
1. The input uses 128 Mel frequency bins instead of 80
2. A new language token for Cantonese
The Whisper `large-v3` model is trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`.
The model was trained for 2.0 epochs over this mixture dataset.
The `large-v3` model shows improved performance over a wide variety of languages, showing 10% to 20% reduction of errors compared to Whisper `large-v2`.
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
| large-v3 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v3) |
## Usage
Whisper `large-v3` is supported in Hugging Face 🤗 Transformers through the `main` branch in the Transformers repo. To run the model, first
install the Transformers library through the GitHub repo. For this example, we'll also install 🤗 Datasets to load toy
audio dataset from the Hugging Face Hub:
```bash
pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
```
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe audio files of arbitrary length. Transformers uses a chunked algorithm to transcribe
long-form audio files, which in-practice is 9x faster than the sequential algorithm proposed by OpenAI
(see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). The batch size should
be set based on the specifications of your device:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
```diff
- result = pipe(sample)
+ result = pipe("audio.mp3")
```
Whisper predicts the language of the source audio automatically. If the source audio language is known *a-priori*, it
can be passed as an argument to the pipeline:
```python
result = pipe(sample, generate_kwargs={"language": "english"})
```
By default, Whisper performs the task of *speech transcription*, where the source audio language is the same as the target
text language. To perform *speech translation*, where the target text is in English, set the task to `"translate"`:
```python
result = pipe(sample, generate_kwargs={"task": "translate"})
```
Finally, the model can be made to predict timestamps. For sentence-level timestamps, pass the `return_timestamps` argument:
```python
result = pipe(sample, return_timestamps=True)
print(result["chunks"])
```
And for word-level timestamps:
```python
result = pipe(sample, return_timestamps="word")
print(result["chunks"])
```
The above arguments can be used in isolation or in combination. For example, to perform the task of speech transcription
where the source audio is in French, and we want to return sentence-level timestamps, the following can be used:
```python
result = pipe(sample, return_timestamps=True, generate_kwargs={"language": "french", "task": "translate"})
print(result["chunks"])
```
## Additional Speed & Memory Improvements
You can apply additional speed and memory improvements to Whisper-large-v3 which we cover in the following.
### Flash Attention
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU allows for it.
To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
```
pip install flash-attn --no-build-isolation
```
and then all you have to do is to pass `use_flash_attention_2=True` to `from_pretrained`:
```diff
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=True)
```
### Torch Scale-Product-Attention (SDPA)
If your GPU does not support Flash Attention, we recommend making use of [BetterTransformers](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#bettertransformer).
To do so, you first need to install optimum:
```
pip install --upgrade optimum
```
And then convert your model to a "BetterTransformer" model before using it:
```diff
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = model.to_bettertransformer()
```
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
``` | [
-0.23450365662574768,
-0.6541202068328857,
0.21872074902057648,
0.4985406994819641,
-0.1574871987104416,
-0.014423173852264881,
-0.20735561847686768,
-0.6224442720413208,
0.31496068835258484,
0.2470182180404663,
-0.745378851890564,
-0.5205700397491455,
-0.75803542137146,
-0.10887002944946289,
-0.4829982817173004,
0.9367556571960449,
-0.004651572089642286,
-0.1698114573955536,
0.3094092011451721,
-0.1511109471321106,
-0.28246432542800903,
-0.338680237531662,
-0.654039204120636,
-0.2148514986038208,
0.24945779144763947,
0.06726633757352829,
0.45847517251968384,
0.5839732885360718,
0.17294840514659882,
0.40866518020629883,
-0.37384936213493347,
-0.0919918641448021,
-0.3084108531475067,
-0.1543715000152588,
0.39672669768333435,
-0.4710944890975952,
-0.605663537979126,
0.21811270713806152,
0.718975305557251,
0.31742334365844727,
-0.3090980052947998,
0.25115716457366943,
0.09895297884941101,
0.36155590415000916,
-0.34817126393318176,
0.3323113024234772,
-0.6136663556098938,
-0.053922850638628006,
-0.26420560479164124,
0.08180893957614899,
-0.18081499636173248,
-0.34290435910224915,
0.5518969297409058,
-0.6525156497955322,
0.23411568999290466,
0.05220597982406616,
1.0736615657806396,
0.367392361164093,
-0.2127365916967392,
-0.26695969700813293,
-0.6173075437545776,
0.9931091070175171,
-0.8845522999763489,
0.4799191355705261,
0.4487076699733734,
0.20760972797870636,
0.03985733166337013,
-0.8740992546081543,
-0.6754242181777954,
-0.08267059177160263,
-0.06422026455402374,
0.24881300330162048,
-0.36735042929649353,
-0.0033485908061265945,
0.35991743206977844,
0.44356322288513184,
-0.4977010190486908,
0.01723443530499935,
-0.6129363179206848,
-0.638240396976471,
0.7170451879501343,
-0.05870795622467995,
0.43089428544044495,
-0.2722828984260559,
-0.22673484683036804,
-0.3320220410823822,
-0.34031760692596436,
0.36137476563453674,
0.31878697872161865,
0.3613101541996002,
-0.7383391261100769,
0.4051218032836914,
-0.13631565868854523,
0.5227773785591125,
0.2339257299900055,
-0.646817147731781,
0.7067534327507019,
-0.21008701622486115,
-0.1405542939901352,
0.28518250584602356,
1.1306076049804688,
0.27930378913879395,
0.10723195970058441,
0.07081443071365356,
-0.11677996069192886,
0.14650408923625946,
-0.17576642334461212,
-0.8662320375442505,
-0.1349424421787262,
0.488770067691803,
-0.4877895414829254,
-0.28519925475120544,
-0.26841631531715393,
-0.5492843985557556,
0.019748171791434288,
-0.15883715450763702,
0.6917783617973328,
-0.5460932850837708,
-0.44398924708366394,
0.20987607538700104,
-0.2923339307308197,
0.3344915807247162,
0.08404191583395004,
-0.8405352234840393,
0.29866671562194824,
0.42317721247673035,
1.102552890777588,
0.02072674036026001,
-0.6416425704956055,
-0.6731922626495361,
0.06725113093852997,
0.05923140048980713,
0.45650914311408997,
-0.1802627146244049,
-0.4387458860874176,
-0.13058726489543915,
0.1528303176164627,
-0.36387693881988525,
-0.6361591219902039,
0.6321871876716614,
-0.10987940430641174,
0.3833000361919403,
-0.003329749219119549,
-0.40654289722442627,
-0.16837283968925476,
-0.15688484907150269,
-0.43562644720077515,
1.0581833124160767,
0.18649163842201233,
-0.8126927614212036,
0.14985056221485138,
-0.46894359588623047,
-0.6398018598556519,
-0.12363970279693604,
0.28551334142684937,
-0.5535659193992615,
-0.03919587284326553,
0.5309131145477295,
0.5455901026725769,
-0.12486344575881958,
0.09672404080629349,
-0.13259999454021454,
-0.39182335138320923,
0.20771579444408417,
-0.2126886397600174,
1.0794683694839478,
0.19951453804969788,
-0.5200982093811035,
0.19810175895690918,
-0.6215348839759827,
-0.02259412594139576,
0.09790191054344177,
-0.13458533585071564,
0.06010923907160759,
-0.06189287453889847,
0.2309667319059372,
0.1490355283021927,
0.22197479009628296,
-0.8204231858253479,
-0.022817015647888184,
-0.6161722540855408,
1.005993127822876,
0.509257435798645,
-0.13963942229747772,
0.3607200086116791,
-0.4652303159236908,
0.2788548469543457,
0.12361366301774979,
0.38141950964927673,
-0.19414736330509186,
-0.6083016991615295,
-0.8924933075904846,
-0.43062445521354675,
0.29035985469818115,
0.6893779039382935,
-0.5027101039886475,
0.5419573187828064,
-0.15305092930793762,
-0.6918821334838867,
-1.2509183883666992,
-0.05424466356635094,
0.43737512826919556,
0.6116271018981934,
0.5780888199806213,
-0.2078426480293274,
-0.569800615310669,
-0.7839962840080261,
-0.04759826883673668,
-0.41776177287101746,
-0.20380930602550507,
0.39951223134994507,
0.3686949610710144,
-0.3389934301376343,
0.6473281979560852,
-0.4742054045200348,
-0.6077103018760681,
-0.23968321084976196,
0.08838780224323273,
0.3843516409397125,
0.5660526156425476,
0.4539978802204132,
-0.6931841969490051,
-0.5092591643333435,
-0.15578749775886536,
-0.6306415796279907,
-0.16474872827529907,
-0.014406431466341019,
0.0022102887742221355,
0.1883041113615036,
0.4279080331325531,
-0.810537576675415,
0.35489705204963684,
0.7067887783050537,
-0.15366719663143158,
0.6244239211082458,
0.03838609904050827,
0.06204437091946602,
-1.1004984378814697,
0.06315125524997711,
-0.05532143637537956,
-0.22876103222370148,
-0.5692690014839172,
-0.15670326352119446,
-0.0017076674848794937,
-0.1714642494916916,
-0.6537840962409973,
0.7893826365470886,
-0.35376009345054626,
0.050221458077430725,
-0.07842494547367096,
0.20450401306152344,
-0.06580061465501785,
0.5531108975410461,
0.3408161997795105,
0.6567716598510742,
0.9645493030548096,
-0.6136651635169983,
0.42817121744155884,
0.5324708223342896,
-0.3599204421043396,
0.44776496291160583,
-1.011088490486145,
0.2188122719526291,
0.132383331656456,
0.21750213205814362,
-0.7272107005119324,
-0.26054421067237854,
0.08161018788814545,
-0.7913656234741211,
0.40978845953941345,
-0.3432500660419464,
-0.3684203326702118,
-0.6748848557472229,
-0.26756569743156433,
0.10920187830924988,
0.9560027718544006,
-0.6179945468902588,
0.7225717306137085,
0.5645581483840942,
-0.2647682726383209,
-0.5128427147865295,
-0.60532546043396,
-0.19303111732006073,
-0.4005720615386963,
-0.8515627384185791,
0.5098885893821716,
-0.1154312938451767,
-0.027392391115427017,
-0.24727404117584229,
-0.06001380831003189,
0.019601358100771904,
-0.22449776530265808,
0.34698379039764404,
0.4190446436405182,
-0.07827169448137283,
-0.26034021377563477,
0.11412421613931656,
-0.24955058097839355,
0.003949015401303768,
-0.14821460843086243,
0.6072032451629639,
-0.2388448715209961,
0.04675164446234703,
-0.8443487882614136,
0.2814268469810486,
0.5982961058616638,
-0.3650834262371063,
0.5621890425682068,
0.9441626667976379,
-0.3009054362773895,
-0.13406097888946533,
-0.7825171947479248,
-0.15082143247127533,
-0.573889434337616,
0.18780100345611572,
-0.39386215806007385,
-0.8070358633995056,
0.7199004888534546,
0.2170955240726471,
0.1667327880859375,
0.558260440826416,
0.5149253606796265,
-0.25084006786346436,
1.09219229221344,
0.4975673258304596,
-0.43681150674819946,
0.41606801748275757,
-0.48359590768814087,
-0.09972481429576874,
-1.0644114017486572,
-0.3663604259490967,
-0.46955305337905884,
-0.24109627306461334,
-0.3871181011199951,
-0.30262142419815063,
0.5536543130874634,
0.06855764985084534,
-0.16957730054855347,
0.5783495306968689,
-0.716083288192749,
0.0428587943315506,
0.5962269306182861,
0.09606834501028061,
0.0912550762295723,
-0.09355852007865906,
0.05741150677204132,
-0.12105617672204971,
-0.4072237014770508,
-0.19259461760520935,
0.909416139125824,
0.5790401697158813,
0.5881326198577881,
-0.10051069408655167,
0.6838348507881165,
-0.10295512527227402,
0.07632233202457428,
-0.8700619339942932,
0.49689173698425293,
-0.03379000723361969,
-0.5830510258674622,
-0.24632017314434052,
-0.42520034313201904,
-0.8282837867736816,
0.13785061240196228,
-0.11051872372627258,
-0.7688276171684265,
-0.059763986617326736,
0.0021382609847933054,
-0.33808189630508423,
0.24713759124279022,
-0.8142025470733643,
0.6364898681640625,
0.013562019914388657,
0.006640842650085688,
-0.05904608219861984,
-0.7665773630142212,
0.258246511220932,
0.030379759147763252,
0.07054603099822998,
-0.19970674812793732,
0.1530473232269287,
1.056300401687622,
-0.5417155623435974,
0.7878425121307373,
-0.39424729347229004,
-0.0009006126201711595,
0.49829578399658203,
-0.16778439283370972,
0.44827190041542053,
-0.18287351727485657,
-0.08725404739379883,
0.4027044177055359,
0.2849041819572449,
-0.24155648052692413,
-0.4311966896057129,
0.6367201209068298,
-0.9915277361869812,
-0.33980998396873474,
-0.2962455749511719,
-0.47294703125953674,
-0.18347419798374176,
0.14841613173484802,
0.7230364084243774,
0.5636442303657532,
-0.037929173558950424,
-0.03341041877865791,
0.529760479927063,
-0.31198593974113464,
0.5819967985153198,
0.6025171875953674,
-0.19974559545516968,
-0.416088730096817,
0.8117042779922485,
0.15955737233161926,
0.23760266602039337,
0.17509979009628296,
0.41218337416648865,
-0.5270020365715027,
-0.5584153532981873,
-0.5257334113121033,
0.5129443407058716,
-0.3205451965332031,
-0.11784271150827408,
-0.9188319444656372,
-0.49630457162857056,
-0.6558738946914673,
0.004959047306329012,
-0.5559224486351013,
-0.23559153079986572,
-0.2992369532585144,
0.1359504759311676,
0.7107727527618408,
0.45055586099624634,
-0.05439706891775131,
0.5004814267158508,
-0.8566840887069702,
0.5252619981765747,
0.39460304379463196,
0.19375522434711456,
0.002634575590491295,
-0.9736319780349731,
-0.0323297381401062,
0.09291215986013412,
-0.2728876769542694,
-0.6344674825668335,
0.4995073974132538,
0.33830615878105164,
0.41026192903518677,
0.2084137499332428,
0.023739904165267944,
0.8987775444984436,
-0.6392756104469299,
0.7799954414367676,
0.2400316298007965,
-1.2074947357177734,
0.8163936138153076,
-0.4908013641834259,
0.37052497267723083,
0.3953261077404022,
0.43603405356407166,
-0.6255072951316833,
-0.4233734607696533,
-0.7182084321975708,
-0.7216787338256836,
0.7929126620292664,
0.35669347643852234,
0.07821868360042572,
0.26477712392807007,
0.36943334341049194,
-0.014882111921906471,
0.16709977388381958,
-0.5911734700202942,
-0.42123904824256897,
-0.3140450417995453,
-0.23325997591018677,
-0.1578734666109085,
0.039912186563014984,
-0.036286789923906326,
-0.5837453007698059,
0.7592688798904419,
-0.04773494228720665,
0.5316242575645447,
0.40339550375938416,
-0.030889905989170074,
0.013129188679158688,
-0.015796275809407234,
0.30999720096588135,
0.15109576284885406,
-0.24623683094978333,
-0.3599051833152771,
0.3499118387699127,
-0.8461300730705261,
0.03351229056715965,
0.3793380558490753,
-0.25701904296875,
0.09274422377347946,
0.600867509841919,
1.0530951023101807,
0.20814654231071472,
-0.49140262603759766,
0.746601939201355,
-0.11225297302007675,
-0.25206127762794495,
-0.42438411712646484,
0.05107363685965538,
0.2991093397140503,
0.3145694136619568,
0.27795377373695374,
-0.0720897912979126,
0.0787128359079361,
-0.629035234451294,
0.1351645141839981,
0.3398565351963043,
-0.3944254219532013,
-0.5628854036331177,
0.9046400785446167,
0.19382140040397644,
-0.34306108951568604,
0.7723946571350098,
0.10762739926576614,
-0.6587421298027039,
0.5133344531059265,
0.603855550289154,
0.9939134120941162,
-0.5682899951934814,
0.1039145365357399,
0.5567575693130493,
0.22759132087230682,
-0.1021493598818779,
0.40056782960891724,
-0.10572962462902069,
-0.60699462890625,
-0.42572712898254395,
-0.9356560111045837,
-0.2915812134742737,
0.22534026205539703,
-0.8486535549163818,
0.40577900409698486,
-0.36004066467285156,
-0.2329045981168747,
0.2242455631494522,
0.10339144617319107,
-0.7371396422386169,
0.17066878080368042,
0.1318207085132599,
0.9780617356300354,
-0.7557775378227234,
0.9870910048484802,
0.23272250592708588,
-0.265594482421875,
-1.086613416671753,
-0.10162057727575302,
0.12413237243890762,
-0.9730136394500732,
0.25361546874046326,
0.3492073118686676,
-0.19846710562705994,
0.04812092334032059,
-0.569520890712738,
-0.8312423825263977,
1.088230848312378,
0.3077492415904999,
-0.6935282349586487,
-0.15531155467033386,
-0.12379148602485657,
0.5443973541259766,
-0.2763107120990753,
0.2597992420196533,
0.7951855659484863,
0.40746840834617615,
0.21500982344150543,
-1.5366077423095703,
-0.09867195039987564,
-0.2893616855144501,
-0.25920572876930237,
0.03351661562919617,
-0.9294494986534119,
0.8317254781723022,
-0.44171351194381714,
-0.2747199535369873,
0.23099887371063232,
0.7304935455322266,
0.3391323685646057,
0.25618430972099304,
0.5936722755432129,
0.512383759021759,
0.7501339912414551,
-0.19678930938243866,
1.0498042106628418,
-0.13014474511146545,
0.23272356390953064,
0.9148409366607666,
-0.15889692306518555,
1.0839378833770752,
0.21263353526592255,
-0.40775713324546814,
0.5277169942855835,
0.49610626697540283,
0.04396933689713478,
0.491229772567749,
-0.08462047576904297,
-0.30782029032707214,
0.10249470919370651,
-0.05887372046709061,
-0.5271053314208984,
0.6235549449920654,
0.2882077991962433,
-0.21672052145004272,
0.2879531979560852,
0.2153068631887436,
0.18798021972179413,
-0.2655617594718933,
-0.2436312735080719,
0.8634874224662781,
0.24363358318805695,
-0.5404471755027771,
0.8232446312904358,
-0.13626615703105927,
1.1177470684051514,
-0.827853798866272,
0.3251655399799347,
0.028070654720067978,
0.23396903276443481,
-0.2565286159515381,
-0.7280217409133911,
0.34380900859832764,
-0.10983341187238693,
-0.11165259778499603,
-0.11147984117269516,
0.5579254031181335,
-0.6295360326766968,
-0.4263031780719757,
0.5472546219825745,
0.2913234233856201,
0.4299386739730835,
-0.21267223358154297,
-0.9593267440795898,
0.49710774421691895,
0.1275121122598648,
-0.30822673439979553,
0.27510255575180054,
0.13581712543964386,
0.3548485338687897,
0.7836832404136658,
0.6348046660423279,
0.3367098867893219,
0.14985978603363037,
0.08605773746967316,
0.8171826601028442,
-0.6314022541046143,
-0.6206052899360657,
-0.5811139941215515,
0.5426735877990723,
-0.02846333757042885,
-0.5073462128639221,
0.8138833045959473,
0.509523332118988,
0.6961033940315247,
0.11816924065351486,
0.6985531449317932,
-0.13289129734039307,
0.8810281157493591,
-0.5157987475395203,
0.8343400359153748,
-0.5112382173538208,
-0.025193793699145317,
-0.482919305562973,
-0.8817521929740906,
0.05747557431459427,
0.727747917175293,
-0.12069769203662872,
-0.025008197873830795,
0.43856245279312134,
0.850517213344574,
-0.09629274904727936,
0.13304786384105682,
-0.009198424406349659,
0.43343356251716614,
0.21863903105258942,
0.6846951842308044,
0.587507426738739,
-0.8422301411628723,
0.5772903561592102,
-0.5494450330734253,
-0.3582380414009094,
0.20589856803417206,
-0.5987738370895386,
-0.9885767698287964,
-0.8897808194160461,
-0.5251944065093994,
-0.524868369102478,
-0.30022093653678894,
0.7019957900047302,
1.0424662828445435,
-0.6642294526100159,
-0.2573190927505493,
0.35694780945777893,
-0.19733092188835144,
-0.24013939499855042,
-0.2558501958847046,
0.6000109910964966,
0.08457671105861664,
-1.0448153018951416,
0.629379391670227,
0.049372974783182144,
0.36653101444244385,
-0.2400953322649002,
-0.19237837195396423,
0.07217199355363846,
-0.027103900909423828,
0.5851163864135742,
0.36990296840667725,
-0.7646355628967285,
-0.21558670699596405,
0.02008383348584175,
0.0945802852511406,
0.11591609567403793,
0.39821097254753113,
-0.7872901558876038,
0.3925899565219879,
0.322966605424881,
0.08350571244955063,
1.0016140937805176,
-0.26528921723365784,
0.38713759183883667,
-0.6514456272125244,
0.5160928964614868,
0.16494277119636536,
0.3883710205554962,
0.46051546931266785,
-0.21782949566841125,
0.3433939516544342,
0.2431829422712326,
-0.6243645548820496,
-0.9779325127601624,
-0.02462835982441902,
-1.2284520864486694,
-0.007484627887606621,
1.0906047821044922,
-0.10429216176271439,
-0.3746330142021179,
-0.06755780428647995,
-0.3520398437976837,
0.37720125913619995,
-0.5155923962593079,
0.546852171421051,
0.5523828864097595,
-0.07214516401290894,
-0.15889982879161835,
-0.5385515093803406,
0.7391308546066284,
0.18757353723049164,
-0.5055781006813049,
0.015120386146008968,
0.13775323331356049,
0.6140907406806946,
0.2718694806098938,
0.9123991131782532,
-0.30689099431037903,
0.2045140564441681,
0.13594718277454376,
0.06439252942800522,
-0.038897804915905,
-0.18362128734588623,
-0.38195371627807617,
-0.10112336277961731,
-0.3201874792575836,
-0.28026044368743896
] |
facebook/opt-350m | facebook | "2023-09-15T13:09:50Z" | 181,324 | 81 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"opt",
"text-generation",
"en",
"arxiv:2205.01068",
"arxiv:2005.14165",
"license:other",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2022-05-11T08:25:39Z" | ---
language: en
inference: false
tags:
- text-generation
license: other
commercial: false
---
# OPT : Open Pre-trained Transformer Language Models
OPT was first introduced in [Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) and first released in [metaseq's repository](https://github.com/facebookresearch/metaseq) on May 3rd 2022 by Meta AI.
**Disclaimer**: The team releasing OPT wrote an official model card, which is available in Appendix D of the [paper](https://arxiv.org/pdf/2205.01068.pdf).
Content from **this** model card has been written by the Hugging Face team.
## Intro
To quote the first two paragraphs of the [official paper](https://arxiv.org/abs/2205.01068)
> Large language models trained on massive text collections have shown surprising emergent
> capabilities to generate text and perform zero- and few-shot learning. While in some cases the public
> can interact with these models through paid APIs, full model access is currently limited to only a
> few highly resourced labs. This restricted access has limited researchers’ ability to study how and
> why these large language models work, hindering progress on improving known challenges in areas
> such as robustness, bias, and toxicity.
> We present Open Pretrained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M
> to 175B parameters, which we aim to fully and responsibly share with interested researchers. We train the OPT models to roughly match
> the performance and sizes of the GPT-3 class of models, while also applying the latest best practices in data
> collection and efficient training. Our aim in developing this suite of OPT models is to enable reproducible and responsible research at scale, and
> to bring more voices to the table in studying the impact of these LLMs. Definitions of risk, harm, bias, and toxicity, etc., should be articulated by the
> collective research community as a whole, which is only possible when models are available for study.
## Model description
OPT was predominantly pretrained with English text, but a small amount of non-English data is still present within the training corpus via CommonCrawl. The model was pretrained using a causal language modeling (CLM) objective.
OPT belongs to the same family of decoder-only models like [GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective.
For evaluation, OPT follows [GPT-3](https://arxiv.org/abs/2005.14165) by using their prompts and overall experimental setup. For more details, please read
the [official paper](https://arxiv.org/abs/2205.01068).
## Intended uses & limitations
The pretrained-only model can be used for prompting for evaluation of downstream tasks as well as text generation.
In addition, the model can be fine-tuned on a downstream task using the [CLM example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling). For all other OPT checkpoints, please have a look at the [model hub](https://huggingface.co/models?filter=opt).
### How to use
You can use this model directly with a pipeline for text generation.
```python
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model="facebook/opt-350m")
>>> generator("What are we having for dinner?")
[{'generated_text': "What are we having for dinner?\nI'm having a steak and a salad.\nI'm""}]
```
By default, generation is deterministic. In order to use the top-k sampling, please set `do_sample` to `True`.
```python
>>> from transformers import pipeline, set_seed
>>> set_seed(32)
>>> generator = pipeline('text-generation', model="facebook/opt-350m", do_sample=True)
>>> generator("What are we having for dinner?")
[{'generated_text': "What are we having for dinner?\n\nWith spring fast approaching, it’s only appropriate"}]
```
### Limitations and bias
As mentioned in Meta AI's model card, given that the training data used for this model contains a lot of
unfiltered content from the internet, which is far from neutral the model is strongly biased :
> Like other large language models for which the diversity (or lack thereof) of training
> data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
> of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
> hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
> large language models.
Here's an example of how the model can have biased predictions:
```python
>>> from transformers import pipeline, set_seed
>>> set_seed(32)
>>> generator = pipeline('text-generation', model="facebook/opt-350m", do_sample=True, num_return_sequences=5)
>>> generator("The woman worked as a")
[{'generated_text': "The woman works as a substitute teacher for kids who have missed school. She's the teacher herself,"},
{'generated_text': 'The woman works as a security guard for another company and does an average of around $13/hour'},
{'generated_text': 'The woman works as a receptionist, she could at the least wait a week or two for her'},
{'generated_text': 'The woman works as a manager/intern/career development coach/advisor at a nursing home'},
{'generated_text': 'The woman works as a maid and has to clean the house but you can tell her to do it'}]
```
compared to:
```python
>>> from transformers import pipeline, set_seed
>>> set_seed(32)
>>> generator = pipeline('text-generation', model="facebook/opt-350m", do_sample=True, num_return_sequences=5)
>>> generator("The man worked as a")
[{'generated_text': 'The man works as a security guard for the National Football League franchise. He has been a part of'},
{'generated_text': 'The man works as a security guard for another company and does an excellent job.\nI remember when'},
{'generated_text': 'The man works as a "secret agent" but at the same time he\'s working to protect the'},
{'generated_text': 'The man works as a manager/operator/servant for a grocery store and does a lot of'},
{'generated_text': 'The man works as a bouncer near the scene of the accident - how he could do that is'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The Meta AI team wanted to train this model on a corpus as large as possible. It is composed of the union of the following 5 filtered datasets of textual documents:
- BookCorpus, which consists of more than 10K unpublished books,
- CC-Stories, which contains a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas,
- The Pile, from which * Pile-CC, OpenWebText2, USPTO, Project Gutenberg, OpenSubtitles, Wikipedia, DM Mathematics and HackerNews* were included.
- Pushshift.io Reddit dataset that was developed in Baumgartner et al. (2020) and processed in
Roller et al. (2021)
- CCNewsV2 containing an updated version of the English portion of the CommonCrawl News
dataset that was used in RoBERTa (Liu et al., 2019b)
The final training data contains 180B tokens corresponding to 800GB of data. The validation split was made of 200MB of the pretraining data, sampled proportionally
to each dataset’s size in the pretraining corpus.
The dataset might contains offensive content as parts of the dataset are a subset of
public Common Crawl data, along with a subset of public Reddit data, which could contain sentences
that, if viewed directly, can be insulting, threatening, or might otherwise cause anxiety.
### Collection process
The dataset was collected form internet, and went through classic data processing algorithms and
re-formatting practices, including removing repetitive/non-informative text like *Chapter One* or
*This ebook by Project Gutenberg.*
## Training procedure
### Preprocessing
The texts are tokenized using the **GPT2** byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens.
The 175B model was trained on 992 *80GB A100 GPUs*. The training duration was roughly ~33 days of continuous training.
### BibTeX entry and citation info
```bibtex
@misc{zhang2022opt,
title={OPT: Open Pre-trained Transformer Language Models},
author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer},
year={2022},
eprint={2205.01068},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| [
-0.22232867777347565,
-0.8039277195930481,
0.24115851521492004,
0.12645182013511658,
-0.2555217444896698,
-0.24959859251976013,
-0.37416592240333557,
-0.40542125701904297,
0.02306017093360424,
0.6289153099060059,
-0.6904751062393188,
-0.37430015206336975,
-0.6045596599578857,
0.28080007433891296,
-0.45516929030418396,
1.1847325563430786,
-0.01639360561966896,
-0.04077647998929024,
0.04449518397450447,
0.16113148629665375,
-0.2234880030155182,
-0.4943912923336029,
-0.6630575060844421,
-0.1238284707069397,
0.32607269287109375,
0.18911823630332947,
0.7017709612846375,
0.5941530466079712,
0.41068223118782043,
0.2846696674823761,
-0.04233647137880325,
0.07598896324634552,
-0.6665692925453186,
-0.20044833421707153,
-0.048738911747932434,
-0.3824387192726135,
-0.3101564347743988,
0.20339088141918182,
0.5427666306495667,
0.5201807022094727,
0.0821496844291687,
0.21132223308086395,
0.1201818659901619,
0.5427993535995483,
-0.48968368768692017,
0.17398476600646973,
-0.7641749382019043,
-0.09480205923318863,
-0.2981017529964447,
0.11288432776927948,
-0.6107755899429321,
-0.23577259480953217,
0.09786919504404068,
-0.44612011313438416,
0.1487410068511963,
-0.06512560695409775,
1.1854852437973022,
0.33533036708831787,
-0.2663320004940033,
-0.14757205545902252,
-0.6241453289985657,
0.8054863214492798,
-0.7962625026702881,
0.31557708978652954,
0.3148382306098938,
0.02516326680779457,
0.0636770948767662,
-0.8139910101890564,
-0.5858718752861023,
-0.09026256948709488,
-0.2230825126171112,
0.28800851106643677,
-0.30372071266174316,
0.04490702226758003,
0.23997828364372253,
0.28094393014907837,
-0.5661939978599548,
0.07691629976034164,
-0.4978976845741272,
-0.2664377689361572,
0.7032264471054077,
0.04297521710395813,
0.3089110553264618,
-0.35303351283073425,
-0.26307955384254456,
-0.15336714684963226,
-0.5358689427375793,
-0.05134587734937668,
0.5606570839881897,
0.40848028659820557,
-0.18257752060890198,
0.6142578125,
-0.2301926463842392,
0.7108455300331116,
0.03311317786574364,
0.02790101431310177,
0.44786012172698975,
-0.5209917426109314,
-0.12742100656032562,
-0.1313382238149643,
1.1556599140167236,
0.32892438769340515,
0.47872909903526306,
0.02354586124420166,
-0.0745420828461647,
0.11492012441158295,
0.25307440757751465,
-0.7479326128959656,
-0.09172475337982178,
0.3128587603569031,
-0.5121561288833618,
-0.3900599777698517,
0.0016522855730727315,
-0.8862629532814026,
-0.010763892903923988,
-0.2079344540834427,
0.3337821364402771,
-0.40256184339523315,
-0.33853837847709656,
0.17184442281723022,
-0.04323312267661095,
0.19716665148735046,
-0.007969924248754978,
-0.7537446618080139,
0.05875605717301369,
0.46527713537216187,
0.7191111445426941,
-0.05757642909884453,
-0.38141918182373047,
-0.2547565996646881,
-0.10829079151153564,
-0.16386806964874268,
0.5141512155532837,
-0.4339786171913147,
0.010031008161604404,
0.18540619313716888,
0.0705527812242508,
-0.2013905942440033,
-0.24879756569862366,
0.7720611095428467,
-0.45502084493637085,
0.5093024969100952,
-0.046500980854034424,
-0.32787179946899414,
-0.017475435510277748,
-0.005494299810379744,
-0.6352806687355042,
1.0628867149353027,
0.19340765476226807,
-1.0667792558670044,
0.38686394691467285,
-0.6706023812294006,
-0.39512360095977783,
-0.018405674025416374,
0.10486240684986115,
-0.4097616374492645,
-0.160100057721138,
0.38019123673439026,
0.46529969573020935,
-0.2360738217830658,
0.44158104062080383,
-0.10863181203603745,
-0.2022027224302292,
0.11845634877681732,
-0.49202391505241394,
1.0010946989059448,
0.368990033864975,
-0.3669622540473938,
0.06019557639956474,
-0.6115825176239014,
-0.010829607956111431,
0.24979208409786224,
-0.3991345763206482,
-0.16400395333766937,
0.08305861055850983,
0.16214098036289215,
0.3151620328426361,
0.2915498912334442,
-0.46690618991851807,
0.08987116068601608,
-0.6163972020149231,
0.6838511228561401,
0.7803786993026733,
-0.1702578067779541,
0.43877342343330383,
-0.20379561185836792,
0.4157398045063019,
0.06525008380413055,
0.24756570160388947,
-0.31446003913879395,
-0.3709164559841156,
-0.8738362789154053,
-0.1797753870487213,
0.33319172263145447,
0.5519191026687622,
-0.6906082630157471,
0.6394165754318237,
-0.3541342318058014,
-0.5830886363983154,
-0.5883476734161377,
-0.02258925326168537,
0.4323204457759857,
0.3109184205532074,
0.46277785301208496,
-0.04250785708427429,
-0.689664363861084,
-0.8359723091125488,
-0.4215419888496399,
-0.12897352874279022,
0.02833626978099346,
0.23194098472595215,
0.5675441026687622,
-0.47147881984710693,
1.0667539834976196,
-0.5801241993904114,
-0.2669469714164734,
-0.5322232246398926,
-0.005955291446298361,
0.40144187211990356,
0.45881596207618713,
0.42229560017585754,
-0.7898534536361694,
-0.602873682975769,
-0.21025654673576355,
-0.6022137999534607,
-0.20226047933101654,
-0.16036692261695862,
-0.32170042395591736,
0.4109691083431244,
0.5222684144973755,
-0.7689135074615479,
0.13416051864624023,
0.6342467069625854,
-0.29841721057891846,
0.6603715419769287,
0.1677304059267044,
-0.21103645861148834,
-1.2805365324020386,
0.19046470522880554,
-0.016865946352481842,
-0.1931561529636383,
-0.6163060069084167,
-0.08843816816806793,
-0.05856049060821533,
-0.2484065145254135,
-0.5482041835784912,
0.5975669026374817,
-0.39681124687194824,
0.30103203654289246,
-0.009717709384858608,
0.09002545475959778,
-0.18636736273765564,
0.5862303376197815,
0.12213468551635742,
0.6511451601982117,
0.5519761443138123,
-0.5886190533638,
0.03103639930486679,
0.2570079267024994,
-0.3011090159416199,
0.2035779058933258,
-0.6595255136489868,
0.05439368635416031,
-0.23856304585933685,
0.3107515275478363,
-0.8107025027275085,
-0.34203678369522095,
0.31880390644073486,
-0.5350764393806458,
0.21833133697509766,
0.07380739599466324,
-0.5122259855270386,
-0.6761077046394348,
-0.1605798602104187,
0.19562925398349762,
0.6513280868530273,
-0.439829021692276,
0.5627680420875549,
0.3936697244644165,
-0.06093612313270569,
-0.7559719085693359,
-0.6390588879585266,
-0.033266741782426834,
-0.13554026186466217,
-0.6836326718330383,
0.35779455304145813,
-0.04149460420012474,
-0.09377706050872803,
0.0781746506690979,
0.13166651129722595,
-0.11272401362657547,
-0.0740041509270668,
0.07024439424276352,
0.23386114835739136,
-0.07623252272605896,
0.06669975817203522,
-0.020377136766910553,
-0.2019111067056656,
0.10638861358165741,
-0.3181856870651245,
0.7863174676895142,
-0.12159677594900131,
-0.05244619771838188,
-0.4198673963546753,
0.16593463718891144,
0.3873748779296875,
-0.3446105718612671,
0.8453727960586548,
0.6934476494789124,
-0.3258204162120819,
-0.1603241264820099,
-0.50803542137146,
-0.26786595582962036,
-0.49363386631011963,
0.6619137525558472,
-0.0178070105612278,
-0.8175362348556519,
0.3179413676261902,
0.1568983644247055,
0.22863562405109406,
0.6849680542945862,
0.563232421875,
0.14681924879550934,
0.9902116656303406,
0.53935307264328,
-0.24843084812164307,
0.5535616874694824,
-0.28937840461730957,
0.2681524157524109,
-0.5352596044540405,
0.011220413260161877,
-0.5523073673248291,
-0.05233077332377434,
-0.5539854764938354,
-0.27316927909851074,
0.09116306900978088,
0.049558572471141815,
-0.4084963798522949,
0.5055264234542847,
-0.6341913938522339,
0.43547582626342773,
0.5952749252319336,
0.10589109361171722,
0.05879594385623932,
-0.003175521269440651,
-0.08257217705249786,
-0.04631762206554413,
-0.7607052326202393,
-0.5883569121360779,
1.2069121599197388,
0.43230584263801575,
0.6460923552513123,
-0.30989283323287964,
0.734852135181427,
0.12467101216316223,
0.34797966480255127,
-0.4533708095550537,
0.5680520534515381,
-0.23470978438854218,
-0.813348114490509,
-0.19187620282173157,
-0.5567728877067566,
-0.9440861344337463,
0.13366280496120453,
-0.20669417083263397,
-0.6881921887397766,
-0.12260742485523224,
0.12901301681995392,
-0.12643249332904816,
0.26296088099479675,
-0.8452146053314209,
1.1042567491531372,
-0.30333247780799866,
-0.36842769384384155,
0.029074804857373238,
-0.6945421099662781,
0.4197908937931061,
-0.1550736129283905,
0.3351972699165344,
0.12535738945007324,
0.1944924294948578,
0.8843032717704773,
-0.4345836639404297,
1.0257353782653809,
-0.0888400450348854,
0.0453895628452301,
0.4787454307079315,
-0.2237873524427414,
0.5021426677703857,
-0.12957528233528137,
-0.16481833159923553,
0.40081021189689636,
-0.24709996581077576,
-0.26450055837631226,
-0.0441085621714592,
0.41919904947280884,
-0.9596424698829651,
-0.36507439613342285,
-0.4087499976158142,
-0.44612592458724976,
0.08452852815389633,
0.5254030823707581,
0.6580982208251953,
0.3119920790195465,
-0.16053622961044312,
0.2602916955947876,
0.3972640633583069,
-0.5033113956451416,
0.5052893161773682,
0.28387776017189026,
-0.13517522811889648,
-0.41602757573127747,
0.7344726920127869,
0.0758441910147667,
0.31597355008125305,
0.4454125463962555,
0.15374639630317688,
-0.4049547016620636,
-0.28190556168556213,
-0.27490919828414917,
0.4086759388446808,
-0.5846877694129944,
-0.27390938997268677,
-0.976815402507782,
-0.463299423456192,
-0.5236192345619202,
-0.20373624563217163,
-0.4779232144355774,
-0.11169768869876862,
-0.46878379583358765,
-0.16596107184886932,
0.21023964881896973,
0.49981310963630676,
0.034092433750629425,
0.5052635669708252,
-0.692848801612854,
0.21124814450740814,
0.11029500514268875,
0.2692357301712036,
-0.06414242833852768,
-0.4571664035320282,
-0.3009827136993408,
0.3029162287712097,
-0.4921862483024597,
-0.8188502192497253,
0.4934857487678528,
0.10879035294055939,
0.5235222578048706,
0.48896023631095886,
0.16934849321842194,
0.37836599349975586,
-0.5377740859985352,
0.9028975963592529,
0.12778565287590027,
-0.9325023889541626,
0.44553911685943604,
-0.5270612835884094,
0.2576604187488556,
0.5468781590461731,
0.5167765617370605,
-0.4572518765926361,
-0.5377187728881836,
-0.693007230758667,
-1.0078604221343994,
0.9410735964775085,
0.42699378728866577,
0.3861692249774933,
-0.18093356490135193,
0.2688444256782532,
0.018087949603796005,
0.25294411182403564,
-1.3757425546646118,
-0.31951603293418884,
-0.2891412079334259,
-0.4136759340763092,
-0.17248517274856567,
-0.3444497287273407,
0.18085460364818573,
-0.2532519996166229,
0.7700945734977722,
0.01433637272566557,
0.4845665693283081,
0.1363949328660965,
-0.23244647681713104,
-0.04526428133249283,
0.19587381184101105,
0.3625332713127136,
0.49935686588287354,
-0.1299101710319519,
0.0030691532883793116,
0.11822488903999329,
-0.5583789944648743,
-0.08924268931150436,
0.2096652388572693,
-0.40533673763275146,
-0.0014559037517756224,
0.3895314633846283,
0.9506222605705261,
0.03661395609378815,
-0.6634302735328674,
0.6093884110450745,
0.11709072440862656,
-0.30125075578689575,
-0.3975859582424164,
0.05181892216205597,
0.10615511983633041,
-0.007573067210614681,
0.29333412647247314,
0.07691103219985962,
-0.11334609240293503,
-0.4241361916065216,
0.2256050705909729,
0.38443824648857117,
-0.3206711411476135,
-0.31175923347473145,
0.8466833829879761,
0.3349820375442505,
-0.31918761134147644,
0.702384889125824,
-0.2529999017715454,
-0.8168894648551941,
0.5158551335334778,
0.6126659512519836,
0.9210608601570129,
-0.07077860832214355,
0.36676526069641113,
0.6833778023719788,
0.6273542642593384,
-0.1579926759004593,
0.036891430616378784,
0.25304967164993286,
-0.8243794441223145,
-0.5256980061531067,
-0.7957733869552612,
-0.03764844685792923,
0.33442091941833496,
-0.4088837206363678,
0.5195233225822449,
-0.11238794028759003,
-0.1375683695077896,
-0.1607152819633484,
-0.10140033811330795,
-0.7507330179214478,
0.2074853628873825,
0.0173031073063612,
0.8151596784591675,
-1.0281563997268677,
0.5507125854492188,
0.5651789903640747,
-0.5291935801506042,
-0.8439988493919373,
0.13341645896434784,
-0.26535308361053467,
-0.7603754997253418,
0.5918341875076294,
0.5627159476280212,
0.34905073046684265,
0.207881897687912,
-0.7381783127784729,
-0.9177127480506897,
0.8424255847930908,
0.3043469786643982,
-0.48540371656417847,
-0.17347967624664307,
0.3714422583580017,
0.6708552241325378,
-0.2678644359111786,
0.476448655128479,
0.43251892924308777,
0.4955363869667053,
-0.21234405040740967,
-0.7854386568069458,
0.08805052191019058,
-0.2560703456401825,
-0.21914872527122498,
0.15257175266742706,
-0.733094334602356,
1.074328899383545,
-0.11516169458627701,
-0.3373265862464905,
-0.14353109896183014,
0.4600726366043091,
0.011465492658317089,
0.07780471444129944,
0.4935145378112793,
0.609999418258667,
0.5367141962051392,
-0.21764405071735382,
1.1672972440719604,
-0.4369022846221924,
0.5423097610473633,
0.9157429337501526,
-0.014535486698150635,
0.7263445258140564,
0.24476203322410583,
-0.2546664774417877,
0.4468642771244049,
0.6291384100914001,
-0.12061373889446259,
0.4628121256828308,
-0.02406894601881504,
0.1449841558933258,
-0.20715266466140747,
-0.046053290367126465,
-0.4048430919647217,
0.41321447491645813,
0.088673897087574,
-0.5706344246864319,
-0.17091971635818481,
-0.04963315650820732,
0.30493032932281494,
-0.11315310746431351,
-0.17969995737075806,
0.6660839319229126,
0.05562905967235565,
-0.9202201962471008,
0.5726031064987183,
0.08518928289413452,
0.8271844983100891,
-0.7293378114700317,
0.2619050443172455,
-0.04117218777537346,
0.31048470735549927,
-0.15263234078884125,
-0.5827735662460327,
0.2480616718530655,
0.05892205983400345,
-0.142344668507576,
-0.3690677285194397,
0.7699741721153259,
-0.5045731067657471,
-0.6042876839637756,
0.32345816493034363,
0.351858913898468,
0.12572842836380005,
-0.24378560483455658,
-0.7562455534934998,
0.04211274906992912,
0.20502042770385742,
-0.37970587611198425,
0.11569465696811676,
0.24411499500274658,
0.15579961240291595,
0.5005800127983093,
0.7230339646339417,
-0.020440606400370598,
0.135965958237648,
-0.106880784034729,
0.9521171450614929,
-0.49050915241241455,
-0.49434515833854675,
-0.942603349685669,
0.7577462196350098,
-0.1465911567211151,
-0.41270023584365845,
0.7481275200843811,
0.5912752747535706,
1.041678786277771,
-0.23430514335632324,
0.882345974445343,
-0.27632442116737366,
0.4386940002441406,
-0.4731093943119049,
0.7500519752502441,
-0.5917989611625671,
-0.035698965191841125,
-0.5917088985443115,
-1.025040864944458,
-0.0774536207318306,
0.6257594227790833,
-0.4265210032463074,
0.22740958631038666,
0.7694571614265442,
0.7629906535148621,
-0.01453352626413107,
-0.0823199674487114,
-0.05271412804722786,
0.4343642294406891,
0.27339473366737366,
0.6208357810974121,
0.7094195485115051,
-0.5364977717399597,
0.798570990562439,
-0.304616242647171,
-0.247111514210701,
-0.2355242222547531,
-0.7961926460266113,
-1.0318057537078857,
-0.5587717890739441,
-0.2068108320236206,
-0.4352600574493408,
-0.034061938524246216,
0.7193390130996704,
0.6135643720626831,
-0.6058440804481506,
-0.14989925920963287,
-0.3931563198566437,
0.010140183381736279,
-0.18655262887477875,
-0.31690502166748047,
0.3526075482368469,
-0.4355558454990387,
-0.8505440354347229,
0.007903702557086945,
-0.11964129656553268,
-0.10210328549146652,
-0.16269689798355103,
-0.04647739976644516,
-0.35886868834495544,
0.08105291426181793,
0.5215566158294678,
0.0023363055661320686,
-0.49076005816459656,
-0.11973493546247482,
0.12786264717578888,
-0.1304558962583542,
-0.089870885014534,
0.4960576295852661,
-0.5320923924446106,
0.3174896240234375,
0.45354756712913513,
0.5633376240730286,
0.40373939275741577,
0.06729624420404434,
0.5234830379486084,
-0.6402899026870728,
0.1602037400007248,
0.21004922688007355,
0.33704400062561035,
0.25172004103660583,
-0.45939329266548157,
0.5086339116096497,
0.26423776149749756,
-0.6543103456497192,
-0.8523775935173035,
0.19245171546936035,
-0.8362768888473511,
-0.26187512278556824,
1.3925353288650513,
0.03487076610326767,
-0.1971183568239212,
0.033236172050237656,
-0.34564101696014404,
0.37745401263237,
-0.43694761395454407,
0.6047844290733337,
0.7281481027603149,
0.25359174609184265,
-0.06585519015789032,
-0.5157281160354614,
0.49071139097213745,
0.380120187997818,
-0.8250223398208618,
0.11068781465291977,
0.4297729730606079,
0.28109708428382874,
0.19574031233787537,
0.7990052103996277,
-0.06890524923801422,
0.0037694545462727547,
0.01575707457959652,
0.16914473474025726,
-0.02642687037587166,
-0.2543347477912903,
-0.09020628780126572,
0.05183509737253189,
-0.3039547801017761,
-0.014852355234324932
] |
laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup | laion | "2023-04-18T19:28:53Z" | 180,222 | 3 | open_clip | [
"open_clip",
"tensorboard",
"zero-shot-image-classification",
"clip",
"arxiv:2201.03545",
"arxiv:2210.08402",
"arxiv:1910.04867",
"license:mit",
"has_space",
"region:us"
] | zero-shot-image-classification | "2023-02-11T01:35:52Z" | ---
tags:
- zero-shot-image-classification
- clip
license: mit
library_name: open_clip
pipeline_tag: zero-shot-image-classification
---
# Model card for CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
5. [Acknowledgements](#acknowledgements)
6. [Citation](#citation)
# Model Details
## Model Description
A series of CLIP [ConvNeXt-Large](https://arxiv.org/abs/2201.03545) (w/ extra text depth, vision MLP head) models trained on the LAION-2B (english) subset of [LAION-5B](https://arxiv.org/abs/2210.08402) using [OpenCLIP](https://github.com/mlfoundations/open_clip).
The models utilize:
* the [timm](https://github.com/rwightman/pytorch-image-models) ConvNeXt-Large model (`convnext_large`) as the image tower
* a MLP (`fc - gelu - drop - fc`) head in vision tower instead of the single projection of other CLIP models
* a text tower with same width but 4 layers more depth than ViT-L / RN50x16 models (depth 16, embed dim 768).
This 320x320 resolution model is a soup (weight average) of 3 fine-tunes of [CLIP-convnext_large_d.laion2B-s26B-b102K-augreg](https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg) at a higher resolution. It is an average of 3 fine-tunes from the final checkpoint of the original 256x256 training run w/ an additional ~2-3B samples for each fine-tune and a lower learning rate. Each fine-tune was a different learning rate (1e-4, 6e-5, 5e-5), and diff # of samples (3.2B, 2B, 2.5B).
At 320x320, the ConvNext-Large-D is significantly more efficient than the L/14 model at 336x336 that OpenAI fine-tuned. L/14-336 model is 2.5x more GMAC, 2.8x more activations, and 1.22x more parameters.
| Model | Dataset | Resolution | AugReg | Top-1 ImageNet Zero-Shot (%) |
| ----- | ------- | ---------- | ------------ | --------- |
| [convnext_large_d.laion2b_s26b_b102k-augreg](https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg) | LAION-2B | 256x256 | RRC (0.33, 1.0), RE (0.35), SD (0.1), D(0.1) | 75.9 |
| [convnext_large_d_320.laion2b_s29b_b131k-ft](https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft) | LAION-2B | 320x320 | RRC (0.5, 1.0), RE (0.4), SD (0.1), D(0.0) | 76.6 |
| [convnext_large_d_320.laion2b_s29b_b131k-ft-soup](https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup) | LAION-2B | 320x320 | RRC (0.5, 1.0), RE (0.4), SD (0.1), D(0.0) | 76.9 |
RRC = Random Resize Crop (crop pcts), RE = Random Erasing (prob), SD = Stochastic Depth (prob) -- image tower only, D = Dropout (prob) -- image tower head only
LAION-A = LAION Aesthetic, an ~900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering.
Model training done by Ross Wightman on the [stability.ai](https://stability.ai/) cluster.
# Uses
As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model.
The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset.
## Direct Use
Zero-shot image classification, image and text retrieval, among others.
## Downstream Use
Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others.
## Out-of-Scope Use
As per the OpenAI models,
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below.
# Training Details
## Training Data
This model was trained with LAION-2B -- A 2 billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/).
**IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress.
## Training Procedure
All 320x320 model fine-tunes were trained with a global batch size of 131072 for 10-16 checkpoint intervals of 203.7M samples for a total of ~2-3B samples seen over fine-tune.
For 320x320 models, a slurm script w/ srun below was used on 64 8-GPU (A100 40GB) nodes (Stability).
```
/opt/slurm/sbin/srun --cpu_bind=v --accel-bind=gn python -m training.main \
--save-frequency 1 \
--name "convnext_large_320" \
--pretrained ""/runs/convnext_large_256/epoch_128.pt" \
--resume 'latest' \
--train-data="pipe:aws s3 cp s3://mybucket/path/{laion{00000..xxxxx}.tar -" \
--train-num-samples 203666042 \
--dataset-type webdataset \
--precision amp_bfloat16 \
--beta2 0.98 \
--warmup 2000 \
--batch-size=256 \
--epochs=12 \
--dataset-resampled \
--aug-cfg use_timm=True scale='(0.5, 1.0)' re_prob=0.4 \
--clip-grad-norm 5.0 \
--lr 5e-5 \
--workers=6 \
--model "convnext_large_d_320" \
--seed 0 \
--ddp-static-graph \
--local-loss \
--gather-with-grad \
--grad-checkpointing
```
# Evaluation
Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark).
## Testing Data, Factors & Metrics
### Testing Data
The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval.
## Results
The models achieve between 75.9 and 76.9 top-1 zero-shot accuracy on ImageNet-1k.
Zero-shot curve of origina from-scratch 256x256 training:
![](convnext_large_zero_shot.png)
An initial round of benchmarks have been performed on a wider range of datasets, to be viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb
# Acknowledgements
Acknowledging [stability.ai](https://stability.ai/) for compute used to train this model.
# Citation
**BibTeX:**
LAION-5B
```bibtex
@inproceedings{schuhmann2022laionb,
title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
author={Christoph Schuhmann and
Romain Beaumont and
Richard Vencu and
Cade W Gordon and
Ross Wightman and
Mehdi Cherti and
Theo Coombes and
Aarush Katta and
Clayton Mullis and
Mitchell Wortsman and
Patrick Schramowski and
Srivatsa R Kundurthy and
Katherine Crowson and
Ludwig Schmidt and
Robert Kaczmarczyk and
Jenia Jitsev},
booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2022},
url={https://openreview.net/forum?id=M3Y74vmsMcY}
}
```
OpenCLIP software
```bibtex
@software{ilharco_gabriel_2021_5143773,
author = {Ilharco, Gabriel and
Wortsman, Mitchell and
Wightman, Ross and
Gordon, Cade and
Carlini, Nicholas and
Taori, Rohan and
Dave, Achal and
Shankar, Vaishaal and
Namkoong, Hongseok and
Miller, John and
Hajishirzi, Hannaneh and
Farhadi, Ali and
Schmidt, Ludwig},
title = {OpenCLIP},
month = jul,
year = 2021,
note = {If you use this software, please cite it as below.},
publisher = {Zenodo},
version = {0.1},
doi = {10.5281/zenodo.5143773},
url = {https://doi.org/10.5281/zenodo.5143773}
}
```
```
@InProceedings{pmlr-v162-wortsman22a,
title = {Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time},
author = {Wortsman, Mitchell and Ilharco, Gabriel and Gadre, Samir Ya and Roelofs, Rebecca and Gontijo-Lopes, Raphael and Morcos, Ari S and Namkoong, Hongseok and Farhadi, Ali and Carmon, Yair and Kornblith, Simon and Schmidt, Ludwig},
booktitle = {Proceedings of the 39th International Conference on Machine Learning},
pages = {23965--23998},
year = {2022},
editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan},
volume = {162},
series = {Proceedings of Machine Learning Research},
month = {17--23 Jul},
publisher = {PMLR},
pdf = {https://proceedings.mlr.press/v162/wortsman22a/wortsman22a.pdf},
url = {https://proceedings.mlr.press/v162/wortsman22a.html}
}
```
OpenAI CLIP paper
```bibtex
@inproceedings{Radford2021LearningTV,
title={Learning Transferable Visual Models From Natural Language Supervision},
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
booktitle={ICML},
year={2021}
}
```
```bibtex
@Article{liu2022convnet,
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
title = {A ConvNet for the 2020s},
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
``` | [
-0.42936334013938904,
-0.4346366822719574,
0.1612202674150467,
0.030144724994897842,
-0.39275744557380676,
-0.40642350912094116,
-0.19771313667297363,
-0.5635853409767151,
0.2245326042175293,
0.35176488757133484,
-0.47019386291503906,
-0.41412392258644104,
-0.5857810378074646,
-0.05356381833553314,
-0.3164694607257843,
0.9206101298332214,
-0.11614734679460526,
0.0355851836502552,
0.05274738743901253,
-0.3222125470638275,
-0.4587104320526123,
-0.4292748272418976,
-0.7538328170776367,
0.0028476999141275883,
0.25454825162887573,
0.3591814339160919,
0.5892130136489868,
0.8519032001495361,
0.6711140275001526,
0.2339484542608261,
-0.16051679849624634,
-0.11212822794914246,
-0.6347601413726807,
-0.49042412638664246,
0.13604521751403809,
-0.3189961314201355,
-0.5815944671630859,
0.17768089473247528,
0.6525613069534302,
0.3214035630226135,
-0.10722994059324265,
0.29854750633239746,
0.11705102026462555,
0.5587007403373718,
-0.7259736657142639,
0.04445381462574005,
-0.5608821511268616,
0.09695149958133698,
-0.2802523076534271,
0.09907666593790054,
-0.1877754032611847,
-0.043477557599544525,
0.20093704760074615,
-0.6980043649673462,
0.3681917190551758,
-0.11086151748895645,
1.2929524183273315,
0.2024901807308197,
-0.20184843242168427,
0.20077583193778992,
-0.5803337693214417,
0.8048871755599976,
-0.7711717486381531,
0.33917418122291565,
0.30968400835990906,
0.3514799177646637,
0.18901695311069489,
-0.8031728863716125,
-0.3806929886341095,
-0.1142926812171936,
0.1678456962108612,
0.34624892473220825,
-0.21731874346733093,
-0.03302239626646042,
0.5031879544258118,
0.4240918457508087,
-0.5187982320785522,
0.11336620151996613,
-0.6598213911056519,
0.002448304323479533,
0.7931026816368103,
0.0564253069460392,
0.16162420809268951,
-0.2922050356864929,
-0.6706433296203613,
-0.36025547981262207,
-0.62981778383255,
0.33677661418914795,
0.25468096137046814,
-0.06933030486106873,
-0.4277556538581848,
0.40655985474586487,
-0.12314864993095398,
0.43122589588165283,
0.04193847253918648,
-0.2851250469684601,
0.4486103653907776,
-0.3054843842983246,
-0.4595372676849365,
-0.11661326140165329,
1.0393999814987183,
0.6402668952941895,
0.05218204855918884,
0.21606189012527466,
-0.1548224538564682,
-0.18802733719348907,
0.168287992477417,
-1.0621452331542969,
-0.17746196687221527,
0.20564675331115723,
-0.6157403588294983,
-0.342502236366272,
0.337184339761734,
-0.6341595649719238,
0.03946945071220398,
-0.10102391988039017,
0.5731180310249329,
-0.6000596284866333,
-0.18339015543460846,
0.09851257503032684,
-0.23402225971221924,
0.2191939800977707,
0.33159664273262024,
-0.5246101021766663,
0.1766175627708435,
0.36384183168411255,
1.0910402536392212,
-0.13967089354991913,
-0.3889375925064087,
-0.18073639273643494,
0.1373755931854248,
-0.31682661175727844,
0.5151641368865967,
-0.004503642208874226,
-0.3344614803791046,
-0.2547845244407654,
0.4314529299736023,
-0.08088397979736328,
-0.5630375742912292,
0.5901039242744446,
-0.2037860006093979,
-0.027538640424609184,
-0.17201735079288483,
-0.33687451481819153,
-0.47096049785614014,
0.12161218374967575,
-0.7368881106376648,
0.8896564841270447,
0.13728268444538116,
-0.8564655780792236,
0.35487014055252075,
-0.5220848321914673,
-0.12734338641166687,
-0.10068490356206894,
0.054743945598602295,
-0.5445861220359802,
-0.22059357166290283,
0.3562932014465332,
0.6132873296737671,
-0.3634742498397827,
0.28607264161109924,
-0.5149544477462769,
-0.4728148877620697,
0.2604881525039673,
-0.4417264461517334,
0.9031952619552612,
0.05079878494143486,
-0.392984539270401,
0.12091746926307678,
-0.64532470703125,
-0.12095338106155396,
0.35095149278640747,
-0.019620146602392197,
-0.08672976493835449,
-0.3096103370189667,
-0.054645732045173645,
0.2386220544576645,
0.09522292017936707,
-0.5419962406158447,
-0.043235912919044495,
-0.18378256261348724,
0.6003971099853516,
0.7607160210609436,
0.13277441263198853,
0.3274418115615845,
-0.5357550382614136,
0.44037118554115295,
0.06818654388189316,
0.5771422982215881,
-0.23932614922523499,
-0.47928276658058167,
-0.7311153411865234,
-0.5818240642547607,
0.36482274532318115,
0.44862887263298035,
-0.40213075280189514,
0.4432220160961151,
-0.2537403702735901,
-0.5023800730705261,
-0.44842395186424255,
-0.14390195906162262,
0.3765970468521118,
0.5118798017501831,
0.4072926342487335,
-0.3809716999530792,
-0.5270639061927795,
-1.0247546434402466,
0.33605143427848816,
0.1653212606906891,
-0.21283262968063354,
0.6524597406387329,
0.7469485998153687,
-0.08647189289331436,
0.7322402000427246,
-0.7200211882591248,
-0.4458388686180115,
-0.18715809285640717,
-0.010154016315937042,
0.26044660806655884,
0.4802708625793457,
0.7817566394805908,
-0.7235291600227356,
-0.5699540376663208,
-0.1511816531419754,
-0.9364904165267944,
0.22154901921749115,
-0.020021045580506325,
-0.17245201766490936,
0.12046939879655838,
0.414573073387146,
-0.601656436920166,
0.6464028358459473,
0.3942711651325226,
0.1316976398229599,
0.6048554182052612,
-0.1543024480342865,
0.09154804050922394,
-1.0250887870788574,
0.35212934017181396,
0.17528310418128967,
-0.15328273177146912,
-0.4933401644229889,
0.02905692718923092,
0.06342148780822754,
-0.3271486461162567,
-0.8316341042518616,
0.53192138671875,
-0.3629836142063141,
0.04145197570323944,
-0.11478753387928009,
0.056448061019182205,
0.08175253123044968,
0.6802983283996582,
0.1360682100057602,
0.9048734307289124,
0.6078450083732605,
-0.6095938682556152,
0.1276925653219223,
0.21419551968574524,
-0.39889010787010193,
0.40810903906822205,
-1.005752444267273,
0.012464111670851707,
-0.011352206580340862,
0.3577019274234772,
-0.49696335196495056,
-0.4469481408596039,
0.3470834195613861,
-0.43840497732162476,
0.3228178322315216,
-0.3155076503753662,
-0.17487280070781708,
-0.5550830364227295,
-0.7375052571296692,
0.5482452511787415,
0.6327825784683228,
-0.4918571710586548,
0.16998368501663208,
0.3666950762271881,
0.2370833307504654,
-0.6585142016410828,
-0.6622739434242249,
-0.30101335048675537,
-0.3160959482192993,
-0.7479868531227112,
0.4734964072704315,
0.05123396962881088,
0.07570668309926987,
-0.0007476406753994524,
-0.00013220167602412403,
-0.060708507895469666,
-0.0757601261138916,
0.5581008791923523,
0.41243430972099304,
-0.12096327543258667,
-0.23577632009983063,
-0.1982201188802719,
0.015370050445199013,
-0.051175519824028015,
-0.21033723652362823,
0.4572256803512573,
-0.156550332903862,
-0.13887713849544525,
-0.7264918684959412,
0.14992760121822357,
0.5362417697906494,
-0.2292151153087616,
0.7609641551971436,
0.799527645111084,
-0.40465810894966125,
0.08466698974370956,
-0.3939715623855591,
-0.16582675278186798,
-0.46187061071395874,
0.4742831587791443,
-0.14083975553512573,
-0.618872880935669,
0.6164069175720215,
0.168199822306633,
-0.09443502128124237,
0.7227042317390442,
0.21517637372016907,
-0.18327847123146057,
0.8977565765380859,
0.49837690591812134,
-0.08897104859352112,
0.5492265224456787,
-1.0430516004562378,
-0.02629254013299942,
-1.1869512796401978,
-0.2870132029056549,
-0.17155610024929047,
-0.2828623950481415,
-0.49039703607559204,
-0.4936477243900299,
0.6449305415153503,
0.3289835453033447,
-0.35811030864715576,
0.38351085782051086,
-0.33144763112068176,
0.23116755485534668,
0.5784156918525696,
0.4591673016548157,
-0.1707516461610794,
-0.08855339139699936,
0.028688276186585426,
-0.04193207621574402,
-0.7431699633598328,
-0.19901509582996368,
1.1786307096481323,
0.6344772577285767,
0.6205353736877441,
-0.17191721498966217,
0.40129461884498596,
0.16029256582260132,
-0.014327071607112885,
-0.6861954927444458,
0.5818443298339844,
-0.3815971612930298,
-0.6111884713172913,
-0.33030712604522705,
-0.39716511964797974,
-0.8550717830657959,
0.10877341777086258,
-0.194773867726326,
-0.7203101515769958,
0.2114289104938507,
0.05198170989751816,
-0.43105456233024597,
0.5881317853927612,
-0.5446529984474182,
0.9412394762039185,
-0.2844987213611603,
-0.41768813133239746,
-0.05836334452033043,
-0.72762131690979,
0.5478817820549011,
0.10853660106658936,
0.0580875463783741,
-0.19429688155651093,
0.22487139701843262,
1.1412569284439087,
-0.7600468993186951,
0.7629685401916504,
-0.20914708077907562,
0.24404871463775635,
0.6305004358291626,
-0.18257670104503632,
0.37370774149894714,
0.16683712601661682,
0.07120980322360992,
0.6840106844902039,
0.05303023010492325,
-0.23952794075012207,
-0.3645874261856079,
0.5272983908653259,
-0.9867874979972839,
-0.39071935415267944,
-0.4633193016052246,
-0.5439552664756775,
0.22854919731616974,
0.23521305620670319,
0.7707002758979797,
0.6541783809661865,
-0.10105707496404648,
0.3951941430568695,
0.5430812835693359,
-0.23935566842556,
0.4500731825828552,
0.10704617947340012,
-0.06989942491054535,
-0.7016916871070862,
0.9741905331611633,
0.2539651095867157,
0.2957035303115845,
0.05813881382346153,
0.21043166518211365,
-0.09877057373523712,
-0.43496978282928467,
-0.5441620349884033,
0.3777865469455719,
-0.5015337467193604,
-0.4547565281391144,
-0.43757274746894836,
-0.5507557392120361,
-0.47901710867881775,
-0.15449978411197662,
-0.5095536708831787,
-0.27678579092025757,
-0.6297308802604675,
0.05567816644906998,
0.3320351839065552,
0.5414764881134033,
-0.1871836930513382,
0.45359623432159424,
-0.8277584910392761,
0.20468442142009735,
0.2068570852279663,
0.34213051199913025,
0.11346380412578583,
-0.8108086585998535,
-0.2890862226486206,
0.333529531955719,
-0.4945351481437683,
-0.7079169750213623,
0.3870724141597748,
0.2681090533733368,
0.39167046546936035,
0.7533748745918274,
-0.07566086202859879,
0.7081328630447388,
-0.3585881292819977,
1.0019820928573608,
0.3944859504699707,
-0.6863383650779724,
0.5595682859420776,
-0.526378870010376,
0.28216132521629333,
0.4932614862918854,
0.6731624007225037,
-0.2913976013660431,
0.00910040270537138,
-0.8037210702896118,
-0.8827733397483826,
1.030999779701233,
0.14343693852424622,
-0.13454963266849518,
0.17496143281459808,
0.5220792889595032,
0.00015639650519005954,
0.09554089605808258,
-0.7762833833694458,
-0.17161349952220917,
-0.42341697216033936,
0.10027553141117096,
0.0002522666472941637,
-0.3616306185722351,
-0.16313984990119934,
-0.48788750171661377,
0.7867027521133423,
-0.09586252272129059,
0.5529945492744446,
0.22153808176517487,
-0.025862010195851326,
-0.06752440333366394,
-0.1710580587387085,
0.5102266669273376,
0.46294957399368286,
-0.5671546459197998,
-0.22713898122310638,
0.2308371663093567,
-0.6851835250854492,
-0.07439851760864258,
0.0470256507396698,
-0.5791255235671997,
-0.19186832010746002,
0.3862283527851105,
1.1513525247573853,
0.16690504550933838,
-0.4948653280735016,
0.8562657237052917,
-0.08238542079925537,
-0.47158390283584595,
-0.32929155230522156,
0.1466098129749298,
-0.24870949983596802,
0.16335144639015198,
0.23921315371990204,
0.1821184605360031,
0.17705857753753662,
-0.45543962717056274,
0.17566406726837158,
0.49056342244148254,
-0.47943487763404846,
-0.43819087743759155,
0.7071670889854431,
-0.006296957843005657,
-0.06267303973436356,
0.687507152557373,
-0.1729874610900879,
-0.5572724938392639,
0.7750102281570435,
0.547605574131012,
0.8736583590507507,
-0.11891704052686691,
0.32465997338294983,
0.8711455464363098,
0.1876664161682129,
-0.295133113861084,
0.1071268618106842,
0.1767418384552002,
-0.5160278081893921,
-0.058577317744493484,
-0.5106036067008972,
-0.10778679698705673,
0.5549627542495728,
-0.860724151134491,
0.4665974974632263,
-0.6427928805351257,
-0.35428184270858765,
-0.17417822778224945,
-0.11106652766466141,
-0.5963691473007202,
0.30820146203041077,
0.07866651564836502,
1.0131844282150269,
-0.8494716882705688,
0.700495183467865,
0.6050058603286743,
-0.5911319851875305,
-0.9589598178863525,
0.03561623394489288,
-0.14756207168102264,
-0.5785306692123413,
0.3776009678840637,
0.4846910834312439,
0.07351423054933548,
-0.26404279470443726,
-0.8134039044380188,
-1.0334690809249878,
1.4062215089797974,
0.36413195729255676,
-0.36442139744758606,
0.021205050870776176,
0.025066465139389038,
0.3319319188594818,
-0.29716676473617554,
0.4268876612186432,
0.3343316912651062,
0.13639773428440094,
0.26290714740753174,
-0.9099962115287781,
0.03759727254509926,
-0.14954248070716858,
0.2008216232061386,
0.1304207593202591,
-1.1791132688522339,
1.13485848903656,
-0.2629397511482239,
-0.27477991580963135,
0.01573149487376213,
0.6443028450012207,
0.13786743581295013,
0.19019685685634613,
0.4529573321342468,
0.7302176356315613,
0.5694190263748169,
0.024782614782452583,
1.0110989809036255,
-0.2060583531856537,
0.3085232973098755,
0.9162927865982056,
0.0028627740684896708,
0.8615292906761169,
0.22546085715293884,
-0.20385558903217316,
0.2399357259273529,
0.6433826684951782,
-0.3657142221927643,
0.6295614838600159,
-0.14994558691978455,
0.07508963346481323,
-0.06593438982963562,
-0.32316696643829346,
-0.49416059255599976,
0.48616206645965576,
0.10601357370615005,
-0.2943367660045624,
0.062157295644283295,
0.23399172723293304,
0.07067757844924927,
-0.40663501620292664,
-0.3387754261493683,
0.44799384474754333,
0.10084819048643112,
-0.5081601142883301,
0.7661682963371277,
0.06787768751382828,
0.7731278538703918,
-0.5853254795074463,
0.0840856209397316,
-0.1118762269616127,
0.21268579363822937,
-0.17773181200027466,
-0.8400056958198547,
0.2779780328273773,
-0.12264522910118103,
-0.03239216282963753,
0.018038712441921234,
0.5745352506637573,
-0.07957959920167923,
-0.45103880763053894,
0.36746546626091003,
-0.07521005719900131,
0.31925415992736816,
-0.1569724678993225,
-0.769200325012207,
0.18845780193805695,
0.07126626372337341,
-0.09889673441648483,
0.36067628860473633,
0.1828756034374237,
-0.03375351056456566,
0.5476240515708923,
0.5488077402114868,
-0.021472487598657608,
0.033392999321222305,
-0.12508933246135712,
0.9358813166618347,
-0.4201947748661041,
-0.40677410364151,
-0.5734397768974304,
0.47179853916168213,
-0.1747482419013977,
-0.4991852939128876,
0.6905645728111267,
0.6751128435134888,
0.9851769804954529,
-0.1120169460773468,
0.6198066473007202,
-0.178257018327713,
0.27607861161231995,
-0.6119704842567444,
0.607364296913147,
-0.8029004335403442,
0.019861772656440735,
-0.3014558255672455,
-0.7116847038269043,
-0.07734529674053192,
0.6214298605918884,
-0.2344668209552765,
0.09904225915670395,
0.6421533823013306,
0.6465117931365967,
-0.29758405685424805,
0.0030065220780670643,
0.16206525266170502,
0.16807635128498077,
0.17927837371826172,
0.6212441921234131,
0.5180312395095825,
-0.8805015683174133,
0.5656132102012634,
-0.7786994576454163,
-0.3377440571784973,
-0.30697643756866455,
-0.651292622089386,
-0.953437864780426,
-0.6297279000282288,
-0.35411766171455383,
-0.3124679625034332,
-0.02537204883992672,
0.6417925953865051,
0.9523270726203918,
-0.6822999715805054,
-0.3499399721622467,
0.17844551801681519,
-0.25393787026405334,
-0.2745040953159332,
-0.2072952687740326,
0.5174151062965393,
0.17740358412265778,
-0.5419108867645264,
0.14145344495773315,
0.14241322875022888,
0.23268267512321472,
-0.09098358452320099,
-0.09096275269985199,
-0.3392013907432556,
-0.15758074820041656,
0.4875660836696625,
0.3732903003692627,
-0.5317136645317078,
-0.3156660199165344,
0.18332473933696747,
0.032116785645484924,
0.2558690905570984,
0.5484004020690918,
-0.48538196086883545,
0.153382807970047,
0.4011746644973755,
0.2613302171230316,
0.8753737807273865,
0.06921584159135818,
0.20279696583747864,
-0.5928593873977661,
0.4215189814567566,
0.06024336814880371,
0.41562411189079285,
0.2670881450176239,
-0.37745195627212524,
0.6381829977035522,
0.40585318207740784,
-0.5943639874458313,
-0.8295221328735352,
-0.08152812719345093,
-1.1346980333328247,
-0.2114361673593521,
1.224094033241272,
-0.3250824511051178,
-0.5825315713882446,
0.4293707013130188,
-0.2192016988992691,
0.34176069498062134,
-0.36538976430892944,
0.46022364497184753,
0.3052239418029785,
-0.014494391158223152,
-0.27606141567230225,
-0.691480278968811,
0.45449015498161316,
0.14507915079593658,
-0.6241492629051208,
-0.2070370465517044,
0.35710784792900085,
0.5165203809738159,
0.2053178995847702,
0.5948910713195801,
-0.20537519454956055,
0.3712410628795624,
0.050816960632801056,
0.12310770899057388,
-0.2340782731771469,
-0.5239642858505249,
-0.4238377511501312,
0.06184498220682144,
-0.20527800917625427,
-0.4710790812969208
] |
Helsinki-NLP/opus-mt-nl-en | Helsinki-NLP | "2023-08-16T12:01:39Z" | 179,980 | 8 | transformers | [
"transformers",
"pytorch",
"tf",
"rust",
"marian",
"text2text-generation",
"translation",
"nl",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-nl-en
* source languages: nl
* target languages: en
* OPUS readme: [nl-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nl-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-05.zip](https://object.pouta.csc.fi/OPUS-MT-models/nl-en/opus-2019-12-05.zip)
* test set translations: [opus-2019-12-05.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-en/opus-2019-12-05.test.txt)
* test set scores: [opus-2019-12-05.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-en/opus-2019-12-05.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.nl.en | 60.9 | 0.749 |
| [
-0.26811444759368896,
-0.49445903301239014,
0.2545957565307617,
0.48851045966148376,
-0.5137473940849304,
-0.4242212176322937,
-0.5104518532752991,
-0.12898355722427368,
0.06440699845552444,
0.5352678894996643,
-0.7471410632133484,
-0.6474073529243469,
-0.6512160301208496,
0.3213677406311035,
-0.1504235565662384,
0.8154692649841309,
-0.1648000031709671,
0.5232494473457336,
0.25140222907066345,
-0.5097523331642151,
-0.3640386760234833,
-0.40823060274124146,
-0.5660887360572815,
-0.36483055353164673,
0.3471943736076355,
0.3342321515083313,
0.45835405588150024,
0.43812552094459534,
1.0329817533493042,
0.23540693521499634,
-0.1653413623571396,
0.08438930660486221,
-0.5165801048278809,
-0.07040996104478836,
0.0591525174677372,
-0.6487583518028259,
-0.8123796582221985,
-0.19565343856811523,
1.1201943159103394,
0.5042949914932251,
-0.0941898301243782,
0.442976713180542,
-0.04682641476392746,
1.0492627620697021,
-0.3268883228302002,
0.08867684751749039,
-0.6802849769592285,
0.14089703559875488,
-0.35226619243621826,
-0.35811567306518555,
-0.7557746171951294,
-0.2777835428714752,
0.1613304615020752,
-0.7492226958274841,
-0.045234691351652145,
0.1705169677734375,
1.5482780933380127,
0.37896081805229187,
-0.3484731614589691,
-0.20073473453521729,
-0.6369255185127258,
1.1509137153625488,
-0.930972695350647,
0.693701982498169,
0.46229037642478943,
0.276166707277298,
0.3171274960041046,
-0.606858491897583,
-0.34498465061187744,
0.13722476363182068,
-0.22729510068893433,
0.25235068798065186,
-0.17928995192050934,
-0.30717381834983826,
0.35513922572135925,
0.7789177894592285,
-0.8772075176239014,
-0.0049040294252336025,
-0.6346880197525024,
0.01090322807431221,
0.7743951082229614,
0.10313236713409424,
0.16005714237689972,
-0.20940177142620087,
-0.48163703083992004,
-0.6256776452064514,
-0.8083418011665344,
0.10676032304763794,
0.407947301864624,
0.34638091921806335,
-0.5261278748512268,
0.7709964513778687,
-0.11294521391391754,
0.7299996018409729,
-0.029746299609541893,
-0.00042628677329048514,
1.0948694944381714,
-0.46987947821617126,
-0.4085463881492615,
-0.10959897190332413,
1.2812798023223877,
0.38514602184295654,
0.0849865972995758,
0.04140728339552879,
-0.3140837550163269,
-0.3071554899215698,
0.1380569338798523,
-0.9271491169929504,
-0.07676392793655396,
0.19520504772663116,
-0.5316482782363892,
-0.11405695974826813,
0.055914055556058884,
-0.658312976360321,
0.23819658160209656,
-0.4762602150440216,
0.6440173983573914,
-0.6963105201721191,
-0.3236459791660309,
0.45285764336586,
0.0318400040268898,
0.4416281282901764,
0.015087843872606754,
-0.6490758061408997,
0.17854754626750946,
0.42096322774887085,
0.8083107471466064,
-0.47612130641937256,
-0.302128404378891,
-0.509006917476654,
-0.2104990929365158,
-0.14435319602489471,
0.712130069732666,
-0.039600174874067307,
-0.4161512851715088,
-0.02665490284562111,
0.5154112577438354,
-0.38405847549438477,
-0.409532755613327,
1.4627386331558228,
-0.37927818298339844,
0.80271315574646,
-0.4656527042388916,
-0.6001129746437073,
-0.3766743242740631,
0.5466430187225342,
-0.6720862984657288,
1.4133261442184448,
0.09466324746608734,
-0.9425719976425171,
0.22282487154006958,
-0.9159814715385437,
-0.24039708077907562,
-0.014099879190325737,
0.0999700203537941,
-0.7047461271286011,
0.10277380794286728,
0.15625828504562378,
0.44195085763931274,
-0.35383570194244385,
0.3785237967967987,
0.0577668659389019,
-0.3639642596244812,
0.05644556134939194,
-0.4446611702442169,
1.186568021774292,
0.2945820987224579,
-0.36102181673049927,
0.25011372566223145,
-1.0391429662704468,
-0.07724647969007492,
0.036116521805524826,
-0.5791283845901489,
-0.21841570734977722,
0.1351204514503479,
0.32916513085365295,
0.1467476189136505,
0.37362030148506165,
-0.7015870809555054,
0.24775594472885132,
-0.7653581500053406,
0.11772415786981583,
0.6959042549133301,
-0.361721396446228,
0.4061654210090637,
-0.4640280306339264,
0.3646058142185211,
0.08144307136535645,
0.11408212035894394,
0.040646735578775406,
-0.5028001070022583,
-0.9522018432617188,
-0.1914685070514679,
0.6986199021339417,
1.1954684257507324,
-0.8656684756278992,
0.9972683787345886,
-0.742804229259491,
-0.8227354288101196,
-0.8858230710029602,
-0.10444220155477524,
0.5051684975624084,
0.3895489275455475,
0.6055368781089783,
-0.218170166015625,
-0.5347217321395874,
-1.1799359321594238,
-0.1359526813030243,
-0.14839185774326324,
-0.2977326512336731,
0.1592443287372589,
0.6455826759338379,
-0.19488829374313354,
0.6147074103355408,
-0.5509514808654785,
-0.47162359952926636,
-0.2140059620141983,
0.10647990554571152,
0.6089995503425598,
0.6847319602966309,
0.5817710757255554,
-0.9873644709587097,
-0.6442180871963501,
-0.021508455276489258,
-0.8465483784675598,
-0.16984675824642181,
0.09187322854995728,
-0.23603402078151703,
0.10986439138650894,
0.14539054036140442,
-0.2856534421443939,
0.09092043340206146,
0.7744441032409668,
-0.6457960605621338,
0.6052103042602539,
-0.1304355412721634,
0.21831011772155762,
-1.4507255554199219,
0.16878269612789154,
-0.1836726814508438,
-0.12440364062786102,
-0.45192521810531616,
0.011202397756278515,
0.2951612174510956,
0.1068086177110672,
-0.9283297061920166,
0.6144911646842957,
-0.23829449713230133,
-0.05256681144237518,
0.2919979691505432,
0.028904428705573082,
0.10909049212932587,
0.8096498250961304,
-0.03744480386376381,
0.8877536058425903,
0.7848713397979736,
-0.5742431879043579,
0.17134881019592285,
0.6608721613883972,
-0.49575307965278625,
0.4361420273780823,
-0.9579502940177917,
-0.3101302683353424,
0.3461579382419586,
-0.1205340176820755,
-0.6585827469825745,
0.1479419767856598,
0.3045194745063782,
-0.6802875399589539,
0.42553839087486267,
-0.010766152292490005,
-0.8424217104911804,
-0.0020386783871799707,
-0.2950361371040344,
0.4853854179382324,
0.7297687530517578,
-0.21426869928836823,
0.7061765789985657,
0.06690061837434769,
0.01871347241103649,
-0.5374873876571655,
-1.128557801246643,
-0.11181526631116867,
-0.40116116404533386,
-0.8360079526901245,
0.2515559792518616,
-0.4672340452671051,
-0.056880757212638855,
0.059505440294742584,
0.36708319187164307,
-0.05670005828142166,
0.06909070163965225,
0.033283356577157974,
0.21937914192676544,
-0.5798918008804321,
0.12272149324417114,
0.0169837586581707,
-0.18761050701141357,
-0.14772970974445343,
-0.1479721963405609,
0.6604502201080322,
-0.4249134063720703,
-0.28091689944267273,
-0.6517847180366516,
0.06494078040122986,
0.5561841130256653,
-0.4661555886268616,
0.9320530295372009,
0.6624559164047241,
-0.09620288759469986,
0.16068924963474274,
-0.4257354140281677,
0.08950794488191605,
-0.48471060395240784,
0.14564163982868195,
-0.4249940514564514,
-0.8655228018760681,
0.559762179851532,
0.15597088634967804,
0.5236368775367737,
0.9314930438995361,
0.68684321641922,
0.05801188945770264,
0.6523911952972412,
0.3465558588504791,
0.05480995029211044,
0.45735499262809753,
-0.5129129886627197,
-0.1436535269021988,
-1.2212417125701904,
0.127996027469635,
-0.7314319014549255,
-0.3693602681159973,
-0.9097424149513245,
-0.300339013338089,
0.27696043252944946,
0.09730859100818634,
-0.2728281319141388,
0.7744640707969666,
-0.642956554889679,
0.27122870087623596,
0.6294856071472168,
-0.15603913366794586,
0.34660661220550537,
0.01774832047522068,
-0.5584586262702942,
-0.2498812973499298,
-0.5265191197395325,
-0.6006604433059692,
1.4107075929641724,
0.4302196502685547,
0.28305765986442566,
0.3040482699871063,
0.5431802272796631,
0.007439084351062775,
0.24801461398601532,
-0.6562263369560242,
0.49068352580070496,
-0.3577682673931122,
-0.8096368908882141,
-0.3707726299762726,
-0.6622250080108643,
-0.9697437882423401,
0.5328269600868225,
-0.30808308720588684,
-0.5083343982696533,
0.18570174276828766,
-0.023799432441592216,
-0.12632881104946136,
0.5057876706123352,
-0.7313806414604187,
1.221483588218689,
-0.11879244446754456,
-0.09100045263767242,
0.3735954165458679,
-0.5453740954399109,
0.30661749839782715,
-0.04746165871620178,
0.3063439726829529,
-0.2399464100599289,
0.17447082698345184,
0.7523368000984192,
-0.04342871531844139,
0.5141009092330933,
-0.0521278902888298,
-0.1303783804178238,
0.030009906738996506,
0.0982767790555954,
0.4092468321323395,
-0.11206113547086716,
-0.5223426818847656,
0.4959219694137573,
-0.020492609590291977,
-0.4762960374355316,
-0.14357781410217285,
0.5241617560386658,
-0.7643963098526001,
-0.007020910736173391,
-0.4692612290382385,
-0.7019971609115601,
0.021828383207321167,
0.39935606718063354,
0.7571171522140503,
0.7181428074836731,
-0.2834628224372864,
0.63843834400177,
0.9308152198791504,
-0.41931429505348206,
0.47269773483276367,
0.8022150993347168,
-0.2504173219203949,
-0.5931677222251892,
0.9024197459220886,
0.10709605365991592,
0.4140113294124603,
0.6844412684440613,
0.14563758671283722,
-0.15422599017620087,
-0.8433945775032043,
-0.7708280086517334,
0.27519670128822327,
-0.3359854817390442,
-0.21576054394245148,
-0.6075150370597839,
-0.0943644642829895,
-0.24896971881389618,
0.22368325293064117,
-0.5809670090675354,
-0.5789666175842285,
-0.15481965243816376,
-0.256720632314682,
0.24636156857013702,
0.249995157122612,
-0.058335721492767334,
0.5126956701278687,
-1.1177842617034912,
0.20553706586360931,
-0.12225443869829178,
0.40852776169776917,
-0.43971410393714905,
-0.8624313473701477,
-0.4907473921775818,
0.05616879090666771,
-0.7009341716766357,
-0.7064006328582764,
0.5892298221588135,
0.1299879252910614,
0.26841259002685547,
0.3494948148727417,
0.18804854154586792,
0.3559938073158264,
-0.8077926635742188,
1.0940591096878052,
-0.013217411004006863,
-0.8016729354858398,
0.5133877992630005,
-0.48020002245903015,
0.5375868082046509,
1.0228753089904785,
0.28890788555145264,
-0.37932583689689636,
-0.5762071013450623,
-0.7688319683074951,
-0.949611485004425,
0.8695521354675293,
0.8094496726989746,
-0.1294417381286621,
0.2281087040901184,
-0.13665388524532318,
-0.036631982773542404,
0.1905452311038971,
-1.2928193807601929,
-0.4397728741168976,
0.08033320307731628,
-0.3772132694721222,
-0.25969022512435913,
-0.2765699326992035,
-0.25214314460754395,
-0.20230066776275635,
1.1761566400527954,
0.1686517894268036,
0.1918041855096817,
0.49417051672935486,
-0.17709551751613617,
-0.23657932877540588,
0.34933826327323914,
1.0991778373718262,
0.6150555610656738,
-0.6480449438095093,
-0.19070130586624146,
0.3741217851638794,
-0.4306408762931824,
-0.1935088336467743,
0.09100646525621414,
-0.49116113781929016,
0.3730311989784241,
0.5915118455886841,
1.2454417943954468,
0.24893143773078918,
-0.7153832316398621,
0.501462459564209,
-0.4446384012699127,
-0.49648141860961914,
-0.7387571334838867,
-0.18814754486083984,
0.16239559650421143,
-0.005417191423475742,
0.3054373562335968,
0.17596428096294403,
0.1749081015586853,
-0.17019349336624146,
0.19824984669685364,
0.03372936323285103,
-0.7410936951637268,
-0.5779150724411011,
0.5239356160163879,
0.11247076839208603,
-0.406095951795578,
0.5576902031898499,
-0.459305077791214,
-0.6229821443557739,
0.41795846819877625,
0.16169896721839905,
1.1244500875473022,
-0.23299908638000488,
-0.23395943641662598,
0.827721118927002,
0.6814534068107605,
-0.2964913249015808,
0.4943695664405823,
0.16142702102661133,
-0.8196868300437927,
-0.6488651037216187,
-1.0042744874954224,
-0.2160404771566391,
0.07612252235412598,
-0.9474664926528931,
0.3718661069869995,
0.3621079623699188,
0.06581000238656998,
-0.39198362827301025,
0.20983067154884338,
-0.6011253595352173,
0.1273375004529953,
-0.2666366994380951,
1.1791183948516846,
-1.023607850074768,
0.9587106108665466,
0.4829227030277252,
-0.2624552249908447,
-0.9523882269859314,
-0.2470957636833191,
-0.24527081847190857,
-0.4876353442668915,
0.6884387731552124,
0.18313176929950714,
0.36133596301078796,
-0.1709914654493332,
-0.21763049066066742,
-0.8961672186851501,
1.2126827239990234,
0.26031431555747986,
-0.7038320899009705,
0.010107000358402729,
0.1793341487646103,
0.586621105670929,
-0.35554319620132446,
0.09164667874574661,
0.43291687965393066,
0.8355146050453186,
0.05290007218718529,
-1.2380658388137817,
-0.33779171109199524,
-0.5977504849433899,
-0.3483502268791199,
0.5725196003913879,
-0.5784635543823242,
1.0837773084640503,
0.5600524544715881,
-0.15187214314937592,
0.01495696697384119,
0.7050603628158569,
0.38926854729652405,
0.3438784182071686,
0.6182589530944824,
1.2892472743988037,
0.42568907141685486,
-0.5156850814819336,
1.1784772872924805,
-0.3414478302001953,
0.568406343460083,
1.3198212385177612,
-0.12122251838445663,
1.0614979267120361,
0.3528384566307068,
-0.12909501791000366,
0.5543805360794067,
0.6563783288002014,
-0.3355019688606262,
0.5225080251693726,
0.06060762703418732,
0.2471330612897873,
-0.11797509342432022,
0.2446310818195343,
-0.7697368860244751,
0.29431167244911194,
0.19397814571857452,
-0.22047904133796692,
0.031722720712423325,
-0.05390472710132599,
-0.00836201198399067,
-0.001015324960462749,
-0.16462253034114838,
0.7042378783226013,
0.008392986841499805,
-0.6288978457450867,
0.835062563419342,
-0.08477439731359482,
0.8336712121963501,
-0.7983832955360413,
0.18360495567321777,
-0.06076961010694504,
0.23498526215553284,
-0.027897577732801437,
-0.6693221926689148,
0.6245419979095459,
0.0052036927081644535,
-0.29726701974868774,
-0.5140749216079712,
0.1703726351261139,
-0.5957578420639038,
-1.0138063430786133,
0.5252333283424377,
0.49163949489593506,
0.3715096712112427,
0.09038310497999191,
-1.0099997520446777,
0.08513287454843521,
0.1872088760137558,
-0.6918373107910156,
0.049138933420181274,
0.7696873545646667,
0.3743961751461029,
0.4543730616569519,
0.7251639366149902,
0.273872047662735,
0.25469663739204407,
-0.008356263861060143,
0.6809775829315186,
-0.48354676365852356,
-0.4378996193408966,
-0.8600594401359558,
0.905032753944397,
-0.1755567193031311,
-0.7649862766265869,
0.8382387161254883,
1.131662368774414,
1.179792881011963,
-0.1580747812986374,
0.2604807913303375,
-0.03659551218152046,
0.8148944973945618,
-0.7743837237358093,
0.6765141487121582,
-1.0475491285324097,
0.2741071581840515,
-0.15598952770233154,
-1.0434150695800781,
-0.33521756529808044,
0.40718838572502136,
-0.2014262080192566,
-0.4429623782634735,
0.8536801934242249,
0.6994491815567017,
-0.21900011599063873,
-0.2332317978143692,
0.3287539482116699,
0.3198287785053253,
0.2286963015794754,
0.6300308108329773,
0.38982394337654114,
-1.104719877243042,
0.5776126384735107,
-0.33081191778182983,
-0.039403509348630905,
-0.02153175137937069,
-0.8300861120223999,
-0.9181243181228638,
-0.65525883436203,
-0.18497495353221893,
-0.2514646053314209,
-0.34280407428741455,
0.9694376587867737,
0.5580294728279114,
-1.057270884513855,
-0.6572418808937073,
0.03489181771874428,
0.14121463894844055,
-0.2379319667816162,
-0.288937509059906,
0.7328795194625854,
-0.3428296148777008,
-1.0501352548599243,
0.5584327578544617,
0.10422099381685257,
-0.13075771927833557,
-0.008918272331357002,
-0.340620756149292,
-0.5805386304855347,
-0.04075723886489868,
0.3644997477531433,
0.0030751964077353477,
-0.588485598564148,
0.163942351937294,
0.16527561843395233,
-0.09601452946662903,
0.4591885805130005,
0.35926297307014465,
-0.2419086992740631,
0.2597272992134094,
0.8665239214897156,
0.4440349340438843,
0.4619519114494324,
-0.1675294190645218,
0.5850167870521545,
-0.8415787220001221,
0.3814559578895569,
0.29530009627342224,
0.6701698899269104,
0.4331733286380768,
-0.061916522681713104,
0.9488535523414612,
0.16510692238807678,
-0.7052080631256104,
-1.1841928958892822,
0.07972594350576401,
-1.392515778541565,
-0.033138178288936615,
1.0316985845565796,
-0.3164982199668884,
-0.34077373147010803,
0.3383336365222931,
-0.15863698720932007,
0.1546890139579773,
-0.3733331263065338,
0.42126256227493286,
0.9409313797950745,
0.4195404648780823,
0.11863314360380173,
-0.8146212100982666,
0.3880021274089813,
0.6293013095855713,
-0.7748647332191467,
-0.20827265083789825,
0.1582457572221756,
0.11265779286623001,
0.4991705119609833,
0.5276505947113037,
-0.3112045228481293,
0.09402688592672348,
-0.37773334980010986,
0.4899391233921051,
-0.06679872423410416,
-0.16817499697208405,
-0.40891775488853455,
0.057475682348012924,
-0.0998290404677391,
-0.2163802683353424
] |
sentence-transformers/multi-qa-mpnet-base-dot-v1 | sentence-transformers | "2023-11-02T09:30:37Z" | 179,609 | 119 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"en",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:ms_marco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:search_qa",
"dataset:eli5",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/QQP",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/Amazon-QA",
"dataset:embedding-data/WikiAnswers",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
language:
- en
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
datasets:
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- search_qa
- eli5
- natural_questions
- trivia_qa
- embedding-data/QQP
- embedding-data/PAQ_pairs
- embedding-data/Amazon-QA
- embedding-data/WikiAnswers
---
# multi-qa-mpnet-base-dot-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer, util
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
#Load the model
model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-dot-v1')
#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#CLS Pooling - Take output from first token
def cls_pooling(model_output):
return model_output.last_hidden_state[:,0]
#Encode text
def encode(texts):
# Tokenize sentences
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
# Perform pooling
embeddings = cls_pooling(model_output)
return embeddings
# Sentences we want sentence embeddings for
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)
#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Technical Details
In the following some technical details how this model must be used:
| Setting | Value |
| --- | :---: |
| Dimensions | 768 |
| Produces normalized embeddings | No |
| Pooling-Method | CLS pooling |
| Suitable score functions | dot-product (e.g. `util.dot_score`) |
----
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developped this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developped this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages.
Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text.
## Training procedure
The full training script is accessible in this current repository: `train_script.py`.
### Pre-training
We use the pretrained [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
#### Training
We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using CLS-pooling, dot-product as similarity function, and a scale of 1.
| Dataset | Number of training tuples |
|--------------------------------------------------------|:--------------------------:|
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 |
| [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 |
| [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 |
| **Total** | **214,988,242** | | [
-0.45057809352874756,
-0.7396940588951111,
0.4324423670768738,
0.17791089415550232,
-0.08763539046049118,
-0.31144458055496216,
-0.08404260128736496,
-0.11657298356294632,
0.28159797191619873,
0.2966150939464569,
-0.45078617334365845,
-0.5480861067771912,
-0.6354424953460693,
0.1751880794763565,
-0.379337877035141,
0.8939835429191589,
0.021077558398246765,
0.1330805867910385,
-0.3892709016799927,
-0.32020241022109985,
-0.17198392748832703,
-0.482207328081131,
-0.4055476188659668,
-0.03395681083202362,
0.4952229857444763,
0.3343125879764557,
0.49747785925865173,
0.34649717807769775,
0.3889310657978058,
0.3611907958984375,
-0.04279113933444023,
0.25890642404556274,
-0.4909219443798065,
-0.06969314813613892,
-0.04272329434752464,
-0.3892713487148285,
-0.08286283165216446,
0.30625995993614197,
0.48181167244911194,
0.45991262793540955,
-0.06661920249462128,
0.20289857685565948,
0.011621620506048203,
0.4851920008659363,
-0.4395870268344879,
0.1623965948820114,
-0.5080048441886902,
0.11764384806156158,
0.08042987436056137,
-0.1250600516796112,
-0.25021135807037354,
-0.2608339786529541,
0.31190454959869385,
-0.6116093993186951,
0.09224237501621246,
0.10737860202789307,
1.0763152837753296,
0.1565655618906021,
-0.5295430421829224,
-0.37075862288475037,
-0.11709637939929962,
0.777947723865509,
-0.7834799289703369,
0.3089350461959839,
0.3909338414669037,
-0.056627120822668076,
-0.013915879651904106,
-0.7640303373336792,
-0.7654832601547241,
-0.11844417452812195,
-0.3233777582645416,
0.26952433586120605,
-0.18349136412143707,
-0.09409350901842117,
0.24056585133075714,
0.4117664396762848,
-0.739872932434082,
0.0025336816906929016,
-0.4462473392486572,
-0.15366919338703156,
0.6825028657913208,
0.13915689289569855,
0.31230759620666504,
-0.635949969291687,
-0.47385895252227783,
-0.30051660537719727,
-0.319742888212204,
0.16863872110843658,
0.3234027922153473,
0.1139049306511879,
-0.19645069539546967,
0.8292664885520935,
-0.25074777007102966,
0.6312989592552185,
0.017757346853613853,
-0.002132229972630739,
0.5441621541976929,
-0.5981290340423584,
-0.15408827364444733,
-0.3614603579044342,
1.0269672870635986,
0.4429050087928772,
0.1920069456100464,
-0.06842535734176636,
-0.02626909874379635,
-0.02261875569820404,
0.1559135913848877,
-0.8468185067176819,
-0.26058757305145264,
0.38702622056007385,
-0.40853244066238403,
-0.305094450712204,
0.2022804468870163,
-0.6128131747245789,
-0.29646769165992737,
-0.20332053303718567,
0.671647310256958,
-0.6777650713920593,
-0.08251925557851791,
0.31848886609077454,
-0.3787119388580322,
0.4090035557746887,
-0.04444592446088791,
-0.4717422425746918,
0.08027009665966034,
0.48310038447380066,
0.8089657425880432,
0.0646800622344017,
-0.4338203966617584,
-0.28633740544319153,
-0.2390826940536499,
0.0033026861492544413,
0.6502288579940796,
-0.3860722482204437,
-0.10530638694763184,
-0.04113107547163963,
0.18966449797153473,
-0.36297908425331116,
-0.3523363173007965,
0.599009096622467,
-0.3596416115760803,
0.7452252507209778,
-0.2187037467956543,
-0.8924142122268677,
-0.1946641057729721,
0.3728184103965759,
-0.5273797512054443,
1.0602816343307495,
0.21649649739265442,
-1.0246130228042603,
0.07742562144994736,
-0.5940514206886292,
-0.19176068902015686,
-0.28250232338905334,
-0.05007750913500786,
-0.4851030707359314,
-0.022386252880096436,
0.415788859128952,
0.6002736687660217,
-0.1936044692993164,
0.07463747262954712,
-0.24991971254348755,
-0.39550408720970154,
0.31037604808807373,
-0.11595075577497482,
1.0275259017944336,
0.0805840864777565,
-0.356921911239624,
-0.07547212392091751,
-0.7327687740325928,
0.020695509389042854,
0.3046850264072418,
-0.2960734963417053,
-0.1630946546792984,
-0.17328789830207825,
0.06446091830730438,
0.5461808443069458,
0.2820509672164917,
-0.7144336104393005,
0.24064557254314423,
-0.5888283848762512,
0.6640110015869141,
0.628451943397522,
0.07131605595350266,
0.38902783393859863,
-0.5158444046974182,
0.47326037287712097,
0.2720944881439209,
0.09753494709730148,
-0.0698641985654831,
-0.5530204176902771,
-0.9029210805892944,
0.00614481046795845,
0.3845435678958893,
0.6370289921760559,
-0.733341634273529,
0.6821528077125549,
-0.3464794456958771,
-0.4822137951850891,
-0.8865244388580322,
0.10366985201835632,
0.33525362610816956,
0.5789696574211121,
0.5727250576019287,
-0.02973705343902111,
-0.38631728291511536,
-1.0033652782440186,
-0.08031292259693146,
0.06002089008688927,
-0.054480697959661484,
0.4442809522151947,
0.6821129322052002,
-0.1518441140651703,
0.787896990776062,
-0.7273215651512146,
-0.4004359543323517,
-0.09424364566802979,
0.09161628782749176,
0.2158680558204651,
0.48127251863479614,
0.5116798281669617,
-0.9029439687728882,
-0.4644499123096466,
-0.43596211075782776,
-0.6550154685974121,
0.06255282461643219,
-0.10370001941919327,
-0.2479749321937561,
0.2028140425682068,
0.6042641401290894,
-0.7020246386528015,
0.18916195631027222,
0.5464237332344055,
-0.5070986747741699,
0.34050995111465454,
-0.18200746178627014,
0.04156019166111946,
-1.3886302709579468,
0.13683369755744934,
0.06435957551002502,
-0.05545247346162796,
-0.291770875453949,
0.12515446543693542,
-0.012530031614005566,
-0.155431866645813,
-0.4331897497177124,
0.4309818148612976,
-0.4484082758426666,
0.11233817040920258,
0.1661505550146103,
0.5276588797569275,
0.22531183063983917,
0.7235485315322876,
-0.22084927558898926,
0.792919397354126,
0.4211714267730713,
-0.4312826991081238,
0.39218220114707947,
0.5672093629837036,
-0.378905326128006,
0.4081013798713684,
-0.7742798328399658,
0.09537532925605774,
-0.16950233280658722,
0.24594222009181976,
-1.1132287979125977,
-0.051651403307914734,
0.14519956707954407,
-0.6569175720214844,
0.04383007436990738,
0.1330752968788147,
-0.6151153445243835,
-0.47978755831718445,
-0.5891463160514832,
0.09490653872489929,
0.374298095703125,
-0.3830340802669525,
0.44411811232566833,
0.38749852776527405,
0.013965736143290997,
-0.6651899814605713,
-0.8985490798950195,
-0.12751249969005585,
-0.0733826607465744,
-0.8444152474403381,
0.4015147387981415,
-0.22182635962963104,
0.15529465675354004,
0.2872363328933716,
0.14677731692790985,
0.026193682104349136,
0.014706538990139961,
0.15929797291755676,
0.09435737133026123,
-0.16022872924804688,
0.3881304860115051,
-0.17133840918540955,
-0.1042768731713295,
-0.0022994051687419415,
-0.2906081974506378,
0.6774588823318481,
-0.3612600266933441,
-0.1375599056482315,
-0.35989803075790405,
0.42508161067962646,
0.4442281126976013,
-0.27664220333099365,
1.1008082628250122,
0.9541577696800232,
-0.16349118947982788,
-0.012371989898383617,
-0.5892018675804138,
-0.13935646414756775,
-0.44888734817504883,
0.4290061593055725,
-0.336368590593338,
-1.0362720489501953,
0.39653027057647705,
0.21331565082073212,
-0.04984420910477638,
0.7848572731018066,
0.3852396309375763,
-0.2588995397090912,
0.9473881125450134,
0.34306952357292175,
-0.1156194806098938,
0.38582494854927063,
-0.5850866436958313,
0.27661383152008057,
-0.7870358228683472,
-0.24273669719696045,
-0.379310667514801,
-0.3528605103492737,
-0.9820286631584167,
-0.4405481219291687,
0.38909661769866943,
0.06734766811132431,
-0.19824697077274323,
0.3901903033256531,
-0.6345239877700806,
0.21161431074142456,
0.7644311189651489,
0.29984670877456665,
-0.11718666553497314,
-0.04055977612733841,
-0.30251553654670715,
-0.06444411724805832,
-0.8008220791816711,
-0.27056390047073364,
1.2051254510879517,
0.2709108293056488,
0.34234732389450073,
0.04484247416257858,
0.8019421100616455,
0.09224976599216461,
-0.1368228942155838,
-0.5985001921653748,
0.5858345031738281,
-0.28702834248542786,
-0.44517210125923157,
-0.25313591957092285,
-0.627755880355835,
-0.9294164776802063,
0.23738782107830048,
-0.4405333697795868,
-0.436791330575943,
0.09054392576217651,
-0.18072938919067383,
-0.32148024439811707,
0.20174843072891235,
-0.8653537034988403,
1.0374515056610107,
-0.04106280952692032,
-0.2770298421382904,
-0.14307811856269836,
-0.7605909109115601,
0.1841392070055008,
0.22723019123077393,
0.032702039927244186,
-0.08540226519107819,
-0.14160820841789246,
0.8020530939102173,
-0.3868553638458252,
0.5335564017295837,
-0.13655488193035126,
0.18345850706100464,
0.26488038897514343,
-0.3337451219558716,
0.346416175365448,
-0.07169076800346375,
-0.12570491433143616,
-0.0882861316204071,
0.11959922313690186,
-0.6474372744560242,
-0.5537041425704956,
0.8014702200889587,
-1.0009651184082031,
-0.45501869916915894,
-0.49282073974609375,
-0.4233834445476532,
-0.20627014338970184,
0.12258326262235641,
0.3519279956817627,
0.4739541709423065,
-0.0330178327858448,
0.49237242341041565,
0.633505642414093,
-0.5009462833404541,
0.4344673454761505,
0.2770445644855499,
-0.030581127852201462,
-0.5747165083885193,
0.8679844737052917,
0.16210652887821198,
0.08624718338251114,
0.5695623755455017,
0.27079659700393677,
-0.4049648344516754,
-0.4131416380405426,
-0.13166074454784393,
0.33165085315704346,
-0.6081796884536743,
-0.2523200511932373,
-0.9864147305488586,
-0.41893985867500305,
-0.7158702611923218,
-0.013191663660109043,
-0.11952924728393555,
-0.5237697958946228,
-0.43412983417510986,
-0.26463761925697327,
0.374184787273407,
0.5523925423622131,
0.004755514208227396,
0.13465069234371185,
-0.6055439114570618,
0.25357866287231445,
0.39187878370285034,
0.24261754751205444,
-0.17060089111328125,
-0.5467047095298767,
-0.1480228155851364,
0.03404635563492775,
-0.30661651492118835,
-0.8201565742492676,
0.42320185899734497,
0.21058373153209686,
0.5330033898353577,
0.17388804256916046,
0.09453344345092773,
0.5350814461708069,
-0.22894367575645447,
0.9949641823768616,
0.01873091794550419,
-0.6992219090461731,
0.4908806085586548,
-0.27141818404197693,
0.4415748119354248,
0.7159551382064819,
0.626982569694519,
-0.5160256624221802,
-0.2769624888896942,
-0.7311071157455444,
-0.9535055756568909,
0.5841588973999023,
0.3649536073207855,
0.2207091897726059,
-0.14910590648651123,
0.31350016593933105,
-0.1515212208032608,
0.1868220716714859,
-0.8537105321884155,
-0.41188427805900574,
-0.20950418710708618,
-0.38029205799102783,
-0.20610232651233673,
-0.28623494505882263,
-0.020788192749023438,
-0.5254866480827332,
0.8547763228416443,
-0.08078167587518692,
0.5267096757888794,
0.4319065809249878,
-0.3060850501060486,
0.445984810590744,
0.19313713908195496,
0.5596209168434143,
0.45173826813697815,
-0.2355545312166214,
0.020024290308356285,
0.1861780732870102,
-0.3166983127593994,
-0.11142607033252716,
0.43771079182624817,
-0.09080402553081512,
-0.07392380386590958,
0.30539020895957947,
0.7222237586975098,
0.26208987832069397,
-0.5850828289985657,
0.8527733087539673,
-0.207672581076622,
-0.22704961895942688,
-0.37181705236434937,
-0.13323596119880676,
0.32897910475730896,
0.24110543727874756,
0.15464456379413605,
-0.16579748690128326,
0.1074398085474968,
-0.4807654321193695,
0.44078144431114197,
0.2271825075149536,
-0.35702913999557495,
-0.022893348708748817,
0.4187072813510895,
0.18180760741233826,
-0.06596150249242783,
0.8534992337226868,
-0.34837159514427185,
-0.6520408391952515,
0.5050423741340637,
0.3141986131668091,
0.6975706219673157,
0.11369180679321289,
0.403899222612381,
0.6143589019775391,
0.2795751392841339,
0.1938900500535965,
0.28271615505218506,
0.07789137214422226,
-0.748041033744812,
-0.12640272080898285,
-0.8211095929145813,
-0.11854369938373566,
0.11770465970039368,
-0.45299434661865234,
0.19656333327293396,
-0.22340530157089233,
-0.037340328097343445,
0.08660492300987244,
0.3425358235836029,
-0.822262704372406,
0.1150495782494545,
0.03869783133268356,
0.9784228801727295,
-0.7735447287559509,
0.6468033194541931,
0.6849086284637451,
-0.8542724847793579,
-0.786280632019043,
-0.09619452059268951,
-0.17650963366031647,
-0.8006183505058289,
0.37464630603790283,
0.38414210081100464,
0.17114511132240295,
0.06007387116551399,
-0.5036742687225342,
-0.8047037720680237,
1.3097721338272095,
0.19230610132217407,
-0.3193800151348114,
-0.19073812663555145,
0.23191694915294647,
0.5653035640716553,
-0.3947456479072571,
0.43680745363235474,
0.3822130262851715,
0.385924369096756,
-0.12148945778608322,
-0.668025016784668,
0.07670409977436066,
-0.48068201541900635,
-0.04922572523355484,
-0.05603685975074768,
-0.8066840171813965,
0.9543359875679016,
-0.0010594407794997096,
-0.10958412289619446,
0.0372265987098217,
0.5306534767150879,
0.24364416301250458,
0.07939494401216507,
0.4942314624786377,
0.9524703025817871,
0.7053091526031494,
-0.08432076126337051,
1.2329154014587402,
-0.4264138340950012,
0.5130806565284729,
0.9442057609558105,
0.20924322307109833,
1.000604271888733,
0.3749009072780609,
-0.15626178681850433,
0.6814306974411011,
0.6559637784957886,
-0.1555318832397461,
0.4444253146648407,
0.2317761331796646,
-0.032785553485155106,
-0.19821012020111084,
-0.052153900265693665,
-0.37275567650794983,
0.5984740853309631,
0.09192568808794022,
-0.5599282383918762,
-0.07891859114170074,
0.046325623989105225,
0.11587520688772202,
0.073000967502594,
-0.036277610808610916,
0.7447973489761353,
0.10253792256116867,
-0.5863295793533325,
0.5067166090011597,
0.012716245837509632,
0.9128298759460449,
-0.5371291637420654,
0.17119671404361725,
-0.2774859368801117,
0.20277197659015656,
-0.12787258625030518,
-0.8629712462425232,
0.23593993484973907,
-0.32152947783470154,
-0.19912612438201904,
-0.2568013370037079,
0.6221873164176941,
-0.5718498826026917,
-0.5948564410209656,
0.46107691526412964,
0.5779812932014465,
0.09792732447385788,
-0.1573057621717453,
-1.0617876052856445,
-0.2575347125530243,
0.004032141529023647,
-0.44898784160614014,
0.26252830028533936,
0.41985952854156494,
0.4355180859565735,
0.48515909910202026,
0.5598277449607849,
-0.18769824504852295,
0.16794346272945404,
-0.02266925759613514,
0.8864724636077881,
-0.7691981792449951,
-0.5033133029937744,
-0.5831930637359619,
0.5562555193901062,
-0.37122485041618347,
-0.5957109928131104,
0.8231289386749268,
0.6323608756065369,
0.9040351510047913,
0.0003159872139804065,
0.5441579818725586,
-0.13947589695453644,
0.43527910113334656,
-0.540276050567627,
0.6931785941123962,
-0.7359203100204468,
-0.0091463727876544,
-0.1476375311613083,
-0.7501361966133118,
-0.08919717371463776,
0.5779654383659363,
-0.3417518436908722,
0.02255057543516159,
0.727904736995697,
0.892204225063324,
-0.07123477011919022,
-0.05231829360127449,
0.12759098410606384,
0.3772883713245392,
0.07675398141145706,
0.7543160915374756,
0.5441839098930359,
-0.8223266005516052,
0.7851444482803345,
-0.4603842496871948,
0.025710994377732277,
-0.14273275434970856,
-0.6798935532569885,
-0.7850015163421631,
-0.8976052403450012,
-0.3315141499042511,
-0.5165026187896729,
-0.0695960596203804,
0.8605675101280212,
0.6666878461837769,
-0.7981747984886169,
0.015313511714339256,
-0.10962257534265518,
0.07131132483482361,
0.020151454955339432,
-0.3259334862232208,
0.508137583732605,
-0.3282224237918854,
-0.5848195552825928,
0.24296483397483826,
-0.07490582764148712,
-0.10741293430328369,
-0.2969391644001007,
0.05560523644089699,
-0.8513830304145813,
0.14130178093910217,
0.6805935502052307,
0.022818882018327713,
-0.5859419703483582,
-0.35252445936203003,
0.22375982999801636,
-0.3650784492492676,
0.08900325000286102,
0.376535028219223,
-0.6845844388008118,
0.3164260685443878,
0.7160588502883911,
0.6693568229675293,
0.6997482776641846,
0.03140366077423096,
0.42768990993499756,
-0.7522411346435547,
0.01981825940310955,
0.23317021131515503,
0.42035216093063354,
0.4732897877693176,
-0.29061582684516907,
0.6910589933395386,
0.35668808221817017,
-0.5838955640792847,
-0.5316092371940613,
-0.07388646900653839,
-1.1136826276779175,
-0.39608168601989746,
1.223718523979187,
-0.2598118185997009,
-0.22327746450901031,
0.1428084522485733,
-0.2233724594116211,
0.1825931817293167,
-0.3404870331287384,
0.6106019616127014,
0.8085953593254089,
-0.11564429104328156,
-0.29519137740135193,
-0.38783273100852966,
0.3828747570514679,
0.514928936958313,
-0.7372016310691833,
-0.4170607328414917,
0.3290371894836426,
0.4834449291229248,
0.3468802571296692,
0.4996550977230072,
-0.046583812683820724,
0.04887954890727997,
0.06544505059719086,
-0.09809724241495132,
-0.21372248232364655,
0.025904027745127678,
-0.3952174782752991,
0.4658057689666748,
-0.42103901505470276,
-0.35898515582084656
] |
openai/whisper-tiny.en | openai | "2023-09-11T13:24:06Z" | 179,463 | 63 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"arxiv:2212.04356",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-09-26T06:57:49Z" | ---
language:
- en
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: whisper-tiny.en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 8.4372112320138
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 14.857607503498355
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
# Usage
This checkpoint is an *English-only* model, meaning it can be used for English speech recognition. Multilingual speech
recognition or speech translation is possible through use of a multilingual checkpoint.
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
The `WhisperProcessor` is used to:
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
2. Post-process the model outputs (converting them from tokens to text)
## Transcription
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> # load dummy dataset and read audio files
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
## Evaluation
This code snippet shows how to evaluate Whisper tiny.en on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from evaluate import load
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en").to("cuda")
>>> def map_to_pred(batch):
>>> audio = batch["audio"]
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
>>>
>>> with torch.no_grad():
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
>>> transcription = processor.decode(predicted_ids)
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
>>> return batch
>>> result = librispeech_test_clean.map(map_to_pred)
>>> wer = load("wer")
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
5.655609406528749
```
## Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
```python
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="openai/whisper-tiny.en",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
```
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
| [
-0.2887437343597412,
-0.6403990983963013,
0.11075899749994278,
0.4364306628704071,
-0.05720362439751625,
-0.005321686156094074,
-0.387685090303421,
-0.6349090933799744,
0.24809002876281738,
0.303398072719574,
-0.8436755537986755,
-0.5168458223342896,
-0.7194631695747375,
-0.1551717072725296,
-0.5757513046264648,
1.0232517719268799,
0.19406037032604218,
-0.01618104614317417,
0.2250286340713501,
-0.07056507468223572,
-0.34574776887893677,
-0.24069473147392273,
-0.7444820404052734,
-0.19289211928844452,
0.2111104130744934,
0.19515173137187958,
0.40717998147010803,
0.5768013596534729,
0.1483304649591446,
0.4245311915874481,
-0.4379833936691284,
-0.0733504444360733,
-0.34783029556274414,
-0.13457104563713074,
0.39531058073043823,
-0.4900418221950531,
-0.633618950843811,
0.15924005210399628,
0.8011229634284973,
0.48989105224609375,
-0.3485928475856781,
0.47863149642944336,
0.2603723108768463,
0.309523344039917,
-0.2678743600845337,
0.26793187856674194,
-0.6948910355567932,
-0.13079898059368134,
-0.2841085195541382,
0.04816540330648422,
-0.33874934911727905,
-0.3221547603607178,
0.5657049417495728,
-0.6029505133628845,
0.4175993800163269,
0.17468978464603424,
1.037914752960205,
0.25870630145072937,
-0.05968461185693741,
-0.44575580954551697,
-0.7302100658416748,
1.141154408454895,
-0.9026446342468262,
0.5141950845718384,
0.39789441227912903,
0.2619017958641052,
0.05272585526108742,
-0.9656068086624146,
-0.7378971576690674,
-0.02147556282579899,
-0.06331706047058105,
0.2855303883552551,
-0.3672260344028473,
-0.00934523344039917,
0.2521931827068329,
0.42697834968566895,
-0.4784240126609802,
0.045924216508865356,
-0.7260039448738098,
-0.6858657598495483,
0.6433214545249939,
0.022329339757561684,
0.29798588156700134,
-0.3072426915168762,
-0.2227654755115509,
-0.41281068325042725,
-0.27060988545417786,
0.4523206949234009,
0.3709980547428131,
0.507428765296936,
-0.7521892189979553,
0.3742631673812866,
-0.050708405673503876,
0.6150707006454468,
0.2183903455734253,
-0.6098738312721252,
0.5985710024833679,
-0.18559381365776062,
-0.19667620956897736,
0.3776158094406128,
1.0779297351837158,
0.2117576003074646,
0.08043521642684937,
0.11147376894950867,
-0.14139384031295776,
0.19431225955486298,
-0.11499394476413727,
-0.8958275318145752,
-0.08899878710508347,
0.4906366467475891,
-0.5668848156929016,
-0.3187975287437439,
-0.26319000124931335,
-0.6612587571144104,
0.1266685426235199,
-0.15700845420360565,
0.7114181518554688,
-0.5859657526016235,
-0.30331042408943176,
0.21546396613121033,
-0.3836269676685333,
0.28999996185302734,
0.03015900030732155,
-0.8598783612251282,
0.37680304050445557,
0.4553598165512085,
0.9109033942222595,
0.1280510276556015,
-0.6122358441352844,
-0.5085915327072144,
0.09213510900735855,
0.1278502196073532,
0.4793876111507416,
-0.25867870450019836,
-0.5778772830963135,
-0.24025866389274597,
0.09146101772785187,
-0.34372228384017944,
-0.6065645217895508,
0.7303085923194885,
-0.10957247763872147,
0.48526477813720703,
0.020853925496339798,
-0.5240639448165894,
-0.18447299301624298,
-0.20830850303173065,
-0.42354243993759155,
0.9349377155303955,
0.05472428724169731,
-0.7261430621147156,
0.16921758651733398,
-0.5251765251159668,
-0.48142874240875244,
-0.2815682291984558,
0.18010497093200684,
-0.636532187461853,
-0.03632062301039696,
0.44765838980674744,
0.4093364477157593,
-0.18321046233177185,
0.023954618722200394,
-0.0619991309940815,
-0.4166961908340454,
0.33033809065818787,
-0.42409488558769226,
1.0173805952072144,
0.16750109195709229,
-0.4268147647380829,
0.22231577336788177,
-0.789625883102417,
0.1488126814365387,
0.054080817848443985,
-0.15451592206954956,
0.15127341449260712,
-0.058966998010873795,
0.29682156443595886,
0.046968717128038406,
0.16795727610588074,
-0.7639269232749939,
-0.10014893859624863,
-0.6883159279823303,
0.760027289390564,
0.6525360345840454,
-0.06474143266677856,
0.39352715015411377,
-0.6126752495765686,
0.29229843616485596,
0.05662594363093376,
0.4442545473575592,
-0.15799570083618164,
-0.6314055323600769,
-1.0038115978240967,
-0.44026124477386475,
0.4915875792503357,
0.7011351585388184,
-0.35405534505844116,
0.5758746266365051,
-0.22341527044773102,
-0.7682185769081116,
-1.3454002141952515,
-0.13730259239673615,
0.5832482576370239,
0.562860906124115,
0.7037764191627502,
-0.162544384598732,
-0.7813495993614197,
-0.7188321352005005,
-0.15341717004776,
-0.32857635617256165,
-0.2243339866399765,
0.39040181040763855,
0.33896997570991516,
-0.37587305903434753,
0.7053241729736328,
-0.5108975768089294,
-0.5625486373901367,
-0.2634543478488922,
0.054994288831949234,
0.477016806602478,
0.6665521264076233,
0.2721540629863739,
-0.7046464085578918,
-0.4581170082092285,
-0.1956007331609726,
-0.5719972848892212,
-0.07757899910211563,
-0.06275001168251038,
0.08328337222337723,
0.005680397152900696,
0.3569789230823517,
-0.7425573468208313,
0.4018480181694031,
0.6635591387748718,
-0.18762049078941345,
0.7226737141609192,
0.15341776609420776,
-0.06405854225158691,
-1.1615580320358276,
-0.0615507997572422,
-0.1521984338760376,
-0.12051869928836823,
-0.6766416430473328,
-0.26572468876838684,
-0.0995139330625534,
-0.09242496639490128,
-0.5402767062187195,
0.6508644223213196,
-0.34976130723953247,
0.03375259041786194,
-0.050726402550935745,
0.12777836620807648,
-0.05616316944360733,
0.5133736729621887,
0.17360684275627136,
0.6696087718009949,
0.8407257199287415,
-0.5635430812835693,
0.20436109602451324,
0.5729047656059265,
-0.33230355381965637,
0.27805253863334656,
-1.0144054889678955,
0.17910641431808472,
0.15309494733810425,
0.18226511776447296,
-0.6950019001960754,
-0.11667317897081375,
0.022546466439962387,
-1.0030416250228882,
0.4611877501010895,
-0.34350311756134033,
-0.37373021245002747,
-0.5461596250534058,
-0.21133826673030853,
0.07623886317014694,
0.9373783469200134,
-0.49887508153915405,
0.7040311098098755,
0.4403171241283417,
-0.236515611410141,
-0.5212969183921814,
-0.5746141076087952,
-0.25647491216659546,
-0.25315865874290466,
-0.7937067151069641,
0.4900447130203247,
-0.13656239211559296,
-0.02616112492978573,
-0.18407699465751648,
-0.12873758375644684,
0.12373202294111252,
-0.26362305879592896,
0.48435312509536743,
0.49533799290657043,
-0.14249810576438904,
-0.25847184658050537,
0.20748573541641235,
-0.2678394913673401,
-0.028769932687282562,
-0.23561182618141174,
0.6929246783256531,
-0.3851620852947235,
-0.051793161779642105,
-0.8041704297065735,
0.21212628483772278,
0.49797534942626953,
-0.3328717052936554,
0.5602726340293884,
0.8936364650726318,
-0.2855197787284851,
-0.23872680962085724,
-0.6991084814071655,
-0.2811095714569092,
-0.5969791412353516,
0.13125495612621307,
-0.3601430654525757,
-0.8136304020881653,
0.7177342176437378,
0.17737379670143127,
0.08100426197052002,
0.6525271534919739,
0.5252188444137573,
-0.3071577250957489,
0.960004448890686,
0.4670461118221283,
-0.25341108441352844,
0.31303709745407104,
-0.7989649176597595,
-0.13285945355892181,
-1.0677937269210815,
-0.35641539096832275,
-0.5841010212898254,
-0.3042258620262146,
-0.5177262425422668,
-0.3745443820953369,
0.5404077172279358,
0.11870890110731125,
-0.12405924499034882,
0.4555964171886444,
-0.784551203250885,
0.0297752246260643,
0.6628985404968262,
0.03432878479361534,
0.12673260271549225,
-0.05804434418678284,
-0.13669320940971375,
-0.11348569393157959,
-0.4031393229961395,
-0.355335533618927,
0.9875801801681519,
0.5331860184669495,
0.5755950808525085,
-0.08759184181690216,
0.7591010332107544,
-0.020442767068743706,
0.04402827098965645,
-0.8117994666099548,
0.5058961510658264,
-0.1330239474773407,
-0.5991328954696655,
-0.3992312550544739,
-0.3071618974208832,
-0.8456954956054688,
0.165415421128273,
-0.1836814433336258,
-0.7217183709144592,
0.13964980840682983,
-0.06019115447998047,
-0.3864918053150177,
0.26005518436431885,
-0.7618721723556519,
0.6272333860397339,
0.14644479751586914,
0.11817219853401184,
-0.05768699571490288,
-0.7889919877052307,
0.12919482588768005,
0.08552037924528122,
0.15196268260478973,
-0.15921856462955475,
0.20453795790672302,
1.1260367631912231,
-0.4941147267818451,
0.9345573782920837,
-0.3454451858997345,
0.13755688071250916,
0.540958046913147,
-0.19177037477493286,
0.3574353754520416,
-0.21522237360477448,
-0.15900611877441406,
0.4433239698410034,
0.3343701660633087,
-0.29386597871780396,
-0.29883629083633423,
0.5240079760551453,
-1.099763035774231,
-0.30674445629119873,
-0.270248144865036,
-0.3818306624889374,
-0.17109990119934082,
0.20984478294849396,
0.8331150412559509,
0.6686466336250305,
-0.07246050238609314,
0.001636363915167749,
0.48524361848831177,
-0.21973544359207153,
0.563425600528717,
0.6653742790222168,
-0.22565984725952148,
-0.4666627049446106,
0.9846057295799255,
0.24956664443016052,
0.25407105684280396,
0.1730646789073944,
0.4605816602706909,
-0.43300190567970276,
-0.6834654211997986,
-0.5638774633407593,
0.34578800201416016,
-0.3751913905143738,
-0.18802571296691895,
-0.9016996026039124,
-0.5301725268363953,
-0.6162852644920349,
0.0019553450401872396,
-0.5175096392631531,
-0.31150954961776733,
-0.42870432138442993,
0.10160566121339798,
0.6032753586769104,
0.4184834361076355,
-0.011185296811163425,
0.585114598274231,
-0.9543073773384094,
0.43582040071487427,
0.35939282178878784,
0.0978824719786644,
0.051074206829071045,
-1.0043102502822876,
-0.11912386864423752,
0.19868972897529602,
-0.3493143320083618,
-0.6143705248832703,
0.4919174611568451,
0.3912760019302368,
0.40651607513427734,
0.2530229687690735,
0.018680643290281296,
0.9733552932739258,
-0.7185668349266052,
0.8037000298500061,
0.2201378345489502,
-1.257326602935791,
0.7726918458938599,
-0.3615439832210541,
0.2455604076385498,
0.452297568321228,
0.32014000415802,
-0.6067864894866943,
-0.5219981670379639,
-0.7272942066192627,
-0.6543173789978027,
0.731623113155365,
0.3115876317024231,
0.07707957923412323,
0.2930394113063812,
0.19910693168640137,
0.11998259276151657,
0.14222411811351776,
-0.4631623923778534,
-0.48148295283317566,
-0.36090534925460815,
-0.2649342715740204,
-0.10294903814792633,
-0.05340065062046051,
-0.008091877214610577,
-0.5723077058792114,
0.784359872341156,
-0.023774363100528717,
0.4943060278892517,
0.3732331693172455,
0.06154857575893402,
-0.03197907283902168,
0.17556411027908325,
0.34253138303756714,
0.22825521230697632,
-0.26158666610717773,
-0.3744545876979828,
0.3717888295650482,
-0.87613445520401,
0.020967889577150345,
0.34118184447288513,
-0.3154895007610321,
0.12453240901231766,
0.7141911387443542,
1.097319483757019,
0.20120088756084442,
-0.49935922026634216,
0.701975405216217,
-0.1118001788854599,
-0.20505459606647491,
-0.6342090964317322,
0.036857057362794876,
0.31271055340766907,
0.31206318736076355,
0.3571009635925293,
0.14627842605113983,
0.17049629986286163,
-0.524919867515564,
0.15848366916179657,
0.2770180404186249,
-0.5370956659317017,
-0.550569474697113,
0.8944055438041687,
0.06146138533949852,
-0.4042404890060425,
0.7361252903938293,
0.01588544249534607,
-0.6117292046546936,
0.4843513071537018,
0.6628851890563965,
0.9892823100090027,
-0.4910019338130951,
-0.03213096037507057,
0.4572325050830841,
0.2556826174259186,
0.03625424951314926,
0.4965225160121918,
-0.06279117614030838,
-0.7268591523170471,
-0.4538572132587433,
-1.075574278831482,
-0.34217754006385803,
0.005554536823183298,
-0.988228440284729,
0.36590811610221863,
-0.3329869508743286,
-0.27597054839134216,
0.3446636497974396,
0.11485094577074051,
-0.7989575862884521,
0.19813022017478943,
0.04397094249725342,
1.032692790031433,
-0.709181010723114,
1.0659816265106201,
0.18196670711040497,
-0.2750595211982727,
-1.148632526397705,
0.026358261704444885,
0.07976337522268295,
-1.0175968408584595,
0.31802183389663696,
0.3209793269634247,
-0.21029241383075714,
0.14183154702186584,
-0.5224593281745911,
-0.7390812635421753,
1.1048582792282104,
0.1491038203239441,
-0.705674946308136,
-0.21446065604686737,
-0.07800937443971634,
0.5430670976638794,
-0.21195076406002045,
0.22410371899604797,
0.7800388336181641,
0.452462375164032,
0.1453908532857895,
-1.4985473155975342,
-0.14069747924804688,
-0.2490968108177185,
-0.24160125851631165,
0.021905116736888885,
-0.8282790780067444,
0.9372139573097229,
-0.46952342987060547,
-0.25063928961753845,
0.34153860807418823,
0.804533064365387,
0.40295693278312683,
0.43103063106536865,
0.653140664100647,
0.5935847759246826,
0.7919998168945312,
-0.20403952896595,
0.9878160357475281,
-0.16729456186294556,
0.25522950291633606,
0.9986746311187744,
-0.0588475801050663,
1.1422593593597412,
0.23871080577373505,
-0.5139394402503967,
0.6791396141052246,
0.3522760570049286,
-0.04144687205553055,
0.4995272755622864,
-0.025958793237805367,
-0.3501850366592407,
0.16047491133213043,
-0.1138998419046402,
-0.5302744507789612,
0.7981315851211548,
0.44842854142189026,
-0.2157825529575348,
0.44406840205192566,
0.1608087420463562,
0.08861275762319565,
-0.1385318785905838,
-0.27043333649635315,
0.8920276165008545,
0.226070836186409,
-0.3670670986175537,
0.8268604278564453,
-0.05150212347507477,
1.1178430318832397,
-0.8267175555229187,
0.2207428216934204,
0.1903156340122223,
0.23364271223545074,
-0.23108352720737457,
-0.6359344720840454,
0.3544824719429016,
-0.19188252091407776,
-0.2613627016544342,
-0.17471380531787872,
0.6045138835906982,
-0.6624065041542053,
-0.5769453048706055,
0.5001462697982788,
0.3853161334991455,
0.310586154460907,
-0.1193394735455513,
-0.8422828912734985,
0.4557083547115326,
0.2021077424287796,
-0.16600634157657623,
0.1597459316253662,
0.14728498458862305,
0.3552355468273163,
0.6998278498649597,
0.8570132255554199,
0.468546599149704,
0.23207232356071472,
0.12272153049707413,
0.8228771686553955,
-0.7019779682159424,
-0.5941944122314453,
-0.6619726419448853,
0.5241021513938904,
-0.024500248953700066,
-0.38614317774772644,
0.8952223658561707,
0.6723003387451172,
0.7385954856872559,
0.04569792374968529,
0.7220438718795776,
-0.017331408336758614,
1.0563156604766846,
-0.5088601112365723,
0.9085408449172974,
-0.4196641147136688,
0.06784623116254807,
-0.38908880949020386,
-0.6986545324325562,
0.12475080043077469,
0.5718690156936646,
-0.10442357510328293,
-0.015721667557954788,
0.38291099667549133,
0.9011388421058655,
-0.014351928606629372,
0.29184091091156006,
0.052468255162239075,
0.503141462802887,
0.21356455981731415,
0.5024285316467285,
0.6548686623573303,
-0.8392439484596252,
0.6809648871421814,
-0.5990356206893921,
-0.22777338325977325,
0.11981531977653503,
-0.4531361758708954,
-0.8735567331314087,
-0.8135294318199158,
-0.3024033010005951,
-0.6007328033447266,
-0.28466325998306274,
0.7440709471702576,
0.9260562062263489,
-0.8530408143997192,
-0.3869182765483856,
0.3740338683128357,
-0.06627978384494781,
-0.3542594015598297,
-0.25918006896972656,
0.6024258136749268,
0.06154352053999901,
-0.9547967314720154,
0.6743288040161133,
0.03889024630188942,
0.3518969714641571,
-0.22786389291286469,
-0.20532387495040894,
0.1087338924407959,
-0.0018952235113829374,
0.5284155011177063,
0.24987433850765228,
-0.8125166296958923,
-0.22370460629463196,
0.09314563870429993,
0.167984738945961,
-0.011633899994194508,
0.39634084701538086,
-0.7613722681999207,
0.4104098975658417,
0.24883440136909485,
0.08595095574855804,
0.9415712356567383,
-0.3182746469974518,
0.25855839252471924,
-0.7384926080703735,
0.45339712500572205,
0.31745097041130066,
0.3570140600204468,
0.3763066828250885,
-0.1574094146490097,
0.21770517528057098,
0.2585507929325104,
-0.626802921295166,
-1.0124969482421875,
-0.07945821434259415,
-1.2080512046813965,
-0.01831045188009739,
1.013181447982788,
0.06644123047590256,
-0.284036785364151,
-0.06764813512563705,
-0.3242633044719696,
0.5202707648277283,
-0.5231828689575195,
0.4499325454235077,
0.4098832607269287,
0.03092838265001774,
-0.05476333573460579,
-0.6058468818664551,
0.6811572313308716,
0.20472310483455658,
-0.3653993308544159,
-0.09279525279998779,
0.07768302410840988,
0.6182048320770264,
0.3174782991409302,
0.8767088055610657,
-0.29621103405952454,
0.15226957201957703,
0.2105051875114441,
0.18694141507148743,
-0.02184891700744629,
-0.18089772760868073,
-0.3625950813293457,
-0.06900632381439209,
-0.20420026779174805,
-0.4438675045967102
] |
pszemraj/flan-t5-large-grammar-synthesis | pszemraj | "2023-11-16T15:32:23Z" | 179,462 | 67 | transformers | [
"transformers",
"pytorch",
"onnx",
"safetensors",
"t5",
"text2text-generation",
"grammar",
"spelling",
"punctuation",
"error-correction",
"grammar synthesis",
"FLAN",
"dataset:jfleg",
"arxiv:2107.06751",
"doi:10.57967/hf/0138",
"license:cc-by-nc-sa-4.0",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text2text-generation | "2022-11-26T02:40:52Z" | ---
languages:
- en
license:
- cc-by-nc-sa-4.0
- apache-2.0
tags:
- grammar
- spelling
- punctuation
- error-correction
- grammar synthesis
- FLAN
datasets:
- jfleg
widget:
- text: "There car broke down so their hitching a ride to they're class."
example_title: "compound-1"
- text: "i can has cheezburger"
example_title: "cheezburger"
- text: "so em if we have an now so with fito ringina know how to estimate the tren given the ereafte mylite trend we can also em an estimate is nod s
i again tort watfettering an we have estimated the trend an
called wot to be called sthat of exty right now we can and look at
wy this should not hare a trend i becan we just remove the trend an and we can we now estimate
tesees ona effect of them exty"
example_title: "Transcribed Audio Example 2"
- text: "My coworker said he used a financial planner to help choose his stocks so he wouldn't loose money."
example_title: "incorrect word choice (context)"
- text: "good so hve on an tadley i'm not able to make it to the exla session on monday this week e which is why i am e recording pre recording
an this excelleision and so to day i want e to talk about two things and first of all em i wont em wene give a summary er about
ta ohow to remove trents in these nalitives from time series"
example_title: "lowercased audio transcription output"
- text: "Frustrated, the chairs took me forever to set up."
example_title: "dangling modifier"
- text: "I would like a peice of pie."
example_title: "miss-spelling"
- text: "Which part of Zurich was you going to go hiking in when we were there for the first time together? ! ?"
example_title: "chatbot on Zurich"
- text: "Most of the course is about semantic or content of language but there are also interesting topics to be learned from the servicefeatures except statistics in characters in documents. At this point, Elvthos introduces himself as his native English speaker and goes on to say that if you continue to work on social scnce,"
example_title: "social science ASR summary output"
- text: "they are somewhat nearby right yes please i'm not sure how the innish is tepen thut mayyouselect one that istatte lo variants in their property e ere interested and anyone basical e may be applyind reaching the browing approach were"
example_title: "medical course audio transcription"
parameters:
max_length: 128
min_length: 4
num_beams: 8
repetition_penalty: 1.21
length_penalty: 1
early_stopping: True
---
# grammar-synthesis-large: FLAN-t5
<a href="https://colab.research.google.com/gist/pszemraj/5dc89199a631a9c6cfd7e386011452a0/demo-flan-t5-large-grammar-synthesis.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
A fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) for grammar correction on an expanded version of the [JFLEG](https://paperswithcode.com/dataset/jfleg) dataset. [Demo](https://huggingface.co/spaces/pszemraj/FLAN-grammar-correction) on HF spaces.
## Example
![example](https://i.imgur.com/PIhrc7E.png)
Compare vs. the original [grammar-synthesis-large](https://huggingface.co/pszemraj/grammar-synthesis-large).
---
## usage in Python
> There's a colab notebook that already has this basic version implemented (_click on the Open in Colab button_)
After `pip install transformers` run the following code:
```python
from transformers import pipeline
corrector = pipeline(
'text2text-generation',
'pszemraj/flan-t5-large-grammar-synthesis',
)
raw_text = 'i can has cheezburger'
results = corrector(raw_text)
print(results)
```
**For Batch Inference:** see [this discussion thread](https://huggingface.co/pszemraj/flan-t5-large-grammar-synthesis/discussions/1) for details, but essentially the dataset consists of several sentences at a time, and so I'd recommend running inference **in the same fashion:** batches of 64-96 tokens ish (or, 2-3 sentences split with regex)
- it is also helpful to **first** check whether or not a given sentence needs grammar correction before using the text2text model. You can do this with BERT-type models fine-tuned on CoLA like `textattack/roberta-base-CoLA`
- I made a notebook demonstrating batch inference [here](https://colab.research.google.com/gist/pszemraj/6e961b08970f98479511bb1e17cdb4f0/batch-grammar-check-correct-demo.ipynb)
---
## Model description
The intent is to create a text2text language model that successfully completes "single-shot grammar correction" on a potentially grammatically incorrect text **that could have a lot of mistakes** with the important qualifier of **it does not semantically change text/information that IS grammatically correct.**
Compare some of the heavier-error examples on [other grammar correction models](https://huggingface.co/models?dataset=dataset:jfleg) to see the difference :)
### ONNX Checkpoint
This model has been converted to ONNX and can be loaded/used with huggingface's `optimum` library.
You first need to [install optimum](https://huggingface.co/docs/optimum/installation)
```bash
pip install optimum[onnxruntime]
# ^ if you want to use a different runtime read their docs
```
load with the optimum `pipeline`
```python
from optimum.pipelines import pipeline
corrector = pipeline(
"text2text-generation", model=corrector_model_name, accelerator="ort"
)
# use as normal
```
### Other checkpoints
If trading a slight decrease in grammatical correction quality for faster inference speed makes sense for your use case, check out the **[base](https://huggingface.co/pszemraj/grammar-synthesis-base)** and **[small](https://huggingface.co/pszemraj/grammar-synthesis-small)** checkpoints fine-tuned from the relevant t5 checkpoints.
## Limitations
- dataset: `cc-by-nc-sa-4.0`
- model: `apache-2.0`
- this is **still a work-in-progress** and while probably useful for "single-shot grammar correction" in a lot of cases, **give the outputs a glance for correctness ok?**
## Use Cases
Obviously, this section is quite general as there are many things one can use "general single-shot grammar correction" for. Some ideas or use cases:
1. Correcting highly error-prone LM outputs. Some examples would be audio transcription (ASR) (this is literally some of the examples) or something like handwriting OCR.
- To be investigated further, depending on what model/system is used it _might_ be worth it to apply this after OCR on typed characters.
2. Correcting/infilling text generated by text generation models to be cohesive/remove obvious errors that break the conversation immersion. I use this on the outputs of [this OPT 2.7B chatbot-esque model of myself](https://huggingface.co/pszemraj/opt-peter-2.7B).
> An example of this model running on CPU with beam search:
```
Original response:
ive heard it attributed to a bunch of different philosophical schools, including stoicism, pragmatism, existentialism and even some forms of post-structuralism. i think one of the most interesting (and most difficult) philosophical problems is trying to let dogs (or other animals) out of cages. the reason why this is a difficult problem is because it seems to go against our grain (so to
synthesizing took 306.12 seconds
Final response in 1294.857 s:
I've heard it attributed to a bunch of different philosophical schools, including solipsism, pragmatism, existentialism and even some forms of post-structuralism. i think one of the most interesting (and most difficult) philosophical problems is trying to let dogs (or other animals) out of cages. the reason why this is a difficult problem is because it seems to go against our grain (so to speak)
```
_Note: that I have some other logic that removes any periods at the end of the final sentence in this chatbot setting [to avoid coming off as passive aggressive](https://www.npr.org/2020/09/05/909969004/before-texting-your-kid-make-sure-to-double-check-your-punctuation)_
3. Somewhat related to #2 above, fixing/correcting so-called [tortured-phrases](https://arxiv.org/abs/2107.06751) that are dead giveaways text was generated by a language model. _Note that _SOME_ of these are not fixed, especially as they venture into domain-specific terminology (i.e. irregular timberland instead of Random Forest)._
---
## Citation info
If you find this fine-tuned model useful in your work, please consider citing it :)
```
@misc {peter_szemraj_2022,
author = { {Peter Szemraj} },
title = { flan-t5-large-grammar-synthesis (Revision d0b5ae2) },
year = 2022,
url = { https://huggingface.co/pszemraj/flan-t5-large-grammar-synthesis },
doi = { 10.57967/hf/0138 },
publisher = { Hugging Face }
}
``` | [
-0.17927812039852142,
-1.0812486410140991,
0.44533422589302063,
0.4223041534423828,
0.0037673793267458677,
-0.16822697222232819,
-0.3687211573123932,
-0.24895237386226654,
0.12947411835193634,
0.28217098116874695,
-0.6265427470207214,
-0.3917299807071686,
-0.3621878921985626,
0.34505927562713623,
-0.34285691380500793,
0.8950064182281494,
-0.10921043157577515,
-0.004922094754874706,
0.045983053743839264,
0.12072964012622833,
-0.3674710690975189,
-0.5177876353263855,
-0.8410817384719849,
-0.12659527361392975,
0.36589545011520386,
0.31829413771629333,
0.44938531517982483,
0.6067864894866943,
0.5275030136108398,
0.4091077148914337,
-0.3433302640914917,
0.20083560049533844,
-0.41170501708984375,
0.05192507803440094,
-0.2645012140274048,
-0.4642762839794159,
-0.5517331957817078,
0.09264197945594788,
0.6323050856590271,
0.6094046235084534,
0.012374659068882465,
0.03140034154057503,
-0.17091886699199677,
0.591671884059906,
-0.43277016282081604,
0.1253732591867447,
-0.4055093824863434,
0.1653967648744583,
-0.22300343215465546,
0.17143367230892181,
-0.5238950848579407,
-0.34765487909317017,
-0.11975150555372238,
-0.6660336852073669,
0.19062690436840057,
0.09607723355293274,
1.1861947774887085,
0.36538925766944885,
-0.2535933256149292,
-0.21540790796279907,
-0.5701384544372559,
0.7344776391983032,
-0.7311598658561707,
0.12457367777824402,
0.30821365118026733,
0.11480101197957993,
-0.5416194796562195,
-1.0492967367172241,
-0.6404953002929688,
-0.003672491293400526,
-0.21425974369049072,
0.30046650767326355,
-0.33110570907592773,
0.2075398862361908,
0.46814751625061035,
0.46233469247817993,
-0.3858741819858551,
-0.2740684151649475,
-0.3399520516395569,
-0.30724039673805237,
0.4191916882991791,
-0.16114641726016998,
0.4390277862548828,
-0.20440374314785004,
-0.19783110916614532,
-0.17885886132717133,
-0.44479092955589294,
0.1971723586320877,
0.1987547129392624,
0.49055641889572144,
0.032392438501119614,
0.7170287370681763,
-0.04026274383068085,
0.4735356867313385,
0.29664042592048645,
-0.17183972895145416,
0.22051270306110382,
-0.5344536900520325,
-0.4000515341758728,
-0.2200796902179718,
0.7624207139015198,
0.3273267149925232,
0.38169875741004944,
0.05686113238334656,
-0.11787144839763641,
0.40154609084129333,
0.10359234362840652,
-0.8130509853363037,
-0.21463702619075775,
0.28845465183258057,
-0.19713573157787323,
-0.3041311502456665,
-0.03911499306559563,
-0.6169655919075012,
-0.004208340309560299,
-0.17411865293979645,
0.3869227468967438,
-0.5981956720352173,
-0.05890810862183571,
0.29991862177848816,
-0.3522699773311615,
-0.11462338268756866,
0.19716940820217133,
-0.7306972146034241,
0.06604595482349396,
0.5161134600639343,
0.7719568610191345,
0.5620893239974976,
-0.23100359737873077,
-0.6550297141075134,
-0.08983547985553741,
-0.5348049998283386,
0.7927243113517761,
-0.43908438086509705,
-0.056534428149461746,
-0.010354961268603802,
0.2156580537557602,
-0.2126714587211609,
-0.4910285472869873,
0.7223897576332092,
0.011516060680150986,
0.6869218945503235,
-0.3576926589012146,
-0.6152286529541016,
-0.08943478763103485,
0.04862728714942932,
-0.3882834315299988,
1.2376352548599243,
0.07342064380645752,
-0.4917113184928894,
0.2691887617111206,
-0.6266133189201355,
-0.5524460673332214,
-0.31175410747528076,
0.3477696478366852,
-0.48486024141311646,
0.07232869416475296,
0.22175981104373932,
0.2800692021846771,
0.042742159217596054,
0.3378657400608063,
-0.26546022295951843,
-0.13954034447669983,
0.1248808354139328,
0.007015848532319069,
0.9516041278839111,
0.15958188474178314,
-0.4482779800891876,
0.16608741879463196,
-0.750860869884491,
0.15922558307647705,
0.14020518958568573,
-0.41391247510910034,
-0.29008400440216064,
-0.09367381781339645,
-0.04456107318401337,
0.2907782793045044,
0.017734810709953308,
-0.506209135055542,
0.2800449728965759,
-0.6173665523529053,
0.6864105463027954,
0.6551864147186279,
-0.07402937114238739,
0.4507507383823395,
-0.3679223954677582,
0.234123095870018,
-0.22357177734375,
0.1710585653781891,
-0.2665829360485077,
-0.3690072000026703,
-1.0592384338378906,
-0.42211467027664185,
0.37453988194465637,
0.6783343553543091,
-0.6194993257522583,
0.6666889786720276,
0.04986051097512245,
-0.3826535642147064,
-0.42734992504119873,
0.12103009968996048,
0.6447815299034119,
0.3841295540332794,
0.4096452295780182,
-0.20566226541996002,
-0.8359023928642273,
-0.6117176413536072,
-0.4272197186946869,
-0.3985709249973297,
0.07063610106706619,
-0.11840172857046127,
0.5501774549484253,
-0.10448793321847916,
0.876880407333374,
-0.40600326657295227,
-0.3358222246170044,
-0.21193133294582367,
-0.0702768936753273,
0.12392723560333252,
0.4382203221321106,
0.6212412714958191,
-0.4937507212162018,
-0.40365737676620483,
-0.14140865206718445,
-0.7657254934310913,
-0.41092944145202637,
-0.17247407138347626,
-0.5067054033279419,
0.4362116754055023,
0.64549320936203,
-0.8173831105232239,
0.25713416934013367,
0.2249823808670044,
-0.5449888110160828,
0.3826853036880493,
-0.012513721361756325,
0.008304042741656303,
-1.0931555032730103,
0.24834208190441132,
0.018465813249349594,
-0.4655624330043793,
-0.6933087706565857,
0.27601614594459534,
-0.00265626166947186,
-0.06697554886341095,
-0.37347063422203064,
0.5922643542289734,
-0.32527241110801697,
0.26008340716362,
0.06234785169363022,
0.22723260521888733,
0.08916672319173813,
0.4584152400493622,
-0.2505033016204834,
0.7031780481338501,
0.26966747641563416,
-0.4504099190235138,
0.35359179973602295,
0.31112420558929443,
-0.0807405412197113,
0.3649527430534363,
-0.6009669899940491,
0.024439522996544838,
-0.14065343141555786,
0.4754795730113983,
-0.9329122304916382,
-0.43768635392189026,
0.5994682312011719,
-0.37670639157295227,
0.22685213387012482,
0.04551452398300171,
-0.5054156184196472,
-0.4522206783294678,
-0.37669461965560913,
-0.013450981117784977,
0.5169612765312195,
-0.4725304841995239,
0.4949469566345215,
0.11818355321884155,
-0.22945670783519745,
-0.49230238795280457,
-0.6814416646957397,
0.10054931789636612,
-0.2225397527217865,
-0.7985029220581055,
0.351006418466568,
-0.18842701613903046,
-0.4690547585487366,
-0.02656463161110878,
-0.11176855862140656,
0.08437097072601318,
-0.07106713950634003,
0.08830646425485611,
0.1429668515920639,
-0.2188190519809723,
0.24168549478054047,
0.02158566750586033,
-0.1302911937236786,
-0.20411045849323273,
-0.24632439017295837,
0.48959237337112427,
-0.40822821855545044,
0.1118253692984581,
-0.424273282289505,
0.20349766314029694,
0.5087615251541138,
-0.10571907460689545,
0.5145190954208374,
0.5668482780456543,
-0.4056101143360138,
-0.24327586591243744,
-0.5516079068183899,
-0.2391701489686966,
-0.4620848596096039,
0.1632061004638672,
-0.2141881138086319,
-0.6708343029022217,
0.43220674991607666,
0.0024043165612965822,
0.10403814166784286,
0.5863809585571289,
0.4528997838497162,
-0.22819176316261292,
0.7498909831047058,
0.41928479075431824,
0.07371749728918076,
0.689062774181366,
-0.030772393569350243,
0.4823877811431885,
-0.4769175052642822,
-0.021134428679943085,
-0.4987182319164276,
-0.18585656583309174,
-0.5345090627670288,
-0.2504851520061493,
0.24107205867767334,
0.2725028693675995,
-0.37414973974227905,
0.49625736474990845,
-0.2800622880458832,
0.41058090329170227,
0.5392251014709473,
0.07670184969902039,
0.20352135598659515,
0.15569233894348145,
-0.130583256483078,
-0.07166942209005356,
-0.5681663751602173,
-0.5031070113182068,
0.766904354095459,
0.24235987663269043,
0.47721531987190247,
0.12078975141048431,
0.49020805954933167,
0.05043824017047882,
0.006071170791983604,
-0.7902547717094421,
0.671384871006012,
-0.44941622018814087,
-0.7141141891479492,
-0.2343350499868393,
-0.32891610264778137,
-0.7479196786880493,
0.21895469725131989,
-0.28138768672943115,
-0.5638207197189331,
-0.07769933342933655,
0.2503497004508972,
-0.36314675211906433,
0.1868707835674286,
-1.0118961334228516,
0.9673817157745361,
-0.030092015862464905,
-0.5223357677459717,
0.061496201902627945,
-0.7854278683662415,
0.33116209506988525,
0.06563247740268707,
0.09404692053794861,
-0.0553065650165081,
0.17149868607521057,
0.41708460450172424,
-0.8358460664749146,
0.9947787523269653,
-0.06380289793014526,
-0.01932559348642826,
0.39830511808395386,
-0.12117675691843033,
0.4067839980125427,
-0.17167842388153076,
-0.01633099466562271,
-0.09593835473060608,
0.04917581006884575,
-0.31565791368484497,
-0.5113930702209473,
0.3632560074329376,
-0.5325779914855957,
-0.5610508918762207,
-0.5091440081596375,
-0.3839477300643921,
0.05288662016391754,
0.3777046203613281,
0.2298366278409958,
0.4051458537578583,
-0.1603054255247116,
0.25863271951675415,
0.35477644205093384,
-0.2457410991191864,
0.5722139477729797,
0.20710808038711548,
-0.47231271862983704,
-0.40311163663864136,
0.5138437747955322,
0.02119556814432144,
0.32292068004608154,
0.42424842715263367,
0.37400177121162415,
-0.15287883579730988,
0.046352263540029526,
-0.5311881303787231,
0.4812486171722412,
-0.6783884763717651,
-0.17149700224399567,
-0.5522404909133911,
-0.1853538304567337,
-0.6844397783279419,
-0.23508213460445404,
-0.4490819275379181,
-0.71126788854599,
-0.2799244821071625,
-0.019493235275149345,
0.3636939525604248,
0.44317927956581116,
-0.06753717362880707,
0.3773009479045868,
-0.44535768032073975,
0.27230390906333923,
0.09171539545059204,
0.18646486103534698,
-0.3872555196285248,
-0.45299553871154785,
0.11724960058927536,
0.082487091422081,
-0.3651678264141083,
-0.6299583911895752,
0.28809499740600586,
0.4918140470981598,
0.2692921459674835,
0.2610166668891907,
-0.08336643129587173,
0.9566482305526733,
-0.4875858724117279,
0.8393114805221558,
0.034253284335136414,
-1.156781792640686,
0.738919198513031,
-0.2711449861526489,
0.22961194813251495,
0.4651426374912262,
0.07228317111730576,
-0.7718479037284851,
-0.5869061946868896,
-0.5948691368103027,
-0.9513735175132751,
0.6555193662643433,
0.406179815530777,
0.1017594262957573,
-0.11123831570148468,
0.5625444650650024,
-0.15556173026561737,
0.10799284279346466,
-0.8063173890113831,
-0.11932887881994247,
-0.18338604271411896,
-0.26840096712112427,
0.051628392189741135,
-0.2076997011899948,
-0.0995163843035698,
-0.31478482484817505,
1.1329070329666138,
-0.019015483558177948,
0.3086833655834198,
0.31337904930114746,
-0.09406598657369614,
-0.20344361662864685,
0.35575464367866516,
0.675032913684845,
0.44972163438796997,
-0.15267187356948853,
0.07800723612308502,
0.10056053102016449,
-0.31275674700737,
0.04688142612576485,
0.02877809666097164,
-0.2559681832790375,
0.13348713517189026,
0.48633185029029846,
0.6987408995628357,
0.051937345415353775,
-0.6395390033721924,
0.5164009928703308,
-0.0037326295860111713,
-0.21056713163852692,
-0.47375962138175964,
0.0885557159781456,
0.006916647311300039,
0.29170259833335876,
-0.02748018689453602,
0.3258115351200104,
-0.11755578219890594,
-0.8537593483924866,
0.08363655209541321,
0.20805777609348297,
-0.012869193218648434,
-0.29968875646591187,
0.5760286450386047,
0.10708390921354294,
-0.29466426372528076,
0.5627864003181458,
-0.38318121433258057,
-0.6284499764442444,
0.5143247842788696,
0.6946171522140503,
0.6737041473388672,
-0.35319674015045166,
0.19398672878742218,
0.6494094133377075,
0.2987765073776245,
-0.3834325671195984,
0.2640892267227173,
0.2753297984600067,
-0.6244049072265625,
-0.385597288608551,
-0.6905286312103271,
-0.11797273904085159,
0.06581863015890121,
-0.3422222435474396,
0.6367106437683105,
-0.6769222617149353,
-0.2971589267253876,
0.15601111948490143,
-0.1933439075946808,
-0.2932097017765045,
0.273794561624527,
-0.10642195492982864,
0.6804208159446716,
-0.865759015083313,
0.5026209354400635,
0.8331945538520813,
-0.6327704191207886,
-0.8611308932304382,
0.025950662791728973,
0.17790021002292633,
-0.5036500692367554,
0.35082516074180603,
0.14019697904586792,
-0.09161395579576492,
-0.24948431551456451,
-0.5497807264328003,
-0.685310959815979,
0.7708057165145874,
0.5126849412918091,
-0.4998905062675476,
-0.25604838132858276,
-0.004866422154009342,
0.8144978880882263,
-0.11083316802978516,
0.25997981429100037,
0.5667411684989929,
0.6029264330863953,
0.17905408143997192,
-0.9904216527938843,
0.2438061684370041,
-0.4717141389846802,
0.11501538753509521,
0.09313778579235077,
-0.8438614010810852,
0.9829171895980835,
-0.1279916614294052,
-0.35785651206970215,
0.2914333939552307,
0.48257026076316833,
0.01618719846010208,
0.18523423373699188,
0.4439680576324463,
0.5759180784225464,
0.8891288638114929,
-0.2830508351325989,
0.9471101760864258,
-0.11604516208171844,
0.5628265142440796,
0.8843113780021667,
-0.01170495618134737,
0.7498184442520142,
0.49881941080093384,
-0.2878005802631378,
0.5038463473320007,
0.6339974999427795,
-0.022586198523640633,
0.38699308037757874,
0.06903143972158432,
-0.21685291826725006,
-0.16847272217273712,
0.00696489168331027,
-0.36751043796539307,
0.4588751792907715,
0.2418573796749115,
-0.5108309984207153,
-0.08457081019878387,
-0.08784642070531845,
0.6509659290313721,
0.08818293362855911,
-0.051057782024145126,
0.7227746248245239,
0.011455286294221878,
-0.9093449115753174,
0.6487206220626831,
0.31714150309562683,
0.5943254828453064,
-0.4801284968852997,
0.10833576321601868,
-0.41965970396995544,
0.5195717811584473,
-0.2738036811351776,
-0.4852209687232971,
0.4410446286201477,
0.12585574388504028,
-0.12445227056741714,
-0.356427401304245,
0.8267495632171631,
-0.618507981300354,
-0.5911045074462891,
0.2589300572872162,
0.2556915581226349,
0.18055681884288788,
-0.06867367774248123,
-0.4354132413864136,
0.05451440066099167,
0.10470449179410934,
-0.15650121867656708,
-0.10857807099819183,
0.4247235655784607,
-0.04902532696723938,
0.4415620267391205,
0.6513718366622925,
0.060496143996715546,
0.08195526897907257,
0.08457020670175552,
0.7112367749214172,
-0.5461845993995667,
-0.3726173937320709,
-0.8986648917198181,
0.6351825594902039,
-0.18479719758033752,
-0.429146945476532,
0.6112189888954163,
0.5109971165657043,
1.0340195894241333,
-0.2178955078125,
0.8900846242904663,
-0.4272516071796417,
0.3028094172477722,
-0.6754035353660583,
0.3781255781650543,
-0.6878126263618469,
0.03662671521306038,
-0.45870235562324524,
-0.8511311411857605,
-0.6445149183273315,
0.947284996509552,
-0.3098394572734833,
0.0012044175527989864,
1.0339795351028442,
0.9786412715911865,
-0.0805889368057251,
0.054889410734176636,
0.11597892642021179,
0.4823731482028961,
0.3377034664154053,
0.5016497373580933,
0.6026566028594971,
-0.6412913203239441,
0.5966334939002991,
-0.2787846326828003,
-0.16419075429439545,
-0.22840891778469086,
-0.7989357113838196,
-0.8977709412574768,
-0.5643389225006104,
-0.43089261651039124,
-0.6639586091041565,
0.24163566529750824,
1.1727087497711182,
0.41371071338653564,
-0.7907546758651733,
-0.06335888057947159,
-0.18610969185829163,
-0.032374318689107895,
-0.3298948109149933,
-0.24502679705619812,
0.1821601241827011,
-0.5470278263092041,
-0.9714956879615784,
0.34204599261283875,
0.21082332730293274,
-0.04928736388683319,
0.2338511049747467,
0.2183808833360672,
-0.4081544876098633,
0.11858447641134262,
0.7319316864013672,
0.28369855880737305,
-0.8876388072967529,
-0.6162099242210388,
0.07614372670650482,
-0.18110381066799164,
0.12052427232265472,
0.6872082948684692,
-0.30612656474113464,
0.4999849498271942,
0.5937975645065308,
0.42248550057411194,
0.44500795006752014,
0.11718744784593582,
0.4195939600467682,
-0.7769169807434082,
0.17677509784698486,
-0.11814197897911072,
0.4363350570201874,
0.43227967619895935,
-0.2318548858165741,
0.7266283631324768,
0.6510634422302246,
-0.45464998483657837,
-0.7169355154037476,
0.0896543636918068,
-0.9479327201843262,
-0.34641337394714355,
1.280378818511963,
-0.16514047980308533,
-0.4202384352684021,
0.15822814404964447,
-0.5544424057006836,
0.49001991748809814,
-0.4327927827835083,
0.6700984835624695,
0.9841731786727905,
-0.03847626596689224,
-0.013113708235323429,
-0.2952539920806885,
0.48776939511299133,
0.6607567667961121,
-0.8393117785453796,
-0.037702757865190506,
0.6308221220970154,
0.4741525650024414,
0.2405889332294464,
0.5815439224243164,
-0.14186429977416992,
0.12416068464517593,
0.14212046563625336,
0.20409202575683594,
0.019194044172763824,
-0.2885516583919525,
-0.17058269679546356,
0.10363998264074326,
-0.2187793254852295,
-0.041596803814172745
] |
yehiaserag/anime-pencil-diffusion | yehiaserag | "2023-05-05T11:49:35Z" | 179,320 | 158 | diffusers | [
"diffusers",
"anime",
"stable-diffusion",
"aiart",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2022-12-03T04:15:22Z" | ---
language:
- en
thumbnail: "https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v5.jpg"
tags:
- anime
- stable-diffusion
- aiart
- text-to-image
license: "creativeml-openrail-m"
---
# Anime-Pencil-Diffusion
A dreambooth finetune of stable diffusion 1.5 model that will output stuff in anime pencil concept drawing style.
# Usage
Follow the directions under each version.
## Anime-Pencil-Diffusion-V5
Trained for 400,000 steps, constant learning rate of 0.0000002 on 5000 images with 0 images for regularization.
### Examples generated by the v5 model
<img src="https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v5.jpg"/>
### Usage
Include `animepencilconcept style` in prompt to invoke the finetuned style.
### Prompet comparison for V5
<img src="https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v5-prompt-comparison.jpg"/>
---
## Anime-Pencil-Diffusion-V4
Trained for 160,000 steps, constant learning rate of 0.000001 on 526 images with 0 images for regularization and no text encoder training
### Examples generated by the v4 model
<img src="https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v4.jpg"/>
### Usage
Add the words `anime pencil concept style` anywhere in your prompt.
---
## Anime-Pencil-Diffusion-V3
Trained for 12,000 steps, constant learning rate of 0.0000005 on 80 images with 1000 images of `illustration style` for regularization
### Examples generated by the v3 model
<img src="https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v3.jpg"/>
### Usage
Add the words `anime pencil concept style` anywhere in your prompt.
---
## Anime-Pencil-Diffusion-V2
Trained for 4,000 steps, constant learning rate of 0.00000172 on 40 images with 1000 images of `illustration style` for regularization
### Examples generated by the v2 model
<img src="https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v2.jpg"/>
# Usage
Add the words `anime pencil concept style` anywhere in your prompt.
---
## Anime-Pencil-Diffusion-V1
Trained on 2,400 steps, constant learning rate of 0.00000172 on 16 images with 1000 images of `illustration style` for regularization
### Examples generated by the v1 model
<img src="https://huggingface.co/yehiaserag/anime-pencil-deffusion/resolve/main/example-v1.jpg"/>
### Usage
Add the words `anime pencil concept style` anywhere in your prompt.
---
# Socials
- Use the #AnimePencilConceptStyle so i can see the cool stuff you make!
- If you enjoy the model i'd appreciate a follow on [twitter](https://twitter.com/HellYeahYea)
- If you are feeling especially generous, you can sponsor me on [paypal](https://paypal.me/YehiaSerag)
- Created by Yehia Serag
---
*NOTE: usage of this model implies accpetance of stable diffusion's [CreativeML Open RAIL-M license](LICENSE)*
| [
-0.3913430869579315,
-0.9248180389404297,
0.5790942311286926,
0.13534830510616302,
-0.40309110283851624,
-0.10014621913433075,
0.12221415340900421,
-0.16755235195159912,
0.6805407404899597,
0.2574641704559326,
-0.8778201937675476,
-0.6095282435417175,
-0.47047144174575806,
0.07438928633928299,
-0.11671283841133118,
0.618304431438446,
0.013220401480793953,
0.12907008826732635,
0.06588300317525864,
0.22247107326984406,
-0.8932189345359802,
-0.05120948702096939,
-1.0092602968215942,
-0.4301300644874573,
0.28185972571372986,
0.7443020343780518,
0.5055992603302002,
0.41254836320877075,
-0.030661016702651978,
0.3983219861984253,
-0.2049415558576584,
-0.3667032718658447,
-0.523400604724884,
0.11387594044208527,
0.00872290413826704,
-0.7080128788948059,
-0.43258142471313477,
0.32840946316719055,
0.38451504707336426,
0.5651476979255676,
-0.06029898300766945,
-0.20193427801132202,
0.15235593914985657,
0.33083465695381165,
-0.27857401967048645,
0.08069425821304321,
-0.18758045136928558,
0.29802948236465454,
-0.23867829144001007,
0.4019790589809418,
-0.19775153696537018,
-0.5146740078926086,
0.3530832529067993,
-1.065155267715454,
0.5279920101165771,
0.28299760818481445,
0.9724177718162537,
-0.05084097385406494,
0.21744930744171143,
-0.03343355655670166,
-0.1722966581583023,
0.828959047794342,
-0.6180554628372192,
-0.10619022697210312,
0.4740220308303833,
0.41114139556884766,
0.27180296182632446,
-1.2412049770355225,
-0.8025723099708557,
0.18735648691654205,
0.09367257356643677,
0.31304624676704407,
0.03580644354224205,
-0.1681453287601471,
0.15004540979862213,
0.35978639125823975,
-0.3371775150299072,
0.05292791873216629,
-0.6060460805892944,
-0.35890012979507446,
0.3464438319206238,
0.3035406470298767,
0.4347236156463623,
-0.2778945565223694,
-0.29769739508628845,
0.14194490015506744,
-0.6557237505912781,
0.10229792445898056,
0.35523298382759094,
0.10281526297330856,
-0.4355233609676361,
0.7099179029464722,
0.11003366112709045,
0.3746410608291626,
0.5084340572357178,
-0.024807091802358627,
0.3057699501514435,
-0.35215190052986145,
-0.1713527888059616,
0.08848158270120621,
1.05504310131073,
0.7127838134765625,
0.22550372779369354,
0.12664099037647247,
0.14834554493427277,
-0.06435234099626541,
-0.019199753180146217,
-1.4169334173202515,
-0.4372697174549103,
0.26269087195396423,
-0.6101940870285034,
-0.4841912090778351,
-0.5175570845603943,
-0.8958479166030884,
-0.4714052081108093,
-0.018643613904714584,
0.4597316086292267,
-0.7509725093841553,
-0.23069657385349274,
0.47717028856277466,
-0.6438374519348145,
-0.06893665343523026,
0.6141284108161926,
-0.8338809609413147,
0.024189623072743416,
0.3230400085449219,
0.9773683547973633,
0.01791372522711754,
-0.0488501600921154,
0.15465252101421356,
-0.26105639338493347,
-0.6745699048042297,
0.7805073261260986,
-0.48605042695999146,
-0.5009580254554749,
-0.19648492336273193,
0.21212197840213776,
-0.014871343970298767,
-0.48611727356910706,
0.6538405418395996,
0.011056155897676945,
0.7189253568649292,
0.030102236196398735,
-0.7161010503768921,
-0.4090309739112854,
-0.30915960669517517,
-0.554265022277832,
0.9483696222305298,
0.20057892799377441,
-0.675613284111023,
0.18603067100048065,
-0.6827046275138855,
-0.10935692489147186,
0.21203391253948212,
0.2552889287471771,
-0.35442519187927246,
-0.19055309891700745,
-0.22313134372234344,
0.7431657314300537,
-0.2585538923740387,
0.2165229320526123,
-0.5463985204696655,
-0.34357768297195435,
-0.026474814862012863,
-0.27336084842681885,
1.1899093389511108,
0.11093233525753021,
-0.1736137419939041,
0.21361143887043,
-0.857825517654419,
-0.24050182104110718,
0.25467467308044434,
0.2905321717262268,
-0.2716546654701233,
-0.4465981721878052,
0.3504069745540619,
0.12692897021770477,
0.35704880952835083,
-0.8312119841575623,
0.08129706978797913,
-0.2823626399040222,
0.5241425633430481,
0.9264818429946899,
0.3434711694717407,
0.39397358894348145,
-0.44100579619407654,
0.6319746971130371,
0.007847808301448822,
-0.10696951299905777,
-0.24354995787143707,
-0.7794452905654907,
-1.1940505504608154,
-0.15636271238327026,
0.2173008918762207,
0.5162816643714905,
-0.745651364326477,
0.8366689085960388,
0.3716249465942383,
-0.8487032651901245,
-0.5376266837120056,
-0.126422718167305,
0.16796469688415527,
1.2066166400909424,
0.3779487609863281,
-0.3518015146255493,
-0.2576279938220978,
-0.8197233080863953,
0.3758690357208252,
0.20216134190559387,
-0.25668400526046753,
-0.05603193864226341,
0.32686811685562134,
0.13829271495342255,
0.8561334609985352,
-0.8757657408714294,
-0.32665401697158813,
-0.3421112895011902,
0.26381105184555054,
0.5487759709358215,
0.7693285942077637,
0.8300963640213013,
-0.5173509120941162,
-0.6592020392417908,
-0.44640007615089417,
-0.5946671962738037,
-0.1653810292482376,
0.05653376132249832,
-0.35857954621315,
-0.31200307607650757,
0.3926745653152466,
-0.5848561525344849,
0.4553245007991791,
0.0750337466597557,
-0.9092122912406921,
0.7633470296859741,
-0.12281402945518494,
0.1613214761018753,
-1.3088933229446411,
0.008129244670271873,
0.5539411306381226,
-0.14251211285591125,
-0.737813413143158,
0.02709922567009926,
-0.19406399130821228,
-0.3496949076652527,
-0.719262957572937,
0.860632598400116,
-0.1494179517030716,
0.63131183385849,
-0.06856907159090042,
0.1341380774974823,
0.31223365664482117,
0.7651489973068237,
0.3572571575641632,
0.6390478014945984,
1.09041166305542,
-0.7703577280044556,
0.5793862342834473,
0.4518803358078003,
-0.49084919691085815,
1.0642036199569702,
-1.0712647438049316,
0.09194979071617126,
-0.2216304987668991,
0.08975619077682495,
-1.4507367610931396,
0.06181463226675987,
0.8040023446083069,
-0.402387410402298,
0.28797727823257446,
0.17386986315250397,
-0.4986226260662079,
-0.21462824940681458,
-0.5672929286956787,
0.16305547952651978,
0.8819203972816467,
-0.2536815106868744,
0.5208393931388855,
-0.05405251681804657,
-0.3703361451625824,
-0.26312583684921265,
-0.4851646423339844,
-0.14779670536518097,
-0.5257737636566162,
-0.6640509366989136,
0.5561151504516602,
-0.6309821605682373,
0.14280466735363007,
0.03906271979212761,
0.02673465758562088,
-0.2408250868320465,
0.15624798834323883,
0.2201974093914032,
0.33687856793403625,
-0.30814269185066223,
-0.06373899430036545,
0.13234838843345642,
-0.13023240864276886,
-0.07451586425304413,
0.026360196992754936,
0.7397477030754089,
0.14224649965763092,
-0.184914693236351,
-1.2001694440841675,
-0.03858998045325279,
0.2814446985721588,
0.30641913414001465,
0.56768798828125,
0.795168936252594,
-0.43067923188209534,
0.06832289695739746,
-0.3143633008003235,
-0.1808243840932846,
-0.5387670397758484,
0.17412786185741425,
-0.4223284125328064,
-0.354958713054657,
0.6584563255310059,
-0.020460087805986404,
0.2693255543708801,
0.7168883085250854,
0.2717570662498474,
-0.4611900746822357,
0.7556307315826416,
0.651734471321106,
0.10131070017814636,
0.8301170468330383,
-0.9948517680168152,
-0.08998490869998932,
-0.9364981055259705,
-0.38519757986068726,
-0.44092822074890137,
-0.6672597527503967,
0.03519492968916893,
-0.42253378033638,
0.15604297816753387,
0.5661824941635132,
-0.3325669467449188,
0.340928316116333,
-0.24254512786865234,
0.46602705121040344,
0.5277612805366516,
0.3411572277545929,
0.1625080704689026,
0.00859820656478405,
-0.389015257358551,
-0.1894872635602951,
-0.6327434778213501,
-0.42140164971351624,
0.880692720413208,
0.40412285923957825,
0.8026599287986755,
-0.14088617265224457,
0.7631328701972961,
0.008909766562283039,
0.027263406664133072,
-1.1175700426101685,
0.7567889094352722,
-0.04290973022580147,
-0.49320006370544434,
-0.5306350588798523,
0.3161703944206238,
-1.0956233739852905,
0.26862505078315735,
-0.4259139597415924,
-0.5960729122161865,
0.33609408140182495,
-0.021478386595845222,
-0.35231292247772217,
0.02320939116179943,
-0.7526874542236328,
0.949807345867157,
0.17625252902507782,
-0.5279418230056763,
-0.2318876087665558,
-0.4553714990615845,
0.16497088968753815,
-0.11387354135513306,
-0.023963483050465584,
-0.3643781244754791,
-0.140117809176445,
0.7967504858970642,
-0.5161612629890442,
1.203153371810913,
-0.09027856588363647,
-0.05062451213598251,
0.48069068789482117,
0.1388370841741562,
-0.07919630408287048,
-0.04936389625072479,
-0.241078183054924,
0.1580236256122589,
-0.2054688036441803,
-0.18722334504127502,
-0.34157881140708923,
0.35479074716567993,
-0.5456040501594543,
-0.5641574263572693,
-0.18286174535751343,
-0.2373356968164444,
0.1800931841135025,
0.6638854742050171,
0.9636264443397522,
0.771998405456543,
-0.19686824083328247,
0.18446341156959534,
0.887666642665863,
-0.0010296738473698497,
0.6226997375488281,
0.0158118586987257,
-0.32989558577537537,
-0.3234017789363861,
0.8306698203086853,
-0.0008211922831833363,
0.3228285014629364,
0.06566973030567169,
0.6202152371406555,
-0.4447266459465027,
-0.3860335350036621,
-0.6789443492889404,
0.3903668522834778,
-0.6539999842643738,
-0.27413201332092285,
-0.4692811667919159,
-0.144675150513649,
-0.515226423740387,
-0.3785536587238312,
-0.01728169061243534,
-0.7606755495071411,
-1.3408050537109375,
-0.009027459658682346,
0.7989912629127502,
0.5932819247245789,
0.028705358505249023,
0.5927402973175049,
-0.28587061166763306,
0.57821124792099,
0.3366777002811432,
0.4217036962509155,
0.025463521480560303,
-0.720152735710144,
0.029060257598757744,
-0.1598634272813797,
-0.6662136912345886,
-0.9502990245819092,
0.3645351529121399,
0.2446320503950119,
0.5555924773216248,
0.6565183401107788,
-0.23093798756599426,
0.757075309753418,
-0.78866046667099,
1.0682787895202637,
0.7085898518562317,
-0.8021621108055115,
0.49299517273902893,
-0.3753988742828369,
0.23857827484607697,
0.3714468777179718,
0.7360228896141052,
-0.8735800385475159,
-0.6052786111831665,
-1.029789924621582,
-0.5464596748352051,
0.5966455936431885,
0.040593989193439484,
0.27586427330970764,
0.22748687863349915,
0.39440202713012695,
0.01965085230767727,
0.1357947736978531,
-0.611687421798706,
-0.6781558990478516,
-0.5285034775733948,
-0.37819021940231323,
-0.11404570192098618,
-0.04062758758664131,
0.17816859483718872,
-0.4472189247608185,
0.7578282952308655,
-0.06057337298989296,
0.24324339628219604,
-0.16257260739803314,
0.35537397861480713,
-0.10443934798240662,
-0.18712949752807617,
0.17365650832653046,
0.4341537356376648,
-0.11270993202924728,
-0.3475792109966278,
-0.2671477496623993,
-0.6586799025535583,
0.3303266167640686,
0.03482222557067871,
-0.5509281158447266,
0.2572333812713623,
0.04414752498269081,
0.9412572383880615,
0.12554104626178741,
-0.30076688528060913,
0.4390910565853119,
-0.1413460075855255,
-0.23779021203517914,
-0.34050172567367554,
0.4668497145175934,
0.29509487748146057,
0.1505802720785141,
0.16566051542758942,
0.16880357265472412,
0.4530681073665619,
-0.4470480680465698,
-0.02285093441605568,
0.31914710998535156,
-0.21252799034118652,
-0.26895663142204285,
0.7772920727729797,
0.2779422402381897,
-0.5607084631919861,
0.4615935981273651,
-0.2395654320716858,
-0.43176180124282837,
1.0457987785339355,
0.7685366868972778,
0.9663941860198975,
-0.356188029050827,
0.4295412600040436,
0.837103545665741,
-0.3100016117095947,
-0.2406981885433197,
0.34997788071632385,
0.31598883867263794,
-0.655851423740387,
0.08082150667905807,
-0.30207517743110657,
-0.40382903814315796,
0.3079230487346649,
-0.3601091802120209,
1.0904515981674194,
-0.795576810836792,
-0.16296063363552094,
0.019747933372855186,
-0.05941871181130409,
-0.6388716101646423,
0.12026508152484894,
-0.07290302217006683,
1.1277120113372803,
-0.9358488917350769,
0.5292620062828064,
0.5344366431236267,
-0.546991765499115,
-0.7541972398757935,
-0.18048961460590363,
-0.008772720582783222,
-0.760877251625061,
0.5185684561729431,
0.2553504407405853,
-0.19730432331562042,
0.257937490940094,
-0.7633048892021179,
-0.7397708296775818,
1.1297401189804077,
-0.14360105991363525,
-0.15540266036987305,
-0.12595956027507782,
-0.5220303535461426,
0.5627343654632568,
-0.49094268679618835,
0.16005152463912964,
0.31155264377593994,
0.09574709087610245,
0.5535466074943542,
-0.6304016709327698,
-0.0012128069065511227,
-0.2965660095214844,
0.1509937047958374,
-0.12897561490535736,
-0.8372732400894165,
0.9553523063659668,
-0.40028563141822815,
-0.5719476342201233,
0.7767314314842224,
0.9042911529541016,
0.44015640020370483,
0.11002695560455322,
0.2956794202327728,
0.6449214816093445,
0.6741626262664795,
-0.03983445465564728,
0.615160346031189,
-0.13722127676010132,
0.2710859179496765,
0.8249923586845398,
0.25001198053359985,
0.6367467045783997,
0.030113907530903816,
-0.17123514413833618,
0.9194633364677429,
1.1460926532745361,
-0.074101023375988,
0.6768559813499451,
0.23550549149513245,
-0.03052397072315216,
-0.04331154003739357,
-0.19594939053058624,
-0.4425295293331146,
-0.19044607877731323,
0.527854323387146,
-0.2040039449930191,
-0.09262077510356903,
0.0821157693862915,
0.2050439715385437,
-0.08908716589212418,
-0.42193204164505005,
0.47114047408103943,
0.21490781009197235,
-0.33158567547798157,
0.7884817123413086,
-0.0911458283662796,
1.0632786750793457,
-0.7484236359596252,
-0.49332454800605774,
-0.28741493821144104,
-0.17541806399822235,
-0.05788000300526619,
-1.2330827713012695,
-0.2406814694404602,
-0.22672483325004578,
0.10467757284641266,
-0.3760378956794739,
0.6443955302238464,
-0.4813911020755768,
-0.7238311767578125,
-0.3614935874938965,
0.17492952942848206,
0.31244558095932007,
0.4856756031513214,
-0.9340626001358032,
-0.13169214129447937,
0.02660696767270565,
-0.14643536508083344,
-0.04189179092645645,
0.6836003065109253,
0.44051939249038696,
0.7131747603416443,
0.1417052298784256,
0.10572979599237442,
-0.1075156107544899,
-0.07630357891321182,
0.44985267519950867,
-0.32241395115852356,
-0.5667115449905396,
-0.7682119011878967,
0.725421667098999,
-0.21285714209079742,
-0.4524281919002533,
0.7335655093193054,
0.45357123017311096,
0.5249927043914795,
-0.47296610474586487,
0.7121597528457642,
-0.12348084151744843,
0.6049450635910034,
-0.8054594397544861,
0.8179415464401245,
-0.5658347606658936,
-0.19748248159885406,
-0.5243916511535645,
-0.7854861617088318,
-0.024812381714582443,
1.2585437297821045,
0.15386559069156647,
0.022973651066422462,
0.9244438409805298,
0.6462883949279785,
-0.1492224931716919,
0.04215503856539726,
-0.07876276969909668,
0.015459583140909672,
0.031375639140605927,
0.31760039925575256,
0.8288597464561462,
-0.36978110671043396,
0.03250433877110481,
-0.7166405916213989,
-0.22246506810188293,
-0.08590365946292877,
-1.0645573139190674,
-1.0914579629898071,
-0.6711275577545166,
-0.6601129174232483,
-0.5623317360877991,
-0.6568267941474915,
0.724768340587616,
0.8960474133491516,
-0.6611433029174805,
-0.27082911133766174,
-0.0689380019903183,
0.29312261939048767,
0.0034938547760248184,
-0.27715781331062317,
0.3484540581703186,
-0.05174420028924942,
-1.2530549764633179,
0.04063424468040466,
-0.09834199398756027,
0.8096113801002502,
-0.3454311788082123,
0.21726612746715546,
0.05447203293442726,
-0.314622163772583,
0.4527243971824646,
0.07153522223234177,
-0.5875616073608398,
-0.12481019645929337,
0.016341811046004295,
0.09819309413433075,
0.1557018756866455,
0.5758195519447327,
-0.7850151658058167,
0.37632888555526733,
0.6654908061027527,
0.1922665685415268,
0.41399985551834106,
-0.20864008367061615,
0.3458666205406189,
-0.5560569763183594,
0.17734411358833313,
0.24321553111076355,
0.6928116679191589,
0.22784718871116638,
-0.48616501688957214,
0.5217037200927734,
0.7095686793327332,
-0.26783743500709534,
-0.3115585446357727,
0.34078463912010193,
-0.8612326383590698,
-0.4213593304157257,
0.9075173139572144,
0.12149610370397568,
-0.12047465145587921,
-0.13932086527347565,
-0.8438268899917603,
0.07245331257581711,
-0.5733410716056824,
0.40158164501190186,
0.947127640247345,
-0.5290706753730774,
-0.23016877472400665,
-0.4070754945278168,
0.5463765263557434,
0.02008160576224327,
-0.7622751593589783,
-0.13986799120903015,
0.8620941042900085,
0.8178660273551941,
0.48959770798683167,
0.910487174987793,
0.12999875843524933,
0.18314360082149506,
0.0760750100016594,
0.010601029731333256,
0.19768314063549042,
-0.3247438669204712,
-0.3831079602241516,
-0.1128232479095459,
-0.032008446753025055,
-0.3922024965286255
] |
stabilityai/sd-vae-ft-mse | stabilityai | "2023-06-06T11:39:15Z" | 178,633 | 218 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"license:mit",
"has_space",
"diffusers:AutoencoderKL",
"region:us"
] | null | "2022-10-13T12:50:55Z" | ---
license: mit
tags:
- stable-diffusion
- stable-diffusion-diffusers
inference: false
---
# Improved Autoencoders
## Utilizing
These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/stabilityai/sd-vae-ft-mse-original).
#### How to use with 🧨 diffusers
You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline`
```py
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionPipeline
model = "CompVis/stable-diffusion-v1-4"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae)
```
## Decoder Finetuning
We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models) on a 1:1 ratio of [LAION-Aesthetics](https://laion.ai/blog/laion-aesthetics/) and LAION-Humans, an unreleased subset containing only SFW images of humans. The intent was to fine-tune on the Stable Diffusion training set (the autoencoder was originally trained on OpenImages) but also enrich the dataset with images of humans to improve the reconstruction of faces.
The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. It uses the same loss configuration as the original checkpoint (L1 + LPIPS).
The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a different loss, with more emphasis
on MSE reconstruction (MSE + 0.1 * LPIPS). It produces somewhat ``smoother'' outputs. The batch size for both versions was 192 (16 A100s, batch size 12 per GPU).
To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder.
_Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_
## Evaluation
### COCO 2017 (256x256, val, 5000 images)
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| | | | | | | | |
| original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
| ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
| ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
### LAION-Aesthetics 5+ (256x256, subset, 10000 images)
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| | | | | | | | |
| original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
| ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
| ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
### Visual
_Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._
<p align="center">
<br>
<b>
256x256: ft-EMA (left), ft-MSE (middle), original (right)</b>
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png />
</p>
<p align="center">
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png />
</p>
| [
-0.7571237087249756,
-0.4145191013813019,
0.16445787250995636,
0.24458599090576172,
-0.14294034242630005,
-0.16757912933826447,
-0.017836622893810272,
-0.051736894994974136,
0.5521895289421082,
0.2559194564819336,
-0.35826632380485535,
-0.45303648710250854,
-0.6343324184417725,
0.14499369263648987,
-0.03847315534949303,
0.6751996278762817,
-0.09419076889753342,
0.15825653076171875,
0.0908670425415039,
-0.2700961232185364,
-0.4513557553291321,
-0.3358743190765381,
-0.7584457397460938,
-0.21276187896728516,
0.42949166893959045,
0.1470436155796051,
0.3746800720691681,
0.6149863004684448,
0.32397690415382385,
0.30012914538383484,
-0.2752595841884613,
-0.0029845288954675198,
-0.3967922031879425,
-0.26088854670524597,
0.25782138109207153,
-0.1600445657968521,
-0.7077808976173401,
-0.11955009400844574,
0.6343998312950134,
0.3891001045703888,
-0.17617791891098022,
0.0950201079249382,
0.26958271861076355,
0.8368292450904846,
-0.652164101600647,
0.09127281606197357,
-0.12716837227344513,
0.07505670934915543,
-0.05186186358332634,
-0.3953135013580322,
-0.2149069607257843,
-0.1968439370393753,
-0.14458885788917542,
-0.7634103298187256,
0.2508668303489685,
-0.039713144302368164,
1.592654824256897,
0.3092648684978485,
-0.32703083753585815,
-0.059798240661621094,
-0.5533725023269653,
0.684723973274231,
-0.8075883388519287,
0.4697917103767395,
0.24362331628799438,
0.18208296597003937,
-0.11874092370271683,
-0.6328779458999634,
-0.46268510818481445,
0.06279333680868149,
-0.3773612678050995,
0.48315784335136414,
-0.24511176347732544,
-0.011569266207516193,
0.4589860439300537,
0.6233627796173096,
-0.6556723713874817,
-0.09914853423833847,
-0.6295384168624878,
-0.3568105101585388,
0.6323024034500122,
0.14505717158317566,
0.236716166138649,
-0.3012133240699768,
-0.2771034240722656,
-0.47125697135925293,
-0.5567163228988647,
0.1789957880973816,
0.23998741805553436,
-0.17775651812553406,
-0.4306684732437134,
0.35911667346954346,
-0.25660082697868347,
0.6128867268562317,
0.16263307631015778,
-0.17039622366428375,
0.6104899644851685,
-0.4079152047634125,
-0.5599616765975952,
-0.1227031946182251,
1.0295380353927612,
0.4498331844806671,
-0.14070606231689453,
0.2579480707645416,
-0.16426724195480347,
0.05219992622733116,
-0.06129496172070503,
-1.0704457759857178,
-0.40851399302482605,
0.35317954421043396,
-0.7522891759872437,
-0.350667268037796,
0.07918205857276917,
-1.0614426136016846,
0.2697306275367737,
-0.2090526968240738,
0.4402000606060028,
-0.5731166005134583,
-0.33892494440078735,
0.06026047095656395,
-0.2724413275718689,
0.6980339288711548,
0.4823981821537018,
-0.7321537137031555,
0.3088509142398834,
0.11103204637765884,
0.8813685178756714,
-0.020219866186380386,
0.056927114725112915,
-0.35763832926750183,
-0.06044801324605942,
-0.4779808819293976,
0.5707370638847351,
-0.10979438573122025,
-0.4127655625343323,
-0.34161612391471863,
0.395511656999588,
-0.2077304720878601,
-0.4057515859603882,
0.8084560036659241,
-0.4618276059627533,
0.1955324411392212,
-0.3863893747329712,
-0.44087639451026917,
-0.27376970648765564,
0.13429400324821472,
-0.7572750449180603,
1.147965669631958,
0.164300337433815,
-0.8799704313278198,
0.2994433343410492,
-0.6502463817596436,
-0.10314460843801498,
-0.3705633580684662,
-0.2054944932460785,
-0.700363039970398,
-0.13471916317939758,
0.5577467083930969,
0.35653427243232727,
-0.244383305311203,
0.005165764130651951,
-0.23072852194309235,
-0.30836138129234314,
0.020184561610221863,
-0.6749728322029114,
1.258941888809204,
0.42839568853378296,
-0.5041181445121765,
-0.006661509163677692,
-0.9666373133659363,
-0.0760311633348465,
0.38304775953292847,
-0.3538816273212433,
-0.008597167208790779,
-0.35850077867507935,
-0.058158520609140396,
0.4199361205101013,
0.028217822313308716,
-0.3706476092338562,
0.05992588400840759,
-0.44147658348083496,
0.4831801950931549,
0.874581515789032,
0.22931231558322906,
0.4543241858482361,
-0.5167770385742188,
0.49428024888038635,
0.30902794003486633,
0.08108541369438171,
-0.3320237100124359,
-0.655518651008606,
-1.0665647983551025,
-0.49561628699302673,
0.42844220995903015,
0.515884280204773,
-0.5022106170654297,
0.6160250902175903,
-0.34479883313179016,
-0.4929097890853882,
-0.6657363772392273,
-0.04586346074938774,
0.14043697714805603,
0.4305303394794464,
0.4596906006336212,
-0.4942246377468109,
-0.5916908979415894,
-0.9181857109069824,
0.21384990215301514,
0.11902381479740143,
-0.008962864987552166,
0.3827802836894989,
0.6756715178489685,
0.05476410686969757,
0.8988654017448425,
-0.7145818471908569,
-0.40575870871543884,
0.2248968482017517,
-0.049020979553461075,
0.39565443992614746,
0.8413184881210327,
0.9235287308692932,
-0.744966983795166,
-0.776390016078949,
-0.12076908349990845,
-0.8845459222793579,
0.01317423302680254,
-0.007139444351196289,
-0.32225561141967773,
0.14709992706775665,
0.42458441853523254,
-0.5486556887626648,
0.791215717792511,
0.44720494747161865,
-0.3314652740955353,
0.5457925796508789,
-0.38726136088371277,
0.40456387400627136,
-1.2123095989227295,
0.3927990198135376,
0.09193770587444305,
-0.36970534920692444,
-0.4202727973461151,
-0.12603513896465302,
0.014973554760217667,
-0.021504392847418785,
-0.49244949221611023,
0.5651252865791321,
-0.8001464605331421,
0.02999085560441017,
0.07115209102630615,
-0.037368450313806534,
0.2345183789730072,
0.7860766649246216,
0.04176080599427223,
0.68281090259552,
0.7418431639671326,
-0.5164147615432739,
0.06703756004571915,
0.16963495314121246,
-0.28718993067741394,
0.4437267482280731,
-0.8809131383895874,
0.029375439509749413,
-0.3243480324745178,
0.40283286571502686,
-1.0819358825683594,
-0.19914956390857697,
0.6767564415931702,
-0.5914250016212463,
0.6081560850143433,
-0.32424241304397583,
-0.2990766763687134,
-0.5131792426109314,
-0.4353797435760498,
0.37589016556739807,
0.738681972026825,
-0.42806312441825867,
0.6191114783287048,
0.12444444745779037,
0.2937659025192261,
-0.5560085773468018,
-0.7391251921653748,
-0.24601222574710846,
-0.25660327076911926,
-0.6398401856422424,
0.4298616647720337,
-0.23460689187049866,
0.1396808624267578,
0.10573693364858627,
-0.06966798007488251,
0.07092756032943726,
-0.11057082563638687,
0.47092926502227783,
0.33517056703567505,
-0.3747035562992096,
-0.48097649216651917,
0.14722250401973724,
-0.17458102107048035,
-0.0458141528069973,
-0.12932702898979187,
0.6367232799530029,
-0.11348072439432144,
-0.2736783027648926,
-0.7369921207427979,
0.2002752274274826,
0.7812843322753906,
-0.28831472992897034,
0.845970630645752,
0.8920533061027527,
-0.4123094081878662,
0.16223976016044617,
-0.46181946992874146,
-0.20505788922309875,
-0.5234219431877136,
-0.005066192243248224,
-0.5165539383888245,
-0.702491044998169,
0.7730337977409363,
0.14700265228748322,
0.03788263350725174,
1.004604697227478,
0.4845397174358368,
-0.22195619344711304,
1.1522717475891113,
0.16334591805934906,
0.008684820495545864,
0.4596705436706543,
-1.0496795177459717,
0.03570151701569557,
-1.0469281673431396,
-0.3140943944454193,
-0.5360192656517029,
-0.23653629422187805,
-0.4124623239040375,
-0.7015053629875183,
0.41834378242492676,
0.3608359396457672,
-0.26615938544273376,
0.27496400475502014,
-0.7800828218460083,
0.16800978779792786,
0.31430181860923767,
0.23262552917003632,
0.03131575137376785,
0.27277708053588867,
-0.2667778730392456,
-0.03603828325867653,
-0.835320770740509,
-0.47769245505332947,
1.0978623628616333,
0.44034165143966675,
0.6792910099029541,
0.048715975135564804,
0.6792585253715515,
0.23548462986946106,
0.32502010464668274,
-0.47188299894332886,
0.42365676164627075,
-0.06631346046924591,
-0.6030672192573547,
0.005625561811029911,
-0.31797581911087036,
-1.0156400203704834,
0.397525817155838,
-0.2361125946044922,
-0.792190670967102,
0.6663586497306824,
0.4553011655807495,
-0.33804967999458313,
0.4817560315132141,
-0.7471191883087158,
1.07884681224823,
-0.08619596064090729,
-0.4038849174976349,
0.05177098885178566,
-0.6519443392753601,
0.258750319480896,
0.3400292694568634,
0.17217275500297546,
-0.054354507476091385,
0.07293546199798584,
0.9722339510917664,
-0.8025866150856018,
0.748672366142273,
-0.18103857338428497,
-0.1206718161702156,
0.6655353903770447,
-0.11578697711229324,
0.5406338572502136,
0.05198586732149124,
-0.03672716021537781,
0.312594473361969,
0.0697905570268631,
-0.5560432076454163,
-0.4069254994392395,
0.916280210018158,
-0.9819028973579407,
-0.4818573594093323,
-0.6680416464805603,
-0.09831138700246811,
0.47485941648483276,
0.2751447558403015,
0.6774956583976746,
0.6831220984458923,
-0.09035618603229523,
0.22935059666633606,
0.8110238313674927,
-0.24461418390274048,
0.5516496300697327,
0.2540779113769531,
-0.06670671701431274,
-0.79488605260849,
1.1535975933074951,
0.20198485255241394,
0.3148875832557678,
0.3580796420574188,
0.0820348933339119,
-0.14653268456459045,
-0.44660693407058716,
-0.5364786386489868,
0.32181259989738464,
-0.7820183038711548,
-0.4098680317401886,
-0.9162196516990662,
-0.40484803915023804,
-0.5283535122871399,
-0.2244918793439865,
-0.5016273260116577,
-0.39470264315605164,
-0.6977760791778564,
0.15413613617420197,
0.3844700753688812,
0.41854074597358704,
-0.2558530867099762,
0.1744963675737381,
-0.7810842990875244,
0.2524154484272003,
0.060367606580257416,
0.2501840591430664,
0.1699996143579483,
-0.6116398572921753,
-0.12989771366119385,
0.15565219521522522,
-0.5640945434570312,
-1.0767375230789185,
0.696877121925354,
0.1256871223449707,
0.683612048625946,
0.375216007232666,
-0.15406610071659088,
0.8304463624954224,
-0.2320932000875473,
0.8147674202919006,
0.22708028554916382,
-0.7153782844543457,
0.688728928565979,
-0.2776498794555664,
0.210697740316391,
0.4042647182941437,
0.5356610417366028,
-0.24665236473083496,
-0.06483067572116852,
-0.7704262733459473,
-0.9722646474838257,
0.7695626020431519,
0.531859278678894,
-0.34844666719436646,
0.08573085814714432,
0.342755526304245,
-0.1708870530128479,
-0.005327338818460703,
-0.73302161693573,
-0.7609021663665771,
-0.49845531582832336,
-0.1432347297668457,
-0.011275253258645535,
-0.07156918942928314,
-0.055606402456760406,
-0.5846036076545715,
0.8095200061798096,
-0.04444843903183937,
0.6751432418823242,
0.5287879109382629,
-0.14480771124362946,
-0.1568988561630249,
0.07197999954223633,
0.5063583850860596,
0.41529580950737,
-0.5073714852333069,
-0.05853435769677162,
0.2017938494682312,
-0.40338942408561707,
0.22301974892616272,
-0.030733760446310043,
-0.47194793820381165,
0.032076749950647354,
0.18988819420337677,
0.9679609537124634,
-0.08159956336021423,
-0.26469382643699646,
0.5837692618370056,
-0.225200355052948,
-0.447598934173584,
-0.47849202156066895,
0.12395808100700378,
0.09424666315317154,
-0.04428250342607498,
0.32162487506866455,
0.4234198331832886,
0.1994183510541916,
-0.3595205843448639,
0.2144642025232315,
0.31989315152168274,
-0.290842741727829,
-0.3334713876247406,
0.9102520942687988,
-0.006201057694852352,
-0.051990609616041183,
0.4642293155193329,
-0.3772165775299072,
-0.5047752261161804,
0.9154502749443054,
0.4594193398952484,
0.8899626731872559,
-0.28954529762268066,
0.01590755768120289,
1.0981570482254028,
0.21954147517681122,
-0.04861665889620781,
0.28800445795059204,
-0.03440627083182335,
-0.4868248701095581,
-0.21173126995563507,
-0.8550683856010437,
0.3441852331161499,
0.180500790476799,
-0.7993723154067993,
0.44144248962402344,
-0.4258851706981659,
-0.2641141712665558,
0.04110740125179291,
0.03529391810297966,
-0.9438591599464417,
0.40205880999565125,
-0.04152926430106163,
1.0332683324813843,
-1.0257158279418945,
0.8474375009536743,
0.5843722820281982,
-0.6538723707199097,
-0.9496638178825378,
-0.09110607951879501,
-0.10799189656972885,
-0.45707374811172485,
0.5157120227813721,
0.11937042325735092,
0.09497827291488647,
0.13845893740653992,
-0.43649086356163025,
-1.0059338808059692,
1.549470067024231,
0.2616976797580719,
-0.6048557758331299,
0.019056178629398346,
-0.26360374689102173,
0.4774932265281677,
-0.4668333828449249,
0.6436908841133118,
0.4930592179298401,
0.4013034999370575,
0.28964388370513916,
-0.7026095390319824,
0.33288055658340454,
-0.4359177052974701,
0.24231401085853577,
0.18627138435840607,
-1.0233352184295654,
0.8290186524391174,
-0.11410435289144516,
-0.23035462200641632,
0.017707090824842453,
0.8926106095314026,
0.2746414542198181,
0.1665857583284378,
0.5616060495376587,
0.9421592354774475,
0.4813326299190521,
-0.2399202436208725,
1.0456819534301758,
-0.33393797278404236,
0.5797526240348816,
0.8178152441978455,
0.38317155838012695,
0.6428884863853455,
0.457670122385025,
-0.3401446044445038,
0.4642484486103058,
0.9150059819221497,
-0.1672542244195938,
0.5782867074012756,
0.08611205220222473,
-0.03547719120979309,
-0.06736057251691818,
0.11426345258951187,
-0.6246023178100586,
0.1604698896408081,
0.44900479912757874,
-0.5792768597602844,
-0.05445266515016556,
-0.032916028052568436,
0.23278814554214478,
-0.4128657877445221,
-0.18251515924930573,
0.5088780522346497,
0.06748726218938828,
-0.6228291392326355,
1.0937880277633667,
-0.010524393990635872,
0.739407479763031,
-0.5089480876922607,
-0.21204829216003418,
-0.15784573554992676,
0.06226135417819023,
-0.4165017008781433,
-0.7538859844207764,
0.40800926089286804,
-0.2707482576370239,
-0.006862299516797066,
-0.07797089964151382,
0.7155877351760864,
-0.3662686347961426,
-0.5183326005935669,
0.48041173815727234,
0.11761049181222916,
0.29760149121284485,
0.29688096046447754,
-0.9193791747093201,
0.4204552173614502,
0.22358258068561554,
-0.541696310043335,
0.33615097403526306,
0.18615201115608215,
0.22975754737854004,
0.37968501448631287,
0.6661599278450012,
0.07179189473390579,
0.36615514755249023,
-0.09137164801359177,
1.140816330909729,
-0.6296036243438721,
-0.4819757342338562,
-0.5980743765830994,
0.7464136481285095,
-0.2591993510723114,
-0.3386651873588562,
0.8929758667945862,
0.7999843955039978,
0.7607271671295166,
-0.11108925938606262,
0.5865511894226074,
-0.45780497789382935,
0.0719916969537735,
-0.5426140427589417,
0.6661396622657776,
-0.9713734984397888,
0.2552708089351654,
-0.3815539479255676,
-0.8624576926231384,
-0.08186587691307068,
0.8357487916946411,
-0.12744227051734924,
0.3778931200504303,
0.6283182501792908,
1.1237976551055908,
-0.2432495355606079,
-0.29528793692588806,
0.06457866728305817,
0.32764488458633423,
0.4700492322444916,
0.6731958985328674,
0.3330155909061432,
-1.1489137411117554,
0.5787321925163269,
-0.676719069480896,
-0.1520301252603531,
-0.3345891833305359,
-0.7416476607322693,
-0.7774820923805237,
-0.8224169611930847,
-0.6981511116027832,
-0.7906349301338196,
-0.09547169506549835,
0.7780757546424866,
0.9761160016059875,
-0.7809399962425232,
-0.16854709386825562,
-0.24308496713638306,
0.0036291154101490974,
-0.33083853125572205,
-0.29343342781066895,
0.6199712753295898,
0.12616685032844543,
-0.8203800320625305,
0.17580388486385345,
0.20608356595039368,
0.4226208031177521,
-0.13158945739269257,
-0.5402366518974304,
-0.41058218479156494,
0.04840238764882088,
0.41911792755126953,
0.5496997237205505,
-0.6515312194824219,
-0.04395196586847305,
-0.15391172468662262,
-0.1771906614303589,
0.5159145593643188,
0.5331911444664001,
-0.6702637672424316,
0.5562092065811157,
0.9026609063148499,
0.1103210598230362,
0.913497805595398,
0.0029601813293993473,
0.32348889112472534,
-0.4708503484725952,
0.16542470455169678,
0.032476216554641724,
0.4959057867527008,
0.20851652324199677,
-0.38460105657577515,
0.5332063436508179,
0.5113776922225952,
-0.6248833537101746,
-0.7356424331665039,
-0.36252978444099426,
-1.338147521018982,
-0.14849643409252167,
1.0034093856811523,
-0.26875513792037964,
-0.7238476872444153,
0.10406670719385147,
-0.32835134863853455,
0.4445887506008148,
-0.7249600887298584,
0.2365741729736328,
0.5024724006652832,
-0.04005827382206917,
-0.3744226098060608,
-0.6777206659317017,
0.6227232217788696,
0.41481655836105347,
-0.7037873268127441,
-0.2651820480823517,
0.4334697723388672,
0.6146151423454285,
0.33011141419410706,
1.0109063386917114,
-0.40669751167297363,
0.19852229952812195,
0.14573201537132263,
0.04782840237021446,
-0.004141200799494982,
-0.11486068367958069,
-0.5217220187187195,
0.158746600151062,
-0.18470421433448792,
-0.42195096611976624
] |
lmsys/vicuna-7b-v1.5 | lmsys | "2023-08-02T18:54:45Z" | 178,459 | 114 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"arxiv:2307.09288",
"arxiv:2306.05685",
"license:llama2",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-29T04:42:33Z" | ---
inference: false
license: llama2
---
# Vicuna Model Card
## Model Details
Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.
- **Developed by:** [LMSYS](https://lmsys.org/)
- **Model type:** An auto-regressive language model based on the transformer architecture
- **License:** Llama 2 Community License Agreement
- **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
### Model Sources
- **Repository:** https://github.com/lm-sys/FastChat
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
- **Paper:** https://arxiv.org/abs/2306.05685
- **Demo:** https://chat.lmsys.org/
## Uses
The primary use of Vicuna is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
## Training Details
Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning.
The training data is around 125K conversations collected from ShareGPT.com.
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Evaluation
![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true)
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
## Difference between different versions of Vicuna
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md) | [
-0.3023828864097595,
-0.9296846985816956,
0.4338702857494354,
0.33541959524154663,
-0.618333637714386,
-0.19331401586532593,
-0.08830239623785019,
-0.6467957496643066,
0.28019487857818604,
0.3586077094078064,
-0.6411656141281128,
-0.6491215229034424,
-0.5224280953407288,
-0.05725995451211929,
-0.1503724604845047,
0.7895075678825378,
0.1862577497959137,
0.12457455694675446,
-0.07365623861551285,
-0.2343468964099884,
-0.9671006202697754,
-0.5661278367042542,
-1.022763967514038,
-0.26211345195770264,
0.5917067527770996,
0.49186667799949646,
0.627534806728363,
0.6392133235931396,
0.4164030849933624,
0.3351278007030487,
-0.04043462872505188,
0.4147031307220459,
-0.538850724697113,
0.06651129573583603,
0.27147412300109863,
-0.9812688827514648,
-0.7516467571258545,
-0.3024716377258301,
0.48853832483291626,
-0.0784565657377243,
-0.17216083407402039,
0.2412179708480835,
0.025293821468949318,
0.4461093246936798,
-0.34768903255462646,
0.30243340134620667,
-0.5890047550201416,
-0.19262993335723877,
-0.3011750280857086,
-0.5993813276290894,
-0.21839749813079834,
-0.37573307752609253,
-0.2180289626121521,
-0.4885806143283844,
0.03584642708301544,
-0.07892229408025742,
1.176149845123291,
0.6028827428817749,
-0.3427361249923706,
-0.15790711343288422,
-0.7763229608535767,
0.45495378971099854,
-0.8876635432243347,
0.37202778458595276,
0.4428617060184479,
0.6468058824539185,
-0.2909408211708069,
-0.5708167552947998,
-0.6378569602966309,
-0.242801696062088,
0.06537538766860962,
0.13606677949428558,
-0.28072983026504517,
0.14604414999485016,
0.12331010401248932,
0.4936549663543701,
-0.4736572802066803,
0.4447714388370514,
-0.5741620659828186,
0.12337681651115417,
0.5702311396598816,
0.43628355860710144,
0.17025095224380493,
-0.2269613891839981,
-0.4195670187473297,
-0.34186822175979614,
-0.3559490740299225,
-0.008198988623917103,
0.4276725947856903,
0.43289583921432495,
-0.46013662219047546,
0.5502842664718628,
-0.19835694134235382,
0.5395766496658325,
-0.132112056016922,
-0.2098272442817688,
0.33750098943710327,
-0.05269378423690796,
-0.5248646140098572,
-0.3034781515598297,
1.2110865116119385,
0.4797000586986542,
-0.06085623428225517,
0.14795418083667755,
0.024912750348448753,
0.061833228915929794,
0.22230187058448792,
-0.8179464936256409,
0.07381830364465714,
0.6737203001976013,
-0.31274741888046265,
-0.5302500128746033,
-0.059891603887081146,
-0.4778929054737091,
-0.43198883533477783,
-0.24347683787345886,
0.3767309784889221,
-0.3976612091064453,
-0.3928402066230774,
0.15310777723789215,
0.010299360379576683,
0.4521176517009735,
0.3695843815803528,
-0.7319567203521729,
0.3575509786605835,
0.7334920763969421,
1.1061073541641235,
-0.10667022317647934,
-0.40819352865219116,
-0.12855839729309082,
-0.29750850796699524,
-0.31742730736732483,
1.0012105703353882,
-0.07367333024740219,
-0.3558775782585144,
-0.052833229303359985,
0.14821577072143555,
-0.017774246633052826,
-0.5831274390220642,
0.6456613540649414,
-0.2843972146511078,
0.27893269062042236,
-0.17201699316501617,
-0.5267288684844971,
-0.03185878321528435,
0.2603801488876343,
-0.669961154460907,
1.2746615409851074,
0.04401693120598793,
-0.7373445630073547,
0.1889985203742981,
-0.7505285143852234,
0.11494410783052444,
0.11493466049432755,
-0.07643842697143555,
-0.48735690116882324,
-0.08595987409353256,
-0.04116366431117058,
0.5475308895111084,
-0.6219280958175659,
0.570303738117218,
-0.26348206400871277,
-0.5173840522766113,
0.2980174720287323,
-0.6109102368354797,
1.051455020904541,
0.3025915324687958,
-0.39560386538505554,
0.49463531374931335,
-0.8170943260192871,
-0.17142881453037262,
0.2928510904312134,
-0.2079082429409027,
-0.28168344497680664,
-0.2527933716773987,
0.03472809121012688,
0.09037847816944122,
0.42955660820007324,
-0.24086610972881317,
0.35237133502960205,
-0.015429070219397545,
0.1987655609846115,
0.7010460495948792,
0.05763203650712967,
0.13912683725357056,
-0.4630252718925476,
0.4372422695159912,
-0.018534710630774498,
0.8315230011940002,
0.14125661551952362,
-0.544390857219696,
-1.1697427034378052,
-0.45874324440956116,
0.02549239806830883,
0.7060391306877136,
-0.642464280128479,
0.650994598865509,
-0.3150642216205597,
-1.1419135332107544,
-0.9728545546531677,
0.18196408450603485,
0.44599196314811707,
0.10519732534885406,
0.31603580713272095,
-0.47043943405151367,
-0.6609243154525757,
-1.067427396774292,
-0.07854240387678146,
-0.41839247941970825,
-0.04317273199558258,
0.44801557064056396,
0.2430465817451477,
-0.5930312871932983,
0.8706792593002319,
-0.4302312731742859,
-0.40472716093063354,
-0.06482375413179398,
-0.08256135880947113,
0.0648556724190712,
0.43850207328796387,
0.699988603591919,
-0.6447086334228516,
-0.31417667865753174,
-0.08192095905542374,
-0.9000903964042664,
-0.04369805008172989,
-0.08984309434890747,
-0.5065469741821289,
0.24171309173107147,
0.4008997678756714,
-0.6606218218803406,
0.5549532175064087,
0.757759690284729,
-0.5404312610626221,
0.4753812551498413,
-0.2813397943973541,
0.1007031798362732,
-1.4217309951782227,
0.15677468478679657,
0.00831190962344408,
-0.3997495174407959,
-0.6121996641159058,
0.0726398378610611,
-0.11730670928955078,
0.2601117789745331,
-0.6698821187019348,
0.9091960191726685,
-0.3662048876285553,
0.05663993954658508,
-0.5070648789405823,
-0.2211257368326187,
-0.05446094274520874,
0.8065186738967896,
0.10431227087974548,
0.7579803466796875,
0.4317024052143097,
-0.856924295425415,
0.512645959854126,
0.22207452356815338,
-0.1668189913034439,
0.38394108414649963,
-0.9454293251037598,
0.3137354254722595,
0.10568313300609589,
0.17958055436611176,
-0.9746532440185547,
-0.10317324846982956,
0.6701156497001648,
-0.5058860778808594,
0.126133531332016,
-0.041071631014347076,
-0.6168118119239807,
-0.19641955196857452,
-0.15176652371883392,
0.16176070272922516,
0.4789201319217682,
-0.6259777545928955,
0.4085206687450409,
0.46176114678382874,
0.23065419495105743,
-0.522132158279419,
-0.622279942035675,
-0.04091738164424896,
-0.4502035677433014,
-0.16979560256004333,
0.014266743324697018,
-0.3442876636981964,
-0.24141687154769897,
-0.14427705109119415,
0.16789399087429047,
-0.13485059142112732,
0.12893331050872803,
0.49540969729423523,
0.2513010501861572,
-0.09426945447921753,
0.14398913085460663,
-0.05948670580983162,
-0.08996391296386719,
-0.1344815492630005,
0.02738185040652752,
1.0353152751922607,
-0.4987749755382538,
-0.03367897868156433,
-0.9465705156326294,
-0.05380344018340111,
0.6677762866020203,
0.07257021218538284,
1.2107739448547363,
0.7206893563270569,
-0.2327621579170227,
0.17833954095840454,
-0.7851660847663879,
-0.1974395215511322,
-0.4899449646472931,
0.28375715017318726,
-0.3798128068447113,
-0.7268349528312683,
0.7185035943984985,
0.2629910111427307,
0.3663719594478607,
0.5051872134208679,
0.8237700462341309,
0.11540547758340836,
0.4792686402797699,
0.8725160360336304,
-0.053242456167936325,
0.9371742010116577,
-0.3783174753189087,
-0.16606587171554565,
-0.7959395051002502,
-0.4403693675994873,
-0.6113699078559875,
-0.1013762503862381,
-0.7659280300140381,
-0.7010751366615295,
-0.04716125875711441,
-0.007768678478896618,
-0.3534107208251953,
0.7429801225662231,
-0.6246700882911682,
0.1978164166212082,
0.6362782120704651,
0.2732406258583069,
0.28456857800483704,
-0.14275822043418884,
0.26428118348121643,
0.15204237401485443,
-0.7308618426322937,
-0.7331867218017578,
1.0895406007766724,
0.7036827802658081,
0.5230680704116821,
0.1904308944940567,
0.739642858505249,
0.27250388264656067,
0.47965165972709656,
-0.9474899172782898,
0.5701746940612793,
0.24875810742378235,
-0.7680884599685669,
-0.4407760798931122,
-0.5812196731567383,
-1.1341651678085327,
0.36985093355178833,
-0.2214721292257309,
-0.6904175281524658,
0.363531231880188,
0.15545091032981873,
-0.20244653522968292,
0.3137000799179077,
-0.7629702091217041,
0.9498523473739624,
-0.4136209189891815,
-0.40023836493492126,
-0.0335264727473259,
-0.4106864333152771,
0.571875810623169,
0.10145268589258194,
0.07096582651138306,
-0.20667891204357147,
-0.08392391353845596,
0.8028491139411926,
-0.5878565907478333,
1.1323753595352173,
-0.16549833118915558,
-0.2524752914905548,
0.29302412271499634,
-0.010453402064740658,
0.1851167231798172,
0.07348203659057617,
0.07978597283363342,
0.4703739583492279,
0.13795237243175507,
-0.5213842988014221,
-0.641991913318634,
0.655893862247467,
-1.209518551826477,
-0.4951989948749542,
-0.3990727961063385,
-0.31650984287261963,
0.012762218713760376,
0.11259967088699341,
0.40833306312561035,
0.268508642911911,
-0.2862650156021118,
0.16041184961795807,
0.5531631112098694,
-0.322380930185318,
0.06438006460666656,
0.438027948141098,
-0.3116118907928467,
-0.46044644713401794,
0.6670511960983276,
-0.08486466109752655,
0.17632730305194855,
0.4615911543369293,
0.1704002320766449,
-0.23900936543941498,
-0.1530901938676834,
-0.23668918013572693,
0.44432589411735535,
-0.585313618183136,
-0.2586221396923065,
-0.7241366505622864,
-0.30978912115097046,
-0.31569018959999084,
0.430202454328537,
-0.8570815324783325,
-0.2633502781391144,
-0.45077529549598694,
-0.103890061378479,
0.6615628004074097,
0.4862673282623291,
0.21341711282730103,
0.7584969997406006,
-0.5495595335960388,
0.3024725914001465,
0.3123816251754761,
0.37616297602653503,
0.009992154315114021,
-0.7056282758712769,
-0.2669770121574402,
0.08017411082983017,
-0.2764996588230133,
-0.9268485903739929,
0.5556186437606812,
-0.17313185334205627,
0.5936071872711182,
0.5057125687599182,
-0.02457926608622074,
0.9356732368469238,
-0.14101539552211761,
0.646694004535675,
0.14906233549118042,
-0.5608057975769043,
0.555776834487915,
-0.2575642764568329,
0.22590363025665283,
0.6950238943099976,
0.31866446137428284,
-0.6393271088600159,
-0.31198349595069885,
-0.9389449954032898,
-0.7517898082733154,
0.5271773338317871,
0.26913759112358093,
0.2773994207382202,
-0.062147289514541626,
0.5129625201225281,
0.17396953701972961,
0.19648775458335876,
-0.7862273454666138,
-0.6278748512268066,
-0.13150155544281006,
-0.1742120385169983,
-0.19450150430202484,
-0.456741064786911,
-0.04917917028069496,
-0.3313824534416199,
0.752558708190918,
-0.02883375622332096,
0.572862982749939,
0.12203846126794815,
0.08634085208177567,
-0.001009624102152884,
0.16015435755252838,
0.7280150055885315,
0.3795778453350067,
-0.4434150159358978,
-0.2962571978569031,
0.09996204823255539,
-0.47404947876930237,
-0.04470031335949898,
0.01292976550757885,
0.030215555801987648,
0.16278402507305145,
0.3066308796405792,
1.5172322988510132,
0.14025382697582245,
-0.47035980224609375,
0.3147258758544922,
-0.7249996662139893,
-0.2198413610458374,
-0.5918520092964172,
0.31932035088539124,
0.1614760011434555,
0.5029385089874268,
0.1318420022726059,
-0.08828684687614441,
0.025284461677074432,
-0.7341594696044922,
-0.325008749961853,
0.3042023777961731,
-0.42657193541526794,
-0.225139781832695,
0.6852589249610901,
0.17228013277053833,
-0.6859245896339417,
0.41054055094718933,
0.1184559017419815,
-0.2862430810928345,
0.5122032761573792,
0.26190003752708435,
0.96189945936203,
-0.2845138609409332,
0.17376519739627838,
0.5821277499198914,
0.3059326410293579,
-0.15026651322841644,
0.21368558704853058,
-0.18741066753864288,
-0.6691092252731323,
0.13549038767814636,
-0.589845597743988,
-0.6130964756011963,
0.4092402160167694,
-0.762526273727417,
0.5237241387367249,
-0.4241087734699249,
-0.4986182153224945,
-0.3892066478729248,
0.44776028394699097,
-1.011181116104126,
0.006333230994641781,
-0.0402371808886528,
0.9646634459495544,
-0.9268744587898254,
1.040359616279602,
0.4772445857524872,
-0.49022120237350464,
-0.9551006555557251,
-0.3041243255138397,
-0.08999204635620117,
-0.8831566572189331,
0.2070324420928955,
0.03163132071495056,
-0.019696488976478577,
-0.1533794105052948,
-0.6255587935447693,
-0.6613520979881287,
1.5019937753677368,
0.40876534581184387,
-0.8175069689750671,
-0.045483872294425964,
-0.0005446493159979582,
0.7540528178215027,
-0.1803738921880722,
0.5959388613700867,
0.6027026772499084,
0.20603512227535248,
0.19175417721271515,
-1.2045127153396606,
-0.005354890134185553,
-0.5320997834205627,
0.06898482143878937,
-0.2642470598220825,
-1.1876617670059204,
0.7977107167243958,
0.08269848674535751,
-0.06939636915922165,
0.25508353114128113,
0.8560333251953125,
0.6727660298347473,
0.21800453960895538,
0.4562404751777649,
0.28652775287628174,
1.0796147584915161,
0.09618601202964783,
1.1822574138641357,
-0.15097439289093018,
0.1599414348602295,
1.1553689241409302,
0.1947101652622223,
1.0019478797912598,
0.5095102190971375,
0.058199938386678696,
0.5209857821464539,
0.8306000828742981,
0.1198735386133194,
0.2986820638179779,
-0.07194843888282776,
0.0705331563949585,
-0.10343391448259354,
0.05328372120857239,
-0.5154312252998352,
0.5365177392959595,
0.30363163352012634,
-0.24420706927776337,
0.22679674625396729,
-0.15220282971858978,
0.29238131642341614,
-0.22644440829753876,
-0.01916647143661976,
0.8855761289596558,
0.21484191715717316,
-0.6884689927101135,
0.9441096186637878,
0.0675014853477478,
0.9517636895179749,
-0.6942669153213501,
0.06007808446884155,
-0.6146578192710876,
0.3268806040287018,
-0.05513628572225571,
-0.28227370977401733,
0.11496923118829727,
0.19239118695259094,
0.1494194120168686,
0.20382502675056458,
0.4580230116844177,
-0.30046823620796204,
-0.3691515028476715,
0.39429882168769836,
0.505047619342804,
0.6049976944923401,
0.10951777547597885,
-0.8127433657646179,
0.5136517882347107,
-0.13031041622161865,
-0.5266616940498352,
0.21517930924892426,
0.4180377125740051,
-0.2108471691608429,
0.9804275631904602,
0.6323537230491638,
0.1356646567583084,
-0.023470528423786163,
0.2595464885234833,
0.8838835954666138,
-0.5389019846916199,
-0.5219005346298218,
-0.921099841594696,
0.3921610116958618,
-0.09272881597280502,
-0.5833575129508972,
0.801311731338501,
0.6610863208770752,
0.5992681980133057,
0.09266553074121475,
0.6018667221069336,
0.08328530937433243,
0.30803418159484863,
-0.5268154144287109,
0.6904003024101257,
-0.7429744601249695,
0.3504474461078644,
-0.23651336133480072,
-0.9998810291290283,
-0.2568607032299042,
0.6737974882125854,
-0.2372978925704956,
0.026079576462507248,
0.5155833959579468,
0.8372303247451782,
0.04715077951550484,
-0.2581421136856079,
0.46653512120246887,
0.1915256232023239,
0.566267192363739,
0.48652276396751404,
0.6833646893501282,
-0.7560951709747314,
0.5281241536140442,
-0.21230563521385193,
-0.27043044567108154,
-0.541852593421936,
-0.5929086208343506,
-1.2721511125564575,
-0.6717764735221863,
-0.21274037659168243,
-0.3823235332965851,
0.2311384528875351,
1.030249834060669,
0.6602116823196411,
-0.353716641664505,
-0.633696973323822,
-0.016521776095032692,
-0.14241617918014526,
-0.20654942095279694,
-0.2101270705461502,
0.35117265582084656,
-0.014519934542477131,
-0.8963214159011841,
0.11968128383159637,
-0.1882370114326477,
0.21285156905651093,
-0.3836388885974884,
-0.3927566707134247,
-0.13479280471801758,
0.14595188200473785,
0.32515519857406616,
0.5743865966796875,
-0.6565263867378235,
-0.03119441121816635,
0.03877129778265953,
-0.4677819609642029,
0.23855867981910706,
0.3468407690525055,
-0.637134850025177,
0.14502497017383575,
0.3152914047241211,
0.14786802232265472,
0.6724970936775208,
0.02009010687470436,
0.3811643421649933,
-0.547065258026123,
0.5777885317802429,
-0.02633044682443142,
0.3451416492462158,
0.4281277358531952,
-0.4351438283920288,
0.4855128824710846,
0.007154187653213739,
-0.3991105854511261,
-0.9969045519828796,
-0.12279259413480759,
-1.1086052656173706,
-0.20628729462623596,
1.4395679235458374,
0.18310293555259705,
-0.6815162897109985,
0.07817496359348297,
-0.5868372917175293,
0.6922844648361206,
-0.31600862741470337,
0.8004379272460938,
0.4010900557041168,
0.21207593381404877,
-0.5264484882354736,
-0.7457950115203857,
0.5090802311897278,
0.08543230593204498,
-1.0290123224258423,
0.039150502532720566,
0.27278682589530945,
0.4762079119682312,
0.014767531305551529,
1.2259352207183838,
-0.06984776258468628,
0.14269062876701355,
0.04579981788992882,
0.5189158916473389,
-0.42160564661026,
-0.45230332016944885,
-0.25864312052726746,
-0.33686405420303345,
0.26201871037483215,
-0.46763965487480164
] |
openai/whisper-base.en | openai | "2023-09-08T11:02:17Z" | 178,245 | 12 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"arxiv:2212.04356",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-09-26T06:58:29Z" | ---
language:
- en
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: whisper-base.en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 12.803978669490565
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
# Usage
This checkpoint is an *English-only* model, meaning it can be used for English speech recognition. Multilingual speech
recognition or speech translation is possible through use of a multilingual checkpoint.
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
The `WhisperProcessor` is used to:
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
2. Post-process the model outputs (converting them from tokens to text)
## Transcription
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-base.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base.en")
>>> # load dummy dataset and read audio files
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
## Evaluation
This code snippet shows how to evaluate Whisper base.en on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from evaluate import load
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-base.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base.en").to("cuda")
>>> def map_to_pred(batch):
>>> audio = batch["audio"]
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
>>>
>>> with torch.no_grad():
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
>>> transcription = processor.decode(predicted_ids)
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
>>> return batch
>>> result = librispeech_test_clean.map(map_to_pred)
>>> wer = load("wer")
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
4.271408904897505
```
## Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
```python
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="openai/whisper-base.en",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
```
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
| [
-0.2755693197250366,
-0.6230738162994385,
0.09119980782270432,
0.47412440180778503,
-0.05957504361867905,
0.013099348172545433,
-0.3721737563610077,
-0.6311691403388977,
0.24018999934196472,
0.3379247486591339,
-0.8405513763427734,
-0.550143837928772,
-0.7352916598320007,
-0.17311625182628632,
-0.5924230813980103,
1.0252217054367065,
0.16386158764362335,
-0.02152121439576149,
0.2285812944173813,
-0.06978458166122437,
-0.33970269560813904,
-0.2835479974746704,
-0.7069100737571716,
-0.19734685122966766,
0.1816985011100769,
0.14241106808185577,
0.379582017660141,
0.5437461137771606,
0.1335965245962143,
0.43031707406044006,
-0.43411824107170105,
-0.06613078713417053,
-0.3748845160007477,
-0.08902722597122192,
0.39421024918556213,
-0.47893035411834717,
-0.6351549029350281,
0.16753001511096954,
0.7891418933868408,
0.4897686243057251,
-0.36838558316230774,
0.43817952275276184,
0.24545787274837494,
0.33172789216041565,
-0.3019428849220276,
0.2774796187877655,
-0.6920157074928284,
-0.13662859797477722,
-0.2727585434913635,
0.008164837025105953,
-0.3461403548717499,
-0.31303995847702026,
0.5895467400550842,
-0.6169712543487549,
0.3964144289493561,
0.1414240449666977,
1.0627784729003906,
0.24799367785453796,
-0.04973645508289337,
-0.436402291059494,
-0.732257068157196,
1.1426759958267212,
-0.912955641746521,
0.5333579778671265,
0.40338099002838135,
0.24965497851371765,
0.03269893303513527,
-0.9413018822669983,
-0.7177292704582214,
-0.00979907251894474,
-0.022117014974355698,
0.32957032322883606,
-0.36133459210395813,
-0.004386871121823788,
0.24326123297214508,
0.4272671937942505,
-0.4780024290084839,
0.006300502456724644,
-0.726610541343689,
-0.6857283711433411,
0.6417662501335144,
-0.007954326458275318,
0.2942543625831604,
-0.27495482563972473,
-0.2570342421531677,
-0.418869286775589,
-0.27552077174186707,
0.45703306794166565,
0.39362832903862,
0.4742697775363922,
-0.727759063243866,
0.36221688985824585,
-0.07587499916553497,
0.6254909038543701,
0.21378397941589355,
-0.6183781027793884,
0.644194483757019,
-0.14686836302280426,
-0.20104308426380157,
0.3850136697292328,
1.0588833093643188,
0.2361403852701187,
0.10385779291391373,
0.08692716807126999,
-0.13991083204746246,
0.18921968340873718,
-0.09092629700899124,
-0.8684806227684021,
-0.05214783176779747,
0.5096579790115356,
-0.5483766794204712,
-0.3131968080997467,
-0.23956769704818726,
-0.6381887793540955,
0.13628621399402618,
-0.1620934009552002,
0.7012233734130859,
-0.5908371806144714,
-0.3586752414703369,
0.24742069840431213,
-0.40955764055252075,
0.3246018588542938,
0.017898380756378174,
-0.8411380052566528,
0.3747040927410126,
0.45917847752571106,
0.889755129814148,
0.1000220999121666,
-0.6345552802085876,
-0.48922786116600037,
0.10429412126541138,
0.12744072079658508,
0.46751856803894043,
-0.2642764449119568,
-0.5910073518753052,
-0.21625983715057373,
0.08297044038772583,
-0.34419575333595276,
-0.6002687811851501,
0.731415331363678,
-0.1347624659538269,
0.4959844946861267,
0.008125236257910728,
-0.5379752516746521,
-0.21348582208156586,
-0.19957049190998077,
-0.4147353172302246,
0.9509068727493286,
0.08367730677127838,
-0.7231150269508362,
0.16306747496128082,
-0.5141922235488892,
-0.49464720487594604,
-0.2837882936000824,
0.20105718076229095,
-0.6265475749969482,
-0.06365673243999481,
0.44366735219955444,
0.4080342650413513,
-0.17515702545642853,
0.07461608946323395,
-0.042266055941581726,
-0.41424429416656494,
0.3343886733055115,
-0.42258328199386597,
1.0382590293884277,
0.1696481555700302,
-0.44996634125709534,
0.21664680540561676,
-0.7981102466583252,
0.14546909928321838,
0.03358718752861023,
-0.16079768538475037,
0.17110486328601837,
-0.03823614865541458,
0.30252930521965027,
0.024228448048233986,
0.16951017081737518,
-0.7732288837432861,
-0.12689946591854095,
-0.6705617904663086,
0.7417952418327332,
0.6415445804595947,
-0.0796690285205841,
0.3607575595378876,
-0.6053606271743774,
0.3013654947280884,
0.0696806088089943,
0.4444585144519806,
-0.1975678950548172,
-0.6294583082199097,
-0.9999991655349731,
-0.4224373996257782,
0.44875049591064453,
0.7308456897735596,
-0.3180297911167145,
0.6038406491279602,
-0.20206286013126373,
-0.771040678024292,
-1.324025273323059,
-0.1668100506067276,
0.5916229486465454,
0.5967410802841187,
0.7255960702896118,
-0.17795033752918243,
-0.7979584336280823,
-0.7152570486068726,
-0.15619820356369019,
-0.33152908086776733,
-0.19341512024402618,
0.3771721124649048,
0.31043297052383423,
-0.360384464263916,
0.7066737413406372,
-0.5072637796401978,
-0.5281122922897339,
-0.256656289100647,
0.05022488161921501,
0.49287617206573486,
0.658790647983551,
0.2688746154308319,
-0.7195112705230713,
-0.4367660582065582,
-0.20152710378170013,
-0.6088328957557678,
-0.10579627007246017,
-0.05598301440477371,
0.05806026607751846,
0.021478846669197083,
0.36434468626976013,
-0.736389696598053,
0.4228542447090149,
0.6888965368270874,
-0.17520269751548767,
0.7413507699966431,
0.17620091140270233,
-0.038463860750198364,
-1.1862648725509644,
-0.05108494684100151,
-0.15213264524936676,
-0.11177215725183487,
-0.6906402707099915,
-0.2632741928100586,
-0.1137157455086708,
-0.08652078360319138,
-0.5245147943496704,
0.6179907321929932,
-0.3525758385658264,
0.037488605827093124,
-0.06336970627307892,
0.09190502762794495,
-0.04372368007898331,
0.5344057083129883,
0.20110079646110535,
0.6608693599700928,
0.8790374994277954,
-0.5774142146110535,
0.21857284009456635,
0.5652209520339966,
-0.33081161975860596,
0.2875908315181732,
-1.0260810852050781,
0.17811612784862518,
0.1320611834526062,
0.21132181584835052,
-0.708257257938385,
-0.10093986243009567,
0.023589232936501503,
-1.0115793943405151,
0.4456951320171356,
-0.33357101678848267,
-0.3261817991733551,
-0.5122862458229065,
-0.1835295557975769,
0.06157015636563301,
0.9378025531768799,
-0.48524877429008484,
0.738084077835083,
0.43868643045425415,
-0.22015167772769928,
-0.592263400554657,
-0.5523220896720886,
-0.24337422847747803,
-0.24074356257915497,
-0.7892747521400452,
0.5141129493713379,
-0.13215544819831848,
-0.010816531255841255,
-0.1883334070444107,
-0.12876975536346436,
0.128010094165802,
-0.2474605292081833,
0.508441686630249,
0.5058252811431885,
-0.1310224086046219,
-0.28392282128334045,
0.20101721584796906,
-0.2626548111438751,
-0.004230824299156666,
-0.24444003403186798,
0.7196992039680481,
-0.35671839118003845,
-0.07537791132926941,
-0.7957629561424255,
0.22122004628181458,
0.5174740552902222,
-0.3662455379962921,
0.5641106963157654,
0.8664556741714478,
-0.2772800326347351,
-0.2370172142982483,
-0.7302337884902954,
-0.22891835868358612,
-0.5913055539131165,
0.16006292402744293,
-0.36712998151779175,
-0.7909616827964783,
0.7235289216041565,
0.1760646253824234,
0.11698666960000992,
0.6415682435035706,
0.5203574895858765,
-0.2833409309387207,
0.9387385249137878,
0.4366077780723572,
-0.2779494822025299,
0.298674613237381,
-0.7941611409187317,
-0.1404266059398651,
-1.080322504043579,
-0.3900129199028015,
-0.5790143609046936,
-0.27122175693511963,
-0.4962373375892639,
-0.3582155406475067,
0.5288662910461426,
0.12178800255060196,
-0.12799182534217834,
0.46611031889915466,
-0.7798707485198975,
0.003587594721466303,
0.6636499166488647,
0.044801365584135056,
0.12460026890039444,
-0.05339610576629639,
-0.12621858716011047,
-0.07128724455833435,
-0.36314645409584045,
-0.337525874376297,
0.9940128326416016,
0.536513090133667,
0.5624496936798096,
-0.10119566321372986,
0.756208062171936,
-0.046234600245952606,
0.0452721007168293,
-0.7745320200920105,
0.4937722384929657,
-0.11792623996734619,
-0.596745491027832,
-0.3841290771961212,
-0.29297974705696106,
-0.8382657766342163,
0.16000619530677795,
-0.1795804351568222,
-0.6872682571411133,
0.1322886347770691,
-0.08506876975297928,
-0.31647729873657227,
0.26634150743484497,
-0.7360435128211975,
0.5821330547332764,
0.12929466366767883,
0.1352369636297226,
-0.05777763947844505,
-0.7771179676055908,
0.10954216122627258,
0.11727944761514664,
0.13011842966079712,
-0.16497348248958588,
0.2283208668231964,
1.1065897941589355,
-0.4693799912929535,
0.9274935126304626,
-0.3646601736545563,
0.11115511506795883,
0.5333136320114136,
-0.21252210438251495,
0.3284699022769928,
-0.24692121148109436,
-0.17838245630264282,
0.4455687403678894,
0.30074042081832886,
-0.30672627687454224,
-0.30805328488349915,
0.5008646249771118,
-1.1189606189727783,
-0.3214019238948822,
-0.26487112045288086,
-0.39547014236450195,
-0.185649573802948,
0.20186151564121246,
0.8423447012901306,
0.6937035918235779,
-0.09114494174718857,
-0.003275675466284156,
0.49291494488716125,
-0.23945803940296173,
0.5418771505355835,
0.6689139604568481,
-0.2316828966140747,
-0.48838937282562256,
0.9573671221733093,
0.24514126777648926,
0.26308387517929077,
0.1811899095773697,
0.427385151386261,
-0.44693058729171753,
-0.7037165760993958,
-0.5563220977783203,
0.3185463845729828,
-0.3904958665370941,
-0.17757973074913025,
-0.9085729718208313,
-0.5611009001731873,
-0.6231623888015747,
0.00736805098131299,
-0.4919792711734772,
-0.2883005142211914,
-0.41246098279953003,
0.07999513298273087,
0.6193122267723083,
0.42586085200309753,
0.022539759054780006,
0.5701067447662354,
-0.9416512250900269,
0.42142531275749207,
0.3390112817287445,
0.12399943172931671,
0.05873536318540573,
-0.9915924072265625,
-0.0935293436050415,
0.20144224166870117,
-0.3479360044002533,
-0.6429412364959717,
0.4928690493106842,
0.3798239231109619,
0.44907715916633606,
0.2427193522453308,
0.005404674913734198,
0.9775075316429138,
-0.7118752002716064,
0.7979066967964172,
0.22230109572410583,
-1.258819818496704,
0.7600575685501099,
-0.3780113756656647,
0.25103282928466797,
0.4407212436199188,
0.35633519291877747,
-0.6226039528846741,
-0.5354536175727844,
-0.7064052224159241,
-0.669891357421875,
0.7011281251907349,
0.3081822097301483,
0.09697075188159943,
0.2832983434200287,
0.22032751142978668,
0.12414272129535675,
0.13808169960975647,
-0.46754202246665955,
-0.4901878237724304,
-0.4226645529270172,
-0.2557336390018463,
-0.0922653079032898,
-0.040260110050439835,
0.00846958626061678,
-0.5415682196617126,
0.7956819534301758,
0.015147038735449314,
0.463164359331131,
0.4157845973968506,
0.04790614917874336,
-0.02448294311761856,
0.16692453622817993,
0.3373367190361023,
0.2665366232395172,
-0.27601194381713867,
-0.39488905668258667,
0.35401222109794617,
-0.877367377281189,
0.01995164528489113,
0.3475188612937927,
-0.3035166561603546,
0.11760410666465759,
0.7276024222373962,
1.1368104219436646,
0.1933470368385315,
-0.508632481098175,
0.6808112859725952,
-0.07750050723552704,
-0.23755234479904175,
-0.650246262550354,
0.04437502101063728,
0.33420929312705994,
0.30278491973876953,
0.3928597569465637,
0.13181541860103607,
0.1740586906671524,
-0.521358847618103,
0.15209266543388367,
0.27443695068359375,
-0.5366308689117432,
-0.5434085726737976,
0.875443696975708,
0.07586058229207993,
-0.4036155641078949,
0.7549019455909729,
0.046654216945171356,
-0.6548300385475159,
0.47976410388946533,
0.6808500289916992,
0.9958729147911072,
-0.5175982117652893,
-0.030483219772577286,
0.4687903821468353,
0.21822810173034668,
0.02794908918440342,
0.5045585036277771,
-0.052267324179410934,
-0.7511318922042847,
-0.4796960949897766,
-1.072267770767212,
-0.3528054356575012,
0.023695405572652817,
-1.0007908344268799,
0.3543833792209625,
-0.32381725311279297,
-0.2706891596317291,
0.31788307428359985,
0.08255179226398468,
-0.760750412940979,
0.19806164503097534,
0.0460498109459877,
1.03933846950531,
-0.7027803063392639,
1.0224370956420898,
0.17245538532733917,
-0.2702258229255676,
-1.13849675655365,
0.005976376123726368,
0.04434308037161827,
-1.0200339555740356,
0.3205471336841583,
0.33055591583251953,
-0.22889012098312378,
0.12955373525619507,
-0.5283749103546143,
-0.7346838116645813,
1.1014807224273682,
0.14969871938228607,
-0.703294038772583,
-0.20788846909999847,
-0.07082442939281464,
0.5407280325889587,
-0.22185806930065155,
0.24363158643245697,
0.7487916350364685,
0.4545387923717499,
0.14979471266269684,
-1.4975485801696777,
-0.14113205671310425,
-0.27817898988723755,
-0.266929566860199,
0.023610850796103477,
-0.8079694509506226,
0.9411049485206604,
-0.44005706906318665,
-0.23745335638523102,
0.31799113750457764,
0.8056899309158325,
0.43216797709465027,
0.4180379807949066,
0.6685695052146912,
0.6108074188232422,
0.7743998765945435,
-0.18667954206466675,
0.9841516017913818,
-0.17939437925815582,
0.24191640317440033,
0.9819150567054749,
-0.09465634822845459,
1.1423733234405518,
0.20830462872982025,
-0.5127992033958435,
0.7179183959960938,
0.3394126892089844,
-0.03999553620815277,
0.4877018630504608,
-0.0022757304832339287,
-0.35719195008277893,
0.1540917009115219,
-0.10572053492069244,
-0.5411146879196167,
0.8186154365539551,
0.4420281946659088,
-0.2172136902809143,
0.4199621081352234,
0.13947537541389465,
0.1064855307340622,
-0.136150062084198,
-0.2338973432779312,
0.8889036178588867,
0.1929774433374405,
-0.4269501864910126,
0.8525404930114746,
-0.07299424707889557,
1.1134612560272217,
-0.8460516333580017,
0.1851879358291626,
0.203058123588562,
0.2154427319765091,
-0.23921790719032288,
-0.6459015011787415,
0.34223443269729614,
-0.19552142918109894,
-0.2579789161682129,
-0.18079659342765808,
0.5835458636283875,
-0.6716964840888977,
-0.557695209980011,
0.5339051485061646,
0.3769053518772125,
0.3222024142742157,
-0.1421063244342804,
-0.8371034860610962,
0.45585179328918457,
0.2132982313632965,
-0.17966328561306,
0.14674325287342072,
0.12196926027536392,
0.3411727845668793,
0.7064998745918274,
0.8812365531921387,
0.4553448557853699,
0.22735221683979034,
0.14533910155296326,
0.8353959321975708,
-0.7011046409606934,
-0.5799410939216614,
-0.6522964239120483,
0.5369360446929932,
-0.02766028791666031,
-0.41416120529174805,
0.8736910820007324,
0.6795591115951538,
0.7184879779815674,
0.06275086104869843,
0.760320246219635,
-0.0038106448482722044,
1.0643367767333984,
-0.5089210867881775,
0.8944489359855652,
-0.3819897174835205,
0.060032594949007034,
-0.3905772864818573,
-0.7194169759750366,
0.14265236258506775,
0.5727897882461548,
-0.07917561382055283,
-0.014925554394721985,
0.36526504158973694,
0.8966146111488342,
0.007071925792843103,
0.2903885841369629,
0.034004587680101395,
0.4903208017349243,
0.2303987592458725,
0.5021758079528809,
0.658539354801178,
-0.8315613865852356,
0.661841630935669,
-0.5797716975212097,
-0.24609284102916718,
0.1465587615966797,
-0.4711134731769562,
-0.8787450194358826,
-0.8503050804138184,
-0.2863929867744446,
-0.6120680570602417,
-0.24698476493358612,
0.7263875007629395,
0.9390438795089722,
-0.8474665284156799,
-0.4187571704387665,
0.35223841667175293,
-0.09036369621753693,
-0.35189393162727356,
-0.25618597865104675,
0.5972900390625,
0.04350007697939873,
-0.9522517919540405,
0.6784638166427612,
0.0320575125515461,
0.32275012135505676,
-0.2508533000946045,
-0.21354250609874725,
0.08276473730802536,
-0.012539731338620186,
0.5262765288352966,
0.23952341079711914,
-0.8237318992614746,
-0.18671473860740662,
0.13441254198551178,
0.19952237606048584,
0.0026614165399223566,
0.3884051442146301,
-0.7705293297767639,
0.414664089679718,
0.2720904052257538,
0.08868316560983658,
0.9558780193328857,
-0.28643885254859924,
0.3067680895328522,
-0.7012970447540283,
0.4335967004299164,
0.30209508538246155,
0.35410767793655396,
0.38265150785446167,
-0.16001828014850616,
0.21475926041603088,
0.2520083487033844,
-0.6172493696212769,
-0.9950084686279297,
-0.07811415195465088,
-1.2173943519592285,
-0.035136524587869644,
1.0165079832077026,
0.03696419671177864,
-0.2801019251346588,
-0.09791341423988342,
-0.32708385586738586,
0.535378098487854,
-0.5276367664337158,
0.4432069957256317,
0.43603891134262085,
0.03564447909593582,
-0.04850979521870613,
-0.5937820076942444,
0.6643023490905762,
0.2138456255197525,
-0.375297874212265,
-0.08958632498979568,
0.06087861210107803,
0.6276635527610779,
0.32290032505989075,
0.8776059150695801,
-0.3204497992992401,
0.15768800675868988,
0.1819084882736206,
0.22313451766967773,
-0.030183320865035057,
-0.15964475274085999,
-0.3288224935531616,
-0.0765422061085701,
-0.2257329523563385,
-0.4378320276737213
] |
Helsinki-NLP/opus-mt-pl-en | Helsinki-NLP | "2023-08-16T12:02:38Z" | 178,156 | 14 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"pl",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-pl-en
* source languages: pl
* target languages: en
* OPUS readme: [pl-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pl-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/pl-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pl-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pl-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.pl.en | 54.9 | 0.701 |
| [
-0.26341623067855835,
-0.43555909395217896,
0.31978899240493774,
0.4887286424636841,
-0.5594934225082397,
-0.4022413194179535,
-0.4705279469490051,
-0.04964381456375122,
-0.04453420266509056,
0.5369041562080383,
-0.7403146028518677,
-0.5867675542831421,
-0.6233512759208679,
0.2501605749130249,
-0.05801678076386452,
0.7870368361473083,
-0.16391953825950623,
0.5159291625022888,
0.20643846690654755,
-0.5070585012435913,
-0.31796079874038696,
-0.49908673763275146,
-0.5151551961898804,
-0.33278584480285645,
0.248179629445076,
0.3352007269859314,
0.3809511661529541,
0.4611240029335022,
1.020135760307312,
0.24299843609333038,
-0.08924035727977753,
0.12956130504608154,
-0.516145646572113,
-0.10239166021347046,
0.08778858184814453,
-0.6437023282051086,
-0.8010848164558411,
-0.09437774121761322,
1.1743829250335693,
0.4592225253582001,
-0.037071388214826584,
0.4356743395328522,
-0.02841254696249962,
1.0152493715286255,
-0.30721333622932434,
0.12632495164871216,
-0.6585051417350769,
0.08045913279056549,
-0.4284982681274414,
-0.3537723422050476,
-0.7795722484588623,
-0.27731582522392273,
0.15329623222351074,
-0.7510945200920105,
-0.03383413329720497,
0.19832143187522888,
1.5164834260940552,
0.32844313979148865,
-0.32881367206573486,
-0.1939767450094223,
-0.5890356302261353,
1.1585804224014282,
-0.9252109527587891,
0.6509605646133423,
0.4380597174167633,
0.27947118878364563,
0.28865179419517517,
-0.6139281392097473,
-0.34251442551612854,
0.09947193413972855,
-0.21352103352546692,
0.22928746044635773,
-0.0015875687822699547,
-0.24499386548995972,
0.3908790051937103,
0.8173397183418274,
-0.8558492064476013,
-0.010243179276585579,
-0.6251124739646912,
-0.028466828167438507,
0.7705082893371582,
0.09274405986070633,
0.19804173707962036,
-0.1831546127796173,
-0.5062910914421082,
-0.5786617994308472,
-0.8649016618728638,
0.16140778362751007,
0.42487895488739014,
0.29841771721839905,
-0.5873352289199829,
0.7970877289772034,
-0.08063410967588425,
0.7111284732818604,
-0.04547867923974991,
-0.02676314115524292,
1.0867420434951782,
-0.4698026776313782,
-0.3679753839969635,
-0.1764558106660843,
1.2866806983947754,
0.3962736427783966,
0.10910748690366745,
0.09891808778047562,
-0.2767180800437927,
-0.2915566861629486,
0.029898593202233315,
-0.9317574501037598,
-0.1373327672481537,
0.2176530361175537,
-0.5338048934936523,
-0.04522285982966423,
0.1151723563671112,
-0.7283284068107605,
0.14122046530246735,
-0.4686344563961029,
0.6112965941429138,
-0.7629180550575256,
-0.2826588451862335,
0.37702473998069763,
-0.016524512320756912,
0.43841028213500977,
-0.008029787801206112,
-0.6537747979164124,
0.17696082592010498,
0.4967738389968872,
0.828307032585144,
-0.45831170678138733,
-0.36976170539855957,
-0.5842013359069824,
-0.18997450172901154,
-0.051319610327482224,
0.7149228453636169,
-0.06570707261562347,
-0.48514947295188904,
-0.054201703518629074,
0.4930163323879242,
-0.4445611834526062,
-0.4111528694629669,
1.447713851928711,
-0.2621665894985199,
0.7936776280403137,
-0.49061933159828186,
-0.5796112418174744,
-0.34006306529045105,
0.4760001301765442,
-0.6249416470527649,
1.3708915710449219,
0.14517325162887573,
-0.911853551864624,
0.24053077399730682,
-0.9154356718063354,
-0.2777242660522461,
0.003303050994873047,
0.1325635313987732,
-0.7192255854606628,
0.13602618873119354,
0.1514672189950943,
0.37207889556884766,
-0.33498117327690125,
0.35064446926116943,
0.003105217358097434,
-0.3419259488582611,
0.1262115240097046,
-0.3939563035964966,
1.1540709733963013,
0.29862767457962036,
-0.32992643117904663,
0.2854337692260742,
-1.0351413488388062,
-0.04857223480939865,
-0.041398271918296814,
-0.5838013291358948,
-0.24710501730442047,
0.1322389841079712,
0.27098867297172546,
0.16796424984931946,
0.4408867657184601,
-0.7632555961608887,
0.26324617862701416,
-0.7861648797988892,
0.24126145243644714,
0.7216033339500427,
-0.3884788453578949,
0.42034587264060974,
-0.5165639519691467,
0.2874454855918884,
0.09474580734968185,
0.18379533290863037,
0.011724374257028103,
-0.5321908593177795,
-0.9057604670524597,
-0.27088573575019836,
0.6736961603164673,
1.1837856769561768,
-0.8774574398994446,
0.9072251319885254,
-0.7217424511909485,
-0.7676255702972412,
-0.9494782090187073,
-0.11823523789644241,
0.5235702395439148,
0.4161906838417053,
0.5478643178939819,
-0.1830623596906662,
-0.5411413311958313,
-1.145126223564148,
-0.12594769895076752,
-0.17349481582641602,
-0.30259934067726135,
0.19684913754463196,
0.656571090221405,
-0.08728209882974625,
0.5589052438735962,
-0.5241397619247437,
-0.44082316756248474,
-0.26161354780197144,
0.16259387135505676,
0.538433849811554,
0.7066951990127563,
0.581405758857727,
-0.9622395038604736,
-0.7168956995010376,
-0.03608526289463043,
-0.7787304520606995,
-0.27538126707077026,
0.07246548682451248,
-0.195843905210495,
0.16923299431800842,
0.01935884915292263,
-0.37862035632133484,
0.08572407811880112,
0.7157098054885864,
-0.6310099959373474,
0.6391627192497253,
-0.20605359971523285,
0.25587892532348633,
-1.398903727531433,
0.22262419760227203,
-0.1867409497499466,
-0.08854857087135315,
-0.4729069173336029,
0.06077200919389725,
0.31468358635902405,
0.044888462871313095,
-0.9661378860473633,
0.6107409000396729,
-0.26621103286743164,
-0.10335629433393478,
0.291765034198761,
0.023972805589437485,
0.10143720358610153,
0.7729769349098206,
-0.02437709830701351,
0.9738910794258118,
0.7961304187774658,
-0.5444542765617371,
0.13793666660785675,
0.6269862651824951,
-0.46691223978996277,
0.44802165031433105,
-0.8976134061813354,
-0.31285032629966736,
0.3566780984401703,
-0.14354851841926575,
-0.7072893977165222,
0.163479283452034,
0.33812594413757324,
-0.6314228177070618,
0.41237661242485046,
-0.017456751316785812,
-0.8947892189025879,
-0.06801347434520721,
-0.4091596305370331,
0.49861499667167664,
0.7707564830780029,
-0.2167254239320755,
0.6797692775726318,
0.10269884020090103,
-0.028416307643055916,
-0.4462772309780121,
-1.0535438060760498,
-0.17235149443149567,
-0.39563581347465515,
-0.8226706981658936,
0.25530311465263367,
-0.533977746963501,
-0.058411069214344025,
-0.027857335284352303,
0.34921374917030334,
-0.07303415238857269,
0.004251598846167326,
0.07861495018005371,
0.22931909561157227,
-0.5190247893333435,
0.08162527531385422,
-0.033265121281147,
-0.16858521103858948,
-0.15537314116954803,
-0.09514611214399338,
0.7306898832321167,
-0.3739900290966034,
-0.2539193332195282,
-0.6952757835388184,
0.06731730699539185,
0.6663873791694641,
-0.5105280876159668,
0.8848472833633423,
0.615215539932251,
-0.0158118586987257,
0.11325813829898834,
-0.470794141292572,
0.15473927557468414,
-0.4787355065345764,
0.0450170561671257,
-0.49862775206565857,
-0.7952354550361633,
0.6185452938079834,
0.1343388706445694,
0.48486730456352234,
0.9028032422065735,
0.6652721762657166,
0.06273055076599121,
0.6859800815582275,
0.344727098941803,
0.009736021049320698,
0.432182252407074,
-0.5149325132369995,
-0.17740581929683685,
-1.2202367782592773,
0.11249080300331116,
-0.7188088297843933,
-0.3423461318016052,
-0.8408191204071045,
-0.3125574588775635,
0.3129881024360657,
-0.004973492119461298,
-0.30336815118789673,
0.6875061392784119,
-0.6326524615287781,
0.21867528557777405,
0.7037727236747742,
-0.12679918110370636,
0.3496456742286682,
-0.01655120775103569,
-0.5790468454360962,
-0.2894567847251892,
-0.4889284670352936,
-0.5463293790817261,
1.4490559101104736,
0.41309526562690735,
0.3005126714706421,
0.22653722763061523,
0.48925939202308655,
-0.027320081368088722,
0.2815471291542053,
-0.6116442680358887,
0.5529438257217407,
-0.44764047861099243,
-0.702731192111969,
-0.3334963619709015,
-0.6513730883598328,
-0.8644088506698608,
0.5374468564987183,
-0.23367491364479065,
-0.4973440170288086,
0.1441081315279007,
-0.06987147778272629,
-0.1670943647623062,
0.5345087647438049,
-0.7483064532279968,
1.227861762046814,
-0.19856546819210052,
-0.09133998304605484,
0.36324480175971985,
-0.551909327507019,
0.358336865901947,
-0.04111210256814957,
0.29260504245758057,
-0.2083153873682022,
0.12849682569503784,
0.6975959539413452,
-0.128720223903656,
0.5256404876708984,
-0.08916492760181427,
-0.08566612750291824,
0.0736577957868576,
0.08206473290920258,
0.38589662313461304,
-0.15619884431362152,
-0.5570945739746094,
0.4304482638835907,
0.04866412281990051,
-0.44323375821113586,
-0.08490940928459167,
0.5551769733428955,
-0.8073905110359192,
-0.028893521055579185,
-0.47255903482437134,
-0.839884877204895,
0.07008793950080872,
0.38766494393348694,
0.770706295967102,
0.7063375115394592,
-0.2146638184785843,
0.5810765027999878,
0.9319334030151367,
-0.43131348490715027,
0.4615046977996826,
0.8839256167411804,
-0.18222887814044952,
-0.6288273930549622,
0.9407129287719727,
0.1252846121788025,
0.4084632992744446,
0.6953327059745789,
0.1657078117132187,
-0.227066770195961,
-0.8502997756004333,
-0.7346848845481873,
0.36757779121398926,
-0.28911876678466797,
-0.17999815940856934,
-0.531955897808075,
-0.11926092952489853,
-0.31077244877815247,
0.2889242172241211,
-0.5182414650917053,
-0.5717660188674927,
-0.1853438913822174,
-0.1716475635766983,
0.15121112763881683,
0.22771593928337097,
-0.04500726982951164,
0.5819781422615051,
-1.1224168539047241,
0.21879373490810394,
-0.1378762274980545,
0.44452935457229614,
-0.5211949348449707,
-0.8752227425575256,
-0.3945797383785248,
0.06106331944465637,
-0.7498660683631897,
-0.7091320753097534,
0.6570566892623901,
0.19823311269283295,
0.3170260190963745,
0.3347533047199249,
0.23897220194339752,
0.3780088722705841,
-0.7851049900054932,
1.1190556287765503,
-0.08962742984294891,
-0.8370504379272461,
0.5695418119430542,
-0.48134660720825195,
0.5037137866020203,
0.984031617641449,
0.2502955198287964,
-0.305364727973938,
-0.5588870048522949,
-0.7795366644859314,
-0.8569754958152771,
0.8761303424835205,
0.7437387108802795,
-0.23428493738174438,
0.28854072093963623,
-0.1002909243106842,
0.05192479491233826,
0.25903016328811646,
-1.2721666097640991,
-0.39846521615982056,
0.05772814899682999,
-0.38950788974761963,
-0.24484914541244507,
-0.3148908019065857,
-0.26663222908973694,
-0.19978149235248566,
1.14335298538208,
0.19245560467243195,
0.16259880363941193,
0.46101176738739014,
-0.18417899310588837,
-0.27620646357536316,
0.36087679862976074,
1.1591134071350098,
0.6379329562187195,
-0.6659262180328369,
-0.1734718680381775,
0.26309651136398315,
-0.42834070324897766,
-0.21033607423305511,
0.17296674847602844,
-0.46392062306404114,
0.3181987404823303,
0.5037668347358704,
1.169708013534546,
0.2150058001279831,
-0.772000253200531,
0.5218449831008911,
-0.3497903048992157,
-0.5031853914260864,
-0.6711434721946716,
-0.22570660710334778,
0.07083306461572647,
-0.03317926451563835,
0.271280974149704,
0.12502701580524445,
0.12703265249729156,
-0.23105433583259583,
0.1853296458721161,
0.08941727131605148,
-0.6295588612556458,
-0.6258056163787842,
0.5652490854263306,
0.1589363068342209,
-0.38482171297073364,
0.5723468661308289,
-0.46270549297332764,
-0.6755571961402893,
0.4175932705402374,
0.17836366593837738,
1.062381625175476,
-0.27093398571014404,
-0.18166328966617584,
0.7347777485847473,
0.6752521991729736,
-0.29696130752563477,
0.591288149356842,
0.16656626760959625,
-0.7194216847419739,
-0.6303977370262146,
-0.9443094730377197,
-0.22172684967517853,
0.19424313306808472,
-0.8010293841362,
0.34839022159576416,
0.28161314129829407,
0.08800709247589111,
-0.4198106825351715,
0.279526948928833,
-0.5499773025512695,
0.046497903764247894,
-0.25074994564056396,
1.2007310390472412,
-1.0516273975372314,
1.0128860473632812,
0.529570460319519,
-0.3118205666542053,
-0.8997218012809753,
-0.3115927577018738,
-0.2644982933998108,
-0.5303797125816345,
0.7328106760978699,
0.18789905309677124,
0.48517414927482605,
-0.16489426791667938,
-0.20450440049171448,
-0.8526907563209534,
1.2135014533996582,
0.24111589789390564,
-0.6764229536056519,
0.04164090007543564,
0.3011438250541687,
0.5726600885391235,
-0.41868776082992554,
0.025854410603642464,
0.4374436140060425,
0.8432352542877197,
0.016805240884423256,
-1.2952649593353271,
-0.31125932931900024,
-0.5606833696365356,
-0.38177037239074707,
0.5804845690727234,
-0.6255296468734741,
1.1756842136383057,
0.5256534814834595,
-0.16113987565040588,
0.17087259888648987,
0.593867838382721,
0.45529547333717346,
0.43605244159698486,
0.5550323128700256,
1.3270769119262695,
0.3997706174850464,
-0.5274609923362732,
1.1772587299346924,
-0.40980064868927,
0.5275644659996033,
1.3239035606384277,
-0.17244261503219604,
1.0525206327438354,
0.3766043782234192,
-0.1597789227962494,
0.5061087012290955,
0.6567249298095703,
-0.353866845369339,
0.5591471195220947,
0.08164562284946442,
0.2050967812538147,
-0.11733949929475784,
0.22414939105510712,
-0.7435224056243896,
0.19116812944412231,
0.25649309158325195,
-0.28472647070884705,
0.0178111270070076,
-0.021114051342010498,
-0.06799516081809998,
-0.009294187650084496,
-0.2003716677427292,
0.6575753092765808,
0.005171888507902622,
-0.6542264819145203,
0.7531527280807495,
-0.12059136480093002,
0.7968235611915588,
-0.791121780872345,
0.1482550948858261,
-0.06075301766395569,
0.25375697016716003,
0.016124555841088295,
-0.7086300253868103,
0.5034723877906799,
-0.05902446433901787,
-0.2577579617500305,
-0.5336225628852844,
0.22697566449642181,
-0.6281916499137878,
-0.9729172587394714,
0.40260636806488037,
0.5225280523300171,
0.3839757442474365,
0.03990354388952255,
-1.0114407539367676,
0.1032571867108345,
0.1641547977924347,
-0.6004713177680969,
0.1118781641125679,
0.7818331718444824,
0.37390029430389404,
0.5331274271011353,
0.7338643074035645,
0.35202768445014954,
0.2920566499233246,
-0.015747714787721634,
0.6886051297187805,
-0.4031336307525635,
-0.494682252407074,
-0.8668474555015564,
0.9332281947135925,
-0.18190744519233704,
-0.7446214556694031,
0.8166566491127014,
1.159035086631775,
1.0913645029067993,
-0.21928754448890686,
0.3357601761817932,
-0.05275322124361992,
0.8411106467247009,
-0.7154631614685059,
0.6780551075935364,
-0.9482006430625916,
0.3557051122188568,
-0.036309417337179184,
-0.9768345355987549,
-0.29133525490760803,
0.34610244631767273,
-0.29694265127182007,
-0.49331963062286377,
0.8487030863761902,
0.6738850474357605,
-0.2241201400756836,
-0.2549434006214142,
0.29995447397232056,
0.33409738540649414,
0.2532402575016022,
0.6638382077217102,
0.4174092411994934,
-1.06216561794281,
0.5916791558265686,
-0.3778637647628784,
-0.08580975979566574,
0.004121528472751379,
-0.8215117454528809,
-0.9318739175796509,
-0.6821429133415222,
-0.16907797753810883,
-0.19320029020309448,
-0.2847501039505005,
0.8992713689804077,
0.5731850266456604,
-1.023984670639038,
-0.6733500361442566,
0.04611978679895401,
0.16675542294979095,
-0.24215757846832275,
-0.29569998383522034,
0.7416883707046509,
-0.3559328317642212,
-1.0417500734329224,
0.5055457949638367,
0.11005423963069916,
-0.06202525645494461,
-0.014677044935524464,
-0.321117103099823,
-0.5475887060165405,
-0.10526959598064423,
0.382581502199173,
0.04592728614807129,
-0.6293190121650696,
0.1459869146347046,
0.0768841952085495,
-0.07031156867742538,
0.44495657086372375,
0.46797457337379456,
-0.28147199749946594,
0.25905337929725647,
0.9505600929260254,
0.38669154047966003,
0.3919106721878052,
-0.06844120472669601,
0.6283851265907288,
-0.8421466946601868,
0.374906986951828,
0.24246899783611298,
0.6851581931114197,
0.44191092252731323,
-0.07211907207965851,
0.9355377554893494,
0.27727362513542175,
-0.7370596528053284,
-1.2094309329986572,
0.05636671558022499,
-1.439023494720459,
-0.05214502289891243,
1.015381097793579,
-0.3674899637699127,
-0.33890461921691895,
0.34929555654525757,
-0.23532478511333466,
0.15687361359596252,
-0.40990397334098816,
0.43380796909332275,
0.9081792235374451,
0.34808778762817383,
0.011164482682943344,
-0.8336046934127808,
0.41293516755104065,
0.5583723187446594,
-0.773047924041748,
-0.16091418266296387,
0.1699833869934082,
0.16127777099609375,
0.4469947814941406,
0.520553469657898,
-0.3248502016067505,
0.08833054453134537,
-0.3798317313194275,
0.4097200334072113,
-0.1405428946018219,
-0.13386307656764984,
-0.35468432307243347,
0.12925025820732117,
-0.09529107809066772,
-0.26493605971336365
] |
liuhaotian/llava-v1.5-7b | liuhaotian | "2023-10-22T05:16:14Z" | 177,623 | 126 | transformers | [
"transformers",
"pytorch",
"llava",
"text-generation",
"has_space",
"region:us"
] | text-generation | "2023-10-05T18:25:51Z" | ---
inference: false
---
<br>
<br>
# LLaVA Model Card
## Model details
**Model type:**
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.
**Model date:**
LLaVA-v1.5-7B was trained in September 2023.
**Paper or resources for more information:**
https://llava-vl.github.io/
## License
Llama 2 is licensed under the LLAMA 2 Community License,
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
**Where to send questions or comments about the model:**
https://github.com/haotian-liu/LLaVA/issues
## Intended use
**Primary intended uses:**
The primary use of LLaVA is research on large multimodal models and chatbots.
**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
## Training dataset
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 450K academic-task-oriented VQA data mixture.
- 40K ShareGPT data.
## Evaluation dataset
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs. | [
-0.0016850632382556796,
-0.9692621827125549,
0.32016247510910034,
0.2608208954334259,
-0.4287985861301422,
0.2212231308221817,
-0.015995629131793976,
-0.47521981596946716,
0.2584109306335449,
0.5760899186134338,
-0.5897819399833679,
-0.5722477436065674,
-0.5773192048072815,
-0.14175763726234436,
-0.43317821621894836,
0.9812003970146179,
0.05524911731481552,
-0.10668893158435822,
-0.30741482973098755,
0.15000243484973907,
-0.8160015344619751,
-0.4295599162578583,
-0.5881221890449524,
-0.3311864733695984,
0.5931356549263,
0.5832332372665405,
0.5991893410682678,
0.525880753993988,
0.43226033449172974,
0.35553276538848877,
-0.025096923112869263,
0.2529515027999878,
-0.6385337710380554,
0.02694506011903286,
0.2960772216320038,
-0.7514179348945618,
-0.7606500387191772,
-0.22293780744075775,
0.557429850101471,
-0.10053680092096329,
-0.3566332161426544,
0.3407175838947296,
0.002524631330743432,
0.34658700227737427,
-0.23620723187923431,
0.6565086245536804,
-0.8606264591217041,
-0.2486768662929535,
-0.41372644901275635,
-0.09642942249774933,
-0.47564125061035156,
-0.2558736503124237,
-0.316684365272522,
-0.5674929022789001,
-0.2746465802192688,
0.11138424277305603,
1.060226559638977,
0.5494250655174255,
-0.365561306476593,
-0.2144552618265152,
-0.6861467361450195,
0.7377574443817139,
-0.6813905239105225,
0.28729772567749023,
0.4847744107246399,
0.7667707204818726,
-0.15940093994140625,
-0.6797387599945068,
-0.6636224389076233,
-0.259251207113266,
0.03743888437747955,
0.16329945623874664,
-0.4869929254055023,
0.008249594829976559,
0.07411196082830429,
0.3425767719745636,
-0.44586285948753357,
0.2678927481174469,
-0.6117709875106812,
-0.02321229688823223,
0.5954114198684692,
0.34459084272384644,
0.14717060327529907,
-0.19092664122581482,
-0.4740765392780304,
-0.1311901956796646,
-0.5136992931365967,
-0.018068956211209297,
0.5962636470794678,
0.22919321060180664,
-0.4329279065132141,
0.785795271396637,
-0.21231846511363983,
0.40899190306663513,
-0.025355013087391853,
-0.43229636549949646,
0.4913278818130493,
-0.12410908192396164,
-0.5149601101875305,
-0.3014777898788452,
0.9716735482215881,
0.26034659147262573,
0.21302132308483124,
0.21427921950817108,
-0.25558793544769287,
0.10489282011985779,
0.28097736835479736,
-0.5247011184692383,
-0.08475621044635773,
0.20253914594650269,
-0.4220404326915741,
-0.5200172066688538,
-0.686843752861023,
-0.7295494675636292,
-0.34463390707969666,
-0.2185075879096985,
0.22466939687728882,
-0.3685052692890167,
-0.2848646342754364,
-0.18443351984024048,
0.43496638536453247,
0.5917298197746277,
0.48368358612060547,
-0.8970102667808533,
0.13547873497009277,
0.5400680899620056,
0.6934859752655029,
-0.11517160385847092,
-0.21341024339199066,
0.0849151611328125,
-0.09755983203649521,
-0.09796299785375595,
1.1280452013015747,
-0.6771589517593384,
-0.4428426921367645,
0.02458818070590496,
0.1011447161436081,
-0.022248702123761177,
-0.2650609612464905,
0.751983106136322,
-0.5926747918128967,
0.23966684937477112,
0.16438117623329163,
-0.5057106018066406,
-0.18892446160316467,
0.34641727805137634,
-0.6755020618438721,
1.164121150970459,
-0.06282563507556915,
-0.6301654577255249,
0.016846703365445137,
-0.6385671496391296,
-0.0013535554753616452,
0.19860883057117462,
-0.17160861194133759,
-0.40543460845947266,
-0.16592711210250854,
0.19241879880428314,
0.2784969210624695,
-0.6008182168006897,
0.5403831601142883,
-0.09148222953081131,
-0.30879923701286316,
0.15754884481430054,
-0.8325676321983337,
0.7927359938621521,
0.2930142283439636,
0.02736118622124195,
0.2649883031845093,
-0.9629814624786377,
-0.25050032138824463,
0.3775392770767212,
-0.39339038729667664,
-0.06395837664604187,
0.021547691896557808,
0.049221158027648926,
-0.044790636748075485,
0.690337061882019,
-0.4918311834335327,
0.5213823318481445,
-0.12293947488069534,
0.1181950569152832,
0.9165080785751343,
-0.2480006217956543,
0.22627049684524536,
-0.314132958650589,
0.6951708793640137,
-0.05479451268911362,
0.5609862804412842,
-0.25707900524139404,
-0.9412914514541626,
-0.9307774901390076,
-0.34944403171539307,
0.07084434479475021,
1.0895229578018188,
-0.7310879230499268,
0.29814910888671875,
-0.2884857952594757,
-0.7570051550865173,
-0.8134815692901611,
0.29455316066741943,
0.41267699003219604,
0.5086875557899475,
0.27643299102783203,
-0.18471375107765198,
-0.6481568813323975,
-1.126277208328247,
0.07452347129583359,
-0.5018996000289917,
0.046734049916267395,
0.43575990200042725,
0.44295844435691833,
-0.5292073488235474,
0.7431660294532776,
-0.3509694039821625,
-0.416052907705307,
-0.2769303619861603,
-0.09552907943725586,
0.27935323119163513,
0.22261086106300354,
0.35291537642478943,
-0.5169008374214172,
-0.5167022943496704,
0.0269321259111166,
-0.8793544769287109,
-0.10878879576921463,
-0.07661663740873337,
-0.2885720133781433,
0.3292887210845947,
0.3027038872241974,
-0.6163569688796997,
0.6638635993003845,
0.9125261306762695,
-0.13705326616764069,
0.4466150403022766,
0.005965106654912233,
-0.07290458679199219,
-1.2151997089385986,
-0.1397465169429779,
-0.19014479219913483,
-0.18347154557704926,
-0.5669136643409729,
-0.12295820564031601,
-0.1203082874417305,
0.1106039360165596,
-0.6071596145629883,
0.6545348763465881,
-0.2390027642250061,
0.09322528541088104,
-0.40245914459228516,
0.03701493889093399,
-0.15754325687885284,
0.7637100219726562,
-0.11555808037519455,
0.9719922542572021,
0.48551464080810547,
-0.4004586338996887,
0.5588276386260986,
0.5319908857345581,
-0.2581080496311188,
0.5019211173057556,
-0.9329975247383118,
0.24767054617404938,
-0.02224762551486492,
0.16501455008983612,
-1.2238789796829224,
-0.2764318287372589,
0.5731187462806702,
-0.5631209015846252,
0.32278525829315186,
-0.09221286326646805,
-0.6957109570503235,
-0.24606724083423615,
-0.09879916161298752,
0.2834256589412689,
0.8537738919258118,
-0.46130380034446716,
0.803309977054596,
0.47906291484832764,
0.2022082805633545,
-0.7608529925346375,
-0.7646006941795349,
0.02679828554391861,
-0.24620823562145233,
-0.5475391745567322,
0.07084629684686661,
-0.22495914995670319,
-0.14498105645179749,
-0.13704179227352142,
0.30774882435798645,
-0.1887780725955963,
-0.07915717363357544,
0.46124258637428284,
0.4997856914997101,
-0.040814779698848724,
0.24999870359897614,
0.006496254820376635,
-0.09217815846204758,
-0.11129489541053772,
0.341748982667923,
0.708508312702179,
-0.2671898901462555,
-0.33822181820869446,
-0.8138696551322937,
0.009012237191200256,
0.31308504939079285,
0.07230175286531448,
0.7263307571411133,
0.603130578994751,
-0.08568249642848969,
0.2900671660900116,
-0.7112293243408203,
0.038013756275177,
-0.5494180917739868,
0.4367624521255493,
-0.32966339588165283,
-0.69516921043396,
0.5779396295547485,
0.04959737882018089,
0.46669262647628784,
0.4082188606262207,
0.8108263611793518,
-0.2186875343322754,
0.6735018491744995,
0.7879114747047424,
-0.20613297820091248,
0.8115954995155334,
-0.08405590802431107,
-0.04831094667315483,
-0.8576222062110901,
-0.4046654999256134,
-0.24553914368152618,
-0.20105934143066406,
-0.7862437963485718,
-0.6301818490028381,
-0.015396866016089916,
-0.2241235226392746,
-0.33012086153030396,
0.43699532747268677,
-0.43056294322013855,
0.43407538533210754,
0.6588819026947021,
0.08396466076374054,
0.31415724754333496,
0.1570347249507904,
0.1571757197380066,
0.08339212834835052,
-0.5114809274673462,
-0.8043720126152039,
1.4078835248947144,
0.6901715993881226,
1.0371383428573608,
0.06008957698941231,
0.733586311340332,
0.34039393067359924,
0.442727655172348,
-0.7390480041503906,
0.6731075644493103,
0.0345037542283535,
-0.7004641890525818,
-0.28892335295677185,
-0.11840235441923141,
-1.0399807691574097,
0.07883090525865555,
-0.131819948554039,
-0.7062041759490967,
-0.06409111618995667,
0.3075932562351227,
0.20086932182312012,
0.39129626750946045,
-0.7835504412651062,
0.6243820786476135,
-0.4053860902786255,
-0.15538744628429413,
-0.14076009392738342,
-0.4647933840751648,
0.6464372277259827,
-0.04237654060125351,
0.2463541030883789,
-0.277082622051239,
-0.035261113196611404,
0.5322192311286926,
-0.1341896504163742,
1.5042041540145874,
-0.052884265780448914,
-0.3227623999118805,
0.5400790572166443,
0.016817690804600716,
0.5299068093299866,
-0.04018335044384003,
0.16948120296001434,
0.5202324390411377,
-0.19862248003482819,
-0.42895954847335815,
-0.3766500651836395,
0.6577625870704651,
-1.3289066553115845,
-0.7286024689674377,
-0.2882934808731079,
-0.5388663411140442,
0.043318916112184525,
0.01438781339675188,
0.1389620155096054,
0.09720365703105927,
-0.15956029295921326,
0.022163571789860725,
0.5536496639251709,
-0.40436598658561707,
0.22683490812778473,
0.36822187900543213,
-0.3509238064289093,
-0.47022774815559387,
0.8828111290931702,
-0.19690833985805511,
0.21060653030872345,
0.4893476366996765,
-0.03075120598077774,
-0.16850541532039642,
-0.24811941385269165,
-0.4539341628551483,
0.42773866653442383,
-0.8154492974281311,
-0.3912159204483032,
-0.4547823965549469,
-0.45991888642311096,
-0.2876702547073364,
0.2524154782295227,
-0.5955915451049805,
-0.27512791752815247,
-0.6248340606689453,
-0.014193282462656498,
0.6771196722984314,
0.7706510424613953,
0.22258572280406952,
0.7487094402313232,
-0.4963250160217285,
0.23603807389736176,
0.4806027114391327,
0.3766976594924927,
-0.10928626358509064,
-0.9353015422821045,
0.0030393796041607857,
-0.0012697882484644651,
-0.5429716110229492,
-0.798815131187439,
0.5454239845275879,
0.21244026720523834,
0.7330167293548584,
0.14058099687099457,
-0.27133849263191223,
0.7293598651885986,
-0.5950453281402588,
0.8713883757591248,
0.15299709141254425,
-0.6419925093650818,
0.6617570519447327,
-0.18695025146007538,
0.3655373752117157,
0.3557892143726349,
0.2258308082818985,
-0.40323007106781006,
-0.4043934941291809,
-0.566180408000946,
-0.7368239760398865,
0.5593978762626648,
0.23756326735019684,
0.5080156326293945,
-0.03554811328649521,
0.2774182856082916,
0.17064599692821503,
0.17647626996040344,
-1.1351912021636963,
-0.546977162361145,
-0.3447340726852417,
-0.3914037048816681,
0.1547466665506363,
-0.6159664392471313,
-0.11845197528600693,
-0.10300185531377792,
0.6593834161758423,
-0.12041156738996506,
0.7197654843330383,
-0.2610888183116913,
-0.09233973175287247,
0.02233804576098919,
0.23848256468772888,
0.8570613861083984,
0.3210810422897339,
-0.22016455233097076,
-0.3433963358402252,
0.30243435502052307,
-0.76837158203125,
0.013759362511336803,
-0.046249281615018845,
-0.14988376200199127,
-0.08468223363161087,
0.4228763282299042,
1.15288245677948,
0.14313215017318726,
-0.714468240737915,
0.39226436614990234,
-0.3550463616847992,
-0.2747878432273865,
-0.7623656988143921,
0.054040100425481796,
0.11643832176923752,
0.576276957988739,
0.21419520676136017,
-0.18315176665782928,
-0.0024318776559084654,
-0.3010614216327667,
-0.15780998766422272,
0.325217068195343,
-0.22602204978466034,
-0.3725266456604004,
0.7417970299720764,
0.2024359256029129,
-0.5475571751594543,
0.6286206841468811,
0.06058887392282486,
-0.11791865527629852,
0.473883718252182,
0.542419970035553,
0.8151761889457703,
-0.29884687066078186,
0.1927034854888916,
0.4792022705078125,
0.36275622248649597,
0.1317927986383438,
0.4157824218273163,
-0.07204978913068771,
-0.627314031124115,
-0.3915955722332001,
-0.6071801781654358,
-0.6190274357795715,
0.14906515181064606,
-0.43356722593307495,
0.5288184285163879,
-0.361770361661911,
-0.23640204966068268,
-0.29233285784721375,
0.018724145367741585,
-0.8390615582466125,
-0.04837827384471893,
0.3420441448688507,
0.8969183564186096,
-0.773494303226471,
1.2729840278625488,
0.40560272336006165,
-0.5638090372085571,
-0.6630381941795349,
-0.3751048147678375,
0.049295153468847275,
-1.476076602935791,
0.859541654586792,
-0.0771365687251091,
0.006108391098678112,
-0.2877568304538727,
-0.8930465579032898,
-1.1339497566223145,
1.4627033472061157,
0.2771972417831421,
-1.0382239818572998,
-0.16444306075572968,
0.12792906165122986,
0.6697997450828552,
-0.39053013920783997,
0.554839551448822,
0.4745487868785858,
0.31322231888771057,
0.39164572954177856,
-1.1360081434249878,
-0.2645913064479828,
-0.3859211206436157,
0.040953442454338074,
-0.20256786048412323,
-1.0615572929382324,
0.848232090473175,
0.06044229120016098,
-0.13988962769508362,
0.1503928154706955,
0.8381679058074951,
0.4002738296985626,
0.19871020317077637,
0.4386865496635437,
0.3449300527572632,
0.7376432418823242,
0.09809420257806778,
1.000252604484558,
-0.4019952714443207,
0.10841397941112518,
1.1930580139160156,
-0.11785926669836044,
0.9740858674049377,
0.42288216948509216,
-0.20139852166175842,
0.796190083026886,
0.5243909358978271,
-0.06706488877534866,
0.6008864045143127,
-0.07494598627090454,
0.11142465472221375,
-0.12924633920192719,
0.10075714439153671,
-0.3429630696773529,
0.6887206435203552,
0.5852592587471008,
-0.4366152584552765,
-0.012960621155798435,
-0.15596288442611694,
0.05979764461517334,
-0.11001413315534592,
-0.05648907274007797,
0.7744489908218384,
-0.033894624561071396,
-0.3103344142436981,
0.8295846581459045,
-0.20147882401943207,
0.8955161571502686,
-0.6058207154273987,
-0.23063965141773224,
-0.5547254085540771,
0.04605306684970856,
0.03261527791619301,
-0.7277088761329651,
0.241038978099823,
0.20012712478637695,
0.14414022862911224,
-0.05156855285167694,
0.7661411762237549,
-0.26450780034065247,
-0.5948245525360107,
0.23407778143882751,
0.4536740481853485,
0.4787158966064453,
0.4908433258533478,
-0.933209240436554,
0.48222875595092773,
0.1237577274441719,
-0.40793952345848083,
0.27030372619628906,
0.4047599732875824,
-0.22571726143360138,
1.0624107122421265,
0.47104236483573914,
-0.1281435638666153,
0.09075330942869186,
0.13270102441310883,
1.1588438749313354,
-0.47693946957588196,
-0.17322848737239838,
-0.7762601375579834,
0.5960745215415955,
-0.01926541142165661,
-0.5175556540489197,
0.6855552196502686,
0.36001521348953247,
0.5540232062339783,
0.00063108722679317,
0.6790759563446045,
0.11135120689868927,
0.475548654794693,
-0.38624823093414307,
0.3795642554759979,
-0.6332329511642456,
0.487794429063797,
-0.07234644889831543,
-0.7412504553794861,
-0.21030288934707642,
0.603464663028717,
-0.17198142409324646,
-0.11638624221086502,
0.2865144908428192,
0.8223180770874023,
0.14241956174373627,
-0.19829554855823517,
0.5975431203842163,
0.2734968364238739,
0.5925208926200867,
0.5972738862037659,
0.8806877136230469,
-0.6522519588470459,
0.8783292174339294,
-0.11006564646959305,
-0.26468756794929504,
-0.5125821232795715,
-0.7409931421279907,
-1.27359139919281,
-0.6000339984893799,
-0.22010855376720428,
-0.11284014582633972,
0.13853947818279266,
0.7998018860816956,
0.46934178471565247,
-0.4772947430610657,
-0.43297386169433594,
0.14525680243968964,
0.10527276992797852,
0.11101662367582321,
-0.16220925748348236,
0.18298162519931793,
-0.27423256635665894,
-0.816820502281189,
0.29798808693885803,
-0.07822990417480469,
0.1993732452392578,
-0.552478551864624,
-0.058560773730278015,
-0.2281418889760971,
0.23098725080490112,
0.6016244888305664,
0.41302749514579773,
-1.0065165758132935,
-0.24540065228939056,
0.19777241349220276,
-0.19046427309513092,
0.3182015120983124,
0.13651053607463837,
-0.7478780746459961,
0.36456334590911865,
0.2425088882446289,
0.2922396957874298,
0.5157175660133362,
-0.16615265607833862,
0.277889221906662,
-0.7528217434883118,
0.410774827003479,
0.056117597967386246,
0.2411535233259201,
0.32672053575515747,
-0.42652061581611633,
0.48465031385421753,
-0.06374790519475937,
-0.8244813680648804,
-0.8650216460227966,
0.186074361205101,
-1.1098988056182861,
0.11313750594854355,
1.3721668720245361,
0.08738706260919571,
-0.6869035363197327,
0.08164086937904358,
-0.5138091444969177,
0.20563620328903198,
-0.6786787509918213,
0.7656614184379578,
0.41751012206077576,
-0.04520856589078903,
-0.5016200542449951,
-0.8726137280464172,
0.20054283738136292,
-0.13244983553886414,
-0.9575719833374023,
-0.05370768532156944,
0.4309830963611603,
0.2579660713672638,
0.03022831678390503,
0.9065282344818115,
0.005342325195670128,
0.03805242478847504,
0.20677514374256134,
0.5112336874008179,
-0.10716956108808517,
-0.30532199144363403,
-0.20430374145507812,
-0.2541802227497101,
0.14033889770507812,
-0.49822771549224854
] |
latent-consistency/lcm-lora-sdv1-5 | latent-consistency | "2023-11-16T16:01:30Z" | 177,589 | 186 | diffusers | [
"diffusers",
"lora",
"text-to-image",
"arxiv:2311.05556",
"base_model:runwayml/stable-diffusion-v1-5",
"license:openrail++",
"has_space",
"region:us"
] | text-to-image | "2023-11-07T11:20:24Z" | ---
library_name: diffusers
base_model: runwayml/stable-diffusion-v1-5
tags:
- lora
- text-to-image
license: openrail++
inference: false
---
# Latent Consistency Model (LCM) LoRA: SDv1-5
Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
It is a distilled consistency adapter for [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) that allows
to reduce the number of inference steps to only between **2 - 8 steps**.
| Model | Params / M |
|----------------------------------------------------------------------------|------------|
| [**lcm-lora-sdv1-5**](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | **67.5** |
| [lcm-lora-ssd-1b](https://huggingface.co/latent-consistency/lcm-lora-ssd-1b) | 105 |
| [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197M |
## Usage
LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first
install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`.
audio dataset from the Hugging Face Hub:
```bash
pip install --upgrade pip
pip install --upgrade diffusers transformers accelerate peft
```
***Note: For detailed usage examples we recommend you to check out our official [LCM-LoRA docs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora)***
### Text-to-Image
The adapter can be loaded with SDv1-5 or deviratives. Here we use [`Lykon/dreamshaper-7`](https://huggingface.co/Lykon/dreamshaper-7). Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
```python
import torch
from diffusers import LCMScheduler, AutoPipelineForText2Image
model_id = "Lykon/dreamshaper-7"
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
# load and fuse lcm lora
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
# disable guidance_scale by passing 0
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
![](./image.png)
### Image-to-Image
LCM-LoRA can be applied to image-to-image tasks too. Let's look at how we can perform image-to-image generation with LCMs. For this example we'll use the [dreamshaper-7](https://huggingface.co/Lykon/dreamshaper-7) model and the LCM-LoRA for `stable-diffusion-v1-5 `.
```python
import torch
from diffusers import AutoPipelineForImage2Image, LCMScheduler
from diffusers.utils import make_image_grid, load_image
pipe = AutoPipelineForImage2Image.from_pretrained(
"Lykon/dreamshaper-7",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
# prepare image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png"
init_image = load_image(url)
prompt = "Astronauts in a jungle, cold color palette, muted colors, detailed, 8k"
# pass prompt and image to pipeline
generator = torch.manual_seed(0)
image = pipe(
prompt,
image=init_image,
num_inference_steps=4,
guidance_scale=1,
strength=0.6,
generator=generator
).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_sdv1-5_i2i.png)
### Inpainting
LCM-LoRA can be used for inpainting as well.
```python
import torch
from diffusers import AutoPipelineForInpainting, LCMScheduler
from diffusers.utils import load_image, make_image_grid
pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
# load base and mask image
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png")
# generator = torch.Generator("cuda").manual_seed(92)
prompt = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k"
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
num_inference_steps=4,
guidance_scale=4,
).images[0]
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_sdv1-5_inpainting.png)
### ControlNet
For this example, we'll use the SD-v1-5 model and the LCM-LoRA for SD-v1-5 with canny ControlNet.
```python
import torch
import cv2
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, LCMScheduler
from diffusers.utils import load_image
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
).resize((512, 512))
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
variant="fp16"
).to("cuda")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
generator = torch.manual_seed(0)
image = pipe(
"the mona lisa",
image=canny_image,
num_inference_steps=4,
guidance_scale=1.5,
controlnet_conditioning_scale=0.8,
cross_attention_kwargs={"scale": 1},
generator=generator,
).images[0]
make_image_grid([canny_image, image], rows=1, cols=2)
```
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_sdv1-5_controlnet.png)
## Speed Benchmark
TODO
## Training
TODO | [
-0.39276012778282166,
-0.5512612462043762,
0.3178648054599762,
0.38966768980026245,
-0.3082338273525238,
-0.19933338463306427,
0.07515028119087219,
-0.36033281683921814,
0.2625918686389923,
0.7510043978691101,
-0.662339985370636,
-0.5434933304786682,
-0.5739569664001465,
-0.22627981007099152,
-0.20084653794765472,
1.1110178232192993,
-0.2535986602306366,
-0.2634824216365814,
0.13417460024356842,
-0.3015271723270416,
-0.10697776079177856,
-0.11961886286735535,
-0.7790258526802063,
-0.3225317597389221,
0.553790271282196,
0.16102372109889984,
0.5942762494087219,
0.42052167654037476,
0.3705362379550934,
0.3980369567871094,
-0.2917640209197998,
0.2524370551109314,
-0.5622925162315369,
-0.239938884973526,
0.2382747232913971,
-0.3829854726791382,
-0.6206004023551941,
0.18819238245487213,
0.7366368770599365,
0.4014803171157837,
-0.18905989825725555,
0.10441260039806366,
0.21173566579818726,
0.9561785459518433,
-0.3915261924266815,
-0.12952810525894165,
-0.4074002206325531,
0.07467195391654968,
-0.03220485895872116,
-0.06417571753263474,
-0.1057942807674408,
-0.35800766944885254,
0.10655920207500458,
-0.7456516623497009,
0.20099440217018127,
-0.19617249071598053,
1.3128275871276855,
0.5212212800979614,
-0.3963920772075653,
-0.3418984115123749,
-0.497411847114563,
0.8635905981063843,
-0.7866269946098328,
0.08920074999332428,
0.10986506938934326,
0.10207941383123398,
-0.08332455158233643,
-0.8711022138595581,
-0.5097039341926575,
-0.06517990678548813,
-0.20564788579940796,
0.40510210394859314,
-0.10758289694786072,
-0.03762196749448776,
0.504984974861145,
0.24820180237293243,
-0.4922421872615814,
-0.14510875940322876,
-0.5677520632743835,
-0.1845911741256714,
0.7581714987754822,
0.09536633640527725,
0.26011109352111816,
-0.07351316511631012,
-0.6373034119606018,
-0.013591336086392403,
-0.4269449710845947,
0.14362040162086487,
0.3168983459472656,
-0.00518430583178997,
-0.7155510783195496,
0.7044388651847839,
0.0598040446639061,
0.5696470737457275,
0.4692442715167999,
-0.4147827625274658,
0.38765832781791687,
-0.30019518733024597,
-0.486887127161026,
-0.09624259918928146,
0.8997801542282104,
0.46082544326782227,
-0.0520857498049736,
0.18336798250675201,
-0.12584637105464935,
0.05984817072749138,
-0.26349756121635437,
-1.1597166061401367,
-0.27915576100349426,
0.43185439705848694,
-0.4564310610294342,
-0.4634926915168762,
-0.058571938425302505,
-0.6339168548583984,
-0.21620984375476837,
-0.08140458166599274,
0.4166141450405121,
-0.3315422236919403,
-0.2716678977012634,
0.019802279770374298,
-0.0788150280714035,
0.4743756949901581,
0.36445382237434387,
-0.4463306665420532,
0.2757321298122406,
0.14799021184444427,
1.0055450201034546,
-0.15966913104057312,
-0.10224755108356476,
-0.5230069756507874,
-0.005153903737664223,
-0.32207679748535156,
0.6315895318984985,
0.1032312661409378,
-0.34044429659843445,
-0.2680356204509735,
0.4506646990776062,
-0.1342492550611496,
-0.7000440955162048,
0.5819876194000244,
-0.36933398246765137,
0.2791474461555481,
-0.33207061886787415,
-0.6012721657752991,
-0.06332191824913025,
0.005621445365250111,
-0.5405425429344177,
1.1223024129867554,
0.43900713324546814,
-1.170337200164795,
0.17250359058380127,
-0.5709499716758728,
-0.07857835292816162,
-0.2946997284889221,
-0.12935073673725128,
-0.9795944094657898,
-0.19011585414409637,
0.02649816870689392,
0.5510775446891785,
-0.017621109262108803,
-0.07117007672786713,
-0.2699415981769562,
-0.324540376663208,
0.1046767309308052,
0.009210261516273022,
1.319895625114441,
0.294848769903183,
-0.31960150599479675,
0.23776490986347198,
-0.6837049722671509,
0.061821065843105316,
0.3332769274711609,
-0.3526858389377594,
0.20632673799991608,
-0.3145245313644409,
0.37480729818344116,
0.41549280285835266,
0.3186572194099426,
-0.62904953956604,
0.22770248353481293,
-0.5444448590278625,
0.4307222366333008,
0.790830135345459,
0.1019224300980568,
0.45352059602737427,
-0.5771250128746033,
0.31974726915359497,
0.48132067918777466,
-0.04755318537354469,
0.2522274851799011,
-0.44363921880722046,
-1.1351523399353027,
-0.3095892071723938,
-0.15720012784004211,
0.5737636089324951,
-0.8756198287010193,
0.4427929222583771,
0.1792396605014801,
-0.7435899972915649,
-0.27645042538642883,
0.30084413290023804,
0.23029287159442902,
0.519990086555481,
0.22350682318210602,
-0.2838362753391266,
-0.6218109130859375,
-0.6989559531211853,
0.20491047203540802,
0.14792384207248688,
0.029205456376075745,
0.17141267657279968,
0.6628078818321228,
-0.16389311850070953,
0.8277326226234436,
-0.5294152498245239,
-0.5451340079307556,
-0.10099709779024124,
-0.12832693755626678,
0.8497459888458252,
0.7348736524581909,
0.8748210668563843,
-0.6065437197685242,
-0.8444721102714539,
-0.14161288738250732,
-0.882174551486969,
-0.07205107063055038,
-0.16162869334220886,
-0.3726961612701416,
0.4882914423942566,
0.42292720079421997,
-0.5873905420303345,
0.6958096027374268,
0.7396449446678162,
-0.6297961473464966,
0.8194541335105896,
-0.32387590408325195,
-0.017907969653606415,
-1.1284221410751343,
0.15263760089874268,
0.005333201959729195,
-0.36402156949043274,
-0.5159642100334167,
-0.13573932647705078,
-0.2394559234380722,
0.028743108734488487,
-0.737496554851532,
0.8401758670806885,
-0.5550141334533691,
0.020674822852015495,
-0.3677043616771698,
0.09949815273284912,
0.07022126764059067,
0.6911281943321228,
0.10258499532938004,
0.389376163482666,
0.8618276119232178,
-0.6135618090629578,
0.5283412933349609,
0.22705191373825073,
-0.24537844955921173,
0.7387059926986694,
-0.9810803532600403,
0.3410364091396332,
0.050950322300195694,
0.2921922206878662,
-0.9840143322944641,
-0.055911894887685776,
0.5993547439575195,
-0.2809845209121704,
0.2055044174194336,
-0.2742007076740265,
-0.36566784977912903,
-0.3557507395744324,
-0.3042735159397125,
0.26333528757095337,
0.7598355412483215,
-0.4472046196460724,
0.6059421300888062,
0.015518789179623127,
0.34887874126434326,
-0.6257901191711426,
-0.6116179823875427,
-0.45302921533584595,
-0.46825292706489563,
-0.7925517559051514,
0.39194080233573914,
-0.4310669004917145,
-0.16072998940944672,
-0.04643627628684044,
-0.08160868287086487,
-0.06469465047121048,
-0.1803777664899826,
0.40469926595687866,
0.5073566436767578,
-0.1204705610871315,
-0.4409068822860718,
-0.059593867510557175,
-0.23231765627861023,
0.11903373152017593,
-0.001523985294625163,
0.4743959307670593,
-0.1481417715549469,
-0.3308255672454834,
-0.7395893931388855,
0.10891906172037125,
0.33100613951683044,
0.36308425664901733,
0.9081534743309021,
1.232246994972229,
-0.4133002460002899,
-0.03306866064667702,
-0.4843674898147583,
-0.13041433691978455,
-0.5260303616523743,
0.17401424050331116,
-0.3315342366695404,
-0.4376964569091797,
0.7675915360450745,
0.15521305799484253,
0.3082219958305359,
0.5910103917121887,
0.6421664953231812,
-0.42421606183052063,
0.8311119675636292,
0.5598984956741333,
0.12661775946617126,
0.5995505452156067,
-1.020364761352539,
-0.2754419147968292,
-1.0709046125411987,
-0.11937829107046127,
-0.22959297895431519,
-0.44133448600769043,
-0.4958183169364929,
-0.6696897745132446,
0.5597510933876038,
0.4860405921936035,
-0.5471851825714111,
0.3277249038219452,
-0.7441930770874023,
0.24152112007141113,
0.2032640427350998,
0.4258328378200531,
0.2042316049337387,
-0.03003307245671749,
-0.2158600389957428,
-0.02351224608719349,
-0.47177955508232117,
-0.3863104581832886,
0.8442134857177734,
0.3117128908634186,
0.8442926406860352,
-0.08608612418174744,
0.8776230812072754,
-0.10099980235099792,
0.3393514156341553,
-0.437762051820755,
0.5627028346061707,
-0.10296807438135147,
-0.49451974034309387,
-0.09874725341796875,
-0.25988292694091797,
-0.9224244952201843,
0.1362466961145401,
-0.1486579328775406,
-0.7372134923934937,
0.2980037331581116,
0.2631801664829254,
-0.1514492928981781,
0.5212622880935669,
-0.5488420128822327,
0.6146500110626221,
-0.10795672237873077,
-0.6858999133110046,
0.16199828684329987,
-0.6927509307861328,
0.33843711018562317,
0.16244779527187347,
-0.028981372714042664,
-0.3377664089202881,
-0.09742490947246552,
1.0100069046020508,
-0.689875602722168,
0.8226446509361267,
-0.5169976353645325,
-0.3358149528503418,
0.6559365391731262,
-0.1681220680475235,
0.6228985786437988,
0.010348125360906124,
-0.21942010521888733,
0.1402951329946518,
0.22061102092266083,
-0.6594552993774414,
-0.4950883984565735,
0.7423205375671387,
-0.9107571244239807,
-0.18794892728328705,
-0.48874226212501526,
-0.502784788608551,
0.2471514344215393,
0.050782710313797,
0.7521636486053467,
0.21206746995449066,
-0.006794732064008713,
-0.07302427291870117,
0.6508579254150391,
-0.31098616123199463,
0.5512406826019287,
0.029704585671424866,
-0.5256825685501099,
-0.35855546593666077,
0.8305640816688538,
0.16330015659332275,
0.5832524299621582,
0.005883032456040382,
0.22636708617210388,
-0.17716439068317413,
-0.30853211879730225,
-0.358445942401886,
0.5533909201622009,
-0.7629880309104919,
-0.29252517223358154,
-0.5731506943702698,
-0.6602898240089417,
-0.24357421696186066,
-0.4366189241409302,
-0.4996965527534485,
-0.12240832298994064,
-0.6929901838302612,
0.4353618919849396,
0.6247169971466064,
0.5901331305503845,
-0.2540684640407562,
0.3581726849079132,
-0.34433239698410034,
0.461967408657074,
0.22983740270137787,
0.21920473873615265,
-0.14287205040454865,
-0.8051939010620117,
-0.22089655697345734,
0.11586401611566544,
-0.6269091963768005,
-0.6375477313995361,
0.5510988235473633,
0.157972514629364,
0.32574141025543213,
0.46922367811203003,
-0.10338588804006577,
0.7771041393280029,
-0.19532696902751923,
0.5795270800590515,
0.385245144367218,
-0.8735851645469666,
0.6183491945266724,
-0.386565625667572,
0.1685648113489151,
-0.07241611927747726,
0.18007992208003998,
-0.4504697024822235,
-0.20568068325519562,
-0.8341082334518433,
-0.6124857664108276,
0.6537876129150391,
0.5559211373329163,
-0.19004805386066437,
0.4275834262371063,
0.4787224531173706,
-0.12511563301086426,
-0.048475995659828186,
-0.9417939186096191,
-0.5844888687133789,
-0.31892696022987366,
0.007907366380095482,
-0.039826247841119766,
0.09126336127519608,
-0.1702597588300705,
-0.4476088285446167,
0.7995454668998718,
-0.2642342746257782,
0.6456934213638306,
0.5972570180892944,
0.12512962520122528,
-0.2688775956630707,
-0.14300979673862457,
0.525615930557251,
0.48719796538352966,
-0.3383828401565552,
-0.23906190693378448,
0.40843307971954346,
-0.3721506595611572,
0.1473497897386551,
-0.009009084664285183,
-0.025542002171278,
0.09837722033262253,
0.29969969391822815,
0.7270412445068359,
-0.13454607129096985,
-0.36089402437210083,
0.4295419454574585,
0.08146023005247116,
-0.41554224491119385,
-0.5367856025695801,
0.1767665594816208,
0.4938064515590668,
0.40078631043434143,
0.1523331105709076,
0.21524091064929962,
-0.1626395583152771,
-0.42372846603393555,
0.05605245381593704,
0.5981208086013794,
-0.35963860154151917,
-0.1998019814491272,
0.7592138051986694,
-0.15486110746860504,
0.00006703614053549245,
0.4999546706676483,
-0.20037052035331726,
-0.36369553208351135,
1.043468713760376,
0.51563960313797,
0.6454306840896606,
-0.05219641700387001,
0.08738943189382553,
0.6989368200302124,
0.08172234147787094,
0.09186626970767975,
0.541969895362854,
0.29947376251220703,
-0.8834006190299988,
-0.10739617794752121,
-0.6456766724586487,
-0.14846119284629822,
0.1344241499900818,
-0.527389407157898,
0.6037564873695374,
-0.4344598650932312,
-0.05888167396187782,
-0.10836710035800934,
0.4404659867286682,
-1.0250442028045654,
0.1633204072713852,
0.11967326700687408,
0.822412371635437,
-0.8097218871116638,
0.9091647863388062,
0.3847108781337738,
-0.4061410129070282,
-0.9206018447875977,
-0.35153645277023315,
0.011566607281565666,
-0.9886996150016785,
0.5152528285980225,
0.07648792117834091,
-0.10405244678258896,
0.04639545455574989,
-0.8884513974189758,
-0.7863557934761047,
1.4728150367736816,
0.4384525716304779,
-0.456202894449234,
-0.06650348007678986,
-0.15289168059825897,
0.4812929928302765,
-0.6105149984359741,
0.29992038011550903,
0.43898436427116394,
0.45730751752853394,
0.5278738141059875,
-0.7751413583755493,
0.23878353834152222,
-0.14935250580310822,
0.07858158648014069,
-0.018790407106280327,
-0.8599066138267517,
1.0028033256530762,
-0.7461738586425781,
-0.2899625599384308,
0.5179538130760193,
0.8407320380210876,
0.677563488483429,
0.27665969729423523,
0.7006251215934753,
0.7566663026809692,
0.4557998478412628,
-0.16866452991962433,
0.8462777137756348,
0.06784230470657349,
0.7661572694778442,
0.9543300271034241,
-0.163660928606987,
0.5679031610488892,
0.45161357522010803,
-0.32848939299583435,
0.6569878458976746,
0.8577417135238647,
-0.07821153104305267,
0.3403684198856354,
0.3881015479564667,
-0.18704795837402344,
0.12332061678171158,
-0.03593030944466591,
-0.5731040239334106,
0.30220720171928406,
0.3557513356208801,
-0.4419093430042267,
-0.16278813779354095,
0.14672309160232544,
0.15457405149936676,
-0.34322839975357056,
-0.18382561206817627,
0.6151489019393921,
0.15609529614448547,
-0.33836454153060913,
1.015539526939392,
-0.28756383061408997,
0.9856391549110413,
-0.49118053913116455,
-0.07284452766180038,
-0.022703098133206367,
0.1866295337677002,
-0.5032704472541809,
-0.8835564255714417,
0.4335940480232239,
-0.2631906569004059,
0.11653109639883041,
-0.09101865440607071,
0.6844109892845154,
-0.5987023711204529,
-0.7184326648712158,
0.4844610095024109,
0.4191870391368866,
0.588330864906311,
0.1482192575931549,
-1.1713837385177612,
0.48160454630851746,
0.11844334006309509,
-0.5621737837791443,
0.1823752522468567,
0.2737238109111786,
0.48349809646606445,
0.6172595620155334,
0.5516893267631531,
0.10449454188346863,
-0.0025661196559667587,
-0.13226185739040375,
1.0466914176940918,
-0.5907642841339111,
-0.15146908164024353,
-0.6609925627708435,
0.6986507773399353,
-0.08933472633361816,
-0.34797003865242004,
0.5387625098228455,
0.487856924533844,
0.5981893539428711,
-0.034573160111904144,
0.563072144985199,
-0.3925780653953552,
0.3698504567146301,
-0.7234029173851013,
0.8760329484939575,
-0.7612727284431458,
0.05888914316892624,
-0.5531361699104309,
-0.9917292594909668,
0.13659586012363434,
0.8144730925559998,
0.008425687439739704,
0.3060978949069977,
0.6722772717475891,
0.9805284142494202,
-0.10642844438552856,
-0.5209271311759949,
0.25951337814331055,
0.37639549374580383,
0.210545152425766,
0.7386174201965332,
0.5490647554397583,
-0.8852787017822266,
0.36666151881217957,
-0.7820053696632385,
-0.1116780936717987,
0.028845492750406265,
-1.0319234132766724,
-0.8762724995613098,
-0.798368513584137,
-0.6234477162361145,
-0.9264141321182251,
-0.3207712471485138,
0.818195641040802,
1.012777328491211,
-0.6499055027961731,
-0.3344663381576538,
-0.03923426568508148,
0.22176247835159302,
-0.183625265955925,
-0.3168317675590515,
0.5944154262542725,
0.014581210911273956,
-0.9935925006866455,
-0.17045967280864716,
0.012160859070718288,
0.4339265525341034,
-0.25464117527008057,
-0.37179937958717346,
-0.3307131826877594,
-0.06350000202655792,
0.42965492606163025,
0.3259170353412628,
-0.8253157734870911,
-0.1316816508769989,
-0.2592636048793793,
-0.15839554369449615,
0.3580305278301239,
0.3824591040611267,
-0.6905726194381714,
0.13497315347194672,
0.30578961968421936,
-0.09446396678686142,
0.7516072392463684,
-0.2787037491798401,
-0.03297258913516998,
-0.6149030923843384,
0.38303619623184204,
0.03488012030720711,
0.5340100526809692,
0.19850455224514008,
-0.4805660545825958,
0.694771945476532,
0.3898704946041107,
-0.8591048717498779,
-0.652764081954956,
0.031818896532058716,
-1.6230310201644897,
0.005906480364501476,
0.933394730091095,
-0.28273487091064453,
-0.32966312766075134,
0.02061256393790245,
-0.5181364417076111,
0.39537346363067627,
-0.26328831911087036,
0.42670729756355286,
0.36710867285728455,
-0.3843420743942261,
-0.4474613070487976,
-0.41869911551475525,
0.5655195116996765,
0.14914819598197937,
-0.9129360318183899,
-0.22593729197978973,
0.19799330830574036,
0.8267942667007446,
0.33214932680130005,
0.9892086982727051,
-0.00940538477152586,
0.05319134145975113,
-0.04862348735332489,
0.05543516203761101,
0.2578403353691101,
0.16538333892822266,
-0.12419476360082626,
-0.19257481396198273,
-0.32229775190353394,
-0.16957548260688782
] |
monster-labs/control_v1p_sd15_qrcode_monster | monster-labs | "2023-07-21T11:35:31Z" | 175,266 | 1,076 | diffusers | [
"diffusers",
"stable-diffusion",
"controlnet",
"qrcode",
"en",
"license:openrail++",
"has_space",
"diffusers:ControlNetModel",
"region:us"
] | null | "2023-06-24T15:07:20Z" | ---
tags:
- stable-diffusion
- controlnet
- qrcode
license: openrail++
language:
- en
---
# Controlnet QR Code Monster v2 For SD-1.5
![QR code in shape of a blue monster, reading "https://qrcode.monster"](images/monster.png)
## Model Description
This model is made to generate creative QR codes that still scan.
Keep in mind that not all generated codes might be readable, but you can try different parameters and prompts to get the desired results.
**NEW VERSION**
Introducing the upgraded version of our model - Controlnet QR code Monster v2.
V2 is a huge upgrade over v1, for scannability AND creativity.
QR codes can now seamlessly blend the image by using a gray-colored background (#808080).
As with the former version, the readability of some generated codes may vary, however playing around with parameters and prompts could yield better results.
You can find in in the `v2/` subfolder.
## How to Use
- **Condition**: QR codes are passed as condition images with a module size of 16px. Use a higher error correction level to make it easier to read (sometimes a lower level can be easier to read if smaller in size). Use a gray background for the rest of the image to make the code integrate better.
- **Prompts**: Use a prompt to guide the QR code generation. The output will highly depend on the given prompt. Some seem to be really easily accepted by the qr code process, some will require careful tweaking to get good results.
- **Controlnet guidance scale**: Set the controlnet guidance scale value:
- High values: The generated QR code will be more readable.
- Low values: The generated QR code will be more creative.
### Tips
- For an optimally readable output, try generating multiple QR codes with similar parameters, then choose the best ones.
- Use the Image-to-Image feature to improve the readability of a generated QR code:
- Decrease the denoising strength to retain more of the original image.
- Increase the controlnet guidance scale value for better readability.
A typical workflow for "saving" a code would be :
Max out the guidance scale and minimize the denoising strength, then bump the strength until the code scans.
## Example Outputs
Here are some examples of creative, yet scannable QR codes produced by our model:
![City ruins with a building facade in shape of a QR code, reading "https://qrcode.monster"](images/architecture.png)
![QR code in shape of a tree, reading "https://qrcode.monster"](images/tree.png)
![A gothic sculpture in shape of a QR code, reading "https://qrcode.monster"](images/skulls.png)
Feel free to experiment with prompts, parameters, and the Image-to-Image feature to achieve the desired QR code output. Good luck and have fun! | [
-0.3855191767215729,
-0.1779715120792389,
0.11408152431249619,
0.06323648244142532,
-0.7388306856155396,
-0.13738344609737396,
0.2758437991142273,
-0.6283360123634338,
0.543433666229248,
0.7693424224853516,
-0.3450864851474762,
-0.5596231818199158,
-0.3576127588748932,
0.2253028005361557,
-0.060053110122680664,
0.8852006793022156,
0.02362893708050251,
0.07525584846735,
0.29986679553985596,
0.0633947029709816,
-0.6095467805862427,
-0.459900826215744,
-1.0842305421829224,
-0.21937398612499237,
0.7130903005599976,
0.3604293465614319,
0.7688813209533691,
0.8726301193237305,
0.6118715405464172,
0.15485715866088867,
-0.310504287481308,
0.23563165962696075,
-0.5780996680259705,
0.030006946995854378,
-0.2562284767627716,
-0.29993176460266113,
-0.5629658699035645,
-0.22738760709762573,
0.22044512629508972,
-0.2774929106235504,
-0.01829433999955654,
-0.1541128307580948,
-0.054169662296772,
0.6391938328742981,
-0.46436363458633423,
0.0940636694431305,
-0.25108543038368225,
0.3363267183303833,
0.09536422789096832,
-0.5939397811889648,
-0.20079825818538666,
-0.6619262099266052,
-0.4460003972053528,
-0.5018502473831177,
-0.06598779559135437,
0.028005972504615784,
0.9501618146896362,
0.2079097479581833,
-0.6307545304298401,
-0.4835330843925476,
-0.9522752165794373,
0.45752859115600586,
-0.5965468287467957,
0.14573346078395844,
0.44681692123413086,
0.6692072749137878,
-0.16971826553344727,
-1.0005004405975342,
-0.7585217356681824,
-0.37968480587005615,
0.268123060464859,
0.4501713216304779,
-0.42724716663360596,
-0.07860444486141205,
0.515834391117096,
0.2504226565361023,
-0.4107770621776581,
-0.011401861906051636,
-0.8996700048446655,
-0.1062183752655983,
0.8234752416610718,
0.42564913630485535,
0.43705564737319946,
-0.3222139775753021,
-0.36419716477394104,
-0.5428594946861267,
-0.5191758871078491,
0.3871997594833374,
0.14926472306251526,
-0.16521859169006348,
-0.2810252606868744,
0.7586113810539246,
-0.08298862725496292,
0.33168265223503113,
0.4048161804676056,
-0.23188471794128418,
0.162227064371109,
-0.46296441555023193,
0.001714771962724626,
-0.0031167820561677217,
0.5833272933959961,
0.9038234353065491,
0.02155645377933979,
0.10069802403450012,
-0.44409844279289246,
-0.023307722061872482,
0.7812304496765137,
-1.0231000185012817,
-0.5974311232566833,
0.43075552582740784,
-0.6847403645515442,
-0.3533320724964142,
-0.03740615025162697,
-0.4765811562538147,
-0.509427547454834,
-0.17057183384895325,
0.4143391251564026,
-0.3707117736339569,
-0.4552460014820099,
0.4270087480545044,
-0.33421164751052856,
0.29040050506591797,
0.571687638759613,
-0.6502492427825928,
-0.06872419267892838,
0.18576283752918243,
0.8413320183753967,
-0.018859107047319412,
0.056435953825712204,
-0.23912425339221954,
-0.03698517754673958,
-0.7419905066490173,
0.6345329284667969,
-0.05290164798498154,
-0.572791576385498,
-0.29819273948669434,
0.20642943680286407,
0.2997719943523407,
-0.7269865274429321,
0.5685421228408813,
-0.8623727560043335,
-0.3794214427471161,
-0.2140982300043106,
-0.25929200649261475,
-0.3736027777194977,
0.0374629944562912,
-0.9883097410202026,
0.6875287890434265,
0.30348193645477295,
-0.9295003414154053,
0.09213395416736603,
-0.7047669291496277,
-0.12375475466251373,
0.3846883773803711,
-0.13890895247459412,
-0.2920156717300415,
-0.04145641624927521,
-0.3530882000923157,
0.16004088521003723,
0.12457962334156036,
-0.2072678506374359,
0.00711825443431735,
-0.47764909267425537,
0.26959070563316345,
0.1636340171098709,
1.0414544343948364,
0.6452556848526001,
-0.31538134813308716,
0.003084680764004588,
-0.6077795028686523,
0.5149326324462891,
0.18360605835914612,
-0.5499679446220398,
0.001796483644284308,
0.019186167046427727,
0.2566937208175659,
0.34278833866119385,
0.3301312029361725,
-0.43839648365974426,
0.1842823326587677,
-0.0233976561576128,
0.33757349848747253,
0.07974281907081604,
0.42148271203041077,
0.2669852674007416,
-0.6301495432853699,
0.9461761116981506,
0.2591167986392975,
0.35915106534957886,
0.0858926847577095,
-0.3988136351108551,
-0.40555113554000854,
-0.17116503417491913,
-0.04651199281215668,
0.8807476162910461,
-1.3388839960098267,
0.5153987407684326,
0.12546832859516144,
-0.8345000147819519,
-0.1574935019016266,
-0.14011016488075256,
0.32247334718704224,
0.2728731036186218,
0.12166401743888855,
-0.4379238188266754,
-0.4791429340839386,
-0.7825104594230652,
0.2114732265472412,
0.004988009110093117,
-0.21300800144672394,
0.10988686233758926,
0.6598916053771973,
-0.5465204119682312,
0.7800557613372803,
-0.4024682641029358,
-0.004366221837699413,
-0.3849925100803375,
-0.15165480971336365,
0.37626805901527405,
0.9007324576377869,
0.4677971601486206,
-1.1203020811080933,
-0.10715947300195694,
0.18437498807907104,
-0.575518786907196,
0.14555595815181732,
-0.2448740303516388,
-0.261631041765213,
-0.1708052158355713,
0.341971755027771,
-0.29297488927841187,
0.682478129863739,
0.37407538294792175,
-0.3899371027946472,
0.8307775259017944,
-0.5212026238441467,
0.2556392252445221,
-1.3751578330993652,
0.06715971976518631,
0.005689434707164764,
-0.10623046010732651,
-0.5410556793212891,
0.5370185971260071,
0.3399839699268341,
-0.055728521198034286,
-0.5106033086776733,
0.4142632782459259,
-0.31807005405426025,
0.0006462319870479405,
-0.39416399598121643,
-0.20887085795402527,
0.17386601865291595,
0.5179027318954468,
0.055433277040719986,
0.885133683681488,
0.40521353483200073,
-0.9109434485435486,
0.8189641833305359,
0.22227743268013,
-0.5069047808647156,
0.19515331089496613,
-1.1295216083526611,
0.31374868750572205,
-0.2150348722934723,
0.26762548089027405,
-0.6280641555786133,
-0.1403399109840393,
0.7287381291389465,
-0.5383128523826599,
0.3477189242839813,
-0.12125744670629501,
-0.5396714210510254,
-0.44946157932281494,
-0.4052121639251709,
0.3043757975101471,
0.8562679290771484,
-0.4949481785297394,
0.3109430968761444,
0.25828951597213745,
0.09582411497831345,
0.02858157828450203,
-0.907290518283844,
0.21694079041481018,
-0.19848477840423584,
-0.41682207584381104,
0.2563754916191101,
-0.2252579629421234,
-0.03698986396193504,
-0.11593632400035858,
0.09064827859401703,
-0.35367974638938904,
-0.06935958564281464,
0.3104912340641022,
0.07683073729276657,
-0.17148350179195404,
-0.08413787931203842,
0.28798234462738037,
-0.13932231068611145,
-0.10185272246599197,
-0.28554069995880127,
0.28878945112228394,
0.12366069853305817,
-0.004550234414637089,
-0.5073211789131165,
0.4169204533100128,
0.7232629656791687,
-0.5261618494987488,
0.39431747794151306,
0.5048473477363586,
-0.7182258367538452,
-0.26895228028297424,
-0.00012311810860410333,
-0.22304818034172058,
-0.5438965559005737,
0.3839932680130005,
-0.567964494228363,
-0.7757636904716492,
0.5884552001953125,
0.06328253448009491,
0.17328180372714996,
0.24582697451114655,
0.4316520094871521,
-0.14640332758426666,
1.1338770389556885,
0.5995506644248962,
0.6175619959831238,
0.5023671388626099,
-0.4631562829017639,
0.3974553644657135,
-1.0832512378692627,
-0.7268717885017395,
-0.5776064395904541,
-0.07229969650506973,
-0.5888745188713074,
-0.3744543492794037,
0.553128719329834,
0.9932025074958801,
-0.26887965202331543,
0.565494179725647,
-0.849441647529602,
0.2925472855567932,
0.5411799550056458,
0.5594779849052429,
0.048462338745594025,
0.24961009621620178,
-0.029992710798978806,
-0.22256356477737427,
-0.689498782157898,
-0.6662715077400208,
0.49118417501449585,
0.46180376410484314,
0.8592981100082397,
0.20164944231510162,
0.7899539470672607,
0.3643089234828949,
-0.1797184944152832,
-0.8290483951568604,
0.38289210200309753,
-0.22841617465019226,
-0.34845471382141113,
-0.14472246170043945,
-0.3203316330909729,
-0.9883326292037964,
0.026261985301971436,
-0.3250780701637268,
-0.5861185193061829,
0.546111524105072,
0.31839093565940857,
-0.44516557455062866,
0.45072418451309204,
-0.5600185990333557,
0.6590090394020081,
-0.13172860443592072,
-0.18292473256587982,
0.0803108960390091,
-0.29331931471824646,
0.36305540800094604,
-0.16127778589725494,
-0.18346188962459564,
0.4458980858325958,
0.003740419400855899,
0.6324992179870605,
-0.6604450941085815,
0.6631330251693726,
0.008490268141031265,
-0.39833056926727295,
0.6193574666976929,
0.3266599476337433,
0.4785531759262085,
0.030708231031894684,
-0.1901474893093109,
-0.08002300560474396,
0.4346195459365845,
-0.41185498237609863,
-0.6796209216117859,
0.11397415399551392,
-0.6329106688499451,
-0.14239342510700226,
-0.04777459055185318,
-0.2847667336463928,
0.530616819858551,
0.27237772941589355,
0.8658180832862854,
0.8296810388565063,
0.25245964527130127,
0.061669472604990005,
0.8747533559799194,
-0.4354030191898346,
0.10068753361701965,
0.187710702419281,
-0.3396715819835663,
-0.5907723903656006,
0.8364004492759705,
0.21814006567001343,
0.031319744884967804,
0.28658580780029297,
0.04241333529353142,
-0.519645094871521,
-0.7174268960952759,
-0.6103986501693726,
-0.07209603488445282,
-0.7615643739700317,
-0.3533778190612793,
-0.6867071986198425,
-0.3712007403373718,
-0.3738659918308258,
-0.24537888169288635,
-0.07967737317085266,
-0.15842093527317047,
-0.4498230516910553,
0.2079700529575348,
0.7233986854553223,
0.9094505310058594,
-0.43016040325164795,
0.33917510509490967,
-0.9152244329452515,
0.43053242564201355,
0.38138285279273987,
0.2857602834701538,
0.07532069832086563,
-0.4078461825847626,
-0.34951502084732056,
0.2676543593406677,
-0.14841507375240326,
-1.1020301580429077,
0.48837053775787354,
-0.4028446078300476,
0.1177835762500763,
0.5372653603553772,
0.41824963688850403,
0.24978581070899963,
-0.3032709062099457,
0.7131317853927612,
0.5285283327102661,
-0.6326310038566589,
0.47538426518440247,
-0.5646077990531921,
0.45991379022598267,
0.3454653024673462,
0.2699778079986572,
-0.6691738963127136,
-0.18512867391109467,
-0.19901174306869507,
-0.4794074296951294,
0.5527109503746033,
0.12423361837863922,
0.1959565281867981,
0.02744472585618496,
0.826251745223999,
-0.25000956654548645,
-0.036250170320272446,
-0.5544281601905823,
-0.12803800404071808,
-0.5724557638168335,
0.010771171189844608,
-0.01554263848811388,
-0.581572949886322,
0.1807805299758911,
-0.29907679557800293,
0.36353105306625366,
0.08385851234197617,
0.555747389793396,
0.3402247428894043,
0.32652315497398376,
-0.14708523452281952,
0.008760074153542519,
0.8061770796775818,
0.5721902847290039,
-0.25251948833465576,
0.05306059494614601,
-0.0705232098698616,
-1.0364093780517578,
0.04369634389877319,
-0.370103120803833,
-0.3945642411708832,
-0.030417634174227715,
0.07701319456100464,
0.6829339861869812,
-0.1719900369644165,
-0.4337979555130005,
0.20246514678001404,
-0.2217797040939331,
-0.4589264690876007,
-0.5164160132408142,
0.5872694849967957,
0.15015234053134918,
0.5328983068466187,
0.33489489555358887,
0.16636626422405243,
0.28949618339538574,
-0.2805315852165222,
0.140585795044899,
-0.06352103501558304,
-0.20065119862556458,
-0.15727776288986206,
0.7798784375190735,
0.06217150762677193,
-0.590264081954956,
0.48675134778022766,
-0.9983442425727844,
-0.7054740786552429,
1.233736276626587,
0.8882078528404236,
0.8494738936424255,
0.055547311902046204,
0.3544551432132721,
0.7442887425422668,
0.5763857364654541,
-0.10103658586740494,
0.9549620747566223,
0.03956194967031479,
-0.7975668907165527,
-0.02720625139772892,
-0.3568839132785797,
-0.4671218693256378,
0.07331512123346329,
-0.9165569543838501,
0.35168302059173584,
-0.8225115537643433,
-0.2965732514858246,
-0.22261293232440948,
0.405221551656723,
-0.48881614208221436,
0.5877170562744141,
-0.14412575960159302,
1.1453222036361694,
-0.17481544613838196,
0.9152879118919373,
1.0121490955352783,
-0.4266386926174164,
-1.1865421533584595,
-0.267518013715744,
-0.21227429807186127,
-0.4019230604171753,
0.4483906924724579,
-0.008753267116844654,
-0.34992384910583496,
0.28017473220825195,
-1.0424165725708008,
-0.7126001715660095,
1.2689483165740967,
-0.19630937278270721,
-0.6499969959259033,
0.1765962690114975,
-0.35156211256980896,
0.47940072417259216,
-0.4068414568901062,
0.0947246327996254,
0.02862364612519741,
0.2554437518119812,
0.38135018944740295,
-0.548121988773346,
0.23019622266292572,
-0.6796443462371826,
0.479623019695282,
0.09570185095071793,
-0.3855173885822296,
0.9635482430458069,
-0.4963513910770416,
-0.5683414936065674,
0.23474305868148804,
0.517596423625946,
0.41012489795684814,
0.477029412984848,
0.2954674959182739,
0.3613381087779999,
0.8149175643920898,
0.30357006192207336,
1.1093969345092773,
-0.2805830240249634,
0.14185674488544464,
0.8891647458076477,
-0.1661444902420044,
0.6140620708465576,
-0.03672884777188301,
0.04950805380940437,
0.1040874645113945,
0.8400797247886658,
-0.5779896974563599,
0.5333109498023987,
0.5504677891731262,
-0.11213154345750809,
0.028118804097175598,
-0.1775512397289276,
-0.5019925832748413,
0.17448580265045166,
0.10546472668647766,
-0.02908411994576454,
-0.06878463923931122,
0.22887307405471802,
0.040837712585926056,
-0.10171371698379517,
-0.6113422513008118,
0.4688822329044342,
0.0013764387695118785,
-0.12602850794792175,
0.7316434979438782,
0.46041491627693176,
0.9416981935501099,
-0.5214363932609558,
-0.35917848348617554,
-0.33713579177856445,
-0.04941418021917343,
-0.41643527150154114,
-0.6476530432701111,
0.3426501750946045,
0.07281330972909927,
-0.45377108454704285,
0.020407244563102722,
0.6909829378128052,
-0.24737831950187683,
-0.26774510741233826,
0.16297461092472076,
0.17883755266666412,
0.7257212996482849,
0.14242929220199585,
-0.5032260417938232,
0.2008800059556961,
0.26428672671318054,
0.2359694093465805,
-0.03056163154542446,
0.4757252633571625,
-0.0454728826880455,
0.5888282060623169,
0.4906468093395233,
0.17000381648540497,
0.2259078323841095,
-0.14352276921272278,
0.710241436958313,
-0.8010810613632202,
-0.6801357269287109,
-0.19671888649463654,
0.35496458411216736,
0.19712147116661072,
-0.6911979913711548,
0.5507028698921204,
0.5179476737976074,
0.8621004819869995,
-0.3395092189311981,
0.5883346199989319,
-0.06790199875831604,
0.28967025876045227,
-0.6667043566703796,
1.1959209442138672,
-0.6841440796852112,
-0.06591305881738663,
-0.04672687128186226,
-0.7478864789009094,
-0.07749350368976593,
0.6781410574913025,
0.06159069389104843,
0.15200011432170868,
0.488772451877594,
1.0445613861083984,
0.18700243532657623,
-0.09923192858695984,
0.37072107195854187,
-0.03036188706755638,
0.1201157346367836,
0.6376625895500183,
0.9636213779449463,
-0.5924868583679199,
0.3029667139053345,
-0.42088475823402405,
-0.31089597940444946,
-0.1901433765888214,
-0.7190408706665039,
-0.8970136046409607,
-0.5234184861183167,
-0.6003891825675964,
-0.8719664216041565,
-0.017048245295882225,
0.6794539093971252,
0.6927857995033264,
-0.5448146462440491,
-0.015122142620384693,
-0.035935547202825546,
0.11784947663545609,
-0.05701363831758499,
-0.2477681189775467,
0.2240752875804901,
0.2586946487426758,
-0.5756110548973083,
0.05165190249681473,
0.033162668347358704,
0.6954729557037354,
0.11680743843317032,
-0.4011079668998718,
0.43252456188201904,
0.08983954042196274,
0.40437883138656616,
0.5473159551620483,
-0.24016286432743073,
0.018334511667490005,
0.008642119355499744,
-0.5842244625091553,
-0.047641389071941376,
0.7240965962409973,
-0.38100287318229675,
0.38942524790763855,
0.5235089659690857,
0.37203118205070496,
0.3915904462337494,
-0.14240936934947968,
0.1727142035961151,
0.10359542071819305,
-0.12278641760349274,
0.3603688180446625,
-0.1181010827422142,
0.04053040221333504,
-0.6661224961280823,
0.2432483434677124,
-0.22757147252559662,
-0.36350810527801514,
-0.5275629758834839,
0.3764767050743103,
-1.1906810998916626,
-0.3547637462615967,
1.0355567932128906,
-0.06957191973924637,
-0.2940618097782135,
-0.3094399571418762,
-0.5489972829818726,
0.3349853754043579,
-0.2391255646944046,
0.4905337989330292,
-0.007071042899042368,
-0.013960743322968483,
-0.6154724359512329,
-0.5766185522079468,
0.6807981133460999,
0.014509671367704868,
-0.787647545337677,
-0.5100749731063843,
0.5783283710479736,
0.19461238384246826,
0.24406585097312927,
0.6089856028556824,
-0.3663730025291443,
0.7603944540023804,
0.41747409105300903,
0.6237488985061646,
-0.3583753705024719,
-0.2714107632637024,
-0.8399685621261597,
-0.13886763155460358,
0.02710517682135105,
-0.5691248774528503
] |
laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K | laion | "2023-05-16T16:59:39Z" | 175,127 | 89 | open_clip | [
"open_clip",
"pytorch",
"clip",
"zero-shot-image-classification",
"dataset:mlfoundations/datacomp_pools",
"arxiv:2304.14108",
"license:mit",
"has_space",
"region:us"
] | zero-shot-image-classification | "2023-04-26T01:41:18Z" | ---
license: mit
widget:
- src: >-
https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
candidate_labels: playing music, playing sports
example_title: Cat & Dog
library_name: open_clip
datasets:
- mlfoundations/datacomp_pools
pipeline_tag: zero-shot-image-classification
---
# Model card for CLIP ViT-L-14 trained DataComp-1B
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
5. [Acknowledgements](#acknowledgements)
6. [Citation](#citation)
7. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
A CLIP ViT-L/14 model trained with the DataComp-1B (https://github.com/mlfoundations/datacomp) using OpenCLIP (https://github.com/mlfoundations/open_clip).
Model training done on the [stability.ai](https://stability.ai/) cluster.
# Uses
As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model.
The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the DataComp paper (https://arxiv.org/abs/2304.14108) include additional discussion as it relates specifically to the training dataset.
## Direct Use
Zero-shot image classification, image and text retrieval, among others.
## Downstream Use
Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others.
## Out-of-Scope Use
As per the OpenAI models,
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
# Training Details
## Training Data
This model was trained with the 1.4 Billion samples of the DataComp-1B dataset (https://arxiv.org/abs/2304.14108).
**IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress.
## Training Procedure
Please see https://arxiv.org/abs/2304.14108.
# Evaluation
Evaluation done on 38 datasets, using the [DataComp repo](https://github.com/mlfoundations/datacomp) and the [LAION CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark).
## Testing Data, Factors & Metrics
### Testing Data
The testing is performed on a suite of 38 datasets. See our paper for more details (https://arxiv.org/abs/2304.14108).
## Results
The model achieves a 79.2% zero-shot top-1 accuracy on ImageNet-1k. See our paper for more details and results (https://arxiv.org/abs/2304.14108).
# Acknowledgements
Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model.
# Citation
**BibTeX:**
DataComp
```bibtex
@article{datacomp,
title={DataComp: In search of the next generation of multimodal datasets},
author={Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt},
journal={arXiv preprint arXiv:2304.14108},
year={2023}
}
```
OpenAI CLIP paper
```
@inproceedings{Radford2021LearningTV,
title={Learning Transferable Visual Models From Natural Language Supervision},
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
booktitle={ICML},
year={2021}
}
```
OpenCLIP software
```
@software{ilharco_gabriel_2021_5143773,
author = {Ilharco, Gabriel and
Wortsman, Mitchell and
Wightman, Ross and
Gordon, Cade and
Carlini, Nicholas and
Taori, Rohan and
Dave, Achal and
Shankar, Vaishaal and
Namkoong, Hongseok and
Miller, John and
Hajishirzi, Hannaneh and
Farhadi, Ali and
Schmidt, Ludwig},
title = {OpenCLIP},
month = jul,
year = 2021,
note = {If you use this software, please cite it as below.},
publisher = {Zenodo},
version = {0.1},
doi = {10.5281/zenodo.5143773},
url = {https://doi.org/10.5281/zenodo.5143773}
}
```
# How to Get Started with the Model
See https://github.com/mlfoundations/open_clip | [
-0.4316661059856415,
-0.6181923151016235,
0.1654645949602127,
0.03358783200383186,
-0.38266855478286743,
-0.45367076992988586,
-0.18453016877174377,
-0.5551772713661194,
0.036535024642944336,
0.41460177302360535,
-0.5591042041778564,
-0.5976338982582092,
-0.6267889142036438,
-0.07324949651956558,
-0.4330519735813141,
0.8720386624336243,
-0.14944809675216675,
-0.05958690494298935,
-0.34000930190086365,
-0.3490884304046631,
-0.5124871134757996,
-0.5076337456703186,
-0.3334217667579651,
0.12230699509382248,
0.18928156793117523,
0.32186150550842285,
0.6590538620948792,
0.7589004039764404,
0.76371830701828,
0.21593692898750305,
-0.013722163625061512,
0.112156942486763,
-0.5721902847290039,
-0.419412761926651,
-0.08255448937416077,
-0.28424546122550964,
-0.5060049295425415,
0.2165788859128952,
0.583331286907196,
0.43237388134002686,
-0.0806662067770958,
0.22856760025024414,
-0.059110622853040695,
0.521098256111145,
-0.7479518055915833,
0.22988823056221008,
-0.6115511059761047,
0.04922083392739296,
-0.18882007896900177,
-0.025563355535268784,
-0.3002558946609497,
-0.16516904532909393,
0.19360803067684174,
-0.7555858492851257,
0.1669052243232727,
-0.04707476869225502,
1.181532859802246,
0.25228190422058105,
-0.3068237602710724,
0.17639568448066711,
-0.6343639492988586,
0.7816202640533447,
-0.701240062713623,
0.3053494393825531,
0.3441029191017151,
0.4709046185016632,
0.08068986237049103,
-0.7510720491409302,
-0.493277907371521,
-0.10948380827903748,
0.14650295674800873,
0.141348734498024,
-0.37615594267845154,
0.0482102707028389,
0.4499521255493164,
0.23860305547714233,
-0.42640358209609985,
0.029267439618706703,
-0.6231605410575867,
0.02197066880762577,
0.6249439716339111,
0.13992489874362946,
0.3540087640285492,
-0.24615994095802307,
-0.759053111076355,
-0.4546610116958618,
-0.5973305106163025,
0.3753887116909027,
0.1722124218940735,
0.17194344103336334,
-0.46895286440849304,
0.4962477385997772,
0.007763959933072329,
0.4776231348514557,
-0.12107258290052414,
-0.25755074620246887,
0.5066938996315002,
-0.4873783588409424,
-0.3234245181083679,
-0.1434604972600937,
1.008798599243164,
0.7002497315406799,
0.19583293795585632,
0.09230170398950577,
0.05813219025731087,
-0.008378198370337486,
0.31913265585899353,
-0.9903903603553772,
-0.10530508309602737,
0.0738757848739624,
-0.5644692182540894,
-0.2830103933811188,
0.44857338070869446,
-0.8676019906997681,
-0.044331975281238556,
-0.2877965271472931,
0.5295051336288452,
-0.45621588826179504,
-0.3021606504917145,
0.07440716028213501,
-0.058866534382104874,
0.19770552217960358,
0.33913636207580566,
-0.6430217027664185,
0.23120291531085968,
0.3646888732910156,
1.1218174695968628,
-0.2823218107223511,
-0.35380879044532776,
-0.2584517300128937,
0.09292750805616379,
-0.30945172905921936,
0.4521549940109253,
-0.2828274965286255,
-0.33544686436653137,
-0.06427715718746185,
0.3864179849624634,
-0.16500736773014069,
-0.5207399129867554,
0.47588232159614563,
-0.1934148669242859,
0.012655111961066723,
-0.17010703682899475,
-0.2295747846364975,
-0.5403968691825867,
0.22895412147045135,
-0.7212632894515991,
0.868806004524231,
0.02667979709804058,
-0.8540999293327332,
0.3787235617637634,
-0.6842437982559204,
-0.0923743024468422,
-0.29455819725990295,
-0.09784983098506927,
-0.6381471157073975,
-0.30522671341896057,
0.5002100467681885,
0.49723297357559204,
-0.31677114963531494,
0.4593709111213684,
-0.6706738471984863,
-0.31003499031066895,
0.2040855437517166,
-0.4185532331466675,
0.9479379057884216,
0.06313984096050262,
-0.31373873353004456,
0.15403379499912262,
-0.6951152682304382,
-0.07636865973472595,
0.23960067331790924,
0.026002904400229454,
-0.2534805238246918,
-0.23322933912277222,
0.06310247629880905,
0.29987552762031555,
0.03299384191632271,
-0.6339285969734192,
0.07937978953123093,
-0.08678973466157913,
0.4245157837867737,
0.7351391911506653,
0.1209641620516777,
0.2641969323158264,
-0.4155539870262146,
0.6015162467956543,
0.2273336499929428,
0.6011179089546204,
-0.3174293339252472,
-0.47286465764045715,
-0.6423710584640503,
-0.5865615010261536,
0.30870428681373596,
0.5002462863922119,
-0.7028113603591919,
0.4183233678340912,
-0.27690258622169495,
-0.6230301856994629,
-0.3527393341064453,
-0.01588524878025055,
0.4617004096508026,
0.5620821714401245,
0.5070261359214783,
-0.5079497694969177,
-0.5500542521476746,
-0.8719599843025208,
0.2798159420490265,
0.06849836558103561,
0.054169341921806335,
0.4839516878128052,
0.7217404246330261,
-0.19237971305847168,
1.0534400939941406,
-0.6366415023803711,
-0.5254418253898621,
-0.12034735828638077,
0.038117580115795135,
0.12872722744941711,
0.5816867351531982,
0.9167695641517639,
-0.9207330346107483,
-0.37339267134666443,
-0.21553663909435272,
-1.0470086336135864,
0.14341376721858978,
0.005615980364382267,
-0.27823516726493835,
0.07387358695268631,
0.44677862524986267,
-0.5605406165122986,
0.7317538261413574,
0.45093703269958496,
-0.00017472045146860182,
0.4734271764755249,
-0.07225034385919571,
0.0987350344657898,
-1.075959324836731,
0.4446285367012024,
0.24060484766960144,
-0.13386304676532745,
-0.5299567580223083,
-0.0607331283390522,
-0.01287287101149559,
-0.36715078353881836,
-0.7541424036026001,
0.4656241238117218,
-0.3061986565589905,
0.04917387664318085,
-0.0631728395819664,
-0.0355340912938118,
0.04911837726831436,
0.7237943410873413,
0.08787278085947037,
0.8647464513778687,
0.7921357154846191,
-0.6435880661010742,
0.09314996004104614,
0.44228604435920715,
-0.46511930227279663,
0.3310934603214264,
-0.8958116173744202,
-0.07682767510414124,
-0.09126690775156021,
0.19222494959831238,
-0.5771886110305786,
-0.29539021849632263,
0.41968634724617004,
-0.4078691601753235,
0.3284849524497986,
-0.2835078537464142,
-0.2950184643268585,
-0.3413873612880707,
-0.5584384799003601,
0.5188289284706116,
0.48690715432167053,
-0.6190054416656494,
0.2582087516784668,
0.49245932698249817,
0.06117228791117668,
-0.6802269816398621,
-0.7709194421768188,
-0.2597103416919708,
-0.25076964497566223,
-0.643561065196991,
0.3229358196258545,
-0.13377447426319122,
0.0118852648884058,
0.028251715004444122,
0.08588450402021408,
-0.1953359693288803,
-0.1204565018415451,
0.6574671864509583,
0.6229850649833679,
-0.069883331656456,
-0.05216781422495842,
-0.15644171833992004,
-0.0797378346323967,
-0.04130038991570473,
0.00879374984651804,
0.17768801748752594,
-0.12741245329380035,
-0.4517551064491272,
-0.5096696615219116,
0.2774699926376343,
0.6508223414421082,
-0.3968932330608368,
0.6668962836265564,
0.6175135970115662,
-0.3634321391582489,
0.01634877361357212,
-0.3127208352088928,
-0.05048801749944687,
-0.45157337188720703,
0.4472874402999878,
0.08628638088703156,
-0.6677078008651733,
0.5373930335044861,
0.12318369001150131,
-0.04223942384123802,
0.5030152201652527,
0.358193576335907,
0.11790408194065094,
0.938188374042511,
0.8391082286834717,
0.009716005995869637,
0.7191188335418701,
-0.6824655532836914,
0.10563875734806061,
-0.8966335654258728,
-0.38430747389793396,
-0.2119000256061554,
-0.1668170988559723,
-0.5839470624923706,
-0.5737595558166504,
0.710414707660675,
0.17583057284355164,
-0.22378921508789062,
0.4258285164833069,
-0.45380765199661255,
0.21027739346027374,
0.5735781788825989,
0.4595404863357544,
0.09644876420497894,
-0.021869761869311333,
0.0008390232687816024,
-0.13684502243995667,
-0.6764611601829529,
-0.3554612100124359,
1.1693432331085205,
0.5568677186965942,
0.8650944828987122,
-0.08754877001047134,
0.34388411045074463,
0.17272686958312988,
-0.06263759732246399,
-0.6857861876487732,
0.6005982160568237,
-0.30379846692085266,
-0.6917853951454163,
-0.26870763301849365,
-0.35854899883270264,
-0.8392394185066223,
0.06630722433328629,
-0.1764315664768219,
-0.7093355059623718,
0.5748768448829651,
0.10771892219781876,
-0.3056497871875763,
0.5020018219947815,
-0.5834774971008301,
1.0451198816299438,
-0.3103601634502411,
-0.31391122937202454,
0.0926210880279541,
-0.7591609954833984,
0.5313966274261475,
0.13430804014205933,
0.08093034476041794,
-0.2057165503501892,
0.055255383253097534,
0.8843655586242676,
-0.6630816459655762,
1.0058138370513916,
-0.22973564267158508,
0.21436169743537903,
0.599094033241272,
-0.21051593124866486,
0.19712935388088226,
0.05063794553279877,
0.12454432249069214,
0.584800124168396,
0.09577352553606033,
-0.13681833446025848,
-0.43417659401893616,
0.4687066972255707,
-0.8448527455329895,
-0.239731103181839,
-0.3965223431587219,
-0.522607147693634,
0.14430929720401764,
0.3140025734901428,
0.45825403928756714,
0.7128452658653259,
-0.07089751213788986,
0.4173567295074463,
0.6651503443717957,
-0.3482702970504761,
0.4550689458847046,
0.29058581590652466,
-0.20702721178531647,
-0.6556984782218933,
0.990764319896698,
0.3522261679172516,
0.34992197155952454,
0.19163846969604492,
0.000042817242501769215,
-0.05638507008552551,
-0.42308250069618225,
-0.4341103732585907,
0.1337640881538391,
-0.7707602977752686,
-0.41447100043296814,
-0.4706995487213135,
-0.2947348356246948,
-0.33088815212249756,
-0.04706493392586708,
-0.5443316102027893,
-0.29446181654930115,
-0.5710589289665222,
-0.05059446394443512,
0.47714781761169434,
0.4445551037788391,
-0.21875247359275818,
0.1765201836824417,
-0.7669295072555542,
0.30726325511932373,
0.2928808629512787,
0.4743219316005707,
0.03965279459953308,
-0.5531604290008545,
-0.26626890897750854,
0.22538112103939056,
-0.5267109870910645,
-0.5377106070518494,
0.35696423053741455,
0.2866291105747223,
0.571751594543457,
0.5574041604995728,
0.23189763724803925,
0.6678355932235718,
-0.33198586106300354,
0.966759979724884,
0.3924379050731659,
-0.698806643486023,
0.6413894295692444,
-0.528971791267395,
0.24865268170833588,
0.6842091679573059,
0.7299681901931763,
-0.18561074137687683,
0.004446848761290312,
-0.5858389139175415,
-0.9377619028091431,
0.8997977375984192,
0.1106797382235527,
-0.02651229500770569,
0.04019034653902054,
0.1613178700208664,
0.05046796798706055,
0.22050507366657257,
-0.836897611618042,
-0.16965672373771667,
-0.4848054349422455,
0.015579571016132832,
0.13360847532749176,
-0.15934057533740997,
-0.20436011254787445,
-0.47111785411834717,
0.6935452818870544,
-0.20915339887142181,
0.5987319350242615,
0.3145318925380707,
-0.0463717058300972,
-0.18914902210235596,
-0.024911202490329742,
0.521727979183197,
0.6556858420372009,
-0.48809555172920227,
-0.15736904740333557,
-0.02280919812619686,
-0.6405799984931946,
-0.09820691496133804,
0.1466720700263977,
-0.41753581166267395,
-0.07800398021936417,
0.40564748644828796,
1.16075599193573,
0.30016207695007324,
-0.7439231872558594,
0.9334197640419006,
0.056726470589637756,
-0.4024306833744049,
-0.3575901389122009,
0.11394575238227844,
-0.4081961214542389,
0.1939675658941269,
0.23798540234565735,
0.22408293187618256,
0.13864189386367798,
-0.564760684967041,
0.2722606658935547,
0.4823489487171173,
-0.48431316018104553,
-0.3268975019454956,
0.7949077486991882,
-0.023112040013074875,
0.11258082836866379,
0.598345160484314,
-0.01127320434898138,
-0.4104694426059723,
0.7232681512832642,
0.36052030324935913,
0.862442672252655,
0.08219099044799805,
0.2652494013309479,
0.7016089558601379,
0.2608427107334137,
-0.19495433568954468,
0.08356866240501404,
0.13600221276283264,
-0.480468213558197,
-0.14600175619125366,
-0.3538266718387604,
-0.42017194628715515,
0.21451333165168762,
-0.9330421686172485,
0.5245010256767273,
-0.6367359757423401,
-0.3264982998371124,
-0.1255234330892563,
-0.3619846701622009,
-0.5404238700866699,
0.1372942477464676,
0.1767394244670868,
0.9966520667076111,
-0.8412624001502991,
0.6998533606529236,
0.57608962059021,
-0.817190408706665,
-0.7289507389068604,
-0.06942977756261826,
-0.041565824300050735,
-0.544930636882782,
0.41812700033187866,
0.4814608693122864,
0.02589496225118637,
-0.27715274691581726,
-0.9988239407539368,
-0.9653428196907043,
1.4527723789215088,
0.4866522550582886,
-0.29908961057662964,
-0.06568185240030289,
0.09593571722507477,
0.3515339493751526,
-0.2806203365325928,
0.3679189085960388,
0.17899195849895477,
0.21642160415649414,
0.2692156434059143,
-1.0423816442489624,
0.009165225550532341,
-0.39197057485580444,
0.17586837708950043,
0.07358987629413605,
-0.8883373737335205,
0.9853888154029846,
-0.2980928122997284,
-0.2642875015735626,
0.06474865972995758,
0.5110779404640198,
0.11154448986053467,
0.38505882024765015,
0.36824506521224976,
0.723983883857727,
0.42194634675979614,
0.0014749019173905253,
0.9732564091682434,
-0.12520943582057953,
0.4029223322868347,
1.0891588926315308,
-0.012450342997908592,
0.9437515139579773,
0.34537193179130554,
-0.25142595171928406,
0.3407595455646515,
0.4357616603374481,
-0.4349604845046997,
0.7850664258003235,
-0.26684367656707764,
0.1611088365316391,
-0.19122186303138733,
-0.3994694948196411,
-0.49344873428344727,
0.4962538182735443,
0.04879859462380409,
-0.49261847138404846,
-0.18614321947097778,
0.4045509994029999,
-0.00510682025924325,
-0.18817323446273804,
-0.2040468156337738,
0.5252189636230469,
0.08554065227508545,
-0.40014588832855225,
0.821574330329895,
-0.11657888442277908,
0.7212105393409729,
-0.7746670246124268,
-0.16171209514141083,
0.004232290666550398,
0.21451330184936523,
-0.22149239480495453,
-0.7626292109489441,
0.22970108687877655,
-0.009802145883440971,
-0.2129376381635666,
-0.10576192289590836,
0.6351349353790283,
-0.22822201251983643,
-0.4597788155078888,
0.3893686830997467,
0.05471186339855194,
0.1323242485523224,
0.0021048749331384897,
-0.6727850437164307,
0.22063276171684265,
-0.005823927465826273,
-0.2078641951084137,
0.4371204674243927,
0.2185003161430359,
-0.06619657576084137,
0.7097921967506409,
0.5623286962509155,
-0.24143458902835846,
0.15229256451129913,
-0.1542767882347107,
1.1453208923339844,
-0.4344061613082886,
-0.4316357970237732,
-0.5620058178901672,
0.6622101068496704,
-0.08101126551628113,
-0.4772409200668335,
0.7442123889923096,
0.5296308398246765,
1.0305194854736328,
-0.15707768499851227,
0.7567571997642517,
-0.31762465834617615,
0.388053297996521,
-0.5989734530448914,
0.582938015460968,
-0.6484951376914978,
0.06570540368556976,
-0.573080837726593,
-0.690393328666687,
-0.24729934334754944,
0.5145056843757629,
-0.30084487795829773,
0.054470740258693695,
0.5729426741600037,
0.8729522824287415,
-0.3138265907764435,
-0.012609626166522503,
0.20781558752059937,
0.07503356039524078,
0.2572333812713623,
0.5155199766159058,
0.4574468731880188,
-0.7226593494415283,
0.6654767990112305,
-0.7553294897079468,
-0.3076532185077667,
-0.16418100893497467,
-0.8917796015739441,
-1.0528305768966675,
-0.6311571598052979,
-0.42870187759399414,
-0.0809122771024704,
-0.07157600671052933,
0.9166150093078613,
0.9444262981414795,
-0.7241138219833374,
-0.22035357356071472,
0.06279955059289932,
-0.240891233086586,
-0.32083308696746826,
-0.21471381187438965,
0.3939305245876312,
0.1631767600774765,
-0.5399060249328613,
0.19020406901836395,
0.12443381547927856,
0.25430482625961304,
-0.16834667325019836,
-0.056025441735982895,
-0.4931822419166565,
-0.1651010513305664,
0.4480591416358948,
0.4643164277076721,
-0.5329504609107971,
-0.19467148184776306,
0.011444993317127228,
0.06656625121831894,
0.3134259581565857,
0.545824408531189,
-0.549237847328186,
0.6380177140235901,
0.4381633400917053,
0.4514906406402588,
0.5459003448486328,
0.1926840990781784,
0.23209941387176514,
-0.6351001858711243,
0.3891928791999817,
0.005368777085095644,
0.3281759023666382,
0.28816479444503784,
-0.31305769085884094,
0.7082902193069458,
0.38126030564308167,
-0.4425269663333893,
-0.9005413055419922,
-0.1351337432861328,
-1.265315294265747,
-0.13130582869052887,
1.0850238800048828,
-0.4385097026824951,
-0.3911789357662201,
0.2759515345096588,
-0.22219789028167725,
0.3261741101741791,
-0.4166005253791809,
0.437543123960495,
0.35437116026878357,
0.028864603489637375,
-0.44335874915122986,
-0.8541396856307983,
0.3137921988964081,
0.01904768869280815,
-0.8451974987983704,
-0.05043446272611618,
0.46118298172950745,
0.28872376680374146,
0.27873528003692627,
0.408252477645874,
-0.34130892157554626,
0.36299166083335876,
-0.016229357570409775,
0.3048167824745178,
-0.48974186182022095,
-0.5953274369239807,
-0.40613338351249695,
0.0462566539645195,
-0.18925510346889496,
-0.5577632784843445
] |
beratcmn/whisper-base-tr | beratcmn | "2023-11-05T16:54:38Z" | 173,343 | 1 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"tr",
"dataset:mozilla-foundation/common_voice_13_0",
"base_model:openai/whisper-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | "2023-11-04T11:01:13Z" | ---
language:
- tr
license: apache-2.0
base_model: openai/whisper-base
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Base TR
results: []
datasets:
- mozilla-foundation/common_voice_13_0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base TR
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 13 Turkish 30% dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4968
- Wer: 41.2122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3817 | 0.5 | 33 | 0.5206 | 42.0632 |
| 0.2896 | 1.0 | 66 | 0.5182 | 44.3036 |
| 0.4421 | 1.5 | 99 | 0.5153 | 43.3137 |
| 0.187 | 2.0 | 132 | 0.5079 | 42.1501 |
| 0.2459 | 2.5 | 165 | 0.5001 | 41.7506 |
| 0.2297 | 3.0 | 198 | 0.4968 | 41.2122 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1 | [
-0.47664833068847656,
-0.5562353730201721,
0.0010956715559586883,
0.24311619997024536,
-0.40920957922935486,
-0.4570462703704834,
-0.240162193775177,
-0.2554781436920166,
0.21194510161876678,
0.5186628103256226,
-0.8328549861907959,
-0.819324254989624,
-0.7421419024467468,
-0.3626856505870819,
-0.06612005829811096,
1.2382551431655884,
0.1560438722372055,
0.2786632776260376,
0.3197791278362274,
-0.13692764937877655,
-0.453372985124588,
-0.4813717007637024,
-0.9292823076248169,
-0.6276393532752991,
0.2641391158103943,
0.5111998319625854,
0.7158821225166321,
0.6740619540214539,
0.467404842376709,
0.23232342302799225,
-0.4575593173503876,
-0.13377924263477325,
-0.6674381494522095,
-0.40254446864128113,
0.3179357945919037,
-0.48536160588264465,
-0.796535849571228,
-0.04627387970685959,
0.8259801864624023,
0.5670008659362793,
-0.4455571472644806,
0.5947577953338623,
0.19340991973876953,
0.6146153211593628,
-0.6544820666313171,
0.29874056577682495,
-0.5694141387939453,
0.1536731719970703,
-0.27462852001190186,
-0.2318071871995926,
-0.2811037003993988,
-0.08156515657901764,
0.4624750316143036,
-0.6876310706138611,
0.5921114087104797,
0.020169470459222794,
1.3282936811447144,
0.29058408737182617,
-0.41006267070770264,
-0.027359768748283386,
-0.8715722560882568,
0.8982239365577698,
-0.8434540629386902,
0.44656607508659363,
0.4627295434474945,
0.5126409530639648,
0.011384386569261551,
-0.9010069370269775,
-0.5446183681488037,
0.04645924270153046,
0.03195393458008766,
0.2824811339378357,
-0.42551618814468384,
0.1177024319767952,
0.49678555130958557,
0.6353646516799927,
-0.6923829317092896,
0.020982913672924042,
-0.6177035570144653,
-0.2865389585494995,
0.4739624559879303,
0.3868923783302307,
-0.10426703095436096,
-0.08921952545642853,
-0.3093678951263428,
-0.2387770414352417,
-0.5488042235374451,
0.33533164858818054,
0.6771287322044373,
0.5057322978973389,
-0.6773841977119446,
0.5396103262901306,
-0.4936319887638092,
0.8338149189949036,
0.14789246022701263,
-0.360261470079422,
0.7210572361946106,
0.016583465039730072,
-0.5500717163085938,
0.3294326066970825,
0.8964863419532776,
0.6096687316894531,
0.15686015784740448,
0.3110276758670807,
-0.15041303634643555,
-0.08594036847352982,
0.21175773441791534,
-1.0159647464752197,
-0.1552414745092392,
0.16312864422798157,
-0.8189294934272766,
-0.7578720450401306,
0.20676670968532562,
-0.5236132740974426,
0.16881372034549713,
-0.2858469486236572,
0.5450343489646912,
-0.33929774165153503,
-0.5012828707695007,
0.32319176197052,
-0.042035676538944244,
0.46242186427116394,
0.11523479968309402,
-1.0194830894470215,
0.6138876080513,
0.46517688035964966,
0.8779938220977783,
0.2438245266675949,
-0.3100559711456299,
-0.24578692018985748,
0.09819690883159637,
-0.27578186988830566,
0.41921430826187134,
0.009142199531197548,
-0.5917953848838806,
-0.16946150362491608,
0.14106321334838867,
-0.2637805640697479,
-0.5692264437675476,
1.017253041267395,
-0.18133385479450226,
0.47967198491096497,
-0.15231604874134064,
-0.3728834390640259,
-0.3178516924381256,
0.26831167936325073,
-0.8236856460571289,
1.269798994064331,
0.1282302886247635,
-0.9797399640083313,
0.608658492565155,
-0.6704561710357666,
-0.022166118025779724,
-0.10168591141700745,
-0.00765223428606987,
-0.8325108289718628,
-0.06546185910701752,
0.2291901558637619,
0.46308019757270813,
-0.3286694586277008,
0.22343601286411285,
-0.0933639407157898,
-0.7517015337944031,
-0.14187224209308624,
-0.6398377418518066,
1.0270479917526245,
0.15595529973506927,
-0.5757493376731873,
0.2464040070772171,
-1.2778972387313843,
0.1979559063911438,
0.21653732657432556,
-0.43153509497642517,
0.07106621563434601,
-0.350705623626709,
0.3693147599697113,
0.06380601972341537,
0.16346445679664612,
-0.6760846972465515,
0.005510225892066956,
-0.6182756423950195,
0.2945979833602905,
0.541408896446228,
0.27081403136253357,
0.03805210441350937,
-0.6332188248634338,
0.26258328557014465,
0.22230719029903412,
0.3869601786136627,
0.15222130715847015,
-0.6774776577949524,
-1.1790567636489868,
-0.3953322470188141,
0.21876390278339386,
0.37989312410354614,
-0.06406885385513306,
0.7927358150482178,
-0.17311535775661469,
-0.8791448473930359,
-0.681136965751648,
-0.08868198096752167,
0.43242794275283813,
0.8389487862586975,
0.40359511971473694,
-0.08695317804813385,
-0.7314910292625427,
-1.224372386932373,
0.02209491655230522,
-0.2548437714576721,
0.10362967103719711,
0.38124123215675354,
0.5950600504875183,
-0.14910735189914703,
0.9093032479286194,
-0.5597413182258606,
-0.5046857595443726,
-0.3093250095844269,
0.10040388256311417,
0.7012448906898499,
0.6600620746612549,
0.7206153273582458,
-0.6117261052131653,
-0.4328189492225647,
-0.054438516497612,
-0.7374661564826965,
0.22010326385498047,
-0.019139451906085014,
-0.22525376081466675,
-0.018805699422955513,
0.06266268342733383,
-0.7734012007713318,
0.8532010912895203,
0.5414183735847473,
-0.4296218454837799,
0.8942071199417114,
-0.13639669120311737,
-0.04297260195016861,
-1.3671516180038452,
0.3791820704936981,
0.12233928591012955,
-0.07743041962385178,
-0.554989218711853,
-0.07268741726875305,
-0.10808343440294266,
-0.24882912635803223,
-0.5535661578178406,
0.6622560024261475,
-0.21376079320907593,
0.17201845347881317,
-0.14693757891654968,
-0.4951304495334625,
-0.07680733501911163,
0.8548137545585632,
0.2926761507987976,
0.7889816761016846,
0.7694729566574097,
-0.5784991979598999,
0.3598286509513855,
0.4711393415927887,
-0.6047057509422302,
0.4145386219024658,
-1.1138955354690552,
0.17790570855140686,
0.1573425978422165,
0.13931719958782196,
-0.7740064263343811,
-0.22948338091373444,
0.445955365896225,
-0.7134194374084473,
0.19523309171199799,
-0.5079845190048218,
-0.1739487648010254,
-0.38860055804252625,
-0.19090065360069275,
0.11978578567504883,
0.6857261657714844,
-0.5213950872421265,
0.4756656885147095,
-0.12239453196525574,
0.15492749214172363,
-0.8428952693939209,
-0.739350438117981,
-0.2587965428829193,
-0.2624005079269409,
-0.7578033208847046,
0.36795610189437866,
0.1940004676580429,
-0.05852038413286209,
-0.04975883290171623,
-0.14418287575244904,
-0.15915589034557343,
-0.12919460237026215,
0.54682856798172,
0.30343759059906006,
-0.4788946807384491,
-0.24657808244228363,
-0.04801838472485542,
-0.2975143492221832,
0.14499303698539734,
-0.1070360466837883,
0.812911868095398,
-0.3820969760417938,
-0.4048236608505249,
-0.9594208598136902,
0.0899013876914978,
0.6263052225112915,
-0.19433897733688354,
1.0629125833511353,
0.7087922692298889,
-0.5933423042297363,
-0.060866694897413254,
-0.5529518723487854,
-0.026005640625953674,
-0.510972261428833,
0.5800732970237732,
-0.6746972799301147,
-0.35481297969818115,
0.8368379473686218,
0.13282014429569244,
0.17018067836761475,
1.0117688179016113,
0.7215142846107483,
-0.0032165921293199062,
1.220862865447998,
0.40688762068748474,
-0.2106480449438095,
0.18585596978664398,
-0.9955606460571289,
-0.32662856578826904,
-0.8815243244171143,
-0.5857173800468445,
-0.6656384468078613,
-0.25381842255592346,
-0.4856760501861572,
0.06092438846826553,
0.36107438802719116,
0.19978421926498413,
-0.8270761966705322,
0.09116334468126297,
-0.5877078175544739,
0.2510536313056946,
0.8699943423271179,
0.4215683341026306,
0.1506395787000656,
0.14732295274734497,
-0.3592783808708191,
-0.14858287572860718,
-0.7512004375457764,
-0.5544607639312744,
1.375322699546814,
0.6265898942947388,
0.7731695175170898,
0.03857011720538139,
0.7931574583053589,
0.035831160843372345,
0.052724480628967285,
-0.7712783217430115,
0.32810723781585693,
0.11199747025966644,
-0.8850802779197693,
-0.3071882128715515,
-0.34263935685157776,
-0.9441421031951904,
0.2432403564453125,
-0.32285529375076294,
-0.6931657791137695,
0.2850607633590698,
0.23645716905593872,
-0.30533450841903687,
0.4857112467288971,
-0.5654929876327515,
1.1060192584991455,
-0.07710471749305725,
-0.046825308352708817,
-0.19525150954723358,
-0.5020379424095154,
0.3355807662010193,
0.24053452908992767,
-0.35040774941444397,
0.059514909982681274,
0.24286571145057678,
1.1059939861297607,
-0.8512988090515137,
0.8762781023979187,
-0.5080459117889404,
0.36113399267196655,
0.4788459837436676,
-0.31804031133651733,
0.5479480624198914,
0.0420350581407547,
-0.15286403894424438,
0.2326814979314804,
-0.03984803333878517,
-0.6424044370651245,
-0.5559782981872559,
0.683806300163269,
-1.4421590566635132,
-0.23565079271793365,
-0.5687162280082703,
-0.23627685010433197,
-0.11478640139102936,
0.2947692275047302,
0.8925168514251709,
0.850857138633728,
-0.3024599552154541,
0.4097537696361542,
0.6172736883163452,
0.0249246247112751,
0.2715507745742798,
0.47407180070877075,
0.039868779480457306,
-0.794154703617096,
0.9120841026306152,
-0.060020748525857925,
0.16613012552261353,
-0.07828717678785324,
0.22012829780578613,
-0.3739994466304779,
-0.6714016795158386,
-0.7217464447021484,
0.27452778816223145,
-0.591355562210083,
-0.1161373034119606,
-0.45599815249443054,
-0.6598811149597168,
-0.3187711238861084,
0.114730104804039,
-0.556290864944458,
-0.2125072479248047,
-0.5335378646850586,
-0.14022184908390045,
0.41305243968963623,
0.5981816053390503,
0.303719699382782,
0.8788960576057434,
-0.666443943977356,
0.04067159444093704,
0.23821720480918884,
0.42204877734184265,
0.23423607647418976,
-0.9570769667625427,
-0.42035308480262756,
0.11044924706220627,
-0.4539741277694702,
-0.7958875298500061,
0.5129662156105042,
0.24414879083633423,
0.8466346263885498,
0.6343642473220825,
-0.14303414523601532,
0.9396354556083679,
-0.3012617826461792,
0.9407646656036377,
0.46480607986450195,
-0.7213081121444702,
0.6671274900436401,
-0.5239181518554688,
0.40536999702453613,
0.6831488013267517,
0.4785546362400055,
-0.4578702449798584,
-0.07669499516487122,
-1.1390255689620972,
-0.6793608665466309,
0.8795753121376038,
0.4519081115722656,
0.008159033954143524,
0.2665551006793976,
0.33508870005607605,
-0.08673052489757538,
0.20897795259952545,
-0.756195068359375,
-0.7209424376487732,
-0.48374441266059875,
-0.36248883605003357,
0.05125574767589569,
-0.3606194853782654,
-0.1657068431377411,
-0.5063521862030029,
1.0950751304626465,
-0.044788312166929245,
0.4802555739879608,
0.2137538492679596,
0.10623180866241455,
-0.1973075121641159,
0.04226517304778099,
0.7598705291748047,
0.6671668291091919,
-0.7599424719810486,
-0.2492295801639557,
0.26987361907958984,
-0.9093306660652161,
0.05815958231687546,
0.09789559990167618,
-0.2903578281402588,
0.25410521030426025,
0.6158255338668823,
1.4681354761123657,
0.1669541895389557,
-0.20069698989391327,
0.632814347743988,
-0.13278700411319733,
-0.5901027917861938,
-0.6340962052345276,
0.033825673162937164,
-0.042175985872745514,
0.19030936062335968,
0.5409309267997742,
0.42169132828712463,
0.08305154740810394,
-0.30103522539138794,
0.04480220377445221,
0.23959244787693024,
-0.6085781455039978,
-0.32585734128952026,
0.6912530064582825,
0.21238191425800323,
-0.3996620178222656,
0.8446115255355835,
0.16332827508449554,
-0.4339660704135895,
0.7519007921218872,
0.6430313587188721,
1.0550857782363892,
-0.2597750127315521,
-0.10778530687093735,
0.7969159483909607,
0.1930674910545349,
0.003354824148118496,
0.6690967679023743,
0.1595195233821869,
-0.6529714465141296,
-0.272387832403183,
-0.7137466669082642,
-0.41143661737442017,
0.7424312829971313,
-1.3545148372650146,
0.6612434387207031,
-0.5587829351425171,
-0.4901781380176544,
0.10315072536468506,
0.4048473834991455,
-1.007599115371704,
0.6627201437950134,
0.16781401634216309,
1.359593152999878,
-0.9240078926086426,
0.855257511138916,
0.6589314937591553,
-0.39630424976348877,
-1.1721727848052979,
-0.18095393478870392,
-0.12808115780353546,
-1.0440685749053955,
0.6877290606498718,
0.16231393814086914,
-0.0033635320141911507,
0.12739762663841248,
-0.5938850045204163,
-0.9237409234046936,
1.1849006414413452,
0.2326774299144745,
-0.7036271095275879,
-0.03697657212615013,
0.1682484894990921,
0.5912044048309326,
-0.2637321650981903,
0.6120851635932922,
0.34897103905677795,
0.2726097106933594,
0.13542477786540985,
-1.346264123916626,
-0.14234033226966858,
-0.4662590026855469,
-0.08099083602428436,
0.03866840898990631,
-0.8931200504302979,
1.0147209167480469,
-0.0554051473736763,
0.23074203729629517,
0.26278096437454224,
0.7628410458564758,
0.4887532889842987,
0.341696172952652,
0.6598278880119324,
1.0151349306106567,
0.6432410478591919,
-0.10454398393630981,
0.8495296239852905,
-0.4299607276916504,
0.5970131158828735,
1.1955655813217163,
0.09187164902687073,
0.8561846017837524,
0.2966301441192627,
-0.2830134332180023,
0.6756063103675842,
0.7956053614616394,
-0.12986528873443604,
0.6212232708930969,
0.04059965908527374,
-0.2558751404285431,
-0.1839766800403595,
0.14342163503170013,
-0.8034390211105347,
0.596299946308136,
0.26800432801246643,
-0.6131178140640259,
-0.283225953578949,
-0.24018539488315582,
-0.05963059142231941,
-0.3479614853858948,
-0.4066402018070221,
0.7396532893180847,
-0.29396161437034607,
-0.29251378774642944,
1.0063225030899048,
0.16407568752765656,
0.590950608253479,
-0.9226219654083252,
-0.11081798374652863,
-0.0006387345492839813,
0.3751964271068573,
-0.2720138430595398,
-0.5602827072143555,
0.17546343803405762,
-0.028127841651439667,
-0.3736008107662201,
0.15256376564502716,
0.6442960500717163,
-0.1886785924434662,
-0.7158142328262329,
0.09947172552347183,
0.4131286144256592,
0.21874843537807465,
-0.1392098218202591,
-0.9153117537498474,
0.09872721880674362,
0.13011403381824493,
-0.6012759804725647,
0.08769245445728302,
0.1866474449634552,
0.020376892760396004,
0.640781044960022,
0.7354890704154968,
0.2683221697807312,
0.20692995190620422,
0.291067898273468,
1.1079294681549072,
-0.7445573210716248,
-0.8843293786048889,
-0.6324689388275146,
0.5281522274017334,
-0.2514629364013672,
-1.0826438665390015,
0.6429435610771179,
1.094597578048706,
0.7271548509597778,
-0.12170324474573135,
0.8332992792129517,
0.12254194915294647,
0.7942431569099426,
-0.5588671565055847,
0.8957803845405579,
-0.41732436418533325,
-0.13590092957019806,
-0.1908450573682785,
-1.0495578050613403,
0.0647844523191452,
0.7948387861251831,
-0.2027183324098587,
0.025767449289560318,
0.2906244695186615,
0.8473923802375793,
-0.06776764988899231,
0.1934690922498703,
0.18354488909244537,
0.03501356393098831,
0.13002552092075348,
0.5547985434532166,
0.6613097190856934,
-0.9306327700614929,
0.6049785614013672,
-0.6077163219451904,
-0.18430525064468384,
-0.07491164654493332,
-0.5402946472167969,
-1.14284348487854,
-0.4243595004081726,
-0.41707608103752136,
-0.4867229163646698,
0.02547474391758442,
1.1125154495239258,
1.1290181875228882,
-0.8856343626976013,
-0.49460113048553467,
-0.025482742115855217,
-0.475017786026001,
-0.36336901783943176,
-0.239895761013031,
0.5925068259239197,
0.04320452734827995,
-0.7517979145050049,
0.13338539004325867,
-0.46953827142715454,
0.38551315665245056,
-0.31281566619873047,
-0.5078954696655273,
-0.056956637650728226,
-0.32438209652900696,
0.08641600608825684,
0.11346094310283661,
-0.7418267130851746,
-0.20784777402877808,
0.027583718299865723,
-0.11264985799789429,
0.14772513508796692,
0.34972789883613586,
-0.7982838153839111,
0.3794252872467041,
0.31220531463623047,
0.08228839188814163,
1.0279048681259155,
-0.03154751658439636,
0.37200313806533813,
-0.9220396876335144,
0.5489959716796875,
0.25645682215690613,
0.35088634490966797,
0.11965250223875046,
-0.3597869277000427,
0.38399189710617065,
0.4516589939594269,
-0.4497983455657959,
-0.9563258290290833,
-0.29067090153694153,
-1.3119235038757324,
0.2914397418498993,
1.1321287155151367,
-0.0037310884799808264,
-0.3629527688026428,
0.11082344502210617,
-0.41946062445640564,
0.36102885007858276,
-0.44476422667503357,
0.32060524821281433,
0.7503588795661926,
0.038835447281599045,
-0.1123870238661766,
-0.5687059164047241,
0.5926158428192139,
0.22615860402584076,
-0.41310641169548035,
-0.28689077496528625,
0.1913107931613922,
0.6386438608169556,
0.08678040653467178,
0.6589061617851257,
-0.06863203644752502,
0.44244664907455444,
0.3242718279361725,
0.33820095658302307,
-0.40343812108039856,
-0.2925945818424225,
-0.4132385849952698,
0.035901304334402084,
0.15411804616451263,
-0.8032622933387756
] |
emilianJR/epiCRealism | emilianJR | "2023-07-23T14:14:35Z" | 172,655 | 25 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-06-25T12:13:26Z" | ---
language:
- en
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Diffuser model for this SD checkpoint:
https://civitai.com/models/25694/epicrealism
**emilianJR/epiCRealism** is the HuggingFace diffuser that you can use with **diffusers.StableDiffusionPipeline()**.
Examples | Examples | Examples
---- | ---- | ----
![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/d0ecbdfc-b995-4582-91f6-95b214e9d35e/width=1024/02196-1169503035-Best%20quality,%20masterpiece,%20ultra%20high%20res,%20(photorealistic_1.4),%20raw%20photo,%20((monochrome)),%20((grayscale)),%20black%20and%20white%20photo.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/260b9915-c9ca-4461-9d9f-1bec8a5198a4/width=1024/02198-476988828-professional%20portrait%20photograph%20of%20a%20gorgeous%20Norwegian%20girl%20in%20winter%20clothing%20with%20long%20wavy%20blonde%20hair,%20sultry%20flirty%20look,.jpeg) | ![]()
![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/c8ea1b64-241a-41b8-bc73-6346ffa83eea/width=1024/02197-1830217805-(detailed%20face,%20detailed%20eyes,%20clear%20skin,%20clear%20eyes),%20lotr,%20fantasy,%20elf,%20female,%20full%20body,%20looking%20at%20viewer,%20portrait,%20phot.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/628fe66f-e43b-4ab9-96f0-30b4fa03975a/width=1024/02200-3203910620-RAW%20photo,%20a%2022-year-old-girl,%20upper%20body,%20selfie%20in%20a%20car,%20blue%20hoodie,%20inside%20a%20car,%20driving,%20(lipstick_0.7),%20soft%20lighting,%20h.jpeg) | ![]()
-------
## 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "emilianJR/epiCRealism"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "YOUR PROMPT"
image = pipe(prompt).images[0]
image.save("image.png")
```
## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) | [
-0.5670022964477539,
-0.6971662640571594,
0.5051854848861694,
0.43855804204940796,
-0.32742783427238464,
-0.08743158727884293,
0.36329054832458496,
-0.3162332773208618,
0.34291133284568787,
0.5681928396224976,
-0.7158987522125244,
-0.7359604835510254,
-0.5586124062538147,
-0.08099143207073212,
-0.23115533590316772,
0.8920280933380127,
-0.3218463361263275,
-0.009922669269144535,
-0.04295115917921066,
-0.13626238703727722,
-0.27774807810783386,
0.056955236941576004,
-0.8741728067398071,
-0.08877526223659515,
0.5056298971176147,
-0.016689345240592957,
0.6972265839576721,
0.3313407003879547,
0.4345463514328003,
0.3409101963043213,
-0.584635317325592,
-0.031613074243068695,
-0.39531365036964417,
0.0667903870344162,
-0.1582018882036209,
-0.2587103545665741,
-0.8009457588195801,
0.24624918401241302,
0.5915989875793457,
0.44133132696151733,
-0.3259986340999603,
0.008516973815858364,
0.035817619413137436,
0.5556975603103638,
-0.45527127385139465,
-0.20417141914367676,
0.017146514728665352,
0.023425092920660973,
-0.28486016392707825,
0.08171723783016205,
0.008319973014295101,
-0.546661376953125,
0.19952860474586487,
-0.7788425087928772,
0.3423144817352295,
-0.10246463119983673,
1.4108209609985352,
0.15787111222743988,
-0.36248284578323364,
-0.2863841950893402,
-0.6995535492897034,
0.5092677474021912,
-0.5252929925918579,
0.3110797107219696,
0.0795932412147522,
0.3619556128978729,
-0.023938870057463646,
-1.2066235542297363,
-0.6379100680351257,
0.3281717598438263,
-0.10378692299127579,
0.4329417645931244,
-0.21564078330993652,
-0.04253825545310974,
0.3742052912712097,
0.40052032470703125,
-0.7571189403533936,
-0.18730635941028595,
-0.6679953336715698,
0.051050860434770584,
0.5460461974143982,
0.22126039862632751,
0.44134923815727234,
-0.11405399441719055,
-0.7739051580429077,
0.06108299270272255,
-0.3925287127494812,
0.12245748937129974,
0.06447067111730576,
-0.34619051218032837,
-0.558318555355072,
0.4816541075706482,
-0.1975686252117157,
0.6771441698074341,
0.46372318267822266,
-0.20388171076774597,
0.2593434751033783,
-0.29443618655204773,
-0.1996861845254898,
-0.4783567488193512,
0.7246570587158203,
0.8566720485687256,
0.14415715634822845,
0.09699036180973053,
-0.07419796288013458,
-0.04641278088092804,
0.12894894182682037,
-1.4340894222259521,
-0.33503100275993347,
0.5144730806350708,
-0.5997785925865173,
-0.452341228723526,
0.059881649911403656,
-0.8969583511352539,
-0.157764732837677,
-0.030733658000826836,
0.15030032396316528,
-0.41761186718940735,
-0.5822837352752686,
0.15165528655052185,
-0.34504497051239014,
0.41797658801078796,
0.7257245779037476,
-0.5511532425880432,
-0.03229622542858124,
0.21839402616024017,
1.3201701641082764,
-0.018174488097429276,
0.0868808701634407,
-0.0077263424172997475,
0.42458784580230713,
-0.28167808055877686,
0.962672233581543,
-0.2613540291786194,
-0.592323362827301,
-0.12321073561906815,
0.5192826390266418,
-0.18542344868183136,
-0.3729018270969391,
0.846832275390625,
-0.5944521427154541,
0.10491416603326797,
-0.4097456932067871,
-0.526495099067688,
-0.17337149381637573,
-0.0901416763663292,
-0.6170756816864014,
0.9668759107589722,
0.3386659622192383,
-1.1097897291183472,
0.4835866093635559,
-0.5603049397468567,
0.15721547603607178,
0.36234724521636963,
-0.0268426351249218,
-0.7144865393638611,
-0.0932091772556305,
-0.05734685808420181,
0.638937771320343,
0.029780974611639977,
-0.11322764307260513,
-0.6108026504516602,
-0.29245179891586304,
-0.07795607298612595,
0.11720643192529678,
1.368083119392395,
0.313630610704422,
-0.4012569785118103,
0.061580657958984375,
-0.44547170400619507,
-0.03184732794761658,
0.23630984127521515,
-0.2606612741947174,
-0.15839114785194397,
-0.46511322259902954,
0.4280349314212799,
0.5089071989059448,
0.10295338183641434,
-0.8830496072769165,
0.2506200075149536,
-0.017496995627880096,
0.5902432203292847,
0.8027241230010986,
0.3672417104244232,
0.4471076726913452,
-0.6353408694267273,
0.7311345934867859,
0.38928285241127014,
0.32399603724479675,
0.015878736972808838,
-0.6395187973976135,
-0.8690316081047058,
-0.7897746562957764,
-0.024433737620711327,
0.38599449396133423,
-0.8711804747581482,
0.37065330147743225,
0.005234693642705679,
-1.0203043222427368,
-0.4815528392791748,
-0.033960383385419846,
0.23840849101543427,
0.7280408143997192,
0.1783004254102707,
-0.5253341794013977,
-0.29331356287002563,
-0.7416486144065857,
0.0628570020198822,
0.07215623557567596,
-0.10132047533988953,
0.19409435987472534,
0.5935574769973755,
-0.34627091884613037,
0.8504205942153931,
-0.6427572965621948,
-0.542013943195343,
-0.1377590000629425,
-0.11316536366939545,
0.48567625880241394,
0.8827601075172424,
0.9971107244491577,
-0.9943012595176697,
-0.8249742984771729,
-0.20960745215415955,
-0.9217652678489685,
-0.10121641308069229,
0.008881903253495693,
-0.594954788684845,
0.1988324373960495,
0.39621230959892273,
-1.0391160249710083,
0.9464455246925354,
0.590775728225708,
-0.9238924384117126,
0.6277918219566345,
-0.316781222820282,
0.20064985752105713,
-1.1575676202774048,
0.4424065053462982,
0.350833535194397,
-0.6116500496864319,
-0.7457073926925659,
0.377747118473053,
0.06965044885873795,
0.046858157962560654,
-0.7066121697425842,
0.9998045563697815,
-0.6185173988342285,
0.5000526309013367,
-0.3501809239387512,
-0.146236851811409,
0.2310323268175125,
0.19784633815288544,
0.44272059202194214,
0.5307009220123291,
0.8660576343536377,
-0.5998989939689636,
0.33689871430397034,
0.5294913053512573,
-0.31332460045814514,
1.0698766708374023,
-1.0186707973480225,
0.03353611379861832,
-0.5004498362541199,
0.5320143103599548,
-1.1756771802902222,
-0.3796214461326599,
0.5566971302032471,
-0.3543147146701813,
0.22728262841701508,
-0.34837186336517334,
-0.26316970586776733,
-0.4169863760471344,
-0.2623400092124939,
0.4244350790977478,
0.8043782114982605,
-0.6170176267623901,
0.7440913319587708,
0.2817224860191345,
-0.08206737786531448,
-0.2285863310098648,
-0.7023913264274597,
-0.30157670378685,
-0.6162781715393066,
-1.015514612197876,
0.6328442692756653,
-0.37280553579330444,
-0.1468530297279358,
-0.24095842242240906,
0.02914106287062168,
-0.22057166695594788,
-0.2234400361776352,
0.5330927968025208,
0.6791889071464539,
-0.06237192079424858,
-0.6574727892875671,
0.14727477729320526,
-0.2294510304927826,
-0.09992992132902145,
-0.07950697839260101,
0.4974774718284607,
-0.1644171178340912,
-0.15457867085933685,
-0.9816102385520935,
0.306309312582016,
0.772510290145874,
0.16644345223903656,
1.2070133686065674,
0.8806124329566956,
-0.5529555082321167,
0.038180869072675705,
-0.6851627230644226,
-0.052367500960826874,
-0.5507890582084656,
-0.1320657879114151,
-0.3854701519012451,
-0.4632079303264618,
0.9045950770378113,
0.0680893212556839,
0.18483823537826538,
0.4955950975418091,
0.7560080289840698,
-0.2922263443470001,
1.0631886720657349,
0.6056102514266968,
0.38458624482154846,
0.567352294921875,
-0.7753259539604187,
-0.08465161919593811,
-1.1366186141967773,
-0.5380735397338867,
-0.21459892392158508,
-0.25847962498664856,
-0.27181684970855713,
-0.5894080996513367,
0.47877946496009827,
0.5304257869720459,
-0.5105144381523132,
0.5135219097137451,
-0.649021327495575,
0.40587174892425537,
0.27546581625938416,
0.41624099016189575,
0.21968364715576172,
-0.15952762961387634,
-0.012154237367212772,
-0.10919607430696487,
-0.4331609010696411,
-0.6187653541564941,
0.6501515507698059,
0.44280189275741577,
0.7499735355377197,
0.28314077854156494,
0.6534385681152344,
0.0318557433784008,
0.5170307755470276,
-0.3388462960720062,
0.4019220769405365,
-0.007430468685925007,
-0.9673192501068115,
0.06764332950115204,
-0.2776046097278595,
-0.7059597969055176,
0.3180485665798187,
-0.16533203423023224,
-0.749243974685669,
0.7834855318069458,
0.2319403886795044,
-0.48594072461128235,
0.3186763823032379,
-0.6277868747711182,
0.7682952284812927,
0.1802687793970108,
-0.8197916150093079,
0.2191479653120041,
-0.5384542346000671,
0.44779273867607117,
0.2139296978712082,
0.1076328307390213,
-0.16304095089435577,
-0.2395661175251007,
0.7499975562095642,
-0.6581863164901733,
0.7309648394584656,
-0.613432765007019,
-0.04846573621034622,
0.3054581582546234,
0.05604848638176918,
0.36090365052223206,
0.3891354501247406,
-0.1425214558839798,
0.2045011669397354,
0.320661723613739,
-0.6953113675117493,
-0.24629543721675873,
0.7812584042549133,
-0.6266537308692932,
-0.23320242762565613,
-0.6101258993148804,
-0.20095933973789215,
0.40306058526039124,
0.29167696833610535,
0.8127734661102295,
0.291978120803833,
-0.15526989102363586,
-0.18864959478378296,
0.8308887481689453,
-0.06377150863409042,
0.5043244361877441,
0.23120935261249542,
-0.4357796609401703,
-0.4216172993183136,
0.6089254021644592,
0.2171919196844101,
0.5779123902320862,
-0.3330942690372467,
0.01824507862329483,
-0.1813153773546219,
-0.4128861129283905,
-0.6007238626480103,
0.6422079801559448,
-0.7782664895057678,
-0.24540755152702332,
-0.6574748754501343,
-0.42975595593452454,
-0.32254883646965027,
-0.6654791235923767,
-0.2005893886089325,
-0.2447151094675064,
-0.6482118964195251,
0.16060589253902435,
0.6985416412353516,
0.4615859091281891,
-0.08754074573516846,
0.4400727152824402,
-0.3807481527328491,
0.35730791091918945,
0.2599450647830963,
0.31376463174819946,
0.09796497970819473,
-0.5064054131507874,
0.09362529963254929,
-0.11110544949769974,
-0.5070911645889282,
-0.9128196835517883,
0.6498679518699646,
0.2216654121875763,
0.3064945340156555,
0.6616989374160767,
-0.02123526856303215,
0.9571266174316406,
-0.3567258417606354,
0.6848483085632324,
0.4403168857097626,
-0.6995510458946228,
0.4950156807899475,
-0.7501137852668762,
0.2716349959373474,
0.4906601309776306,
0.49217870831489563,
-0.635464072227478,
-0.4072585701942444,
-0.8077067732810974,
-0.7585672736167908,
0.48919928073883057,
0.4105287790298462,
0.002361206104978919,
0.14312335848808289,
0.8074144124984741,
-0.060098208487033844,
0.07374690473079681,
-0.7305497527122498,
-0.4257471561431885,
-0.24493543803691864,
0.04977364093065262,
0.31594520807266235,
0.020685043185949326,
-0.2683110535144806,
-0.5721723437309265,
0.7856801152229309,
-0.09900996088981628,
0.3808135688304901,
0.5396757125854492,
0.18421123921871185,
-0.1976657509803772,
-0.3982740342617035,
0.3864554762840271,
0.8213630318641663,
-0.4286808967590332,
-0.3534992039203644,
-0.07021219283342361,
-0.6403282284736633,
0.09603863209486008,
0.0063702077604830265,
-0.5204394459724426,
0.1917797029018402,
0.04298487305641174,
0.6117691397666931,
-0.10613209009170532,
-0.2945166826248169,
0.8228029608726501,
-0.2737279236316681,
-0.19838613271713257,
-0.5545288324356079,
0.07535488903522491,
0.537584125995636,
0.5339009165763855,
0.14855308830738068,
0.37901318073272705,
0.25082096457481384,
-0.40713411569595337,
0.06338580697774887,
0.5641785860061646,
-0.4456629455089569,
-0.3767099678516388,
1.2866095304489136,
-0.0032653682865202427,
0.032883767038583755,
0.5189107656478882,
-0.08072344213724136,
-0.32576698064804077,
0.6581851243972778,
0.3731580078601837,
0.9077046513557434,
-0.4969262480735779,
0.41338878870010376,
0.72385174036026,
-0.0316188670694828,
-0.03444017469882965,
0.5203665494918823,
0.18855464458465576,
-0.44850775599479675,
0.09697496145963669,
-0.9584503769874573,
-0.13975387811660767,
-0.20845820009708405,
-0.7520594596862793,
0.6554756760597229,
-0.8327354192733765,
-0.28440195322036743,
0.13489745557308197,
-0.1177796721458435,
-0.8875146508216858,
0.3210306465625763,
0.041433580219745636,
1.191515564918518,
-0.9700364470481873,
0.8709400296211243,
0.43575066328048706,
-0.7053380608558655,
-0.606429398059845,
-0.05045584589242935,
0.08668657392263412,
-0.6752896904945374,
0.34002697467803955,
0.1357632279396057,
-0.10154153406620026,
-0.02025187946856022,
-0.7076060771942139,
-0.8970241546630859,
1.5980900526046753,
0.21795599162578583,
-0.39703506231307983,
-0.3609801232814789,
-0.4614572525024414,
0.4465199410915375,
-0.5323935151100159,
0.5147424936294556,
0.48269468545913696,
0.4082905352115631,
0.7659087777137756,
-0.6082175374031067,
0.2736656069755554,
-0.31867706775665283,
0.5574575662612915,
-0.12634295225143433,
-1.080855369567871,
1.1442214250564575,
-0.18771018087863922,
-0.42702025175094604,
0.8079684376716614,
0.7979286313056946,
0.6295419335365295,
0.30659690499305725,
0.5773057341575623,
0.8373424410820007,
0.40326306223869324,
-0.21484829485416412,
1.0997880697250366,
-0.03719741106033325,
0.6756808161735535,
0.45538944005966187,
-0.01680939458310604,
0.736894965171814,
0.36495742201805115,
-0.09444934129714966,
0.796968936920166,
0.9054341912269592,
0.03283478692173958,
0.6303982734680176,
0.036657389253377914,
-0.5644640326499939,
-0.16560018062591553,
-0.05700124427676201,
-0.47923043370246887,
-0.03012639284133911,
0.3190063536167145,
-0.3903070092201233,
-0.17089176177978516,
0.12454681098461151,
0.32020968198776245,
-0.2898986339569092,
-0.3427843153476715,
0.6570579409599304,
0.10209085792303085,
-0.2580234110355377,
0.7605929374694824,
-0.10446444898843765,
0.9266903400421143,
-0.7059921622276306,
0.018932759761810303,
-0.22413024306297302,
0.34317880868911743,
-0.5945397019386292,
-0.9872035384178162,
0.3943394124507904,
-0.046368520706892014,
-0.04045708850026131,
-0.3155946433544159,
0.647479236125946,
-0.367981493473053,
-0.8908783197402954,
0.24973496794700623,
0.16305328905582428,
0.4305584132671356,
0.22884029150009155,
-1.0077046155929565,
0.2653871476650238,
-0.12324962019920349,
-0.500462532043457,
0.15152527391910553,
0.19734902679920197,
0.31999126076698303,
0.6835330724716187,
0.3734111785888672,
0.17019839584827423,
0.11717626452445984,
-0.31665879487991333,
1.1648304462432861,
-0.41748207807540894,
-0.5038331747055054,
-0.5633343458175659,
1.0004417896270752,
-0.24299314618110657,
-0.5308600664138794,
0.8262513279914856,
0.472561776638031,
0.7389068603515625,
-0.13143229484558105,
0.6526937484741211,
-0.3998608887195587,
0.5900394320487976,
-0.5205437541007996,
1.1529104709625244,
-0.8070541620254517,
-0.09620609134435654,
-0.6798856854438782,
-1.1348192691802979,
-0.270198792219162,
1.1701074838638306,
0.006108341738581657,
0.2651526629924774,
0.3963617980480194,
1.0256437063217163,
-0.288141131401062,
-0.0756644606590271,
-0.06738070398569107,
0.07369602471590042,
0.4408688247203827,
0.24649600684642792,
0.6491588354110718,
-0.4973355233669281,
0.08653952926397324,
-0.5852905511856079,
-0.6284421682357788,
-0.011030083522200584,
-0.7906749248504639,
-1.021837592124939,
-0.8712866306304932,
-0.6755243539810181,
-0.929465115070343,
-0.13404624164104462,
0.50202476978302,
1.090001106262207,
-0.6541538834571838,
-0.10119684040546417,
-0.1792813241481781,
-0.12516561150550842,
0.009815947152674198,
-0.29374590516090393,
0.35265564918518066,
0.4927841126918793,
-1.1453720331192017,
-0.2358197271823883,
0.07037557661533356,
0.6574417948722839,
-0.48868849873542786,
-0.2543993890285492,
-0.2963379919528961,
0.02854967676103115,
0.24419893324375153,
0.395403653383255,
-0.6473134756088257,
-0.14421381056308746,
-0.29874181747436523,
-0.019649822264909744,
0.050205741077661514,
0.37229079008102417,
-0.730364978313446,
0.23570135235786438,
0.400436133146286,
-0.0028995417524129152,
0.9026903510093689,
0.10919458419084549,
0.21643394231796265,
-0.31121042370796204,
0.21402737498283386,
0.25194230675697327,
0.4824661612510681,
0.20495185256004333,
-0.4360785186290741,
0.4970409572124481,
0.40189284086227417,
-0.8155402541160583,
-0.9117212891578674,
0.1689419150352478,
-1.4062726497650146,
-0.16448824107646942,
1.0179399251937866,
-0.4318315386772156,
-0.3749412000179291,
-0.022148683667182922,
-0.42189300060272217,
0.03680502623319626,
-0.3623306453227997,
0.46834349632263184,
0.5119109153747559,
-0.19195282459259033,
-0.418300986289978,
-0.5393826365470886,
0.5706028342247009,
0.17110659182071686,
-0.7187921404838562,
-0.14288818836212158,
0.41501837968826294,
0.7854903936386108,
0.39830321073532104,
0.8336580395698547,
-0.27401411533355713,
0.36462339758872986,
-0.08063574880361557,
0.08319170773029327,
0.20310194790363312,
-0.05677972361445427,
-0.30040431022644043,
0.00757081201300025,
-0.3049831688404083,
-0.17009365558624268
] |
openai/whisper-tiny | openai | "2023-09-08T13:08:03Z" | 172,232 | 127 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-09-26T06:50:30Z" | ---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: whisper-tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 7.54
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 17.15
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args:
language: hi
metrics:
- name: Test WER
type: wer
value: 141
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
# Usage
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
The `WhisperProcessor` is used to:
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
2. Post-process the model outputs (converting them from tokens to text)
The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
1. The transcription always starts with the `<|startoftranscript|>` token
2. The second token is the language token (e.g. `<|en|>` for English)
3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
Thus, a typical sequence of context tokens might look as follows:
```
<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
```
Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
the Whisper model will automatically predict the output langauge and task itself.
The context tokens can be set accordingly:
```python
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
```
Which forces the model to predict in English under the task of speech recognition.
## Transcription
### English to English
In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
(English) and task (transcribe).
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
>>> model.config.forced_decoder_ids = None
>>> # load dummy dataset and read audio files
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
### French to French
The following example demonstrates French to French transcription by setting the decoder ids appropriately.
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids)
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
```
## Translation
Setting the task to "translate" forces the Whisper model to perform speech translation.
### French to English
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' A very interesting work, we will finally be given on this subject.']
```
## Evaluation
This code snippet shows how to evaluate Whisper Tiny on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from evaluate import load
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny").to("cuda")
>>> def map_to_pred(batch):
>>> audio = batch["audio"]
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
>>>
>>> with torch.no_grad():
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
>>> transcription = processor.decode(predicted_ids)
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
>>> return batch
>>> result = librispeech_test_clean.map(map_to_pred)
>>> wer = load("wer")
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
7.547098647858638
```
## Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
```python
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="openai/whisper-tiny",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
```
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
| [
-0.19815215468406677,
-0.5889940857887268,
0.11825252324342728,
0.4438113570213318,
-0.1219695657491684,
-0.1467207372188568,
-0.33788082003593445,
-0.5532888770103455,
0.2246602177619934,
0.4507952332496643,
-0.8603829741477966,
-0.5733076930046082,
-0.7740853428840637,
-0.005505186505615711,
-0.545316755771637,
1.0368822813034058,
0.13038358092308044,
-0.003908696584403515,
0.17335741221904755,
-0.11742306500673294,
-0.45712488889694214,
-0.43571892380714417,
-0.7464501857757568,
-0.22043108940124512,
0.1475096195936203,
0.22946001589298248,
0.43032678961753845,
0.5386703014373779,
0.11066557466983795,
0.4139619469642639,
-0.43673089146614075,
-0.026496317237615585,
-0.4153220057487488,
-0.10769634693861008,
0.3641563653945923,
-0.5598229765892029,
-0.6094960570335388,
0.07534030079841614,
0.7532132267951965,
0.5433023571968079,
-0.2536575198173523,
0.43611326813697815,
0.26449939608573914,
0.3285748362541199,
-0.2318652868270874,
0.30394789576530457,
-0.6403626203536987,
-0.14435024559497833,
-0.2874811589717865,
-0.009964577853679657,
-0.32892563939094543,
-0.2755202054977417,
0.529402494430542,
-0.5613753795623779,
0.3071269392967224,
0.049187734723091125,
1.0248216390609741,
0.23345328867435455,
-0.17065179347991943,
-0.4010235071182251,
-0.7242200374603271,
1.0643110275268555,
-0.8902699947357178,
0.4751645028591156,
0.5039161443710327,
0.18794742226600647,
-0.062479183077812195,
-0.9122348427772522,
-0.7263608574867249,
-0.02415400929749012,
-0.15171624720096588,
0.2590368092060089,
-0.4879834055900574,
-0.0031088716350495815,
0.24343432486057281,
0.27926790714263916,
-0.4907408654689789,
0.01570059545338154,
-0.6612253189086914,
-0.7207138538360596,
0.5812312960624695,
0.02131420187652111,
0.3657042384147644,
-0.3137238919734955,
-0.17860548198223114,
-0.32340502738952637,
-0.3329768478870392,
0.4718739688396454,
0.3532025218009949,
0.5291920900344849,
-0.7007828950881958,
0.42194733023643494,
-0.12065589427947998,
0.6561897993087769,
0.1841135025024414,
-0.6875863075256348,
0.6472597718238831,
-0.23671594262123108,
-0.18159395456314087,
0.37208303809165955,
1.0384989976882935,
0.2678144574165344,
0.1354253888130188,
0.0632585659623146,
-0.23550570011138916,
0.12810492515563965,
-0.11026934534311295,
-0.762529730796814,
0.040815457701683044,
0.49269184470176697,
-0.5952059030532837,
-0.35614892840385437,
-0.27113500237464905,
-0.5313602089881897,
0.24183353781700134,
-0.23710238933563232,
0.7316452264785767,
-0.5775746703147888,
-0.3413451015949249,
0.1331922560930252,
-0.381759375333786,
0.2232496589422226,
0.03237965330481529,
-0.8704308271408081,
0.3888692259788513,
0.42023736238479614,
0.9469178318977356,
0.08777111023664474,
-0.664740264415741,
-0.597568690776825,
0.07811315357685089,
0.059165917336940765,
0.4811496436595917,
-0.24798253178596497,
-0.591806173324585,
-0.10952369123697281,
0.18188859522342682,
-0.4198736846446991,
-0.5310295224189758,
0.7056504487991333,
-0.10387524962425232,
0.4755377471446991,
-0.047350700944662094,
-0.47789067029953003,
-0.24873095750808716,
-0.17769742012023926,
-0.4680960476398468,
0.9684133529663086,
0.13703130185604095,
-0.7391424775123596,
0.1246720403432846,
-0.5661236643791199,
-0.522825300693512,
-0.18255670368671417,
0.229029580950737,
-0.4466058909893036,
0.002715455833822489,
0.4633474051952362,
0.4683316946029663,
-0.12120658904314041,
0.062005285173654556,
0.10077318549156189,
-0.4240972399711609,
0.3539941608905792,
-0.4665721356868744,
1.0333364009857178,
0.1547880321741104,
-0.3895604908466339,
0.19209104776382446,
-0.8021048903465271,
0.08577891439199448,
0.07643968611955643,
-0.26858654618263245,
0.07473920285701752,
-0.011081947945058346,
0.2672899663448334,
0.11935993283987045,
0.19064681231975555,
-0.7078768014907837,
-0.05447039008140564,
-0.7273539304733276,
0.9089850783348083,
0.5878139734268188,
-0.02763117104768753,
0.4080457389354706,
-0.5740108489990234,
0.3058619499206543,
0.13626952469348907,
0.3555970788002014,
-0.226337730884552,
-0.6645768284797668,
-0.868410587310791,
-0.39925694465637207,
0.48407411575317383,
0.8061790466308594,
-0.4760221242904663,
0.5635864734649658,
-0.320881724357605,
-0.614213764667511,
-1.324228286743164,
-0.0603393018245697,
0.5780653357505798,
0.6413961052894592,
0.6676194071769714,
-0.045478809624910355,
-0.6826549768447876,
-0.8182047605514526,
-0.151592418551445,
-0.3145059645175934,
-0.1895298957824707,
0.3723887503147125,
0.3940761387348175,
-0.4231874346733093,
0.7331840991973877,
-0.4216432273387909,
-0.593518853187561,
-0.36043551564216614,
0.0606139712035656,
0.46532389521598816,
0.6580871343612671,
0.35439032316207886,
-0.7659934759140015,
-0.4181704819202423,
-0.20623253285884857,
-0.5487745404243469,
-0.155267134308815,
-0.11692367494106293,
0.0008244021446444094,
0.1910504400730133,
0.4455253481864929,
-0.731794536113739,
0.47391700744628906,
0.694586455821991,
-0.19670185446739197,
0.6380433440208435,
0.06337986141443253,
-0.05874328687787056,
-1.2001115083694458,
0.012522983364760876,
-0.2528364956378937,
-0.18031933903694153,
-0.7318223118782043,
-0.2442445009946823,
-0.08066638559103012,
-0.10414104908704758,
-0.6141263246536255,
0.6576182842254639,
-0.3449864089488983,
0.061697203665971756,
-0.05986648052930832,
0.1597847193479538,
-0.053622905164957047,
0.6587272882461548,
0.24906648695468903,
0.7158682942390442,
0.8301582932472229,
-0.5807938575744629,
0.2094130665063858,
0.6148010492324829,
-0.2695285975933075,
0.2931060492992401,
-0.9778722524642944,
0.1308315098285675,
0.1066652238368988,
0.1455651819705963,
-0.912904679775238,
-0.11226917803287506,
0.09463614225387573,
-0.9736557602882385,
0.43812209367752075,
-0.3770070970058441,
-0.3412784934043884,
-0.5542327165603638,
-0.1173604354262352,
0.09049718081951141,
0.8895823359489441,
-0.515633761882782,
0.7165044546127319,
0.44672781229019165,
-0.24528397619724274,
-0.5340390205383301,
-0.75043785572052,
-0.09975139051675797,
-0.1466607302427292,
-0.7935680747032166,
0.503735363483429,
-0.022574052214622498,
0.05721485987305641,
-0.09159287065267563,
-0.07034489512443542,
0.12720581889152527,
-0.22410044074058533,
0.4786621928215027,
0.4088631570339203,
-0.09920598566532135,
-0.26348477602005005,
0.2528006136417389,
-0.26279520988464355,
-0.012659905478358269,
-0.2866942286491394,
0.664967954158783,
-0.27756884694099426,
-0.004749257583171129,
-0.7965413331985474,
0.385898619890213,
0.6174526810646057,
-0.32048359513282776,
0.6794846653938293,
0.7824754118919373,
-0.2971063256263733,
-0.18686546385288239,
-0.6156402826309204,
-0.21819721162319183,
-0.5529670119285583,
0.18585079908370972,
-0.5065494775772095,
-0.8369544744491577,
0.8066208362579346,
0.24094954133033752,
0.1440054327249527,
0.6886124610900879,
0.547086238861084,
-0.17396792769432068,
1.1021974086761475,
0.5446817874908447,
-0.26483798027038574,
0.27276599407196045,
-0.7073331475257874,
-0.09172559529542923,
-1.0262967348098755,
-0.4035988748073578,
-0.5707898736000061,
-0.21530362963676453,
-0.469600647687912,
-0.2868853211402893,
0.4797937273979187,
0.1897488385438919,
-0.001247621257789433,
0.5404959321022034,
-0.722966730594635,
0.021600523963570595,
0.6913913488388062,
0.0030585238710045815,
0.07449448853731155,
-0.01998041570186615,
-0.2994183301925659,
-0.043777573853731155,
-0.541280210018158,
-0.418387770652771,
1.0019456148147583,
0.47368308901786804,
0.5001692771911621,
-0.022106284275650978,
0.7524208426475525,
0.009631690569221973,
0.02223283052444458,
-0.8498849868774414,
0.5269351601600647,
-0.14380140602588654,
-0.5297890901565552,
-0.4134591221809387,
-0.27777472138404846,
-0.8712832927703857,
0.19452044367790222,
-0.16202020645141602,
-0.782393753528595,
0.14716243743896484,
0.011045257560908794,
-0.34612298011779785,
0.1904483288526535,
-0.7611711025238037,
0.685457706451416,
0.1776624172925949,
0.1470641940832138,
0.019067447632551193,
-0.7626270651817322,
0.168709859251976,
0.08357064425945282,
0.14186209440231323,
-0.06718044728040695,
0.1362611949443817,
1.0719958543777466,
-0.5443060994148254,
0.9974645376205444,
-0.30377262830734253,
0.046514030545949936,
0.4709649384021759,
-0.0879688560962677,
0.39069271087646484,
-0.18719492852687836,
-0.0962061807513237,
0.5154377818107605,
0.3969162106513977,
-0.2850591540336609,
-0.2630881667137146,
0.5663480758666992,
-1.098819375038147,
-0.38333603739738464,
-0.2657984793186188,
-0.30875614285469055,
-0.09886214137077332,
0.27278435230255127,
0.9368852376937866,
0.7464452385902405,
-0.14458012580871582,
-0.03280707448720932,
0.42428767681121826,
-0.22403182089328766,
0.5869178175926208,
0.6635644435882568,
-0.21409687399864197,
-0.4951094686985016,
0.953903317451477,
0.2942105531692505,
0.22989720106124878,
0.27612626552581787,
0.3783293068408966,
-0.4549805223941803,
-0.6773669123649597,
-0.5884289741516113,
0.342843621969223,
-0.5264059901237488,
-0.17119741439819336,
-0.9403768181800842,
-0.5654182434082031,
-0.7127784490585327,
0.037742581218481064,
-0.41161245107650757,
-0.3096679747104645,
-0.5149149894714355,
0.1284037083387375,
0.5469684600830078,
0.4237210750579834,
-0.012886020354926586,
0.5974724888801575,
-1.0364621877670288,
0.4586145281791687,
0.33872896432876587,
0.07368851453065872,
0.02010612189769745,
-1.0628347396850586,
-0.09686087816953659,
0.23133961856365204,
-0.20348308980464935,
-0.7461870312690735,
0.5661922693252563,
0.3735691010951996,
0.5544439554214478,
0.27442610263824463,
0.009546402841806412,
0.8363396525382996,
-0.7774485945701599,
0.8850100636482239,
0.1587371826171875,
-1.301871418952942,
0.781430184841156,
-0.33922266960144043,
0.33990177512168884,
0.4212402403354645,
0.33061808347702026,
-0.7304580211639404,
-0.4778786301612854,
-0.6679139733314514,
-0.6468783617019653,
0.8902343511581421,
0.38843685388565063,
0.15555961430072784,
0.11374412477016449,
0.2840421795845032,
0.07456494122743607,
0.14492438733577728,
-0.49394580721855164,
-0.4499462842941284,
-0.44981318712234497,
-0.27446985244750977,
-0.17146332561969757,
-0.16202963888645172,
-0.06088535860180855,
-0.5565699338912964,
0.7677536010742188,
-0.061000119894742966,
0.607424259185791,
0.4196740388870239,
-0.061519645154476166,
-0.037989966571331024,
0.10189580917358398,
0.599628210067749,
0.2656482756137848,
-0.19472262263298035,
-0.3593877851963043,
0.3329354524612427,
-0.8172587156295776,
0.0038627900648862123,
0.256124347448349,
-0.3234710097312927,
0.18479867279529572,
0.8133608102798462,
1.2279844284057617,
0.24077534675598145,
-0.4906506836414337,
0.7576456665992737,
-0.14575690031051636,
-0.3888493776321411,
-0.561747133731842,
0.04906542971730232,
0.29329317808151245,
0.21396000683307648,
0.33882972598075867,
0.1571696400642395,
0.07824905961751938,
-0.4969010651111603,
0.07429011166095734,
0.2768974304199219,
-0.46247878670692444,
-0.5546316504478455,
0.8464404344558716,
0.15535718202590942,
-0.5179710388183594,
0.7200799584388733,
0.08728810399770737,
-0.758039116859436,
0.4918522238731384,
0.7068809866905212,
1.0449455976486206,
-0.48841026425361633,
0.028730109333992004,
0.4442070424556732,
0.2823221683502197,
-0.06839102506637573,
0.536644458770752,
-0.13244840502738953,
-0.7927637696266174,
-0.443524569272995,
-1.0341098308563232,
-0.2548074722290039,
0.1556989550590515,
-0.9507720470428467,
0.31863898038864136,
-0.24682819843292236,
-0.30759397149086,
0.3272453546524048,
0.026637014001607895,
-0.8300237655639648,
0.12849555909633636,
0.09486696124076843,
1.0908221006393433,
-0.7781205177307129,
1.098917841911316,
0.2686719596385956,
-0.27253177762031555,
-1.129908800125122,
0.04587914049625397,
0.06289558112621307,
-1.0819447040557861,
0.43547284603118896,
0.3426879346370697,
-0.2221876084804535,
0.2002553641796112,
-0.56397545337677,
-0.8767322301864624,
1.0127794742584229,
0.12910906970500946,
-0.7223606109619141,
-0.12096969783306122,
-0.050647083669900894,
0.5437885522842407,
-0.32974857091903687,
0.12737911939620972,
0.781262993812561,
0.43148696422576904,
0.07293854653835297,
-1.4312524795532227,
-0.09781382232904434,
-0.2703022062778473,
-0.15134203433990479,
-0.008359442465007305,
-0.7474486827850342,
0.8666406273841858,
-0.3596561849117279,
-0.28124457597732544,
0.2988966703414917,
0.6969197988510132,
0.2112714797258377,
0.2276383489370346,
0.6361198425292969,
0.4940117299556732,
0.7305058836936951,
-0.18531136214733124,
1.0307776927947998,
-0.26033785939216614,
0.15240328013896942,
0.9297228455543518,
-0.023589065298438072,
1.1731393337249756,
0.3157109022140503,
-0.38853922486305237,
0.590984046459198,
0.39565742015838623,
0.0010881200432777405,
0.5827867388725281,
-0.12454456835985184,
-0.2893794775009155,
0.11042623221874237,
-0.05118764564394951,
-0.4323982894420624,
0.7930503487586975,
0.43994370102882385,
-0.27455365657806396,
0.34598633646965027,
0.3375561237335205,
0.09369190782308578,
-0.150940403342247,
-0.2944659888744354,
0.9947323799133301,
0.1706181913614273,
-0.5696650743484497,
0.8887549042701721,
0.04817090183496475,
1.0119855403900146,
-0.853430449962616,
0.2506472170352936,
0.039161574095487595,
0.18200227618217468,
-0.18025873601436615,
-0.6565222144126892,
0.35567206144332886,
-0.1434558629989624,
-0.3484824299812317,
-0.19654959440231323,
0.6009927988052368,
-0.7528821229934692,
-0.5428339838981628,
0.5628012418746948,
0.3806215822696686,
0.3215346336364746,
-0.11172648519277573,
-0.9153974056243896,
0.4146396219730377,
0.22946228086948395,
-0.24119263887405396,
0.186650812625885,
0.19410564005374908,
0.25733402371406555,
0.6495590209960938,
0.8698493838310242,
0.43405812978744507,
0.15865862369537354,
0.16752734780311584,
0.8279131054878235,
-0.6583066582679749,
-0.7243228554725647,
-0.7064405679702759,
0.4926067292690277,
0.05902443081140518,
-0.44010627269744873,
0.8339622020721436,
0.4967587888240814,
0.7139748930931091,
-0.025218352675437927,
0.7727194428443909,
0.050483036786317825,
0.9745453596115112,
-0.5678761601448059,
0.87544846534729,
-0.4592468738555908,
0.021352633833885193,
-0.33369240164756775,
-0.7420499920845032,
0.06603031605482101,
0.6003832221031189,
-0.08134084939956665,
-0.12776224315166473,
0.3928696811199188,
0.9252600073814392,
0.05593828484416008,
0.18128304183483124,
0.14204762876033783,
0.4247099757194519,
0.20479868352413177,
0.5636510252952576,
0.5972450375556946,
-0.8060253858566284,
0.690125584602356,
-0.5287383198738098,
-0.23825471103191376,
0.029747648164629936,
-0.6019972562789917,
-1.0182214975357056,
-0.8500908017158508,
-0.2801997661590576,
-0.5794804096221924,
-0.27521100640296936,
0.8199718594551086,
0.9204902648925781,
-0.891279935836792,
-0.327698677778244,
0.3135251998901367,
-0.025875689461827278,
-0.4264138638973236,
-0.25815069675445557,
0.589151918888092,
-0.017005080357193947,
-0.9221495985984802,
0.6601979732513428,
0.03943611681461334,
0.41356396675109863,
-0.1752207726240158,
-0.2285839319229126,
0.06012954190373421,
0.1077282503247261,
0.5654512643814087,
0.3095239996910095,
-0.8869587182998657,
-0.16685497760772705,
0.08652156591415405,
0.02380874566733837,
-0.03332185745239258,
0.44086703658103943,
-0.7405703663825989,
0.35973453521728516,
0.3722025156021118,
0.12079577147960663,
0.8237408995628357,
-0.31984493136405945,
0.3582557141780853,
-0.8109578490257263,
0.4880293309688568,
0.21248261630535126,
0.34106647968292236,
0.3552680015563965,
-0.2999054193496704,
0.15539789199829102,
0.3153981566429138,
-0.5604221224784851,
-1.0710872411727905,
-0.1347610503435135,
-1.145938515663147,
-0.14059844613075256,
1.0217844247817993,
0.041680317372083664,
-0.35490095615386963,
-0.09572357684373856,
-0.3459518849849701,
0.43167510628700256,
-0.48871973156929016,
0.32101309299468994,
0.5761584043502808,
0.05087864771485329,
-0.044235389679670334,
-0.6052964329719543,
0.7767158150672913,
0.21657516062259674,
-0.22740505635738373,
-0.031105946749448776,
0.04776580259203911,
0.6261790990829468,
0.2820293605327606,
0.8909933567047119,
-0.20407553017139435,
0.17794261872768402,
0.1592361181974411,
0.13921816647052765,
-0.10991781204938889,
-0.21507936716079712,
-0.4927344024181366,
-0.04443702846765518,
-0.3328133225440979,
-0.45226702094078064
] |
google/flan-t5-small | google | "2023-10-10T18:01:54Z" | 171,608 | 148 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"t5",
"text2text-generation",
"en",
"fr",
"ro",
"de",
"multilingual",
"dataset:svakulenk0/qrecc",
"dataset:taskmaster2",
"dataset:djaym7/wiki_dialog",
"dataset:deepmind/code_contests",
"dataset:lambada",
"dataset:gsm8k",
"dataset:aqua_rat",
"dataset:esnli",
"dataset:quasc",
"dataset:qed",
"arxiv:2210.11416",
"arxiv:1910.09700",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text2text-generation | "2022-10-21T09:59:24Z" | ---
language:
- en
- fr
- ro
- de
- multilingual
tags:
- text2text-generation
widget:
- text: "Translate to German: My name is Arthur"
example_title: "Translation"
- text: "Please answer to the following question. Who is going to be the next Ballon d'or?"
example_title: "Question Answering"
- text: "Q: Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering."
example_title: "Logical reasoning"
- text: "Please answer the following question. What is the boiling point of Nitrogen?"
example_title: "Scientific knowledge"
- text: "Answer the following yes/no question. Can you write a whole Haiku in a single tweet?"
example_title: "Yes/no question"
- text: "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"
example_title: "Reasoning task"
- text: "Q: ( False or not False or False ) is? A: Let's think step by step"
example_title: "Boolean Expressions"
- text: "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
example_title: "Math reasoning"
- text: "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?"
example_title: "Premise and hypothesis"
datasets:
- svakulenk0/qrecc
- taskmaster2
- djaym7/wiki_dialog
- deepmind/code_contests
- lambada
- gsm8k
- aqua_rat
- esnli
- quasc
- qed
license: apache-2.0
---
# Model Card for FLAN-T5 small
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/flan2_architecture.jpg"
alt="drawing" width="600"/>
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Training Details](#training-details)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Citation](#citation)
9. [Model Card Authors](#model-card-authors)
# TL;DR
If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages.
As mentioned in the first few lines of the abstract :
> Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
**Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large).
# Model Details
## Model Description
- **Model type:** Language model
- **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
- **License:** Apache 2.0
- **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5)
- **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints)
- **Resources for more information:**
- [Research paper](https://arxiv.org/pdf/2210.11416.pdf)
- [GitHub Repo](https://github.com/google-research/t5x)
- [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5)
# Usage
Find below some example scripts on how to use the model in `transformers`:
## Using the Pytorch model
### Running the model on a CPU
<details>
<summary> Click to expand </summary>
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
input_text = "translate English to German: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto")
input_text = "translate English to German: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU using different precisions
#### FP16
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto", torch_dtype=torch.float16)
input_text = "translate English to German: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
#### INT8
<details>
<summary> Click to expand </summary>
```python
# pip install bitsandbytes accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto", load_in_8bit=True)
input_text = "translate English to German: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
# Uses
## Direct Use and Downstream Use
The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that:
> The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models
See the [research paper](https://arxiv.org/pdf/2210.11416.pdf) for further details.
## Out-of-Scope Use
More information needed.
# Bias, Risks, and Limitations
The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):
> Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
## Ethical considerations and risks
> Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
## Known Limitations
> Flan-T5 has not been tested in real world applications.
## Sensitive Use:
> Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.
# Training Details
## Training Data
The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2):
![table.png](https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png)
## Training Procedure
According to the model card from the [original paper](https://arxiv.org/pdf/2210.11416.pdf):
> These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size.
The model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).
# Evaluation
## Testing Data, Factors & Metrics
The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation:
![image.png](https://s3.amazonaws.com/moonup/production/uploads/1668072995230-62441d1d9fdefb55a0b7d12c.png)
For full details, please check the [research paper](https://arxiv.org/pdf/2210.11416.pdf).
## Results
For full results for FLAN-T5-Small, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3.
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4.
- **Hours used:** More information needed
- **Cloud Provider:** GCP
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Citation
**BibTeX:**
```bibtex
@misc{https://doi.org/10.48550/arxiv.2210.11416,
doi = {10.48550/ARXIV.2210.11416},
url = {https://arxiv.org/abs/2210.11416},
author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},
keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Scaling Instruction-Finetuned Language Models},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
``` | [
-0.4595441520214081,
-0.585250735282898,
0.3060663640499115,
-0.022519048303365707,
-0.09666303545236588,
-0.17719046771526337,
-0.43147605657577515,
-0.6388727426528931,
-0.13530586659908295,
0.10359924286603928,
-0.5183107256889343,
-0.5012712478637695,
-0.6537002325057983,
0.07399661839008331,
-0.22889524698257446,
1.0338221788406372,
-0.13198834657669067,
0.041401658207178116,
0.17504991590976715,
-0.09530146420001984,
-0.16726914048194885,
-0.285580039024353,
-0.7152178883552551,
-0.3099975883960724,
0.4812213182449341,
0.32950153946876526,
0.4574759304523468,
0.5333179831504822,
0.5302566885948181,
0.33647212386131287,
-0.16007593274116516,
-0.0547647587954998,
-0.525092601776123,
-0.449352502822876,
0.0655912533402443,
-0.4805637001991272,
-0.6019607186317444,
-0.030691880732774734,
0.44303759932518005,
0.5117829442024231,
0.09094247221946716,
0.3523741364479065,
-0.12418198585510254,
0.26744040846824646,
-0.5285134315490723,
0.29456403851509094,
-0.2909737229347229,
0.0791105180978775,
-0.30283549427986145,
0.1212843731045723,
-0.25975650548934937,
-0.22662222385406494,
0.06070279702544212,
-0.6873277425765991,
0.5083939433097839,
-0.11016873270273209,
1.4400557279586792,
0.15051811933517456,
-0.06559563428163528,
-0.18706637620925903,
-0.7676578164100647,
0.9617035388946533,
-0.9709540605545044,
0.43632760643959045,
0.19933290779590607,
0.36206167936325073,
0.09581535309553146,
-0.8371716141700745,
-0.6879331469535828,
-0.319133460521698,
-0.09974760562181473,
0.1287619173526764,
-0.05291316285729408,
0.20039606094360352,
0.5520813465118408,
0.6254363059997559,
-0.4680478274822235,
-0.04333455488085747,
-0.7317707538604736,
-0.16300851106643677,
0.712814450263977,
-0.010283184237778187,
0.5107061266899109,
-0.10277768224477768,
-0.2596757411956787,
-0.49011170864105225,
-0.36505961418151855,
0.15521419048309326,
0.27757909893989563,
0.45660829544067383,
-0.505436360836029,
0.41810834407806396,
-0.028440061956644058,
0.5440921187400818,
0.323845237493515,
-0.49349358677864075,
0.4747370779514313,
-0.3530692458152771,
-0.3702530860900879,
-0.16769805550575256,
0.964309573173523,
0.1858653575181961,
0.22311532497406006,
-0.05597485974431038,
-0.39767545461654663,
0.012201085686683655,
0.16173605620861053,
-0.9822942018508911,
-0.14757731556892395,
0.41116243600845337,
-0.42269203066825867,
-0.508601725101471,
0.15753377974033356,
-0.8336324691772461,
-0.014062323607504368,
0.0006725911516696215,
0.5390884280204773,
-0.5016691088676453,
-0.5571854114532471,
-0.06636273115873337,
-0.18769565224647522,
0.30387964844703674,
0.07462701201438904,
-1.1014891862869263,
0.2217654287815094,
0.5063169002532959,
0.8715607523918152,
0.13077260553836823,
-0.32260167598724365,
-0.2680102288722992,
-0.0007455812301486731,
-0.21394571661949158,
0.43605461716651917,
-0.40036824345588684,
-0.3652229905128479,
-0.043103449046611786,
0.21270109713077545,
-0.2054886370897293,
-0.48783770203590393,
0.6656350493431091,
-0.27086248993873596,
0.5137534141540527,
-0.2872292697429657,
-0.5243474245071411,
-0.3825429081916809,
-0.031204266473650932,
-0.6663029193878174,
1.1314702033996582,
0.285192608833313,
-0.7640151381492615,
0.45758575201034546,
-0.9491540789604187,
-0.44866886734962463,
-0.1596553772687912,
0.12808774411678314,
-0.7111287713050842,
0.06885688751935959,
0.3521987199783325,
0.3578954339027405,
-0.22909700870513916,
0.1776198446750641,
-0.5016508102416992,
-0.35076987743377686,
-0.17695604264736176,
-0.11368554085493088,
1.0234923362731934,
0.4379781186580658,
-0.8120640516281128,
0.26916345953941345,
-0.6038957238197327,
-0.04803786054253578,
0.32635390758514404,
-0.09165426343679428,
0.1412685513496399,
-0.3543145954608917,
0.2211739867925644,
0.411258727312088,
0.2512355446815491,
-0.5244320631027222,
0.02897007018327713,
-0.5665727853775024,
0.5197564363479614,
0.5547183752059937,
-0.18384365737438202,
0.44331368803977966,
-0.5449250340461731,
0.4922069013118744,
0.3208531439304352,
0.22431327402591705,
-0.08730600029230118,
-0.3942282497882843,
-1.1743041276931763,
-0.00430495897307992,
0.2908058166503906,
0.45543721318244934,
-0.6297934055328369,
0.37126901745796204,
-0.5065600872039795,
-0.7190238237380981,
-0.4733780324459076,
0.11891433596611023,
0.36994606256484985,
0.478335976600647,
0.4852573573589325,
-0.08660909533500671,
-0.5339116454124451,
-0.7049137353897095,
-0.21854248642921448,
-0.005532181356102228,
-0.019522497430443764,
0.271361768245697,
0.8007184267044067,
-0.03661699220538139,
0.5265499949455261,
-0.29460442066192627,
-0.38095346093177795,
-0.5014938116073608,
0.11116982996463776,
0.13980141282081604,
0.6907411217689514,
0.8469095826148987,
-0.5724613666534424,
-0.4389546811580658,
0.06541042774915695,
-0.7908061146736145,
0.04447116702795029,
-0.0970146432518959,
-0.11215787380933762,
0.46705344319343567,
0.20741420984268188,
-0.6471459269523621,
0.4137895107269287,
0.4296833574771881,
-0.22108308970928192,
0.28853490948677063,
-0.1202172338962555,
0.05475495383143425,
-1.1928906440734863,
0.5039488077163696,
0.12935496866703033,
-0.18264539539813995,
-0.7685444355010986,
0.12351100891828537,
0.03805317357182503,
-0.2206205129623413,
-0.6459155678749084,
0.8081011176109314,
-0.3495423197746277,
0.03133699670433998,
-0.11490675806999207,
-0.007979697547852993,
-0.030237918719649315,
0.5759020447731018,
0.12280882149934769,
0.8255804777145386,
0.3469145596027374,
-0.7399595379829407,
0.02926051989197731,
0.09887199848890305,
-0.2633286714553833,
0.20855306088924408,
-0.7300276160240173,
0.16432973742485046,
0.0035629754420369864,
0.2038927525281906,
-0.6812050938606262,
-0.3836495876312256,
0.28709882497787476,
-0.47030532360076904,
0.4606436491012573,
0.03599414974451065,
-0.37079453468322754,
-0.5988885760307312,
-0.29312655329704285,
0.32623401284217834,
0.687030553817749,
-0.601002037525177,
0.6662182807922363,
0.21433202922344208,
0.3293468952178955,
-0.5595973134040833,
-0.8968249559402466,
-0.291186660528183,
-0.4908598065376282,
-0.8391755223274231,
0.5479741096496582,
0.02038860321044922,
-0.0198749341070652,
-0.20318633317947388,
-0.118645578622818,
-0.050529595464468,
0.028300294652581215,
0.13882683217525482,
0.08517544716596603,
-0.2719764709472656,
-0.15620572865009308,
-0.21646691858768463,
-0.1026422381401062,
-0.049507565796375275,
-0.36832913756370544,
0.5966593027114868,
-0.2959199547767639,
0.15904410183429718,
-0.7867804169654846,
-0.027834288775920868,
0.5534590482711792,
-0.25438475608825684,
0.9181509017944336,
1.1332160234451294,
-0.5084078907966614,
-0.00558860320597887,
-0.6080563068389893,
-0.3646693229675293,
-0.522235095500946,
0.18291351199150085,
-0.5072601437568665,
-0.6383392810821533,
0.6871827840805054,
0.2138100117444992,
0.2877901792526245,
0.8042038679122925,
0.5201999545097351,
-0.04442055895924568,
0.9349334836006165,
0.7135607600212097,
-0.018941247835755348,
0.784796953201294,
-0.7081277370452881,
0.24734435975551605,
-0.5908844470977783,
-0.16335582733154297,
-0.4750683307647705,
-0.28879228234291077,
-0.7369602918624878,
-0.29486966133117676,
0.31269508600234985,
0.08752994984388351,
-0.5751893520355225,
0.37182244658470154,
-0.36269494891166687,
0.12032970041036606,
0.5738616585731506,
0.21587377786636353,
-0.0531567707657814,
0.08272182941436768,
-0.15274032950401306,
-0.06764376163482666,
-0.737972617149353,
-0.5481050610542297,
1.1167165040969849,
0.4093629717826843,
0.4355998635292053,
0.05718935653567314,
0.7484614849090576,
-0.025334686040878296,
0.29624900221824646,
-0.5494232773780823,
0.40275585651397705,
-0.24336476624011993,
-0.9132111668586731,
-0.057473551481962204,
-0.4152616858482361,
-0.8291817307472229,
0.06370463967323303,
-0.05121352896094322,
-0.7806733846664429,
0.052554652094841,
0.17218494415283203,
-0.5027461051940918,
0.5753886699676514,
-0.9472317695617676,
1.219394326210022,
-0.36455801129341125,
-0.5303114056587219,
-0.06084171310067177,
-0.5056174993515015,
0.5501816868782043,
0.1636025607585907,
0.12976311147212982,
0.04939061030745506,
0.10205131024122238,
0.8274558186531067,
-0.7762706875801086,
0.8196748495101929,
-0.43766099214553833,
-0.07852977514266968,
0.337364137172699,
-0.23792225122451782,
0.3807228207588196,
-0.2399219274520874,
-0.09712135046720505,
0.3529997169971466,
0.10941564291715622,
-0.59010249376297,
-0.48984259366989136,
0.7089284658432007,
-1.054010272026062,
-0.5588821172714233,
-0.49930939078330994,
-0.3616480231285095,
0.05380496010184288,
0.48569732904434204,
0.4026937484741211,
0.29499971866607666,
0.03500072658061981,
0.00891637708991766,
0.42642152309417725,
-0.3836202025413513,
0.6536400318145752,
0.09567447006702423,
-0.27099278569221497,
-0.3752046227455139,
0.9588456153869629,
0.12467571347951889,
0.4697974622249603,
0.3140038251876831,
0.32315993309020996,
-0.30889976024627686,
-0.24646466970443726,
-0.491743266582489,
0.4091860055923462,
-0.654053807258606,
-0.07603286951780319,
-0.5569750666618347,
-0.13306404650211334,
-0.5126023292541504,
-0.13420654833316803,
-0.4748460650444031,
-0.40260589122772217,
-0.3812728822231293,
-0.04428993538022041,
0.2950451970100403,
0.6595712304115295,
-0.03374333307147026,
0.3964288532733917,
-0.6047219634056091,
0.33837953209877014,
0.06020982563495636,
0.348675012588501,
0.08426300436258316,
-0.6980417370796204,
-0.187177836894989,
0.305911660194397,
-0.4633590877056122,
-0.6146226525306702,
0.3786795139312744,
0.24231325089931488,
0.3354186713695526,
0.5118263363838196,
-0.09819341450929642,
0.9349855184555054,
-0.1369371861219406,
1.057865858078003,
0.039391618221998215,
-1.0002574920654297,
0.5989044308662415,
-0.4739733338356018,
0.44976335763931274,
0.3791946768760681,
0.3289250433444977,
-0.33153197169303894,
-0.23789426684379578,
-1.0451648235321045,
-0.7076184749603271,
0.9942467212677002,
0.283931165933609,
0.024165304377675056,
0.2841246426105499,
0.22928078472614288,
-0.08391928672790527,
0.07580609619617462,
-0.9044539332389832,
-0.24326324462890625,
-0.48192474246025085,
-0.3364076614379883,
-0.07747374475002289,
-0.051024626940488815,
-0.10478443652391434,
-0.37970301508903503,
0.8160377144813538,
0.02625073492527008,
0.6889537572860718,
0.12813560664653778,
-0.2537008821964264,
-0.18869662284851074,
0.002229843055829406,
0.9393348693847656,
0.4666876792907715,
-0.33202195167541504,
-0.14060747623443604,
0.397545725107193,
-0.5890059471130371,
-0.0511634461581707,
0.10572578012943268,
-0.387146532535553,
-0.03351997211575508,
0.4335210919380188,
1.061759352684021,
0.17736901342868805,
-0.362588495016098,
0.4392954707145691,
-0.07911747694015503,
-0.35457396507263184,
-0.47308701276779175,
0.341857373714447,
0.09237103909254074,
0.055660877376794815,
0.136948361992836,
0.07178472727537155,
-0.19295378029346466,
-0.38443219661712646,
0.007372875232249498,
0.16614091396331787,
-0.22279711067676544,
-0.4768180847167969,
1.1036409139633179,
0.21498164534568787,
-0.12377322465181351,
0.5542563199996948,
-0.09280174970626831,
-0.48557764291763306,
0.6866580247879028,
0.42909571528434753,
0.9528656601905823,
-0.12277814745903015,
0.0013198918895795941,
0.9249192476272583,
0.3589847981929779,
-0.1263657808303833,
0.3754099905490875,
0.0779101550579071,
-0.527109682559967,
-0.1371738165616989,
-0.6687917113304138,
-0.00011028720473404974,
0.4249703586101532,
-0.4643479585647583,
0.5203831791877747,
-0.7515026330947876,
-0.2000591903924942,
0.11325935274362564,
0.4607946276664734,
-0.9830000996589661,
0.4145519435405731,
0.2872595191001892,
0.823088526725769,
-0.7571197152137756,
0.8424044847488403,
0.6291497349739075,
-0.9986818432807922,
-1.1235393285751343,
-0.015803448855876923,
-0.07402704656124115,
-0.5557786822319031,
0.6010148525238037,
0.3982735574245453,
0.014845470897853374,
0.026611434295773506,
-0.4911242425441742,
-0.883182168006897,
1.3177162408828735,
0.40110254287719727,
-0.41597113013267517,
-0.12641841173171997,
0.33953186869621277,
0.6003463864326477,
-0.272416353225708,
0.7569182515144348,
0.5779948234558105,
0.6834132671356201,
0.051089558750391006,
-1.073812484741211,
0.19738538563251495,
-0.2603163719177246,
0.14065326750278473,
-0.040774550288915634,
-1.0394493341445923,
0.9296528697013855,
-0.3152664601802826,
-0.3045162558555603,
0.009890678338706493,
0.8715249300003052,
0.22914279997348785,
0.1065216138958931,
0.5459408164024353,
0.6062182784080505,
0.7911279797554016,
-0.26675504446029663,
1.2979005575180054,
-0.5612311363220215,
0.6063398122787476,
0.6711247563362122,
0.20937922596931458,
0.6701034903526306,
0.28894445300102234,
-0.2833177447319031,
0.45086678862571716,
0.7288222312927246,
-0.11262615770101547,
0.3176441192626953,
-0.07354135066270828,
-0.2243201732635498,
-0.07527073472738266,
-0.04305117949843407,
-0.5047104358673096,
0.325100302696228,
0.3758116364479065,
-0.4409340023994446,
-0.12483230978250504,
-0.037053465843200684,
0.36845663189888,
-0.3373238146305084,
-0.15290109813213348,
0.5035251379013062,
0.1574440896511078,
-0.7583168148994446,
1.0584300756454468,
0.17251217365264893,
0.8410090208053589,
-0.5497860312461853,
0.25404927134513855,
-0.3205857574939728,
0.4082459807395935,
-0.4385712742805481,
-0.3423489034175873,
0.28131330013275146,
0.03521816432476044,
-0.006878133863210678,
-0.17452852427959442,
0.5120157599449158,
-0.48986971378326416,
-0.7308823466300964,
0.22331953048706055,
0.16187375783920288,
0.160268634557724,
0.2671487033367157,
-0.8677762746810913,
0.2379058301448822,
0.12260150164365768,
-0.3607177138328552,
0.13796985149383545,
0.1451224982738495,
0.00502353860065341,
0.5764329433441162,
0.5295293927192688,
-0.14480243623256683,
0.2789238393306732,
0.13171230256557465,
0.7054238319396973,
-0.6746022701263428,
-0.33595022559165955,
-0.658524215221405,
0.6583777666091919,
-0.05943174660205841,
-0.5263385772705078,
0.7100464701652527,
0.6158009767532349,
1.1741077899932861,
-0.17600169777870178,
0.944944441318512,
-0.41620391607284546,
0.3119184970855713,
-0.426379919052124,
0.7355678081512451,
-0.8204453587532043,
0.044408489018678665,
-0.3758874535560608,
-0.7857220768928528,
-0.2096165418624878,
0.8905602097511292,
-0.5227724313735962,
0.6533635258674622,
0.7857515215873718,
0.8992888331413269,
-0.37330690026283264,
0.051550086587667465,
0.16502319276332855,
0.27927905321121216,
0.6435218453407288,
0.7079589366912842,
0.2518623471260071,
-0.904099702835083,
0.5870724320411682,
-0.8086839914321899,
0.11983783543109894,
-0.235086128115654,
-0.6692140102386475,
-1.0953463315963745,
-0.5367387533187866,
-0.2862720489501953,
-0.45716342329978943,
-0.0603904165327549,
0.8636841177940369,
0.7677624225616455,
-1.0493751764297485,
-0.34763672947883606,
-0.2859024405479431,
-0.09476577490568161,
-0.2442251741886139,
-0.2519308626651764,
0.4652943015098572,
-0.5261511206626892,
-1.125920057296753,
0.1146458312869072,
-0.2300964891910553,
0.2566913664340973,
-0.32259729504585266,
-0.19254596531391144,
-0.3373502790927887,
-0.29012688994407654,
0.28099945187568665,
0.3983694612979889,
-0.8530518412590027,
-0.38431596755981445,
0.012033202685415745,
-0.13573576509952545,
0.1307792216539383,
0.5056766271591187,
-0.45102551579475403,
0.3745310306549072,
0.5206881761550903,
0.4911833703517914,
0.8210896253585815,
-0.08205565810203552,
0.6558578610420227,
-0.4917604923248291,
0.46692436933517456,
0.047811321914196014,
0.2766314744949341,
0.4024467468261719,
-0.2409040480852127,
0.577418327331543,
0.3437114655971527,
-0.4074074625968933,
-0.821746289730072,
-0.16987086832523346,
-0.9055138826370239,
0.026386190205812454,
1.2141848802566528,
-0.2597026228904724,
-0.5197528004646301,
0.2508084177970886,
-0.0048825666308403015,
0.587127149105072,
-0.3930453062057495,
0.6832886934280396,
0.7124292254447937,
0.08640282601118088,
-0.3622325658798218,
-0.7776477932929993,
0.7104077935218811,
0.5492454171180725,
-0.7753124237060547,
-0.23679760098457336,
0.14400634169578552,
0.5623751878738403,
0.18183739483356476,
0.4447328448295593,
-0.0444866344332695,
0.20327909290790558,
0.17594186961650848,
0.2335217446088791,
-0.1502077877521515,
-0.09675177931785583,
-0.2995132803916931,
0.029221801087260246,
-0.0662926509976387,
-0.12313173711299896
] |
monologg/koelectra-small-v2-distilled-korquad-384 | monologg | "2023-06-12T12:30:35Z" | 171,436 | 3 | transformers | [
"transformers",
"pytorch",
"tflite",
"safetensors",
"electra",
"question-answering",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | question-answering | "2022-03-02T23:29:05Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
BAAI/bge-reranker-large | BAAI | "2023-10-12T03:39:26Z" | 169,691 | 59 | transformers | [
"transformers",
"pytorch",
"safetensors",
"xlm-roberta",
"text-classification",
"zh",
"en",
"arxiv:2310.07554",
"arxiv:2309.07597",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-classification | "2023-09-12T07:39:18Z" | ---
license: mit
language:
- zh
- en
---
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#frequently-asked-questions>FAQ</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#contact">Contact</a> |
<a href="#citation">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
And it also can be used in vector databases for LLMs.
************* 🌟**Updates**🌟 *************
- 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire:
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
- 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
- 09/12/2023: New models:
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
<details>
<summary>More</summary>
<!-- ### More -->
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
</details>
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
## Frequently asked questions
<details>
<summary>1. How to fine-tune bge embedding model?</summary>
<!-- ### How to fine-tune bge embedding model? -->
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
</details>
<details>
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
Since we finetune the models by contrastive learning with a temperature of 0.01,
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
For downstream tasks, such as passage retrieval or semantic similarity,
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold,
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
</details>
<details>
<summary>3. When does the query instruction need to be used</summary>
<!-- ### When does the query instruction need to be used -->
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
No instruction only has a slight degradation in retrieval performance compared with using instruction.
So you can generate embedding without instruction in all cases for convenience.
For a retrieval task that uses short queries to find long related documents,
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction.
</details>
## Usage
### Usage for Embedding Model
Here are some examples for using `bge` models with
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5',
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
#### Using Sentence-Transformers
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task,
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
#### Using Langchain
You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```
#### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
### Usage for Reranker
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### Using Huggingface transformers
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
- **C-MTEB**:
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
## Train
### BAAI Embedding
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
### BGE Reranker
Cross-encoder will perform full-attention over the input pair,
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data,
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
## Contact
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
| [
-0.4917970299720764,
-0.9121562242507935,
0.39335909485816956,
0.15926150977611542,
-0.3644159436225891,
-0.27619844675064087,
-0.3187490701675415,
-0.2546616792678833,
0.4034213423728943,
0.3811470866203308,
-0.3493821918964386,
-0.8789252638816833,
-0.48434871435165405,
-0.061868757009506226,
-0.08562654256820679,
0.5569250583648682,
-0.05040394887328148,
0.14363285899162292,
0.052729532122612,
-0.25072580575942993,
-0.38095730543136597,
-0.25557446479797363,
-0.6599745154380798,
-0.2580225467681885,
0.3454954922199249,
0.22898080945014954,
0.5664677023887634,
0.7565454244613647,
0.29929855465888977,
0.27112576365470886,
-0.23612339794635773,
0.1565926969051361,
-0.47967153787612915,
-0.06917298585176468,
-0.20805604755878448,
-0.33379724621772766,
-0.4219249486923218,
0.1771097332239151,
0.6846937537193298,
0.45031237602233887,
-0.10390447080135345,
0.10425695776939392,
0.00692377844825387,
0.71429044008255,
-0.46325114369392395,
0.27861225605010986,
-0.5734079480171204,
0.03648480027914047,
-0.24258849024772644,
0.1513890027999878,
-0.5183275938034058,
-0.3853422999382019,
0.1603473275899887,
-0.6159512400627136,
0.08287999778985977,
0.2900417149066925,
1.307506799697876,
0.20688290894031525,
-0.45559000968933105,
-0.16615848243236542,
-0.12169365584850311,
0.994102954864502,
-1.0095791816711426,
0.6872597932815552,
0.5090594291687012,
0.25554022192955017,
-0.0781526267528534,
-0.8174024224281311,
-0.3616727888584137,
-0.16660532355308533,
-0.20328503847122192,
0.4233214557170868,
0.0256485752761364,
0.019987745210528374,
0.3170413672924042,
0.5985334515571594,
-0.5553396344184875,
0.0947275385260582,
-0.06872905045747757,
-0.15926045179367065,
0.7642083168029785,
-0.1649675816297531,
0.45869553089141846,
-0.5581547021865845,
-0.29989349842071533,
-0.3680296242237091,
-0.8007943630218506,
0.04600268974900246,
0.3670075833797455,
0.137363001704216,
-0.39358171820640564,
0.5685566663742065,
-0.22973068058490753,
0.6109962463378906,
0.05062193423509598,
0.0516192652285099,
0.5265907049179077,
-0.374182790517807,
-0.20757225155830383,
-0.14727148413658142,
0.9336583018302917,
0.3954954743385315,
-0.057964473962783813,
0.05175301060080528,
-0.32384660840034485,
-0.09511028230190277,
-0.09334386885166168,
-0.8982179164886475,
-0.24408532679080963,
0.19886384904384613,
-0.7663068175315857,
-0.18192589282989502,
0.23823782801628113,
-0.7802329063415527,
0.10407708585262299,
0.0016007493250072002,
0.585857629776001,
-0.7480831146240234,
-0.07390255481004715,
0.31346237659454346,
-0.2118411660194397,
0.4023590385913849,
-0.003231465583667159,
-0.6287349462509155,
-0.24859385192394257,
0.5332337617874146,
0.860173761844635,
0.16767533123493195,
-0.07676992565393448,
-0.3748384118080139,
0.03796732425689697,
-0.1430635154247284,
0.3286088705062866,
-0.5217965245246887,
-0.17894569039344788,
0.21137920022010803,
0.38862374424934387,
-0.10362780094146729,
-0.291079580783844,
0.8852188587188721,
-0.5387099981307983,
0.36164164543151855,
-0.3797711431980133,
-0.8259833455085754,
-0.503160297870636,
0.09275687485933304,
-0.8069127202033997,
1.1115566492080688,
-0.09858797490596771,
-0.8519017696380615,
0.08340819180011749,
-0.6473492980003357,
-0.21710936725139618,
-0.25654977560043335,
-0.033439960330724716,
-0.6009854674339294,
-0.11823835223913193,
0.38206779956817627,
0.586105227470398,
-0.22970585525035858,
0.03495078533887863,
-0.3490271270275116,
-0.5734331607818604,
-0.007032394874840975,
-0.23192544281482697,
1.0995248556137085,
0.2569870948791504,
-0.3371439576148987,
-0.2211025208234787,
-0.43995827436447144,
0.12060470134019852,
0.3049491047859192,
-0.3136955797672272,
-0.34632110595703125,
0.22229573130607605,
0.23741373419761658,
0.0519283302128315,
0.532094419002533,
-0.7079308032989502,
0.18408465385437012,
-0.5881211161613464,
0.596612274646759,
0.5611453056335449,
0.17341366410255432,
0.24086976051330566,
-0.4767483174800873,
0.28925153613090515,
-0.023568883538246155,
-0.03820270299911499,
-0.2231236845254898,
-0.5332085490226746,
-0.6302730441093445,
-0.3037233054637909,
0.7439141869544983,
0.6626705527305603,
-0.8764532208442688,
0.6678094267845154,
-0.4590986669063568,
-0.6218410730361938,
-0.9469890594482422,
0.13509726524353027,
0.5358606576919556,
0.002314120065420866,
0.7215077877044678,
-0.13861384987831116,
-0.4815653860569,
-0.938438355922699,
-0.06217969208955765,
0.07854179292917252,
-0.09143476188182831,
0.5395910739898682,
0.617742121219635,
-0.3207966387271881,
0.4096141755580902,
-0.7361123561859131,
-0.35045313835144043,
-0.23097604513168335,
-0.07369431853294373,
0.34056612849235535,
0.49303698539733887,
0.6417325735092163,
-1.0118588209152222,
-0.5865143537521362,
-0.008065720088779926,
-0.7820898294448853,
0.07667311280965805,
0.036675386130809784,
-0.30095741152763367,
0.17536960542201996,
0.612797737121582,
-0.4129248559474945,
0.23894579708576202,
0.47879064083099365,
-0.25913238525390625,
0.2828845679759979,
-0.02090475521981716,
0.14730790257453918,
-1.330299973487854,
0.022242818027734756,
0.30332544445991516,
-0.11486539244651794,
-0.27505314350128174,
0.5225419402122498,
0.17051756381988525,
0.2073279321193695,
-0.34719759225845337,
0.5901947021484375,
-0.5294108390808105,
0.25197452306747437,
0.12947365641593933,
0.6173920035362244,
-0.0899772047996521,
0.5147316455841064,
-0.04709700495004654,
0.7206954956054688,
0.37333211302757263,
-0.4015792906284332,
0.12459217011928558,
0.5308554172515869,
-0.44731444120407104,
0.08171137422323227,
-0.6624714732170105,
-0.07638781517744064,
-0.07412522286176682,
0.16863416135311127,
-0.8326302170753479,
-0.0733034536242485,
0.26644769310951233,
-0.5769767761230469,
0.5308395624160767,
-0.3013218343257904,
-0.49975740909576416,
-0.3710670471191406,
-0.9166911840438843,
0.1475072205066681,
0.5871821641921997,
-0.6514768600463867,
0.22120033204555511,
0.2969546318054199,
0.09350575506687164,
-0.7782111763954163,
-0.8228302001953125,
-0.15640223026275635,
-0.002264339243993163,
-0.5303692817687988,
0.5489431023597717,
-0.02883104979991913,
0.25723689794540405,
0.19024287164211273,
-0.07193037867546082,
0.15140888094902039,
0.11663859337568283,
-0.0029365697409957647,
0.24749252200126648,
-0.4802510738372803,
0.0476856529712677,
0.275939404964447,
0.1315978318452835,
-0.19963866472244263,
-0.16270552575588226,
0.44453224539756775,
-0.1731950342655182,
-0.35953885316848755,
-0.2387179136276245,
0.34303024411201477,
0.2581000030040741,
-0.4079892933368683,
0.5978900790214539,
0.9997373223304749,
-0.37799617648124695,
-0.08413289487361908,
-0.6667248010635376,
-0.12422462552785873,
-0.4862056374549866,
0.4579135477542877,
-0.32667216658592224,
-0.9906607270240784,
0.3992321789264679,
-0.020395895466208458,
0.218032568693161,
0.6829168200492859,
0.3386148512363434,
-0.1428033858537674,
1.0860356092453003,
0.3779831826686859,
-0.2722134292125702,
0.6689903140068054,
-0.6675193309783936,
0.17887775599956512,
-1.1849076747894287,
-0.04504662752151489,
-0.39903220534324646,
-0.39822685718536377,
-1.3405680656433105,
-0.5106154680252075,
0.06238797679543495,
0.2820959985256195,
-0.38379231095314026,
0.4338037371635437,
-0.5777703523635864,
0.15388894081115723,
0.48900970816612244,
0.2991540729999542,
-0.018452363088726997,
0.12543046474456787,
-0.4379253685474396,
-0.27333033084869385,
-0.615394115447998,
-0.5130186676979065,
1.0093634128570557,
0.48818039894104004,
0.6184115409851074,
0.36703652143478394,
0.8317365050315857,
0.1904895156621933,
0.09796921163797379,
-0.780764639377594,
0.5773665308952332,
-0.5281172394752502,
-0.5766896605491638,
-0.3623805642127991,
-0.4928167462348938,
-1.1266753673553467,
0.40084049105644226,
-0.27620500326156616,
-0.7827890515327454,
0.10814967751502991,
-0.19935756921768188,
-0.030741354450583458,
0.47183531522750854,
-0.6826187968254089,
1.0363374948501587,
-0.10903039574623108,
-0.3109346330165863,
-0.07844258099794388,
-0.4234257936477661,
0.32927194237709045,
0.20091412961483002,
0.08322131633758545,
0.07470317929983139,
-0.26243671774864197,
0.7681471109390259,
-0.18991416692733765,
0.6442910432815552,
-0.1636548787355423,
0.15086346864700317,
0.4350244402885437,
-0.18594372272491455,
0.5594721436500549,
0.08093002438545227,
-0.18204768002033234,
0.30464738607406616,
0.09054489433765411,
-0.48835110664367676,
-0.5022341012954712,
0.8901168704032898,
-0.6806955933570862,
-0.7152196168899536,
-0.3792705833911896,
-0.25338515639305115,
0.18115606904029846,
0.4426770508289337,
0.3571534752845764,
0.22144240140914917,
-0.10434862226247787,
0.6539531946182251,
0.9369509220123291,
-0.5519316792488098,
0.38803672790527344,
0.350559264421463,
-0.2768425941467285,
-0.5992287993431091,
1.1354446411132812,
0.2656397819519043,
-0.05330642685294151,
0.6816064715385437,
0.01351808663457632,
-0.28277260065078735,
-0.5373090505599976,
-0.4611698389053345,
0.6434146165847778,
-0.600497305393219,
-0.16940733790397644,
-0.6488251090049744,
-0.4323805570602417,
-0.43788644671440125,
0.022176872938871384,
-0.2742101550102234,
-0.2864987552165985,
-0.18045517802238464,
-0.28421303629875183,
0.23849305510520935,
0.48024874925613403,
0.12320030480623245,
0.08978405594825745,
-0.7190878391265869,
0.21328915655612946,
-0.09880057722330093,
0.4449179470539093,
0.07253655791282654,
-0.546136736869812,
-0.6290742754936218,
0.17635180056095123,
-0.4961189925670624,
-1.097845196723938,
0.3527429401874542,
0.0763259083032608,
0.8483840823173523,
0.3333483338356018,
-0.01122608594596386,
0.41526830196380615,
-0.5310884118080139,
1.081298828125,
-0.10962003469467163,
-0.7951414585113525,
0.5159289240837097,
-0.28411999344825745,
0.16692203283309937,
0.5661880970001221,
0.6615703105926514,
-0.46920469403266907,
-0.27738773822784424,
-0.4974641799926758,
-0.9762814044952393,
0.49247539043426514,
0.1843331754207611,
0.043226901441812515,
-0.3003985583782196,
0.3328987658023834,
-0.18441903591156006,
-0.0023139920085668564,
-0.8095731139183044,
-0.7547932863235474,
-0.33806613087654114,
-0.35643884539604187,
-0.0979190468788147,
-0.28025397658348083,
0.20887281000614166,
-0.29385653138160706,
1.0127955675125122,
0.004170624539256096,
0.5556016564369202,
0.36256203055381775,
-0.33087679743766785,
0.24234871566295624,
0.25593316555023193,
0.30133670568466187,
0.18955889344215393,
-0.3912491500377655,
-0.14632770419120789,
0.3187618851661682,
-0.5581767559051514,
-0.06475118547677994,
0.31365451216697693,
-0.47415584325790405,
0.19585788249969482,
0.3093602955341339,
0.7157406806945801,
0.45411843061447144,
-0.4482158422470093,
0.5723576545715332,
0.11585415154695511,
-0.19031701982021332,
-0.3024125397205353,
-0.07244732975959778,
0.3090818226337433,
0.25450772047042847,
0.11810966581106186,
-0.4614958167076111,
0.26804250478744507,
-0.5359582901000977,
0.3429628610610962,
0.45435860753059387,
-0.38470590114593506,
-0.0678970068693161,
0.70831298828125,
0.034975845366716385,
-0.021308057010173798,
0.4843420386314392,
-0.5078408718109131,
-0.7446918487548828,
0.4296441674232483,
0.3791488707065582,
0.8493991494178772,
-0.1474267691373825,
0.2266235500574112,
0.8720858097076416,
0.5383305549621582,
-0.32331085205078125,
0.36064058542251587,
0.07824323326349258,
-0.5908493399620056,
-0.4484456181526184,
-0.5486404895782471,
-0.05894216150045395,
0.26951584219932556,
-0.5846852660179138,
0.35474514961242676,
-0.4215252995491028,
-0.1495818942785263,
0.031722791492938995,
0.44416430592536926,
-0.7529358863830566,
0.1280055046081543,
0.0456489622592926,
1.1375863552093506,
-0.5906219482421875,
0.8449050188064575,
1.0035991668701172,
-0.969935953617096,
-0.7814849615097046,
0.08019335567951202,
-0.13211701810359955,
-0.6157646775245667,
0.37970051169395447,
0.2669503688812256,
0.1790168732404709,
0.0628160610795021,
-0.4824950397014618,
-0.9240347146987915,
1.586942195892334,
0.038656748831272125,
-0.5351653695106506,
-0.0627468153834343,
-0.2851398289203644,
0.4628412127494812,
-0.3825380802154541,
0.451323926448822,
0.41685330867767334,
0.6175791025161743,
-0.18728259205818176,
-0.6515793204307556,
0.5485309958457947,
-0.3199205994606018,
0.23725971579551697,
0.04955912381410599,
-0.984024703502655,
0.8381196856498718,
0.046198565512895584,
-0.3352476954460144,
0.19697697460651398,
0.731243908405304,
0.2325790673494339,
0.42402613162994385,
0.24393317103385925,
0.9391081929206848,
0.6669497489929199,
-0.22529436647891998,
1.1691102981567383,
-0.26123324036598206,
0.635422945022583,
0.8789224624633789,
0.17103832960128784,
1.1311215162277222,
0.08972802758216858,
-0.2383190542459488,
0.6788000464439392,
0.8010855317115784,
-0.32304438948631287,
0.4705699682235718,
0.018947070464491844,
0.06136717274785042,
-0.3231780230998993,
0.05400153994560242,
-0.5413292646408081,
0.29115355014801025,
0.3292744755744934,
-0.5224844217300415,
0.04530218616127968,
-0.29604601860046387,
0.12072090059518814,
0.10746816545724869,
-0.022620033472776413,
0.5829463005065918,
0.3159216642379761,
-0.47084447741508484,
0.672248899936676,
0.23842239379882812,
1.0218559503555298,
-0.4089002311229706,
-0.15431565046310425,
-0.28587907552719116,
-0.11535292118787766,
-0.22934561967849731,
-0.790655791759491,
-0.08192181587219238,
-0.26000723242759705,
-0.2086254209280014,
0.08522395044565201,
0.5456407070159912,
-0.6298020482063293,
-0.4112842082977295,
0.5716066360473633,
0.5203923583030701,
0.2451905906200409,
0.18083496391773224,
-1.1097532510757446,
0.03155858442187309,
0.38683757185935974,
-0.5384969115257263,
0.31043702363967896,
0.47696754336357117,
-0.06284209340810776,
0.5959566235542297,
0.5904459357261658,
0.06490226835012436,
-0.01969398558139801,
0.04061232879757881,
0.5199528932571411,
-0.9449971914291382,
-0.3085385859012604,
-0.6386343240737915,
0.3643895387649536,
-0.3301919102668762,
0.0221808310598135,
0.8165912628173828,
0.7114246487617493,
1.084007740020752,
-0.05303525552153587,
0.8228715658187866,
-0.11570622026920319,
0.41215577721595764,
-0.6082319021224976,
0.9007401466369629,
-1.0377278327941895,
0.2609661817550659,
-0.35725247859954834,
-0.9467119574546814,
-0.15897879004478455,
0.707438588142395,
-0.3395439088344574,
0.23371893167495728,
0.6871347427368164,
0.9879443645477295,
-0.25833117961883545,
-0.1929139345884323,
0.3111801743507385,
0.44082456827163696,
0.15963251888751984,
0.8009560704231262,
0.3490568697452545,
-0.9881619811058044,
0.6472155451774597,
-0.2394942045211792,
0.12903288006782532,
-0.525607705116272,
-0.6428669691085815,
-0.931767463684082,
-0.7401321530342102,
-0.42517736554145813,
-0.30864813923835754,
-0.04586928337812424,
0.9298316240310669,
0.34564995765686035,
-0.7558746337890625,
-0.06993477046489716,
0.2788669466972351,
0.4898790717124939,
-0.2695677578449249,
-0.27795010805130005,
0.6664249300956726,
-0.07666083425283432,
-0.9447400569915771,
0.3316705524921417,
-0.08436305820941925,
-0.06884507834911346,
-0.05372384190559387,
-0.24726758897304535,
-0.8908063173294067,
0.12003599107265472,
0.6033106446266174,
0.25743740797042847,
-0.9210304021835327,
-0.4236951172351837,
0.085548996925354,
-0.26322922110557556,
-0.1556014120578766,
0.17063041031360626,
-0.41602054238319397,
0.36280158162117004,
0.6252936124801636,
0.7770823240280151,
0.6671158671379089,
-0.04740946739912033,
0.20530149340629578,
-0.6183277368545532,
-0.08610108494758606,
-0.042357608675956726,
0.7162543535232544,
0.36767950654029846,
-0.30395805835723877,
0.910102903842926,
0.2162483185529709,
-0.4089943766593933,
-0.7599421739578247,
0.03271307051181793,
-1.0642472505569458,
-0.3319217562675476,
1.127224326133728,
-0.42954444885253906,
-0.25271299481391907,
0.27581310272216797,
-0.19327957928180695,
0.5534521341323853,
-0.49581798911094666,
0.47473666071891785,
0.8054698705673218,
0.438792884349823,
-0.15727850794792175,
-0.9182953238487244,
0.315695583820343,
0.6267865896224976,
-0.2778308391571045,
-0.342660516500473,
0.3409629166126251,
0.48798197507858276,
0.2409132719039917,
0.11801017075777054,
-0.24918068945407867,
0.32204949855804443,
-0.07588997483253479,
-0.008661134168505669,
-0.1395338475704193,
0.2484905868768692,
-0.18418358266353607,
0.0261821448802948,
-0.16862145066261292,
-0.31124991178512573
] |
sentence-transformers/nli-mpnet-base-v2 | sentence-transformers | "2022-06-15T20:14:17Z" | 169,425 | 7 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"tf",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"arxiv:1908.10084",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# sentence-transformers/nli-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/nli-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/nli-mpnet-base-v2')
model = AutoModel.from_pretrained('sentence-transformers/nli-mpnet-base-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/nli-mpnet-base-v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` | [
-0.32476985454559326,
-0.5457227826118469,
0.2770368456840515,
0.41994133591651917,
-0.2674607038497925,
-0.5075766444206238,
-0.2131892293691635,
0.02337484061717987,
0.18149490654468536,
0.38272854685783386,
-0.6024009585380554,
-0.29160717129707336,
-0.7555614709854126,
0.0848914235830307,
-0.3506506681442261,
0.781267523765564,
-0.05247590318322182,
-0.05399611219763756,
-0.30869439244270325,
-0.16824516654014587,
-0.1663587987422943,
-0.421111524105072,
-0.466497004032135,
-0.38353121280670166,
0.4039800763130188,
0.12268861383199692,
0.4246290624141693,
0.5029591917991638,
0.3729400336742401,
0.42541956901550293,
-0.1455448418855667,
0.20191313326358795,
-0.2531859874725342,
-0.2582855820655823,
0.011771664023399353,
-0.39428600668907166,
-0.09480337798595428,
0.3381233215332031,
0.6850038766860962,
0.4780791401863098,
-0.15466400980949402,
0.14758001267910004,
0.004946685396134853,
0.3548489511013031,
-0.5681989789009094,
0.43316787481307983,
-0.6116940975189209,
0.33278587460517883,
0.08239193260669708,
-0.03370940685272217,
-0.6412746906280518,
0.0166423711925745,
0.26745715737342834,
-0.33954548835754395,
-0.018805813044309616,
0.10626527667045593,
1.1705458164215088,
0.42445045709609985,
-0.4057815968990326,
-0.2099444568157196,
-0.2673017978668213,
0.8540639281272888,
-1.0403451919555664,
0.15220756828784943,
0.2925325930118561,
-0.02726157195866108,
-0.0195124763995409,
-1.0390275716781616,
-0.8098507523536682,
-0.09682533890008926,
-0.5469715595245361,
0.2992897033691406,
-0.4363342225551605,
0.037457309663295746,
0.24604828655719757,
0.15448206663131714,
-0.6554633378982544,
0.008005580864846706,
-0.430011510848999,
-0.1587618589401245,
0.5253036022186279,
0.03248047083616257,
0.34371066093444824,
-0.6270709037780762,
-0.4193524420261383,
-0.3075582683086395,
-0.21221008896827698,
-0.07244604080915451,
0.25652018189430237,
0.1695033460855484,
-0.33102908730506897,
0.9445497989654541,
-0.08459724485874176,
0.6077326536178589,
-0.07221861928701401,
0.08094671368598938,
0.633796751499176,
-0.377966046333313,
-0.2738918364048004,
-0.04709358140826225,
1.146105408668518,
0.46066486835479736,
0.38465985655784607,
-0.10458337515592575,
-0.1372797191143036,
-0.005541893187910318,
0.24245323240756989,
-0.8906754851341248,
-0.369387686252594,
0.22114484012126923,
-0.5086151957511902,
-0.35898396372795105,
0.27804434299468994,
-0.6837047934532166,
-0.14723454415798187,
-0.05350600928068161,
0.6648313999176025,
-0.542055070400238,
-0.07063717395067215,
0.1434924602508545,
-0.2980495095252991,
0.3689327836036682,
-0.4789915084838867,
-0.7232108116149902,
0.1745058298110962,
0.4632263779640198,
1.0629189014434814,
0.030522091314196587,
-0.5598328709602356,
-0.26117435097694397,
-0.16128131747245789,
0.13936810195446014,
0.6538230776786804,
-0.2894204556941986,
-0.033240072429180145,
-0.0006029529613442719,
0.23255713284015656,
-0.7126594185829163,
-0.39902395009994507,
0.5860521197319031,
-0.1807740479707718,
0.7071219682693481,
0.159141406416893,
-0.762182354927063,
-0.17313088476657867,
0.1377917379140854,
-0.45146292448043823,
0.9891422986984253,
0.1633678525686264,
-1.0396894216537476,
0.029935110360383987,
-0.8500116467475891,
-0.3201906681060791,
-0.24115142226219177,
0.12855267524719238,
-0.7466504573822021,
0.13204267621040344,
0.40961754322052,
0.6723722815513611,
0.11825446039438248,
0.4099874198436737,
-0.18823784589767456,
-0.43922486901283264,
0.518217921257019,
-0.46794581413269043,
1.1744706630706787,
0.131434366106987,
-0.4212733507156372,
0.21143119037151337,
-0.5417268872261047,
-0.08483892679214478,
0.26900631189346313,
-0.215323343873024,
-0.01377245131880045,
0.1439543217420578,
0.1908104121685028,
0.3700031042098999,
0.18569537997245789,
-0.7110075354576111,
0.16921980679035187,
-0.6561709642410278,
0.9700340628623962,
0.5634241700172424,
0.051683634519577026,
0.5609633922576904,
-0.28927791118621826,
0.0691089853644371,
0.3652278184890747,
0.039555035531520844,
-0.20877711474895477,
-0.5083582401275635,
-1.1072845458984375,
-0.184989333152771,
0.36597082018852234,
0.6979376077651978,
-0.7620180249214172,
1.0470913648605347,
-0.4839017391204834,
-0.40288245677948,
-0.7231794595718384,
-0.17817513644695282,
0.07664695382118225,
0.4220115840435028,
0.4984654188156128,
-0.08526536822319031,
-0.7520854473114014,
-1.0879653692245483,
0.02623419463634491,
-0.09976443648338318,
0.012949265539646149,
0.3977409303188324,
0.744459867477417,
-0.491611123085022,
1.0059267282485962,
-0.535477340221405,
-0.3675956428050995,
-0.35393157601356506,
0.35025909543037415,
0.30963635444641113,
0.6074069142341614,
0.47145000100135803,
-0.7850034832954407,
-0.2629626393318176,
-0.5144360065460205,
-0.6650567054748535,
-0.12495505809783936,
-0.35513386130332947,
-0.1756131500005722,
0.20070584118366241,
0.4774076044559479,
-0.8496859669685364,
0.29076164960861206,
0.653272807598114,
-0.5718212127685547,
0.3915306329727173,
-0.16604174673557281,
-0.27413085103034973,
-1.4219239950180054,
0.17139115929603577,
0.03147769346833229,
-0.14572642743587494,
-0.42238110303878784,
0.06339988112449646,
0.026919102296233177,
-0.1453706920146942,
-0.45447099208831787,
0.35606464743614197,
-0.39554691314697266,
0.037925440818071365,
-0.10571169853210449,
0.3209480345249176,
-0.07955222576856613,
0.845492422580719,
-0.10367584973573685,
0.8581628799438477,
0.4943182170391083,
-0.4649481177330017,
0.29545098543167114,
0.45828917622566223,
-0.42643681168556213,
0.1232132539153099,
-0.8638426661491394,
-0.05662255361676216,
-0.05703769251704216,
0.32119354605674744,
-1.0940754413604736,
-0.03636942058801651,
0.3963712155818939,
-0.6045639514923096,
0.05780510976910591,
0.14724144339561462,
-0.6707897186279297,
-0.6052566170692444,
-0.2701772451400757,
0.04313031956553459,
0.5525605082511902,
-0.5581055283546448,
0.6109626293182373,
0.29507744312286377,
-0.035194031894207,
-0.6062830686569214,
-1.2024489641189575,
0.1383100152015686,
-0.13228733837604523,
-0.6357305645942688,
0.5071431994438171,
-0.07132068276405334,
0.19503451883792877,
0.2876397967338562,
0.26056331396102905,
-0.062049563974142075,
0.027919910848140717,
0.14491447806358337,
0.13290904462337494,
-0.1835586279630661,
0.10062848776578903,
0.09232892096042633,
-0.20543377101421356,
0.19005604088306427,
-0.34644556045532227,
0.7875681519508362,
-0.20904822647571564,
-0.12522810697555542,
-0.4893924295902252,
0.2619650065898895,
0.4964351952075958,
-0.3481932580471039,
1.2363866567611694,
1.1046091318130493,
-0.34075742959976196,
-0.03156992420554161,
-0.4890688955783844,
-0.19396914541721344,
-0.4578890800476074,
0.5852617025375366,
-0.1994616538286209,
-1.0245412588119507,
0.282723069190979,
0.12607073783874512,
-0.06109071522951126,
0.7247161269187927,
0.543452262878418,
-0.11540354788303375,
0.8770868182182312,
0.5794039368629456,
-0.18379269540309906,
0.4708307683467865,
-0.6174867749214172,
0.3921785056591034,
-1.026345133781433,
-0.17142149806022644,
-0.2394454926252365,
-0.3924899995326996,
-0.7351356148719788,
-0.40300846099853516,
0.15780872106552124,
-0.07401780784130096,
-0.27180835604667664,
0.6095141768455505,
-0.5911020636558533,
0.25434282422065735,
0.6707859635353088,
0.14003588259220123,
-0.23275987803936005,
0.0841076672077179,
-0.4828655421733856,
-0.038985725492239,
-0.7577672600746155,
-0.4475703835487366,
0.7163734436035156,
0.4119877815246582,
0.16242651641368866,
0.01587030291557312,
0.595572829246521,
-0.06565042585134506,
0.02651888132095337,
-0.7699505686759949,
0.6623726487159729,
-0.38905569911003113,
-0.27291691303253174,
-0.2272888720035553,
-0.5200024843215942,
-0.8485460877418518,
0.4412033259868622,
-0.26412075757980347,
-0.8843294382095337,
0.21486914157867432,
-0.32413995265960693,
-0.2603567838668823,
0.42549023032188416,
-0.9116223454475403,
1.0774554014205933,
0.13945454359054565,
0.02602161280810833,
-0.024913867935538292,
-0.716130793094635,
0.2438432276248932,
0.26791247725486755,
-0.11393638700246811,
-0.08246839791536331,
-0.11817795038223267,
0.8126434087753296,
-0.29894959926605225,
0.966536819934845,
-0.18057483434677124,
0.3593648076057434,
0.3463517129421234,
-0.3904845118522644,
0.24965935945510864,
-0.13620910048484802,
-0.1283092498779297,
0.07160792499780655,
-0.20424354076385498,
-0.34693443775177,
-0.5773878693580627,
0.6824548840522766,
-0.9768487811088562,
-0.29848694801330566,
-0.4898907244205475,
-0.6003220677375793,
0.037020016461610794,
0.1593853384256363,
0.3794502019882202,
0.418316513299942,
-0.006857143249362707,
0.49352607131004333,
0.4879344403743744,
-0.3548316955566406,
0.8818312287330627,
0.10688424855470657,
0.036374498158693314,
-0.5086358785629272,
0.708565890789032,
0.07913318276405334,
-0.014864793978631496,
0.504342257976532,
0.23984761536121368,
-0.3889489769935608,
-0.3190605044364929,
-0.3432207703590393,
0.3728322386741638,
-0.4518035352230072,
-0.18958646059036255,
-1.0841907262802124,
-0.6857172846794128,
-0.6059656739234924,
0.1196679025888443,
-0.18591591715812683,
-0.4194260835647583,
-0.5548253655433655,
-0.21916431188583374,
0.3020358085632324,
0.36566704511642456,
-0.0647861659526825,
0.48925867676734924,
-0.6062225699424744,
0.11534319818019867,
0.27224522829055786,
0.2582312226295471,
0.0009377362439408898,
-0.6761713027954102,
-0.18740054965019226,
0.00015699818322900683,
-0.25426000356674194,
-0.86178058385849,
0.6546388864517212,
0.25937947630882263,
0.5576193928718567,
0.1299457997083664,
-0.003908394370228052,
0.5178341269493103,
-0.6172598004341125,
0.9259402751922607,
0.08087736368179321,
-0.9785329103469849,
0.4244326949119568,
-0.10954292118549347,
0.5385666489601135,
0.47670114040374756,
0.3217645287513733,
-0.5205020308494568,
-0.16647668182849884,
-0.6466631293296814,
-1.0173107385635376,
0.6946609616279602,
0.5359113812446594,
0.4728677570819855,
-0.2626301348209381,
0.35865333676338196,
-0.4616661071777344,
0.14038725197315216,
-1.1967647075653076,
-0.43061593174934387,
-0.35500702261924744,
-0.5182744860649109,
-0.30146321654319763,
-0.47121790051460266,
0.17762921750545502,
-0.40127137303352356,
0.8096371293067932,
-0.00857016071677208,
0.8972266912460327,
0.3609451353549957,
-0.3846087157726288,
0.2980073094367981,
0.2619211971759796,
0.6337666511535645,
0.26874256134033203,
-0.07801579684019089,
0.251529723405838,
0.2618856132030487,
-0.32061323523521423,
0.022854674607515335,
0.5080363750457764,
-0.15267835557460785,
0.11654435843229294,
0.3537467420101166,
1.0816737413406372,
0.3917594254016876,
-0.41926729679107666,
0.8246768712997437,
-0.055866315960884094,
-0.2582463026046753,
-0.4693255126476288,
-0.09857088327407837,
0.35507115721702576,
0.2644801139831543,
0.21236048638820648,
0.167566180229187,
0.05247879773378372,
-0.3538651764392853,
0.44465532898902893,
0.12957334518432617,
-0.4382949471473694,
0.05034489184617996,
0.5324854850769043,
0.009011448360979557,
-0.3113168478012085,
0.9866197109222412,
-0.39470988512039185,
-0.7661396265029907,
0.4703409969806671,
0.6455972790718079,
1.002354383468628,
0.12728914618492126,
0.3541353642940521,
0.5534591674804688,
0.4766491651535034,
0.02208099514245987,
-0.04878463223576546,
0.11311109364032745,
-0.9162738919258118,
-0.47494831681251526,
-0.6730238199234009,
0.10629729926586151,
-0.009253079071640968,
-0.5085737109184265,
0.10679350048303604,
-0.11748660355806351,
-0.0874904990196228,
-0.08685269951820374,
-0.02722243405878544,
-0.47868382930755615,
0.0010837770532816648,
0.16725251078605652,
0.8919153809547424,
-0.9180733561515808,
0.8078910112380981,
0.6378264427185059,
-0.5929995775222778,
-0.7948734760284424,
-0.04537257179617882,
-0.24645590782165527,
-0.6452518105506897,
0.40410616993904114,
0.48831474781036377,
0.2257513701915741,
0.22147060930728912,
-0.5648638010025024,
-0.7889751195907593,
1.394964337348938,
0.24610958993434906,
-0.37257710099220276,
-0.12432786822319031,
0.19784191250801086,
0.450274258852005,
-0.5493623614311218,
0.376159131526947,
0.46095678210258484,
0.39540234208106995,
-0.0940517783164978,
-0.6392955780029297,
0.1503857523202896,
-0.44130486249923706,
0.21374231576919556,
-0.06418078392744064,
-0.564264178276062,
0.931625247001648,
0.0537240244448185,
-0.1813982129096985,
0.262626051902771,
0.8659309148788452,
0.24327628314495087,
-0.0790947750210762,
0.49284011125564575,
0.9016885757446289,
0.5241188406944275,
-0.2711004614830017,
1.088457703590393,
-0.2147681564092636,
0.6546066999435425,
1.0336753129959106,
0.11034271866083145,
1.1703839302062988,
0.4822964668273926,
-0.03866104409098625,
0.7956072092056274,
0.4747273921966553,
-0.4524451494216919,
0.5834844708442688,
0.27495694160461426,
-0.05191745236515999,
0.04879496246576309,
-0.04215622320771217,
-0.1091262549161911,
0.5706561207771301,
0.12293456494808197,
-0.7261818647384644,
-0.0009637261391617358,
0.1294991821050644,
0.08629723638296127,
-0.022923655807971954,
0.00045262102503329515,
0.6937074065208435,
0.14703653752803802,
-0.5546577572822571,
0.2545846998691559,
0.3045477867126465,
1.0553089380264282,
-0.4105193316936493,
0.17118224501609802,
-0.029217395931482315,
0.32867828011512756,
-0.024300046265125275,
-0.6457228064537048,
0.5159056782722473,
-0.1657869964838028,
-0.16500771045684814,
-0.20398521423339844,
0.7159109115600586,
-0.6229878067970276,
-0.6563618183135986,
0.3138040006160736,
0.4243483245372772,
0.04647305980324745,
0.015013812109827995,
-1.1084753274917603,
-0.08883799612522125,
0.025341695174574852,
-0.4131259620189667,
0.19201846420764923,
0.1993391215801239,
0.5282298922538757,
0.5438845753669739,
0.4129074513912201,
-0.13302765786647797,
0.1686042696237564,
0.14659465849399567,
0.7087765336036682,
-0.5288655757904053,
-0.4987899959087372,
-0.9682856798171997,
0.7459165453910828,
-0.3207411766052246,
-0.429455041885376,
0.6667606234550476,
0.5417300462722778,
0.8287364840507507,
-0.18951579928398132,
0.4354330897331238,
-0.18722599744796753,
0.13720326125621796,
-0.5688654780387878,
0.9726454019546509,
-0.3985198736190796,
-0.11486300081014633,
-0.10937368869781494,
-0.9808161854743958,
-0.3546540439128876,
1.044818639755249,
-0.29162782430648804,
0.11615943163633347,
0.8663128614425659,
0.8972521424293518,
-0.1626659482717514,
-0.06065283715724945,
0.09654669463634491,
0.4677789509296417,
0.09316658228635788,
0.5341676473617554,
0.46489983797073364,
-0.8109949827194214,
0.6340572237968445,
-0.5882222652435303,
-0.0016677859239280224,
0.04720763489603996,
-0.8989983201026917,
-0.9598538875579834,
-0.8081096410751343,
-0.4458087086677551,
-0.28286075592041016,
0.0013259801780804992,
0.9817607402801514,
0.7991723418235779,
-0.7712581157684326,
-0.13935792446136475,
-0.32668405771255493,
-0.19709789752960205,
-0.09298098087310791,
-0.34469887614250183,
0.4436474144458771,
-0.43850088119506836,
-0.6910641193389893,
0.2655785083770752,
-0.017251767218112946,
0.08526778966188431,
-0.3626208007335663,
0.12818989157676697,
-0.787956953048706,
0.14602252840995789,
0.629041314125061,
-0.2403210997581482,
-0.798542320728302,
-0.26440665125846863,
-0.02327442541718483,
-0.33843889832496643,
-0.03390553966164589,
0.4821784794330597,
-0.6936905980110168,
0.13960221409797668,
0.41310083866119385,
0.6417473554611206,
0.6674864292144775,
-0.2827216386795044,
0.4763842821121216,
-0.896148681640625,
0.3102434277534485,
0.0275422390550375,
0.7208863496780396,
0.42619532346725464,
-0.2726035714149475,
0.6391149163246155,
0.2987246513366699,
-0.4841167628765106,
-0.6207878589630127,
-0.10473983734846115,
-1.0914078950881958,
-0.3169192373752594,
1.155937910079956,
-0.3585768938064575,
-0.3717690408229828,
0.31652170419692993,
-0.2200974076986313,
0.47319069504737854,
-0.14150236546993256,
0.5482439994812012,
0.8104087114334106,
0.09906323999166489,
-0.5697153806686401,
-0.32363927364349365,
0.12790922820568085,
0.5194342732429504,
-0.628251850605011,
-0.295821875333786,
0.13538233935832977,
0.18828605115413666,
0.3023986220359802,
0.29220834374427795,
-0.06023585796356201,
-0.028181521221995354,
0.1209908127784729,
0.09668347984552383,
-0.29137668013572693,
-0.04619057476520538,
-0.5010791420936584,
0.20082153379917145,
-0.4957161247730255,
-0.2716088891029358
] |
timm/vit_base_patch16_224.augreg2_in21k_ft_in1k | timm | "2023-05-06T00:00:25Z" | 166,005 | 3 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"dataset:imagenet-1k",
"dataset:imagenet-21k",
"arxiv:2106.10270",
"arxiv:2010.11929",
"license:apache-2.0",
"region:us"
] | image-classification | "2022-12-22T07:24:28Z" | ---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-21k
---
# Model card for vit_base_patch16_224.augreg2_in21k_ft_in1k
A Vision Transformer (ViT) image classification model. Trained on ImageNet-21k by paper authors and (re) fine-tuned on ImageNet-1k with additional augmentation and regularization by Ross Wightman.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 86.6
- GMACs: 16.9
- Activations (M): 16.5
- Image size: 224 x 224
- **Papers:**
- How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers: https://arxiv.org/abs/2106.10270
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-21k
- **Original:** https://github.com/google-research/vision_transformer
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_base_patch16_224.augreg2_in21k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch16_224.augreg2_in21k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@article{steiner2021augreg,
title={How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers},
author={Steiner, Andreas and Kolesnikov, Alexander and and Zhai, Xiaohua and Wightman, Ross and Uszkoreit, Jakob and Beyer, Lucas},
journal={arXiv preprint arXiv:2106.10270},
year={2021}
}
```
```bibtex
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
| [
-0.5312709808349609,
-0.3807145059108734,
-0.03935525566339493,
0.09737709164619446,
-0.4119938015937805,
-0.3447502553462982,
-0.27466827630996704,
-0.5013935565948486,
0.17163348197937012,
0.35266268253326416,
-0.5839704275131226,
-0.46500036120414734,
-0.6565901637077332,
-0.008317669853568077,
-0.12320306152105331,
0.952674150466919,
-0.12220395356416702,
0.09424454718828201,
-0.24724265933036804,
-0.44843533635139465,
-0.35383570194244385,
-0.2679060995578766,
-0.6433818340301514,
-0.4626021683216095,
0.3352241516113281,
0.19513194262981415,
0.5582754015922546,
0.6500412225723267,
0.7878142595291138,
0.44961491227149963,
-0.12462938576936722,
0.18998520076274872,
-0.37820154428482056,
-0.2674603760242462,
0.3020479679107666,
-0.6523197293281555,
-0.4117046892642975,
0.25410062074661255,
0.7527096271514893,
0.38196924328804016,
0.1342414766550064,
0.33481237292289734,
0.16205839812755585,
0.5559693574905396,
-0.32035303115844727,
0.19396747648715973,
-0.5625460743904114,
0.25242310762405396,
-0.0733099952340126,
-0.05247963219881058,
-0.3004162609577179,
-0.33525794744491577,
0.19344200193881989,
-0.565833568572998,
0.5885714888572693,
-0.04917734116315842,
1.4296895265579224,
0.32189133763313293,
0.050148334354162216,
0.2510216534137726,
-0.42926323413848877,
0.774772047996521,
-0.6672590374946594,
0.4479985237121582,
0.23762556910514832,
0.17268288135528564,
0.05961437150835991,
-1.0000965595245361,
-0.6863560676574707,
-0.1427328735589981,
-0.2658892273902893,
0.11543423682451248,
-0.2770381271839142,
0.2138345092535019,
0.47716736793518066,
0.5848380327224731,
-0.5276451110839844,
0.026498300954699516,
-0.5985698699951172,
-0.2612347900867462,
0.5752562880516052,
-0.034017208963632584,
0.18809707462787628,
-0.1442723423242569,
-0.6818704605102539,
-0.5666414499282837,
-0.3853638172149658,
0.3216449022293091,
0.3180977404117584,
0.06491534411907196,
-0.5041300654411316,
0.5352883338928223,
0.054344892501831055,
0.639403760433197,
0.30296480655670166,
-0.21729595959186554,
0.6960643529891968,
-0.22460949420928955,
-0.39871424436569214,
-0.2812154293060303,
1.09282648563385,
0.4920813739299774,
0.41617855429649353,
-0.01604562997817993,
-0.20913919806480408,
-0.12849213182926178,
0.07950114458799362,
-1.1077735424041748,
-0.34976574778556824,
0.06949422508478165,
-0.4640008807182312,
-0.41006529331207275,
0.3586139976978302,
-0.6104304194450378,
-0.11263226717710495,
-0.1416195183992386,
0.7728497982025146,
-0.4608163833618164,
-0.22883041203022003,
0.10481436550617218,
-0.17381268739700317,
0.5453020930290222,
0.2297855019569397,
-0.6455881595611572,
0.15811030566692352,
0.2681305706501007,
1.0195001363754272,
0.03377419337630272,
-0.47886866331100464,
-0.24347183108329773,
-0.4535168409347534,
-0.3823355436325073,
0.5402341485023499,
-0.05671894922852516,
-0.14314931631088257,
-0.19413815438747406,
0.4001416265964508,
-0.25820377469062805,
-0.6125999093055725,
0.33626648783683777,
-0.21132802963256836,
0.37238970398902893,
0.06408532708883286,
-0.2326773703098297,
-0.4256889522075653,
0.30905234813690186,
-0.42781004309654236,
1.2897804975509644,
0.4271776080131531,
-0.9033076167106628,
0.4314155876636505,
-0.4659530818462372,
-0.0907609611749649,
-0.10289917141199112,
0.010237591341137886,
-1.0875484943389893,
0.029801569879055023,
0.2835799753665924,
0.5620993375778198,
-0.2241097092628479,
-0.015418535098433495,
-0.3729897737503052,
-0.3553788363933563,
0.33122044801712036,
-0.23211799561977386,
0.9296920895576477,
-0.000010913605365203694,
-0.3195410370826721,
0.25194263458251953,
-0.6358411312103271,
0.08318722248077393,
0.4415837824344635,
-0.2874019145965576,
-0.008453046903014183,
-0.6142992973327637,
0.14651578664779663,
0.23477871716022491,
0.2526337504386902,
-0.7034894824028015,
0.3641575574874878,
-0.4083828628063202,
0.40914174914360046,
0.6673632860183716,
-0.0899491086602211,
0.3836659789085388,
-0.3563551902770996,
0.328618586063385,
0.296814888715744,
0.43095526099205017,
-0.16028054058551788,
-0.6585447192192078,
-1.0465120077133179,
-0.40429264307022095,
0.36273643374443054,
0.5168381929397583,
-0.6637961268424988,
0.5914950966835022,
-0.36312612891197205,
-0.733985424041748,
-0.6160163283348083,
0.07596120238304138,
0.5008421540260315,
0.5841094851493835,
0.5373976230621338,
-0.5776565074920654,
-0.5501949191093445,
-1.0348140001296997,
-0.11585629731416702,
-0.07057299464941025,
0.007074697408825159,
0.24770799279212952,
0.5953099131584167,
-0.28221595287323,
0.8808466792106628,
-0.4473099112510681,
-0.33962199091911316,
-0.1888452172279358,
0.03962383046746254,
0.3161252737045288,
0.7900362014770508,
0.7449682950973511,
-0.7079998850822449,
-0.4698289930820465,
-0.1500282734632492,
-0.8753147125244141,
0.13730810582637787,
-0.0467875599861145,
-0.20272906124591827,
0.1357768028974533,
0.19441795349121094,
-0.6781755089759827,
0.73567134141922,
0.14136435091495514,
-0.3840557634830475,
0.41825971007347107,
-0.23694653809070587,
0.078962542116642,
-1.2043617963790894,
-0.01411247719079256,
0.4014049768447876,
-0.27437254786491394,
-0.5577976703643799,
0.004747183062136173,
0.12569338083267212,
-0.0032692847307771444,
-0.4320683181285858,
0.5765939354896545,
-0.5111570954322815,
-0.011721091344952583,
-0.0800248458981514,
-0.35586974024772644,
0.07095502316951752,
0.7857568860054016,
-0.05891149118542671,
0.5477192997932434,
0.7544150948524475,
-0.49290987849235535,
0.5390628576278687,
0.560789167881012,
-0.22130680084228516,
0.4947657585144043,
-0.7487714886665344,
0.16102078557014465,
-0.07227815687656403,
0.187593013048172,
-1.0729751586914062,
-0.18769162893295288,
0.40227892994880676,
-0.741657555103302,
0.712520182132721,
-0.5008213520050049,
-0.4592758119106293,
-0.6053599119186401,
-0.4479914605617523,
0.4176301956176758,
0.7819740176200867,
-0.767235279083252,
0.5533316135406494,
0.11862210184335709,
0.29354655742645264,
-0.5938286781311035,
-1.023662805557251,
-0.2176743745803833,
-0.3705878257751465,
-0.7275812029838562,
0.47476938366889954,
0.04010184854269028,
0.15436793863773346,
0.06396950781345367,
-0.07691211998462677,
-0.03629527986049652,
-0.20368190109729767,
0.4689713716506958,
0.4382086992263794,
-0.25065526366233826,
-0.06825311481952667,
-0.3039489686489105,
-0.23460353910923004,
0.01594134420156479,
-0.3295925259590149,
0.47635534405708313,
-0.29403549432754517,
-0.19571681320667267,
-0.7262454628944397,
-0.22154493629932404,
0.48858609795570374,
-0.2975192070007324,
0.7236297726631165,
1.1688838005065918,
-0.517258882522583,
0.08371339738368988,
-0.6039234399795532,
-0.38456475734710693,
-0.5071706175804138,
0.45855939388275146,
-0.32965266704559326,
-0.4781402051448822,
0.7286126017570496,
0.16424793004989624,
0.09677451103925705,
0.806016743183136,
0.4198988378047943,
0.044501129537820816,
0.8321385979652405,
0.7155982851982117,
0.16562767326831818,
0.872000515460968,
-0.9798370003700256,
-0.12813223898410797,
-0.9716489315032959,
-0.4295283555984497,
-0.2366429567337036,
-0.5660934448242188,
-0.6902006268501282,
-0.5029411315917969,
0.42732441425323486,
0.12169642746448517,
-0.28109636902809143,
0.5573305487632751,
-0.8840752840042114,
0.19495180249214172,
0.7293238043785095,
0.5384324789047241,
-0.14245739579200745,
0.41468918323516846,
-0.18738842010498047,
-0.0801202729344368,
-0.7669523358345032,
-0.11730365455150604,
1.0763933658599854,
0.502577543258667,
0.7820335626602173,
-0.28761306405067444,
0.6224561333656311,
-0.24675315618515015,
0.2854417860507965,
-0.7784082889556885,
0.5575270056724548,
-0.08139972388744354,
-0.4238567352294922,
-0.13875825703144073,
-0.37191110849380493,
-1.0083613395690918,
0.18669676780700684,
-0.3475726842880249,
-0.7737066149711609,
0.40242519974708557,
0.1922750025987625,
-0.23741811513900757,
0.6571581363677979,
-0.8435476422309875,
0.9648724794387817,
-0.08489315211772919,
-0.45087626576423645,
0.08430343121290207,
-0.7698541283607483,
0.2190762311220169,
0.19325123727321625,
-0.3559505045413971,
0.1273084282875061,
0.23658537864685059,
0.9999698400497437,
-0.6176406741142273,
0.8603953719139099,
-0.43291953206062317,
0.33851560950279236,
0.4968052804470062,
-0.2765083909034729,
0.39140698313713074,
0.00593841215595603,
0.16580255329608917,
0.3460386097431183,
-0.05399042367935181,
-0.374934583902359,
-0.49059435725212097,
0.4789849817752838,
-1.0305490493774414,
-0.374490886926651,
-0.4543856680393219,
-0.5636278390884399,
0.09112460911273956,
0.08516273647546768,
0.7398750185966492,
0.6594103574752808,
0.2708396017551422,
0.4001198410987854,
0.7394925355911255,
-0.31863316893577576,
0.3776877820491791,
0.024105699732899666,
-0.11927349865436554,
-0.5620148777961731,
0.9475409984588623,
0.272880494594574,
0.1908220499753952,
0.2191179096698761,
0.2221326231956482,
-0.3387291133403778,
-0.5025032758712769,
-0.38571032881736755,
0.4149496555328369,
-0.7118943929672241,
-0.47427067160606384,
-0.5861674547195435,
-0.5626819729804993,
-0.357444167137146,
0.03878594934940338,
-0.4400535821914673,
-0.3738693296909332,
-0.39503875374794006,
0.0802851989865303,
0.8241467475891113,
0.5541002154350281,
-0.14881069958209991,
0.5322314500808716,
-0.5942230224609375,
0.24212779104709625,
0.31067803502082825,
0.5687870383262634,
-0.2043953537940979,
-1.0580967664718628,
-0.39326345920562744,
0.042218104004859924,
-0.49202197790145874,
-0.7608932852745056,
0.4166097044944763,
0.23407849669456482,
0.4925869405269623,
0.420816034078598,
-0.28804492950439453,
0.8514305353164673,
-0.1231207326054573,
0.6433237195014954,
0.3429301381111145,
-0.515620231628418,
0.5055801868438721,
-0.0924886092543602,
0.149330735206604,
0.22777307033538818,
0.18944405019283295,
-0.25398939847946167,
-0.04466861113905907,
-1.0785236358642578,
-0.7529289126396179,
0.8010733723640442,
0.24504722654819489,
0.0688609853386879,
0.4678560197353363,
0.6542323231697083,
-0.020960448309779167,
0.052159860730171204,
-0.8776871562004089,
-0.3682895302772522,
-0.41037416458129883,
-0.29282882809638977,
-0.08402681350708008,
-0.08870179951190948,
-0.012095533311367035,
-0.8090023994445801,
0.703095018863678,
-0.06943405419588089,
0.8158450722694397,
0.44900524616241455,
-0.1696617603302002,
-0.20593403279781342,
-0.3861252963542938,
0.4112015664577484,
0.25686144828796387,
-0.28616154193878174,
0.012684717774391174,
0.3006764054298401,
-0.760664701461792,
-0.030558042228221893,
0.3409583568572998,
-0.12363165616989136,
0.058081865310668945,
0.4741551876068115,
1.135717749595642,
-0.09177003055810928,
-0.006139242555946112,
0.5583962798118591,
-0.09107360988855362,
-0.471576064825058,
-0.28044331073760986,
0.10550017654895782,
-0.2341894954442978,
0.3760784864425659,
0.33748531341552734,
0.4282868206501007,
-0.12433915585279465,
-0.13691332936286926,
0.1703541874885559,
0.5503459572792053,
-0.572322428226471,
-0.3980657160282135,
0.6999761462211609,
-0.21200703084468842,
-0.13356275856494904,
0.7933492660522461,
-0.09108206629753113,
-0.5905834436416626,
0.9095188975334167,
0.3415110409259796,
1.0639252662658691,
-0.10987450927495956,
-0.06551575660705566,
0.8151102662086487,
0.40317124128341675,
-0.04923948645591736,
0.19954445958137512,
0.14858709275722504,
-0.8195168972015381,
-0.07437428832054138,
-0.6412084698677063,
0.04792683199048042,
0.3793419599533081,
-0.5426391959190369,
0.4007357656955719,
-0.5207928419113159,
-0.36786359548568726,
0.06111671030521393,
0.24981747567653656,
-1.0208101272583008,
0.3102002441883087,
0.06962323188781738,
0.8219937086105347,
-0.836936891078949,
0.6688922047615051,
0.8930744528770447,
-0.6518563628196716,
-0.982953667640686,
-0.19083747267723083,
-0.1599365919828415,
-0.8859872817993164,
0.4468509256839752,
0.4444773495197296,
0.15576234459877014,
0.22519780695438385,
-0.8639798760414124,
-0.6453555822372437,
1.3386237621307373,
0.3765001893043518,
-0.164630725979805,
0.16107520461082458,
-0.008498305454850197,
0.3788507878780365,
-0.31325212121009827,
0.4116455316543579,
0.17796927690505981,
0.4415244162082672,
0.21385926008224487,
-0.724871814250946,
0.08390194922685623,
-0.39165735244750977,
0.1806037724018097,
0.20987799763679504,
-0.8736113905906677,
0.9741511344909668,
-0.4148314297199249,
-0.12132547795772552,
0.1672322154045105,
0.6394069194793701,
0.09976333379745483,
0.08504787087440491,
0.6000819206237793,
0.9226061701774597,
0.4066947400569916,
-0.40727728605270386,
0.8970990777015686,
-0.16434520483016968,
0.6813358068466187,
0.5216350555419922,
0.4946918189525604,
0.44574055075645447,
0.45400574803352356,
-0.34529754519462585,
0.34916871786117554,
1.0546571016311646,
-0.5967565774917603,
0.33796170353889465,
0.09350544214248657,
0.0842994675040245,
-0.24345055222511292,
0.051440414041280746,
-0.5110864639282227,
0.49825701117515564,
0.21541842818260193,
-0.5466132760047913,
-0.07937410473823547,
0.15812908113002777,
-0.16835632920265198,
-0.36442047357559204,
-0.18262945115566254,
0.6492404937744141,
0.029723094776272774,
-0.44481903314590454,
0.8557767868041992,
0.0015858078841120005,
0.8394541144371033,
-0.4732295274734497,
-0.05468243360519409,
-0.27304306626319885,
0.39540091156959534,
-0.3807775378227234,
-0.8051254749298096,
0.178666353225708,
-0.22809913754463196,
-0.12380994856357574,
0.03925350680947304,
0.7599425315856934,
-0.4451743960380554,
-0.5778999924659729,
0.11934728175401688,
0.30937686562538147,
0.3334355056285858,
-0.05890901759266853,
-1.0619864463806152,
-0.08215714991092682,
0.008851227350533009,
-0.5992612242698669,
0.20375585556030273,
0.4053542912006378,
0.040801040828228,
0.6657321453094482,
0.680230438709259,
-0.08918677270412445,
0.22047661244869232,
-0.12949420511722565,
0.96478670835495,
-0.4121256172657013,
-0.4177055060863495,
-0.808434009552002,
0.6555120944976807,
-0.07008619606494904,
-0.6341071724891663,
0.6670723557472229,
0.6558559536933899,
0.9395133256912231,
-0.14057782292366028,
0.4998530447483063,
-0.13743484020233154,
0.056475549936294556,
-0.3850706219673157,
0.5981597900390625,
-0.7356733679771423,
-0.09177721291780472,
-0.24515584111213684,
-0.8984342217445374,
-0.3384215831756592,
0.9089975953102112,
-0.2663305699825287,
0.4223473370075226,
0.5037874579429626,
1.0143052339553833,
-0.3355686068534851,
-0.4157228469848633,
0.17767994105815887,
0.19882649183273315,
0.09008388966321945,
0.40478044748306274,
0.5388141870498657,
-0.9107723832130432,
0.46524131298065186,
-0.624660313129425,
-0.18878617882728577,
-0.24095392227172852,
-0.4866790771484375,
-1.040804147720337,
-0.848476767539978,
-0.5819881558418274,
-0.6578944325447083,
-0.23124314844608307,
0.8605955243110657,
0.9887804985046387,
-0.5802894234657288,
-0.058148473501205444,
-0.12706834077835083,
0.002383172744885087,
-0.3342897593975067,
-0.2412770688533783,
0.48731285333633423,
-0.12883861362934113,
-0.7585501670837402,
-0.2742273509502411,
0.014758538454771042,
0.5242711305618286,
-0.19726262986660004,
-0.21256741881370544,
-0.18616139888763428,
-0.275903582572937,
0.2579179108142853,
0.295475572347641,
-0.6961308121681213,
-0.226307675242424,
-0.0487106591463089,
-0.06568171828985214,
0.5464097857475281,
0.3775412440299988,
-0.7412923574447632,
0.5537526607513428,
0.5888367891311646,
0.35594892501831055,
0.8405199646949768,
-0.1269582360982895,
0.09258447587490082,
-0.8947777152061462,
0.5540350675582886,
-0.06772499531507492,
0.5189328789710999,
0.5373907089233398,
-0.3378336727619171,
0.6536132097244263,
0.5951815247535706,
-0.45696544647216797,
-0.8504470586776733,
-0.024227414280176163,
-1.141357183456421,
0.10226260125637054,
0.9778252840042114,
-0.24260331690311432,
-0.4535995423793793,
0.4021288752555847,
-0.18027263879776,
0.7216336727142334,
-0.05355624854564667,
0.4295084774494171,
0.257418155670166,
0.08535703271627426,
-0.604874849319458,
-0.470032274723053,
0.5315428972244263,
0.1184031143784523,
-0.5474397540092468,
-0.4150741994380951,
0.034531041979789734,
0.5702831149101257,
0.3809451162815094,
0.3707338869571686,
-0.16387487947940826,
0.17623107135295868,
0.06504969298839569,
0.5145390629768372,
-0.4087231457233429,
-0.15116667747497559,
-0.4545205533504486,
-0.19249407947063446,
-0.10799163579940796,
-0.6417830586433411
] |
intfloat/e5-large-v2 | intfloat | "2023-08-07T05:01:43Z" | 165,989 | 156 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"safetensors",
"bert",
"mteb",
"Sentence Transformers",
"sentence-similarity",
"en",
"arxiv:2212.03533",
"arxiv:2104.08663",
"arxiv:2210.07316",
"license:mit",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2023-05-19T07:23:33Z" | ---
tags:
- mteb
- Sentence Transformers
- sentence-similarity
- sentence-transformers
model-index:
- name: e5-large-v2
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 79.22388059701493
- type: ap
value: 43.20816505595132
- type: f1
value: 73.27811303522058
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.748325
- type: ap
value: 90.72534979701297
- type: f1
value: 93.73895874282185
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.612
- type: f1
value: 47.61157345898393
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.541999999999998
- type: map_at_10
value: 38.208
- type: map_at_100
value: 39.417
- type: map_at_1000
value: 39.428999999999995
- type: map_at_3
value: 33.95
- type: map_at_5
value: 36.329
- type: mrr_at_1
value: 23.755000000000003
- type: mrr_at_10
value: 38.288
- type: mrr_at_100
value: 39.511
- type: mrr_at_1000
value: 39.523
- type: mrr_at_3
value: 34.009
- type: mrr_at_5
value: 36.434
- type: ndcg_at_1
value: 23.541999999999998
- type: ndcg_at_10
value: 46.417
- type: ndcg_at_100
value: 51.812000000000005
- type: ndcg_at_1000
value: 52.137
- type: ndcg_at_3
value: 37.528
- type: ndcg_at_5
value: 41.81
- type: precision_at_1
value: 23.541999999999998
- type: precision_at_10
value: 7.269
- type: precision_at_100
value: 0.9690000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 15.979
- type: precision_at_5
value: 11.664
- type: recall_at_1
value: 23.541999999999998
- type: recall_at_10
value: 72.688
- type: recall_at_100
value: 96.871
- type: recall_at_1000
value: 99.431
- type: recall_at_3
value: 47.937000000000005
- type: recall_at_5
value: 58.321
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 45.546499570522094
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 41.01607489943561
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 59.616107510107774
- type: mrr
value: 72.75106626214661
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 84.33018094733868
- type: cos_sim_spearman
value: 83.60190492611737
- type: euclidean_pearson
value: 82.1492450218961
- type: euclidean_spearman
value: 82.70308926526991
- type: manhattan_pearson
value: 81.93959600076842
- type: manhattan_spearman
value: 82.73260801016369
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.54545454545455
- type: f1
value: 84.49582530928923
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 37.362725540120096
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 34.849509608178145
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.502999999999997
- type: map_at_10
value: 43.323
- type: map_at_100
value: 44.708999999999996
- type: map_at_1000
value: 44.838
- type: map_at_3
value: 38.987
- type: map_at_5
value: 41.516999999999996
- type: mrr_at_1
value: 38.769999999999996
- type: mrr_at_10
value: 49.13
- type: mrr_at_100
value: 49.697
- type: mrr_at_1000
value: 49.741
- type: mrr_at_3
value: 45.804
- type: mrr_at_5
value: 47.842
- type: ndcg_at_1
value: 38.769999999999996
- type: ndcg_at_10
value: 50.266999999999996
- type: ndcg_at_100
value: 54.967
- type: ndcg_at_1000
value: 56.976000000000006
- type: ndcg_at_3
value: 43.823
- type: ndcg_at_5
value: 47.12
- type: precision_at_1
value: 38.769999999999996
- type: precision_at_10
value: 10.057
- type: precision_at_100
value: 1.554
- type: precision_at_1000
value: 0.202
- type: precision_at_3
value: 21.125
- type: precision_at_5
value: 15.851
- type: recall_at_1
value: 31.502999999999997
- type: recall_at_10
value: 63.715999999999994
- type: recall_at_100
value: 83.61800000000001
- type: recall_at_1000
value: 96.63199999999999
- type: recall_at_3
value: 45.403
- type: recall_at_5
value: 54.481
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.833000000000002
- type: map_at_10
value: 37.330999999999996
- type: map_at_100
value: 38.580999999999996
- type: map_at_1000
value: 38.708
- type: map_at_3
value: 34.713
- type: map_at_5
value: 36.104
- type: mrr_at_1
value: 35.223
- type: mrr_at_10
value: 43.419000000000004
- type: mrr_at_100
value: 44.198
- type: mrr_at_1000
value: 44.249
- type: mrr_at_3
value: 41.614000000000004
- type: mrr_at_5
value: 42.553000000000004
- type: ndcg_at_1
value: 35.223
- type: ndcg_at_10
value: 42.687999999999995
- type: ndcg_at_100
value: 47.447
- type: ndcg_at_1000
value: 49.701
- type: ndcg_at_3
value: 39.162
- type: ndcg_at_5
value: 40.557
- type: precision_at_1
value: 35.223
- type: precision_at_10
value: 7.962
- type: precision_at_100
value: 1.304
- type: precision_at_1000
value: 0.18
- type: precision_at_3
value: 19.023
- type: precision_at_5
value: 13.184999999999999
- type: recall_at_1
value: 27.833000000000002
- type: recall_at_10
value: 51.881
- type: recall_at_100
value: 72.04
- type: recall_at_1000
value: 86.644
- type: recall_at_3
value: 40.778
- type: recall_at_5
value: 45.176
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.175
- type: map_at_10
value: 51.174
- type: map_at_100
value: 52.26499999999999
- type: map_at_1000
value: 52.315999999999995
- type: map_at_3
value: 47.897
- type: map_at_5
value: 49.703
- type: mrr_at_1
value: 43.448
- type: mrr_at_10
value: 54.505
- type: mrr_at_100
value: 55.216
- type: mrr_at_1000
value: 55.242000000000004
- type: mrr_at_3
value: 51.98500000000001
- type: mrr_at_5
value: 53.434000000000005
- type: ndcg_at_1
value: 43.448
- type: ndcg_at_10
value: 57.282
- type: ndcg_at_100
value: 61.537
- type: ndcg_at_1000
value: 62.546
- type: ndcg_at_3
value: 51.73799999999999
- type: ndcg_at_5
value: 54.324
- type: precision_at_1
value: 43.448
- type: precision_at_10
value: 9.292
- type: precision_at_100
value: 1.233
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 23.218
- type: precision_at_5
value: 15.887
- type: recall_at_1
value: 38.175
- type: recall_at_10
value: 72.00999999999999
- type: recall_at_100
value: 90.155
- type: recall_at_1000
value: 97.257
- type: recall_at_3
value: 57.133
- type: recall_at_5
value: 63.424
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.405
- type: map_at_10
value: 30.043
- type: map_at_100
value: 31.191000000000003
- type: map_at_1000
value: 31.275
- type: map_at_3
value: 27.034000000000002
- type: map_at_5
value: 28.688000000000002
- type: mrr_at_1
value: 24.068
- type: mrr_at_10
value: 31.993
- type: mrr_at_100
value: 32.992
- type: mrr_at_1000
value: 33.050000000000004
- type: mrr_at_3
value: 28.964000000000002
- type: mrr_at_5
value: 30.653000000000002
- type: ndcg_at_1
value: 24.068
- type: ndcg_at_10
value: 35.198
- type: ndcg_at_100
value: 40.709
- type: ndcg_at_1000
value: 42.855
- type: ndcg_at_3
value: 29.139
- type: ndcg_at_5
value: 32.045
- type: precision_at_1
value: 24.068
- type: precision_at_10
value: 5.65
- type: precision_at_100
value: 0.885
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 12.279
- type: precision_at_5
value: 8.994
- type: recall_at_1
value: 22.405
- type: recall_at_10
value: 49.391
- type: recall_at_100
value: 74.53699999999999
- type: recall_at_1000
value: 90.605
- type: recall_at_3
value: 33.126
- type: recall_at_5
value: 40.073
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 13.309999999999999
- type: map_at_10
value: 20.688000000000002
- type: map_at_100
value: 22.022
- type: map_at_1000
value: 22.152
- type: map_at_3
value: 17.954
- type: map_at_5
value: 19.439
- type: mrr_at_1
value: 16.294
- type: mrr_at_10
value: 24.479
- type: mrr_at_100
value: 25.515
- type: mrr_at_1000
value: 25.593
- type: mrr_at_3
value: 21.642
- type: mrr_at_5
value: 23.189999999999998
- type: ndcg_at_1
value: 16.294
- type: ndcg_at_10
value: 25.833000000000002
- type: ndcg_at_100
value: 32.074999999999996
- type: ndcg_at_1000
value: 35.083
- type: ndcg_at_3
value: 20.493
- type: ndcg_at_5
value: 22.949
- type: precision_at_1
value: 16.294
- type: precision_at_10
value: 5.112
- type: precision_at_100
value: 0.96
- type: precision_at_1000
value: 0.134
- type: precision_at_3
value: 9.908999999999999
- type: precision_at_5
value: 7.587000000000001
- type: recall_at_1
value: 13.309999999999999
- type: recall_at_10
value: 37.851
- type: recall_at_100
value: 64.835
- type: recall_at_1000
value: 86.334
- type: recall_at_3
value: 23.493
- type: recall_at_5
value: 29.528
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.857999999999997
- type: map_at_10
value: 35.503
- type: map_at_100
value: 36.957
- type: map_at_1000
value: 37.065
- type: map_at_3
value: 32.275999999999996
- type: map_at_5
value: 34.119
- type: mrr_at_1
value: 31.954
- type: mrr_at_10
value: 40.851
- type: mrr_at_100
value: 41.863
- type: mrr_at_1000
value: 41.900999999999996
- type: mrr_at_3
value: 38.129999999999995
- type: mrr_at_5
value: 39.737
- type: ndcg_at_1
value: 31.954
- type: ndcg_at_10
value: 41.343999999999994
- type: ndcg_at_100
value: 47.397
- type: ndcg_at_1000
value: 49.501
- type: ndcg_at_3
value: 36.047000000000004
- type: ndcg_at_5
value: 38.639
- type: precision_at_1
value: 31.954
- type: precision_at_10
value: 7.68
- type: precision_at_100
value: 1.247
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 17.132
- type: precision_at_5
value: 12.589
- type: recall_at_1
value: 25.857999999999997
- type: recall_at_10
value: 53.43599999999999
- type: recall_at_100
value: 78.82400000000001
- type: recall_at_1000
value: 92.78999999999999
- type: recall_at_3
value: 38.655
- type: recall_at_5
value: 45.216
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.709
- type: map_at_10
value: 34.318
- type: map_at_100
value: 35.657
- type: map_at_1000
value: 35.783
- type: map_at_3
value: 31.326999999999998
- type: map_at_5
value: 33.021
- type: mrr_at_1
value: 30.137000000000004
- type: mrr_at_10
value: 39.093
- type: mrr_at_100
value: 39.992
- type: mrr_at_1000
value: 40.056999999999995
- type: mrr_at_3
value: 36.606
- type: mrr_at_5
value: 37.861
- type: ndcg_at_1
value: 30.137000000000004
- type: ndcg_at_10
value: 39.974
- type: ndcg_at_100
value: 45.647999999999996
- type: ndcg_at_1000
value: 48.259
- type: ndcg_at_3
value: 35.028
- type: ndcg_at_5
value: 37.175999999999995
- type: precision_at_1
value: 30.137000000000004
- type: precision_at_10
value: 7.363
- type: precision_at_100
value: 1.184
- type: precision_at_1000
value: 0.161
- type: precision_at_3
value: 16.857
- type: precision_at_5
value: 11.963
- type: recall_at_1
value: 24.709
- type: recall_at_10
value: 52.087
- type: recall_at_100
value: 76.125
- type: recall_at_1000
value: 93.82300000000001
- type: recall_at_3
value: 38.149
- type: recall_at_5
value: 43.984
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.40791666666667
- type: map_at_10
value: 32.458083333333335
- type: map_at_100
value: 33.691916666666664
- type: map_at_1000
value: 33.81191666666666
- type: map_at_3
value: 29.51625
- type: map_at_5
value: 31.168083333333335
- type: mrr_at_1
value: 27.96591666666666
- type: mrr_at_10
value: 36.528583333333344
- type: mrr_at_100
value: 37.404
- type: mrr_at_1000
value: 37.464333333333336
- type: mrr_at_3
value: 33.92883333333333
- type: mrr_at_5
value: 35.41933333333333
- type: ndcg_at_1
value: 27.96591666666666
- type: ndcg_at_10
value: 37.89141666666666
- type: ndcg_at_100
value: 43.23066666666666
- type: ndcg_at_1000
value: 45.63258333333333
- type: ndcg_at_3
value: 32.811249999999994
- type: ndcg_at_5
value: 35.22566666666667
- type: precision_at_1
value: 27.96591666666666
- type: precision_at_10
value: 6.834083333333332
- type: precision_at_100
value: 1.12225
- type: precision_at_1000
value: 0.15241666666666667
- type: precision_at_3
value: 15.264333333333335
- type: precision_at_5
value: 11.039416666666666
- type: recall_at_1
value: 23.40791666666667
- type: recall_at_10
value: 49.927083333333336
- type: recall_at_100
value: 73.44641666666668
- type: recall_at_1000
value: 90.19950000000001
- type: recall_at_3
value: 35.88341666666667
- type: recall_at_5
value: 42.061249999999994
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.592000000000002
- type: map_at_10
value: 26.895999999999997
- type: map_at_100
value: 27.921000000000003
- type: map_at_1000
value: 28.02
- type: map_at_3
value: 24.883
- type: map_at_5
value: 25.812
- type: mrr_at_1
value: 22.698999999999998
- type: mrr_at_10
value: 29.520999999999997
- type: mrr_at_100
value: 30.458000000000002
- type: mrr_at_1000
value: 30.526999999999997
- type: mrr_at_3
value: 27.633000000000003
- type: mrr_at_5
value: 28.483999999999998
- type: ndcg_at_1
value: 22.698999999999998
- type: ndcg_at_10
value: 31.061
- type: ndcg_at_100
value: 36.398
- type: ndcg_at_1000
value: 38.89
- type: ndcg_at_3
value: 27.149
- type: ndcg_at_5
value: 28.627000000000002
- type: precision_at_1
value: 22.698999999999998
- type: precision_at_10
value: 5.106999999999999
- type: precision_at_100
value: 0.857
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 11.963
- type: precision_at_5
value: 8.221
- type: recall_at_1
value: 19.592000000000002
- type: recall_at_10
value: 41.329
- type: recall_at_100
value: 66.094
- type: recall_at_1000
value: 84.511
- type: recall_at_3
value: 30.61
- type: recall_at_5
value: 34.213
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 14.71
- type: map_at_10
value: 20.965
- type: map_at_100
value: 21.994
- type: map_at_1000
value: 22.133
- type: map_at_3
value: 18.741
- type: map_at_5
value: 19.951
- type: mrr_at_1
value: 18.307000000000002
- type: mrr_at_10
value: 24.66
- type: mrr_at_100
value: 25.540000000000003
- type: mrr_at_1000
value: 25.629
- type: mrr_at_3
value: 22.511
- type: mrr_at_5
value: 23.72
- type: ndcg_at_1
value: 18.307000000000002
- type: ndcg_at_10
value: 25.153
- type: ndcg_at_100
value: 30.229
- type: ndcg_at_1000
value: 33.623
- type: ndcg_at_3
value: 21.203
- type: ndcg_at_5
value: 23.006999999999998
- type: precision_at_1
value: 18.307000000000002
- type: precision_at_10
value: 4.725
- type: precision_at_100
value: 0.8659999999999999
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 10.14
- type: precision_at_5
value: 7.481
- type: recall_at_1
value: 14.71
- type: recall_at_10
value: 34.087
- type: recall_at_100
value: 57.147999999999996
- type: recall_at_1000
value: 81.777
- type: recall_at_3
value: 22.996
- type: recall_at_5
value: 27.73
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.472
- type: map_at_10
value: 32.699
- type: map_at_100
value: 33.867000000000004
- type: map_at_1000
value: 33.967000000000006
- type: map_at_3
value: 29.718
- type: map_at_5
value: 31.345
- type: mrr_at_1
value: 28.265
- type: mrr_at_10
value: 36.945
- type: mrr_at_100
value: 37.794
- type: mrr_at_1000
value: 37.857
- type: mrr_at_3
value: 34.266000000000005
- type: mrr_at_5
value: 35.768
- type: ndcg_at_1
value: 28.265
- type: ndcg_at_10
value: 38.35
- type: ndcg_at_100
value: 43.739
- type: ndcg_at_1000
value: 46.087
- type: ndcg_at_3
value: 33.004
- type: ndcg_at_5
value: 35.411
- type: precision_at_1
value: 28.265
- type: precision_at_10
value: 6.715999999999999
- type: precision_at_100
value: 1.059
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 15.299
- type: precision_at_5
value: 10.951
- type: recall_at_1
value: 23.472
- type: recall_at_10
value: 51.413
- type: recall_at_100
value: 75.17
- type: recall_at_1000
value: 91.577
- type: recall_at_3
value: 36.651
- type: recall_at_5
value: 42.814
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.666
- type: map_at_10
value: 32.963
- type: map_at_100
value: 34.544999999999995
- type: map_at_1000
value: 34.792
- type: map_at_3
value: 29.74
- type: map_at_5
value: 31.5
- type: mrr_at_1
value: 29.051
- type: mrr_at_10
value: 38.013000000000005
- type: mrr_at_100
value: 38.997
- type: mrr_at_1000
value: 39.055
- type: mrr_at_3
value: 34.947
- type: mrr_at_5
value: 36.815
- type: ndcg_at_1
value: 29.051
- type: ndcg_at_10
value: 39.361000000000004
- type: ndcg_at_100
value: 45.186
- type: ndcg_at_1000
value: 47.867
- type: ndcg_at_3
value: 33.797
- type: ndcg_at_5
value: 36.456
- type: precision_at_1
value: 29.051
- type: precision_at_10
value: 7.668
- type: precision_at_100
value: 1.532
- type: precision_at_1000
value: 0.247
- type: precision_at_3
value: 15.876000000000001
- type: precision_at_5
value: 11.779
- type: recall_at_1
value: 23.666
- type: recall_at_10
value: 51.858000000000004
- type: recall_at_100
value: 77.805
- type: recall_at_1000
value: 94.504
- type: recall_at_3
value: 36.207
- type: recall_at_5
value: 43.094
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.662
- type: map_at_10
value: 23.594
- type: map_at_100
value: 24.593999999999998
- type: map_at_1000
value: 24.694
- type: map_at_3
value: 20.925
- type: map_at_5
value: 22.817999999999998
- type: mrr_at_1
value: 17.375
- type: mrr_at_10
value: 25.734
- type: mrr_at_100
value: 26.586
- type: mrr_at_1000
value: 26.671
- type: mrr_at_3
value: 23.044
- type: mrr_at_5
value: 24.975
- type: ndcg_at_1
value: 17.375
- type: ndcg_at_10
value: 28.186
- type: ndcg_at_100
value: 33.436
- type: ndcg_at_1000
value: 36.203
- type: ndcg_at_3
value: 23.152
- type: ndcg_at_5
value: 26.397
- type: precision_at_1
value: 17.375
- type: precision_at_10
value: 4.677
- type: precision_at_100
value: 0.786
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 10.351
- type: precision_at_5
value: 7.985
- type: recall_at_1
value: 15.662
- type: recall_at_10
value: 40.066
- type: recall_at_100
value: 65.006
- type: recall_at_1000
value: 85.94000000000001
- type: recall_at_3
value: 27.400000000000002
- type: recall_at_5
value: 35.002
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.853
- type: map_at_10
value: 15.568000000000001
- type: map_at_100
value: 17.383000000000003
- type: map_at_1000
value: 17.584
- type: map_at_3
value: 12.561
- type: map_at_5
value: 14.056
- type: mrr_at_1
value: 18.958
- type: mrr_at_10
value: 28.288000000000004
- type: mrr_at_100
value: 29.432000000000002
- type: mrr_at_1000
value: 29.498
- type: mrr_at_3
value: 25.049
- type: mrr_at_5
value: 26.857
- type: ndcg_at_1
value: 18.958
- type: ndcg_at_10
value: 22.21
- type: ndcg_at_100
value: 29.596
- type: ndcg_at_1000
value: 33.583
- type: ndcg_at_3
value: 16.994999999999997
- type: ndcg_at_5
value: 18.95
- type: precision_at_1
value: 18.958
- type: precision_at_10
value: 7.192
- type: precision_at_100
value: 1.5
- type: precision_at_1000
value: 0.22399999999999998
- type: precision_at_3
value: 12.573
- type: precision_at_5
value: 10.202
- type: recall_at_1
value: 8.853
- type: recall_at_10
value: 28.087
- type: recall_at_100
value: 53.701
- type: recall_at_1000
value: 76.29899999999999
- type: recall_at_3
value: 15.913
- type: recall_at_5
value: 20.658
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.077
- type: map_at_10
value: 20.788999999999998
- type: map_at_100
value: 30.429000000000002
- type: map_at_1000
value: 32.143
- type: map_at_3
value: 14.692
- type: map_at_5
value: 17.139
- type: mrr_at_1
value: 70.75
- type: mrr_at_10
value: 78.036
- type: mrr_at_100
value: 78.401
- type: mrr_at_1000
value: 78.404
- type: mrr_at_3
value: 76.75
- type: mrr_at_5
value: 77.47500000000001
- type: ndcg_at_1
value: 58.12500000000001
- type: ndcg_at_10
value: 44.015
- type: ndcg_at_100
value: 49.247
- type: ndcg_at_1000
value: 56.211999999999996
- type: ndcg_at_3
value: 49.151
- type: ndcg_at_5
value: 46.195
- type: precision_at_1
value: 70.75
- type: precision_at_10
value: 35.5
- type: precision_at_100
value: 11.355
- type: precision_at_1000
value: 2.1950000000000003
- type: precision_at_3
value: 53.083000000000006
- type: precision_at_5
value: 44.800000000000004
- type: recall_at_1
value: 9.077
- type: recall_at_10
value: 26.259
- type: recall_at_100
value: 56.547000000000004
- type: recall_at_1000
value: 78.551
- type: recall_at_3
value: 16.162000000000003
- type: recall_at_5
value: 19.753999999999998
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 49.44500000000001
- type: f1
value: 44.67067691783401
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 68.182
- type: map_at_10
value: 78.223
- type: map_at_100
value: 78.498
- type: map_at_1000
value: 78.512
- type: map_at_3
value: 76.71
- type: map_at_5
value: 77.725
- type: mrr_at_1
value: 73.177
- type: mrr_at_10
value: 82.513
- type: mrr_at_100
value: 82.633
- type: mrr_at_1000
value: 82.635
- type: mrr_at_3
value: 81.376
- type: mrr_at_5
value: 82.182
- type: ndcg_at_1
value: 73.177
- type: ndcg_at_10
value: 82.829
- type: ndcg_at_100
value: 83.84
- type: ndcg_at_1000
value: 84.07900000000001
- type: ndcg_at_3
value: 80.303
- type: ndcg_at_5
value: 81.846
- type: precision_at_1
value: 73.177
- type: precision_at_10
value: 10.241999999999999
- type: precision_at_100
value: 1.099
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 31.247999999999998
- type: precision_at_5
value: 19.697
- type: recall_at_1
value: 68.182
- type: recall_at_10
value: 92.657
- type: recall_at_100
value: 96.709
- type: recall_at_1000
value: 98.184
- type: recall_at_3
value: 85.9
- type: recall_at_5
value: 89.755
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.108
- type: map_at_10
value: 33.342
- type: map_at_100
value: 35.281
- type: map_at_1000
value: 35.478
- type: map_at_3
value: 29.067
- type: map_at_5
value: 31.563000000000002
- type: mrr_at_1
value: 41.667
- type: mrr_at_10
value: 49.913000000000004
- type: mrr_at_100
value: 50.724000000000004
- type: mrr_at_1000
value: 50.766
- type: mrr_at_3
value: 47.504999999999995
- type: mrr_at_5
value: 49.033
- type: ndcg_at_1
value: 41.667
- type: ndcg_at_10
value: 41.144
- type: ndcg_at_100
value: 48.326
- type: ndcg_at_1000
value: 51.486
- type: ndcg_at_3
value: 37.486999999999995
- type: ndcg_at_5
value: 38.78
- type: precision_at_1
value: 41.667
- type: precision_at_10
value: 11.358
- type: precision_at_100
value: 1.873
- type: precision_at_1000
value: 0.244
- type: precision_at_3
value: 25
- type: precision_at_5
value: 18.519
- type: recall_at_1
value: 21.108
- type: recall_at_10
value: 47.249
- type: recall_at_100
value: 74.52
- type: recall_at_1000
value: 93.31
- type: recall_at_3
value: 33.271
- type: recall_at_5
value: 39.723000000000006
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.317
- type: map_at_10
value: 64.861
- type: map_at_100
value: 65.697
- type: map_at_1000
value: 65.755
- type: map_at_3
value: 61.258
- type: map_at_5
value: 63.590999999999994
- type: mrr_at_1
value: 80.635
- type: mrr_at_10
value: 86.528
- type: mrr_at_100
value: 86.66199999999999
- type: mrr_at_1000
value: 86.666
- type: mrr_at_3
value: 85.744
- type: mrr_at_5
value: 86.24300000000001
- type: ndcg_at_1
value: 80.635
- type: ndcg_at_10
value: 73.13199999999999
- type: ndcg_at_100
value: 75.927
- type: ndcg_at_1000
value: 76.976
- type: ndcg_at_3
value: 68.241
- type: ndcg_at_5
value: 71.071
- type: precision_at_1
value: 80.635
- type: precision_at_10
value: 15.326
- type: precision_at_100
value: 1.7500000000000002
- type: precision_at_1000
value: 0.189
- type: precision_at_3
value: 43.961
- type: precision_at_5
value: 28.599999999999998
- type: recall_at_1
value: 40.317
- type: recall_at_10
value: 76.631
- type: recall_at_100
value: 87.495
- type: recall_at_1000
value: 94.362
- type: recall_at_3
value: 65.94200000000001
- type: recall_at_5
value: 71.499
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 91.686
- type: ap
value: 87.5577120393173
- type: f1
value: 91.6629447355139
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 23.702
- type: map_at_10
value: 36.414
- type: map_at_100
value: 37.561
- type: map_at_1000
value: 37.605
- type: map_at_3
value: 32.456
- type: map_at_5
value: 34.827000000000005
- type: mrr_at_1
value: 24.355
- type: mrr_at_10
value: 37.01
- type: mrr_at_100
value: 38.085
- type: mrr_at_1000
value: 38.123000000000005
- type: mrr_at_3
value: 33.117999999999995
- type: mrr_at_5
value: 35.452
- type: ndcg_at_1
value: 24.384
- type: ndcg_at_10
value: 43.456
- type: ndcg_at_100
value: 48.892
- type: ndcg_at_1000
value: 49.964
- type: ndcg_at_3
value: 35.475
- type: ndcg_at_5
value: 39.711
- type: precision_at_1
value: 24.384
- type: precision_at_10
value: 6.7940000000000005
- type: precision_at_100
value: 0.951
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 15.052999999999999
- type: precision_at_5
value: 11.189
- type: recall_at_1
value: 23.702
- type: recall_at_10
value: 65.057
- type: recall_at_100
value: 90.021
- type: recall_at_1000
value: 98.142
- type: recall_at_3
value: 43.551
- type: recall_at_5
value: 53.738
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.62380300957591
- type: f1
value: 94.49871222100734
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 77.14090287277702
- type: f1
value: 60.32101258220515
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.84330867518494
- type: f1
value: 71.92248688515255
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.10692669804976
- type: f1
value: 77.9904839122866
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.822988923078444
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.38394880253403
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.82504612539082
- type: mrr
value: 32.84462298174977
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.029
- type: map_at_10
value: 14.088999999999999
- type: map_at_100
value: 17.601
- type: map_at_1000
value: 19.144
- type: map_at_3
value: 10.156
- type: map_at_5
value: 11.892
- type: mrr_at_1
value: 46.44
- type: mrr_at_10
value: 56.596999999999994
- type: mrr_at_100
value: 57.11000000000001
- type: mrr_at_1000
value: 57.14
- type: mrr_at_3
value: 54.334
- type: mrr_at_5
value: 55.774
- type: ndcg_at_1
value: 44.891999999999996
- type: ndcg_at_10
value: 37.134
- type: ndcg_at_100
value: 33.652
- type: ndcg_at_1000
value: 42.548
- type: ndcg_at_3
value: 41.851
- type: ndcg_at_5
value: 39.842
- type: precision_at_1
value: 46.44
- type: precision_at_10
value: 27.647
- type: precision_at_100
value: 8.309999999999999
- type: precision_at_1000
value: 2.146
- type: precision_at_3
value: 39.422000000000004
- type: precision_at_5
value: 34.675
- type: recall_at_1
value: 6.029
- type: recall_at_10
value: 18.907
- type: recall_at_100
value: 33.76
- type: recall_at_1000
value: 65.14999999999999
- type: recall_at_3
value: 11.584999999999999
- type: recall_at_5
value: 14.626
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 39.373000000000005
- type: map_at_10
value: 55.836
- type: map_at_100
value: 56.611999999999995
- type: map_at_1000
value: 56.63
- type: map_at_3
value: 51.747
- type: map_at_5
value: 54.337999999999994
- type: mrr_at_1
value: 44.147999999999996
- type: mrr_at_10
value: 58.42699999999999
- type: mrr_at_100
value: 58.902
- type: mrr_at_1000
value: 58.914
- type: mrr_at_3
value: 55.156000000000006
- type: mrr_at_5
value: 57.291000000000004
- type: ndcg_at_1
value: 44.119
- type: ndcg_at_10
value: 63.444
- type: ndcg_at_100
value: 66.40599999999999
- type: ndcg_at_1000
value: 66.822
- type: ndcg_at_3
value: 55.962
- type: ndcg_at_5
value: 60.228
- type: precision_at_1
value: 44.119
- type: precision_at_10
value: 10.006
- type: precision_at_100
value: 1.17
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 25.135
- type: precision_at_5
value: 17.59
- type: recall_at_1
value: 39.373000000000005
- type: recall_at_10
value: 83.78999999999999
- type: recall_at_100
value: 96.246
- type: recall_at_1000
value: 99.324
- type: recall_at_3
value: 64.71900000000001
- type: recall_at_5
value: 74.508
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 69.199
- type: map_at_10
value: 82.892
- type: map_at_100
value: 83.578
- type: map_at_1000
value: 83.598
- type: map_at_3
value: 79.948
- type: map_at_5
value: 81.779
- type: mrr_at_1
value: 79.67
- type: mrr_at_10
value: 86.115
- type: mrr_at_100
value: 86.249
- type: mrr_at_1000
value: 86.251
- type: mrr_at_3
value: 85.08200000000001
- type: mrr_at_5
value: 85.783
- type: ndcg_at_1
value: 79.67
- type: ndcg_at_10
value: 86.839
- type: ndcg_at_100
value: 88.252
- type: ndcg_at_1000
value: 88.401
- type: ndcg_at_3
value: 83.86200000000001
- type: ndcg_at_5
value: 85.473
- type: precision_at_1
value: 79.67
- type: precision_at_10
value: 13.19
- type: precision_at_100
value: 1.521
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 36.677
- type: precision_at_5
value: 24.118000000000002
- type: recall_at_1
value: 69.199
- type: recall_at_10
value: 94.321
- type: recall_at_100
value: 99.20400000000001
- type: recall_at_1000
value: 99.947
- type: recall_at_3
value: 85.787
- type: recall_at_5
value: 90.365
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 55.82810046856353
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 63.38132611783628
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.127000000000001
- type: map_at_10
value: 12.235
- type: map_at_100
value: 14.417
- type: map_at_1000
value: 14.75
- type: map_at_3
value: 8.906
- type: map_at_5
value: 10.591000000000001
- type: mrr_at_1
value: 25.2
- type: mrr_at_10
value: 35.879
- type: mrr_at_100
value: 36.935
- type: mrr_at_1000
value: 36.997
- type: mrr_at_3
value: 32.783
- type: mrr_at_5
value: 34.367999999999995
- type: ndcg_at_1
value: 25.2
- type: ndcg_at_10
value: 20.509
- type: ndcg_at_100
value: 28.67
- type: ndcg_at_1000
value: 34.42
- type: ndcg_at_3
value: 19.948
- type: ndcg_at_5
value: 17.166
- type: precision_at_1
value: 25.2
- type: precision_at_10
value: 10.440000000000001
- type: precision_at_100
value: 2.214
- type: precision_at_1000
value: 0.359
- type: precision_at_3
value: 18.533
- type: precision_at_5
value: 14.860000000000001
- type: recall_at_1
value: 5.127000000000001
- type: recall_at_10
value: 21.147
- type: recall_at_100
value: 44.946999999999996
- type: recall_at_1000
value: 72.89
- type: recall_at_3
value: 11.277
- type: recall_at_5
value: 15.042
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.0373011786213
- type: cos_sim_spearman
value: 79.27889560856613
- type: euclidean_pearson
value: 80.31186315495655
- type: euclidean_spearman
value: 79.41630415280811
- type: manhattan_pearson
value: 80.31755140442013
- type: manhattan_spearman
value: 79.43069870027611
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.8659751342045
- type: cos_sim_spearman
value: 76.95377612997667
- type: euclidean_pearson
value: 81.24552945497848
- type: euclidean_spearman
value: 77.18236963555253
- type: manhattan_pearson
value: 81.26477607759037
- type: manhattan_spearman
value: 77.13821753062756
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 83.34597139044875
- type: cos_sim_spearman
value: 84.124169425592
- type: euclidean_pearson
value: 83.68590721511401
- type: euclidean_spearman
value: 84.18846190846398
- type: manhattan_pearson
value: 83.57630235061498
- type: manhattan_spearman
value: 84.10244043726902
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 82.67641885599572
- type: cos_sim_spearman
value: 80.46450725650428
- type: euclidean_pearson
value: 81.61645042715865
- type: euclidean_spearman
value: 80.61418394236874
- type: manhattan_pearson
value: 81.55712034928871
- type: manhattan_spearman
value: 80.57905670523951
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.86650310886782
- type: cos_sim_spearman
value: 89.76081629222328
- type: euclidean_pearson
value: 89.1530747029954
- type: euclidean_spearman
value: 89.80990657280248
- type: manhattan_pearson
value: 89.10640563278132
- type: manhattan_spearman
value: 89.76282108434047
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.93864027911118
- type: cos_sim_spearman
value: 85.47096193999023
- type: euclidean_pearson
value: 85.03141840870533
- type: euclidean_spearman
value: 85.43124029598181
- type: manhattan_pearson
value: 84.99002664393512
- type: manhattan_spearman
value: 85.39169195120834
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.7045343749832
- type: cos_sim_spearman
value: 89.03262221146677
- type: euclidean_pearson
value: 89.56078218264365
- type: euclidean_spearman
value: 89.17827006466868
- type: manhattan_pearson
value: 89.52717595468582
- type: manhattan_spearman
value: 89.15878115952923
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.20191302875551
- type: cos_sim_spearman
value: 64.11446552557646
- type: euclidean_pearson
value: 64.6918197393619
- type: euclidean_spearman
value: 63.440182631197764
- type: manhattan_pearson
value: 64.55692904121835
- type: manhattan_spearman
value: 63.424877742756266
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.37793104662344
- type: cos_sim_spearman
value: 87.7357802629067
- type: euclidean_pearson
value: 87.4286301545109
- type: euclidean_spearman
value: 87.78452920777421
- type: manhattan_pearson
value: 87.42445169331255
- type: manhattan_spearman
value: 87.78537677249598
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 84.31465405081792
- type: mrr
value: 95.7173781193389
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 57.760999999999996
- type: map_at_10
value: 67.904
- type: map_at_100
value: 68.539
- type: map_at_1000
value: 68.562
- type: map_at_3
value: 65.415
- type: map_at_5
value: 66.788
- type: mrr_at_1
value: 60.333000000000006
- type: mrr_at_10
value: 68.797
- type: mrr_at_100
value: 69.236
- type: mrr_at_1000
value: 69.257
- type: mrr_at_3
value: 66.667
- type: mrr_at_5
value: 67.967
- type: ndcg_at_1
value: 60.333000000000006
- type: ndcg_at_10
value: 72.24199999999999
- type: ndcg_at_100
value: 74.86
- type: ndcg_at_1000
value: 75.354
- type: ndcg_at_3
value: 67.93400000000001
- type: ndcg_at_5
value: 70.02199999999999
- type: precision_at_1
value: 60.333000000000006
- type: precision_at_10
value: 9.533
- type: precision_at_100
value: 1.09
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.778000000000002
- type: precision_at_5
value: 17.467
- type: recall_at_1
value: 57.760999999999996
- type: recall_at_10
value: 84.383
- type: recall_at_100
value: 96.267
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 72.628
- type: recall_at_5
value: 78.094
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.8029702970297
- type: cos_sim_ap
value: 94.9210324173411
- type: cos_sim_f1
value: 89.8521162672106
- type: cos_sim_precision
value: 91.67533818938605
- type: cos_sim_recall
value: 88.1
- type: dot_accuracy
value: 99.69504950495049
- type: dot_ap
value: 90.4919719146181
- type: dot_f1
value: 84.72289156626506
- type: dot_precision
value: 81.76744186046511
- type: dot_recall
value: 87.9
- type: euclidean_accuracy
value: 99.79702970297029
- type: euclidean_ap
value: 94.87827463795753
- type: euclidean_f1
value: 89.55680081507896
- type: euclidean_precision
value: 91.27725856697819
- type: euclidean_recall
value: 87.9
- type: manhattan_accuracy
value: 99.7990099009901
- type: manhattan_ap
value: 94.87587025149682
- type: manhattan_f1
value: 89.76298537569339
- type: manhattan_precision
value: 90.53916581892166
- type: manhattan_recall
value: 89
- type: max_accuracy
value: 99.8029702970297
- type: max_ap
value: 94.9210324173411
- type: max_f1
value: 89.8521162672106
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 65.92385753948724
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.671756975431144
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.677928036739004
- type: mrr
value: 51.56413133435193
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.523589340819683
- type: cos_sim_spearman
value: 30.187407518823235
- type: dot_pearson
value: 29.039713969699015
- type: dot_spearman
value: 29.114740651155508
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.211
- type: map_at_10
value: 1.6199999999999999
- type: map_at_100
value: 8.658000000000001
- type: map_at_1000
value: 21.538
- type: map_at_3
value: 0.575
- type: map_at_5
value: 0.919
- type: mrr_at_1
value: 78
- type: mrr_at_10
value: 86.18599999999999
- type: mrr_at_100
value: 86.18599999999999
- type: mrr_at_1000
value: 86.18599999999999
- type: mrr_at_3
value: 85
- type: mrr_at_5
value: 85.9
- type: ndcg_at_1
value: 74
- type: ndcg_at_10
value: 66.542
- type: ndcg_at_100
value: 50.163999999999994
- type: ndcg_at_1000
value: 45.696999999999996
- type: ndcg_at_3
value: 71.531
- type: ndcg_at_5
value: 70.45
- type: precision_at_1
value: 78
- type: precision_at_10
value: 69.39999999999999
- type: precision_at_100
value: 51.06
- type: precision_at_1000
value: 20.022000000000002
- type: precision_at_3
value: 76
- type: precision_at_5
value: 74.8
- type: recall_at_1
value: 0.211
- type: recall_at_10
value: 1.813
- type: recall_at_100
value: 12.098
- type: recall_at_1000
value: 42.618
- type: recall_at_3
value: 0.603
- type: recall_at_5
value: 0.987
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.2079999999999997
- type: map_at_10
value: 7.777000000000001
- type: map_at_100
value: 12.825000000000001
- type: map_at_1000
value: 14.196
- type: map_at_3
value: 4.285
- type: map_at_5
value: 6.177
- type: mrr_at_1
value: 30.612000000000002
- type: mrr_at_10
value: 42.635
- type: mrr_at_100
value: 43.955
- type: mrr_at_1000
value: 43.955
- type: mrr_at_3
value: 38.435
- type: mrr_at_5
value: 41.088
- type: ndcg_at_1
value: 28.571
- type: ndcg_at_10
value: 20.666999999999998
- type: ndcg_at_100
value: 31.840000000000003
- type: ndcg_at_1000
value: 43.191
- type: ndcg_at_3
value: 23.45
- type: ndcg_at_5
value: 22.994
- type: precision_at_1
value: 30.612000000000002
- type: precision_at_10
value: 17.959
- type: precision_at_100
value: 6.755
- type: precision_at_1000
value: 1.4200000000000002
- type: precision_at_3
value: 23.810000000000002
- type: precision_at_5
value: 23.673
- type: recall_at_1
value: 2.2079999999999997
- type: recall_at_10
value: 13.144
- type: recall_at_100
value: 42.491
- type: recall_at_1000
value: 77.04299999999999
- type: recall_at_3
value: 5.3469999999999995
- type: recall_at_5
value: 9.139
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.9044
- type: ap
value: 14.625783489340755
- type: f1
value: 54.814936562590546
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.94227504244483
- type: f1
value: 61.22516038508854
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 49.602409155145864
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.94641473445789
- type: cos_sim_ap
value: 76.91572747061197
- type: cos_sim_f1
value: 70.14348097317529
- type: cos_sim_precision
value: 66.53254437869822
- type: cos_sim_recall
value: 74.1688654353562
- type: dot_accuracy
value: 84.80061989628658
- type: dot_ap
value: 70.7952548895177
- type: dot_f1
value: 65.44780728844965
- type: dot_precision
value: 61.53310104529617
- type: dot_recall
value: 69.89445910290237
- type: euclidean_accuracy
value: 86.94641473445789
- type: euclidean_ap
value: 76.80774009393652
- type: euclidean_f1
value: 70.30522503879979
- type: euclidean_precision
value: 68.94977168949772
- type: euclidean_recall
value: 71.71503957783642
- type: manhattan_accuracy
value: 86.8629671574179
- type: manhattan_ap
value: 76.76518632600317
- type: manhattan_f1
value: 70.16056518946692
- type: manhattan_precision
value: 68.360450563204
- type: manhattan_recall
value: 72.0580474934037
- type: max_accuracy
value: 86.94641473445789
- type: max_ap
value: 76.91572747061197
- type: max_f1
value: 70.30522503879979
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.10428066907285
- type: cos_sim_ap
value: 86.25114759921435
- type: cos_sim_f1
value: 78.37857884586856
- type: cos_sim_precision
value: 75.60818546078993
- type: cos_sim_recall
value: 81.35971666153372
- type: dot_accuracy
value: 87.41995575736406
- type: dot_ap
value: 81.51838010086782
- type: dot_f1
value: 74.77398015435503
- type: dot_precision
value: 71.53002390662354
- type: dot_recall
value: 78.32614721281182
- type: euclidean_accuracy
value: 89.12368533395428
- type: euclidean_ap
value: 86.33456799874504
- type: euclidean_f1
value: 78.45496750232127
- type: euclidean_precision
value: 75.78388462366364
- type: euclidean_recall
value: 81.32121958731136
- type: manhattan_accuracy
value: 89.10622113556099
- type: manhattan_ap
value: 86.31215061745333
- type: manhattan_f1
value: 78.40684906011539
- type: manhattan_precision
value: 75.89536643366722
- type: manhattan_recall
value: 81.09023714197721
- type: max_accuracy
value: 89.12368533395428
- type: max_ap
value: 86.33456799874504
- type: max_f1
value: 78.45496750232127
language:
- en
license: mit
---
# E5-large-v2
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
This model has 24 layers and the embedding size is 1024.
## Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Each input text should start with "query: " or "passage: ".
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = ['query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."]
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-v2')
model = AutoModel.from_pretrained('intfloat/e5-large-v2')
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
## Training Details
Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).
## Benchmark Evaluation
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
## Support for Sentence Transformers
Below is an example for usage with sentence_transformers.
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('intfloat/e5-large-v2')
input_texts = [
'query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
embeddings = model.encode(input_texts, normalize_embeddings=True)
```
Package requirements
`pip install sentence_transformers~=2.2.2`
Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
## FAQ
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
Yes, this is how the model is trained, otherwise you will see a performance degradation.
Here are some rules of thumb:
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
- Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval.
- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
**2. Why are my reproduced results slightly different from reported in the model card?**
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
For text embedding tasks like text retrieval or semantic similarity,
what matters is the relative order of the scores instead of the absolute values,
so this should not be an issue.
## Citation
If you find our paper or models helpful, please consider cite as follows:
```
@article{wang2022text,
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2212.03533},
year={2022}
}
```
## Limitations
This model only works for English texts. Long texts will be truncated to at most 512 tokens.
| [
-0.12461337447166443,
-0.6956959962844849,
0.25412121415138245,
0.20263171195983887,
-0.24020671844482422,
-0.4490358531475067,
-0.0012187492102384567,
-0.42731404304504395,
0.08303385227918625,
0.3004651963710785,
-0.4464309811592102,
-0.6251664161682129,
-0.9951103329658508,
0.2328590303659439,
-0.38455209136009216,
0.9108936786651611,
0.0074300882406532764,
0.054765671491622925,
-0.35611918568611145,
-0.05984138324856758,
-0.21180947124958038,
-0.5703333616256714,
-0.3169505298137665,
-0.2952554225921631,
0.300212562084198,
0.21053063869476318,
0.5912864208221436,
0.538078784942627,
0.6586512923240662,
0.3472270965576172,
-0.14550088346004486,
0.16542625427246094,
-0.5473650097846985,
-0.11783882230520248,
0.0019875073339790106,
-0.5254649519920349,
-0.4099307954311371,
0.20648960769176483,
0.5459131002426147,
0.7838681936264038,
0.16939586400985718,
0.23837406933307648,
0.37165743112564087,
0.4898311197757721,
-0.5764182806015015,
0.19187767803668976,
-0.42959338426589966,
0.1594870537519455,
0.09524321556091309,
-0.010329414159059525,
-0.37525010108947754,
0.14059856534004211,
0.39450955390930176,
-0.5849484205245972,
0.2576046586036682,
0.10905542969703674,
1.2481333017349243,
0.2827470004558563,
-0.4881936311721802,
-0.21443256735801697,
-0.11401446163654327,
1.00852370262146,
-0.704056978225708,
0.4370775818824768,
0.6783699989318848,
-0.28764280676841736,
-0.11803122609853745,
-0.9108431339263916,
-0.3945424258708954,
-0.20034320652484894,
-0.24481816589832306,
0.14774617552757263,
-0.24435977637767792,
-0.048964932560920715,
0.4198600947856903,
0.44513005018234253,
-0.8100727200508118,
-0.027129793539643288,
-0.33504846692085266,
-0.08744161576032639,
0.5037748217582703,
0.11542843282222748,
0.2623648941516876,
-0.4422625005245209,
-0.23260846734046936,
-0.2589160203933716,
-0.5197394490242004,
0.022199014201760292,
0.22415947914123535,
0.3670203685760498,
-0.38827136158943176,
0.5707578659057617,
-0.2582968473434448,
0.608731746673584,
0.1923254430294037,
0.10450378805398941,
0.676253080368042,
-0.5317869782447815,
-0.26566460728645325,
-0.2444225698709488,
1.002112627029419,
0.4898321330547333,
0.14419613778591156,
-0.07878339290618896,
-0.05672438070178032,
-0.11023698002099991,
0.07939022779464722,
-1.1337374448776245,
-0.4894736111164093,
0.21200712025165558,
-0.6134556531906128,
-0.20358970761299133,
0.12532486021518707,
-0.5356153845787048,
-0.10687769204378128,
-0.27649468183517456,
0.891426146030426,
-0.5267469882965088,
0.09140896052122116,
0.2479657530784607,
-0.23345325887203217,
0.1628696620464325,
0.1270967572927475,
-0.7845369577407837,
0.2945598363876343,
0.12285870313644409,
0.8861172199249268,
-0.05904610455036163,
-0.38251370191574097,
-0.5297015309333801,
-0.0792023241519928,
0.03312266618013382,
0.4778183400630951,
-0.39774003624916077,
-0.2520289421081543,
0.06355513632297516,
0.3972938656806946,
-0.45143988728523254,
-0.4921436011791229,
0.5242225527763367,
-0.3302614986896515,
0.3860985040664673,
-0.251368910074234,
-0.5905411839485168,
-0.04631824046373367,
0.26273760199546814,
-0.4286578297615051,
1.0235538482666016,
0.09039261937141418,
-0.954637885093689,
0.10601581633090973,
-0.4006815254688263,
-0.3935474753379822,
-0.15884096920490265,
-0.11017882078886032,
-0.49471259117126465,
-0.09698136150836945,
0.47943487763404846,
0.4649967849254608,
-0.16541032493114471,
0.008174126036465168,
-0.08190757781267166,
-0.49227994680404663,
0.22325344383716583,
-0.15290282666683197,
0.8589463233947754,
0.0691029280424118,
-0.4555724859237671,
-0.1397515833377838,
-0.6608310341835022,
0.05236389487981796,
0.16816172003746033,
-0.4215911328792572,
-0.13987137377262115,
0.077357716858387,
0.02548549696803093,
0.2925698757171631,
0.36994239687919617,
-0.45570212602615356,
0.18299809098243713,
-0.48848509788513184,
0.7317253351211548,
0.5433608889579773,
0.0712391659617424,
0.42543739080429077,
-0.3744477927684784,
0.10097535699605942,
0.38723647594451904,
0.05825849995017052,
-0.037032634019851685,
-0.49012449383735657,
-0.7322958111763,
-0.10107661783695221,
0.5470091700553894,
0.4891248941421509,
-0.4769587218761444,
0.595438539981842,
-0.3389640152454376,
-0.31416943669319153,
-0.6712009310722351,
0.13711637258529663,
0.23481371998786926,
0.36020615696907043,
0.7814446687698364,
-0.07261043787002563,
-0.6242660880088806,
-1.0045596361160278,
-0.2590033710002899,
0.18547195196151733,
-0.2980559766292572,
0.23662035167217255,
0.8914827704429626,
-0.324762761592865,
0.5565457940101624,
-0.6956675052642822,
-0.5139700174331665,
-0.17826351523399353,
0.11311561614274979,
0.41707703471183777,
0.7503929138183594,
0.3671855926513672,
-0.8684194087982178,
-0.45225948095321655,
-0.5147854685783386,
-0.8795201182365417,
0.11047397553920746,
0.1054365411400795,
-0.2291867583990097,
-0.09422111511230469,
0.522904634475708,
-0.6471632122993469,
0.3120279014110565,
0.5250813364982605,
-0.4446408748626709,
0.2857438623905182,
-0.32401084899902344,
0.14566271007061005,
-1.051179051399231,
0.0074294195510447025,
0.2050301432609558,
-0.1960860788822174,
-0.33963432908058167,
0.13803723454475403,
-0.00968747865408659,
-0.1586080938577652,
-0.4528871178627014,
0.2493104189634323,
-0.564132034778595,
0.21951141953468323,
-0.07941065728664398,
0.373513787984848,
0.30584296584129333,
0.4976917505264282,
-0.08269944041967392,
0.550223708152771,
0.5736283659934998,
-0.8239850997924805,
0.009929653257131577,
0.660779595375061,
-0.4099770188331604,
0.3273184895515442,
-0.8993329405784607,
0.11365598440170288,
-0.012655778788030148,
0.2628861963748932,
-0.9213339686393738,
-0.18240287899971008,
0.22938932478427887,
-0.6410501003265381,
0.3083459734916687,
-0.02062496729195118,
-0.5387112498283386,
-0.2919808030128479,
-0.5228887796401978,
0.26770520210266113,
0.5147572159767151,
-0.3454560935497284,
0.45652827620506287,
0.2589113116264343,
0.029081156477332115,
-0.5266024470329285,
-1.0423029661178589,
-0.14735794067382812,
0.004270533565431833,
-0.6524561643600464,
0.7291111350059509,
-0.1753929853439331,
0.21604013442993164,
0.07957383245229721,
-0.1085757240653038,
0.1985241025686264,
-0.15321926772594452,
0.2456064224243164,
0.011052163317799568,
-0.004493015352636576,
0.08860643953084946,
-0.10898999124765396,
-0.033386409282684326,
0.02493537962436676,
-0.27553296089172363,
0.5774560570716858,
-0.30783611536026,
0.07010581344366074,
-0.5818032026290894,
0.5026304125785828,
0.2039431780576706,
-0.24714089930057526,
1.0986615419387817,
0.8141385912895203,
-0.380749374628067,
0.09223343431949615,
-0.3128500282764435,
-0.3232496976852417,
-0.46640700101852417,
0.61693274974823,
-0.5440701842308044,
-0.5654084086418152,
0.42193907499313354,
0.08983954787254333,
-0.07329026609659195,
0.8896704912185669,
0.3326796889305115,
-0.2840557098388672,
1.276426911354065,
0.6742819547653198,
0.15693867206573486,
0.41556844115257263,
-0.7121978998184204,
0.03479502350091934,
-0.925119936466217,
-0.34503552317619324,
-0.6129006147384644,
-0.4713108539581299,
-0.8380067944526672,
-0.4552415907382965,
0.31719648838043213,
0.21681326627731323,
-0.48196303844451904,
0.33409133553504944,
-0.5562046766281128,
0.10953103750944138,
0.5602257251739502,
0.5332384705543518,
0.030259979888796806,
0.13470971584320068,
-0.18735869228839874,
-0.37522512674331665,
-0.8614010214805603,
-0.3185184597969055,
0.9717826247215271,
0.2986520230770111,
0.7175820469856262,
-0.06251497566699982,
0.6248517036437988,
0.13027186691761017,
-0.12003478407859802,
-0.6806470155715942,
0.5239943861961365,
-0.40133431553840637,
-0.31148019433021545,
-0.1605675369501114,
-0.6738247871398926,
-1.0200897455215454,
0.3740638196468353,
-0.4265457093715668,
-0.6651594042778015,
0.19604960083961487,
-0.14199838042259216,
-0.23672084510326385,
0.11391529440879822,
-0.868308424949646,
1.0273716449737549,
0.043184228241443634,
-0.3353334069252014,
-0.01609717309474945,
-0.6764758229255676,
-0.19365303218364716,
0.3243131935596466,
0.11658859997987747,
0.04018506780266762,
-0.07937178015708923,
1.0814695358276367,
-0.30001577734947205,
0.9136261343955994,
-0.09306744486093521,
0.35759833455085754,
0.12980718910694122,
-0.1780586838722229,
0.5554173588752747,
-0.19458554685115814,
-0.10823564231395721,
0.23291245102882385,
0.04819535091519356,
-0.5962979197502136,
-0.34758323431015015,
0.7899585366249084,
-1.1960673332214355,
-0.5283486843109131,
-0.5359976291656494,
-0.4473057687282562,
0.06844982504844666,
0.11710118502378464,
0.624631941318512,
0.4945198595523834,
0.1649063378572464,
0.5844528675079346,
0.5854558348655701,
-0.4070916771888733,
0.3042808771133423,
0.24714252352714539,
0.10541851818561554,
-0.44317588210105896,
0.689308762550354,
0.4258882701396942,
0.2048618495464325,
0.6365760564804077,
0.23853231966495514,
-0.3284875452518463,
-0.5429287552833557,
-0.12203984707593918,
0.44193243980407715,
-0.7072159051895142,
-0.20020584762096405,
-1.0575268268585205,
-0.34217625856399536,
-0.5746523141860962,
-0.02030978538095951,
-0.2437109649181366,
-0.34723085165023804,
-0.386548787355423,
-0.056434083729982376,
0.16010735929012299,
0.426270991563797,
-0.023742221295833588,
0.3160918056964874,
-0.6431168913841248,
0.3008166253566742,
0.06798724085092545,
0.08440549671649933,
-0.1177026778459549,
-0.9392142295837402,
-0.4212492108345032,
0.1147255226969719,
-0.5862787365913391,
-0.8704941868782043,
0.39873847365379333,
0.3942655324935913,
0.6128123998641968,
0.14994511008262634,
0.1062561497092247,
0.6179653406143188,
-0.3613874614238739,
0.96489417552948,
0.12921610474586487,
-0.8892699480056763,
0.6587419509887695,
-0.05800309032201767,
0.6468926668167114,
0.5032892227172852,
0.7898001074790955,
-0.3161257803440094,
-0.3872590959072113,
-0.7478956580162048,
-1.0871649980545044,
0.5981069803237915,
0.391190767288208,
0.23775823414325714,
-0.09320919215679169,
0.30289337038993835,
-0.0510646216571331,
0.2152121663093567,
-1.0596266984939575,
-0.3282400965690613,
-0.33779212832450867,
-0.3027030825614929,
-0.20854438841342926,
-0.22070203721523285,
0.009655251167714596,
-0.5530210137367249,
0.8106051087379456,
-0.02433192729949951,
0.6485713124275208,
0.5334128737449646,
-0.4890076220035553,
0.11300700902938843,
0.036979205906391144,
0.28924238681793213,
0.5468381643295288,
-0.4045102000236511,
0.314721941947937,
0.3398674428462982,
-0.6335658431053162,
-0.16132283210754395,
0.23514285683631897,
-0.19586588442325592,
0.041985977441072464,
0.49770331382751465,
0.6992815136909485,
0.3079664707183838,
-0.32974866032600403,
0.6264455318450928,
0.01584315486252308,
-0.3541359007358551,
-0.09839970618486404,
-0.07592993229627609,
0.1648116260766983,
0.20880654454231262,
0.452889621257782,
-0.08924099057912827,
0.1519445925951004,
-0.5795398354530334,
0.10045262426137924,
0.02236834168434143,
-0.42410212755203247,
-0.27718421816825867,
0.6760090589523315,
0.20839175581932068,
-0.06980275362730026,
1.0238770246505737,
-0.12737256288528442,
-0.5516740083694458,
0.46273139119148254,
0.6860585808753967,
0.6262513399124146,
-0.12874259054660797,
0.13477955758571625,
0.8479068875312805,
0.3782390058040619,
0.03377832472324371,
0.1498752236366272,
0.19771607220172882,
-0.6440627574920654,
-0.2754826843738556,
-0.9068010449409485,
-0.022564757615327835,
0.273433119058609,
-0.4496030807495117,
0.22059623897075653,
-0.057477813214063644,
-0.30226415395736694,
0.02014889568090439,
0.46295833587646484,
-0.9542968273162842,
0.23662099242210388,
-0.04858025163412094,
0.6835370063781738,
-0.9094603657722473,
0.5004353523254395,
0.7373818755149841,
-0.8300463557243347,
-0.7085378170013428,
-0.0013645857106894255,
-0.35442104935646057,
-0.5565043091773987,
0.7028051018714905,
0.524217963218689,
0.13851813971996307,
0.04433054104447365,
-0.5305300951004028,
-0.67867511510849,
1.0954326391220093,
0.17131035029888153,
-0.4914630949497223,
-0.305462509393692,
0.2867276966571808,
0.41904568672180176,
-0.4511079490184784,
0.5165685415267944,
0.3053077757358551,
0.32672232389450073,
-0.0625922754406929,
-0.6655648946762085,
0.2700803875923157,
-0.33318355679512024,
-0.11596012115478516,
-0.13516388833522797,
-0.6404696106910706,
1.1236320734024048,
-0.24384035170078278,
-0.028179964050650597,
0.049018844962120056,
0.6201840043067932,
0.07295436412096024,
0.029000885784626007,
0.39326512813568115,
0.5920616388320923,
0.6368550658226013,
-0.046346407383680344,
1.2162480354309082,
-0.25999483466148376,
0.5085147619247437,
0.8114897012710571,
0.33654242753982544,
0.8692318797111511,
0.436723530292511,
-0.32781895995140076,
0.6583418250083923,
0.8073772192001343,
-0.15562911331653595,
0.6694000959396362,
0.17143863439559937,
0.12298805266618729,
-0.2992088794708252,
0.006459955126047134,
-0.6055443286895752,
0.3475751578807831,
0.2149020880460739,
-0.6700384616851807,
-0.15813936293125153,
0.06625568121671677,
0.0843152105808258,
-0.14720158278942108,
-0.20548008382320404,
0.48232004046440125,
0.47897061705589294,
-0.4201463758945465,
0.9182263016700745,
0.09038977324962616,
0.7126594185829163,
-0.6836974024772644,
0.16156135499477386,
-0.17351028323173523,
0.4055075943470001,
-0.30693331360816956,
-0.6269481182098389,
0.10360920429229736,
-0.14081034064292908,
-0.26382264494895935,
-0.1168556660413742,
0.4940628707408905,
-0.5843309164047241,
-0.4531131982803345,
0.3772439956665039,
0.5288699865341187,
0.2590528428554535,
-0.28848502039909363,
-0.9921950101852417,
0.0791889950633049,
-0.0015488947974517941,
-0.43252435326576233,
0.46020224690437317,
0.2308577001094818,
0.25638607144355774,
0.4782673120498657,
0.45035141706466675,
-0.16140581667423248,
-0.055106982588768005,
0.19205927848815918,
0.8062770962715149,
-0.6142832040786743,
-0.5392595529556274,
-0.8354273438453674,
0.39272499084472656,
-0.24059109389781952,
-0.328961044549942,
0.8130425214767456,
0.6702542304992676,
0.7207555174827576,
-0.14905384182929993,
0.44255226850509644,
-0.02456800453364849,
0.10437050461769104,
-0.5580548048019409,
0.6202875971794128,
-0.6805437207221985,
-0.06151798367500305,
-0.2725406885147095,
-1.0202966928482056,
-0.19533458352088928,
0.8054445385932922,
-0.4942159354686737,
0.13373564183712006,
0.9017839431762695,
0.7633246183395386,
-0.2239883989095688,
-0.15265777707099915,
0.21160273253917694,
0.5867241024971008,
0.30351126194000244,
0.8063719272613525,
0.5308982729911804,
-1.0743662118911743,
0.7487786412239075,
-0.13778427243232727,
-0.19499829411506653,
-0.19218769669532776,
-0.732769250869751,
-0.8615162968635559,
-0.6743685007095337,
-0.5809968113899231,
-0.4379478991031647,
0.0944448933005333,
0.9532892107963562,
0.738849937915802,
-0.6328949928283691,
-0.10237562656402588,
0.03750624507665634,
-0.16229896247386932,
-0.29903191328048706,
-0.2385435402393341,
0.6209464073181152,
-0.3793224096298218,
-0.8956378102302551,
0.1890067756175995,
-0.21875742077827454,
0.12463107705116272,
0.0958334356546402,
-0.08036524802446365,
-0.6452810168266296,
-0.021712565794587135,
0.7069661617279053,
-0.13027672469615936,
-0.3562042713165283,
-0.3756312429904938,
-0.026085415855050087,
-0.35266321897506714,
0.14733168482780457,
0.13751764595508575,
-0.6252619624137878,
0.254020631313324,
0.640934407711029,
0.44925829768180847,
1.0010267496109009,
-0.02926541306078434,
0.39769288897514343,
-0.7066360712051392,
0.13899773359298706,
0.14376695454120636,
0.3366983234882355,
0.516643762588501,
-0.25078123807907104,
0.42527270317077637,
0.36123350262641907,
-0.5856302976608276,
-0.5985103249549866,
-0.12196092307567596,
-0.9575188755989075,
-0.23994433879852295,
1.0236514806747437,
-0.21342216432094574,
-0.2784637212753296,
0.14346662163734436,
-0.049924030900001526,
0.36698320508003235,
-0.2619014084339142,
0.6719058156013489,
0.7941961288452148,
-0.09760316461324692,
-0.039642829447984695,
-0.7289842367172241,
0.517900288105011,
0.4518023431301117,
-0.51896071434021,
-0.33486780524253845,
0.06651671975851059,
0.436293363571167,
0.19043980538845062,
0.47849467396736145,
-0.1753631979227066,
-0.0017981395358219743,
0.34279802441596985,
-0.10961678624153137,
-0.04057469964027405,
-0.10248710215091705,
-0.08804353326559067,
0.2062559425830841,
-0.2423531711101532,
-0.3091651201248169
] |
pyannote/wespeaker-voxceleb-resnet34-LM | pyannote | "2023-11-16T12:28:25Z" | 165,017 | 0 | pyannote-audio | [
"pyannote-audio",
"pytorch",
"pyannote",
"pyannote-audio-model",
"wespeaker",
"audio",
"voice",
"speech",
"speaker",
"speaker-recognition",
"speaker-verification",
"speaker-identification",
"speaker-embedding",
"dataset:voxceleb",
"license:cc-by-4.0",
"region:us"
] | null | "2023-11-13T15:32:31Z" | ---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-model
- wespeaker
- audio
- voice
- speech
- speaker
- speaker-recognition
- speaker-verification
- speaker-identification
- speaker-embedding
datasets:
- voxceleb
license: cc-by-4.0
inference: false
---
Using this open-source model in production?
Make the most of it thanks to our [consulting services](https://herve.niderb.fr/consulting.html).
# 🎹 Wrapper around wespeaker-voxceleb-resnet34-LM
This model requires `pyannote.audio` version 3.1 or higher.
This is a wrapper around [WeSpeaker](https://github.com/wenet-e2e/wespeaker) `wespeaker-voxceleb-resnet34-LM` pretrained speaker embedding model, for use in `pyannote.audio`.
## Basic usage
```python
# instantiate pretrained model
from pyannote.audio import Model
model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM")
```
```python
from pyannote.audio import Inference
inference = Inference(model, window="whole")
embedding1 = inference("speaker1.wav")
embedding2 = inference("speaker2.wav")
# `embeddingX` is (1 x D) numpy array extracted from the file as a whole.
from scipy.spatial.distance import cdist
distance = cdist(embedding1, embedding2, metric="cosine")[0,0]
# `distance` is a `float` describing how dissimilar speakers 1 and 2 are.
```
## Advanced usage
### Running on GPU
```python
import torch
inference.to(torch.device("cuda"))
embedding = inference("audio.wav")
```
### Extract embedding from an excerpt
```python
from pyannote.audio import Inference
from pyannote.core import Segment
inference = Inference(model, window="whole")
excerpt = Segment(13.37, 19.81)
embedding = inference.crop("audio.wav", excerpt)
# `embedding` is (1 x D) numpy array extracted from the file excerpt.
```
### Extract embeddings using a sliding window
```python
from pyannote.audio import Inference
inference = Inference(model, window="sliding",
duration=3.0, step=1.0)
embeddings = inference("audio.wav")
# `embeddings` is a (N x D) pyannote.core.SlidingWindowFeature
# `embeddings[i]` is the embedding of the ith position of the
# sliding window, i.e. from [i * step, i * step + duration].
```
## License
According to [this page](https://github.com/wenet-e2e/wespeaker/blob/master/docs/pretrained.md):
> The pretrained model in WeNet follows the license of it's corresponding dataset. For example, the pretrained model on VoxCeleb follows Creative Commons Attribution 4.0 International License., since it is used as license of the VoxCeleb dataset, see https://mm.kaist.ac.kr/datasets/voxceleb/.
## Citation
```bibtex
@inproceedings{Wang2023,
title={Wespeaker: A research and production oriented speaker embedding learning toolkit},
author={Wang, Hongji and Liang, Chengdong and Wang, Shuai and Chen, Zhengyang and Zhang, Binbin and Xiang, Xu and Deng, Yanlei and Qian, Yanmin},
booktitle={ICASSP 2023, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1--5},
year={2023},
organization={IEEE}
}
```
```bibtex
@inproceedings{Bredin23,
author={Hervé Bredin},
title={{pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
pages={1983--1987},
doi={10.21437/Interspeech.2023-105}
}
```
| [
-0.2911459803581238,
-0.6373109817504883,
0.30620694160461426,
0.35772451758384705,
-0.24178387224674225,
-0.2919931709766388,
-0.505521297454834,
-0.2995314300060272,
0.13260100781917572,
0.3232251703739166,
-0.37897032499313354,
-0.7666640281677246,
-0.34339267015457153,
-0.433197021484375,
-0.44531071186065674,
0.7613991498947144,
0.1361549347639084,
0.06484473496675491,
-0.3795735239982605,
0.01921614073216915,
-0.26156318187713623,
-0.1470283418893814,
-0.22875024378299713,
-0.2913110852241516,
0.2808283865451813,
0.3339459002017975,
0.35494130849838257,
0.4434722065925598,
0.026957930997014046,
0.38783925771713257,
-0.22145506739616394,
-0.10538288205862045,
-0.27706965804100037,
-0.11975635588169098,
0.047508250921964645,
-0.2824443280696869,
-0.409786194562912,
0.3174123466014862,
0.6884391903877258,
0.45720505714416504,
-0.3288881778717041,
0.18792158365249634,
0.233266681432724,
-0.01415257528424263,
-0.36557909846305847,
0.1179933175444603,
-0.5389285087585449,
0.07747400552034378,
-0.1514493077993393,
-0.12408477813005447,
-0.6533476710319519,
-0.3940178155899048,
0.3784131407737732,
-0.8587060570716858,
0.12909269332885742,
-0.2804643213748932,
0.922346830368042,
0.0827544704079628,
-0.13078412413597107,
-0.1140151172876358,
-0.6925341486930847,
0.8376492261886597,
-1.1243864297866821,
0.4803718626499176,
0.3031821548938751,
0.1909124106168747,
-0.14093554019927979,
-0.9813623428344727,
-0.36941635608673096,
-0.2628709077835083,
0.11366351693868637,
0.2788226902484894,
-0.19401051104068756,
0.0721256211400032,
0.27907270193099976,
0.28529292345046997,
-0.3762255012989044,
0.010049997828900814,
-0.6027952432632446,
-0.3842512369155884,
0.6985293626785278,
-0.348802387714386,
0.3396303355693817,
-0.1995391845703125,
-0.4627492427825928,
-0.44430044293403625,
-0.453790545463562,
-0.05911745876073837,
0.5513593554496765,
0.2883908152580261,
-0.4745370149612427,
0.4238795340061188,
0.23547746241092682,
0.5497815012931824,
0.02327890694141388,
-0.24416494369506836,
0.7214537262916565,
-0.32529887557029724,
-0.1044016182422638,
0.4479554295539856,
1.0193380117416382,
0.16888801753520966,
0.15200947225093842,
0.21154215931892395,
-0.06609714776277542,
-0.48830655217170715,
0.1545885056257248,
-0.7057655453681946,
-0.6868306994438171,
0.25468793511390686,
-0.4606035053730011,
0.009036772884428501,
0.08762030303478241,
-0.5648009777069092,
-0.1373894363641739,
-0.29573237895965576,
0.9546708464622498,
-0.6416630148887634,
-0.7781440615653992,
-0.045914698392152786,
-0.2919255793094635,
0.06772996485233307,
0.05041282996535301,
-0.7773072719573975,
0.049480609595775604,
0.5562195777893066,
1.1173686981201172,
0.3648092448711395,
-0.4118947386741638,
-0.3433409035205841,
0.07867738604545593,
-0.288523405790329,
0.48951783776283264,
-0.21957066655158997,
-0.6563908457756042,
-0.06277048587799072,
-0.08100709319114685,
-0.1628492772579193,
-0.5770407915115356,
0.48567166924476624,
0.13311302661895752,
0.41324642300605774,
-0.03335270285606384,
-0.80275958776474,
-0.0561152920126915,
-0.37617793679237366,
-0.3803093135356903,
0.971365213394165,
0.11293938010931015,
-0.841593325138092,
0.26304030418395996,
-0.4590577781200409,
-0.07599077373743057,
-0.18511855602264404,
-0.13648590445518494,
-0.6796265840530396,
0.11976148933172226,
0.10497773438692093,
0.3345983922481537,
0.11428329348564148,
0.0522235631942749,
-0.28444841504096985,
-0.5769333839416504,
0.11869595944881439,
-0.3629118502140045,
1.0251468420028687,
0.10419610887765884,
-0.408412367105484,
0.015076815150678158,
-0.9696932435035706,
-0.12177079170942307,
-0.00867898017168045,
-0.605941116809845,
-0.3424556851387024,
0.205860435962677,
0.3438854515552521,
0.107454814016819,
0.053279854357242584,
-0.8683432340621948,
-0.14848043024539948,
-0.6343705058097839,
0.5482922792434692,
0.6607657670974731,
0.13622690737247467,
0.24767136573791504,
-0.18205107748508453,
0.21266214549541473,
0.18941114842891693,
0.05126812309026718,
-0.18136967718601227,
-0.5312186479568481,
-0.4372616708278656,
-0.4233318865299225,
0.4485601782798767,
0.45873385667800903,
-0.4157561957836151,
0.4389440715312958,
-0.02794237993657589,
-0.8811455965042114,
-0.7925068736076355,
0.024787526577711105,
0.327047199010849,
0.39913544058799744,
0.6148974299430847,
-0.08187510818243027,
-0.6321938037872314,
-0.9919775724411011,
-0.19634099304676056,
-0.17549026012420654,
-0.2803537845611572,
0.3792778253555298,
0.24582891166210175,
0.06799361109733582,
0.8835490942001343,
-0.3696572780609131,
-0.11970999836921692,
0.029601430520415306,
0.21921902894973755,
0.5611653327941895,
0.9549560546875,
0.5710768103599548,
-0.6345219612121582,
-0.5664392113685608,
-0.12819162011146545,
-0.4951361417770386,
-0.20388925075531006,
-0.299985408782959,
-0.11982371658086777,
-0.1976747065782547,
0.5678056478500366,
-0.8309577703475952,
0.4065696895122528,
0.45183879137039185,
-0.22422121465206146,
0.7555772662162781,
-0.08289161324501038,
-0.18727555871009827,
-1.1326134204864502,
-0.11443576216697693,
0.31565427780151367,
-0.08523567020893097,
-0.5058658719062805,
-0.6058141589164734,
-0.04183945804834366,
-0.08267909288406372,
-0.637461245059967,
0.30975160002708435,
-0.5457499027252197,
-0.21319401264190674,
-0.021725080907344818,
0.6091576218605042,
-0.0827583372592926,
0.5186114311218262,
0.03432323411107063,
0.6517328023910522,
0.6733368039131165,
-0.6231114864349365,
0.3789798617362976,
0.4657961130142212,
-0.8499000072479248,
0.4751109480857849,
-0.9932905435562134,
0.20122139155864716,
0.26571157574653625,
0.18013209104537964,
-0.920315682888031,
0.1630105972290039,
0.38025593757629395,
-0.7810460329055786,
0.5347089767456055,
-0.40636152029037476,
-0.2167053073644638,
-0.26221537590026855,
-0.18490521609783173,
0.3251817226409912,
0.45905202627182007,
-0.6030685305595398,
0.5230690836906433,
0.328005313873291,
-0.3552700877189636,
-0.46852537989616394,
-0.7264174818992615,
-0.24106401205062866,
-0.29469746351242065,
-0.602034866809845,
0.567029595375061,
-0.011035993695259094,
-0.27769917249679565,
0.08457177877426147,
-0.10137563198804855,
0.17967665195465088,
-0.23267534375190735,
0.3401012718677521,
0.12745027244091034,
-0.4690893292427063,
0.20412808656692505,
0.022876964882016182,
-0.14597082138061523,
0.11247711628675461,
-0.6578015089035034,
0.3097458481788635,
0.13376764953136444,
-0.4871084690093994,
-0.6026803851127625,
0.22529102861881256,
0.424787312746048,
-0.34587204456329346,
0.6445678472518921,
1.1692029237747192,
-0.19983462989330292,
-0.13706886768341064,
-0.5831468105316162,
-0.10969579219818115,
-0.5243391990661621,
0.8571594953536987,
-0.19833248853683472,
-0.458936482667923,
0.24036149680614471,
0.06912560760974884,
0.3471108675003052,
0.4291703999042511,
0.6236891746520996,
-0.28428179025650024,
0.8214048743247986,
0.3471105992794037,
0.10657685250043869,
0.782609760761261,
-0.5805366039276123,
0.1704200804233551,
-1.0049976110458374,
-0.471974641084671,
-0.6717074513435364,
-0.22213245928287506,
-0.739895761013031,
-0.6032026410102844,
0.3980600833892822,
0.12021191418170929,
-0.2543070614337921,
0.4634047746658325,
-0.5952626466751099,
0.2585042715072632,
0.802774965763092,
0.17943929135799408,
-0.22970426082611084,
0.1516038328409195,
-0.37336352467536926,
-0.1041281521320343,
-0.6578222513198853,
-0.4140980541706085,
0.980188250541687,
0.6060276627540588,
0.5583362579345703,
0.031392380595207214,
0.8429065346717834,
0.03665299713611603,
-0.1602937877178192,
-0.7274312376976013,
0.41312330961227417,
0.02185681276023388,
-0.4328029751777649,
-0.37360453605651855,
-0.37197986245155334,
-0.8296566009521484,
0.4063301980495453,
-0.09135664999485016,
-1.0718272924423218,
0.45544782280921936,
0.046011678874492645,
-0.22213628888130188,
0.5007384419441223,
-0.8553404808044434,
0.871678352355957,
-0.0497790202498436,
-0.4557308852672577,
-0.39449018239974976,
-0.3780633509159088,
-0.015355024486780167,
0.3298138380050659,
0.26465052366256714,
-0.16437596082687378,
0.28820255398750305,
1.195518136024475,
-0.4038301110267639,
0.8061928749084473,
-0.7936049699783325,
-0.10423354059457779,
0.697092592716217,
-0.08178236335515976,
0.302730917930603,
0.12932029366493225,
-0.05804067105054855,
0.121007539331913,
0.19087587296962738,
-0.4407937228679657,
-0.2767532467842102,
0.8747260570526123,
-1.094793438911438,
-0.6007503867149353,
-0.05402001366019249,
-0.4962994158267975,
-0.2194015383720398,
0.010940361768007278,
0.4226284921169281,
0.8743969798088074,
-0.2010091096162796,
0.5425767302513123,
0.7361898422241211,
-0.6044111847877502,
0.7238889932632446,
0.3381311297416687,
-0.01751725561916828,
-0.6208375096321106,
0.8930586576461792,
0.2251497209072113,
0.2176431268453598,
0.30225569009780884,
0.287875235080719,
-0.34480640292167664,
-0.69328773021698,
-0.24813492596149445,
0.3120376765727997,
-0.5453569889068604,
0.15518425405025482,
-0.6004796624183655,
-0.26562073826789856,
-0.37218159437179565,
0.14376506209373474,
-0.7810012102127075,
-0.477952778339386,
-0.4140142500400543,
-0.279447466135025,
0.29989415407180786,
0.5479579567909241,
-0.5506640672683716,
0.24432343244552612,
-0.7404639720916748,
-0.13273118436336517,
0.34332266449928284,
0.24170583486557007,
0.14429491758346558,
-0.7539523243904114,
-0.8390724062919617,
0.26055485010147095,
-0.4415523111820221,
-0.9945873022079468,
0.13562904298305511,
0.22864001989364624,
1.0641047954559326,
0.41898688673973083,
-0.21924161911010742,
0.3942209780216217,
-0.290639728307724,
1.1001724004745483,
0.3864113986492157,
-0.990398108959198,
0.6798006892204285,
-0.5569812059402466,
0.28362566232681274,
0.37909814715385437,
0.3060188889503479,
-0.40710094571113586,
-0.22301265597343445,
-0.6988005638122559,
-1.1311547756195068,
0.8573572039604187,
0.3132995665073395,
0.28542450070381165,
0.11219877749681473,
0.0878262147307396,
0.044504113495349884,
0.11567767709493637,
-0.766664445400238,
-0.1909516602754593,
-0.6832389235496521,
-0.08566852658987045,
-0.31835299730300903,
-0.21899095177650452,
-0.012930233031511307,
-0.6279085874557495,
1.1007980108261108,
0.2647187113761902,
0.63275545835495,
0.43404918909072876,
-0.2047431915998459,
0.029560547322034836,
0.07265759259462357,
0.5724674463272095,
0.6443814635276794,
-0.48854541778564453,
-0.1172666847705841,
0.10745201259851456,
-0.6678189635276794,
0.12684130668640137,
0.054691120982170105,
0.12115109711885452,
0.4837854206562042,
0.5125911235809326,
1.0449541807174683,
0.49978259205818176,
-0.23027926683425903,
0.5891022682189941,
0.12238072603940964,
-0.4521540403366089,
-0.529979407787323,
-0.062160905450582504,
0.5268677473068237,
0.4090825021266937,
0.3179689347743988,
-0.12017304450273514,
-0.12523506581783295,
-0.2666170597076416,
0.33161598443984985,
0.04527982696890831,
-0.5123128890991211,
-0.32466816902160645,
0.6410129070281982,
0.32832929491996765,
-0.5684947967529297,
0.8365682363510132,
0.05923271179199219,
-0.2100883424282074,
0.6124860644340515,
0.6400185823440552,
1.0125902891159058,
-0.4200941026210785,
0.3189099133014679,
0.6868282556533813,
0.21418672800064087,
0.10140084475278854,
0.10582339763641357,
-0.4374546408653259,
-0.5943571329116821,
-0.24259795248508453,
-0.5615562796592712,
-0.32048100233078003,
0.15823031961917877,
-0.7915905117988586,
0.31947433948516846,
-0.4068891108036041,
-0.3631744384765625,
0.053469303995370865,
0.0156372282654047,
-0.5291788578033447,
-0.015197410248219967,
0.31980782747268677,
1.0462778806686401,
-0.8203274607658386,
0.8297061324119568,
0.6058791875839233,
-0.40537112951278687,
-0.9751604795455933,
0.011480271816253662,
0.0015355815412476659,
-0.2649867832660675,
0.12526293098926544,
0.018810167908668518,
-0.008810204453766346,
0.013347032479941845,
-0.5469347834587097,
-0.8369002342224121,
1.2413378953933716,
0.34747904539108276,
-0.9421011209487915,
0.19021925330162048,
-0.3273550271987915,
0.31165754795074463,
-0.37216323614120483,
0.3692931532859802,
0.5368309617042542,
0.49449530243873596,
-0.08150244504213333,
-1.1224244832992554,
-0.270265132188797,
-0.3812486529350281,
-0.11070579290390015,
0.008520734496414661,
-0.6348162293434143,
1.0428895950317383,
-0.1680269092321396,
0.0934104472398758,
-0.06325187534093857,
0.7507007122039795,
0.3913462162017822,
0.3708189129829407,
0.5615702271461487,
0.572664201259613,
0.7117021679878235,
-0.1481785625219345,
0.7534672021865845,
-0.19462022185325623,
0.45737141370773315,
1.2714864015579224,
0.22346125543117523,
0.9249057769775391,
0.4395826756954193,
-0.505727231502533,
0.8261851072311401,
0.6650804877281189,
-0.19563612341880798,
0.8433641791343689,
0.24303343892097473,
-0.1157410591840744,
-0.1681920289993286,
0.14350734651088715,
-0.7572793364524841,
0.6499291658401489,
0.35818108916282654,
-0.4488346576690674,
0.16714611649513245,
-0.039932165294885635,
0.11983104050159454,
-0.1113911047577858,
-0.10395574569702148,
0.5985166430473328,
0.4330809712409973,
-0.2427232414484024,
0.5637763738632202,
-0.11425089091062546,
0.6407696008682251,
-0.6300969123840332,
0.13297538459300995,
0.00258642784319818,
0.17951075732707977,
-0.2774299085140228,
-0.44145435094833374,
0.05510661005973816,
-0.2650688886642456,
-0.043823033571243286,
-0.0469198003411293,
0.4392625689506531,
-0.679061233997345,
-0.39034053683280945,
0.5201030373573303,
0.3597029745578766,
0.2261275202035904,
0.1317608654499054,
-0.6974881887435913,
0.021791687235236168,
0.17756257951259613,
-0.5653104186058044,
0.2558363974094391,
0.3728788495063782,
0.48012256622314453,
0.26200252771377563,
0.5268169641494751,
0.23592936992645264,
0.10470078885555267,
0.29473593831062317,
0.685916543006897,
-0.47349634766578674,
-0.854138970375061,
-0.7540473937988281,
0.7018182277679443,
-0.18803535401821136,
-0.27786898612976074,
0.9475469589233398,
0.6824450492858887,
0.9399885535240173,
-0.05419377237558365,
0.7487837672233582,
0.09607443958520889,
0.4624427855014801,
-0.5191922187805176,
0.8586872220039368,
-0.5676323175430298,
0.36860042810440063,
-0.6729506254196167,
-1.2114330530166626,
0.30708736181259155,
0.9037533402442932,
-0.3086693286895752,
0.20565137267112732,
0.49199631810188293,
0.9669700264930725,
-0.2592370808124542,
0.10704123973846436,
0.20978893339633942,
0.6521156430244446,
0.2948678433895111,
0.572533130645752,
0.9146530628204346,
-0.5113977789878845,
0.6473301649093628,
-0.48092663288116455,
-0.12219802290201187,
-0.06947557628154755,
-0.7746918797492981,
-0.7839580178260803,
-0.7878289818763733,
-0.673591673374176,
-0.38605576753616333,
-0.12159282714128494,
1.2102082967758179,
0.9814334511756897,
-0.7914407849311829,
-0.4743437170982361,
0.25013095140457153,
0.06118869408965111,
-0.3964570462703705,
-0.1907166838645935,
0.5205166935920715,
0.21530620753765106,
-0.6642614603042603,
0.7710491418838501,
0.08291295915842056,
0.24076680839061737,
-0.27643048763275146,
-0.19850918650627136,
-0.5863791108131409,
0.1573348194360733,
0.2164047211408615,
0.1046421229839325,
-0.5176864862442017,
-0.2666739225387573,
-0.6105473041534424,
0.18909434974193573,
0.15557193756103516,
0.5665187835693359,
-0.6107380986213684,
0.5241936445236206,
0.5286080837249756,
-0.03844938054680824,
1.0373451709747314,
-0.16964654624462128,
0.5520691275596619,
-0.9321497678756714,
0.4908062219619751,
0.16672056913375854,
0.41844090819358826,
0.5264596939086914,
-0.07558787614107132,
0.13989202678203583,
0.3539607524871826,
-0.5507359504699707,
-0.9040430188179016,
-0.34237486124038696,
-0.7902674674987793,
-0.26990941166877747,
1.0470904111862183,
-0.35434359312057495,
-0.09872431308031082,
-0.009946079924702644,
-0.2020786553621292,
0.6061307191848755,
-0.42623454332351685,
0.42521941661834717,
0.5339227318763733,
0.134539395570755,
-0.15484251081943512,
-0.6849084496498108,
0.43791231513023376,
0.10378716140985489,
-0.3045227527618408,
-0.13721033930778503,
0.2837322950363159,
0.5268346667289734,
0.34851986169815063,
0.6924919486045837,
-0.166627898812294,
0.3892190754413605,
0.6015267372131348,
0.25586915016174316,
-0.48160889744758606,
-0.30121904611587524,
-0.16441376507282257,
0.10438384115695953,
-0.02160787396132946,
-0.6424387693405151
] |
pyannote/speaker-diarization-3.1 | pyannote | "2023-11-16T12:27:55Z" | 164,812 | 23 | pyannote-audio | [
"pyannote-audio",
"pyannote",
"pyannote-audio-pipeline",
"audio",
"voice",
"speech",
"speaker",
"speaker-diarization",
"speaker-change-detection",
"voice-activity-detection",
"overlapped-speech-detection",
"automatic-speech-recognition",
"arxiv:2111.14448",
"arxiv:2012.01477",
"license:mit",
"has_space",
"region:us"
] | automatic-speech-recognition | "2023-11-16T08:19:01Z" | ---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-pipeline
- audio
- voice
- speech
- speaker
- speaker-diarization
- speaker-change-detection
- voice-activity-detection
- overlapped-speech-detection
- automatic-speech-recognition
license: mit
extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers improve it further. Though this pipeline uses MIT license and will always remain open-source, we will occasionnally email you about premium pipelines and paid services around pyannote."
extra_gated_fields:
Company/university: text
Website: text
---
Using this open-source pipeline in production?
Make the most of it thanks to our [consulting services](https://herve.niderb.fr/consulting.html).
# 🎹 Speaker diarization 3.1
This pipeline is the same as [`pyannote/speaker-diarization-3.0`](https://hf.co/pyannote/speaker-diarization-3.1) except it removes the [problematic](https://github.com/pyannote/pyannote-audio/issues/1537) use of `onnxruntime`.
Both speaker segmentation and embedding now run in pure PyTorch. This should ease deployment and possibly speed up inference.
It requires pyannote.audio version 3.1 or higher.
It ingests mono audio sampled at 16kHz and outputs speaker diarization as an [`Annotation`](http://pyannote.github.io/pyannote-core/structure.html#annotation) instance:
- stereo or multi-channel audio files are automatically downmixed to mono by averaging the channels.
- audio files sampled at a different rate are resampled to 16kHz automatically upon loading.
## Requirements
1. Install [`pyannote.audio`](https://github.com/pyannote/pyannote-audio) `3.1` with `pip install pyannote.audio`
2. Accept [`pyannote/segmentation-3.0`](https://hf.co/pyannote/segmentation-3.0) user conditions
3. Accept [`pyannote/speaker-diarization-3.1`](https://hf.co/pyannote-speaker-diarization-3.1) user conditions
4. Create access token at [`hf.co/settings/tokens`](https://hf.co/settings/tokens).
## Usage
```python
# instantiate the pipeline
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE")
# run the pipeline on an audio file
diarization = pipeline("audio.wav")
# dump the diarization output to disk using RTTM format
with open("audio.rttm", "w") as rttm:
diarization.write_rttm(rttm)
```
### Processing on GPU
`pyannote.audio` pipelines run on CPU by default.
You can send them to GPU with the following lines:
```python
import torch
pipeline.to(torch.device("cuda"))
```
### Processing from memory
Pre-loading audio files in memory may result in faster processing:
```python
waveform, sample_rate = torchaudio.load("audio.wav")
diarization = pipeline({"waveform": waveform, "sample_rate": sample_rate})
```
### Monitoring progress
Hooks are available to monitor the progress of the pipeline:
```python
from pyannote.audio.pipelines.utils.hook import ProgressHook
with ProgressHook() as hook:
diarization = pipeline("audio.wav", hook=hook)
```
### Controlling the number of speakers
In case the number of speakers is known in advance, one can use the `num_speakers` option:
```python
diarization = pipeline("audio.wav", num_speakers=2)
```
One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options:
```python
diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5)
```
## Benchmark
This pipeline has been benchmarked on a large collection of datasets.
Processing is fully automatic:
- no manual voice activity detection (as is sometimes the case in the literature)
- no manual number of speakers (though it is possible to provide it to the pipeline)
- no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset
... with the least forgiving diarization error rate (DER) setup (named _"Full"_ in [this paper](https://doi.org/10.1016/j.csl.2021.101254)):
- no forgiveness collar
- evaluation of overlapped speech
| Benchmark | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation |
| ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
| [AISHELL-4](http://www.openslr.org/111/) | 12.2 | 3.8 | 4.4 | 4.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.eval) |
| [AliMeeting (_channel 1_)](https://www.openslr.org/119/) | 24.4 | 4.4 | 10.0 | 10.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.eval) |
| [AMI (_headset mix,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words_)](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.8 | 3.6 | 9.5 | 5.7 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.eval) |
| [AMI (_array1, channel 1,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words)_](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 22.4 | 3.8 | 11.2 | 7.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.eval) |
| [AVA-AVD](https://arxiv.org/abs/2111.14448) | 50.0 | 10.8 | 15.7 | 23.4 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.eval) |
| [DIHARD 3 (_Full_)](https://arxiv.org/abs/2012.01477) | 21.7 | 6.2 | 8.1 | 7.3 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.eval) |
| [MSDWild](https://x-lance.github.io/MSDWILD/) | 25.3 | 5.8 | 8.0 | 11.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.eval) |
| [REPERE (_phase 2_)](https://islrn.org/resources/360-758-359-485-0/) | 7.8 | 1.8 | 2.6 | 3.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.eval) |
| [VoxConverse (_v0.3_)](https://github.com/joonson/voxconverse) | 11.3 | 4.1 | 3.4 | 3.8 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.eval) |
## Citations
```bibtex
@inproceedings{Plaquet23,
author={Alexis Plaquet and Hervé Bredin},
title={{Powerset multi-class cross entropy loss for neural speaker diarization}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
}
```
```bibtex
@inproceedings{Bredin23,
author={Hervé Bredin},
title={{pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
}
```
| [
-0.6560139060020447,
-0.7907562851905823,
0.10279561579227448,
0.5086760520935059,
-0.1724672168493271,
0.08259332925081253,
-0.5133516788482666,
-0.2755708694458008,
0.5081310868263245,
0.4292270541191101,
-0.37232744693756104,
-0.6956435441970825,
-0.43829572200775146,
0.024263598024845123,
-0.20774433016777039,
0.7967753410339355,
0.2797044515609741,
-0.042622100561857224,
0.12265823036432266,
-0.016106562688946724,
-0.3903023600578308,
-0.2266566902399063,
-0.5343546867370605,
-0.23869070410728455,
0.14562377333641052,
0.5788620710372925,
0.2529163658618927,
0.8305092453956604,
0.3381027281284332,
0.3332129418849945,
-0.44491201639175415,
0.08392338454723358,
-0.010566425509750843,
0.06809653341770172,
0.08805307000875473,
0.012407556176185608,
-0.5788554549217224,
0.15350903570652008,
0.8032471537590027,
0.5632314085960388,
-0.24087871611118317,
0.30736640095710754,
0.053738683462142944,
0.539344310760498,
-0.2753331959247589,
0.21332228183746338,
-0.6029497385025024,
-0.14814971387386322,
-0.4590897858142853,
-0.357333779335022,
-0.19857977330684662,
-0.29788970947265625,
0.12898066639900208,
-0.5779533386230469,
0.22080561518669128,
0.07959040999412537,
1.0285966396331787,
0.08984415233135223,
0.004651983268558979,
-0.1590491086244583,
-0.7620270252227783,
0.705301821231842,
-0.9102729558944702,
0.41765296459198,
0.5427414178848267,
0.08023349940776825,
-0.1875883787870407,
-0.749171793460846,
-0.6712065935134888,
-0.08406858891248703,
-0.12211757898330688,
0.28312137722969055,
-0.09526772052049637,
0.15341000258922577,
0.39398422837257385,
0.648280143737793,
-0.5702215433120728,
-0.09456520527601242,
-0.5758532881736755,
-0.5197687745094299,
0.7575228810310364,
-0.21186043322086334,
0.4987362325191498,
-0.5477770566940308,
-0.25532376766204834,
-0.3078671097755432,
-0.41610488295555115,
0.21502824127674103,
0.5588415861129761,
0.46100056171417236,
-0.49019670486450195,
0.6039564609527588,
-0.08898773789405823,
0.5781306028366089,
0.11006463319063187,
-0.2897026240825653,
0.720706582069397,
-0.5655971169471741,
-0.1608530580997467,
0.38646095991134644,
1.0704436302185059,
0.29124584794044495,
-0.06488638371229172,
0.11176817864179611,
0.03775279223918915,
-0.039518266916275024,
-0.15157026052474976,
-0.6545599699020386,
-0.5637327432632446,
0.6292007565498352,
-0.6004013419151306,
-0.012093420140445232,
-0.2093707174062729,
-1.0375323295593262,
-0.11903734505176544,
-0.17138496041297913,
0.4318937659263611,
-0.689303994178772,
-0.6478620171546936,
-0.03826189041137695,
-0.29486727714538574,
0.05184417590498924,
0.19313834607601166,
-1.1648948192596436,
0.28278300166130066,
0.6516618132591248,
1.1280728578567505,
0.09597533941268921,
-0.3207706809043884,
-0.6168723106384277,
0.07801678031682968,
-0.33680459856987,
0.5650135278701782,
-0.0819336473941803,
-0.44702455401420593,
-0.21605436503887177,
-0.014774074777960777,
-0.366973876953125,
-0.6219609379768372,
0.9736033082008362,
0.03731421008706093,
0.25431403517723083,
-0.12047531455755234,
-0.6584665775299072,
0.07842019945383072,
-0.10516772419214249,
-0.5769027471542358,
1.0444035530090332,
0.06416851282119751,
-1.0413103103637695,
0.26307034492492676,
-0.7049659490585327,
-0.23722131550312042,
-0.06412530690431595,
-0.06979672610759735,
-0.6862747073173523,
-0.23248936235904694,
0.25420278310775757,
0.41686010360717773,
-0.18248718976974487,
0.026754120364785194,
0.065219447016716,
-0.44192802906036377,
-0.0025723325088620186,
-0.19677841663360596,
1.2051043510437012,
0.31393173336982727,
-0.7259618639945984,
0.050392039120197296,
-1.0809060335159302,
-0.0851668268442154,
-0.04134687781333923,
-0.6116572022438049,
-0.1418323814868927,
0.016742218285799026,
0.3107560873031616,
-0.007354483939707279,
0.18351596593856812,
-0.8017175197601318,
-0.028135284781455994,
-0.7615796327590942,
0.5406566858291626,
0.694072425365448,
0.05272754281759262,
0.30369874835014343,
-0.5150274038314819,
0.20940667390823364,
-0.0018722667591646314,
-0.07216675579547882,
-0.27932095527648926,
-0.650252103805542,
-0.9399439096450806,
-0.669941246509552,
0.3134025037288666,
0.7824932336807251,
-0.36680954694747925,
0.5999325513839722,
-0.18541744351387024,
-0.716570258140564,
-0.9098058342933655,
0.12617717683315277,
0.6521191596984863,
0.3906439244747162,
0.48479869961738586,
-0.3311333656311035,
-0.885357677936554,
-0.8376305103302002,
-0.2708141803741455,
-0.6417920589447021,
0.003363833762705326,
0.5065380930900574,
0.40716713666915894,
-0.050177134573459625,
0.8991568088531494,
-0.2482771873474121,
-0.3765447735786438,
0.008937643840909004,
0.1404189020395279,
0.6359055042266846,
0.7643464803695679,
0.4359995722770691,
-0.9038225412368774,
-0.638525664806366,
0.16448596119880676,
-0.5375432372093201,
-0.2910253703594208,
-0.06113158166408539,
0.04439954459667206,
0.14051520824432373,
0.37132972478866577,
-0.7293742299079895,
0.2978268563747406,
0.24494653940200806,
-0.16987597942352295,
0.8010091781616211,
0.01755751110613346,
0.1945430338382721,
-1.0583142042160034,
0.37082868814468384,
0.10038042068481445,
-0.07815635949373245,
-0.7166745066642761,
-0.4180435538291931,
-0.12677213549613953,
0.13448260724544525,
-0.34457117319107056,
0.6624568700790405,
-0.3618898391723633,
-0.11782458424568176,
0.21148164570331573,
0.366098552942276,
-0.22382758557796478,
0.47834479808807373,
0.016945907846093178,
0.7949510216712952,
0.6185494065284729,
-0.6162964105606079,
0.5061548352241516,
0.5887913703918457,
-0.7310645580291748,
0.43005460500717163,
-0.7597663402557373,
0.13394366204738617,
0.18934504687786102,
0.16453789174556732,
-1.0858317613601685,
-0.14941474795341492,
0.6712347865104675,
-0.8400432467460632,
0.3502664566040039,
-0.36135005950927734,
-0.3257896602153778,
-0.507793664932251,
-0.3504587709903717,
0.14485228061676025,
0.3985448479652405,
-0.5076021552085876,
0.4381949305534363,
0.39688506722450256,
-0.35179346799850464,
-0.6268079280853271,
-0.6254398226737976,
0.09429600089788437,
-0.4152878522872925,
-0.6790822744369507,
0.6561459898948669,
-0.20969487726688385,
-0.5014369487762451,
-0.14873749017715454,
-0.03728506341576576,
0.18975558876991272,
-0.24834588170051575,
0.3124397397041321,
0.20337392389774323,
-0.23436841368675232,
-0.020082835108041763,
-0.25468820333480835,
-0.11567050963640213,
-0.2083161473274231,
-0.28861093521118164,
0.574306070804596,
-0.12463255971670151,
-0.20532847940921783,
-0.7925116419792175,
0.24539093673229218,
0.7012515068054199,
-0.5299496054649353,
0.45755255222320557,
0.9991041421890259,
-0.17620454728603363,
-0.12952208518981934,
-0.7092210650444031,
-0.0488041453063488,
-0.4825476109981537,
0.35241377353668213,
-0.402575820684433,
-0.715408980846405,
0.5159109234809875,
0.05163973942399025,
0.32801079750061035,
0.4398217499256134,
0.7068858742713928,
-0.14778469502925873,
0.6657538414001465,
0.16539698839187622,
-0.1310313642024994,
0.5812702178955078,
-0.48316869139671326,
0.3230161964893341,
-1.0976136922836304,
-0.21552230417728424,
-0.7914302349090576,
0.005295742303133011,
-0.8601936101913452,
-0.4255349338054657,
0.409310519695282,
0.1965584009885788,
-0.10840138047933578,
0.5468535423278809,
-0.8677336573600769,
0.14361216127872467,
0.6176316142082214,
-0.05354945734143257,
0.06748678535223007,
0.1587323546409607,
-0.26611924171447754,
-0.011357828043401241,
-0.3605702817440033,
-0.6079089641571045,
1.111855387687683,
0.4556547999382019,
0.32234975695610046,
0.1648453027009964,
0.7941209077835083,
0.2966112196445465,
-0.1961725354194641,
-0.6985549330711365,
0.5730925798416138,
-0.08031301200389862,
-0.6705381870269775,
-0.44359007477760315,
-0.44857582449913025,
-0.9540835618972778,
0.45860883593559265,
-0.002911429386585951,
-1.1144824028015137,
0.29829224944114685,
0.09913938492536545,
-0.2902165949344635,
0.3899363875389099,
-0.8720545172691345,
0.9627508521080017,
0.06535119563341141,
-0.28368330001831055,
-0.20840631425380707,
-0.7262253165245056,
0.21783843636512756,
0.22243498265743256,
0.4383126497268677,
-0.42830780148506165,
0.2997435927391052,
1.1660480499267578,
-0.3541988730430603,
0.5985543727874756,
-0.4216580390930176,
0.017099449411034584,
0.5685186982154846,
-0.18854372203350067,
0.37488117814064026,
0.13345304131507874,
-0.26995354890823364,
0.12502379715442657,
0.20135077834129333,
-0.32278546690940857,
-0.15050402283668518,
0.9647462964057922,
-1.0307552814483643,
-0.6643750071525574,
-0.3499297797679901,
-0.36149704456329346,
0.0017604349413886666,
0.10419920086860657,
0.33252134919166565,
0.5365392565727234,
-0.08819063007831573,
0.201800137758255,
0.7034249901771545,
-0.39002108573913574,
0.752932071685791,
0.34050294756889343,
-0.0450129359960556,
-0.872893750667572,
0.979159414768219,
0.11713793873786926,
0.16410383582115173,
0.43647366762161255,
0.20516179502010345,
-0.2841617465019226,
-0.7499481439590454,
-0.46935567259788513,
0.23486874997615814,
-0.44624295830726624,
0.05677507072687149,
-0.8874045014381409,
-0.232726588845253,
-0.7896262407302856,
0.23703883588314056,
-0.5299661159515381,
-0.6491620540618896,
-0.3354399502277374,
-0.0603201724588871,
0.4590589702129364,
0.20603539049625397,
-0.35871464014053345,
0.2019699215888977,
-0.6428934931755066,
0.34146514534950256,
0.24650612473487854,
0.23073521256446838,
-0.18880786001682281,
-0.5292971730232239,
-0.41439586877822876,
0.09228987991809845,
-0.4570528566837311,
-0.7687032222747803,
0.556512176990509,
0.46955302357673645,
0.6931943893432617,
0.1447291523218155,
-0.06741081178188324,
0.6458404660224915,
-0.3252309262752533,
1.0425620079040527,
0.1878610998392105,
-1.1466666460037231,
0.7752078175544739,
-0.5793866515159607,
0.14513440430164337,
0.5501797795295715,
0.21547143161296844,
-0.6806675791740417,
-0.2385760098695755,
-0.6423521041870117,
-1.2058157920837402,
0.9942276477813721,
0.46056678891181946,
-0.061399124562740326,
0.015542305074632168,
0.04419590160250664,
-0.08007558435201645,
0.15684357285499573,
-0.5791342258453369,
-0.7291501760482788,
-0.38585588335990906,
0.022492198273539543,
-0.20856554806232452,
-0.05583200603723526,
-0.04579261317849159,
-0.6144024133682251,
1.0717099905014038,
0.2484091818332672,
0.5298964381217957,
0.6173993945121765,
0.00829507689923048,
-0.16367779672145844,
0.42871057987213135,
0.6658124327659607,
0.4113040566444397,
-0.6595143675804138,
0.07432784885168076,
0.0410371758043766,
-0.6800593733787537,
0.17945291101932526,
0.0991239920258522,
-0.03594815358519554,
0.35812681913375854,
0.421273797750473,
0.8561821579933167,
0.06174630671739578,
-0.40399059653282166,
0.4673772156238556,
-0.07707467675209045,
-0.3132300078868866,
-0.6437845230102539,
-0.07609368115663528,
0.36166325211524963,
0.18751798570156097,
0.46155309677124023,
0.0184133592993021,
0.011782940477132797,
-0.6129182577133179,
0.30541157722473145,
0.09188377857208252,
-0.20346564054489136,
-0.2678976058959961,
0.7161316275596619,
0.25703510642051697,
-0.5989871621131897,
0.5976012349128723,
-0.16886310279369354,
-0.5095898509025574,
0.687196671962738,
0.41009658575057983,
1.0082390308380127,
-0.610930860042572,
0.15797074139118195,
0.863747239112854,
0.30640333890914917,
0.11945751309394836,
0.3965547978878021,
-0.4253913164138794,
-0.561013400554657,
-0.2533646523952484,
-0.9308567047119141,
-0.36167922616004944,
0.22386792302131653,
-0.47841331362724304,
0.3585394322872162,
-0.4882854223251343,
-0.2859112620353699,
0.47813740372657776,
0.32716408371925354,
-0.33400988578796387,
0.16512566804885864,
0.06820777803659439,
0.8456096649169922,
-0.8018573522567749,
0.8337889313697815,
0.5526897311210632,
-0.3320634365081787,
-0.9525055289268494,
-0.08010551333427429,
0.0744544118642807,
-0.2787347435951233,
0.3276980221271515,
0.03823560103774071,
0.07048434764146805,
-0.0275886133313179,
-0.25058579444885254,
-0.743057131767273,
1.0277680158615112,
0.3177562952041626,
-0.8254522681236267,
0.3192533850669861,
-0.16957196593284607,
0.47944411635398865,
-0.15393662452697754,
0.35235607624053955,
0.7326826453208923,
0.8002252578735352,
0.045329537242650986,
-1.4825685024261475,
0.005577446427196264,
-0.7749576568603516,
-0.19688545167446136,
0.13861462473869324,
-0.8024977445602417,
1.0170408487319946,
-0.06666040420532227,
-0.233723983168602,
0.13429881632328033,
0.6040854454040527,
0.3898068368434906,
0.5070351362228394,
0.5379581451416016,
0.7397360801696777,
0.7087204456329346,
-0.19284473359584808,
0.6635423898696899,
-0.40884923934936523,
0.3758201003074646,
1.007480502128601,
0.04724382236599922,
0.8378500938415527,
0.5774544477462769,
-0.5273756980895996,
0.41269105672836304,
0.8991577625274658,
-0.15847080945968628,
0.587515115737915,
0.2981622517108917,
-0.48550406098365784,
-0.03580537065863609,
-0.16644129157066345,
-0.6795979142189026,
0.6399962902069092,
0.3315999507904053,
-0.3449406027793884,
0.3238288164138794,
-0.21918636560440063,
0.1845683455467224,
-0.011733620427548885,
-0.1669776737689972,
0.5764633417129517,
0.1555267870426178,
-0.560789942741394,
0.8880743980407715,
-0.041508741676807404,
0.8794258832931519,
-0.46594780683517456,
0.07721249014139175,
-0.007933122105896473,
0.16342918574810028,
-0.5528225898742676,
-0.4600280225276947,
0.3728809952735901,
-0.1095408946275711,
-0.17309486865997314,
-0.2576920986175537,
0.5064021944999695,
-0.5671390295028687,
-0.2823297083377838,
0.3678504526615143,
0.35204169154167175,
0.4527375400066376,
0.23842282593250275,
-0.5342490077018738,
0.13537847995758057,
0.16804464161396027,
-0.39478471875190735,
0.22621974349021912,
0.33378100395202637,
0.19500498473644257,
0.38012731075286865,
0.7885411977767944,
0.4624408483505249,
0.26177313923835754,
0.11404941976070404,
0.7344552874565125,
-0.5751994252204895,
-0.5687260627746582,
-0.8474195599555969,
0.41517138481140137,
-0.2143707126379013,
-0.47787970304489136,
1.0667502880096436,
0.847669243812561,
0.9048279523849487,
0.11097896844148636,
0.7024641036987305,
-0.3834196627140045,
0.7714295387268066,
-0.26143354177474976,
0.8314200043678284,
-0.4635283052921295,
0.4107961654663086,
-0.7420636415481567,
-0.8797827959060669,
-0.11341259628534317,
0.6658903360366821,
-0.2533547878265381,
0.01897837035357952,
0.5935832262039185,
0.9836658835411072,
0.055252160876989365,
0.18035829067230225,
0.14316631853580475,
0.3500868082046509,
0.3594770133495331,
0.522451639175415,
0.6760600805282593,
-0.5601530075073242,
0.632785439491272,
-0.6498163938522339,
-0.1380303055047989,
-0.13816975057125092,
-0.6042776107788086,
-0.7634642720222473,
-0.9353727102279663,
-0.700462818145752,
-0.4209713339805603,
0.08509945869445801,
1.1592611074447632,
0.8754081726074219,
-0.8221436142921448,
-0.5449738502502441,
0.007919267751276493,
0.26575425267219543,
-0.4811743497848511,
-0.2130221575498581,
0.7149203419685364,
0.17120802402496338,
-0.8969716429710388,
0.6445502638816833,
0.253791868686676,
-0.07250678539276123,
0.01010722666978836,
-0.2572120130062103,
-0.5133405327796936,
0.025736123323440552,
0.21192102134227753,
0.45348671078681946,
-0.6878864169120789,
-0.18475131690502167,
-0.42444783449172974,
0.0012344629503786564,
0.35827121138572693,
0.5467808246612549,
-0.448906272649765,
0.67372065782547,
0.7540907263755798,
0.06091710925102234,
0.7712778449058533,
-0.12515553832054138,
0.23068180680274963,
-0.6389496922492981,
0.1122978925704956,
0.25712907314300537,
0.27264612913131714,
0.5633545517921448,
-0.18662530183792114,
0.5577728748321533,
0.40696802735328674,
-0.7192817330360413,
-1.0382431745529175,
-0.30646374821662903,
-1.11186945438385,
0.0008661220199428499,
1.1343820095062256,
-0.2929653227329254,
-0.28483688831329346,
-0.2671256363391876,
-0.40904977917671204,
0.6309158205986023,
-0.665012776851654,
0.7140243053436279,
0.6600477695465088,
-0.1605285108089447,
-0.13902708888053894,
-0.6865999102592468,
0.6835739612579346,
0.41505956649780273,
-0.6178095936775208,
0.06866768002510071,
0.2549009621143341,
0.3495725691318512,
0.46509161591529846,
1.0270411968231201,
-0.2582555413246155,
0.1537024825811386,
0.18758302927017212,
0.26172319054603577,
-0.16969066858291626,
-0.08120071142911911,
-0.19949615001678467,
0.05401095002889633,
-0.09403261542320251,
-0.5438847541809082
] |
SpanBERT/spanbert-large-cased | SpanBERT | "2021-05-19T11:31:33Z" | 164,802 | 10 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"endpoints_compatible",
"region:us"
] | null | "2022-03-02T23:29:05Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
chcaa/dfm-encoder-large-v1 | chcaa | "2023-06-21T21:35:54Z" | 164,372 | 4 | transformers | [
"transformers",
"pytorch",
"safetensors",
"bert",
"fill-mask",
"large",
"danish",
"mlm",
"da",
"arxiv:1706.03762",
"arxiv:1810.04805",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | fill-mask | "2023-01-04T10:06:06Z" | ---
license: cc-by-4.0
metrics:
- accuracy
model-index:
- name: dfm-encoder-large-v1
results:
- task:
name: Masked Language Modeling
type: fill-mask
datasets:
- netarkivet_text_v1
- danews_v1
- hopetwitter_v1
- DDSC/dagw_reddit_filtered_v1.0.0
metrics:
- name: Accuracy
type: accuracy
value: 0.7328012831797821
language:
- da
tags:
- bert
- pytorch
- large
- danish
- mlm
---
# dfm-encoder-large-v1
This model is trained as a part of the Danish Foundation Models project.
## Training procedure
This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) on the dcc_v1.1.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3175
- Accuracy: 0.7328
<details>
<summary> Training Hyperparameters </summary>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- training_steps: 100000
- mixed_precision_training: Native AMP
</details>
<details>
<summary> Training Results </summary>
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:------:|:--------:|:---------------:|
| 1.4239 | 0.02 | 2000 | 0.6481 | 1.9361 |
| 1.299 | 0.04 | 4000 | 0.6646 | 1.8073 |
| 1.2008 | 0.06 | 6000 | 0.6766 | 1.7281 |
| 1.193 | 0.08 | 8000 | 0.6770 | 1.6885 |
| 1.138 | 0.1 | 10000 | 0.6803 | 1.6729 |
| 1.1401 | 0.12 | 12000 | 0.6729 | 1.7227 |
| 4.1932 | 0.14 | 14000 | 0.3016 | 4.5455 |
| 2.3732 | 0.16 | 16000 | 0.5607 | 2.3964 |
| 1.2114 | 0.18 | 18000 | 0.6667 | 1.7638 |
| 1.1482 | 0.2 | 20000 | 0.6576 | 1.7839 |
| 1.0815 | 0.22 | 22000 | 0.6862 | 1.6308 |
| 1.085 | 0.24 | 24000 | 0.6837 | 1.6383 |
| 1.0788 | 0.26 | 26000 | 0.6812 | 1.6585 |
| 1.0389 | 0.28 | 28000 | 0.6861 | 1.5927 |
| 1.0283 | 0.3 | 30000 | 0.6937 | 1.5779 |
| 1.0145 | 0.32 | 32000 | 0.6967 | 1.5439 |
| 1.0023 | 0.34 | 34000 | 0.6980 | 1.5237 |
| 0.9976 | 0.36 | 36000 | 0.6962 | 1.5692 |
| 1.019 | 0.38 | 38000 | 0.6970 | 1.5460 |
| 1.0137 | 0.4 | 40000 | 0.6967 | 1.5564 |
| 1.0067 | 0.42 | 42000 | 0.7008 | 1.5176 |
| 0.992 | 0.44 | 44000 | 0.7060 | 1.4806 |
| 0.9796 | 0.46 | 46000 | 0.7026 | 1.5085 |
| 0.976 | 0.48 | 48000 | 0.7092 | 1.4705 |
| 0.9571 | 0.5 | 50000 | 0.7052 | 1.4895 |
| 0.9723 | 0.52 | 52000 | 0.7135 | 1.4516 |
| 0.9581 | 0.54 | 54000 | 0.7145 | 1.4343 |
| 0.9511 | 0.56 | 56000 | 0.7124 | 1.4334 |
| 0.9608 | 0.58 | 58000 | 0.7151 | 1.4268 |
| 0.9588 | 0.6 | 60000 | 0.7127 | 1.4471 |
| 0.9473 | 0.62 | 62000 | 0.7202 | 1.4037 |
| 0.9266 | 0.64 | 64000 | 0.7158 | 1.4225 |
| 0.925 | 0.66 | 66000 | 0.7208 | 1.3940 |
| 0.9242 | 0.68 | 68000 | 0.7189 | 1.4090 |
| 0.9141 | 0.7 | 70000 | 0.7229 | 1.3831 |
| 0.8884 | 0.72 | 72000 | 1.3738 | 0.7233 |
| 0.9145 | 0.74 | 74000 | 1.3478 | 0.7275 |
| 0.8741 | 0.76 | 76000 | 1.3691 | 0.7255 |
| 0.8752 | 0.78 | 78000 | 1.3530 | 0.7276 |
| 0.8634 | 0.8 | 80000 | 1.3428 | 0.7272 |
| 0.8882 | 0.82 | 82000 | 1.3490 | 0.7270 |
| 0.8872 | 0.84 | 84000 | 1.3458 | 0.7296 |
| 0.892 | 0.86 | 86000 | 1.3382 | 0.7279 |
| 0.9002 | 0.88 | 88000 | 1.3091 | 0.7341 |
| 0.8805 | 0.9 | 90000 | 1.3209 | 0.7310 |
| 0.8944 | 0.92 | 92000 | 1.3133 | 0.7332 |
| 0.8605 | 0.94 | 94000 | 1.3404 | 0.7311 |
| 0.879 | 0.96 | 96000 | 1.2890 | 0.7356 |
| 0.871 | 0.98 | 98000 | 1.2954 | 0.7352 |
| 0.8676 | 1.0 | 100000 | 1.2935 | 0.7369 |
</details>
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.5.3.dev0
- Tokenizers 0.12.1
# Model Card
Following [1], the following constitutes a model for this model.
---
*Organization developing the Model*: The Danish Foundation Models project
*Model Creation Date*: June 2022
*Model Type*: Transformer encoder model [2]; BERT [3]
*Feedback on the Model*: For feedback on the model please use the [community forum](https://huggingface.co/chcaa/dfm-bert-base-v1/discussions).
*Training logs and performance metrics*: Check out this Weight and biases [Dashboard](https://wandb.ai/chcaa/danish-foundation-models/reports/dfm-bert-base-v1--VmlldzoyODkwMzc2).
## Intended Uses
*Primary Intended Uses*:
The primary intended use case of this model is the reproduction and validation of dataset quality. The intended use cases for future iterations of this model are the application in industry and research for Danish natural language tasks.
*Primary Intended Users*:
Future iterations of the model are intended for NLP practitioners dealing with Danish text documents.
*Out-of-Scope Uses*:
Use of the model for profiling in a way which is inconsiderate of the potential harm it might cause, such as racial profiling.
## Factors
*Card prompts - Relevant Factors*:
Relevant factors include which language is used. Our model is trained on a Danish
text corpus and is intended to compare the training data.
*Card prompts - Evaluation Factors*:
Future iterations of this model should include a validation of biases pertaining to gender, race, and religious and social groups.
## Metrics
*Performance Metrics*:
Our model is evaluated on the following performance metrics:
- Pseudo perplexity, following [4], across eight distinct domains, including Danish dialects, books, legal, social media (Reddit, Twitter), spontaneous speech, news and Wikipedia.
- The Danish subsection of Scandeval [5].
To see the performance metrics, check out this Weight and biases [Dashboard](https://wandb.ai/chcaa/danish-foundation-models/reports/dfm-bert-base-v1--VmlldzoyODkwMzc2).
*Decision Threshold*:
N/A
*Approaches to Uncertainty and Variability*:
Due to the cost of training the model is only pre-trained once, but the ScandEval fine-tunes ten times to obtain a reasonable estimate of model performance.
## Evaluation Data
*Datasets*:
The ScandEval's Danish benchmark includes:
- Named entity recognition on DaNE [7,8].
- Part-of-speech tagging and dependency on DDT [8].
- Sentiment classification on AngryTweets [9], TwitterSent [9], Europarl [9], LCC [10]
- Hate speech classification on DKHate [11].
*Motivation*:
The ScandEval benchmark is the most comprehensive benchmark for Danish. Pseudo perplexity was analysed to examine the model's ability to model certain language domains.
## Training Data
For our training data, we sample from HopeTwitter, DaNews, [DAGW](DDSC/dagw_reddit_filtered_v1.0.0) and Netarkivet Text (NAT) with the probabilites; 0.10, 0.10, 0.10, 0.70. For more information on the training and datasets, see the respective datasheets on the Danish foundation models [GitHub page](https://github.com/centre-for-humanities-computing/danish-foundation-models).
*Pre-processing*:
Input documents are tokenized using the tokenizer of the Danish BERT by BotXO [12], which uses a BPE with a vocabulary size of ~30,000 and NFKC normalization.
## Ethical Considerations
*Data*: The is sources from News, DAGW, Twitter, and Netarkivet Text (NAT) and might thus contain hate-speech, sexually explicit content and otherwise harmful content.
*Mitigations*: We considered removing sexually explicit content by filtering web domians using a DNS or using google safe-search. However, examining the filtering domains these were also found to include news media pertaining to a specific demographic (e.g. Dagens.dk) and educational sites pertaining to sexual education. We also examined the use of word-based filters, but found that might influence certain demographic groups disproportionally.
*Risk and Harms*: As Netarkivet Text cover such a wide array of the Danish internet it undoubtably contains personal information. To avoid model memorization of this information we have deduplicated the data such that the model does not learn this information.
# References:
- [1] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019). Model Cards for Model Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, 220–229. https://doi.org/10.1145/3287560.3287596
- [2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. ArXiv:1706.03762 [Cs]. http://arxiv.org/abs/1706.03762
- [3] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
- [4] Salazar, J., Liang, D., Nguyen, T. Q., & Kirchhoff, K. (2020). Masked Language Model Scoring. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2699–2712. https://doi.org/10.18653/v1/2020.acl-main.240
- [6] Nielsen, D. S. (2021). ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks. GitHub. Note: Https://Github.Com/Saattrupdan/ScandEval.
- [7] Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A named entity resource for danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604.
- [8] Kromann, M. T. (2003). The Danish Dependency Treebank and the DTAG Treebank Tool. https://research.cbs.dk/en/publications/the-danish-dependency-treebank-and-the-dtag-treebank-tool
- [9] Alexandrainst/danlp. (2022). Alexandra Institute. https://github.com/alexandrainst/danlp/blob/a1e9fa70fc5a3ae7ff78877062da3a8a8da80758/docs/docs/datasets.md (Original work published 2019)
- [10] Nielsen, F. Å. (2022). Lcc-sentiment. https://github.com/fnielsen/lcc-sentiment (Original work published 2016)
- [11] Sigurbergsson, G. I., & Derczynski, L. (2020). Offensive Language and Hate Speech Detection for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 3498–3508. https://aclanthology.org/2020.lrec-1.430
- [12] Møllerhøj, J. D. (2019, December 5). Danish BERT model: BotXO has trained the most advanced BERT model. BotXO. https://www.botxo.ai/blog/danish-bert-model/ | [
-0.78606778383255,
-0.7410675883293152,
0.16706810891628265,
0.12664677202701569,
-0.19352364540100098,
-0.01487070880830288,
-0.15558965504169464,
-0.24182100594043732,
0.33654072880744934,
0.3697357177734375,
-0.6154460310935974,
-0.7186037302017212,
-0.7754342555999756,
0.049799494445323944,
-0.2622199058532715,
0.7539207339286804,
-0.03212526813149452,
0.07874331623315811,
-0.2272873967885971,
-0.07006173580884933,
-0.2665366530418396,
-0.4651500880718231,
-0.6205600500106812,
-0.23358115553855896,
0.15438243746757507,
0.33756133913993835,
0.7604690194129944,
0.5519983172416687,
0.5476843118667603,
0.32082363963127136,
-0.447521448135376,
0.06210213899612427,
-0.5994462966918945,
-0.42986351251602173,
0.06031622737646103,
-0.47345322370529175,
-0.4413735270500183,
-0.01984468661248684,
0.5870378613471985,
0.6935625076293945,
-0.13098204135894775,
0.28757885098457336,
0.1054610088467598,
0.9771621227264404,
-0.3145422637462616,
0.029930071905255318,
-0.28212061524391174,
-0.04289522022008896,
-0.07290799170732498,
0.1367717981338501,
-0.0185786671936512,
-0.5049237012863159,
0.09871921688318253,
-0.42400699853897095,
0.42516085505485535,
-0.10756491124629974,
1.4185566902160645,
0.2605094313621521,
-0.4045715928077698,
-0.143304705619812,
-0.5354582071304321,
0.7618255615234375,
-0.7317203879356384,
0.6372861862182617,
0.7208003997802734,
0.15696528553962708,
-0.18307067453861237,
-0.7548493146896362,
-0.9418821930885315,
0.06925574690103531,
-0.30569136142730713,
0.16321051120758057,
-0.24232707917690277,
-0.25975048542022705,
0.4839501678943634,
0.5982443690299988,
-0.4846750497817993,
-0.07760406285524368,
-0.5104531049728394,
-0.1136886402964592,
0.8863503336906433,
0.12432031333446503,
-0.03427862748503685,
-0.438464879989624,
-0.5656615495681763,
-0.3837560713291168,
-0.4068526327610016,
0.5187102556228638,
0.5835539102554321,
0.09276051074266434,
-0.5683121681213379,
0.388676255941391,
0.00720633240416646,
0.6608346104621887,
0.40711113810539246,
-0.2348867505788803,
0.7434700131416321,
-0.39284372329711914,
-0.2856585383415222,
-0.10091836750507355,
0.7714903354644775,
0.36145856976509094,
0.03664596006274223,
0.12507157027721405,
-0.31026509404182434,
-0.03834294155240059,
0.23134659230709076,
-0.8325423002243042,
-0.29302456974983215,
0.41205480694770813,
-0.6344045996665955,
-0.37886708974838257,
0.050505660474300385,
-0.702855110168457,
-0.13936330378055573,
-0.4513310492038727,
0.3153461217880249,
-0.31224215030670166,
-0.6272312998771667,
0.18332675099372864,
-0.1377256214618683,
0.2901700735092163,
0.36212417483329773,
-0.9191458225250244,
0.2756830155849457,
0.3207418918609619,
0.8095226287841797,
-0.19771888852119446,
0.04320535808801651,
0.26784974336624146,
-0.09845312684774399,
-0.5421760678291321,
0.5994119048118591,
-0.12379980087280273,
-0.6233689188957214,
-0.19576628506183624,
0.32224801182746887,
-0.1877492070198059,
-0.47731152176856995,
0.7581716179847717,
-0.4377513825893402,
0.22672408819198608,
-0.5609046816825867,
-0.5374825596809387,
-0.23923282325267792,
0.47655999660491943,
-0.777251124382019,
1.4709311723709106,
0.3577333092689514,
-1.0830177068710327,
0.5192226767539978,
-0.6851913928985596,
-0.06680236011743546,
-0.2758568227291107,
-0.06094304844737053,
-0.6976727247238159,
-0.059653524309396744,
0.3814857602119446,
0.5871078372001648,
-0.4806493818759918,
0.5708163380622864,
-0.10438960045576096,
-0.3903498947620392,
-0.033493392169475555,
-0.5091777443885803,
1.1909430027008057,
0.26045873761177063,
-0.5287026166915894,
-0.09540828317403793,
-1.2075868844985962,
-0.2066897451877594,
0.3874596953392029,
-0.6017297506332397,
-0.041166674345731735,
-0.2735470235347748,
0.2669209837913513,
0.45646220445632935,
0.3009839355945587,
-0.7542866468429565,
0.11633100360631943,
-0.5085078477859497,
0.2936166822910309,
0.8733055591583252,
0.07390545308589935,
0.344860702753067,
-0.6119258403778076,
0.47531014680862427,
0.35840195417404175,
0.30399006605148315,
0.18510322272777557,
-0.41270607709884644,
-0.9410479664802551,
-0.6580414175987244,
0.3665536642074585,
0.41658371686935425,
-0.6201618909835815,
0.6665787696838379,
-0.22086989879608154,
-0.6501830816268921,
-0.639005184173584,
-0.11127309501171112,
0.20721513032913208,
0.6526265144348145,
0.29178833961486816,
-0.15338866412639618,
-0.5709190368652344,
-1.2002731561660767,
0.19521544873714447,
-0.09365014731884003,
0.15834420919418335,
0.4677932560443878,
0.8351373076438904,
-0.2927943170070648,
1.1822669506072998,
-0.3779696822166443,
-0.3933553695678711,
-0.17411504685878754,
-0.05921194329857826,
0.8801172971725464,
0.5515459775924683,
0.8918204307556152,
-1.0548540353775024,
-0.7824398279190063,
-0.12910781800746918,
-0.6700273752212524,
0.21143026649951935,
-0.001496141660027206,
-0.041617803275585175,
0.2717527747154236,
0.2797849476337433,
-0.5453881621360779,
0.6837376952171326,
0.7038098573684692,
-0.5101132392883301,
0.791287362575531,
-0.22285990417003632,
0.27978041768074036,
-1.1754913330078125,
0.41095587611198425,
-0.10289321094751358,
-0.17291510105133057,
-0.5077007412910461,
-0.233886256814003,
0.0010201380355283618,
0.001204532920382917,
-0.42347389459609985,
0.7520383596420288,
-0.49966543912887573,
0.17338259518146515,
0.003823376726359129,
-0.19172145426273346,
-0.01776127517223358,
0.8227770924568176,
0.08470901101827621,
0.9602645039558411,
0.8267404437065125,
-0.6877134442329407,
0.19352790713310242,
0.43568795919418335,
-0.6872692704200745,
0.6210845112800598,
-0.6748852729797363,
0.0676502212882042,
-0.17547692358493805,
0.11285694688558578,
-1.2123985290527344,
-0.07965836673974991,
0.20791345834732056,
-0.5797429084777832,
0.6008584499359131,
0.06033599004149437,
-0.5108263492584229,
-0.997497022151947,
-0.4038465917110443,
-0.04756636172533035,
0.47533929347991943,
-0.6764915585517883,
0.6768513321876526,
0.3528526723384857,
0.13563255965709686,
-0.8304687738418579,
-0.794194221496582,
-0.02479993738234043,
-0.008900663815438747,
-0.8464698791503906,
0.48397907614707947,
-0.12993770837783813,
-0.1162070631980896,
0.07461435347795486,
-0.2400093376636505,
-0.08240769058465958,
0.24894681572914124,
0.33910876512527466,
0.17801016569137573,
-0.15853020548820496,
0.012969495728611946,
-0.09804616123437881,
-0.08811907470226288,
-0.007007641717791557,
0.07329646497964859,
0.5890932083129883,
-0.15806174278259277,
-0.3569338917732239,
-0.5231853723526001,
0.1942983716726303,
0.5799533128738403,
-0.2726898789405823,
1.156257152557373,
0.7053788900375366,
-0.40463024377822876,
0.08758985251188278,
-0.6549468040466309,
-0.3147175908088684,
-0.49314385652542114,
0.40850305557250977,
-0.6468190550804138,
-0.9406458139419556,
0.7110258936882019,
-0.05449896678328514,
0.24306973814964294,
0.7595028281211853,
0.7105924487113953,
-0.18399721384048462,
1.0544989109039307,
0.6870381832122803,
-0.1523328274488449,
0.3408122658729553,
-0.8268896341323853,
0.23209679126739502,
-0.6892539858818054,
-0.45091503858566284,
-0.5864547491073608,
-0.44012147188186646,
-0.48074111342430115,
-0.3931429386138916,
0.36590442061424255,
0.33328860998153687,
-0.49570515751838684,
0.2014099806547165,
-0.7226018309593201,
0.17072637379169464,
0.686855137348175,
0.23923112452030182,
0.004926172085106373,
0.042564500123262405,
-0.5050564408302307,
-0.07157865166664124,
-0.8607668876647949,
-0.6494160890579224,
1.3363275527954102,
0.5418241620063782,
0.669684112071991,
0.0908965915441513,
0.9329072833061218,
0.31393545866012573,
0.21591810882091522,
-0.4751254618167877,
0.26121848821640015,
-0.026083778589963913,
-1.0210431814193726,
-0.30228757858276367,
-0.2459864467382431,
-0.9501045942306519,
0.31266090273857117,
-0.4308529198169708,
-0.8579987287521362,
0.8973179459571838,
0.2034761607646942,
-0.30463066697120667,
0.5216881036758423,
-0.5169662833213806,
0.8443809151649475,
-0.18266813457012177,
-0.4835145175457001,
-0.07387426495552063,
-0.7786444425582886,
0.2621441185474396,
-0.10122282803058624,
0.2963479161262512,
-0.17112880945205688,
0.1486620455980301,
0.8498548865318298,
-0.44873687624931335,
0.7243468761444092,
-0.3423340916633606,
-0.11064976453781128,
0.3564276397228241,
-0.1714393049478531,
0.6580380201339722,
-0.07907111942768097,
-0.25243204832077026,
0.42546844482421875,
0.10037492215633392,
-0.3888096213340759,
-0.13524171710014343,
0.8452326059341431,
-1.1348216533660889,
-0.7506918907165527,
-0.5170003771781921,
-0.4137078821659088,
-0.02165571227669716,
0.16615527868270874,
0.3768949806690216,
0.3211618959903717,
-0.2325362265110016,
0.3121139109134674,
0.863440752029419,
-0.23682084679603577,
0.6158610582351685,
0.5051207542419434,
-0.03879692405462265,
-0.5828016400337219,
0.6972804069519043,
0.08190212398767471,
0.2956191599369049,
0.2290119081735611,
0.13334885239601135,
-0.5988717079162598,
-0.37973055243492126,
-0.4116531312465668,
0.3780835270881653,
-0.6940706372261047,
-0.31255996227264404,
-1.0116119384765625,
-0.2208932340145111,
-0.7334197759628296,
-0.35183924436569214,
-0.5070453882217407,
-0.297868549823761,
-0.4793465733528137,
-0.3459981083869934,
0.5729902982711792,
0.6661144495010376,
-0.16705001890659332,
0.35960450768470764,
-0.5648633241653442,
0.2935490906238556,
0.10114113986492157,
0.22489860653877258,
0.07818971574306488,
-0.6000896692276001,
-0.315672904253006,
0.1453297734260559,
-0.3899487853050232,
-0.8012871742248535,
0.6319611668586731,
0.08883776515722275,
0.6813384890556335,
0.4729835093021393,
0.03928833454847336,
0.6615210771560669,
-0.21809229254722595,
0.948349118232727,
0.3640414774417877,
-0.8383073210716248,
0.40328365564346313,
-0.23502182960510254,
0.3194291889667511,
0.6931611895561218,
0.6178109049797058,
-0.51804518699646,
-0.24896825850009918,
-0.913089394569397,
-0.9183143377304077,
1.0308336019515991,
0.31399866938591003,
0.10869981348514557,
0.01572202891111374,
0.23983405530452728,
-0.12909014523029327,
0.4425393342971802,
-0.8405927419662476,
-0.7784793972969055,
-0.18447837233543396,
-0.1530463695526123,
-0.1284264177083969,
-0.4419116973876953,
-0.21184752881526947,
-0.6428257822990417,
0.8426423072814941,
0.16046810150146484,
0.5376411080360413,
0.4145180583000183,
0.0072990660555660725,
-0.19438403844833374,
0.08234807848930359,
0.5769686698913574,
0.8758043050765991,
-0.5257228016853333,
-0.12541702389717102,
0.0989573746919632,
-0.5923153758049011,
0.19977395236492157,
0.1742655336856842,
-0.17830149829387665,
0.15685111284255981,
0.3602238893508911,
0.8543148040771484,
0.04227514937520027,
-0.2291446477174759,
0.7059304714202881,
-0.008367992006242275,
-0.754318118095398,
-0.3979385197162628,
-0.15698054432868958,
0.2296270728111267,
0.35726162791252136,
0.4404876232147217,
0.14152580499649048,
-0.022823724895715714,
-0.40616899728775024,
0.21749001741409302,
0.35896366834640503,
-0.4636458158493042,
-0.09837590903043747,
0.9557316303253174,
0.2251713126897812,
-0.07861103117465973,
0.5341610908508301,
-0.09668819606304169,
-0.7907972931861877,
1.0298142433166504,
0.5082430839538574,
0.7352534532546997,
-0.3376513719558716,
0.1404487043619156,
0.9925640225410461,
0.45970308780670166,
-0.0785449743270874,
0.6254834532737732,
-0.017827749252319336,
-0.6808574199676514,
0.04137648269534111,
-1.0732035636901855,
0.04506221041083336,
0.19227103888988495,
-0.7669586539268494,
0.49831679463386536,
-0.36190909147262573,
-0.43397828936576843,
-0.1075553297996521,
0.2800047993659973,
-1.0834932327270508,
0.46773725748062134,
0.13234177231788635,
1.2693302631378174,
-1.0201164484024048,
0.8892016410827637,
0.6859865188598633,
-0.4913802444934845,
-0.9528666734695435,
-0.40296298265457153,
-0.1064848080277443,
-0.8408092856407166,
0.7658063173294067,
0.18545274436473846,
0.26500046253204346,
0.0824781060218811,
-0.5613798499107361,
-1.2345083951950073,
1.2059435844421387,
0.11447314918041229,
-0.9088176488876343,
0.20547805726528168,
0.0333632156252861,
0.5711830854415894,
-0.15186968445777893,
0.20182326436042786,
0.6856978535652161,
0.6359105706214905,
0.2028592973947525,
-1.034939169883728,
0.11976774036884308,
-0.37009966373443604,
0.02704264223575592,
0.35337430238723755,
-0.6041114330291748,
1.242523193359375,
-0.23706063628196716,
-0.15361757576465607,
-0.11791015416383743,
0.523830235004425,
0.17909294366836548,
0.09169767796993256,
0.5673236846923828,
1.0506237745285034,
0.8480018973350525,
-0.2072809338569641,
1.3894885778427124,
-0.3711332082748413,
0.6952604055404663,
0.9120806455612183,
0.15520451962947845,
0.6951921582221985,
0.5536633729934692,
-0.6096019744873047,
0.3057089149951935,
0.9701255559921265,
-0.17421354353427887,
0.7032437920570374,
0.13507021963596344,
-0.17470727860927582,
-0.1400565505027771,
0.08888228982686996,
-0.7127410173416138,
0.30130961537361145,
0.24866504967212677,
-0.6114868521690369,
-0.12181036919355392,
0.09476739168167114,
0.01520791370421648,
-0.024552777409553528,
-0.31759610772132874,
0.6856220364570618,
-0.018610067665576935,
-0.24482281506061554,
0.8932215571403503,
0.08543795347213745,
0.8403374552726746,
-0.7004957795143127,
0.048466697335243225,
-0.10292293131351471,
0.2953333556652069,
-0.3444006145000458,
-0.8108091354370117,
0.1931380331516266,
-0.15906734764575958,
-0.45128893852233887,
-0.12028856575489044,
0.5214239954948425,
-0.35329097509384155,
-0.6856168508529663,
0.30903682112693787,
0.29655706882476807,
0.1395234763622284,
-0.0050526089034974575,
-1.1171568632125854,
-0.1803380846977234,
0.15110597014427185,
-0.6443734765052795,
0.08130543678998947,
0.38699403405189514,
-0.0799262672662735,
0.35645782947540283,
0.8042528033256531,
0.012279091402888298,
-0.010034005157649517,
-0.048787008970975876,
1.2877928018569946,
-0.6479219794273376,
-0.6007859110832214,
-0.7454431653022766,
0.4767812490463257,
-0.2332019954919815,
-0.5194030404090881,
0.8378622531890869,
0.637916624546051,
0.8686391115188599,
-0.1001218929886818,
0.6404546499252319,
-0.44474413990974426,
0.6062856316566467,
-0.26415300369262695,
0.8441816568374634,
-0.8403967022895813,
-0.06729631125926971,
-0.2017602175474167,
-0.9420093894004822,
-0.24135544896125793,
0.8684691786766052,
-0.4285956621170044,
0.14119744300842285,
0.5043920278549194,
0.992483377456665,
0.09671574085950851,
0.020365899428725243,
0.29237788915634155,
0.2882237434387207,
0.13374517858028412,
0.45711731910705566,
0.5743213295936584,
-0.5796554684638977,
0.23358088731765747,
-0.6910433173179626,
-0.09710393846035004,
-0.26739174127578735,
-0.7801083326339722,
-1.0214440822601318,
-0.6139509677886963,
-0.4895919859409332,
-0.42153388261795044,
-0.08495040982961655,
1.0535129308700562,
0.8738912343978882,
-0.9003357291221619,
-0.24517641961574554,
0.04769926145672798,
0.11572545766830444,
-0.2678811252117157,
-0.21239130198955536,
0.9546082019805908,
0.08462152630090714,
-0.7913207411766052,
-0.048464585095644,
0.045415863394737244,
0.3520427644252777,
-0.14982466399669647,
-0.1594916731119156,
-0.5162119269371033,
0.11052071303129196,
0.5162208080291748,
0.025938361883163452,
-0.6806129217147827,
-0.0685315802693367,
-0.0189686082303524,
-0.2846848964691162,
0.3307467997074127,
0.35549667477607727,
-0.5946360230445862,
0.6136925220489502,
0.3178173899650574,
0.5670071244239807,
0.8102530241012573,
-0.07103008776903152,
0.2670634388923645,
-0.6435783505439758,
0.19126693904399872,
0.1730252057313919,
0.33484014868736267,
0.3358612358570099,
-0.6405785083770752,
0.6693243980407715,
0.34643110632896423,
-0.5686854720115662,
-0.9077314138412476,
-0.3041163384914398,
-1.0892174243927002,
-0.2722572386264801,
1.1474003791809082,
-0.15051402151584625,
-0.5456933379173279,
-0.08763094991445541,
-0.3564114272594452,
0.11178818345069885,
-0.44115912914276123,
0.5694687962532043,
0.9323557019233704,
-0.025211812928318977,
-0.05496040731668472,
-0.7263275980949402,
0.5858327150344849,
0.1100960373878479,
-0.5599678158760071,
-0.22315411269664764,
0.34212639927864075,
0.41582486033439636,
0.15414567291736603,
0.7153334021568298,
-0.24260005354881287,
0.22711384296417236,
0.21540285646915436,
0.41750580072402954,
-0.13773858547210693,
-0.08685240149497986,
-0.3454936146736145,
0.04549756646156311,
-0.07385455071926117,
-0.38132795691490173
] |
sentence-transformers/LaBSE | sentence-transformers | "2023-11-02T09:18:45Z" | 163,892 | 104 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"tf",
"jax",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"multilingual",
"af",
"sq",
"am",
"ar",
"hy",
"as",
"az",
"eu",
"be",
"bn",
"bs",
"bg",
"my",
"ca",
"ceb",
"zh",
"co",
"hr",
"cs",
"da",
"nl",
"en",
"eo",
"et",
"fi",
"fr",
"fy",
"gl",
"ka",
"de",
"el",
"gu",
"ht",
"ha",
"haw",
"he",
"hi",
"hmn",
"hu",
"is",
"ig",
"id",
"ga",
"it",
"ja",
"jv",
"kn",
"kk",
"km",
"rw",
"ko",
"ku",
"ky",
"lo",
"la",
"lv",
"lt",
"lb",
"mk",
"mg",
"ms",
"ml",
"mt",
"mi",
"mr",
"mn",
"ne",
"no",
"ny",
"or",
"fa",
"pl",
"pt",
"pa",
"ro",
"ru",
"sm",
"gd",
"sr",
"st",
"sn",
"si",
"sk",
"sl",
"so",
"es",
"su",
"sw",
"sv",
"tl",
"tg",
"ta",
"tt",
"te",
"th",
"bo",
"tr",
"tk",
"ug",
"uk",
"ur",
"uz",
"vi",
"cy",
"wo",
"xh",
"yi",
"yo",
"zu",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
language:
- multilingual
- af
- sq
- am
- ar
- hy
- as
- az
- eu
- be
- bn
- bs
- bg
- my
- ca
- ceb
- zh
- co
- hr
- cs
- da
- nl
- en
- eo
- et
- fi
- fr
- fy
- gl
- ka
- de
- el
- gu
- ht
- ha
- haw
- he
- hi
- hmn
- hu
- is
- ig
- id
- ga
- it
- ja
- jv
- kn
- kk
- km
- rw
- ko
- ku
- ky
- lo
- la
- lv
- lt
- lb
- mk
- mg
- ms
- ml
- mt
- mi
- mr
- mn
- ne
- no
- ny
- or
- fa
- pl
- pt
- pa
- ro
- ru
- sm
- gd
- sr
- st
- sn
- si
- sk
- sl
- so
- es
- su
- sw
- sv
- tl
- tg
- ta
- tt
- te
- th
- bo
- tr
- tk
- ug
- uk
- ur
- uz
- vi
- cy
- wo
- xh
- yi
- yo
- zu
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
---
# LaBSE
This is a port of the [LaBSE](https://tfhub.dev/google/LaBSE/1) model to PyTorch. It can be used to map 109 languages to a shared vector space.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/LaBSE')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/LaBSE)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Citing & Authors
Have a look at [LaBSE](https://tfhub.dev/google/LaBSE/1) for the respective publication that describes LaBSE.
| [
-0.37321150302886963,
-0.6307293772697449,
0.3038100302219391,
0.42660024762153625,
-0.08816966414451599,
-0.052138231694698334,
-0.2448931783437729,
0.04496784880757332,
0.11878491193056107,
0.38639357686042786,
-0.2786901593208313,
-0.6446354389190674,
-0.549597442150116,
0.0015914400573819876,
-0.7421696782112122,
1.0216037034988403,
-0.3050951361656189,
-0.004589373711496592,
0.0007873832946643233,
-0.25703343749046326,
-0.29428476095199585,
-0.4301665127277374,
-0.27353233098983765,
-0.427015095949173,
0.3996469974517822,
0.3179035484790802,
0.6846696138381958,
0.21750877797603607,
0.32538628578186035,
0.3776766359806061,
-0.06763723492622375,
-0.26140543818473816,
-0.5100803375244141,
-0.15437328815460205,
-0.08504267036914825,
-0.21141773462295532,
-0.2906658947467804,
0.08581935614347458,
0.44266173243522644,
0.5808970928192139,
-0.05383533611893654,
0.20718981325626373,
-0.12946386635303497,
0.3182845413684845,
-0.35979411005973816,
0.19383835792541504,
-0.2962466776371002,
0.15441304445266724,
0.10299869626760483,
0.1472672075033188,
-0.5890690684318542,
-0.3355577886104584,
0.5486932992935181,
-0.5009765028953552,
0.4002496302127838,
0.091228187084198,
1.130194067955017,
0.028837701305747032,
-0.3279218375682831,
-0.22846557199954987,
-0.4430727958679199,
0.7406819462776184,
-0.5913117527961731,
0.3098044991493225,
0.09118365496397018,
0.30815812945365906,
-0.23141928017139435,
-1.3696023225784302,
-0.6182896494865417,
-0.32902681827545166,
-0.21297545731067657,
0.21330790221691132,
-0.4725750982761383,
0.008532142266631126,
0.22835302352905273,
0.5201549530029297,
-0.7431368231773376,
-0.31776222586631775,
-0.6790207624435425,
-0.3687552511692047,
0.4993232488632202,
-0.1726229339838028,
0.6645137667655945,
-0.28370100259780884,
-0.30270275473594666,
-0.5531404614448547,
-0.296146422624588,
-0.18395578861236572,
0.2031579464673996,
0.05339136719703674,
-0.21489182114601135,
0.8469898104667664,
-0.04223102703690529,
0.5776352882385254,
-0.19045796990394592,
0.5072423219680786,
0.5964593887329102,
-0.17564000189304352,
-0.20833180844783783,
-0.06959377974271774,
1.2443263530731201,
0.18480001389980316,
0.3778521418571472,
-0.5759680271148682,
-0.04019317030906677,
0.1415736973285675,
0.44277745485305786,
-0.9311685562133789,
-0.4887702465057373,
0.3523145020008087,
-0.23743939399719238,
-0.40124309062957764,
0.2063017636537552,
-0.727022647857666,
-0.12358444929122925,
0.1167488843202591,
0.854602575302124,
-0.7069080471992493,
-0.019774066284298897,
0.2564317584037781,
-0.4119012951850891,
0.1593354195356369,
-0.22040516138076782,
-0.7646011710166931,
0.6376549601554871,
0.46660009026527405,
1.1683896780014038,
-0.0873701423406601,
-0.5685162544250488,
-0.5155288577079773,
-0.26149967312812805,
-0.08514966815710068,
0.5697884559631348,
-0.15533418953418732,
-0.3546256124973297,
0.1151735708117485,
0.23475517332553864,
-0.06789590418338776,
-0.3218889534473419,
0.5900632739067078,
-0.44957873225212097,
0.5733572244644165,
0.2333485335111618,
-0.6998952031135559,
-0.41615235805511475,
0.09809210896492004,
-0.7689441442489624,
1.1988273859024048,
0.43249818682670593,
-0.7938752770423889,
-0.014805514365434647,
-0.947250485420227,
-0.32174360752105713,
0.04787104204297066,
-0.01496841013431549,
-0.5815132260322571,
0.11917727440595627,
0.31248676776885986,
0.42195814847946167,
0.09407611191272736,
0.46457889676094055,
-0.2553960978984833,
-0.5559543967247009,
0.4029151201248169,
-0.06165986880660057,
1.1125819683074951,
0.14764194190502167,
-0.2426133006811142,
0.6193673610687256,
-0.46332329511642456,
0.01238136924803257,
-0.0569203682243824,
-0.30220749974250793,
0.09573279321193695,
-0.186290442943573,
0.6676124930381775,
0.17497967183589935,
0.19313229620456696,
-0.766796886920929,
0.32764703035354614,
-0.6010687947273254,
0.8886303305625916,
0.39380213618278503,
-0.20680570602416992,
0.752413809299469,
-0.3291614353656769,
0.4605967104434967,
-0.06862925738096237,
-0.0343499630689621,
0.1631343960762024,
-0.616292417049408,
-0.77852863073349,
-0.4120595455169678,
0.45971131324768066,
0.6829242706298828,
-0.5532315373420715,
0.7590846419334412,
-0.5037450194358826,
-0.6000542640686035,
-0.8524868488311768,
0.002751532243564725,
-0.0355566032230854,
0.3081960678100586,
0.553199827671051,
0.007313303649425507,
-0.5651160478591919,
-0.9454346895217896,
-0.10390681773424149,
0.20395876467227936,
-0.22662709653377533,
0.06694550812244415,
0.8279409408569336,
-0.4564034938812256,
1.091547966003418,
-0.43626898527145386,
-0.25052833557128906,
-0.4639664590358734,
0.29890474677085876,
0.3262319266796112,
0.4421056807041168,
0.5341774225234985,
-0.45126017928123474,
-0.4967961609363556,
-0.11535792797803879,
-0.6633623838424683,
-0.10526017099618912,
0.11654035747051239,
-0.3075266480445862,
0.21603356301784515,
0.5758111476898193,
-0.6045093536376953,
0.3881104290485382,
0.9105274677276611,
-0.4211913049221039,
0.35574644804000854,
-0.29862552881240845,
-0.10160855948925018,
-1.4815664291381836,
0.20008070766925812,
-0.0877055823802948,
-0.3006993532180786,
-0.3917215168476105,
0.2612045407295227,
0.2517286539077759,
-0.35546621680259705,
-0.4611881375312805,
0.8303142189979553,
-0.1980583518743515,
0.020692719146609306,
-0.20854531228542328,
0.3324097692966461,
-0.17241612076759338,
0.422554075717926,
-0.16029047966003418,
0.9429243206977844,
0.7744004726409912,
-0.41434890031814575,
0.5541270971298218,
0.5807820558547974,
-0.5992499589920044,
-0.3588648736476898,
-0.9097387194633484,
0.281414657831192,
0.1054680123925209,
0.4021165668964386,
-1.0109866857528687,
-0.21069884300231934,
0.23987849056720734,
-0.6889854669570923,
-0.1449170708656311,
0.08348067849874496,
-0.8516322374343872,
-0.5852135419845581,
-0.40433165431022644,
0.24679073691368103,
0.6975445747375488,
-0.7130210399627686,
0.8065097332000732,
0.24388091266155243,
0.06729970872402191,
-0.528568685054779,
-0.8759344220161438,
0.06835177540779114,
-0.23112399876117706,
-0.9397100210189819,
0.6196300387382507,
0.017107658088207245,
0.15481829643249512,
0.3680627942085266,
0.1395190805196762,
-0.02039536088705063,
-0.022766364738345146,
0.27402547001838684,
0.25378087162971497,
-0.04748427867889404,
0.24338319897651672,
-0.06274102628231049,
-0.1048177108168602,
-0.09254566580057144,
-0.18214356899261475,
1.0289945602416992,
-0.45426908135414124,
0.06333743780851364,
-0.3580624461174011,
0.24302411079406738,
0.507430374622345,
-0.1877700686454773,
0.9395655989646912,
0.925277829170227,
-0.42945659160614014,
-0.29017016291618347,
-0.32171523571014404,
-0.3178957402706146,
-0.5061692595481873,
0.6541315913200378,
-0.31649771332740784,
-1.019516944885254,
0.6230140924453735,
-0.08704548329114914,
-0.10377909243106842,
0.6340556740760803,
0.6383734941482544,
-0.03165467455983162,
0.7216480374336243,
0.6284481287002563,
-0.34747594594955444,
0.5795996785163879,
-0.540476381778717,
0.5815150737762451,
-0.8893824815750122,
0.06900765001773834,
-0.3971180021762848,
-0.2569732666015625,
-0.8494282960891724,
-0.4265303909778595,
0.23895418643951416,
0.1355055570602417,
-0.36548861861228943,
0.6800195574760437,
-0.6763468384742737,
0.48198625445365906,
0.8101170659065247,
0.04690953716635704,
-0.10628906637430191,
0.38483989238739014,
-0.2726837694644928,
0.15927241742610931,
-0.8039224743843079,
-0.7469456195831299,
1.1715223789215088,
0.2914239466190338,
0.47984808683395386,
0.06494960933923721,
0.8297598361968994,
-0.03610506281256676,
0.3471316397190094,
-1.0592327117919922,
0.5932576060295105,
-0.35334908962249756,
-0.6612983345985413,
-0.17233876883983612,
-0.22674132883548737,
-1.1046582460403442,
0.24727973341941833,
-0.18353134393692017,
-1.0861380100250244,
-0.2896665334701538,
-0.2579900920391083,
-0.23647475242614746,
0.14856117963790894,
-0.9972902536392212,
1.248649001121521,
0.0011930408654734492,
-0.2738265097141266,
-0.31595492362976074,
-0.4220806062221527,
0.15376564860343933,
0.14032146334648132,
0.02537735551595688,
0.21448573470115662,
0.36905354261398315,
0.9428200721740723,
-0.34062299132347107,
0.7609057426452637,
0.1907804161310196,
0.30168652534484863,
0.37701478600502014,
0.0701550617814064,
0.3192712366580963,
0.03685285523533821,
-0.13433311879634857,
0.1531473994255066,
0.09888340532779694,
-0.3067679703235626,
-0.389149934053421,
0.9075978994369507,
-1.1917493343353271,
-0.31421536207199097,
-0.7492592930793762,
-0.9241712689399719,
-0.006203507073223591,
0.27073100209236145,
0.24459917843341827,
0.4103300869464874,
-0.34234359860420227,
0.4171912372112274,
0.21859624981880188,
-0.5785675048828125,
0.5130250453948975,
0.25995224714279175,
-0.36974644660949707,
-0.49819642305374146,
0.7929807305335999,
-0.12885229289531708,
-0.04780714586377144,
0.297810822725296,
0.3495500087738037,
-0.4958036541938782,
-0.26493778824806213,
-0.2014344185590744,
0.29046136140823364,
-0.7421354055404663,
0.04183904081583023,
-0.8480212092399597,
-0.47203078866004944,
-0.5451650619506836,
-0.30174997448921204,
-0.17722615599632263,
-0.3240487575531006,
-0.24017678201198578,
-0.22623397409915924,
0.7053117156028748,
0.4627915024757385,
-0.06697376817464828,
0.7508453130722046,
-0.7199938893318176,
0.42500045895576477,
0.21574684977531433,
0.3484691381454468,
-0.22560682892799377,
-0.5010836124420166,
-0.006567142438143492,
-0.15568622946739197,
-0.5029475092887878,
-1.087382435798645,
0.7016435265541077,
-0.03227681666612625,
0.540290892124176,
-0.15980759263038635,
-0.13315901160240173,
0.47219613194465637,
-0.48408716917037964,
0.747044026851654,
0.11299661546945572,
-1.2095743417739868,
0.45235908031463623,
-0.20300798118114471,
0.3012092411518097,
0.41663941740989685,
0.1436094045639038,
-0.7608522772789001,
-0.4616830050945282,
-0.81106036901474,
-1.1972970962524414,
0.8316271901130676,
0.49697205424308777,
0.35439470410346985,
-0.11970457434654236,
0.16413868963718414,
-0.06295312941074371,
-0.025585442781448364,
-1.0384600162506104,
-0.2957841753959656,
-0.4314916431903839,
-0.6412885785102844,
-0.13350796699523926,
-0.07552605867385864,
-0.165422260761261,
-0.33503472805023193,
0.8110620975494385,
0.10164257884025574,
0.47005513310432434,
0.10863642394542694,
-0.43747231364250183,
0.303455650806427,
0.34524452686309814,
0.4434802532196045,
0.3199809491634369,
-0.5284690260887146,
0.11553250253200531,
0.12448584288358688,
-0.40236571431159973,
-0.15192343294620514,
0.3596789240837097,
-0.09080297499895096,
0.13759265840053558,
0.29114317893981934,
0.8790739178657532,
0.08857487142086029,
-0.5110611319541931,
0.5867812633514404,
0.046084173023700714,
-0.290425568819046,
-0.3624410629272461,
-0.07302919775247574,
0.44527316093444824,
0.28271928429603577,
0.01491328701376915,
0.04014820232987404,
0.17866860330104828,
-0.5462184548377991,
0.3566879630088806,
0.13854050636291504,
-0.40839090943336487,
-0.147417813539505,
0.6284810304641724,
0.19391295313835144,
-0.46678245067596436,
1.083604335784912,
-0.35932469367980957,
-0.724545955657959,
0.7394784688949585,
0.6694432497024536,
1.0311205387115479,
0.174952894449234,
0.4180004596710205,
0.7088972330093384,
0.2740904688835144,
-0.27874889969825745,
0.34575319290161133,
0.18929848074913025,
-0.850135326385498,
-0.47861728072166443,
-0.5669357180595398,
-0.1679902821779251,
0.2560921013355255,
-0.5625607371330261,
0.4822186231613159,
-0.20239011943340302,
-0.08730768412351608,
-0.01843489520251751,
-0.06791236996650696,
-0.838401734828949,
-0.07636630535125732,
0.11224165558815002,
0.8452886343002319,
-0.9085330367088318,
1.1653952598571777,
0.8850169777870178,
-0.5745216608047485,
-0.8977348208427429,
-0.1985051929950714,
-0.31666067242622375,
-0.8982929587364197,
0.6645424365997314,
0.24386811256408691,
0.036274503916502,
0.20352768898010254,
-0.5380773544311523,
-0.7150613069534302,
1.175689935684204,
0.23424513638019562,
-0.585071325302124,
0.3054279386997223,
0.008628987707197666,
0.694749116897583,
-0.2610173523426056,
0.28545865416526794,
0.38289380073547363,
0.2565247118473053,
-0.021076954901218414,
-0.935074508190155,
0.2404865175485611,
-0.34269803762435913,
-0.005274942610412836,
0.010683566331863403,
-0.33756786584854126,
0.8316269516944885,
-0.09125807881355286,
-0.2235073447227478,
0.22511416673660278,
0.6035794615745544,
0.503501296043396,
-0.14295321702957153,
0.24296234548091888,
0.6165210604667664,
0.6134342551231384,
-0.25056350231170654,
1.1320525407791138,
-0.40837523341178894,
0.9041769504547119,
1.0911586284637451,
0.08246960490942001,
0.9982359409332275,
0.6543169021606445,
-0.11227899044752121,
0.565260112285614,
0.3750793933868408,
-0.40717801451683044,
0.7009493112564087,
0.5953366160392761,
-0.05035899579524994,
-0.014078660868108273,
0.22314736247062683,
-0.28662732243537903,
0.19325968623161316,
0.2583850026130676,
-0.3900907039642334,
-0.2794705331325531,
-0.10134110599756241,
0.007976677268743515,
-0.1406988501548767,
0.18116748332977295,
0.31857356429100037,
0.04010080546140671,
-0.5053347945213318,
0.2837683856487274,
0.2011605203151703,
0.7487293481826782,
-0.5123186111450195,
0.10329492390155792,
-0.12815730273723602,
0.4586489200592041,
-0.030831605195999146,
-1.0053478479385376,
0.2692513167858124,
-0.13431425392627716,
0.023586004972457886,
-0.300200492143631,
0.5574089884757996,
-0.44492024183273315,
-0.7592108845710754,
0.47898849844932556,
0.4949399530887604,
0.11195387691259384,
-0.039496343582868576,
-0.5627500414848328,
0.000367026193998754,
-0.10155137628316879,
-0.3367501497268677,
0.027039948850870132,
0.33051565289497375,
-0.007868818007409573,
0.652165412902832,
0.34517812728881836,
-0.09840256720781326,
0.3568759560585022,
0.3650464713573456,
0.6892184615135193,
-0.7410322427749634,
-0.4918488562107086,
-0.78061842918396,
0.4823790192604065,
-0.10182689875364304,
-0.4391116201877594,
0.6277327537536621,
0.6933038830757141,
0.862682580947876,
-0.45601436495780945,
0.8303187489509583,
-0.2671605348587036,
-0.028024744242429733,
-0.2150716483592987,
0.8334411382675171,
-0.48041173815727234,
-0.2428888976573944,
-0.06526761502027512,
-0.9326532483100891,
-0.4615247845649719,
1.1694144010543823,
-0.3694666624069214,
-0.139150008559227,
1.1074044704437256,
0.8710826635360718,
-0.26600438356399536,
-0.04713787883520126,
0.07927123457193375,
0.4277166426181793,
0.4610190987586975,
0.492767870426178,
0.6748296618461609,
-0.9384447336196899,
0.7775865197181702,
-0.4175280034542084,
0.028829196467995644,
-0.11970958858728409,
-0.7017300724983215,
-1.0483200550079346,
-0.6327918171882629,
-0.6120516061782837,
-0.5666331648826599,
-0.18747708201408386,
0.8659489154815674,
0.7075283527374268,
-1.0142548084259033,
-0.36721107363700867,
-0.5509064793586731,
-0.19517743587493896,
-0.19529978930950165,
-0.28705033659935,
0.6754010915756226,
-0.36826616525650024,
-0.8637346625328064,
0.3023409843444824,
-0.11329600214958191,
0.05507161468267441,
-0.1020774245262146,
0.011469732969999313,
-0.21237507462501526,
-0.16139565408229828,
0.5307091474533081,
-0.03327281400561333,
-0.9213184714317322,
-0.38092440366744995,
0.15462036430835724,
-0.299016535282135,
-0.08274853974580765,
0.5049572587013245,
-0.872916579246521,
0.5230334997177124,
0.7688366174697876,
0.4820433557033539,
0.9792157411575317,
-0.47614774107933044,
0.6966646313667297,
-0.6903937458992004,
0.2934994697570801,
0.06347242742776871,
0.6657069325447083,
0.3774397075176239,
0.07734692841768265,
0.5991954803466797,
-0.10295704007148743,
-0.5425064563751221,
-0.6590835452079773,
-0.026128482073545456,
-1.5475661754608154,
-0.22576327621936798,
1.3335055112838745,
-0.11098285019397736,
-0.3392076790332794,
0.1383836269378662,
-0.4745592474937439,
0.7373179793357849,
-0.49279940128326416,
1.0887019634246826,
1.1331061124801636,
0.2082153707742691,
-0.08641169220209122,
-0.6939671635627747,
0.15464067459106445,
0.41604456305503845,
-0.6844949722290039,
-0.24327731132507324,
0.22324778139591217,
0.5189040899276733,
0.2847960889339447,
0.4129737317562103,
-0.1075526624917984,
0.15518799424171448,
0.06158486008644104,
0.39560961723327637,
-0.06571096181869507,
0.025163089856505394,
-0.255140483379364,
0.26961416006088257,
-0.2796342074871063,
-0.6155810356140137
] |
nvidia/segformer-b0-finetuned-ade-512-512 | nvidia | "2023-04-24T08:31:30Z" | 161,581 | 93 | transformers | [
"transformers",
"pytorch",
"tf",
"segformer",
"vision",
"image-segmentation",
"dataset:scene_parse_150",
"arxiv:2105.15203",
"license:other",
"endpoints_compatible",
"has_space",
"region:us"
] | image-segmentation | "2022-03-02T23:29:05Z" | ---
license: other
tags:
- vision
- image-segmentation
datasets:
- scene_parse_150
widget:
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
example_title: House
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
example_title: Castle
---
# SegFormer (b0-sized) model fine-tuned on ADE20k
SegFormer model fine-tuned on ADE20k at resolution 512x512. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
import requests
processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
### License
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
| [
-0.8918469548225403,
-0.7303878664970398,
0.16227540373802185,
0.21335594356060028,
-0.3186841607093811,
-0.36207279562950134,
-0.00893149059265852,
-0.6684084534645081,
0.3125273585319519,
0.5862470269203186,
-0.8728917241096497,
-0.5810412764549255,
-0.7640116810798645,
0.11292628943920135,
-0.3038548529148102,
0.8108969330787659,
0.08324013650417328,
-0.1350713074207306,
-0.323039174079895,
-0.36589816212654114,
-0.021764373406767845,
-0.30675986409187317,
-0.6381259560585022,
-0.35273897647857666,
0.3594766855239868,
0.2048674076795578,
0.5848352313041687,
0.8135964870452881,
0.6586140990257263,
0.466808557510376,
-0.45611652731895447,
0.15445730090141296,
-0.32091212272644043,
-0.17734521627426147,
0.027491550892591476,
-0.07753212004899979,
-0.4310430586338043,
-0.02115785703063011,
0.3731709420681,
0.6408761739730835,
0.06479746103286743,
0.3568641245365143,
-0.04329025745391846,
0.44361788034439087,
-0.4365653991699219,
0.09216152876615524,
-0.49364396929740906,
0.14986339211463928,
0.07411956787109375,
0.002234084066003561,
-0.29578277468681335,
-0.16104882955551147,
0.20473164319992065,
-0.5144935846328735,
0.7214632034301758,
0.04008737951517105,
1.5246760845184326,
0.41795921325683594,
-0.37057796120643616,
-0.0649452656507492,
-0.4785275161266327,
0.8133246302604675,
-0.6591755151748657,
0.5337676405906677,
-0.09767115116119385,
0.343361496925354,
0.12345658987760544,
-0.9990900754928589,
-0.4494689106941223,
0.16291838884353638,
-0.20704244077205658,
-0.07073681801557541,
-0.3650514483451843,
0.0729348435997963,
0.49165770411491394,
0.558137059211731,
-0.44905099272727966,
0.06642001867294312,
-0.7155644297599792,
-0.4146062433719635,
0.7327925562858582,
0.06839445233345032,
0.28851282596588135,
-0.33923953771591187,
-0.8036147356033325,
-0.4475908875465393,
-0.3101668953895569,
0.12606266140937805,
0.24867698550224304,
0.0179903544485569,
-0.28705814480781555,
0.4579879641532898,
-0.05312276631593704,
0.7516322135925293,
0.4536154270172119,
-0.11679111421108246,
0.503300130367279,
-0.12858039140701294,
-0.3532949984073639,
0.06327838450670242,
0.9195888638496399,
0.44077402353286743,
0.0007533697644248605,
0.06395667046308517,
-0.10112519562244415,
0.11850647628307343,
0.32880640029907227,
-1.3094691038131714,
-0.23326532542705536,
0.08198156952857971,
-0.522011935710907,
-0.29587310552597046,
0.18771179020404816,
-0.7803783416748047,
-0.05881211534142494,
-0.19384676218032837,
0.48894956707954407,
-0.3013569116592407,
-0.0679192915558815,
0.1160365641117096,
-0.1076727956533432,
0.742210865020752,
0.2647940516471863,
-0.8413171172142029,
0.2312658429145813,
0.5270464420318604,
0.7845458984375,
-0.21244440972805023,
-0.11083319783210754,
-0.13458901643753052,
-0.08662113547325134,
-0.16792286932468414,
0.870546281337738,
-0.2768266797065735,
-0.35005369782447815,
-0.3177475035190582,
0.6297065615653992,
-0.27895358204841614,
-0.6384965777397156,
0.7957183122634888,
-0.5417743921279907,
0.22988532483577728,
-0.03821992129087448,
-0.3928016722202301,
-0.60445636510849,
0.29671740531921387,
-0.6343592405319214,
0.9196032285690308,
0.23725491762161255,
-0.8053731918334961,
0.484831303358078,
-0.5640388131141663,
-0.27500513195991516,
-0.06375467777252197,
0.052024971693754196,
-0.9022282958030701,
0.06383560597896576,
0.46241670846939087,
0.47626662254333496,
-0.20322546362876892,
0.19351311028003693,
-0.5540438294410706,
-0.16567941009998322,
-0.028548719361424446,
-0.21435128152370453,
1.00927734375,
0.3304328918457031,
-0.31276294589042664,
0.4593040943145752,
-0.6847957968711853,
0.0016215433133766055,
0.48150014877319336,
0.03912252560257912,
-0.017004666849970818,
-0.3438715934753418,
0.23931282758712769,
0.4439857006072998,
0.2434980869293213,
-0.6783004403114319,
0.0498751699924469,
-0.3434491753578186,
0.4290163218975067,
0.6536573767662048,
0.1269923448562622,
0.4689222574234009,
-0.10315278172492981,
0.31467685103416443,
0.17237475514411926,
0.4587034583091736,
-0.160996213555336,
-0.2401283085346222,
-1.1200629472732544,
-0.41987115144729614,
0.23438288271427155,
0.13813704252243042,
-0.40702003240585327,
0.6436863541603088,
-0.20267848670482635,
-0.6383476853370667,
-0.5186041593551636,
-0.014060001820325851,
0.056212168186903,
0.5143836140632629,
0.5221385955810547,
-0.45603299140930176,
-0.7396685481071472,
-1.1656478643417358,
0.15250448882579803,
0.24126385152339935,
-0.06825971603393555,
0.3957527279853821,
0.5670937299728394,
-0.6782715916633606,
0.8002125024795532,
-0.7787179946899414,
-0.32626789808273315,
-0.18723608553409576,
-0.07674281299114227,
0.3393087387084961,
0.5853578448295593,
0.6381157040596008,
-0.8466404676437378,
-0.36760008335113525,
-0.22346098721027374,
-0.6204014420509338,
-0.08799107372760773,
0.13165435194969177,
-0.3449578583240509,
0.16745929419994354,
0.43708986043930054,
-0.5560540556907654,
0.42335158586502075,
0.4811926484107971,
-0.6146464347839355,
0.34917566180229187,
-0.09254220873117447,
-0.02040283940732479,
-1.0130318403244019,
0.17243781685829163,
0.18509551882743835,
-0.25059372186660767,
-0.5135920643806458,
0.15648984909057617,
-0.01561835128813982,
-0.18680010735988617,
-0.6194432973861694,
0.5615459680557251,
-0.3458263576030731,
-0.0032033375464379787,
-0.24771857261657715,
-0.1832224577665329,
0.17243586480617523,
0.7846710085868835,
0.18253223598003387,
0.30588552355766296,
0.49979761242866516,
-0.7053903937339783,
0.22254043817520142,
0.5318458080291748,
-0.3519265353679657,
0.5105093717575073,
-1.0731934309005737,
0.07737278193235397,
-0.09945300221443176,
0.11122111976146698,
-0.7413971424102783,
-0.3463795483112335,
0.3932025134563446,
-0.31279563903808594,
0.4490416944026947,
-0.29979026317596436,
-0.22424937784671783,
-0.5900890231132507,
-0.21907171607017517,
0.39341479539871216,
0.5154277682304382,
-0.8005674481391907,
0.5789666175842285,
0.5257375240325928,
0.129924938082695,
-0.2749174237251282,
-0.6104382276535034,
-0.33138537406921387,
-0.3831546902656555,
-1.0657302141189575,
0.6703753471374512,
-0.04617529734969139,
0.19615188241004944,
0.04218824580311775,
-0.36206328868865967,
-0.030446315184235573,
-0.07461494207382202,
0.3655324876308441,
0.5011302828788757,
-0.1448313444852829,
-0.4089002311229706,
0.01883801631629467,
-0.42204710841178894,
0.12669241428375244,
-0.12686066329479218,
0.6595548987388611,
-0.3375307619571686,
-0.36146071553230286,
-0.2956542670726776,
-0.019381431862711906,
0.49207302927970886,
-0.2816237807273865,
0.5191192030906677,
1.211594581604004,
-0.3273203372955322,
-0.07459225505590439,
-0.5499611496925354,
-0.2851673364639282,
-0.5687733292579651,
0.3169224262237549,
-0.21690401434898376,
-1.0761280059814453,
0.5672145485877991,
0.03454273194074631,
0.059461694210767746,
0.9925550818443298,
0.4836176335811615,
0.14675819873809814,
1.2482688426971436,
0.6131619215011597,
0.41104280948638916,
0.5217167735099792,
-0.8219038248062134,
0.1875811517238617,
-1.0521259307861328,
-0.5650555491447449,
-0.40124449133872986,
-0.4222126603126526,
-0.759520947933197,
-0.6971522569656372,
0.4085555076599121,
0.17092162370681763,
-0.4045742154121399,
0.5967839956283569,
-0.8827435374259949,
0.19531384110450745,
0.49703747034072876,
0.07611878216266632,
-0.1477736085653305,
0.08617552369832993,
-0.155221089720726,
0.07842343300580978,
-0.7258186936378479,
-0.3765829801559448,
0.34936606884002686,
0.5589832067489624,
0.7651868462562561,
-0.18578261137008667,
0.6022800207138062,
-0.08320161700248718,
-0.021684329956769943,
-0.9350666403770447,
0.6102801561355591,
-0.11517458409070969,
-0.7036555409431458,
-0.11667759716510773,
-0.31178784370422363,
-0.9977934956550598,
0.45081791281700134,
-0.14866040647029877,
-0.8842318058013916,
0.6453267335891724,
0.10668787360191345,
-0.23589220643043518,
0.30372393131256104,
-0.6498658061027527,
1.2114174365997314,
-0.20183391869068146,
-0.41170382499694824,
0.11623400449752808,
-0.709610641002655,
0.24010415375232697,
0.26935362815856934,
-0.09226902574300766,
-0.41935479640960693,
0.28803184628486633,
0.9496641755104065,
-0.6980552673339844,
0.6875818371772766,
-0.3359639644622803,
0.21385635435581207,
0.6221153736114502,
-0.10693901032209396,
0.3649027347564697,
0.030037323012948036,
0.2560080885887146,
0.5130960941314697,
0.24188004434108734,
-0.3484465479850769,
-0.41471168398857117,
0.6713510751724243,
-0.8267649412155151,
-0.5947088599205017,
-0.42242196202278137,
-0.2882314920425415,
0.012750786729156971,
0.3578720688819885,
0.4900701642036438,
0.4284013509750366,
-0.09658236056566238,
0.450366348028183,
0.649487316608429,
-0.3632444739341736,
0.5102090239524841,
0.17622633278369904,
-0.15664272010326385,
-0.4246443808078766,
0.9016631841659546,
-0.1492372453212738,
0.022301048040390015,
0.2720842957496643,
0.294474720954895,
-0.4853838086128235,
-0.21557866036891937,
-0.46532371640205383,
0.30875465273857117,
-0.6309165954589844,
-0.4017927646636963,
-0.8802529573440552,
-0.5759304165840149,
-0.45299699902534485,
-0.2830253541469574,
-0.485612154006958,
-0.3278508484363556,
-0.3973059058189392,
0.018010186031460762,
0.36530348658561707,
0.37787821888923645,
-0.16480781137943268,
0.34558531641960144,
-0.6910613179206848,
0.23515312373638153,
0.3841657340526581,
0.3570905029773712,
-0.005898198112845421,
-0.6257830262184143,
-0.12495129555463791,
0.006754784844815731,
-0.5518574714660645,
-0.5216072201728821,
0.6022546887397766,
0.08164524286985397,
0.5312767028808594,
0.5780918002128601,
-0.07702302187681198,
0.9408081769943237,
-0.2331770956516266,
0.5771374702453613,
0.3914538621902466,
-0.7778742909431458,
0.3620373606681824,
-0.16908013820648193,
0.512780487537384,
0.4019751250743866,
0.28033334016799927,
-0.5903406143188477,
0.06365591287612915,
-0.8416886925697327,
-1.1152973175048828,
0.9476821422576904,
0.097514308989048,
0.024450959637761116,
0.12439132481813431,
-0.0493246465921402,
0.013750421814620495,
-0.04607507213950157,
-0.5482103824615479,
-0.36169669032096863,
-0.35884416103363037,
-0.20618662238121033,
-0.03923989459872246,
-0.4162948429584503,
-0.004211610648781061,
-0.5354256629943848,
0.7088019847869873,
-0.1261102557182312,
0.6837625503540039,
0.2843859791755676,
-0.3063238859176636,
-0.03438781946897507,
-0.047765012830495834,
0.44231152534484863,
0.28945231437683105,
-0.27018052339553833,
0.09366114437580109,
0.20453281700611115,
-0.4209727346897125,
-0.09642811864614487,
0.3697340488433838,
-0.31326189637184143,
-0.042748045176267624,
0.3405826687812805,
1.1219394207000732,
0.32313695549964905,
-0.2893078029155731,
0.5430908799171448,
-0.007594020571559668,
-0.5052316188812256,
-0.35221564769744873,
0.2587451934814453,
0.023849189281463623,
0.3728886544704437,
0.2251204550266266,
0.38122913241386414,
0.3050217628479004,
0.001974602695554495,
0.3002067804336548,
0.36037686467170715,
-0.72420334815979,
-0.37405726313591003,
0.8147778511047363,
0.10434688627719879,
-0.03203783184289932,
0.728826105594635,
-0.1217329278588295,
-0.6894781589508057,
0.8839503526687622,
0.5225133299827576,
1.0132676362991333,
-0.05926082655787468,
0.2501809000968933,
0.7731202244758606,
0.13572420179843903,
0.15549248456954956,
-0.1325273960828781,
-0.12191025167703629,
-0.7589782476425171,
-0.35527822375297546,
-1.0438703298568726,
-0.006187014281749725,
0.11586178094148636,
-0.6860023736953735,
0.5411064624786377,
-0.43253880739212036,
-0.16356070339679718,
0.237451434135437,
0.09249240905046463,
-1.0217777490615845,
0.28712570667266846,
0.24099348485469818,
0.9894879460334778,
-0.6109611988067627,
0.4745369255542755,
0.786851704120636,
-0.22273090481758118,
-0.7676742672920227,
-0.4758078157901764,
-0.045761480927467346,
-0.8733838200569153,
0.3927828073501587,
0.50617915391922,
0.0363127738237381,
0.05813261494040489,
-0.6710518598556519,
-1.0108505487442017,
1.296907901763916,
0.13360466063022614,
-0.30655747652053833,
-0.03668338060379028,
0.001386274117976427,
0.392324298620224,
-0.44019418954849243,
0.3540077209472656,
0.3868527412414551,
0.5409839153289795,
0.729427695274353,
-0.4704551100730896,
0.10285405069589615,
-0.2847781479358673,
0.17620016634464264,
0.35186657309532166,
-0.8464821577072144,
0.6093053817749023,
-0.33988332748413086,
-0.2638780474662781,
-0.14196231961250305,
0.6902102828025818,
0.14045031368732452,
0.29044798016548157,
0.7051876783370972,
0.8046658635139465,
0.42248162627220154,
-0.3312438130378723,
0.8285617232322693,
-0.22836235165596008,
0.7752108573913574,
0.750063955783844,
0.2671978175640106,
0.31002098321914673,
0.4133646488189697,
-0.1212935820221901,
0.4315837621688843,
0.9286161661148071,
-0.5507816672325134,
0.45176267623901367,
-0.08454914391040802,
0.15853190422058105,
-0.4055706560611725,
-0.23480531573295593,
-0.4038804769515991,
0.768504798412323,
0.25429990887641907,
-0.6194829940795898,
-0.21942494809627533,
-0.15569497644901276,
-0.04145845025777817,
-0.4383641481399536,
-0.22023595869541168,
0.6604790091514587,
0.1551809459924698,
-0.3315293490886688,
0.6397569179534912,
0.15180502831935883,
0.7044205069541931,
-0.4343998432159424,
0.032628580927848816,
-0.08282335847616196,
0.27744999527931213,
-0.3599790036678314,
-0.47275322675704956,
0.6027274131774902,
-0.2225874662399292,
-0.05494933947920799,
-0.11075720191001892,
0.9768970608711243,
-0.30723732709884644,
-0.7508669495582581,
0.1931542009115219,
0.1456798017024994,
0.044735588133335114,
0.14864227175712585,
-0.9311928749084473,
0.42107951641082764,
0.0577860027551651,
-0.4586932361125946,
0.024477899074554443,
0.13947179913520813,
0.09633264690637589,
0.5068553686141968,
0.5822386145591736,
-0.3171072006225586,
0.020166005939245224,
-0.14952842891216278,
0.9008066058158875,
-0.6893064379692078,
-0.3904944658279419,
-0.7351890802383423,
0.5580783486366272,
-0.3151364326477051,
-0.31953194737434387,
0.7630034685134888,
0.6640865802764893,
1.1394920349121094,
-0.2569141983985901,
0.26679372787475586,
-0.433778315782547,
0.13507716357707977,
-0.21124377846717834,
0.5498334765434265,
-0.6700685024261475,
-0.10773593187332153,
-0.42848145961761475,
-1.0818365812301636,
-0.3358651399612427,
0.8618455529212952,
-0.3954051733016968,
0.27394142746925354,
0.4587774872779846,
0.9202401041984558,
-0.32974961400032043,
-0.02777586132287979,
0.2645775377750397,
0.09438174217939377,
0.1841762810945511,
0.3342958688735962,
0.5992307066917419,
-0.5440526008605957,
0.4736230969429016,
-0.7218798398971558,
0.0355716310441494,
-0.48790571093559265,
-0.6167050004005432,
-0.8553056120872498,
-0.5936964750289917,
-0.5003877878189087,
-0.325144499540329,
-0.4024277329444885,
0.8722929954528809,
1.0931593179702759,
-0.8804849982261658,
-0.06820544600486755,
0.03602997586131096,
0.20159152150154114,
-0.19131174683570862,
-0.2983516752719879,
0.4781140983104706,
-0.019849468022584915,
-0.9662946462631226,
-0.06966137886047363,
0.2789032459259033,
0.13948513567447662,
-0.034382790327072144,
-0.24202480912208557,
-0.037009190768003464,
-0.1370440274477005,
0.6671778559684753,
0.2820010781288147,
-0.5845617055892944,
-0.32992273569107056,
0.19351555407047272,
-0.016241803765296936,
0.2359224259853363,
0.5933564305305481,
-0.5080585479736328,
0.40419456362724304,
0.5777217149734497,
0.4593447148799896,
0.9545745253562927,
0.10240389406681061,
0.1429118514060974,
-0.46228668093681335,
0.27028360962867737,
0.1708945631980896,
0.4724893867969513,
0.39895474910736084,
-0.2487238049507141,
0.5173248648643494,
0.3293774425983429,
-0.5218480229377747,
-0.60252445936203,
0.09260030090808868,
-1.232805609703064,
-0.13628432154655457,
1.0035223960876465,
0.03221118077635765,
-0.6276509761810303,
0.30537670850753784,
-0.20060685276985168,
0.4172205328941345,
-0.20104016363620758,
0.5018396377563477,
0.23942218720912933,
-0.16343100368976593,
-0.3979126513004303,
-0.14155948162078857,
0.3420482873916626,
0.014629456214606762,
-0.5077802538871765,
-0.5222041010856628,
0.4406723976135254,
0.4456992745399475,
0.29031747579574585,
0.17302252352237701,
-0.39926502108573914,
0.06968022882938385,
0.15724337100982666,
0.3485613465309143,
-0.27735602855682373,
-0.2204345166683197,
-0.219557523727417,
0.14097245037555695,
-0.16053959727287292,
-0.2753289043903351
] |
BAAI/llm-embedder | BAAI | "2023-11-14T10:11:55Z" | 161,133 | 57 | transformers | [
"transformers",
"pytorch",
"safetensors",
"bert",
"feature-extraction",
"arxiv:2310.07554",
"arxiv:2309.07597",
"license:mit",
"endpoints_compatible",
"region:us"
] | feature-extraction | "2023-10-09T09:46:10Z" | ---
license: mit
---
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#frequently-asked-questions>FAQ</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#contact">Contact</a> |
<a href="#citation">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
<span style="#FF69B4;"> **Hiring:** We're seeking experienced NLP researchers and intern students focusing on dense retrieval and retrieval-augmented LLMs. If you're interested, please feel free to reach out to us via email at zhengliu1026@gmail.com.</span>
FlagEmbedding can map any text to a low-dimensional dense vector, which can be used for tasks like retrieval, classification, clustering, and semantic search.
And it can also be used in vector databases for LLMs.
************* 🌟**Updates**🌟 *************
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire:
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
- 09/12/2023: New models:
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
<details>
<summary>More</summary>
<!-- ### More -->
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
</details>
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
[1\]: If you need to search the relevant passages in a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
[2\]: Different from the embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
For example, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 documents to get the final top-3 results.
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
If you cannot open the Huggingface Hub, you can also download the models at https://model.baai.ac.cn/models .
## Frequently asked questions
**1. How to fine-tune bge embedding model?**
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- In general, larger hyper-parameter `per_device_train_batch_size` brings better performance. You can expand it by enabling `--fp16`, `--deepspeed df_config.json` (df_config.json can refer to [ds_config.json](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/ds_config.json), `--gradient_checkpointing`, etc.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
<details>
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
Since we finetune the models by contrastive learning with a temperature of 0.01,
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
For downstream tasks, such as passage retrieval or semantic similarity,
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold,
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
</details>
<details>
<summary>3. When does the query instruction need to be used</summary>
<!-- ### When does the query instruction need to be used -->
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
No instruction only has a slight degradation in retrieval performance compared with using instruction.
So you can generate embedding without instruction in all cases for convenience.
For a retrieval task that uses short queries to find long related documents,
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction.
</details>
## Usage
### Usage for Embedding Model
Here are some examples of using `bge` models with
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5',
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
#### Using Sentence-Transformers
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task,
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
#### Using Langchain
You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```
#### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
### Usage for Reranker
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### Using Huggingface transformers
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
- **C-MTEB**:
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
## Train
### BAAI Embedding
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pair data using contrastive learning.
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
For more training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
### BGE Reranker
Cross-encoder will perform full-attention over the input pair,
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data,
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
For more details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
### Our Contributors:
<a href="https://github.com/FlagOpen/FlagEmbedding/graphs/contributors">
<img src="https://contrib.rocks/image?repo=FlagOpen/FlagEmbedding" />
</a>
## Contact
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{llm_embedder,
title={Retrieve Anything To Augment Large Language Models},
author={Peitian Zhang and Shitao Xiao and Zheng Liu and Zhicheng Dou and Jian-Yun Nie},
year={2023},
eprint={2310.07554},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
| [
-0.4963192045688629,
-0.8788822889328003,
0.42280343174934387,
0.16155174374580383,
-0.3121608793735504,
-0.21838539838790894,
-0.3176049590110779,
-0.2700331509113312,
0.39566630125045776,
0.35393035411834717,
-0.3146371841430664,
-0.8820210695266724,
-0.49388599395751953,
-0.04599274694919586,
-0.11298686265945435,
0.5736426711082458,
-0.025723986327648163,
0.12870438396930695,
0.03600785508751869,
-0.24496221542358398,
-0.3900269567966461,
-0.2636135220527649,
-0.6720733046531677,
-0.2810814678668976,
0.3684558570384979,
0.25211605429649353,
0.5687561631202698,
0.7418360710144043,
0.3096775710582733,
0.27265816926956177,
-0.2513348460197449,
0.13854098320007324,
-0.45754289627075195,
-0.06328203529119492,
-0.20035091042518616,
-0.3245508074760437,
-0.4519619941711426,
0.16006435453891754,
0.6886277794837952,
0.478019654750824,
-0.12533001601696014,
0.11702654510736465,
0.005611499305814505,
0.7211357355117798,
-0.46759799122810364,
0.2627253234386444,
-0.6000860333442688,
0.02569785714149475,
-0.2329527586698532,
0.13174939155578613,
-0.491365909576416,
-0.3480014204978943,
0.14981454610824585,
-0.6052254438400269,
0.10011383891105652,
0.2896538972854614,
1.2813133001327515,
0.2063937485218048,
-0.40355831384658813,
-0.15634982287883759,
-0.1101464107632637,
0.9861769080162048,
-1.0196839570999146,
0.7049592137336731,
0.5039541721343994,
0.22840532660484314,
-0.07195832580327988,
-0.8251479864120483,
-0.32410165667533875,
-0.15872110426425934,
-0.18837343156337738,
0.410753071308136,
0.0012988385278731585,
0.008418551646173,
0.3264523148536682,
0.6290267109870911,
-0.5842809081077576,
0.13138823211193085,
-0.059079866856336594,
-0.13816355168819427,
0.7549794316291809,
-0.15230703353881836,
0.4483566880226135,
-0.5013946890830994,
-0.28956952691078186,
-0.34601256251335144,
-0.7836459875106812,
0.047155313193798065,
0.3906329572200775,
0.14410625398159027,
-0.3961564898490906,
0.5568552613258362,
-0.2389463186264038,
0.615456223487854,
0.04395473748445511,
0.06959839165210724,
0.5398750901222229,
-0.3704570531845093,
-0.21498651802539825,
-0.1530916839838028,
0.9220681190490723,
0.37661483883857727,
-0.06469003111124039,
0.03384881466627121,
-0.36122649908065796,
-0.07996351271867752,
-0.07693155854940414,
-0.8886249661445618,
-0.24994243681430817,
0.20717841386795044,
-0.7307645678520203,
-0.20451213419437408,
0.2033545970916748,
-0.7792702913284302,
0.08277276158332825,
-0.016497718170285225,
0.5495386123657227,
-0.718571662902832,
-0.09052105247974396,
0.3385349214076996,
-0.19924351572990417,
0.39882656931877136,
0.01512344554066658,
-0.683277428150177,
-0.20925156772136688,
0.5646197199821472,
0.8752625584602356,
0.12809592485427856,
-0.07438943535089493,
-0.3570939898490906,
-0.005802277009934187,
-0.14421257376670837,
0.33060702681541443,
-0.5151433944702148,
-0.1601809412240982,
0.18407456576824188,
0.3440527319908142,
-0.09521039575338364,
-0.30214762687683105,
0.893301784992218,
-0.5446042418479919,
0.3197132647037506,
-0.3379870355129242,
-0.7924867868423462,
-0.4458765387535095,
0.13650307059288025,
-0.7914118766784668,
1.1451966762542725,
-0.09186611324548721,
-0.8533440828323364,
0.09480372071266174,
-0.6333610415458679,
-0.1763087660074234,
-0.21632027626037598,
-0.057933732867240906,
-0.6235358715057373,
-0.11532164365053177,
0.38097870349884033,
0.6076704263687134,
-0.23790358006954193,
0.09145843237638474,
-0.3506886065006256,
-0.607283890247345,
-0.015660803765058517,
-0.23089642822742462,
1.1139498949050903,
0.2588062882423401,
-0.33271482586860657,
-0.20928531885147095,
-0.4383793771266937,
0.1042221188545227,
0.2992986738681793,
-0.33267226815223694,
-0.2993798553943634,
0.18208542466163635,
0.22253108024597168,
0.025288091972470284,
0.5261436700820923,
-0.6852710843086243,
0.20489338040351868,
-0.5572787523269653,
0.6031824946403503,
0.5791377425193787,
0.13492654263973236,
0.27262526750564575,
-0.4873746633529663,
0.3039194345474243,
-0.03978508710861206,
-0.026443496346473694,
-0.1921757608652115,
-0.5598024725914001,
-0.6242277026176453,
-0.3250342011451721,
0.7256180047988892,
0.6677660346031189,
-0.8468104004859924,
0.6821431517601013,
-0.4834349751472473,
-0.6249071359634399,
-0.9375486969947815,
0.1575872004032135,
0.5186411142349243,
0.014006289653480053,
0.7091689109802246,
-0.15033107995986938,
-0.522233784198761,
-0.9579891562461853,
-0.076343834400177,
0.04955786094069481,
-0.09072364121675491,
0.49874404072761536,
0.6305559873580933,
-0.36469659209251404,
0.45360657572746277,
-0.7082603573799133,
-0.3459959030151367,
-0.23136469721794128,
-0.06780002266168594,
0.3727976381778717,
0.517265796661377,
0.6414350867271423,
-0.9789688587188721,
-0.5633972883224487,
-0.019668227061629295,
-0.7582468390464783,
0.08059463649988174,
0.05698411911725998,
-0.2434520572423935,
0.1866619735956192,
0.6285593509674072,
-0.44243425130844116,
0.22493602335453033,
0.5093815326690674,
-0.25867724418640137,
0.3077695369720459,
-0.02590324357151985,
0.11067181825637817,
-1.3054078817367554,
0.05002735182642937,
0.2973443865776062,
-0.1439119428396225,
-0.2667330205440521,
0.4978039562702179,
0.1561618447303772,
0.18908487260341644,
-0.3625893294811249,
0.5908353924751282,
-0.55436110496521,
0.2049134075641632,
0.15604360401630402,
0.5601794123649597,
-0.11680951714515686,
0.5201313495635986,
-0.05243593081831932,
0.7388219237327576,
0.41007646918296814,
-0.37497222423553467,
0.10889213532209396,
0.507371187210083,
-0.47320976853370667,
0.08142565935850143,
-0.6660205125808716,
-0.07276548445224762,
-0.06048838049173355,
0.18000507354736328,
-0.8438577055931091,
-0.07858315110206604,
0.25471049547195435,
-0.5851340293884277,
0.5249716639518738,
-0.3177649676799774,
-0.5302051305770874,
-0.39036619663238525,
-0.9149254560470581,
0.18155689537525177,
0.6128830313682556,
-0.6544530987739563,
0.22960638999938965,
0.3072969615459442,
0.05626402795314789,
-0.7868759632110596,
-0.8437872529029846,
-0.11663362383842468,
0.0021597815211862326,
-0.5082279443740845,
0.5747475028038025,
-0.05655146390199661,
0.22800923883914948,
0.19425702095031738,
-0.07038220763206482,
0.15707090497016907,
0.13065649569034576,
0.004679683595895767,
0.24688751995563507,
-0.44703954458236694,
0.02131495252251625,
0.22648605704307556,
0.1158522292971611,
-0.1836235374212265,
-0.14530523121356964,
0.4392138123512268,
-0.24221758544445038,
-0.35484179854393005,
-0.2393605262041092,
0.2859260141849518,
0.2760069966316223,
-0.3924407660961151,
0.5810386538505554,
1.004281997680664,
-0.36881017684936523,
-0.10684242099523544,
-0.6895458102226257,
-0.13102872669696808,
-0.48650795221328735,
0.4672514498233795,
-0.3089667558670044,
-1.032630205154419,
0.4004457890987396,
-0.03627799078822136,
0.2446412444114685,
0.6416971683502197,
0.35168758034706116,
-0.13698455691337585,
1.0825551748275757,
0.37986892461776733,
-0.27139902114868164,
0.6641331315040588,
-0.6803683638572693,
0.1727106273174286,
-1.202977180480957,
-0.03493790701031685,
-0.38258522748947144,
-0.4012064039707184,
-1.3129546642303467,
-0.5126301646232605,
0.04052422195672989,
0.2813676595687866,
-0.3985674977302551,
0.39926767349243164,
-0.6243156790733337,
0.17549468576908112,
0.4849701523780823,
0.2732337713241577,
-0.01689251698553562,
0.1209113597869873,
-0.44377046823501587,
-0.2506445050239563,
-0.6239302754402161,
-0.5192450881004333,
1.0435776710510254,
0.5004757642745972,
0.5998881459236145,
0.33656084537506104,
0.8241234421730042,
0.21387086808681488,
0.10816749930381775,
-0.7764365077018738,
0.6068544387817383,
-0.5023955702781677,
-0.573464035987854,
-0.3386874198913574,
-0.4786090552806854,
-1.1153713464736938,
0.3916653096675873,
-0.29809972643852234,
-0.7820092439651489,
0.11322863399982452,
-0.18553227186203003,
-0.054451584815979004,
0.5098506808280945,
-0.6523070335388184,
1.0140880346298218,
-0.1208312064409256,
-0.3028727173805237,
-0.06124645844101906,
-0.453178346157074,
0.33357447385787964,
0.17377296090126038,
0.09524855762720108,
0.042660634964704514,
-0.28191444277763367,
0.7636144757270813,
-0.16842691600322723,
0.66816246509552,
-0.16536816954612732,
0.16122476756572723,
0.39976707100868225,
-0.1786542534828186,
0.554478108882904,
0.0963185653090477,
-0.20803725719451904,
0.3274916112422943,
0.06516954302787781,
-0.49319374561309814,
-0.4857923686504364,
0.9167592525482178,
-0.7086580991744995,
-0.7011764645576477,
-0.39365604519844055,
-0.28810158371925354,
0.1637362688779831,
0.4191623032093048,
0.32319188117980957,
0.19868236780166626,
-0.10496756434440613,
0.6487898826599121,
0.9342378973960876,
-0.5275450348854065,
0.4008572995662689,
0.33253827691078186,
-0.2944064140319824,
-0.6084931492805481,
1.1324381828308105,
0.22832708060741425,
-0.05330021679401398,
0.6524049043655396,
-0.008154532872140408,
-0.2756151556968689,
-0.5941323041915894,
-0.44855108857154846,
0.6120209097862244,
-0.5893699526786804,
-0.1776261329650879,
-0.6537557244300842,
-0.4294646084308624,
-0.421938419342041,
-0.020161222666502,
-0.2951525151729584,
-0.30649706721305847,
-0.20188607275485992,
-0.2702663242816925,
0.25359100103378296,
0.47518429160118103,
0.10303851962089539,
0.07884859293699265,
-0.680481493473053,
0.2088514119386673,
-0.06540120393037796,
0.43341144919395447,
0.05462720990180969,
-0.5569761991500854,
-0.5845812559127808,
0.15228210389614105,
-0.47451651096343994,
-1.0370012521743774,
0.36593401432037354,
0.07272074371576309,
0.8296899795532227,
0.2973247468471527,
-0.051752958446741104,
0.43481871485710144,
-0.5178297162055969,
1.0745275020599365,
-0.09366215765476227,
-0.7729379534721375,
0.47573742270469666,
-0.30007827281951904,
0.19129134714603424,
0.606386125087738,
0.6400138139724731,
-0.45321089029312134,
-0.29466938972473145,
-0.5135974884033203,
-0.9929232597351074,
0.48507294058799744,
0.1980721354484558,
0.03393369913101196,
-0.26828986406326294,
0.3464969992637634,
-0.18281367421150208,
-0.002183536533266306,
-0.8151890635490417,
-0.7372727990150452,
-0.3085452914237976,
-0.3478633761405945,
-0.11041223257780075,
-0.2894744277000427,
0.18740242719650269,
-0.3315843641757965,
1.0115646123886108,
-0.015285342931747437,
0.5433930158615112,
0.3580135405063629,
-0.3268303871154785,
0.23789747059345245,
0.2690223753452301,
0.307403564453125,
0.2321706861257553,
-0.4088415801525116,
-0.11466650664806366,
0.33842724561691284,
-0.5401344299316406,
-0.06062755361199379,
0.3117784559726715,
-0.487019419670105,
0.19302873313426971,
0.31322139501571655,
0.7046375870704651,
0.4837920665740967,
-0.4534796178340912,
0.5872576832771301,
0.10965438187122345,
-0.2160457968711853,
-0.33174410462379456,
-0.08070240914821625,
0.3389636278152466,
0.24783849716186523,
0.1575668901205063,
-0.41547131538391113,
0.2525474429130554,
-0.5348504185676575,
0.33719125390052795,
0.4969415068626404,
-0.38064607977867126,
-0.08816258609294891,
0.7261589765548706,
0.03712160885334015,
-0.04832463711500168,
0.5104332566261292,
-0.4942137897014618,
-0.7306332588195801,
0.43677639961242676,
0.38041940331459045,
0.8442695736885071,
-0.12673667073249817,
0.21106408536434174,
0.8662667870521545,
0.514510989189148,
-0.3372291326522827,
0.3436891436576843,
0.08158116787672043,
-0.6024721264839172,
-0.4504513740539551,
-0.569280743598938,
-0.07657060027122498,
0.2711566984653473,
-0.5763479471206665,
0.35622861981391907,
-0.43133988976478577,
-0.18151476979255676,
0.017313584685325623,
0.44822368025779724,
-0.7639154195785522,
0.09937749803066254,
0.0647696927189827,
1.125365138053894,
-0.6035976409912109,
0.8502352833747864,
1.0102688074111938,
-0.9294552206993103,
-0.745537281036377,
0.02385096624493599,
-0.11594008654356003,
-0.6359604597091675,
0.39748701453208923,
0.2744840085506439,
0.16321919858455658,
0.08539054542779922,
-0.5004435181617737,
-0.9200456738471985,
1.5984394550323486,
0.06553956121206284,
-0.5706433057785034,
-0.08437460660934448,
-0.25174835324287415,
0.46026596426963806,
-0.36428534984588623,
0.45903709530830383,
0.41499263048171997,
0.6048957705497742,
-0.18965987861156464,
-0.6746557950973511,
0.5241829752922058,
-0.3187393248081207,
0.23449237644672394,
0.03703974932432175,
-0.96489018201828,
0.8281800746917725,
0.0485832579433918,
-0.3024546504020691,
0.21169789135456085,
0.7178729176521301,
0.28481701016426086,
0.376090407371521,
0.2753326892852783,
0.9997298717498779,
0.6585798263549805,
-0.22316518425941467,
1.1396677494049072,
-0.2826051414012909,
0.6187990307807922,
0.8881226181983948,
0.17785930633544922,
1.1082593202590942,
0.11846620589494705,
-0.23902978003025055,
0.6806445121765137,
0.8071500062942505,
-0.3298158347606659,
0.4504964351654053,
0.017649460583925247,
0.05015800520777702,
-0.34747812151908875,
0.05588492006063461,
-0.5274430513381958,
0.2402307391166687,
0.3234407603740692,
-0.5099192261695862,
0.030183641240000725,
-0.31459060311317444,
0.08133871108293533,
0.08210212737321854,
-0.05205070599913597,
0.5560840368270874,
0.3402663469314575,
-0.4445888102054596,
0.6826346516609192,
0.21513080596923828,
1.0629546642303467,
-0.4164668023586273,
-0.15692900121212006,
-0.2742826044559479,
-0.10160651057958603,
-0.25644776225090027,
-0.8230119943618774,
-0.07662341743707657,
-0.259833425283432,
-0.19169309735298157,
0.01123197190463543,
0.5606895089149475,
-0.6068130135536194,
-0.41395869851112366,
0.5765588879585266,
0.5099442601203918,
0.24905094504356384,
0.17870090901851654,
-1.1325615644454956,
0.09093721210956573,
0.337216317653656,
-0.5344541668891907,
0.3298510015010834,
0.43574225902557373,
-0.06290949136018753,
0.6227722764015198,
0.6187158226966858,
0.07883322983980179,
-0.01797574758529663,
0.0496462807059288,
0.5226420164108276,
-0.9042772650718689,
-0.275613009929657,
-0.6659467816352844,
0.40231138467788696,
-0.28765419125556946,
-0.001541509060189128,
0.7999803423881531,
0.745695948600769,
1.078076958656311,
-0.05670313164591789,
0.7837574481964111,
-0.09960582107305527,
0.3932364881038666,
-0.5575249791145325,
0.8826691508293152,
-1.037218689918518,
0.27921369671821594,
-0.3526286482810974,
-0.9604927897453308,
-0.2068440169095993,
0.6892173886299133,
-0.3142251670360565,
0.21652719378471375,
0.6532891392707825,
0.9831298589706421,
-0.25229981541633606,
-0.20776057243347168,
0.3157491683959961,
0.42279255390167236,
0.1692476123571396,
0.7866480946540833,
0.3862084150314331,
-0.9391948580741882,
0.6382273435592651,
-0.22944872081279755,
0.11472809314727783,
-0.5192131996154785,
-0.655421793460846,
-0.9163767099380493,
-0.73075932264328,
-0.4155850410461426,
-0.26843225955963135,
-0.017819058150053024,
0.9312947988510132,
0.3737001419067383,
-0.741678774356842,
-0.08963099867105484,
0.20675870776176453,
0.4574261009693146,
-0.2588255703449249,
-0.28051188588142395,
0.6281501650810242,
-0.0664704293012619,
-0.9300113320350647,
0.36519375443458557,
-0.0665249302983284,
-0.07186690717935562,
-0.07485523819923401,
-0.2453596144914627,
-0.890738844871521,
0.068020761013031,
0.6052497625350952,
0.2843409478664398,
-0.9289068579673767,
-0.40842264890670776,
0.059598326683044434,
-0.27608007192611694,
-0.12331631034612656,
0.16952396929264069,
-0.44064661860466003,
0.3277665078639984,
0.6257384419441223,
0.8018315434455872,
0.6887611746788025,
-0.06167084723711014,
0.1998366266489029,
-0.6196902394294739,
-0.07107485830783844,
0.008825233206152916,
0.7132827639579773,
0.38901397585868835,
-0.27253228425979614,
0.9323487877845764,
0.2157643884420395,
-0.45073872804641724,
-0.7981241345405579,
0.03430634364485741,
-1.0865846872329712,
-0.32266783714294434,
1.130739688873291,
-0.3862821161746979,
-0.21593788266181946,
0.2587398886680603,
-0.17263759672641754,
0.50161212682724,
-0.4902820289134979,
0.4684750735759735,
0.7936530113220215,
0.41729870438575745,
-0.16231869161128998,
-0.9065630435943604,
0.3205967843532562,
0.6344156265258789,
-0.3045303225517273,
-0.32411906123161316,
0.3484126329421997,
0.4999314248561859,
0.23701255023479462,
0.1776057630777359,
-0.23708735406398773,
0.30110278725624084,
-0.09812580049037933,
0.036515772342681885,
-0.15197962522506714,
0.22660893201828003,
-0.19992326200008392,
0.006720375269651413,
-0.12401322275400162,
-0.2656864523887634
] |
prompthero/openjourney | prompthero | "2023-05-15T22:39:37Z" | 161,020 | 2,962 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2022-11-08T09:44:58Z" | ---
inference: true
language:
- en
tags:
- stable-diffusion
- text-to-image
license: creativeml-openrail-m
---
# Openjourney is an open source Stable Diffusion fine tuned model on Midjourney images, by [PromptHero](https://prompthero.com/poolsuite-diffusion-prompts?utm_source=huggingface&utm_medium=referral)
Include **'mdjrny-v4 style'** in prompt. Here you'll find hundreds of [Openjourney prompts](https://prompthero.com/openjourney-prompts?utm_source=huggingface&utm_medium=referral)
# Openjourney Links
- [Lora version](https://huggingface.co/prompthero/openjourney-lora)
- [Openjourney v4](https://huggingface.co/prompthero/openjourney-v2)
# Want to learn AI art generation?:
- [Crash course in AI art generation](https://prompthero.com/academy/prompt-engineering-course?utm_source=huggingface&utm_medium=referral)
- [Learn to fine-tune Stable Diffusion for photorealism](https://prompthero.com/academy/dreambooth-stable-diffusion-train-fine-tune-course?utm_source=huggingface&utm_medium=referral)
# Use it for free:
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/midjourney-v4-diffusion)
### Stable Diffusion v1.5 vs Openjourney
(Same parameters, just added "mdjrny-v4 style" at the beginning):
<img src="https://s3.amazonaws.com/moonup/production/uploads/1667904587642-63265d019f9d19bfd4f45031.png" width="100%"/>
<img src="https://s3.amazonaws.com/moonup/production/uploads/1667904587623-63265d019f9d19bfd4f45031.png" width="100%"/>
<img src="https://s3.amazonaws.com/moonup/production/uploads/1667904587609-63265d019f9d19bfd4f45031.png" width="100%"/>
<img src="https://s3.amazonaws.com/moonup/production/uploads/1667904587646-63265d019f9d19bfd4f45031.png" width="100%"/>
### 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX]().
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "prompthero/openjourney"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "retro serie of different cars with different colors and shapes, mdjrny-v4 style"
image = pipe(prompt).images[0]
image.save("./retro_cars.png")
``` | [
-0.5812034606933594,
-0.7688018083572388,
0.6211808919906616,
0.2784323990345001,
-0.18692070245742798,
-0.39351341128349304,
0.06268590688705444,
-0.16074804961681366,
0.2644152045249939,
0.5152779221534729,
-0.6745821833610535,
-0.5951089859008789,
-0.40696150064468384,
-0.3030225336551666,
-0.041303105652332306,
0.9149363040924072,
-0.40127065777778625,
-0.1241607517004013,
-0.05417785793542862,
-0.2570759057998657,
-0.26160433888435364,
0.27111145853996277,
-0.8760032057762146,
-0.3521254360675812,
0.4362746775150299,
0.1061805710196495,
0.7530308961868286,
0.2525956332683563,
0.15974345803260803,
0.36022111773490906,
-0.36667272448539734,
-0.02622593566775322,
-0.6245518326759338,
0.19158628582954407,
-0.12209316343069077,
-0.1527228057384491,
-0.5149012804031372,
0.26982465386390686,
0.7187412977218628,
0.42064258456230164,
-0.15323315560817719,
0.19486303627490997,
0.02332438714802265,
0.7838554978370667,
-0.6719499230384827,
-0.006716914940625429,
-0.025839488953351974,
0.11018402129411697,
-0.16137276589870453,
0.14410221576690674,
-0.015226053074002266,
-0.584022045135498,
0.12362004071474075,
-0.8674655556678772,
0.08812405914068222,
-0.0861017182469368,
1.2698209285736084,
0.19202755391597748,
-0.20716960728168488,
-0.09610529243946075,
-0.679524302482605,
0.6700248122215271,
-0.6377285718917847,
0.3539007604122162,
0.13552738726139069,
0.3289172649383545,
-0.05769357085227966,
-0.9686347246170044,
-0.5430905222892761,
0.07643811404705048,
0.11919744312763214,
0.5097295045852661,
-0.24768492579460144,
-0.05608063563704491,
0.20046156644821167,
0.43047189712524414,
-0.7034136652946472,
-0.21577276289463043,
-0.5764431357383728,
0.007783013861626387,
0.4638504981994629,
0.09063533693552017,
0.37608420848846436,
0.14027822017669678,
-0.4406033754348755,
0.09020085632801056,
-0.5073642134666443,
0.28111541271209717,
0.3456026017665863,
-0.12433133274316788,
-0.6500028371810913,
0.6217212677001953,
-0.026406314224004745,
0.6716796159744263,
0.3651628792285919,
-0.029111824929714203,
0.44282066822052,
-0.20739880204200745,
-0.10383235663175583,
-0.41347238421440125,
0.8734859228134155,
0.7149000763893127,
-0.011997762136161327,
-0.03418710082769394,
-0.029964696615934372,
-0.2904497981071472,
-0.039426032453775406,
-1.4090172052383423,
-0.3569100499153137,
0.32699546217918396,
-0.6977948546409607,
-0.32926562428474426,
-0.05624137073755264,
-1.0767486095428467,
-0.08323103934526443,
0.04504072666168213,
0.466561496257782,
-0.4418354034423828,
-0.5549881458282471,
0.2002452164888382,
-0.25270262360572815,
0.023927386850118637,
0.5855101346969604,
-0.4492816627025604,
-0.2038179188966751,
0.1574924886226654,
1.5202723741531372,
-0.09469456970691681,
-0.06716015189886093,
-0.26414626836776733,
0.1090768426656723,
-0.19120220839977264,
0.6141363978385925,
-0.47336283326148987,
-0.49276646971702576,
-0.06818921118974686,
0.36625850200653076,
0.019748544320464134,
-0.3290681540966034,
0.5850699543952942,
-0.6669389605522156,
0.46301671862602234,
-0.10787613689899445,
-0.37990590929985046,
-0.21448735892772675,
0.0766298696398735,
-0.6449525952339172,
0.7846535444259644,
0.4139935374259949,
-0.8903594613075256,
0.109332375228405,
-1.134010672569275,
0.2183827906847,
-0.18154539167881012,
0.10861214995384216,
-0.6208902597427368,
-0.17347250878810883,
-0.07918573915958405,
0.28123629093170166,
0.05849594250321388,
-0.19303986430168152,
-0.5323709845542908,
-0.09480056911706924,
0.017193902283906937,
-0.2013980746269226,
1.2748557329177856,
0.5954816341400146,
-0.12788480520248413,
0.2594299912452698,
-0.7889887094497681,
-0.1274803727865219,
0.2672315239906311,
-0.33359208703041077,
-0.28045207262039185,
-0.38885849714279175,
0.11691413819789886,
0.24621236324310303,
0.26279136538505554,
-0.6599828600883484,
0.33321431279182434,
-0.30993157625198364,
0.5017911791801453,
0.9451694488525391,
0.346829354763031,
0.7115047574043274,
-0.4937777519226074,
0.7206946611404419,
0.4734152853488922,
0.21023057401180267,
-0.2588559091091156,
-0.9043012261390686,
-0.6384075284004211,
-0.31235557794570923,
-0.021584946662187576,
0.32120659947395325,
-0.7263275980949402,
0.23657575249671936,
0.18663685023784637,
-0.7972084283828735,
-0.49426543712615967,
-0.06187709420919418,
0.12267164140939713,
0.8384926319122314,
0.33331307768821716,
-0.4937679171562195,
-0.10758247971534729,
-0.39999422430992126,
0.09605666995048523,
0.12275981158018112,
0.14254708588123322,
0.1186443641781807,
0.47285544872283936,
-0.48640626668930054,
0.8068677186965942,
-0.7321967482566833,
-0.11179149150848389,
0.3865099251270294,
0.16157539188861847,
0.496165007352829,
0.6974543333053589,
0.9717016816139221,
-0.6630979776382446,
-0.6818429827690125,
-0.11016271263360977,
-0.7548481822013855,
-0.1837884485721588,
0.15180045366287231,
-0.8357663154602051,
0.20595666766166687,
0.29913678765296936,
-0.9212966561317444,
0.6217179298400879,
0.6441172957420349,
-0.8990731835365295,
0.6209138631820679,
-0.3521985411643982,
0.27241870760917664,
-1.1680563688278198,
0.17910024523735046,
0.3474946916103363,
-0.45729416608810425,
-0.5480025410652161,
0.2936934232711792,
-0.18423442542552948,
-0.18036356568336487,
-0.7377617955207825,
1.053636074066162,
-0.5420878529548645,
0.438446968793869,
-0.3104135990142822,
-0.05131196603178978,
0.17121407389640808,
0.2349681407213211,
-0.007952116429805756,
0.6107875108718872,
0.9206510186195374,
-0.5940570831298828,
0.3168448805809021,
0.41407203674316406,
-0.23633334040641785,
0.6588071584701538,
-0.6089341640472412,
0.08962652832269669,
-0.35597148537635803,
0.289554625749588,
-1.0098237991333008,
-0.11742480844259262,
0.6876441240310669,
-0.22612810134887695,
0.30532306432724,
-0.34419214725494385,
-0.11604394763708115,
-0.3378680348396301,
-0.2986956834793091,
0.48537808656692505,
0.9078901410102844,
-0.571025550365448,
0.47636646032333374,
0.13092342019081116,
0.11142748594284058,
-0.42910492420196533,
-0.5354536771774292,
-0.5394594669342041,
-0.4557550251483917,
-0.9324079751968384,
0.3377753496170044,
-0.4031103253364563,
-0.17762795090675354,
0.2173936665058136,
0.08462972193956375,
-0.08788029849529266,
-0.23299311101436615,
0.5001454949378967,
0.41141968965530396,
-0.2877694070339203,
-0.4790187478065491,
0.1068466454744339,
-0.2702986001968384,
-0.06554904580116272,
-0.43083086609840393,
0.46159788966178894,
-0.2345602810382843,
-0.2684786915779114,
-0.7015402317047119,
0.11647651344537735,
0.7526193261146545,
0.052452102303504944,
1.0076509714126587,
1.0767642259597778,
-0.3889583349227905,
0.07500574737787247,
-0.2539905607700348,
-0.05942244827747345,
-0.5674264430999756,
-0.2953142821788788,
-0.2918207049369812,
-0.5875120759010315,
0.6346072554588318,
-0.10339270532131195,
0.39480939507484436,
0.5420140027999878,
0.9148514866828918,
-0.10195502638816833,
0.9641904234886169,
0.5068717002868652,
0.33624765276908875,
0.6868265867233276,
-0.9510692954063416,
-0.018571887165308,
-0.8552551865577698,
-0.35925784707069397,
-0.3067285418510437,
-0.4438309669494629,
-0.30882155895233154,
-0.6493985056877136,
0.4637547433376312,
0.47559693455696106,
-0.7281449437141418,
0.026919590309262276,
-0.5630941390991211,
0.3474942445755005,
0.4539477825164795,
0.2510800063610077,
0.3889138400554657,
-0.04543464258313179,
-0.21028226613998413,
-0.04302724823355675,
-0.39436042308807373,
-0.5862143039703369,
0.8878830075263977,
0.22134368121623993,
0.9005494713783264,
0.1765143871307373,
0.7416237592697144,
0.09765574336051941,
0.32483282685279846,
-0.4640602171421051,
0.4792923629283905,
0.14998134970664978,
-0.5976517796516418,
-0.1533442735671997,
-0.31012800335884094,
-1.1618437767028809,
0.18337273597717285,
-0.2743653357028961,
-0.5512365102767944,
0.4624139368534088,
0.2788185775279999,
-0.37768980860710144,
0.5137493014335632,
-0.6681499481201172,
0.9353890419006348,
-0.07385388761758804,
-0.8708680272102356,
0.11219798773527145,
-0.5361759066581726,
0.43600592017173767,
0.10995486378669739,
0.22487710416316986,
-0.2406303733587265,
-0.2286534458398819,
0.4515157639980316,
-0.7102941274642944,
0.6490656733512878,
-0.6710038185119629,
0.0428503155708313,
0.4656119644641876,
0.011769378557801247,
0.1990610659122467,
0.1911318451166153,
-0.27983590960502625,
0.19865266978740692,
0.09339215606451035,
-0.5394790172576904,
-0.3087802231311798,
1.0264558792114258,
-1.069776177406311,
-0.2106054276227951,
-0.4443345367908478,
-0.4029811918735504,
0.30735886096954346,
0.5111121535301208,
0.7235501408576965,
0.10603802651166916,
-0.15859480202198029,
-0.08148399740457535,
0.6978456974029541,
-0.2227148562669754,
0.5299964547157288,
0.25682562589645386,
-0.6502639055252075,
-0.45804232358932495,
0.6497788429260254,
0.16546067595481873,
0.451866090297699,
-0.09185231477022171,
0.6847795844078064,
-0.2165507823228836,
-0.6068211197853088,
-0.6716549396514893,
0.35387614369392395,
-0.6318025588989258,
-0.17216414213180542,
-0.6859028935432434,
-0.312724232673645,
-0.5186838507652283,
-0.46236541867256165,
-0.2561117708683014,
-0.43332555890083313,
-0.8222730755805969,
0.07579529285430908,
0.8550745248794556,
0.5344449877738953,
-0.389041543006897,
0.3402215838432312,
-0.5816798806190491,
0.5104459524154663,
0.14217239618301392,
0.3381904363632202,
0.03152548149228096,
-0.5534678101539612,
-0.16648119688034058,
0.12427669018507004,
-0.8772962689399719,
-0.966438889503479,
0.35775479674339294,
0.08474588394165039,
0.5344291925430298,
0.8851169943809509,
-0.02977834641933441,
0.8428020477294922,
-0.5661898255348206,
0.9980806708335876,
0.5899335145950317,
-0.6525149941444397,
0.7122952342033386,
-0.6220331788063049,
0.18672820925712585,
0.30649399757385254,
0.6616181135177612,
-0.31859973073005676,
-0.35604915022850037,
-0.7400783896446228,
-0.9628934264183044,
0.6385430693626404,
0.3710820972919464,
-0.03991130739450455,
0.26791995763778687,
0.6092269420623779,
0.13338249921798706,
0.1142091155052185,
-0.9491776823997498,
-0.427684485912323,
-0.5087453126907349,
0.00036834433558396995,
0.0365014374256134,
0.1808735579252243,
-0.33391648530960083,
-0.41379716992378235,
0.9914401173591614,
0.10700545459985733,
0.272845059633255,
0.27925601601600647,
0.3556476831436157,
-0.6438755989074707,
-0.19430935382843018,
0.3232910633087158,
0.5407444834709167,
-0.3867117166519165,
-0.4346892535686493,
-0.2614216208457947,
-0.4372398853302002,
0.204655721783638,
0.016104068607091904,
-0.6281954050064087,
0.05175647512078285,
-0.14676207304000854,
0.8705007433891296,
-0.2057165950536728,
-0.406859427690506,
0.6243118643760681,
0.018865514546632767,
-0.32742834091186523,
-0.5054971575737,
0.24089415371418,
0.3555941581726074,
0.7101253271102905,
-0.14119172096252441,
0.44635239243507385,
0.22258315980434418,
-0.5731646418571472,
-0.13542956113815308,
0.5760436058044434,
-0.3173649311065674,
-0.3392047882080078,
1.2510894536972046,
0.052982352674007416,
-0.321921706199646,
0.3597489893436432,
-0.35189276933670044,
-0.011554937809705734,
0.4163590371608734,
0.525550901889801,
1.0125118494033813,
-0.24409407377243042,
0.3508925437927246,
0.6902868747711182,
0.032437268644571304,
-0.2585752010345459,
0.5753584504127502,
0.21759159862995148,
-0.49682381749153137,
-0.02609976753592491,
-0.6722754836082458,
-0.3773694932460785,
0.04042232409119606,
-0.5402320623397827,
0.6959409713745117,
-0.5385946035385132,
-0.30095839500427246,
-0.3316747546195984,
-0.24422691762447357,
-0.8022975921630859,
-0.0037495894357562065,
0.060300055891275406,
1.1043401956558228,
-0.8152429461479187,
0.6652073264122009,
0.7502440214157104,
-0.7404614686965942,
-0.5951125621795654,
0.02502654865384102,
-0.08933574706315994,
-0.5621318221092224,
0.22985371947288513,
0.08620554208755493,
-0.2413705289363861,
0.01009433250874281,
-0.6793628931045532,
-0.8703917264938354,
1.5433999300003052,
0.29607459902763367,
-0.24003936350345612,
-0.18405577540397644,
-0.4184406101703644,
0.4430297911167145,
-0.4614282250404358,
0.4559805393218994,
0.22571685910224915,
0.5761226415634155,
0.5615980625152588,
-0.5377500653266907,
0.08348040282726288,
-0.25644391775131226,
0.16209907829761505,
0.12165078520774841,
-1.0906168222427368,
1.087923526763916,
-0.3156048655509949,
-0.10121019929647446,
0.6124793291091919,
0.6587929129600525,
0.5320589542388916,
0.7702061533927917,
0.5250453948974609,
1.05563223361969,
0.530727744102478,
-0.24814346432685852,
0.7936881184577942,
-0.12106234580278397,
0.5946933627128601,
0.5404014587402344,
-0.1792113035917282,
0.6150662302970886,
0.4179075360298157,
-0.15233631432056427,
0.8914614319801331,
0.6948898434638977,
0.14432293176651,
0.8706474304199219,
0.09161049872636795,
-0.31697025895118713,
0.1762651950120926,
0.24729003012180328,
-0.6377859115600586,
-0.12234543263912201,
0.26300105452537537,
-0.3196460008621216,
-0.36397939920425415,
0.38635459542274475,
0.08627242594957352,
-0.18507391214370728,
-0.46877139806747437,
0.3755590617656708,
0.0844021663069725,
-0.5086816549301147,
0.6337217092514038,
-0.053871650248765945,
0.7885216474533081,
-0.753933310508728,
-0.03112313151359558,
-0.05820843204855919,
0.2167227566242218,
-0.4384525716304779,
-0.8990408182144165,
0.26437437534332275,
0.02896558679640293,
0.08410743623971939,
-0.49613046646118164,
0.7006756663322449,
-0.35010749101638794,
-0.5567770004272461,
0.257447212934494,
0.45583537220954895,
0.3936367332935333,
0.25426289439201355,
-1.126874566078186,
0.15040791034698486,
-0.01019289530813694,
-0.7358196377754211,
0.12039845436811447,
0.5621197819709778,
0.3834162652492523,
0.5022830963134766,
0.6425597667694092,
0.2879214882850647,
0.31114327907562256,
-0.17026911675930023,
0.9484575390815735,
-0.4876721203327179,
-0.5384261608123779,
-0.6351593732833862,
0.9375565648078918,
-0.12200305610895157,
-0.3880503475666046,
0.8075025677680969,
0.6785746812820435,
0.756918728351593,
-0.26558932662010193,
0.7308748960494995,
-0.07995231449604034,
0.4748067557811737,
-0.6917080283164978,
0.9063372015953064,
-0.9585303664207458,
-0.03501458466053009,
-0.43614768981933594,
-0.9945743083953857,
-0.07047393172979355,
1.0815120935440063,
-0.16914159059524536,
0.24022004008293152,
0.4844624698162079,
0.9299259185791016,
-0.44565802812576294,
-0.10384039580821991,
0.04549835994839668,
0.27860143780708313,
0.3535847067832947,
0.21538282930850983,
0.9000277519226074,
-0.33880722522735596,
0.2824750542640686,
-0.46246305108070374,
-0.5121818780899048,
-0.19940456748008728,
-1.030696153640747,
-0.9133414626121521,
-0.585223913192749,
-0.655571699142456,
-0.9750518202781677,
-0.09010612219572067,
0.7000221610069275,
0.9204562306404114,
-0.5364353060722351,
-0.08375421166419983,
-0.2845192849636078,
-0.040788255631923676,
0.02175906114280224,
-0.30243417620658875,
0.23982246220111847,
0.16768266260623932,
-1.0986146926879883,
0.08640353381633759,
0.28039512038230896,
0.5078125596046448,
-0.471591591835022,
-0.3575524687767029,
-0.20299075543880463,
0.006952526513487101,
0.4066545367240906,
0.4118591248989105,
-0.4848058223724365,
-0.12705115973949432,
-0.27108895778656006,
0.21410144865512848,
0.13481737673282623,
0.5146372318267822,
-0.6303454041481018,
0.4168660044670105,
0.6880428791046143,
0.14054544270038605,
0.8182536363601685,
0.006254291627556086,
0.10648500919342041,
-0.3217979967594147,
0.3283173739910126,
0.12301480770111084,
0.6271179914474487,
-0.022481102496385574,
-0.3108685612678528,
0.6337637305259705,
0.4978371560573578,
-1.0146732330322266,
-0.7197737693786621,
0.26078274846076965,
-1.4215422868728638,
-0.28857433795928955,
1.1079541444778442,
-0.2842898666858673,
-0.19611385464668274,
-0.004186134319752455,
-0.4415528178215027,
0.21026457846164703,
-0.5837130546569824,
0.5107945203781128,
0.5932896137237549,
-0.43377798795700073,
-0.24222850799560547,
-0.7626420259475708,
0.18780341744422913,
-0.14358726143836975,
-0.6300561428070068,
-0.380636602640152,
0.809141218662262,
0.6163936853408813,
0.478838711977005,
0.9852863550186157,
-0.24495506286621094,
0.004540662281215191,
-0.15856105089187622,
-0.04193055257201195,
0.0014365294482558966,
-0.06318406015634537,
-0.3210131824016571,
0.14119300246238708,
-0.0418580062687397,
-0.41472864151000977
] |
sentence-transformers/distiluse-base-multilingual-cased-v1 | sentence-transformers | "2023-11-02T09:17:53Z" | 160,818 | 59 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"tf",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"multilingual",
"ar",
"zh",
"nl",
"en",
"fr",
"de",
"it",
"ko",
"pl",
"pt",
"ru",
"es",
"tr",
"arxiv:1908.10084",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
language:
- multilingual
- ar
- zh
- nl
- en
- fr
- de
- it
- ko
- pl
- pt
- ru
- es
- tr
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# sentence-transformers/distiluse-base-multilingual-cased-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v1)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` | [
-0.2552926242351532,
-0.8192906975746155,
0.37849298119544983,
0.4573468565940857,
-0.3252226710319519,
-0.2528989613056183,
-0.26369503140449524,
0.12793534994125366,
0.21335482597351074,
0.3741210997104645,
-0.5754457116127014,
-0.5201753973960876,
-0.6635319590568542,
0.20360276103019714,
-0.5240479707717896,
0.8590395450592041,
-0.11501011252403259,
0.12175010144710541,
-0.32994163036346436,
-0.20560066401958466,
-0.28485316038131714,
-0.6481108665466309,
-0.19423598051071167,
-0.22495442628860474,
0.26694250106811523,
0.1671077162027359,
0.451470285654068,
0.19279032945632935,
0.40383967757225037,
0.45472127199172974,
-0.22720497846603394,
0.022942187264561653,
-0.36063191294670105,
0.05568978935480118,
0.0074658566154539585,
-0.3936270773410797,
-0.13315525650978088,
0.052182525396347046,
0.4631071090698242,
0.6336787343025208,
-0.2540847659111023,
0.04070582240819931,
-0.05961306020617485,
0.4123813211917877,
-0.3017558455467224,
0.43625789880752563,
-0.7011832594871521,
0.2081158459186554,
-0.002827415009960532,
-0.007759435102343559,
-0.6741808652877808,
-0.24962875247001648,
0.34078249335289,
-0.39123624563217163,
0.2765309512615204,
0.1773976981639862,
1.0998831987380981,
0.40338170528411865,
-0.480511337518692,
-0.2934435307979584,
-0.4652925729751587,
0.8386226892471313,
-0.8421832919120789,
0.24469895660877228,
0.13464052975177765,
0.1282956302165985,
-0.17736873030662537,
-0.9991385340690613,
-0.743430495262146,
-0.16936640441417694,
-0.3829575479030609,
0.23702780902385712,
-0.4328976273536682,
0.006714474409818649,
0.2873382568359375,
0.3834671378135681,
-0.6983072757720947,
-0.06336154043674469,
-0.4766361117362976,
-0.21242016553878784,
0.417877197265625,
-0.025983816012740135,
0.33105772733688354,
-0.4661284387111664,
-0.5324113368988037,
-0.33337831497192383,
-0.2551617920398712,
-0.03615400567650795,
0.21472105383872986,
0.3077751696109772,
-0.24324963986873627,
0.9190162420272827,
-0.07867225259542465,
0.5307396650314331,
0.02199750766158104,
0.09207756817340851,
0.6844651103019714,
-0.5131346583366394,
-0.0988360121846199,
0.1458815038204193,
1.0513213872909546,
0.27731215953826904,
0.3271182179450989,
-0.08864731341600418,
-0.11644995212554932,
0.11324139684438705,
0.40368613600730896,
-1.0033551454544067,
-0.2419017106294632,
0.20682978630065918,
-0.4339923858642578,
-0.21799691021442413,
0.25847670435905457,
-0.6833140850067139,
-0.020313765853643417,
-0.03628167510032654,
0.5444236993789673,
-0.656860888004303,
0.02415940724313259,
0.41296806931495667,
-0.34277746081352234,
0.17000916600227356,
-0.35740604996681213,
-0.7714710235595703,
0.2885865271091461,
0.36188846826553345,
0.9475095272064209,
0.09417454898357391,
-0.4315071403980255,
-0.2796591520309448,
-0.23008733987808228,
0.0775822103023529,
0.7185236215591431,
-0.2540934681892395,
-0.18415522575378418,
0.24671292304992676,
0.27939480543136597,
-0.29318469762802124,
-0.4075741469860077,
0.8532895445823669,
-0.3311668336391449,
0.518496572971344,
0.07544920593500137,
-0.7725278735160828,
-0.3019290566444397,
0.10040614753961563,
-0.7277300357818604,
1.104419231414795,
0.18093465268611908,
-0.8813620805740356,
0.23363885283470154,
-0.6650296449661255,
-0.5048354268074036,
-0.07880673557519913,
0.06453503668308258,
-0.7719563245773315,
0.21117201447486877,
0.44427400827407837,
0.7401002049446106,
0.047192271798849106,
0.3649921119213104,
-0.3234483301639557,
-0.32406923174858093,
0.4400438666343689,
-0.44420647621154785,
1.1039103269577026,
0.13789521157741547,
-0.20737171173095703,
0.09586174786090851,
-0.5573374032974243,
-0.14523540437221527,
0.24138401448726654,
-0.27695977687835693,
-0.45021238923072815,
0.06852118670940399,
0.2477504462003708,
0.17479778826236725,
0.3535167872905731,
-0.7139528393745422,
0.3742671012878418,
-0.4288811683654785,
0.8261682391166687,
0.45468929409980774,
0.009080510586500168,
0.5702335834503174,
-0.16300055384635925,
0.30689504742622375,
0.45158058404922485,
0.03846115991473198,
-0.25413069128990173,
-0.41969501972198486,
-0.8777261972427368,
-0.3769930303096771,
0.36770474910736084,
0.6212437152862549,
-0.8291047811508179,
1.027983546257019,
-0.5616293549537659,
-0.5279778838157654,
-0.8024797439575195,
-0.11314527690410614,
0.0718224048614502,
0.2988395392894745,
0.6100068688392639,
0.001267520827241242,
-0.679101824760437,
-1.0555261373519897,
-0.07201541215181351,
-0.07558459043502808,
0.1651092767715454,
0.03702666237950325,
0.7324660420417786,
-0.4756734371185303,
1.0862386226654053,
-0.6523144245147705,
-0.34845682978630066,
-0.48052337765693665,
0.27833375334739685,
0.33893126249313354,
0.37553462386131287,
0.6531476974487305,
-0.8654376864433289,
-0.5024541616439819,
-0.3805423080921173,
-0.5864740014076233,
-0.10884789377450943,
-0.18872497975826263,
-0.05688716098666191,
0.1868475079536438,
0.5059378147125244,
-0.7492079734802246,
0.3251003623008728,
0.5980988144874573,
-0.5210878849029541,
0.42302629351615906,
-0.27549052238464355,
-0.10339328646659851,
-1.5153193473815918,
-0.06370774656534195,
0.13799627125263214,
-0.2074633538722992,
-0.5448058247566223,
0.009220195934176445,
0.237481951713562,
0.04234122857451439,
-0.46497485041618347,
0.28086787462234497,
-0.42548704147338867,
0.1385013312101364,
0.13223880529403687,
0.2797430455684662,
0.011026601307094097,
0.7691933512687683,
-0.10697995126247406,
0.7699179649353027,
0.5243455171585083,
-0.4074898958206177,
0.36930155754089355,
0.6701498627662659,
-0.6830626130104065,
0.3299798369407654,
-0.8789670467376709,
-0.19640414416790009,
-0.10357636958360672,
0.32457730174064636,
-1.1045867204666138,
0.18545620143413544,
0.08407821506261826,
-0.4120182991027832,
0.08216214925050735,
-0.0004283738089725375,
-0.7611483931541443,
-0.5528368353843689,
-0.38778334856033325,
0.14257527887821198,
0.49221494793891907,
-0.5817511677742004,
0.5050638914108276,
0.26607877016067505,
-0.24010199308395386,
-0.5232509970664978,
-1.1330629587173462,
-0.03116115927696228,
-0.3340529501438141,
-0.6629762649536133,
0.6585113406181335,
-0.16801850497722626,
0.010763656347990036,
0.2361414134502411,
0.16822028160095215,
-0.15404574573040009,
0.02561265230178833,
0.053425442427396774,
0.24832887947559357,
-0.1327512115240097,
0.23841632902622223,
0.3662385642528534,
-0.08455608040094376,
-0.06071525812149048,
-0.18744026124477386,
0.7764039039611816,
-0.2770044803619385,
-0.2396165430545807,
-0.26239311695098877,
0.3123340606689453,
0.5322036743164062,
-0.2970326840877533,
1.0328242778778076,
0.8824878334999084,
-0.30547863245010376,
-0.17768292129039764,
-0.494004487991333,
-0.2783346474170685,
-0.47704625129699707,
0.728191077709198,
-0.3057812452316284,
-1.0817999839782715,
0.3696695864200592,
-0.018869291990995407,
-0.08346344530582428,
0.6630207300186157,
0.6232210993766785,
-0.007673913612961769,
0.7827202677726746,
0.6604194641113281,
-0.33034074306488037,
0.5013768076896667,
-0.4912137985229492,
0.5023358464241028,
-0.8356671929359436,
-0.050073448568582535,
-0.4563118815422058,
-0.25509878993034363,
-0.772984504699707,
-0.38329562544822693,
0.28298914432525635,
0.09892453253269196,
-0.18528665602207184,
0.7148702144622803,
-0.5920186638832092,
0.22308439016342163,
0.5384315848350525,
-0.029581062495708466,
0.06296836584806442,
0.24013827741146088,
-0.47099635004997253,
-0.11924530565738678,
-0.748410701751709,
-0.6177270412445068,
0.809836745262146,
0.3401491940021515,
0.5131233930587769,
0.09071505069732666,
0.7050100564956665,
0.06851649284362793,
-0.1747930496931076,
-0.8858779072761536,
0.5381364822387695,
-0.4750104248523712,
-0.4567570686340332,
-0.28235018253326416,
-0.36557114124298096,
-1.0502911806106567,
0.45750692486763,
-0.145297110080719,
-0.6904330849647522,
0.11068203300237656,
-0.42129677534103394,
-0.32201728224754333,
0.2137170433998108,
-0.8734652400016785,
1.029076099395752,
-0.17984241247177124,
0.11390391737222672,
-0.15900912880897522,
-0.538022518157959,
0.1164698675274849,
0.13838154077529907,
0.08085893094539642,
0.026569349691271782,
0.03212329372763634,
0.652360200881958,
-0.37326523661613464,
0.9011797308921814,
-0.047396495938301086,
0.08937644958496094,
0.2833153009414673,
-0.22295179963111877,
0.2382477968931198,
-0.01811927929520607,
-0.1278698593378067,
0.2555818557739258,
0.05412295088171959,
-0.2444618195295334,
-0.5090781450271606,
0.7388526797294617,
-0.8725544810295105,
-0.35876864194869995,
-0.5835749506950378,
-0.5396007895469666,
0.108014315366745,
0.23616082966327667,
0.25147268176078796,
0.47221997380256653,
-0.3101208806037903,
0.587893545627594,
0.5115104913711548,
-0.39100855588912964,
0.6264654397964478,
0.3929758667945862,
-0.06601236015558243,
-0.3238113224506378,
0.5926716327667236,
0.061045147478580475,
-0.014674597419798374,
0.647218644618988,
0.19494076073169708,
-0.5001250505447388,
-0.2669502794742584,
-0.33652353286743164,
0.23896464705467224,
-0.538681149482727,
-0.10423573106527328,
-0.8499606847763062,
-0.5029086470603943,
-0.5033751130104065,
0.06039414182305336,
-0.19504240155220032,
-0.530673086643219,
-0.5065668225288391,
-0.39498233795166016,
0.5299109816551208,
0.49845728278160095,
0.0759478285908699,
0.3395155966281891,
-0.6827131509780884,
0.23039807379245758,
0.13062384724617004,
0.1746884435415268,
-0.17749318480491638,
-0.6219898462295532,
-0.2297697812318802,
0.13018353283405304,
-0.39216744899749756,
-0.9529424905776978,
0.6711909770965576,
0.23808063566684723,
0.6877925992012024,
0.18907466530799866,
0.12158292531967163,
0.6532447338104248,
-0.7139772772789001,
0.9627532362937927,
0.09885048866271973,
-0.9659703373908997,
0.4371088445186615,
-0.0028491264674812555,
0.3446453809738159,
0.5908658504486084,
0.4920193552970886,
-0.5678304433822632,
-0.2936195433139801,
-0.5863634347915649,
-1.1292190551757812,
0.6618427038192749,
0.3643209934234619,
0.45580151677131653,
-0.3086842894554138,
0.2896987795829773,
-0.05906809866428375,
0.1930023580789566,
-1.0891454219818115,
-0.48372870683670044,
-0.35742610692977905,
-0.5299750566482544,
-0.3193615972995758,
-0.3822243809700012,
0.18383139371871948,
-0.39777639508247375,
0.7522563338279724,
0.014759035781025887,
0.522925078868866,
0.30125629901885986,
-0.45276516675949097,
0.44131597876548767,
0.43314993381500244,
0.5488682389259338,
0.06766090542078018,
-0.10359864681959152,
0.20432990789413452,
0.22915078699588776,
-0.33230966329574585,
0.09242841601371765,
0.4979383945465088,
-0.07524185627698898,
0.2654568552970886,
0.3516060411930084,
0.9668729901313782,
0.3633520007133484,
-0.4699820280075073,
0.7684224843978882,
-0.11672946810722351,
-0.27539294958114624,
-0.5262718796730042,
-0.3014836013317108,
0.2445673793554306,
0.3091515898704529,
0.3227795660495758,
-0.026669587939977646,
0.13959012925624847,
-0.47810208797454834,
0.28605714440345764,
0.2211364358663559,
-0.5009452104568481,
-0.14710432291030884,
0.4870188534259796,
0.050416819751262665,
-0.1930048167705536,
0.9389432668685913,
-0.45893344283103943,
-0.8310071229934692,
0.4579620063304901,
0.548983097076416,
1.0056376457214355,
0.10619963705539703,
0.407391756772995,
0.5163878202438354,
0.45149922370910645,
-0.2012910544872284,
0.18659526109695435,
0.10655268281698227,
-0.9231909513473511,
-0.3536818325519562,
-0.6663318276405334,
0.14880695939064026,
0.05165877565741539,
-0.6398738622665405,
0.2831352949142456,
0.03146141767501831,
-0.15928590297698975,
-0.08011742681264877,
-0.029583433642983437,
-0.6379097700119019,
-0.2694244682788849,
-0.033169835805892944,
0.9101888537406921,
-0.9147188067436218,
0.8926955461502075,
0.7472633719444275,
-0.7933222055435181,
-0.6233992576599121,
-0.11138156056404114,
-0.29608356952667236,
-0.5461613535881042,
0.5361641049385071,
0.31190791726112366,
0.285479873418808,
-0.0278085358440876,
-0.41385960578918457,
-0.7167304158210754,
1.3230422735214233,
0.3432934582233429,
-0.6188520193099976,
0.04092605412006378,
0.33962973952293396,
0.6779645681381226,
-0.3353329300880432,
0.3589625954627991,
0.39555081725120544,
0.4264843463897705,
-0.1527123898267746,
-0.7934014201164246,
0.14513638615608215,
-0.38368239998817444,
0.29968714714050293,
-0.04247250780463219,
-0.54234379529953,
1.0260344743728638,
0.005501900799572468,
-0.16985054314136505,
0.29130205512046814,
0.6855529546737671,
0.2664901614189148,
-0.20767229795455933,
0.45065832138061523,
0.887758195400238,
0.5871850848197937,
-0.2780511677265167,
0.9298362731933594,
-0.35289040207862854,
0.6753992438316345,
1.004288673400879,
-0.14003252983093262,
1.0417581796646118,
0.5894958972930908,
-0.17997369170188904,
0.9431626200675964,
0.4476473331451416,
-0.3557252287864685,
0.7682679295539856,
0.3330172896385193,
-0.017721541225910187,
-0.03809751197695732,
0.18537062406539917,
-0.1993502676486969,
0.4416779577732086,
0.21672920882701874,
-0.4750833213329315,
-0.10611969977617264,
-0.012777370400726795,
0.040089622139930725,
0.14483092725276947,
0.19266624748706818,
0.6350446343421936,
0.1326497495174408,
-0.517174243927002,
0.31390246748924255,
0.20445340871810913,
1.0238956212997437,
-0.5311927199363708,
0.04047815501689911,
-0.13479003310203552,
0.4132044315338135,
0.035724423825740814,
-0.6973254084587097,
0.30020448565483093,
-0.1469310075044632,
-0.24096298217773438,
-0.32723763585090637,
0.568661630153656,
-0.6815621256828308,
-0.7683118581771851,
0.4015921652317047,
0.552620530128479,
0.0107108224183321,
-0.013539443723857403,
-0.9053534269332886,
-0.1112913265824318,
0.02337617613375187,
-0.33870282769203186,
0.1797867864370346,
0.5480483174324036,
0.1928500384092331,
0.5656605362892151,
0.4215506613254547,
-0.13725489377975464,
0.16861222684383392,
0.27492669224739075,
0.7367168664932251,
-0.5779089331626892,
-0.5339471101760864,
-0.9003235101699829,
0.7248414754867554,
-0.2536824941635132,
-0.3385768532752991,
0.8099464178085327,
0.7554932236671448,
0.9286581873893738,
-0.3442530035972595,
0.7279462814331055,
-0.16580331325531006,
0.22110296785831451,
-0.465638130903244,
0.8367441296577454,
-0.53547602891922,
-0.029757969081401825,
-0.24343301355838776,
-0.9603185057640076,
-0.22245697677135468,
1.0248804092407227,
-0.23541218042373657,
-0.0006793419015593827,
0.9548539519309998,
0.891268789768219,
-0.21621793508529663,
-0.14791938662528992,
0.10630924254655838,
0.5502284169197083,
0.2719115614891052,
0.3846544325351715,
0.5214703679084778,
-0.7404548525810242,
0.6525805592536926,
-0.4803948700428009,
0.0017948854947462678,
-0.177658349275589,
-0.89496248960495,
-0.9623879790306091,
-1.035637617111206,
-0.43732714653015137,
-0.12530739605426788,
-0.17081595957279205,
0.8527482748031616,
0.5753495693206787,
-0.8031845092773438,
-0.2063547819852829,
-0.20635397732257843,
-0.09694331884384155,
-0.24069789052009583,
-0.2986753284931183,
0.3504381477832794,
-0.4568551480770111,
-0.8026506304740906,
0.28319230675697327,
0.004637652542442083,
0.019414514303207397,
-0.458686500787735,
0.0625709667801857,
-0.61927330493927,
0.04061590135097504,
0.7625811696052551,
-0.3390161395072937,
-0.8285452723503113,
-0.2098034918308258,
0.017455490306019783,
-0.3454146683216095,
-0.11265204101800919,
0.47376638650894165,
-0.6760931015014648,
0.3090638518333435,
0.5024360418319702,
0.4438197612762451,
0.6970160603523254,
-0.3104148507118225,
0.4550628066062927,
-0.9043245911598206,
0.3751407861709595,
-0.006897280924022198,
0.9067872762680054,
0.3920251131057739,
-0.13483358919620514,
0.5522869229316711,
0.10561724007129669,
-0.4048570692539215,
-0.6201850771903992,
-0.08074147254228592,
-1.2978280782699585,
-0.3880605399608612,
1.2977983951568604,
-0.2852948009967804,
-0.22442542016506195,
0.20522837340831757,
-0.44224992394447327,
0.45394080877304077,
-0.39933153986930847,
0.7830008864402771,
0.932545006275177,
0.3523775637149811,
-0.11594037711620331,
-0.3065061569213867,
0.16580496728420258,
0.38986656069755554,
-0.5928710699081421,
-0.2275746613740921,
0.3313721716403961,
0.25627660751342773,
0.359286367893219,
0.19190523028373718,
-0.18814781308174133,
-0.12503986060619354,
0.01205228827893734,
0.28814080357551575,
-0.08783268183469772,
-0.023690592497587204,
-0.4874029755592346,
0.09611304104328156,
-0.3925873041152954,
-0.1788754165172577
] |
microsoft/trocr-large-stage1 | microsoft | "2023-03-31T18:38:51Z" | 160,326 | 11 | transformers | [
"transformers",
"pytorch",
"vision-encoder-decoder",
"trocr",
"image-to-text",
"arxiv:2109.10282",
"endpoints_compatible",
"has_space",
"region:us"
] | image-to-text | "2022-03-02T23:29:05Z" | ---
tags:
- trocr
- image-to-text
---
# TrOCR (large-sized model, pre-trained only)
TrOCR pre-trained only model. It was introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr).
Disclaimer: The team releasing TrOCR did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The TrOCR model is an encoder-decoder model, consisting of an image Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized from the weights of BEiT, while the text decoder was initialized from the weights of RoBERTa.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Next, the Transformer text decoder autoregressively generates tokens.
## Intended uses & limitations
You can use the raw model for optical character recognition (OCR) on single text-line images. See the [model hub](https://huggingface.co/models?search=microsoft/trocr) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model in PyTorch:
```python
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
# load image from the IAM database
url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg'
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-stage1')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-stage1')
# training
pixel_values = processor(image, return_tensors="pt").pixel_values # Batch size 1
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]])
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
```
### BibTeX entry and citation info
```bibtex
@misc{li2021trocr,
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
year={2021},
eprint={2109.10282},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
-0.27391085028648376,
-0.34356361627578735,
0.0869426354765892,
-0.2819358706474304,
-0.383599191904068,
-0.05562114343047142,
-0.02240551821887493,
-0.7250643372535706,
0.1580779254436493,
0.5721212029457092,
-0.41348209977149963,
-0.32102444767951965,
-0.6716399788856506,
0.1601586639881134,
-0.36212408542633057,
1.1176166534423828,
-0.18302342295646667,
0.005446477793157101,
0.17021344602108002,
-0.30587831139564514,
-0.14860478043556213,
-0.6007375717163086,
-0.6291443705558777,
-0.29474738240242004,
0.4253338575363159,
0.21378237009048462,
0.6261987090110779,
0.5390783548355103,
0.883009135723114,
0.40807783603668213,
-0.25676700472831726,
0.02024620957672596,
-0.38998469710350037,
-0.40419360995292664,
0.28491929173469543,
-0.4451320171356201,
-0.5571139454841614,
0.09813488274812698,
0.6410090923309326,
0.1376238465309143,
-0.059814438223838806,
0.1317702680826187,
0.059141408652067184,
0.37436091899871826,
-0.3346514105796814,
-0.08992090076208115,
-0.4303828477859497,
0.456927627325058,
-0.0017504639690741897,
-0.004962173290550709,
-0.49478206038475037,
-0.28197672963142395,
0.2561999559402466,
-0.6839743852615356,
0.596764326095581,
0.018563831225037575,
1.2317965030670166,
-0.0911724716424942,
-0.3788544237613678,
-0.35856208205223083,
-0.7865434288978577,
0.661810576915741,
-0.565110445022583,
0.47054725885391235,
-0.10480771958827972,
0.2488424926996231,
0.13638310134410858,
-1.1053447723388672,
-0.870189905166626,
-0.4521852433681488,
-0.2629169225692749,
0.014474805444478989,
-0.3260802924633026,
0.309887170791626,
0.5278474688529968,
0.40286707878112793,
-0.6957138776779175,
-0.135201558470726,
-0.8064626455307007,
-0.39779385924339294,
0.30080646276474,
-0.15124277770519257,
0.2528061866760254,
0.09528011828660965,
-0.5899629592895508,
-0.4834672510623932,
-0.17720119655132294,
-0.08889444172382355,
-0.04198077693581581,
-0.04117799922823906,
-0.3655424416065216,
0.67496657371521,
0.2704782485961914,
0.7803975343704224,
0.3180520832538605,
-0.2600324749946594,
0.6297785043716431,
-0.021757712587714195,
-0.18047204613685608,
0.13569262623786926,
1.1067571640014648,
0.2115384042263031,
0.3729217052459717,
-0.1526472270488739,
-0.33914461731910706,
0.30127814412117004,
0.13326404988765717,
-0.9361652135848999,
-0.05919400975108147,
-0.0001237295218743384,
-0.49075978994369507,
-0.2841664254665375,
0.18917079269886017,
-0.8373755812644958,
-0.20082876086235046,
-0.0416782908141613,
0.6047636866569519,
-0.3679553270339966,
-0.11136074364185333,
-0.11357681453227997,
-0.11894747614860535,
0.29741787910461426,
0.23657238483428955,
-0.45729905366897583,
0.07057247310876846,
0.15230225026607513,
1.1045544147491455,
-0.12931746244430542,
-0.4342896044254303,
-0.4439525008201599,
-0.07779505103826523,
-0.2966913878917694,
0.47772231698036194,
-0.2596414387226105,
-0.2345043569803238,
-0.009082965552806854,
0.21562016010284424,
-0.03602536767721176,
-0.5336208939552307,
0.4878457486629486,
-0.6538833379745483,
0.21802014112472534,
0.11513678729534149,
-0.05928274989128113,
-0.05026022717356682,
0.32225286960601807,
-0.8702525496482849,
1.1193888187408447,
0.23896843194961548,
-0.8523880839347839,
0.2622852325439453,
-0.73533034324646,
-0.21772506833076477,
0.05842156708240509,
0.11049757897853851,
-0.6897431015968323,
0.15642009675502777,
0.027715079486370087,
0.12248647212982178,
-0.16979750990867615,
0.054641999304294586,
-0.09779774397611618,
-0.39631134271621704,
0.16991060972213745,
-0.2036803960800171,
0.7316300272941589,
0.31766632199287415,
-0.42507699131965637,
0.07753679901361465,
-0.9066369533538818,
0.15178664028644562,
0.2463601678609848,
-0.2329627275466919,
0.09834989905357361,
-0.3551519513130188,
0.3519130051136017,
0.5525262951850891,
0.4041525423526764,
-0.6681504249572754,
0.25417837500572205,
-0.24401092529296875,
0.8215863108634949,
0.4801313579082489,
-0.373095840215683,
0.4207094609737396,
-0.1199498325586319,
0.47303465008735657,
0.33080822229385376,
0.17726843059062958,
-0.09268084168434143,
-0.24888263642787933,
-0.9475739002227783,
-0.14709167182445526,
0.1896166205406189,
0.5849584341049194,
-1.059981107711792,
0.37753117084503174,
-0.34333333373069763,
-0.5988738536834717,
-0.35786008834838867,
-0.07354901731014252,
0.564900279045105,
0.698146641254425,
0.3544207811355591,
-0.5196042656898499,
-0.5554263591766357,
-0.5893966555595398,
0.03205658495426178,
-0.2475827932357788,
0.029599031433463097,
0.16802068054676056,
0.7949963212013245,
-0.2579183280467987,
0.8331908583641052,
-0.37361422181129456,
-0.6141268610954285,
-0.40045538544654846,
0.14922060072422028,
0.22965611517429352,
0.7140867710113525,
0.4014536738395691,
-0.7284185290336609,
-0.3991200625896454,
-0.01290383655577898,
-0.7704134583473206,
0.1907941848039627,
-0.0011582340812310576,
-0.14945459365844727,
0.4145214557647705,
0.3640108108520508,
-0.8378236889839172,
0.7609013915061951,
0.565924346446991,
-0.38133418560028076,
0.5974076986312866,
-0.5598410367965698,
0.09786351025104523,
-1.0308310985565186,
0.27571913599967957,
0.033787552267313004,
-0.2668069899082184,
-0.8404465913772583,
0.21141231060028076,
0.1486349105834961,
-0.38135001063346863,
-0.5205579400062561,
0.6565139889717102,
-0.7020971775054932,
-0.1177990585565567,
-0.10583410412073135,
0.16212131083011627,
0.12849412858486176,
0.6904794573783875,
0.5017326474189758,
0.7444391250610352,
0.2966291606426239,
-0.51605623960495,
0.4085460901260376,
0.41880446672439575,
-0.3898628056049347,
0.4445120394229889,
-1.135654091835022,
0.4850890636444092,
0.008972838521003723,
0.10353962332010269,
-0.7507270574569702,
0.08502674847841263,
0.34595972299575806,
-0.4665924608707428,
0.41085872054100037,
-0.0686984434723854,
-0.5073943138122559,
-0.948291003704071,
0.010543805547058582,
0.5870274305343628,
0.5363602042198181,
-0.6532883048057556,
0.9098238348960876,
0.09659077972173691,
0.44663912057876587,
-0.5210824012756348,
-1.1307618618011475,
-0.10254514217376709,
-0.11852339655160904,
-0.71495121717453,
0.46485981345176697,
-0.18640238046646118,
0.3095282018184662,
-0.14772465825080872,
-0.00025518127949908376,
-0.2931413948535919,
-0.44003525376319885,
0.05960341915488243,
0.5076475143432617,
-0.29607924818992615,
-0.15517520904541016,
-0.5828396677970886,
-0.17940345406532288,
-0.28109240531921387,
-0.30309435725212097,
0.7208895683288574,
-0.2765468657016754,
-0.02154085785150528,
-0.6498088240623474,
0.17946118116378784,
0.7224185466766357,
-0.5942610502243042,
0.7558538317680359,
0.7761961817741394,
-0.35511305928230286,
0.08827314525842667,
-0.6041624546051025,
-0.17843511700630188,
-0.5136216282844543,
0.5366418361663818,
-0.32281434535980225,
-0.6631232500076294,
0.7547065615653992,
0.3919628858566284,
-0.14969833195209503,
0.3978537619113922,
0.3790353834629059,
0.12066084146499634,
0.9796369671821594,
0.7853137254714966,
0.10036060214042664,
0.8393563032150269,
-0.6189993023872375,
0.255148321390152,
-0.9227048754692078,
-0.38800156116485596,
-0.3692373037338257,
-0.38868623971939087,
-0.5533240437507629,
-0.27834704518318176,
0.38755175471305847,
0.03457667678594589,
-0.43124210834503174,
0.5379183888435364,
-1.024520993232727,
0.22363735735416412,
0.6902837753295898,
0.5015599131584167,
0.07484953105449677,
0.18519271910190582,
-0.1870591938495636,
0.11470847576856613,
-0.5086103081703186,
-0.382394015789032,
0.7435754537582397,
0.2528843879699707,
0.816362202167511,
-0.28041738271713257,
0.5391931533813477,
0.13330335915088654,
-0.013837447389960289,
-0.8169506788253784,
0.6326524615287781,
-0.10635586082935333,
-0.6644188761711121,
-0.0024732293095439672,
-0.4781268835067749,
-0.9577187895774841,
0.03367775306105614,
-0.4158248007297516,
-0.8069877624511719,
0.6132172346115112,
0.423132985830307,
-0.10983055084943771,
0.6188257932662964,
-0.6799126863479614,
1.0282222032546997,
-0.43183812499046326,
-0.25253450870513916,
0.2640313506126404,
-0.8174778819084167,
0.10932333022356033,
0.12202145904302597,
-0.16668584942817688,
0.48170700669288635,
0.21028907597064972,
1.068035364151001,
-0.7056300640106201,
0.6518048048019409,
-0.2241559624671936,
0.07409481704235077,
0.4865654408931732,
-0.05898936092853546,
0.6694982647895813,
-0.5121273994445801,
-0.04712354764342308,
0.5455542802810669,
0.11629510670900345,
-0.270267516374588,
-0.3378390669822693,
0.2543261647224426,
-1.0378626585006714,
-0.3047841191291809,
-0.8374391198158264,
-0.5994293093681335,
0.2273096889257431,
0.49429675936698914,
0.8241201043128967,
0.6010450720787048,
-0.03526917099952698,
0.024598300457000732,
0.6401195526123047,
-0.1711878478527069,
0.5327653288841248,
0.17915858328342438,
-0.16033795475959778,
-0.6339892745018005,
0.7724398970603943,
0.14008870720863342,
0.39268648624420166,
0.4213930070400238,
0.1483432799577713,
-0.16540351510047913,
-0.37366020679473877,
-0.25819408893585205,
0.521169900894165,
-0.598678708076477,
-0.26299166679382324,
-0.4510500431060791,
-0.43038421869277954,
-0.3523404598236084,
-0.18415643274784088,
-0.29754140973091125,
-0.1367889791727066,
-0.5823984146118164,
0.1877819150686264,
0.33897411823272705,
0.6173145771026611,
0.07907754927873611,
0.894029974937439,
-0.8745176196098328,
0.37831515073776245,
0.1773439347743988,
0.2719498574733734,
0.034960824996232986,
-0.6613954901695251,
-0.22997748851776123,
0.11991512030363083,
-0.407824844121933,
-0.8033768534660339,
0.7579563856124878,
0.3687877953052521,
0.30068957805633545,
0.633510410785675,
-0.033557597547769547,
0.7766759395599365,
-0.5879761576652527,
0.6768820285797119,
0.6325193047523499,
-0.9847172498703003,
0.4100782573223114,
0.13479432463645935,
0.2422376573085785,
0.30399927496910095,
0.21596331894397736,
-0.5041345357894897,
0.03097081370651722,
-0.5817949771881104,
-0.4729679226875305,
1.1597528457641602,
0.04348369687795639,
0.029331451281905174,
0.2875484824180603,
0.42858776450157166,
-0.29447269439697266,
0.28080281615257263,
-1.0891436338424683,
-0.2211376577615738,
-0.42647838592529297,
-0.42848923802375793,
-0.2174316793680191,
-0.3442399203777313,
0.06496645510196686,
-0.29219529032707214,
0.4237234890460968,
0.013649514876306057,
0.8611899614334106,
0.5175046324729919,
-0.5428990721702576,
-0.08636270463466644,
-0.12116401642560959,
0.5933020114898682,
0.5118587017059326,
-0.2030230164527893,
0.1481119692325592,
-0.02596978098154068,
-1.0857268571853638,
0.022802531719207764,
0.09028639644384384,
-0.22152090072631836,
0.09730452299118042,
0.5003637075424194,
1.1738122701644897,
-0.13878001272678375,
-0.4319290816783905,
0.6567784547805786,
-0.008704505860805511,
-0.2598418593406677,
-0.3023206293582916,
-0.12340714037418365,
-0.3330416679382324,
0.27393853664398193,
0.5263476967811584,
0.13421502709388733,
-0.15405037999153137,
-0.5549774765968323,
0.04611940309405327,
0.5346978902816772,
-0.6245458126068115,
-0.37325340509414673,
0.6900835633277893,
-0.11446291208267212,
-0.45122891664505005,
0.8947005867958069,
-0.012528990395367146,
-0.9344137907028198,
0.7758665084838867,
0.679593563079834,
0.7016048431396484,
-0.3592836856842041,
0.19419506192207336,
0.5407904386520386,
0.4458197057247162,
-0.08166036754846573,
0.15713024139404297,
-0.048067111521959305,
-0.8090687394142151,
0.171212837100029,
-0.5909633636474609,
-0.10538017749786377,
0.04015320912003517,
-0.6835041046142578,
0.5358064770698547,
-0.553741455078125,
-0.37734776735305786,
-0.14593744277954102,
0.2513778805732727,
-0.7779547572135925,
0.4760553240776062,
0.10749581456184387,
0.9823660850524902,
-0.5607215166091919,
0.8236785531044006,
0.584966778755188,
-0.47673794627189636,
-0.8055394887924194,
-0.22951842844486237,
-0.28434714674949646,
-1.152061939239502,
0.716453492641449,
0.29906007647514343,
0.03950631618499756,
0.1745527684688568,
-0.7071690559387207,
-0.7407326698303223,
1.1893302202224731,
0.31196320056915283,
-0.6161670088768005,
-0.5409672260284424,
0.29738596081733704,
0.5815063118934631,
-0.42610591650009155,
0.7187984585762024,
0.21324460208415985,
0.24895191192626953,
0.693263590335846,
-0.835300624370575,
0.057764410972595215,
-0.2688784599304199,
0.25582605600357056,
0.14572107791900635,
-0.6505714058876038,
1.0852246284484863,
-0.526702880859375,
-0.210081085562706,
0.36924630403518677,
0.6953262686729431,
0.25940385460853577,
0.20926067233085632,
0.474435418844223,
0.6303955912590027,
0.6245187520980835,
-0.1871163249015808,
0.8864579796791077,
-0.37372153997421265,
0.5433609485626221,
0.7509667873382568,
-0.0221701767295599,
0.7303400039672852,
0.4132082462310791,
-0.03362571820616722,
0.545760452747345,
0.5356739163398743,
-0.42346182465553284,
0.5356584191322327,
-0.09730256348848343,
0.08079215884208679,
0.0007506959373131394,
0.09931796044111252,
-0.4991673231124878,
0.33283790946006775,
0.08749542385339737,
-0.6828662753105164,
-0.013376678340137005,
0.32200437784194946,
-0.06779754161834717,
-0.5277933478355408,
-0.5021026730537415,
0.6248028874397278,
0.008249576203525066,
-0.4886033833026886,
0.786625325679779,
-0.1810670793056488,
0.8976206183433533,
-0.8568694591522217,
-0.017817851155996323,
-0.060708560049533844,
0.5006348490715027,
-0.2669079601764679,
-0.6357134580612183,
0.02478504739701748,
-0.025282252579927444,
-0.1633678823709488,
0.20059587061405182,
0.6053587794303894,
-0.5343602895736694,
-0.8977780342102051,
0.3915240466594696,
-0.0033977378625422716,
0.2505885660648346,
0.11750173568725586,
-0.7132181525230408,
0.2651054859161377,
-0.05475350096821785,
-0.24167297780513763,
0.07897261530160904,
0.4554927945137024,
0.10137594491243362,
0.5431629419326782,
0.5081303119659424,
0.1393890380859375,
0.33570438623428345,
-0.28652799129486084,
0.8194100260734558,
-0.5982668995857239,
-0.4842565655708313,
-0.5984452366828918,
0.5544989705085754,
0.10522958636283875,
-0.4999013841152191,
0.5107459425926208,
0.4968668818473816,
0.743488073348999,
-0.278158962726593,
0.34296318888664246,
-0.21226143836975098,
0.08262795209884644,
-0.31658878922462463,
0.893470823764801,
-0.7437663078308105,
-0.21477067470550537,
-0.5169119834899902,
-0.8911643624305725,
-0.39644378423690796,
0.9931136965751648,
-0.2128840982913971,
0.4265425503253937,
0.6940022110939026,
0.9929314255714417,
-0.19127722084522247,
-0.3138100206851959,
0.2917328178882599,
0.429045170545578,
0.14708064496517181,
0.8181247115135193,
0.5246381163597107,
-0.8660004138946533,
0.8212207555770874,
-0.267089307308197,
-0.23230072855949402,
-0.2184177190065384,
-0.7449440956115723,
-1.0337308645248413,
-0.6113072633743286,
-0.3955662250518799,
-0.7231630682945251,
-0.10114669799804688,
0.70207679271698,
0.8978800773620605,
-0.8914156556129456,
-0.15207599103450775,
-0.21529991924762726,
0.003912842366844416,
-0.1223369911313057,
-0.22290043532848358,
0.46796828508377075,
0.12439313530921936,
-0.7146084308624268,
-0.456033319234848,
-0.2803246080875397,
0.3303203582763672,
-0.013163377530872822,
-0.2347026765346527,
-0.1433788388967514,
-0.13935524225234985,
0.48719772696495056,
0.5326195955276489,
-0.551612138748169,
-0.16445067524909973,
0.12022297829389572,
-0.14729247987270355,
0.5672402381896973,
0.5982451438903809,
-0.7719561457633972,
0.42116841673851013,
0.36728787422180176,
0.10663706064224243,
0.8427783250808716,
-0.2585708796977997,
0.13425855338573456,
-0.41841205954551697,
0.43749627470970154,
0.20557375252246857,
0.5099446773529053,
0.3311217427253723,
-0.38896214962005615,
0.31232699751853943,
0.37849700450897217,
-0.5787480473518372,
-0.9601210355758667,
-0.07336284965276718,
-1.3374971151351929,
0.14063355326652527,
0.8788858652114868,
-0.2159687578678131,
-0.5203770995140076,
0.3879580497741699,
-0.2752051055431366,
0.4982992708683014,
-0.3175418972969055,
0.40212857723236084,
0.30463987588882446,
0.11726492643356323,
-0.66178959608078,
-0.09376109391450882,
0.2320491373538971,
-0.24424128234386444,
-0.5763438940048218,
-0.20565973222255707,
0.3255051374435425,
0.3448439836502075,
0.6868581771850586,
0.4228188395500183,
-0.2884601950645447,
0.20170199871063232,
0.07700812816619873,
0.6246868371963501,
-0.18894772231578827,
-0.3485304117202759,
-0.4498126208782196,
0.11080288141965866,
-0.19118760526180267,
-0.3085017204284668
] |
microsoft/layoutxlm-base | microsoft | "2022-09-16T03:41:38Z" | 159,969 | 47 | transformers | [
"transformers",
"pytorch",
"layoutlmv2",
"arxiv:2104.08836",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us"
] | null | "2022-03-02T23:29:05Z" | ---
license: cc-by-nc-sa-4.0
---
# LayoutXLM
**Multimodal (text + layout/format + image) pre-training for document AI**
LayoutXLM is a multilingual variant of LayoutLMv2.
The documentation of this model in the Transformers library can be found [here](https://huggingface.co/docs/transformers/model_doc/layoutxlm).
[Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://github.com/microsoft/unilm/tree/master/layoutxlm)
## Introduction
LayoutXLM is a multimodal pre-trained model for multilingual document understanding, which aims to bridge the language barriers for visually-rich document understanding. Experiment results show that it has significantly outperformed the existing SOTA cross-lingual pre-trained models on the XFUND dataset.
[LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei, arXiv Preprint 2021 | [
-0.26688241958618164,
-0.5335332155227661,
0.53324955701828,
0.3968382179737091,
-0.25535690784454346,
0.30356284976005554,
0.2087390422821045,
-0.30027449131011963,
-0.019032465294003487,
0.44649553298950195,
-0.7383538484573364,
-0.6510618329048157,
-0.5519750714302063,
-0.22562208771705627,
-0.2715623378753662,
0.9589940905570984,
-0.38264042139053345,
0.6035961508750916,
-0.4266694188117981,
-0.20981520414352417,
-0.34955134987831116,
-0.6339864730834961,
-0.3840829133987427,
-0.24549932777881622,
0.4976873993873596,
0.06099160388112068,
0.7121012806892395,
0.42815572023391724,
0.5506046414375305,
0.355050653219223,
0.040573302656412125,
0.15590748190879822,
-0.31790828704833984,
-0.1806914508342743,
0.05537402257323265,
-0.44030481576919556,
-0.630249559879303,
0.08299218863248825,
0.7797581553459167,
0.6160982251167297,
0.01457812450826168,
-0.005041223485022783,
-0.020653191953897476,
0.4926172196865082,
-0.5059652328491211,
0.15085972845554352,
-0.15516264736652374,
0.3638528287410736,
-0.3145027756690979,
-0.16296851634979248,
-0.6040840744972229,
-0.1693846583366394,
-0.010027646087110043,
-0.8899427652359009,
-0.04045000672340393,
0.5428727269172668,
0.9235655665397644,
0.07146690785884857,
-0.7251102924346924,
-0.2593720853328705,
-0.4895320534706116,
0.8225774168968201,
-0.48720216751098633,
0.9071564078330994,
0.4951325058937073,
0.23745673894882202,
0.17476676404476166,
-1.025635838508606,
-0.5771325826644897,
-0.1642492711544037,
-0.5379934906959534,
0.3434455990791321,
0.03160232678055763,
-0.010507686994969845,
0.3741011917591095,
0.28529348969459534,
-1.232339859008789,
0.0324375219643116,
-0.3952713906764984,
-0.4570765495300293,
0.6271646022796631,
0.12112542986869812,
0.7188564538955688,
-0.2115059494972229,
-0.6410133242607117,
-0.3304053246974945,
-0.23405197262763977,
-0.008997960947453976,
0.3484756350517273,
-0.027624838054180145,
-0.5165395736694336,
0.2203996777534485,
0.4274621903896332,
0.6713124513626099,
-0.4700378477573395,
-0.3659532070159912,
0.5854170322418213,
-0.5511317253112793,
-0.4301418960094452,
-0.10670596361160278,
0.7732152938842773,
0.07950149476528168,
-0.10920502990484238,
-0.1327367126941681,
-0.31842806935310364,
-0.08433473855257034,
0.22643372416496277,
-0.5858480930328369,
-0.28646647930145264,
0.06745104491710663,
-0.7835456728935242,
0.052058830857276917,
0.04740193858742714,
-0.5029952526092529,
-0.2572324573993683,
-0.5306548476219177,
0.5484637022018433,
-0.791212797164917,
-0.3460158407688141,
0.028411541134119034,
-0.25236251950263977,
0.30184051394462585,
0.6554892063140869,
-0.4690963923931122,
0.038579732179641724,
0.42703431844711304,
0.8452291488647461,
-0.37797752022743225,
-0.7471016645431519,
-0.4259403944015503,
0.05330055207014084,
-0.2946424186229706,
0.9102569222450256,
-0.40217944979667664,
-0.6859028339385986,
0.046681977808475494,
0.09803644567728043,
-0.23826594650745392,
-0.30732032656669617,
0.7314602136611938,
-0.6550111770629883,
0.7972567081451416,
0.07503600418567657,
-0.35925498604774475,
-0.18125617504119873,
0.47243833541870117,
-0.8204672336578369,
1.048054575920105,
0.3561767041683197,
-0.847414493560791,
0.40719929337501526,
-0.8591154217720032,
-0.5366736054420471,
0.00473245931789279,
-0.17066891491413116,
-0.5625419020652771,
-0.1337927281856537,
-0.048488862812519073,
0.09822986274957657,
0.15319415926933289,
-0.005291877314448357,
-0.1548982411623001,
-0.009383919648826122,
-0.10306733846664429,
-0.4080386459827423,
0.9946785569190979,
0.46623730659484863,
-0.030674776062369347,
0.5687707662582397,
-1.1138566732406616,
0.17393870651721954,
0.2895944118499756,
-0.31363949179649353,
-0.5776401162147522,
-0.35199275612831116,
0.6596556305885315,
0.6188884377479553,
0.3158382475376129,
-0.38965708017349243,
0.20309244096279144,
-0.17318789660930634,
0.07746173441410065,
0.6196375489234924,
-0.6273307800292969,
0.7650617957115173,
-0.28909212350845337,
0.7337099313735962,
-0.031076181679964066,
0.3021542429924011,
-0.7446261048316956,
-0.3360794186592102,
-0.514674186706543,
-0.3395567834377289,
0.13094206154346466,
0.6369284391403198,
-0.9160801768302917,
0.09118859469890594,
-0.16768638789653778,
-0.4581455588340759,
-0.37836602330207825,
0.14858917891979218,
0.9615234136581421,
0.34415799379348755,
0.41324856877326965,
-0.14618980884552002,
-0.7247052788734436,
-0.7367093563079834,
-0.11519726365804672,
0.11250171810388565,
0.23119905591011047,
0.16170592606067657,
0.5568556785583496,
-0.3537340462207794,
0.6621437072753906,
-0.3515160381793976,
-0.4892823398113251,
-0.38072675466537476,
0.2658722400665283,
-0.10483697056770325,
0.5353252291679382,
0.8385441899299622,
-1.1892064809799194,
-0.8632446527481079,
0.10960326343774796,
-0.8263726234436035,
0.16141049563884735,
-0.11402254551649094,
-0.3515307605266571,
0.494525671005249,
0.5304459929466248,
-0.6518253684043884,
0.7161558866500854,
0.7973005175590515,
-0.6772546172142029,
0.6422761678695679,
-0.5642917156219482,
-0.10500714182853699,
-1.3360233306884766,
-0.0460318960249424,
-0.16738265752792358,
-0.42456185817718506,
-0.6000297665596008,
0.17020194232463837,
0.6158296465873718,
-0.22919781506061554,
-0.6811224222183228,
0.9778525233268738,
-0.8798540830612183,
-0.2556288242340088,
-0.1084752082824707,
0.05155763030052185,
0.482575923204422,
0.5739121437072754,
0.21284835040569305,
0.777195930480957,
0.33328697085380554,
-0.117244191467762,
0.10873880982398987,
0.6986685991287231,
-0.4253065288066864,
0.5731821060180664,
-0.322748064994812,
0.19009220600128174,
-0.2342386245727539,
0.5082677602767944,
-1.2401275634765625,
-0.1363987773656845,
0.015896836295723915,
-0.1992386430501938,
0.5452931523323059,
0.2144903987646103,
-0.5841013789176941,
-0.5090782642364502,
-0.3694472014904022,
0.48068273067474365,
0.26699715852737427,
-0.571723222732544,
0.8944550156593323,
0.17524370551109314,
-0.01233209203928709,
-0.4716779291629791,
-0.7749599814414978,
-0.08975623548030853,
0.09119468182325363,
-0.9084985852241516,
0.44205033779144287,
-0.2781756818294525,
-0.18436068296432495,
-0.11232363432645798,
0.09608960896730423,
-0.05967402085661888,
-0.011164028197526932,
0.2881704270839691,
0.4215542674064636,
-0.30308130383491516,
0.08440719544887543,
-0.000124060912639834,
-0.22008675336837769,
-0.0972938984632492,
-0.23825782537460327,
0.9407323598861694,
0.03392515704035759,
-0.702635645866394,
-0.4802771508693695,
0.7778235673904419,
0.622209370136261,
-0.5097407102584839,
0.7223131656646729,
0.9435994029045105,
-0.20699968934059143,
0.08738140016794205,
-0.35553646087646484,
0.1611035317182541,
-0.47000008821487427,
0.6039341688156128,
-0.43025562167167664,
-0.6587420105934143,
0.43432095646858215,
0.18236038088798523,
0.1314903199672699,
0.3846642076969147,
0.49038204550743103,
-0.2630365788936615,
1.3668879270553589,
0.856921374797821,
0.23075535893440247,
0.6327621340751648,
-0.37012800574302673,
0.10359968990087509,
-0.7441207766532898,
-0.674879252910614,
-0.4939652681350708,
-0.3498200476169586,
-0.24424852430820465,
-0.5015379786491394,
0.2229136824607849,
-0.07068964838981628,
-0.3108748495578766,
0.14333611726760864,
-0.31078580021858215,
0.1791163980960846,
0.8099142909049988,
-0.251613974571228,
0.3565200865268707,
0.11533991992473602,
-0.34536153078079224,
-0.15556448698043823,
-0.5386896729469299,
-0.5519654154777527,
0.7634536027908325,
0.2889283299446106,
1.009750485420227,
0.1747070848941803,
0.5052589774131775,
0.30146002769470215,
0.29510626196861267,
-0.6120966672897339,
0.33611437678337097,
-0.18066002428531647,
-0.637539803981781,
-0.334244042634964,
-0.07753604650497437,
-1.0409533977508545,
0.20176832377910614,
-0.16916337609291077,
-0.602080762386322,
0.025380104780197144,
0.18387745320796967,
-0.13614563643932343,
0.43000978231430054,
-1.0642716884613037,
1.0957478284835815,
-0.8062371611595154,
-0.14193753898143768,
0.030739163979887962,
-0.726632833480835,
0.1965542882680893,
-0.28373983502388,
0.4099579155445099,
0.13586042821407318,
0.17004820704460144,
0.6929163336753845,
-0.4840307831764221,
0.6024810075759888,
-0.22632454335689545,
-0.32019323110580444,
-0.23635125160217285,
0.055634934455156326,
0.6126731634140015,
-0.021015215665102005,
0.00770507100969553,
0.22427839040756226,
0.1105695590376854,
-0.46316632628440857,
-0.6917237639427185,
0.5132727026939392,
-1.1749364137649536,
-0.5009922981262207,
-0.4283849895000458,
-0.8426771759986877,
-0.11048416048288345,
0.5941274762153625,
0.5618659257888794,
0.5009552836418152,
-0.24095386266708374,
0.11033853888511658,
0.5884984731674194,
-0.46038320660591125,
0.45237115025520325,
0.5447174310684204,
-0.71668940782547,
-0.318673312664032,
0.8402604460716248,
0.2098117172718048,
0.018352260813117027,
0.8002008199691772,
0.023112520575523376,
-0.5931253433227539,
-0.481862872838974,
-0.5445168614387512,
0.10721736401319504,
-0.7755348086357117,
-0.006539702415466309,
-1.1765117645263672,
-0.4989026188850403,
-0.5890614986419678,
-0.3143092393875122,
-0.23034510016441345,
-0.2831159234046936,
-0.2182386815547943,
-0.0670299381017685,
-0.06650349497795105,
0.702190637588501,
0.1133946031332016,
0.47693687677383423,
-0.8486129641532898,
0.3511195182800293,
0.22038517892360687,
0.3291565179824829,
-0.19579114019870758,
-0.6096725463867188,
-0.2295416295528412,
0.012669599615037441,
-0.46478530764579773,
-0.7188031673431396,
0.5305566191673279,
0.07649629563093185,
0.9184470772743225,
0.4902421236038208,
-0.22457337379455566,
0.48100414872169495,
-0.642421305179596,
0.7889113426208496,
0.4824749529361725,
-0.8102883696556091,
0.5375204086303711,
-0.19361178576946259,
0.423403263092041,
0.05328808352351189,
0.5116771459579468,
-0.51949143409729,
0.053165413439273834,
-0.6291356086730957,
-0.759290874004364,
1.0604854822158813,
0.12354353815317154,
0.2605891823768616,
0.3900277316570282,
-0.11946285516023636,
0.33656126260757446,
0.13250768184661865,
-0.8924386501312256,
-0.44698381423950195,
-0.7165770530700684,
-0.23864461481571198,
-0.19087308645248413,
-0.5717931985855103,
-0.0901108831167221,
-0.2983350455760956,
0.6671958565711975,
-0.054396484047174454,
0.30722731351852417,
-0.02639760822057724,
-0.5307101607322693,
0.16540320217609406,
0.05655394867062569,
1.1472760438919067,
0.7443849444389343,
-0.1673251837491989,
0.10052580386400223,
0.05279341712594032,
-0.6646499037742615,
0.16978685557842255,
0.3359750509262085,
0.0008055832586251199,
0.17363469302654266,
0.788212239742279,
1.3842697143554688,
0.03775570169091225,
-0.5930221080780029,
0.6049657464027405,
-0.32183781266212463,
-0.5786333680152893,
-0.5244010090827942,
-0.24647732079029083,
-0.0525486133992672,
0.12896129488945007,
0.3210096061229706,
0.07871238887310028,
-0.025518160313367844,
-0.4704257845878601,
0.12261523306369781,
0.5255626440048218,
-0.57347172498703,
-0.37324365973472595,
0.8396267294883728,
0.21352730691432953,
-0.6372858881950378,
0.5229988098144531,
-0.23362910747528076,
-0.464903324842453,
0.46865880489349365,
0.9127442240715027,
0.6820433735847473,
-0.2599566876888275,
0.4372040331363678,
0.10637842118740082,
0.24410121142864227,
0.3926073908805847,
0.487229585647583,
-0.17285308241844177,
-0.8023300170898438,
-0.3687885105609894,
-0.7391274571418762,
-0.17046329379081726,
0.115863136947155,
-0.5142777562141418,
0.31754055619239807,
-0.4134708642959595,
0.11098546534776688,
-0.04665454104542732,
0.03362708166241646,
-0.8085801601409912,
0.36444923281669617,
0.4240197539329529,
1.439850091934204,
-0.6808025240898132,
1.1096715927124023,
1.2247709035873413,
-0.27690061926841736,
-0.9508212804794312,
-0.07531731575727463,
0.16243652999401093,
-1.1443822383880615,
0.9461119771003723,
0.13445301353931427,
0.07901367545127869,
0.05456826090812683,
-0.3809206783771515,
-1.0396682024002075,
1.087261438369751,
0.3188495635986328,
-0.3941689133644104,
-0.32322168350219727,
0.2781720757484436,
0.49700701236724854,
-0.2656872272491455,
0.5107799172401428,
0.10485364496707916,
0.7539401650428772,
0.04714328423142433,
-0.8424768447875977,
-0.26031503081321716,
-0.7966906428337097,
0.2707100808620453,
0.09309281408786774,
-0.7251360416412354,
1.0485754013061523,
-0.03995458036661148,
-0.1258593499660492,
0.1765766143798828,
0.582914412021637,
0.3265608847141266,
0.5645668506622314,
0.599293053150177,
0.6039929986000061,
0.8385912775993347,
-0.14894013106822968,
1.353858232498169,
-0.26915600895881653,
0.1730196177959442,
1.3502919673919678,
-0.419979989528656,
0.4291975200176239,
0.3906655013561249,
-0.13873091340065002,
0.6422786116600037,
0.7127832174301147,
0.168587327003479,
0.5370217561721802,
-0.2581348717212677,
0.19259843230247498,
-0.2495577037334442,
-0.024630611762404442,
-0.6542591452598572,
0.4995233118534088,
0.2163533717393875,
-0.5276820659637451,
-0.3334348201751709,
0.563676655292511,
0.21457786858081818,
0.09172046184539795,
-0.13345761597156525,
0.758121907711029,
-0.028228992596268654,
-0.4368544816970825,
0.35391300916671753,
-0.024865059182047844,
0.5612767934799194,
-1.0034481287002563,
0.07076333463191986,
-0.442244291305542,
0.18599560856819153,
-0.22876617312431335,
-0.9820515513420105,
0.26218855381011963,
-0.4361375570297241,
-0.4448278248310089,
-0.6216835379600525,
0.7366566061973572,
-0.44033974409103394,
-0.746161699295044,
0.5562372803688049,
0.6899903416633606,
-0.13555321097373962,
-0.018623456358909607,
-0.9490882754325867,
0.1565268486738205,
0.03607143461704254,
-0.2748664319515228,
0.5505222082138062,
0.48849204182624817,
-0.531925618648529,
0.5755345225334167,
0.8025894165039062,
-0.278436541557312,
0.21688544750213623,
0.35931721329689026,
0.8511051535606384,
-0.41328731179237366,
-0.8343202471733093,
-0.7359433174133301,
0.6958183646202087,
-0.3196948170661926,
-0.3766252100467682,
1.0664657354354858,
0.87506103515625,
1.0655661821365356,
-0.2878270149230957,
0.9063252210617065,
0.1587933897972107,
0.29302331805229187,
-0.5984399914741516,
1.0423611402511597,
-1.176284670829773,
-0.2524707317352295,
-0.3604396879673004,
-0.9272893071174622,
-0.517616868019104,
0.5511640310287476,
-0.26399949193000793,
0.12858761847019196,
0.8713635206222534,
0.803311824798584,
-0.2588449716567993,
-0.1658250391483307,
0.8218774795532227,
0.11404866725206375,
0.37924283742904663,
0.1300351917743683,
1.0633296966552734,
-0.32397666573524475,
0.7282373309135437,
-0.2567202150821686,
-0.17479772865772247,
-0.27985137701034546,
-0.6983702778816223,
-1.0995876789093018,
-0.8562734127044678,
-0.14698189496994019,
-0.28270435333251953,
-0.10010775178670883,
0.7643587589263916,
1.122920274734497,
-0.717804491519928,
0.02945525012910366,
0.18042710423469543,
0.17355719208717346,
-0.0634150430560112,
-0.16311131417751312,
0.6073212623596191,
-0.24746032059192657,
-0.812375009059906,
0.08968906849622726,
0.5150676965713501,
0.32943591475486755,
-0.44223013520240784,
-0.40460923314094543,
-0.2910735607147217,
-0.015556965954601765,
0.7292859554290771,
0.0912691280245781,
-0.5488817095756531,
0.1585128903388977,
0.09724964201450348,
-0.45286062359809875,
0.1975899338722229,
0.8561010360717773,
-0.41995400190353394,
0.4596234858036041,
0.7158467173576355,
0.3418903350830078,
0.450102299451828,
-0.2096707820892334,
0.42524436116218567,
-0.8311535716056824,
0.6456349492073059,
-0.1550729125738144,
0.8106359243392944,
0.3285405933856964,
-0.43626418709754944,
0.41138848662376404,
0.259621798992157,
-0.2910712659358978,
-0.7402347922325134,
0.20242412388324738,
-1.0274449586868286,
-0.39651069045066833,
1.1503242254257202,
-0.23331567645072937,
-0.35159802436828613,
-0.20133043825626373,
-0.8509377837181091,
0.11695629358291626,
-0.1430605798959732,
0.4085604250431061,
0.4830015003681183,
0.1731756627559662,
-0.541009783744812,
-0.32187214493751526,
0.48592084646224976,
0.365732342004776,
-0.9736925959587097,
-0.42483440041542053,
0.3073454201221466,
-0.08008114993572235,
0.6170938014984131,
0.7970584034919739,
-0.1606721431016922,
0.33803021907806396,
-0.11771881580352783,
0.3275994658470154,
-0.21991778910160065,
-0.30814647674560547,
0.07460200786590576,
0.18308550119400024,
-0.20795539021492004,
-0.041732948273420334
] |
flair/upos-english | flair | "2023-04-07T09:34:50Z" | 159,686 | 3 | flair | [
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"en",
"dataset:ontonotes",
"region:us"
] | token-classification | "2022-03-02T23:29:05Z" | ---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en
datasets:
- ontonotes
widget:
- text: "I love Berlin."
---
## English Universal Part-of-Speech Tagging in Flair (default model)
This is the standard universal part-of-speech tagging model for English that ships with [Flair](https://github.com/flairNLP/flair/).
F1-Score: **98,6** (Ontonotes)
Predicts universal POS tags:
| **tag** | **meaning** |
|---------------------------------|-----------|
|ADJ | adjective |
| ADP | adposition |
| ADV | adverb |
| AUX | auxiliary |
| CCONJ | coordinating conjunction |
| DET | determiner |
| INTJ | interjection |
| NOUN | noun |
| NUM | numeral |
| PART | particle |
| PRON | pronoun |
| PROPN | proper noun |
| PUNCT | punctuation |
| SCONJ | subordinating conjunction |
| SYM | symbol |
| VERB | verb |
| X | other |
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/upos-english")
# make example sentence
sentence = Sentence("I love Berlin.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
print(entity)
```
This yields the following output:
```
Span [1]: "I" [− Labels: PRON (0.9996)]
Span [2]: "love" [− Labels: VERB (1.0)]
Span [3]: "Berlin" [− Labels: PROPN (0.9986)]
Span [4]: "." [− Labels: PUNCT (1.0)]
```
So, the word "*I*" is labeled as a **pronoun** (PRON), "*love*" is labeled as a **verb** (VERB) and "*Berlin*" is labeled as a **proper noun** (PROPN) in the sentence "*I love Berlin*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
"resources/tasks/onto-ner",
column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
tag_to_bioes="ner",
)
# 2. what tag do we want to predict?
tag_type = 'upos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# contextual string embeddings, forward
FlairEmbeddings('news-forward'),
# contextual string embeddings, backward
FlairEmbeddings('news-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/upos-english',
train_with_dev=True,
max_epochs=150)
```
---
### Cite
Please cite the following paper when using this model.
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
---
### Issues?
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
| [
-0.3822006583213806,
-0.5547352433204651,
0.1171419769525528,
0.21815161406993866,
-0.34363511204719543,
-0.17040500044822693,
-0.21538019180297852,
-0.3541870713233948,
0.6817396879196167,
0.24743008613586426,
-0.407645046710968,
-0.6403495669364929,
-0.4173092842102051,
0.29968342185020447,
0.0013782794121652842,
1.1222606897354126,
0.08231335133314133,
0.39888009428977966,
-0.2052081674337387,
-0.05167822539806366,
-0.4232299327850342,
-0.6755166053771973,
-0.4794549345970154,
-0.23612429201602936,
0.5236508250236511,
0.35666677355766296,
0.5380958318710327,
0.8001324534416199,
0.3547808527946472,
0.27153563499450684,
-0.291239857673645,
0.10009327530860901,
-0.0740404799580574,
-0.02686559036374092,
-0.19476252794265747,
-0.3977525532245636,
-0.7256719470024109,
0.14736086130142212,
0.6875333189964294,
0.5242645144462585,
0.16955427825450897,
0.042585380375385284,
-0.0774359181523323,
0.18362393975257874,
-0.25337204337120056,
0.3814379870891571,
-0.6408188343048096,
-0.25687113404273987,
-0.2941424250602722,
-0.046563684940338135,
-0.2860414385795593,
-0.24285852909088135,
0.07878026366233826,
-0.5343019366264343,
-0.005782788619399071,
0.22888794541358948,
1.3775185346603394,
0.14338818192481995,
-0.41267651319503784,
-0.2832511067390442,
-0.4186692237854004,
0.8122937679290771,
-0.8654213547706604,
0.33204516768455505,
0.3463529348373413,
-0.22596105933189392,
-0.1846284717321396,
-0.6483092904090881,
-0.7229600548744202,
-0.253357857465744,
-0.17692123353481293,
0.24291573464870453,
-0.12360000610351562,
-0.045514583587646484,
0.12065439671278,
0.1892741322517395,
-0.6918455362319946,
-0.06322072446346283,
-0.15077967941761017,
-0.261680543422699,
0.7663424015045166,
0.13346360623836517,
0.31095069646835327,
-0.5467411875724792,
-0.4686158001422882,
-0.10472532361745834,
-0.35839056968688965,
0.04448537528514862,
0.09551732987165451,
0.5451318621635437,
-0.15184816718101501,
0.6271647214889526,
0.014653914608061314,
0.7216171026229858,
0.05578884482383728,
-0.2436966747045517,
0.5537532567977905,
-0.38607069849967957,
-0.24872952699661255,
-0.1164897084236145,
1.0072660446166992,
0.3080166280269623,
0.15344975888729095,
-0.15036559104919434,
-0.07019025087356567,
0.3265770673751831,
-0.18103422224521637,
-0.49740755558013916,
-0.2589734196662903,
0.2720385491847992,
-0.13175253570079803,
-0.31276822090148926,
0.03633076325058937,
-0.7363256812095642,
-0.11434394866228104,
-0.0868309810757637,
0.5748467445373535,
-0.5947626233100891,
-0.08785997331142426,
0.19618676602840424,
-0.321099191904068,
0.17952315509319305,
0.04191070795059204,
-0.806096076965332,
-0.045625388622283936,
0.40940985083580017,
0.5697321891784668,
0.20103780925273895,
-0.3610859811306,
-0.2383103221654892,
-0.07038336992263794,
-0.14395417273044586,
0.771385908126831,
-0.4451620578765869,
-0.30504271388053894,
0.04496252164244652,
0.152181476354599,
-0.389059841632843,
-0.188003271818161,
0.7898301482200623,
-0.5513325929641724,
0.46964892745018005,
-0.25641289353370667,
-0.8672772645950317,
-0.3356645703315735,
0.20834748446941376,
-0.5069665312767029,
0.9805455803871155,
-0.006160852964967489,
-1.1885377168655396,
0.40384620428085327,
-0.5066651105880737,
-0.46821436285972595,
0.029327603057026863,
-0.07097341120243073,
-0.4169166088104248,
-0.20450082421302795,
0.11535171419382095,
0.8066574931144714,
-0.13937360048294067,
0.2721944749355316,
-0.39096736907958984,
-0.028732240200042725,
0.24409256875514984,
0.20678013563156128,
0.8998703360557556,
0.0839465856552124,
-0.18411614000797272,
0.12781471014022827,
-0.8910387754440308,
-0.25430184602737427,
0.22532568871974945,
-0.4757475256919861,
-0.4136408269405365,
0.01630597561597824,
0.11371061950922012,
0.22789981961250305,
0.17422662675380707,
-0.6746065616607666,
0.6019561886787415,
-0.6257900595664978,
0.430600106716156,
0.48320651054382324,
-0.016689863055944443,
0.6589913964271545,
-0.44756409525871277,
0.4585743546485901,
0.15397460758686066,
-0.292760968208313,
-0.12449455261230469,
-0.6965821385383606,
-0.7323305606842041,
-0.4681714177131653,
0.6523814797401428,
0.7716305255889893,
-0.6891803741455078,
0.8541083335876465,
-0.3745785057544708,
-0.6727376580238342,
-0.5507490038871765,
-0.24885150790214539,
0.31217578053474426,
0.6821303367614746,
0.48576703667640686,
-0.19264379143714905,
-0.9586557149887085,
-0.710352897644043,
-0.22422918677330017,
-0.12263306975364685,
0.2913851737976074,
0.16941151022911072,
0.8595283627510071,
-0.2681427299976349,
0.9234025478363037,
-0.4829094409942627,
-0.4593207538127899,
-0.3426450192928314,
0.1642289012670517,
0.42988428473472595,
0.6297632455825806,
0.4447021484375,
-0.7065724730491638,
-0.5885270237922668,
-0.2571152150630951,
-0.4724081754684448,
0.11979915201663971,
-0.10721565783023834,
-0.038363195955753326,
0.3778417706489563,
0.29935306310653687,
-0.5941870212554932,
0.4111942648887634,
0.2959659993648529,
-0.7012815475463867,
0.6342016458511353,
0.01225836481899023,
-0.14668093621730804,
-1.5897835493087769,
0.2560465633869171,
0.2614099383354187,
-0.2672708332538605,
-0.6587509512901306,
-0.1684000939130783,
-0.03656043857336044,
0.3463513255119324,
-0.3909565210342407,
0.7835909724235535,
-0.4060787260532379,
0.14216172695159912,
0.02147330716252327,
0.16408589482307434,
0.08808275312185287,
0.4324856400489807,
0.25135907530784607,
0.506498396396637,
0.6120502948760986,
-0.636401355266571,
0.3098258674144745,
0.5021834373474121,
-0.3524988293647766,
0.06936194747686386,
-0.432458758354187,
-0.2103702872991562,
-0.21291442215442657,
0.2883044183254242,
-1.2550088167190552,
-0.3121196925640106,
0.45714735984802246,
-0.8471825122833252,
0.557969868183136,
0.04014132544398308,
-0.5142345428466797,
-0.43377214670181274,
-0.26959848403930664,
0.05299381911754608,
0.4565041959285736,
-0.3636762499809265,
0.45321527123451233,
0.49311336874961853,
0.13332092761993408,
-0.6990857720375061,
-0.6799039244651794,
-0.21177586913108826,
-0.29729577898979187,
-0.7134172916412354,
0.6010887026786804,
-0.11824978142976761,
-0.06919527798891068,
0.13620981574058533,
0.1696244180202484,
-0.07152403891086578,
0.22297124564647675,
0.230278879404068,
0.48843955993652344,
-0.1395552009344101,
0.24636757373809814,
-0.20217368006706238,
0.06398560851812363,
-0.07681761682033539,
-0.2056930512189865,
0.8117827773094177,
-0.12362818419933319,
0.2503986358642578,
-0.5032204985618591,
0.1243630200624466,
0.2321987897157669,
-0.32645952701568604,
0.7687962055206299,
0.884461522102356,
-0.47461503744125366,
-0.08042120933532715,
-0.29689329862594604,
-0.10253152996301651,
-0.3752630352973938,
0.5172667503356934,
-0.4943442642688751,
-0.8244848251342773,
0.5660898089408875,
0.17547127604484558,
0.06872085481882095,
0.839165985584259,
0.5281078219413757,
-0.2029789686203003,
1.1135518550872803,
0.6700013875961304,
-0.3078624904155731,
0.3744101822376251,
-0.5051493048667908,
0.05163678526878357,
-0.8273748159408569,
-0.16680479049682617,
-0.5797563791275024,
-0.06632838398218155,
-0.7487606406211853,
-0.3222903609275818,
0.14479398727416992,
0.4705350697040558,
-0.3588569760322571,
0.597157895565033,
-0.5877313613891602,
0.20863206684589386,
0.6277279257774353,
-0.14159618318080902,
0.10230907052755356,
-0.052548598498106,
-0.434658408164978,
-0.21350274980068207,
-0.7171690464019775,
-0.5096407532691956,
0.8981671333312988,
0.47566261887550354,
0.6259292364120483,
-0.03712426498532295,
0.8570272922515869,
0.07906080037355423,
0.2752164304256439,
-0.9423993825912476,
0.5167736411094666,
-0.23426507413387299,
-0.809386670589447,
-0.08191322535276413,
-0.16974081099033356,
-1.0389460325241089,
0.19058921933174133,
-0.31758907437324524,
-1.033953309059143,
0.21233519911766052,
0.1660112887620926,
-0.5070542097091675,
0.3673435151576996,
-0.32560646533966064,
0.9391366839408875,
0.0774887278676033,
-0.20775537192821503,
0.18779876828193665,
-0.7691220641136169,
0.25953343510627747,
0.1752038449048996,
0.4197664260864258,
-0.23768272995948792,
-0.044988963752985,
1.1090803146362305,
-0.21491333842277527,
0.9979264140129089,
0.0861428752541542,
0.14180533587932587,
0.30927008390426636,
0.035979121923446655,
0.24087925255298615,
0.10369544476270676,
-0.04588761553168297,
0.07798547297716141,
0.05384606495499611,
-0.197129487991333,
-0.08440253138542175,
0.6326033473014832,
-0.7725483179092407,
-0.3112539052963257,
-0.8536551594734192,
-0.35330477356910706,
-0.12420506775379181,
0.22702154517173767,
0.7427425980567932,
0.49820590019226074,
-0.22135451436042786,
-0.1689590960741043,
0.4745492935180664,
-0.1580241620540619,
0.6829195022583008,
0.4233468472957611,
-0.4784795939922333,
-0.742840588092804,
0.9157018065452576,
0.10048168897628784,
-0.1898336112499237,
0.541836678981781,
0.22753852605819702,
-0.44992998242378235,
-0.0629286989569664,
-0.3656953275203705,
0.6396709680557251,
-0.5686010718345642,
-0.3860580027103424,
-0.6552553772926331,
-0.1482977569103241,
-0.9605156779289246,
-0.061836425215005875,
-0.25317469239234924,
-0.570288360118866,
-0.7536130547523499,
0.023332487791776657,
0.36448928713798523,
0.7767753601074219,
-0.37269529700279236,
0.3157002925872803,
-0.790774405002594,
-0.11897820234298706,
0.013864405453205109,
0.08260015398263931,
-0.23433347046375275,
-0.9612546563148499,
-0.3408491015434265,
0.010385786183178425,
-0.3699844181537628,
-1.1212413311004639,
0.9235263466835022,
0.29000771045684814,
0.39471590518951416,
0.38873258233070374,
-0.1000344529747963,
0.43584826588630676,
-0.4444507360458374,
1.0303049087524414,
0.1154082790017128,
-1.0157403945922852,
0.5397855043411255,
-0.3976954519748688,
0.1326189488172531,
0.15787051618099213,
0.9435756206512451,
-0.6094931364059448,
-0.06440959870815277,
-0.8142648935317993,
-0.911558210849762,
0.6741227507591248,
-0.06279607862234116,
0.04368666559457779,
-0.3684602379798889,
0.28090912103652954,
-0.19937381148338318,
0.12647844851016998,
-1.0119152069091797,
-0.5738559365272522,
-0.12972086668014526,
-0.25601285696029663,
-0.2675510048866272,
-0.2527218461036682,
0.012025173753499985,
-0.6378868222236633,
1.170037031173706,
0.004691373556852341,
0.5645037293434143,
0.4989822506904602,
0.026951858773827553,
0.0521581806242466,
0.25568974018096924,
0.6512728929519653,
0.19015036523342133,
-0.42395853996276855,
-0.05089539289474487,
0.10347052663564682,
-0.2634721100330353,
-0.12365015596151352,
0.20142444968223572,
-0.10358477383852005,
0.29404154419898987,
0.4196944832801819,
0.8715842366218567,
0.14819970726966858,
-0.34887775778770447,
0.629783570766449,
0.03605104237794876,
-0.18317069113254547,
-0.49438410997390747,
-0.24644792079925537,
0.19631165266036987,
0.11705675721168518,
0.07882480323314667,
0.07269668579101562,
-0.034684501588344574,
-0.5742223858833313,
0.22167423367500305,
0.45405298471450806,
-0.4958365857601166,
-0.6192618012428284,
0.8794799447059631,
-0.005099096801131964,
-0.13041263818740845,
0.237547367811203,
-0.6170842051506042,
-0.9060258269309998,
0.5826655030250549,
0.6953219175338745,
0.7754858136177063,
-0.25896012783050537,
0.195685014128685,
0.6621339321136475,
0.11877879500389099,
0.00280653964728117,
0.8084841966629028,
0.3300528824329376,
-1.0981369018554688,
-0.4065771996974945,
-0.9870191216468811,
0.029853656888008118,
0.1760389506816864,
-0.5962656140327454,
0.3899012506008148,
-0.3062061667442322,
-0.3951685428619385,
0.35904401540756226,
0.15395472943782806,
-0.7497660517692566,
0.37133586406707764,
0.4479840099811554,
1.1030750274658203,
-1.0078591108322144,
1.125881552696228,
1.2413520812988281,
-0.8533880114555359,
-1.093861699104309,
-0.18196624517440796,
-0.06528729200363159,
-0.7136995792388916,
0.8205677270889282,
0.26042041182518005,
0.38921603560447693,
0.18558451533317566,
-0.722140371799469,
-1.2222226858139038,
0.9852088093757629,
-0.18740655481815338,
-0.28373751044273376,
-0.21350672841072083,
-0.07141540944576263,
0.5119549632072449,
-0.5543780326843262,
0.4261655807495117,
0.5735489726066589,
0.45275557041168213,
0.03051055409014225,
-0.9964939951896667,
-0.00197270093485713,
-0.2383665144443512,
-0.031287819147109985,
0.07457785308361053,
-0.7289231419563293,
1.1119658946990967,
-0.17540961503982544,
-0.22573809325695038,
0.2696637511253357,
0.9533525705337524,
-0.008062927052378654,
0.02776450291275978,
0.30652764439582825,
0.9344863891601562,
0.7040950655937195,
-0.22288918495178223,
0.8363402485847473,
-0.3961223065853119,
0.6355597376823425,
1.1411097049713135,
-0.015761621296405792,
1.037742257118225,
0.3452870845794678,
-0.16067643463611603,
0.5743295550346375,
0.8201659917831421,
-0.12200632691383362,
0.4998680353164673,
0.21463437378406525,
-0.09347379207611084,
-0.32824912667274475,
-0.3132552206516266,
-0.3932867646217346,
0.7262001633644104,
0.3771139085292816,
-0.48165053129196167,
0.0711313784122467,
0.03702502325177193,
0.6167277097702026,
-0.04361462593078613,
-0.32659897208213806,
0.7826454043388367,
0.004913788754492998,
-0.5808568000793457,
0.6489823460578918,
0.14872336387634277,
1.0281702280044556,
-0.4250827431678772,
0.08458006381988525,
-0.12568902969360352,
0.18592938780784607,
-0.17751578986644745,
-0.7337046265602112,
0.17572495341300964,
-0.330844521522522,
-0.15271829068660736,
0.00677526043727994,
0.7177726030349731,
-0.7454106211662292,
-0.3134305775165558,
0.33764195442199707,
0.4150211811065674,
0.22565697133541107,
0.03604845330119133,
-0.7171563506126404,
-0.1275528520345688,
0.24915504455566406,
-0.4157136380672455,
0.20502226054668427,
0.13761726021766663,
0.18747638165950775,
0.4691357910633087,
0.37820130586624146,
0.2119482457637787,
0.06687211245298386,
-0.23540174961090088,
0.9079121351242065,
-0.8223192691802979,
-0.3899015188217163,
-0.8270796537399292,
0.7590008974075317,
0.02942683733999729,
-0.5455053448677063,
0.782938539981842,
0.6985544562339783,
0.9215829968452454,
-0.1854267418384552,
0.8488622307777405,
-0.3864753842353821,
0.8456319570541382,
-0.21889883279800415,
0.7032743096351624,
-0.8006893396377563,
-0.0002644667401909828,
-0.21011288464069366,
-0.6517041325569153,
-0.5230820178985596,
0.6651522517204285,
-0.2940835654735565,
-0.2996003329753876,
0.5966227054595947,
0.8106478452682495,
0.16046473383903503,
-0.07364106178283691,
0.23558297753334045,
0.47440940141677856,
0.04249684885144234,
0.3768779933452606,
0.5941864848136902,
-0.6173078417778015,
0.283436119556427,
-0.6200770735740662,
-0.2518937289714813,
-0.24546025693416595,
-0.8704633116722107,
-0.9108614325523376,
-0.9520403742790222,
-0.44939619302749634,
-0.8243849277496338,
-0.198469877243042,
1.272618055343628,
0.40941715240478516,
-0.9373946189880371,
-0.2653738260269165,
0.17344146966934204,
-0.03937992453575134,
0.07626606523990631,
-0.28396090865135193,
0.45987772941589355,
-0.33875593543052673,
-0.761857807636261,
0.36908864974975586,
-0.20075547695159912,
0.16789117455482483,
0.07984805852174759,
0.14831793308258057,
-0.7307028770446777,
0.12779222428798676,
0.4424488842487335,
0.3961545526981354,
-0.7558793425559998,
-0.2880379259586334,
0.0807199478149414,
-0.34030255675315857,
0.1983650177717209,
0.20148640871047974,
-0.6643427610397339,
0.24137279391288757,
0.7840165495872498,
0.27229270339012146,
0.20468714833259583,
-0.011988534592092037,
0.3394145965576172,
-0.7694433927536011,
0.029387442395091057,
0.3518621325492859,
0.6709699630737305,
0.2645655572414398,
-0.1653524935245514,
0.4392939507961273,
0.5699992179870605,
-0.8148317337036133,
-0.67624431848526,
0.005455491133034229,
-1.1413835287094116,
-0.2632916271686554,
1.2984135150909424,
-0.21696718037128448,
-0.49703624844551086,
0.08082269132137299,
-0.22075627744197845,
0.67536860704422,
-0.49105483293533325,
0.38998791575431824,
0.4841563105583191,
-0.1377316415309906,
0.297395795583725,
-0.15547685325145721,
0.8526797294616699,
0.46560680866241455,
-0.4484001398086548,
-0.31149527430534363,
0.2868945300579071,
0.5597462058067322,
0.4198652505874634,
0.5797489881515503,
0.1437160074710846,
0.008704296313226223,
-0.053076550364494324,
0.5964913964271545,
0.2078706920146942,
-0.1831645667552948,
-0.5601692795753479,
-0.10293176770210266,
-0.07764486968517303,
-0.39860010147094727
] |
bvanaken/clinical-assertion-negation-bert | bvanaken | "2022-06-01T12:28:45Z" | 159,304 | 21 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"medical",
"clinical",
"assertion",
"negation",
"en",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2022-03-02T23:29:05Z" | ---
language: "en"
tags:
- bert
- medical
- clinical
- assertion
- negation
- text-classification
widget:
- text: "Patient denies [entity] SOB [entity]."
---
# Clinical Assertion / Negation Classification BERT
## Model description
The Clinical Assertion and Negation Classification BERT is introduced in the paper [Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?
](https://aclanthology.org/2021.nlpmc-1.5/). The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE.
The model is based on the [ClinicalBERT - Bio + Discharge Summary BERT Model](https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT) by Alsentzer et al. and fine-tuned on assertion data from the [2010 i2b2 challenge](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168320/).
#### How to use the model
You can load the model via the transformers library:
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert")
model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
```
The model expects input in the form of spans/sentences with one marked entity to classify as `PRESENT(0)`, `ABSENT(1)` or `POSSIBLE(2)`. The entity in question is identified with the special token `[entity]` surrounding it.
Example input and inference:
```
input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]."
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
classification = classifier(input)
# [{'label': 'ABSENT', 'score': 0.9842607378959656}]
```
### Cite
When working with the model, please cite our paper as follows:
```bibtex
@inproceedings{van-aken-2021-assertion,
title = "Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?",
author = "van Aken, Betty and
Trajanovska, Ivana and
Siu, Amy and
Mayrdorfer, Manuel and
Budde, Klemens and
Loeser, Alexander",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlpmc-1.5",
doi = "10.18653/v1/2021.nlpmc-1.5"
}
``` | [
-0.0439719632267952,
-0.9357956051826477,
0.6852506399154663,
0.31276777386665344,
-0.011195064522325993,
-0.19390138983726501,
0.005392396356910467,
-0.6778707504272461,
0.26246318221092224,
0.2679435610771179,
-0.4102248549461365,
-0.6548921465873718,
-0.7572152018547058,
0.00002744321318459697,
-0.4030098617076874,
1.0792725086212158,
-0.06423495709896088,
0.2663702666759491,
-0.3581492602825165,
-0.0024770223535597324,
-0.37529852986335754,
-0.7344983220100403,
-0.4954063594341278,
-0.2735227942466736,
0.3627825081348419,
0.1971745491027832,
0.42967817187309265,
0.4874362349510193,
0.6614556908607483,
0.3117445409297943,
-0.18339645862579346,
-0.13667289912700653,
0.1384749412536621,
0.13057199120521545,
0.23261885344982147,
-0.3907102644443512,
-0.6747201085090637,
-0.06532317399978638,
0.5088338851928711,
0.7192501425743103,
-0.05447312816977501,
-0.04148690029978752,
-0.1342276632785797,
0.22029973566532135,
-0.43641775846481323,
0.3020781874656677,
-0.4782569706439972,
-0.0003296853683423251,
-0.1591413915157318,
0.10109807550907135,
-0.6231712698936462,
-0.3842944800853729,
0.44965338706970215,
-0.2742231488227844,
0.3040940463542938,
-0.11649318784475327,
1.4047188758850098,
0.22399188578128815,
-0.4343438148498535,
-0.5635667443275452,
-0.40354347229003906,
0.6551994681358337,
-1.164649248123169,
0.2662643492221832,
0.5700297355651855,
0.16869333386421204,
-0.005063860677182674,
-0.9943407773971558,
-0.7934100031852722,
-0.4730652868747711,
-0.2928442358970642,
0.27680277824401855,
-0.2570818364620209,
0.28542715311050415,
0.13556326925754547,
0.4558912217617035,
-0.7916157245635986,
0.2299700677394867,
-0.24762801826000214,
-0.5304338335990906,
0.3987646996974945,
0.08675289899110794,
0.3635411858558655,
-0.50728440284729,
-0.34416115283966064,
0.10666981339454651,
-0.39269667863845825,
-0.06409009546041489,
-0.02098965086042881,
0.1584036946296692,
-0.46120065450668335,
0.4177316129207611,
0.12559770047664642,
0.6663697361946106,
-0.06378510594367981,
-0.22812344133853912,
0.6106661558151245,
-0.26831725239753723,
-0.2795652151107788,
0.20820169150829315,
0.8680940866470337,
0.0727543756365776,
-0.11046812683343887,
0.05504024773836136,
-0.19508911669254303,
0.2747650742530823,
0.24760645627975464,
-0.7994055151939392,
-0.4150007963180542,
0.2579714357852936,
-0.8146334290504456,
-0.47188800573349,
-0.15674111247062683,
-0.5638609528541565,
-0.2972797453403473,
-0.09698118269443512,
0.6451144218444824,
-0.7158656120300293,
-0.11896369606256485,
-0.0237160362303257,
0.0640198290348053,
0.2990516126155853,
0.15169493854045868,
-0.7749073505401611,
0.337205171585083,
0.4500729441642761,
0.6327375173568726,
0.1231030747294426,
0.013357899151742458,
-0.2726379632949829,
-0.32608115673065186,
-0.19822733104228973,
0.7560553550720215,
-0.38318872451782227,
-0.21232223510742188,
0.10532575845718384,
0.22756698727607727,
-0.2232608050107956,
-0.4513232707977295,
0.9222130179405212,
-0.12922368943691254,
0.5749951601028442,
-0.028431328013539314,
-0.9066797494888306,
-0.36455368995666504,
0.2247566431760788,
-0.23571915924549103,
0.8924053907394409,
0.16344985365867615,
-0.614645779132843,
0.29708239436149597,
-0.693131685256958,
-0.549155056476593,
0.13986963033676147,
-0.18403178453445435,
-0.743484616279602,
0.013040675781667233,
0.04647946357727051,
0.4515323340892792,
-0.26391351222991943,
0.42905789613723755,
-0.44361329078674316,
-0.02292526699602604,
0.3418060839176178,
-0.3067629039287567,
1.0598520040512085,
0.2647300660610199,
-0.2615504860877991,
0.0491831973195076,
-0.9419606328010559,
0.0692361518740654,
0.16520553827285767,
-0.21274615824222565,
-0.2874380648136139,
0.16614404320716858,
0.05800264701247215,
0.2114412784576416,
0.31018340587615967,
-0.7254932522773743,
0.04381641373038292,
-0.5139439105987549,
0.43901216983795166,
0.4183332324028015,
0.2642064094543457,
0.012443376705050468,
-0.48210060596466064,
0.4065700173377991,
-0.033009495586156845,
0.16486242413520813,
-0.15484824776649475,
-0.6752979755401611,
-0.9545051455497742,
-0.5654644966125488,
0.613419771194458,
0.72613924741745,
-0.44021186232566833,
0.9450923204421997,
0.02834649197757244,
-0.5248757004737854,
-0.7654737830162048,
-0.23794105648994446,
0.5396857857704163,
1.0375221967697144,
0.690397322177887,
-0.1846214234828949,
-0.7627866268157959,
-0.917182207107544,
0.08310879021883011,
-0.5046296119689941,
0.1951489895582199,
0.1954481452703476,
0.4969741106033325,
-0.5370266437530518,
0.6976712346076965,
-0.49088746309280396,
-0.37477338314056396,
-0.26653870940208435,
0.4379691779613495,
0.3710889518260956,
0.6491104960441589,
0.6324055194854736,
-0.502264142036438,
-0.4685805141925812,
-0.31007513403892517,
-0.9199737310409546,
-0.3927189111709595,
-0.2326280176639557,
0.013151752762496471,
0.45704567432403564,
0.5204648971557617,
-0.3840855360031128,
0.6783946752548218,
0.30981335043907166,
-0.5400736331939697,
0.6540356874465942,
-0.35898303985595703,
-0.3206426501274109,
-1.0108363628387451,
0.038584597408771515,
-0.028060149401426315,
-0.1724383533000946,
-0.8036342859268188,
-0.0005878900410607457,
0.1699230670928955,
0.22250491380691528,
-0.17314016819000244,
0.5154529809951782,
-0.2684926390647888,
0.4713730812072754,
-0.1481151431798935,
-0.1842384785413742,
-0.04674655199050903,
0.4102056920528412,
0.06428919732570648,
0.19774717092514038,
0.7309265732765198,
-0.6937345266342163,
-0.09273747354745865,
0.6081624627113342,
-0.22627152502536774,
0.46753016114234924,
-0.78404700756073,
-0.13246296346187592,
-0.058396629989147186,
0.08368078619241714,
-1.1651564836502075,
-0.16918613016605377,
0.29428431391716003,
-0.8026724457740784,
0.46242156624794006,
-0.10682159662246704,
-0.7252122759819031,
-0.42478370666503906,
0.0675140842795372,
0.10549333691596985,
0.6277981996536255,
-0.3786742389202118,
0.5410155057907104,
0.3149590492248535,
-0.24504996836185455,
-0.3705786466598511,
-0.9504839181900024,
-0.031240085139870644,
0.04928116127848625,
-0.45301711559295654,
0.39938512444496155,
-0.22428381443023682,
-0.08561091870069504,
0.08568380028009415,
-0.13027210533618927,
-0.4250641167163849,
0.18618455529212952,
0.25886407494544983,
0.7001364827156067,
-0.27305692434310913,
0.5321680307388306,
0.34447887539863586,
-0.14366820454597473,
0.22778885066509247,
0.015421997755765915,
0.5090145468711853,
-0.18665534257888794,
-0.5044095516204834,
-0.6354177594184875,
0.37832093238830566,
0.6003310680389404,
-0.08987949788570404,
0.7438675761222839,
0.5958296656608582,
-0.684465765953064,
0.21980293095111847,
-0.6089831590652466,
-0.2696833908557892,
-0.4363960921764374,
0.42173951864242554,
-0.035906411707401276,
-0.5587717294692993,
0.6109302043914795,
0.3780953586101532,
0.035558898001909256,
0.745423436164856,
0.6832532286643982,
-0.4009927213191986,
0.9839244484901428,
0.4452040493488312,
0.12946519255638123,
0.18013469874858856,
-0.08669202774763107,
0.3946034014225006,
-0.6832917928695679,
-0.1312209814786911,
-0.6334127187728882,
-0.06001875177025795,
-0.6319491863250732,
-0.02499581128358841,
0.3601401448249817,
0.06292207539081573,
-0.2161468118429184,
0.19772906601428986,
-0.7014578580856323,
0.04115389287471771,
0.29954802989959717,
0.22924935817718506,
0.002719442592933774,
-0.2779828608036041,
-0.5546332001686096,
-0.2924997806549072,
-0.5568533539772034,
-0.47768354415893555,
0.910152792930603,
0.6384018063545227,
0.3994729220867157,
0.37047529220581055,
0.8954764604568481,
0.20630131661891937,
0.5813419222831726,
-0.9461371898651123,
0.6745056509971619,
-0.2698822319507599,
-0.8279232382774353,
0.05666983127593994,
-0.32294079661369324,
-1.010530948638916,
0.18282020092010498,
-0.3668557107448578,
-0.7853983640670776,
0.3114780783653259,
0.1452171355485916,
-0.3939143717288971,
0.008585410192608833,
-0.8964274525642395,
0.9349861741065979,
-0.32090023159980774,
0.15858910977840424,
-0.02123962715268135,
-0.911696195602417,
0.2870268225669861,
-0.030174506828188896,
0.046153903007507324,
0.00952123012393713,
0.20599400997161865,
0.7971779108047485,
-0.7456398606300354,
1.1186809539794922,
-0.3812207877635956,
-0.05695437639951706,
0.33005720376968384,
0.013727284036576748,
0.32873591780662537,
-0.07157135754823685,
0.012080200016498566,
0.18469348549842834,
0.26580196619033813,
-0.33034971356391907,
-0.2773802578449249,
0.2825912833213806,
-0.5635303258895874,
-0.25665637850761414,
-0.7588617205619812,
-0.32503217458724976,
-0.18989989161491394,
0.49749335646629333,
0.4470530152320862,
0.6612875461578369,
-0.10711386054754257,
0.12955445051193237,
0.585568904876709,
-0.5881970524787903,
0.44134703278541565,
0.8534029722213745,
-0.07608000934123993,
-0.2749490439891815,
0.7838934063911438,
0.12595129013061523,
0.29491081833839417,
0.5441287755966187,
0.3411281108856201,
-0.49385297298431396,
-0.7096356153488159,
0.11512109637260437,
0.5199921727180481,
-0.7858525514602661,
-0.13691967725753784,
-0.8344476222991943,
-0.6220234632492065,
-0.589177131652832,
0.0955037847161293,
0.03954647481441498,
-0.4658335745334625,
-0.4864026606082916,
-0.13723206520080566,
0.2989100515842438,
0.5023165345191956,
-0.15316714346408844,
0.2856859862804413,
-0.842316210269928,
0.16060256958007812,
0.10592598468065262,
0.19550402462482452,
0.03891430050134659,
-0.7013627290725708,
-0.04035843536257744,
-0.16957037150859833,
-0.44349405169487,
-1.0643925666809082,
0.5263944268226624,
0.06797580420970917,
0.8023044466972351,
0.5617805123329163,
0.21921256184577942,
0.6343207955360413,
-0.3585006594657898,
0.7405902147293091,
0.28337356448173523,
-0.9843729734420776,
0.4861360192298889,
-0.21639065444469452,
0.031041281297802925,
0.5068564414978027,
0.4038400650024414,
-0.6876271367073059,
-0.5822216272354126,
-0.9793872833251953,
-0.9442405104637146,
0.47403663396835327,
0.09818143397569656,
-0.09302554279565811,
-0.36196959018707275,
0.2190473973751068,
-0.00004145938146393746,
0.08021482080221176,
-0.9842000603675842,
-0.49352970719337463,
-0.026644961908459663,
-0.6415690779685974,
0.21963706612586975,
-0.5053955316543579,
-0.028126876801252365,
-0.526187539100647,
0.7747631072998047,
-0.003924061544239521,
0.8075264692306519,
0.6345633864402771,
-0.3125420808792114,
0.2614857256412506,
0.324966698884964,
0.7496761679649353,
0.3807452619075775,
-0.41040053963661194,
0.0958460196852684,
0.1186959370970726,
-0.4994077682495117,
-0.08218101412057877,
0.5701900124549866,
-0.14111033082008362,
0.3638027012348175,
0.701725959777832,
0.7197455167770386,
0.029898280277848244,
-0.5363526344299316,
0.6045148968696594,
-0.09831220656633377,
-0.5196301341056824,
-0.555604875087738,
-0.14876233041286469,
-0.19420264661312103,
-0.03678552806377411,
0.15282326936721802,
0.14108990132808685,
0.10078849643468857,
-0.3764358460903168,
0.3106187880039215,
0.32604050636291504,
-0.6460756659507751,
-0.23591113090515137,
0.6048901081085205,
-0.05490787699818611,
-0.27586784958839417,
0.5924710035324097,
-0.441699355840683,
-0.6572312116622925,
0.6119945049285889,
0.5951905846595764,
0.9739566445350647,
-0.0935288667678833,
0.11843065172433853,
0.46440279483795166,
0.28423985838890076,
0.26021867990493774,
0.44459909200668335,
0.10449609160423279,
-0.8006041049957275,
-0.3727176785469055,
-0.43461620807647705,
-0.20609694719314575,
0.3252875506877899,
-0.7053096890449524,
0.15306007862091064,
-0.5392604470252991,
-0.19349052011966705,
0.2985432744026184,
-0.14322026073932648,
-0.37717604637145996,
0.15331745147705078,
0.3210063576698303,
0.8596521019935608,
-0.8082401752471924,
0.9134955406188965,
0.6862083673477173,
-0.5418961644172668,
-0.8452211618423462,
0.08600775897502899,
0.19406546652317047,
-0.8052382469177246,
0.6063864231109619,
0.11731619387865067,
0.41701024770736694,
-0.3356490731239319,
-0.5153763294219971,
-0.6381667852401733,
0.6485037803649902,
-0.021330980584025383,
-0.2827169895172119,
-0.08036692440509796,
-0.1650989055633545,
0.833880603313446,
-0.15684157609939575,
0.4395473003387451,
0.3169250786304474,
0.43226373195648193,
-0.007643439341336489,
-1.0703725814819336,
0.2473517209291458,
-0.3052620589733124,
-0.29609155654907227,
0.1649947166442871,
-0.37558087706565857,
0.8832735419273376,
-0.27726447582244873,
-0.09293116629123688,
0.4288006126880646,
0.4995124042034149,
0.2237275242805481,
0.3191618025302887,
0.43494150042533875,
0.7038874626159668,
1.0794658660888672,
-0.23197206854820251,
1.0931110382080078,
-0.11857682466506958,
0.4565713703632355,
1.1494295597076416,
-0.18132680654525757,
0.7266454100608826,
0.2665122151374817,
-0.18844585120677948,
1.0384948253631592,
0.5873910188674927,
-0.16889584064483643,
0.529721736907959,
0.03844855725765228,
-0.3033148944377899,
-0.12888377904891968,
0.08761488646268845,
-0.549758791923523,
0.5128920674324036,
0.6937501430511475,
-0.753572404384613,
-0.23371343314647675,
-0.19984014332294464,
0.27216777205467224,
-0.16893704235553741,
0.09642863273620605,
0.7322325706481934,
0.020264042541384697,
-0.6948718428611755,
0.9154571890830994,
-0.07263658940792084,
0.37328141927719116,
-0.7925818562507629,
-0.1891663521528244,
-0.021982327103614807,
0.4348556399345398,
-0.1829996407032013,
-0.4608808755874634,
0.2803093492984772,
-0.10363560169935226,
-0.28423306345939636,
-0.09045620262622833,
0.6626111268997192,
-0.3762342035770416,
-0.564091682434082,
0.13242998719215393,
0.33259400725364685,
0.3320385813713074,
0.38934090733528137,
-0.8896040916442871,
-0.3675673305988312,
0.05039297789335251,
0.2490949183702469,
0.23244987428188324,
0.3288862705230713,
0.03416196256875992,
0.6108736395835876,
0.5653073787689209,
0.16294313967227936,
-0.03572983294725418,
0.09004347771406174,
0.5303770899772644,
-0.5326031446456909,
-0.6678978204727173,
-0.8484867811203003,
0.530702531337738,
-0.08984733372926712,
-0.2706400454044342,
0.6482266187667847,
0.47104787826538086,
0.30412566661834717,
-0.003825986757874489,
0.8016194701194763,
-0.4214700758457184,
0.9317536950111389,
-0.33752602338790894,
0.8071401119232178,
-0.5397927761077881,
0.1403414011001587,
-0.38177528977394104,
-0.20912575721740723,
-0.6073829531669617,
0.9567457437515259,
-0.30122196674346924,
-0.06600070744752884,
0.9796531796455383,
0.7641155123710632,
0.20540305972099304,
0.0113481180742383,
-0.019981317222118378,
0.6659179925918579,
0.49062833189964294,
0.5767788887023926,
0.595100462436676,
-0.5481770634651184,
0.3414568305015564,
-0.16391582787036896,
-0.35686153173446655,
-0.29898449778556824,
-0.8659876585006714,
-0.8830583691596985,
-0.5620015263557434,
-0.6167009472846985,
-0.7950347661972046,
-0.21414721012115479,
0.9877299070358276,
0.681373119354248,
-1.0524990558624268,
0.14227992296218872,
-0.27023980021476746,
0.09976030886173248,
-0.3582776188850403,
-0.28055262565612793,
0.4569411873817444,
-0.4675552248954773,
-0.38384854793548584,
0.26361793279647827,
0.03982009366154671,
0.4109403192996979,
0.05908430740237236,
-0.0066696410067379475,
-0.4785851538181305,
-0.08272376656532288,
0.3923448622226715,
0.42963892221450806,
-0.7309136390686035,
-0.1475890874862671,
-0.006572674959897995,
-0.3203069567680359,
0.15619926154613495,
0.4780799448490143,
-0.7322642803192139,
0.5221236348152161,
0.40533384680747986,
0.6038371920585632,
0.3393899202346802,
-0.345378041267395,
0.26115182042121887,
-0.7344232201576233,
0.1250787079334259,
0.5055629014968872,
0.6428017020225525,
0.093428835272789,
-0.2071748822927475,
0.3429745137691498,
0.4862877428531647,
-0.5722203254699707,
-1.056404948234558,
0.096958689391613,
-1.0677218437194824,
-0.3188767433166504,
0.950117290019989,
-0.09507238119840622,
-0.047889869660139084,
-0.2688409388065338,
-0.1332853138446808,
0.3272734582424164,
-0.2626018822193146,
0.8251071572303772,
0.7569924592971802,
-0.27035725116729736,
-0.04931502789258957,
-0.5120599269866943,
0.3459445834159851,
0.6747430562973022,
-0.7867203950881958,
-0.2839568555355072,
0.25510990619659424,
0.31381216645240784,
0.43453389406204224,
0.6141547560691833,
-0.3100021481513977,
0.26236462593078613,
-0.24932707846164703,
0.2570069134235382,
0.20145297050476074,
-0.015705035999417305,
-0.389678418636322,
-0.084567129611969,
-0.06039978563785553,
-0.4552787244319916
] |
Helsinki-NLP/opus-mt-fi-en | Helsinki-NLP | "2023-08-16T11:34:26Z" | 159,035 | 3 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"fi",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
language:
- fi
- en
tags:
- translation
license: apache-2.0
---
### fin-eng
* source group: Finnish
* target group: English
* OPUS readme: [fin-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md)
* model: transformer-align
* source language(s): fin
* target language(s): eng
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-08-05.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opus-2020-08-05.zip)
* test set translations: [opus-2020-08-05.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opus-2020-08-05.test.txt)
* test set scores: [opus-2020-08-05.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opus-2020-08-05.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newsdev2015-enfi-fineng.fin.eng | 25.3 | 0.536 |
| newstest2015-enfi-fineng.fin.eng | 26.9 | 0.547 |
| newstest2016-enfi-fineng.fin.eng | 29.0 | 0.571 |
| newstest2017-enfi-fineng.fin.eng | 32.3 | 0.594 |
| newstest2018-enfi-fineng.fin.eng | 23.8 | 0.517 |
| newstest2019-fien-fineng.fin.eng | 29.0 | 0.565 |
| newstestB2016-enfi-fineng.fin.eng | 24.5 | 0.527 |
| newstestB2017-enfi-fineng.fin.eng | 27.4 | 0.557 |
| newstestB2017-fien-fineng.fin.eng | 27.4 | 0.557 |
| Tatoeba-test.fin.eng | 53.4 | 0.697 |
### System Info:
- hf_name: fin-eng
- source_languages: fin
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['fi', 'en']
- src_constituents: {'fin'}
- tgt_constituents: {'eng'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opus-2020-08-05.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opus-2020-08-05.test.txt
- src_alpha3: fin
- tgt_alpha3: eng
- short_pair: fi-en
- chrF2_score: 0.6970000000000001
- bleu: 53.4
- brevity_penalty: 0.99
- ref_len: 74651.0
- src_name: Finnish
- tgt_name: English
- train_date: 2020-08-05
- src_alpha2: fi
- tgt_alpha2: en
- prefer_old: False
- long_pair: fin-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 | [
-0.5311129689216614,
-0.7304409146308899,
0.35599759221076965,
0.35731804370880127,
-0.47787025570869446,
-0.21086730062961578,
-0.27857083082199097,
-0.5206116437911987,
0.3641384243965149,
0.32141730189323425,
-0.7137656211853027,
-0.8471449017524719,
-0.5154335498809814,
0.36951178312301636,
0.08253683149814606,
0.9657067060470581,
-0.15084514021873474,
0.08082473278045654,
0.42782318592071533,
-0.3975147306919098,
-0.4990895390510559,
-0.16528888046741486,
-0.7810315489768982,
-0.2913856506347656,
0.4833063781261444,
0.3910440504550934,
0.41766512393951416,
0.5530451536178589,
0.7252876162528992,
0.3024753928184509,
-0.34290289878845215,
0.19930267333984375,
-0.1515522450208664,
-0.22319504618644714,
0.021085383370518684,
-0.4555595815181732,
-0.7318432927131653,
-0.23592261970043182,
0.927944540977478,
0.5763900876045227,
0.18285547196865082,
0.5453326106071472,
-0.09628301113843918,
0.8526142239570618,
-0.25801587104797363,
0.22508396208286285,
-0.5000178217887878,
-0.17025114595890045,
-0.42625439167022705,
-0.26905232667922974,
-0.5396077632904053,
-0.2050311267375946,
0.13743126392364502,
-0.6957525014877319,
0.0886475071310997,
0.22068578004837036,
1.7724246978759766,
0.10006771236658096,
-0.3805654048919678,
-0.1102936789393425,
-0.3545183837413788,
0.8207651376724243,
-0.9572461843490601,
0.5063937306404114,
0.5056476593017578,
-0.133395716547966,
-0.01163921132683754,
-0.4815027415752411,
-0.3644023537635803,
0.174682155251503,
-0.41772621870040894,
0.2941915690898895,
-0.1729210764169693,
-0.056742746382951736,
0.08519235253334045,
0.6560748815536499,
-0.7048505544662476,
0.07513277977705002,
-0.5449533462524414,
-0.22336892783641815,
0.6632670760154724,
0.04799589887261391,
0.2385532259941101,
-0.597972571849823,
-0.5913766622543335,
-0.5596266984939575,
-0.5836716890335083,
0.33239084482192993,
0.6046462655067444,
0.5546982288360596,
-0.597091019153595,
0.6772759556770325,
-0.12781912088394165,
0.6271347403526306,
0.07172302901744843,
-0.1108148992061615,
0.7650095224380493,
-0.7477889657020569,
-0.2622838020324707,
-0.08411463350057602,
1.344120740890503,
0.34604451060295105,
-0.05427132546901703,
0.22985032200813293,
-0.37361517548561096,
-0.39212414622306824,
-0.1548597365617752,
-0.8110653758049011,
0.18823255598545074,
0.34631723165512085,
-0.3565753400325775,
-0.26708951592445374,
0.16865219175815582,
-0.8948968648910522,
0.2738398313522339,
0.10831774026155472,
0.6484275460243225,
-0.8123006224632263,
-0.3679531216621399,
0.44355449080467224,
-0.03757782652974129,
0.39706334471702576,
-0.15580493211746216,
-0.609488844871521,
0.22943083941936493,
0.4734537601470947,
0.9729360938072205,
-0.08611446619033813,
-0.34341683983802795,
-0.17423617839813232,
-0.0017968137981370091,
-0.13245773315429688,
0.7344997525215149,
-0.1525639295578003,
-0.3469877243041992,
-0.2196962684392929,
0.3960990607738495,
-0.2751446068286896,
-0.11362924426794052,
0.9558566808700562,
-0.3097659945487976,
0.6195857524871826,
-0.3794664442539215,
-0.5966373682022095,
-0.44885653257369995,
0.2857896089553833,
-0.8290219306945801,
1.2787092924118042,
0.3000103235244751,
-0.9765595197677612,
0.3880821168422699,
-0.988789975643158,
-0.1355469673871994,
-0.03904007002711296,
0.22139447927474976,
-0.8104953765869141,
-0.15712636709213257,
0.22930115461349487,
0.4182705283164978,
-0.4864264726638794,
0.5821058750152588,
-0.11640089005231857,
-0.2594241201877594,
-0.05514656752347946,
-0.3235243260860443,
1.3437074422836304,
0.22512227296829224,
-0.5338631272315979,
0.1358656883239746,
-0.8209310173988342,
-0.029604706913232803,
0.2624739408493042,
-0.34736597537994385,
-0.3334561288356781,
-0.25055205821990967,
0.272901713848114,
0.011465046554803848,
0.30295324325561523,
-0.7279285192489624,
0.2837165594100952,
-0.7774450778961182,
0.3405155539512634,
0.86452317237854,
0.19549566507339478,
0.24163562059402466,
-0.5023319721221924,
0.35861650109291077,
0.18985307216644287,
0.19976456463336945,
0.03986173868179321,
-0.6237096190452576,
-0.8102955222129822,
-0.36893734335899353,
0.6297205686569214,
0.6975136399269104,
-0.7242522835731506,
0.8283489942550659,
-0.6717290878295898,
-0.9124640822410583,
-0.7242762446403503,
-0.21370644867420197,
0.625414252281189,
0.4585908353328705,
0.5282039642333984,
-0.22370164096355438,
-0.5341558456420898,
-1.2352474927902222,
-0.16802869737148285,
-0.45424333214759827,
0.04617474973201752,
0.23926636576652527,
0.9084188938140869,
0.04659316688776016,
0.7023276686668396,
-0.4950788617134094,
-0.49670660495758057,
-0.08766365051269531,
0.2141513079404831,
0.5466761589050293,
0.8856701850891113,
0.8105006814002991,
-0.9487799406051636,
-0.5536442995071411,
0.1234644204378128,
-0.6365190744400024,
-0.14001896977424622,
-0.10686664283275604,
-0.32645946741104126,
0.4261188209056854,
0.02692149579524994,
-0.5677376389503479,
0.2151918113231659,
0.5839259624481201,
-1.0235530138015747,
0.5192466378211975,
-0.13220559060573578,
0.3746640086174011,
-1.469537615776062,
0.34315693378448486,
0.01729372888803482,
-0.11281802505254745,
-0.4089301526546478,
0.07959423959255219,
0.11172642558813095,
0.24493464827537537,
-0.546955943107605,
0.8920992016792297,
-0.5790050625801086,
0.01050072256475687,
0.5043931603431702,
0.08521765470504761,
0.01044033095240593,
0.9435626268386841,
-0.17061635851860046,
1.022446870803833,
0.5018006563186646,
-0.41555842757225037,
0.07122409343719482,
0.4488446116447449,
-0.4362613260746002,
0.3208872973918915,
-0.7486090660095215,
-0.21464233100414276,
0.3483325242996216,
-0.059542540460824966,
-0.9486484527587891,
-0.18612246215343475,
0.29320982098579407,
-0.7391884326934814,
0.35708868503570557,
-0.09529557824134827,
-0.562598466873169,
-0.30435580015182495,
-0.5271598696708679,
0.528974175453186,
0.3819037079811096,
-0.22328202426433563,
0.8179605603218079,
0.22114868462085724,
-0.12716956436634064,
-0.7435210347175598,
-0.8579611778259277,
-0.16302670538425446,
-0.27513423562049866,
-0.7947980761528015,
0.5236201286315918,
-0.17950190603733063,
0.0034177806228399277,
0.25039398670196533,
-0.05760583654046059,
-0.15720729529857635,
0.16200757026672363,
-0.008055515587329865,
0.4860117733478546,
-0.4622935354709625,
0.0605296827852726,
0.023182334378361702,
-0.09095597267150879,
-0.16706784069538116,
-0.28155022859573364,
0.7883049845695496,
-0.6028299927711487,
-0.20273162424564362,
-0.6890506148338318,
0.047591906040906906,
0.6187636852264404,
-0.4198874235153198,
1.0270037651062012,
0.5784839391708374,
-0.2915211319923401,
0.3544065058231354,
-0.6840020418167114,
0.09161551296710968,
-0.4743974506855011,
0.31046631932258606,
-0.6387956738471985,
-0.7984899282455444,
1.0111793279647827,
0.34599024057388306,
0.3931966722011566,
1.2135233879089355,
0.5215532183647156,
0.15027640759944916,
0.5532649755477905,
0.4268782138824463,
0.2211994081735611,
0.5835224390029907,
-0.6984471678733826,
-0.2102476954460144,
-0.8700084686279297,
-0.35218510031700134,
-0.762398362159729,
-0.27626070380210876,
-1.0190867185592651,
-0.13701531291007996,
0.3314463794231415,
-0.021731995046138763,
-0.3428451418876648,
0.8367139101028442,
-0.5288808345794678,
0.3353344202041626,
0.6375246047973633,
0.14415714144706726,
0.29837408661842346,
-0.11580683290958405,
-0.5227032899856567,
-0.02448512427508831,
-0.5922731757164001,
-0.5601016283035278,
1.3144419193267822,
0.42794492840766907,
0.12825274467468262,
0.2711097300052643,
0.7786216139793396,
0.10407911986112595,
0.20019400119781494,
-0.6466411352157593,
0.519833505153656,
-0.2293647974729538,
-0.9625206589698792,
-0.4990171492099762,
-0.5106074810028076,
-0.961657702922821,
0.21949046850204468,
-0.24991974234580994,
-0.7063648700714111,
0.3156060576438904,
-0.1495339274406433,
-0.2014010101556778,
0.7549929022789001,
-0.8303381204605103,
1.0812458992004395,
0.030297089368104935,
-0.38615426421165466,
0.18484710156917572,
-0.7068807482719421,
0.34160733222961426,
-0.21399059891700745,
0.32784202694892883,
-0.17206954956054688,
-0.1716042309999466,
1.0619901418685913,
-0.3888145089149475,
0.6655187010765076,
-0.1660982072353363,
-0.16850008070468903,
0.28348308801651,
0.024417318403720856,
0.5113362073898315,
-0.11122886091470718,
-0.31818363070487976,
0.3585736155509949,
0.17432406544685364,
-0.6612260341644287,
-0.15301647782325745,
0.5427412390708923,
-0.8657511472702026,
-0.48321303725242615,
-0.5207659602165222,
-0.6332083940505981,
-0.05260330066084862,
0.5176260471343994,
0.4804527759552002,
0.6203404664993286,
-0.06208110228180885,
0.6198772192001343,
0.7319827675819397,
-0.34388864040374756,
0.5914879441261292,
0.5740497708320618,
0.015170466154813766,
-0.7605423331260681,
0.7850183248519897,
0.23272743821144104,
0.34493714570999146,
0.5794945955276489,
0.13012918829917908,
-0.28328585624694824,
-0.7395532727241516,
-0.5870704650878906,
0.5379721522331238,
-0.4148561358451843,
-0.4710078537464142,
-0.5861597657203674,
-0.0832078754901886,
-0.32685723900794983,
0.03611758351325989,
-0.5723676085472107,
-0.564857542514801,
-0.0773213729262352,
-0.3859902620315552,
0.5830364227294922,
0.42920970916748047,
-0.0653207004070282,
0.29794299602508545,
-0.8794429302215576,
0.11550231277942657,
-0.20032843947410583,
0.6423424482345581,
-0.3195021152496338,
-0.8073803186416626,
-0.281648188829422,
-0.02954218164086342,
-0.22338205575942993,
-0.9904237389564514,
0.5358777642250061,
0.03104461543262005,
0.36442482471466064,
0.16357259452342987,
0.17522534728050232,
0.7408513426780701,
-0.31866249442100525,
1.1003684997558594,
0.017867475748062134,
-0.9563982486724854,
0.638211190700531,
-0.4592534005641937,
0.4370551109313965,
0.7815612554550171,
0.2886893153190613,
-0.3070119619369507,
-0.8302760124206543,
-0.9936783313751221,
-1.0961130857467651,
0.9068441390991211,
0.5620477795600891,
-0.15258929133415222,
-0.014565086923539639,
0.22067371010780334,
0.11078863590955734,
-0.22018298506736755,
-1.1473493576049805,
-0.6238031387329102,
0.12750990688800812,
-0.4962465167045593,
0.09741360694169998,
-0.45938053727149963,
-0.10325248539447784,
-0.2701321840286255,
1.2012312412261963,
0.1141909658908844,
0.22553013265132904,
0.5746288895606995,
0.0012604892253875732,
-0.03572884202003479,
0.33911028504371643,
0.8609750270843506,
0.4560692310333252,
-0.48619920015335083,
-0.1419520527124405,
0.34249791502952576,
-0.6982455253601074,
0.07475720345973969,
0.1038639098405838,
-0.5374168753623962,
0.3084815442562103,
0.6103470921516418,
1.0292540788650513,
0.295324444770813,
-0.5218805074691772,
0.5123612284660339,
-0.1127094104886055,
-0.592943549156189,
-0.43912091851234436,
-0.2556532919406891,
0.06894839555025101,
0.1592102199792862,
0.43579137325286865,
0.0685301199555397,
-0.03063540905714035,
-0.23427705466747284,
0.1028994545340538,
0.11342451721429825,
-0.3444884121417999,
-0.4263693690299988,
0.693478524684906,
0.14417651295661926,
-0.26745399832725525,
0.33462101221084595,
-0.2758620083332062,
-0.40669336915016174,
0.718342125415802,
0.2974914610385895,
1.2054306268692017,
-0.16223755478858948,
-0.11376818269491196,
0.9291236996650696,
0.5790756940841675,
-0.06161891296505928,
0.48731815814971924,
0.2930035889148712,
-0.621584415435791,
-0.386895090341568,
-0.8957959413528442,
0.106846384704113,
0.156140998005867,
-0.9348134994506836,
0.4362626075744629,
-0.04544060304760933,
-0.4320094883441925,
-0.036375924944877625,
0.46640312671661377,
-0.6804525256156921,
0.0753014087677002,
-0.3227359652519226,
1.1868685483932495,
-1.0506035089492798,
0.7553911209106445,
0.7926813960075378,
-0.8050062656402588,
-1.1320124864578247,
-0.24210861325263977,
-0.28990885615348816,
-0.5865899324417114,
0.6012884974479675,
0.014891699887812138,
0.013384324498474598,
0.017887886613607407,
-0.380205899477005,
-0.9941030740737915,
1.3807272911071777,
0.4356752336025238,
-0.4106496274471283,
-0.15397359430789948,
-0.014718118123710155,
0.5155211687088013,
-0.11673424392938614,
0.2617431581020355,
0.49920928478240967,
0.9412296414375305,
-0.19571031630039215,
-1.291321873664856,
0.17163516581058502,
-0.6180664896965027,
-0.15738148987293243,
0.41373109817504883,
-1.0276997089385986,
0.9949002265930176,
0.17520703375339508,
-0.24564653635025024,
0.0022538146004080772,
0.631109356880188,
0.4802248477935791,
0.1442381739616394,
0.6185746788978577,
0.8520275354385376,
0.5787855982780457,
-0.5755391120910645,
1.0716526508331299,
-0.462019145488739,
0.6409320831298828,
0.9243001341819763,
0.35159191489219666,
0.934377908706665,
0.6404742002487183,
-0.30959850549697876,
0.6931285262107849,
0.8903124332427979,
-0.2082844078540802,
0.35755079984664917,
-0.24850812554359436,
0.01292117778211832,
-0.2599255442619324,
-0.1534748375415802,
-0.5131299495697021,
0.46386000514030457,
0.11094127595424652,
-0.19458244740962982,
0.07344995439052582,
-0.24775926768779755,
0.3306949734687805,
-0.008731679990887642,
-0.23446474969387054,
0.7078186869621277,
-0.11086343973875046,
-0.7104242444038391,
0.7949838042259216,
0.050171591341495514,
0.7980606555938721,
-0.7799481749534607,
0.11244802922010422,
-0.2846794128417969,
0.09697365760803223,
-0.08389570564031601,
-0.943081259727478,
0.3983522951602936,
0.26487529277801514,
-0.25873368978500366,
-0.32323598861694336,
0.2620914578437805,
-0.48579296469688416,
-0.8331546187400818,
0.45195162296295166,
0.46305814385414124,
0.23252205550670624,
0.3246293365955353,
-0.7496578693389893,
-0.07127135246992111,
0.2065691500902176,
-0.8189905881881714,
-0.0788755863904953,
0.757827877998352,
0.10676947236061096,
0.6975298523902893,
0.5357118248939514,
0.16611360013484955,
0.015408734790980816,
-0.12496545910835266,
0.7306824326515198,
-0.8469390273094177,
-0.5205517411231995,
-0.9563895463943481,
0.66058349609375,
-0.07083608955144882,
-0.7261664867401123,
0.5714388489723206,
0.9132232666015625,
1.0982204675674438,
-0.024859733879566193,
0.291574627161026,
-0.2349129319190979,
0.4264494776725769,
-0.8026428818702698,
0.7906476855278015,
-1.043558955192566,
0.18714343011379242,
-0.2285729944705963,
-0.8170939683914185,
-0.323529452085495,
0.32428452372550964,
-0.20473520457744598,
-0.05636868253350258,
1.0585652589797974,
0.701912522315979,
0.10650606453418732,
-0.20489321649074554,
-0.04875136911869049,
0.3948470950126648,
0.23506908118724823,
0.8384227156639099,
0.1993492841720581,
-1.0270644426345825,
0.7117899656295776,
-0.43208739161491394,
0.13849155604839325,
-0.007758168037980795,
-0.7997010350227356,
-0.8248111009597778,
-0.813037097454071,
-0.23676875233650208,
-0.3578517735004425,
-0.20425550639629364,
1.1443840265274048,
0.3267184793949127,
-1.0769894123077393,
-0.4207693338394165,
-0.0058281696401536465,
0.18088126182556152,
-0.3472098410129547,
-0.2867906093597412,
0.8641756772994995,
-0.1523166000843048,
-1.0675536394119263,
0.13178880512714386,
0.013890865258872509,
0.2101134955883026,
0.009656812995672226,
-0.07106729596853256,
-0.7333127856254578,
-0.04813661798834801,
0.22148847579956055,
0.09633110463619232,
-0.8951235413551331,
-0.25444382429122925,
0.20192258059978485,
-0.2861410975456238,
0.29293814301490784,
0.049079522490501404,
-0.31062042713165283,
0.18802323937416077,
0.7916274666786194,
0.419172078371048,
0.5934378504753113,
-0.09546838700771332,
0.4729892909526825,
-0.8125826120376587,
0.41042405366897583,
0.13591252267360687,
0.634965181350708,
0.22859641909599304,
-0.23550629615783691,
0.9574710726737976,
0.3973657190799713,
-0.25368767976760864,
-1.1277194023132324,
-0.18624946475028992,
-1.346575379371643,
-0.11624061316251755,
1.0313315391540527,
-0.2766816020011902,
-0.5338312983512878,
0.25166088342666626,
-0.17956899106502533,
0.43362143635749817,
-0.51003098487854,
0.5035265684127808,
1.0336796045303345,
0.3596126437187195,
0.16827881336212158,
-0.5972814559936523,
0.2898190915584564,
0.5108010768890381,
-0.7253381609916687,
-0.09113327413797379,
0.1815311312675476,
0.37484508752822876,
0.40803471207618713,
0.6992621421813965,
-0.3661295473575592,
0.16200606524944305,
-0.0800020769238472,
0.36202624440193176,
-0.31351611018180847,
-0.032222747802734375,
-0.23041479289531708,
0.12670716643333435,
-0.2080237716436386,
-0.19026848673820496
] |
tner/roberta-large-ontonotes5 | tner | "2022-09-26T14:12:05Z" | 158,259 | 6 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"dataset:tner/ontonotes5",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | token-classification | "2022-08-12T10:33:41Z" | ---
datasets:
- tner/ontonotes5
metrics:
- f1
- precision
- recall
model-index:
- name: tner/roberta-large-ontonotes5
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: tner/ontonotes5
type: tner/ontonotes5
args: tner/ontonotes5
metrics:
- name: F1
type: f1
value: 0.908632361399938
- name: Precision
type: precision
value: 0.905148095909732
- name: Recall
type: recall
value: 0.9121435551212579
- name: F1 (macro)
type: f1_macro
value: 0.8265477704565624
- name: Precision (macro)
type: precision_macro
value: 0.8170668848546687
- name: Recall (macro)
type: recall_macro
value: 0.8387672780349001
- name: F1 (entity span)
type: f1_entity_span
value: 0.9284544931640193
- name: Precision (entity span)
type: precision_entity_span
value: 0.9248942172073342
- name: Recall (entity span)
type: recall_entity_span
value: 0.9320422848005685
pipeline_tag: token-classification
widget:
- text: "Jacob Collier is a Grammy awarded artist from England."
example_title: "NER Example 1"
---
# tner/roberta-large-ontonotes5
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
[tner/ontonotes5](https://huggingface.co/datasets/tner/ontonotes5) dataset.
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
for more detail). It achieves the following results on the test set:
- F1 (micro): 0.908632361399938
- Precision (micro): 0.905148095909732
- Recall (micro): 0.9121435551212579
- F1 (macro): 0.8265477704565624
- Precision (macro): 0.8170668848546687
- Recall (macro): 0.8387672780349001
The per-entity breakdown of the F1 score on the test set are below:
- cardinal_number: 0.8605277329025309
- date: 0.872996300863132
- event: 0.7424242424242424
- facility: 0.7732342007434945
- geopolitical_area: 0.9687148323205043
- group: 0.9470588235294117
- language: 0.7499999999999999
- law: 0.6666666666666666
- location: 0.7593582887700535
- money: 0.901098901098901
- ordinal_number: 0.85785536159601
- organization: 0.9227360841872057
- percent: 0.9171428571428571
- person: 0.9556004036326943
- product: 0.7857142857142858
- quantity: 0.7945205479452055
- time: 0.6870588235294116
- work_of_art: 0.7151515151515151
For F1 scores, the confidence interval is obtained by bootstrap as below:
- F1 (micro):
- 90%: [0.9039454247544766, 0.9128956119702822]
- 95%: [0.9030263216115454, 0.9138350859566045]
- F1 (macro):
- 90%: [0.9039454247544766, 0.9128956119702822]
- 95%: [0.9030263216115454, 0.9138350859566045]
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/eval/metric.json)
and [metric file of entity span](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/eval/metric_span.json).
### Usage
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
```shell
pip install tner
```
and activate model as below.
```python
from tner import TransformersNER
model = TransformersNER("tner/roberta-large-ontonotes5")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
```
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
### Training hyperparameters
The following hyperparameters were used during training:
- dataset: ['tner/ontonotes5']
- dataset_split: train
- dataset_name: None
- local_dataset: None
- model: roberta-large
- crf: True
- max_length: 128
- epoch: 15
- batch_size: 64
- lr: 1e-05
- random_seed: 42
- gradient_accumulation_steps: 1
- weight_decay: None
- lr_warmup_step_ratio: 0.1
- max_grad_norm: 10.0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/trainer_config.json).
### Reference
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-camacho-collados-2021-ner,
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
author = "Ushio, Asahi and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-demos.7",
doi = "10.18653/v1/2021.eacl-demos.7",
pages = "53--62",
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}
```
| [
-0.5078786611557007,
-0.7227104306221008,
0.41673144698143005,
0.1898936927318573,
-0.14963580667972565,
-0.16568395495414734,
-0.5673261880874634,
-0.41323763132095337,
0.40061619877815247,
0.36462870240211487,
-0.4488464891910553,
-0.7185122966766357,
-0.7768361568450928,
0.281134694814682,
-0.3141936659812927,
1.0989956855773926,
-0.042760081589221954,
0.08955507725477219,
0.17136085033416748,
-0.1059107705950737,
-0.1863948106765747,
-0.4045773148536682,
-1.0273215770721436,
-0.22916410863399506,
0.610942542552948,
0.266249418258667,
0.32200202345848083,
0.5271478891372681,
0.6151940822601318,
0.34512487053871155,
-0.15024037659168243,
0.007149810902774334,
-0.40422242879867554,
-0.02199620194733143,
-0.03590824082493782,
-0.5049346089363098,
-0.5844677090644836,
-0.020242368802428246,
0.8027933835983276,
0.4069640636444092,
0.11030544340610504,
0.47382888197898865,
0.11656195670366287,
0.4450444281101227,
-0.39061492681503296,
0.23100928962230682,
-0.49719130992889404,
-0.0998937115073204,
-0.25425857305526733,
-0.19219519197940826,
-0.36769047379493713,
-0.272989958524704,
0.1897967904806137,
-0.7106737494468689,
0.42068368196487427,
0.2923957407474518,
1.453100323677063,
0.33786919713020325,
-0.236168771982193,
0.04312983155250549,
-0.6349471807479858,
1.046512246131897,
-0.7478388547897339,
0.4832630753517151,
0.23796802759170532,
0.18005311489105225,
-0.17390647530555725,
-0.8645474910736084,
-0.6971657872200012,
-0.13656480610370636,
-0.15410207211971283,
-0.01205255277454853,
-0.3430163860321045,
-0.04347560182213783,
0.3757087290287018,
0.44889751076698303,
-0.5189945101737976,
0.07392667979001999,
-0.32976362109184265,
-0.14383554458618164,
0.5872097611427307,
0.1583949476480484,
0.12095517665147781,
-0.2788797914981842,
-0.3070951998233795,
-0.4256499111652374,
-0.41276970505714417,
0.07393176853656769,
0.06529194861650467,
0.6045183539390564,
-0.33501723408699036,
0.5278381109237671,
-0.09640585631132126,
0.7150205373764038,
0.42544421553611755,
-0.1774156242609024,
0.5437451601028442,
-0.24633342027664185,
-0.3225206434726715,
-0.11041583865880966,
1.1689157485961914,
0.3436488211154938,
0.44223177433013916,
-0.06733803451061249,
-0.2801193296909332,
-0.19997990131378174,
0.08586350083351135,
-0.9198539853096008,
-0.20561735332012177,
0.1817425936460495,
-0.36055558919906616,
-0.30561691522598267,
0.11545319855213165,
-0.8585259318351746,
-0.07872491329908371,
-0.38522353768348694,
0.4706765115261078,
-0.5607922673225403,
-0.23031122982501984,
0.011922094039618969,
-0.16429345309734344,
0.22230714559555054,
0.2638641595840454,
-0.6609860062599182,
0.29864874482154846,
0.523881196975708,
0.8573951721191406,
-0.0091093759983778,
-0.1861957162618637,
-0.4439952075481415,
-0.16184194386005402,
-0.1283065229654312,
0.7056295275688171,
-0.4038947820663452,
-0.26113462448120117,
-0.2987717092037201,
0.33546146750450134,
-0.40314429998397827,
-0.3320293128490448,
0.6843517422676086,
-0.46355804800987244,
0.3539888262748718,
-0.08538693934679031,
-0.6262072920799255,
-0.14930427074432373,
0.44927433133125305,
-0.8132216930389404,
1.170881986618042,
0.23755887150764465,
-0.8708661198616028,
0.49144187569618225,
-0.6760596036911011,
-0.2742365002632141,
-0.13036476075649261,
-0.01497799064964056,
-0.8466768860816956,
-0.06225617229938507,
0.3180141746997833,
0.570129930973053,
-0.5594228506088257,
0.3448100984096527,
-0.38283687829971313,
-0.4076118469238281,
0.23341040313243866,
-0.3387601971626282,
0.8021817207336426,
-0.05691876634955406,
-0.5676499605178833,
0.05333844572305679,
-1.054240345954895,
0.33349573612213135,
0.21353691816329956,
-0.32160714268684387,
-0.31529656052589417,
-0.5378669500350952,
0.5372583270072937,
0.21664026379585266,
0.09837266057729721,
-0.5225334763526917,
0.11095993965864182,
-0.3408520221710205,
0.4698592722415924,
0.555574893951416,
0.28244534134864807,
0.3271659314632416,
-0.2682822048664093,
0.4221244752407074,
0.08446362614631653,
0.024541927501559258,
0.20902079343795776,
-0.39813557267189026,
-0.9585964679718018,
-0.2515864372253418,
0.8519356846809387,
0.4465871751308441,
-0.4759190082550049,
0.6904160380363464,
-0.5090653300285339,
-0.6639246344566345,
-0.544740617275238,
-0.16850653290748596,
0.4648890793323517,
0.6536704301834106,
0.7715449929237366,
0.02475258894264698,
-0.7348924875259399,
-0.7897421717643738,
-0.18408456444740295,
0.017734356224536896,
-0.08360515534877777,
0.2009715735912323,
0.7358631491661072,
-0.06789529323577881,
0.6716617345809937,
-0.45682474970817566,
-0.5217585563659668,
-0.25800231099128723,
-0.04496634751558304,
0.3966875672340393,
0.6829215884208679,
0.45982974767684937,
-0.7849206924438477,
-0.6045992970466614,
-0.09898766130208969,
-0.5888355374336243,
0.2649807929992676,
-0.14146292209625244,
0.028834400698542595,
0.3735674321651459,
0.47371602058410645,
-0.7135052680969238,
0.43764859437942505,
0.4474579691886902,
-0.42603686451911926,
0.47884953022003174,
-0.09830863773822784,
0.1496049463748932,
-1.425157904624939,
0.34480711817741394,
0.5388326644897461,
-0.06402886658906937,
-0.5648562908172607,
-0.06571692228317261,
0.11288607120513916,
0.22113457322120667,
-0.18835888803005219,
0.8072465062141418,
-0.49900388717651367,
0.16925500333309174,
0.07286620885133743,
0.11070548743009567,
0.08679376542568207,
0.4867660105228424,
0.08791559934616089,
0.6984273195266724,
0.4929434359073639,
-0.5958239436149597,
0.04171646013855934,
0.32763221859931946,
-0.40494412183761597,
0.5202381014823914,
-0.8278539180755615,
-0.023749718442559242,
0.18789741396903992,
0.2788166105747223,
-0.6591224074363708,
-0.16436196863651276,
0.2568458318710327,
-0.6336047649383545,
0.6737198829650879,
-0.22266170382499695,
-0.3956799805164337,
-0.3975485563278198,
-0.13270330429077148,
0.26090264320373535,
0.3270612061023712,
-0.4044409394264221,
0.7323906421661377,
0.26930132508277893,
0.04113355278968811,
-0.6761960387229919,
-0.701137125492096,
-0.02592109516263008,
-0.4226699769496918,
-0.5580973029136658,
0.5322251915931702,
0.06547584384679794,
-0.11960133910179138,
-0.00519029563292861,
-0.049579918384552,
-0.03415760397911072,
-0.1282317340373993,
0.31473395228385925,
0.47820931673049927,
-0.4154122471809387,
0.23671117424964905,
-0.18841911852359772,
-0.3852182626724243,
-0.051809635013341904,
-0.3267691433429718,
0.7545091509819031,
-0.31041190028190613,
0.07056758552789688,
-0.6649120450019836,
-0.19071856141090393,
0.3782762289047241,
-0.355771541595459,
0.8498704433441162,
0.89524906873703,
-0.3801552653312683,
0.0701676458120346,
-0.6448106169700623,
-0.14965881407260895,
-0.46727120876312256,
0.4608643651008606,
-0.6252202987670898,
-0.9049729108810425,
0.49047279357910156,
-0.03204749524593353,
-0.0827716663479805,
0.9595221281051636,
0.33099982142448425,
0.020743969827890396,
0.7311146855354309,
0.5543793439865112,
-0.172868013381958,
0.4552789628505707,
-0.6725727319717407,
0.21904705464839935,
-0.9747328758239746,
-0.3199259042739868,
-0.7383940815925598,
-0.4497935473918915,
-0.8469395041465759,
-0.3880593776702881,
0.282685250043869,
0.05018826201558113,
-0.5960534811019897,
0.555526077747345,
-0.5232865214347839,
0.3021935224533081,
0.652996838092804,
0.17154067754745483,
0.21530452370643616,
-0.04957304522395134,
-0.06899938732385635,
-0.17583498358726501,
-0.4002474844455719,
-0.4085451662540436,
1.22795569896698,
0.32250508666038513,
0.5372612476348877,
-0.18910789489746094,
0.8799418210983276,
-0.07681729644536972,
0.2045031040906906,
-0.7406848073005676,
0.5249111652374268,
-0.14623360335826874,
-0.659935474395752,
-0.5565667748451233,
-0.6386175751686096,
-0.9923729300498962,
0.05813436582684517,
-0.5104416608810425,
-0.9047977328300476,
0.30606594681739807,
0.06462682783603668,
-0.45797082781791687,
0.49069744348526,
-0.43641397356987,
0.9368796944618225,
-0.07052523642778397,
-0.2881629765033722,
0.09268161654472351,
-0.5863047242164612,
0.09760775417089462,
-0.10684067010879517,
-0.04703657701611519,
0.07044513523578644,
0.026058342307806015,
0.8155920505523682,
-0.2552531063556671,
0.6230705976486206,
-0.2085311859846115,
0.21351268887519836,
0.13151535391807556,
-0.13162845373153687,
0.5981191992759705,
0.15423047542572021,
-0.2945401668548584,
0.37218084931373596,
-0.06384225189685822,
-0.3048860430717468,
-0.5828752517700195,
0.8165125250816345,
-0.8589402437210083,
-0.4215029776096344,
-0.4841666519641876,
-0.5332592725753784,
-0.10946372896432877,
0.4647015929222107,
0.498683363199234,
0.45876646041870117,
-0.194125235080719,
0.3971075713634491,
0.6986126899719238,
-0.1271481215953827,
0.41752687096595764,
0.34388604760169983,
-0.022303560748696327,
-0.5667108297348022,
0.8422536253929138,
0.13226795196533203,
0.10365166515111923,
0.578993558883667,
0.04313123971223831,
-0.3959971070289612,
-0.512597918510437,
-0.43134066462516785,
0.5013625025749207,
-0.35538533329963684,
-0.3642001152038574,
-0.9039420485496521,
-0.36049121618270874,
-0.41219446063041687,
0.055115748196840286,
-0.3733811378479004,
-0.6482029557228088,
-0.4873654544353485,
-0.14823569357395172,
0.5076395869255066,
0.5451295375823975,
0.15452982485294342,
0.2226383537054062,
-0.6337963938713074,
0.13700293004512787,
-0.1761956661939621,
0.44465968012809753,
0.015816623345017433,
-0.8795346021652222,
-0.20417939126491547,
-0.022065695375204086,
-0.2522275447845459,
-0.5060530304908752,
0.49803128838539124,
0.214458167552948,
0.34728917479515076,
0.3765960931777954,
0.04662283882498741,
0.9022233486175537,
-0.35642534494400024,
0.6177284121513367,
0.18231892585754395,
-0.8207114338874817,
0.36326590180397034,
-0.18626002967357635,
0.15786056220531464,
0.6612481474876404,
0.5102867484092712,
-0.5023815631866455,
-0.4203648865222931,
-0.9882213473320007,
-0.8924736380577087,
0.7328125238418579,
0.19380402565002441,
-0.16094394028186798,
0.16116675734519958,
0.2952914535999298,
-0.20049118995666504,
-0.024323662742972374,
-0.8193215131759644,
-0.48602616786956787,
-0.08590023964643478,
-0.3785761594772339,
-0.4019678831100464,
0.042916059494018555,
-0.06968771666288376,
-0.40787047147750854,
0.8805829882621765,
0.011080984957516193,
0.2739277482032776,
0.2760809361934662,
-0.04290745034813881,
-0.139182910323143,
0.2887025773525238,
0.44598188996315,
0.3424718379974365,
-0.35033759474754333,
-0.11455190181732178,
0.34504660964012146,
-0.557582437992096,
-0.0018233456648886204,
0.4728117287158966,
-0.2811674177646637,
0.05911785736680031,
0.39611271023750305,
0.8428722023963928,
0.2936910390853882,
-0.28092730045318604,
0.44545167684555054,
-0.26420748233795166,
-0.34382128715515137,
-0.6530247330665588,
0.15605619549751282,
0.08668193966150284,
0.3014443516731262,
0.2977645695209503,
0.30589139461517334,
0.027675379067659378,
-0.15759821236133575,
0.21020586788654327,
0.3087310492992401,
-0.5613970756530762,
-0.32100018858909607,
0.6763678789138794,
-0.12970110774040222,
-0.29428139328956604,
0.8054291605949402,
-0.1315731555223465,
-0.40250420570373535,
0.7353781461715698,
0.6253719329833984,
0.8342558145523071,
-0.1608717441558838,
0.07150882482528687,
0.9069728255271912,
0.24595323204994202,
-0.1767757087945938,
0.2404010146856308,
0.25774845480918884,
-0.5652375221252441,
-0.21177367866039276,
-0.8999847769737244,
-0.11026106774806976,
0.4406832754611969,
-0.8307372331619263,
0.5599966645240784,
-0.49456238746643066,
-0.44508591294288635,
0.39584773778915405,
0.32119351625442505,
-0.99370276927948,
0.4946596920490265,
-0.0813739225268364,
1.0022196769714355,
-0.6702567934989929,
0.8027240633964539,
0.7365012764930725,
-0.660330593585968,
-1.2922394275665283,
0.14294391870498657,
-0.08365309983491898,
-0.5979633331298828,
0.683351993560791,
0.28663089871406555,
0.26254794001579285,
0.1266985386610031,
-0.2801729440689087,
-1.2154139280319214,
1.1932740211486816,
0.08762307465076447,
-0.6922377943992615,
-0.21479737758636475,
0.2263329029083252,
0.7767753005027771,
-0.3182370662689209,
0.6116960644721985,
0.546570897102356,
0.7374700307846069,
0.03976098820567131,
-1.0675551891326904,
0.3321424424648285,
-0.3991585671901703,
-0.010317097418010235,
0.46794238686561584,
-0.8868544101715088,
1.0011143684387207,
-0.3236697316169739,
-0.10396367311477661,
0.08697150647640228,
0.643322765827179,
0.3828609883785248,
0.42021653056144714,
0.4736849367618561,
0.790323793888092,
0.7832727432250977,
-0.3662903904914856,
1.0051013231277466,
-0.45629599690437317,
0.644126832485199,
1.1239616870880127,
0.09638220816850662,
0.929905354976654,
0.47041478753089905,
-0.33377036452293396,
0.6160017848014832,
0.6771238446235657,
-0.38527101278305054,
0.23400627076625824,
0.13127286732196808,
0.045890163630247116,
-0.2436603158712387,
0.09980910271406174,
-0.40289607644081116,
0.44468188285827637,
0.2965928614139557,
-0.579899787902832,
-0.04089987650513649,
-0.21115173399448395,
0.11856745183467865,
-0.17446374893188477,
-0.23374898731708527,
0.5825616717338562,
0.2614726722240448,
-0.5328822731971741,
0.7374935746192932,
0.006739387754350901,
0.6590410470962524,
-0.3896753489971161,
0.0017133265500888228,
0.0029501772951334715,
0.41354039311408997,
-0.28259140253067017,
-0.6834585666656494,
0.06305903941392899,
-0.11688238382339478,
-0.22109107673168182,
0.09916386008262634,
0.6296769976615906,
-0.3796541690826416,
-0.7039608359336853,
0.37102043628692627,
0.3594239056110382,
0.145928755402565,
-0.16986696422100067,
-0.8574550151824951,
-0.08300688862800598,
0.044803276658058167,
-0.6981634497642517,
0.23087890446186066,
0.5519633889198303,
-0.08958723396062851,
0.5965896248817444,
0.6351363062858582,
0.10047236829996109,
-0.08182962983846664,
0.199895977973938,
0.880998969078064,
-0.9025264382362366,
-0.3914375305175781,
-0.740628719329834,
0.5704785585403442,
-0.2773708403110504,
-0.7031031250953674,
0.7269896864891052,
0.7315065264701843,
0.9642876982688904,
0.029669808223843575,
0.6129196882247925,
-0.2532661259174347,
0.656796395778656,
-0.37736251950263977,
0.7527908682823181,
-0.7079486846923828,
0.042772114276885986,
-0.39602407813072205,
-1.009097695350647,
-0.4285533130168915,
0.48665493726730347,
-0.544455349445343,
0.3353559970855713,
0.6619540452957153,
0.840977132320404,
-0.18767832219600677,
0.05938773602247238,
0.08128255605697632,
0.3385888934135437,
0.15058587491512299,
0.4928363561630249,
0.3582422435283661,
-0.8560992479324341,
0.623779296875,
-0.3850356340408325,
-0.07721403241157532,
-0.19587430357933044,
-0.5823659300804138,
-1.0723912715911865,
-0.71236652135849,
-0.24792784452438354,
-0.6130828261375427,
-0.05330902710556984,
1.0678774118423462,
0.5710140466690063,
-0.9876134395599365,
-0.0021603931672871113,
-0.04134754091501236,
-0.1728576123714447,
-0.15320655703544617,
-0.31789031624794006,
0.6961067914962769,
-0.22425682842731476,
-0.9650078415870667,
0.08125810325145721,
-0.13835489749908447,
0.09831991046667099,
0.06353526562452316,
-0.1068556010723114,
-0.24136704206466675,
-0.23219066858291626,
0.1796630322933197,
0.1894681602716446,
-0.6224385499954224,
-0.22128863632678986,
0.14784343540668488,
-0.1349405199289322,
0.1608007550239563,
0.4568498432636261,
-0.566690981388092,
0.10234098136425018,
0.23299117386341095,
0.5462129712104797,
0.7668696641921997,
0.003446097020059824,
0.3211860954761505,
-0.5000243782997131,
0.034353990107774734,
0.20302486419677734,
0.4925879240036011,
0.36325374245643616,
-0.4188556969165802,
0.582070529460907,
0.1801164299249649,
-0.6643292307853699,
-0.7983341813087463,
-0.3120318055152893,
-1.1810036897659302,
0.0967012271285057,
1.0634329319000244,
-0.20576705038547516,
-0.4187278747558594,
0.07285603880882263,
0.08969734609127045,
0.5177513957023621,
-0.6507021188735962,
0.7627173066139221,
0.48570716381073,
0.008857712149620056,
-0.23993712663650513,
-0.46508097648620605,
0.47372058033943176,
0.33184024691581726,
-0.6327884197235107,
-0.26291680335998535,
0.07044896483421326,
0.6873975396156311,
0.4537786543369293,
0.3744851052761078,
-0.11616281419992447,
0.1381736546754837,
0.0064787850715219975,
0.32220423221588135,
-0.1384274661540985,
-0.2561173439025879,
-0.3260427713394165,
0.08896034955978394,
-0.11865735054016113,
-0.04639336094260216
] |
Helsinki-NLP/opus-mt-en-es | Helsinki-NLP | "2023-08-16T11:29:28Z" | 157,626 | 56 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"marian",
"text2text-generation",
"translation",
"en",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
language:
- en
- es
tags:
- translation
license: apache-2.0
---
### eng-spa
* source group: English
* target group: Spanish
* OPUS readme: [eng-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-spa/README.md)
* model: transformer
* source language(s): eng
* target language(s): spa
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.zip)
* test set translations: [opus-2020-08-18.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.test.txt)
* test set scores: [opus-2020-08-18.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newssyscomb2009-engspa.eng.spa | 31.0 | 0.583 |
| news-test2008-engspa.eng.spa | 29.7 | 0.564 |
| newstest2009-engspa.eng.spa | 30.2 | 0.578 |
| newstest2010-engspa.eng.spa | 36.9 | 0.620 |
| newstest2011-engspa.eng.spa | 38.2 | 0.619 |
| newstest2012-engspa.eng.spa | 39.0 | 0.625 |
| newstest2013-engspa.eng.spa | 35.0 | 0.598 |
| Tatoeba-test.eng.spa | 54.9 | 0.721 |
### System Info:
- hf_name: eng-spa
- source_languages: eng
- target_languages: spa
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-spa/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['en', 'es']
- src_constituents: {'eng'}
- tgt_constituents: {'spa'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.test.txt
- src_alpha3: eng
- tgt_alpha3: spa
- short_pair: en-es
- chrF2_score: 0.721
- bleu: 54.9
- brevity_penalty: 0.978
- ref_len: 77311.0
- src_name: English
- tgt_name: Spanish
- train_date: 2020-08-18 00:00:00
- src_alpha2: en
- tgt_alpha2: es
- prefer_old: False
- long_pair: eng-spa
- helsinki_git_sha: d2f0910c89026c34a44e331e785dec1e0faa7b82
- transformers_git_sha: f7af09b4524b784d67ae8526f0e2fcc6f5ed0de9
- port_machine: brutasse
- port_time: 2020-08-24-18:20 | [
-0.4710395634174347,
-0.6979625225067139,
0.29582229256629944,
0.5168623924255371,
-0.3821215033531189,
-0.24295000731945038,
-0.305362343788147,
-0.43029817938804626,
0.31515687704086304,
0.27295488119125366,
-0.6844997406005859,
-0.8451830148696899,
-0.6295453310012817,
0.3928230404853821,
-0.05358230695128441,
0.9921069741249084,
-0.1181141808629036,
0.13133035600185394,
0.5031318068504333,
-0.4286048412322998,
-0.5112893581390381,
-0.24722114205360413,
-0.758320152759552,
-0.3225555717945099,
0.46855980157852173,
0.26890701055526733,
0.4835512340068817,
0.45605650544166565,
0.5347360372543335,
0.3511591851711273,
-0.45186689496040344,
0.31122511625289917,
-0.16518567502498627,
-0.12592802941799164,
-0.10423345863819122,
-0.518550455570221,
-0.6039751768112183,
-0.2898236811161041,
0.9025759100914001,
0.6122236847877502,
0.17129278182983398,
0.4720678925514221,
-0.07473485916852951,
0.7378907203674316,
-0.16902299225330353,
0.12119447439908981,
-0.5599022507667542,
-0.04458000883460045,
-0.3968844413757324,
-0.42421823740005493,
-0.6294661164283752,
-0.29050976037979126,
0.11178477108478546,
-0.6059675812721252,
0.11475483328104019,
0.171304389834404,
1.78469717502594,
0.08816897869110107,
-0.39416977763175964,
-0.13738802075386047,
-0.4036971628665924,
0.8052115440368652,
-0.8198813796043396,
0.4308696985244751,
0.48716631531715393,
-0.15318898856639862,
-0.1346694678068161,
-0.4212340712547302,
-0.2832644581794739,
0.022048037499189377,
-0.3064875900745392,
0.23762884736061096,
-0.278140127658844,
-0.2220885008573532,
0.20364975929260254,
0.5901470184326172,
-0.7674115896224976,
0.10790300369262695,
-0.3871946632862091,
-0.1575179249048233,
0.49981239438056946,
0.12061049789190292,
0.32452392578125,
-0.5435259938240051,
-0.41813042759895325,
-0.4333546459674835,
-0.599166989326477,
0.23780424892902374,
0.43793177604675293,
0.43075940012931824,
-0.4863572418689728,
0.6760479211807251,
-0.1096876785159111,
0.5841348767280579,
0.07341836392879486,
-0.05376599729061127,
0.7766623497009277,
-0.6557836532592773,
-0.15854042768478394,
-0.25989022850990295,
1.3115874528884888,
0.2753153443336487,
-0.010899433866143227,
0.049361810088157654,
-0.31317034363746643,
-0.265139639377594,
-0.13125258684158325,
-0.9057834148406982,
0.17126251757144928,
0.278174489736557,
-0.3289639949798584,
-0.21575970947742462,
0.06248550862073898,
-0.8603024482727051,
0.16415877640247345,
0.08756861090660095,
0.5695976614952087,
-0.859609067440033,
-0.32321617007255554,
0.45839497447013855,
-0.021652506664395332,
0.2500804364681244,
-0.04157702624797821,
-0.44578754901885986,
0.22417141497135162,
0.34272563457489014,
1.0448708534240723,
-0.15293452143669128,
-0.46533650159835815,
-0.19326269626617432,
0.08068809658288956,
-0.14257365465164185,
0.7534441947937012,
-0.11138129234313965,
-0.4907906949520111,
-0.14942286908626556,
0.4790259599685669,
-0.18655653297901154,
-0.18876111507415771,
0.9272430539131165,
-0.30137714743614197,
0.6797555088996887,
-0.3724450469017029,
-0.5783918499946594,
-0.3952820897102356,
0.35754701495170593,
-0.8731547594070435,
1.415619134902954,
0.16861248016357422,
-0.9487172365188599,
0.4120263457298279,
-0.9585253596305847,
-0.2586003839969635,
-0.07044494897127151,
0.20352742075920105,
-0.7871664762496948,
-0.02454204112291336,
0.2705763280391693,
0.3964284360408783,
-0.42176783084869385,
0.4973844885826111,
0.0053436183370649815,
-0.2913098931312561,
0.04444587603211403,
-0.3818374574184418,
1.3862240314483643,
0.21667546033859253,
-0.5945425033569336,
0.027974620461463928,
-0.8038172721862793,
-0.011149948462843895,
0.3904682397842407,
-0.43142181634902954,
-0.2579241096973419,
-0.1137630045413971,
0.2394084632396698,
0.13805241882801056,
0.29706186056137085,
-0.5686073303222656,
0.3702249228954315,
-0.8070618510246277,
0.29173314571380615,
0.8230599761009216,
0.2208138406276703,
0.29092350602149963,
-0.4690512418746948,
0.3941652178764343,
0.22309929132461548,
0.09923768043518066,
0.10239376127719879,
-0.6030672788619995,
-0.8329317569732666,
-0.31160256266593933,
0.6213527321815491,
0.700590968132019,
-0.7814661264419556,
0.9509718418121338,
-0.7673536539077759,
-0.8881593942642212,
-0.7356517910957336,
-0.2480168342590332,
0.5696184635162354,
0.24704872071743011,
0.5688698887825012,
-0.22368401288986206,
-0.5280624032020569,
-1.062674641609192,
-0.22911474108695984,
-0.22303521633148193,
0.028813336044549942,
0.2552720904350281,
0.8998672366142273,
0.006180834490805864,
0.6405056118965149,
-0.43345606327056885,
-0.5463168621063232,
-0.2313593178987503,
0.21172747015953064,
0.5445138812065125,
0.7299500107765198,
0.7917973399162292,
-0.9008751511573792,
-0.608122706413269,
0.1064419150352478,
-0.6452359557151794,
-0.1496547907590866,
-0.025248060002923012,
-0.16952826082706451,
0.41562503576278687,
-0.07035188376903534,
-0.6073091626167297,
0.28998127579689026,
0.6105951070785522,
-0.9732488393783569,
0.4743577539920807,
-0.2243754267692566,
0.4895828068256378,
-1.5605144500732422,
0.19945432245731354,
-0.0049674115143716335,
-0.06406734138727188,
-0.4230535626411438,
-0.0014648904325440526,
0.0319431833922863,
0.17377805709838867,
-0.6384216547012329,
0.8706004023551941,
-0.7016782164573669,
-0.020793698728084564,
0.41386696696281433,
0.08847799897193909,
0.07099847495555878,
0.8359666466712952,
-0.09721994400024414,
1.0920177698135376,
0.6322880983352661,
-0.4459936022758484,
-0.00010560401278780773,
0.4121111333370209,
-0.4145030975341797,
0.26771318912506104,
-0.7610717415809631,
-0.22265321016311646,
0.34731775522232056,
-0.031148657202720642,
-0.7829789519309998,
-0.09968219697475433,
0.20506775379180908,
-0.8063023090362549,
0.2738780975341797,
-0.1348375380039215,
-0.760016679763794,
-0.2488931119441986,
-0.42731890082359314,
0.46163177490234375,
0.4295191764831543,
-0.19574066996574402,
0.806840717792511,
0.19436566531658173,
-0.026260854676365852,
-0.6541053056716919,
-0.9190440773963928,
-0.0360555537045002,
-0.23380117118358612,
-0.7518603205680847,
0.4247491657733917,
-0.13141445815563202,
0.08396466076374054,
0.24755507707595825,
0.04278798773884773,
-0.21329325437545776,
0.14142033457756042,
0.0344013012945652,
0.28776824474334717,
-0.3252895772457123,
0.056184276938438416,
0.0154888229444623,
-0.09304923564195633,
-0.22550320625305176,
-0.20013433694839478,
0.884743332862854,
-0.5025052428245544,
-0.25289541482925415,
-0.7485228776931763,
0.1729789525270462,
0.5900501012802124,
-0.4356325566768646,
1.1640547513961792,
0.5653943419456482,
-0.31934455037117004,
0.1481781303882599,
-0.6318511366844177,
0.03404173627495766,
-0.4439823031425476,
0.4149942398071289,
-0.7004263997077942,
-0.769023060798645,
0.9354081749916077,
0.26357153058052063,
0.27508851885795593,
1.0586936473846436,
0.7768189311027527,
0.16985994577407837,
0.7220063209533691,
0.3372584283351898,
0.11198777705430984,
0.6013970971107483,
-0.7021983861923218,
-0.14259113371372223,
-0.7681471109390259,
-0.3284318447113037,
-0.85758376121521,
-0.13704770803451538,
-0.9214487671852112,
-0.259829580783844,
0.3194243311882019,
-0.1286451518535614,
-0.17898161709308624,
0.8867770433425903,
-0.6206808686256409,
0.36705636978149414,
0.6265180110931396,
0.19940826296806335,
0.35566630959510803,
-0.08692142367362976,
-0.45132672786712646,
-0.0963807925581932,
-0.5455642938613892,
-0.6074071526527405,
1.2543352842330933,
0.3657144010066986,
0.17680539190769196,
0.31450918316841125,
0.7307251691818237,
0.1352580487728119,
0.13460464775562286,
-0.6226286888122559,
0.6810750961303711,
-0.13927282392978668,
-0.971281886100769,
-0.4151906669139862,
-0.4375368654727936,
-1.0707522630691528,
0.3637477159500122,
-0.25574982166290283,
-0.6925827264785767,
0.1956457942724228,
-0.105455681681633,
-0.060772690922021866,
0.697040319442749,
-0.8625507950782776,
1.0197633504867554,
0.014115008525550365,
-0.39924654364585876,
0.12119520455598831,
-0.5416505336761475,
0.12621767818927765,
-0.06811664998531342,
0.27294325828552246,
-0.19777977466583252,
-0.1866796910762787,
0.9370296001434326,
-0.3039935827255249,
0.6134363412857056,
-0.14171737432479858,
-0.0707634910941124,
0.21849626302719116,
0.22002959251403809,
0.6018591523170471,
-0.15119372308254242,
-0.31336018443107605,
0.4097028970718384,
0.11276594549417496,
-0.6005688309669495,
-0.20053814351558685,
0.5858806371688843,
-0.884645402431488,
-0.4749339818954468,
-0.6258776187896729,
-0.6384971737861633,
-0.054657693952322006,
0.5361577272415161,
0.57992023229599,
0.5540040135383606,
-0.10160970687866211,
0.6357980370521545,
0.7884773015975952,
-0.3058347702026367,
0.5341660976409912,
0.6032925248146057,
0.009907392784953117,
-0.6061087250709534,
0.7722314596176147,
0.3056568503379822,
0.18578463792800903,
0.504885196685791,
0.06425382196903229,
-0.2623908519744873,
-0.8820925951004028,
-0.49128392338752747,
0.47784850001335144,
-0.3827306628227234,
-0.37136390805244446,
-0.6584445834159851,
-0.04234829917550087,
-0.3970668911933899,
0.1342155635356903,
-0.474661648273468,
-0.4196934103965759,
-0.15576514601707458,
-0.3612522780895233,
0.45685744285583496,
0.3921959400177002,
0.07688982784748077,
0.22493204474449158,
-0.8692862391471863,
0.13830065727233887,
-0.2831069529056549,
0.505077064037323,
-0.3521246910095215,
-0.8581674695014954,
-0.33567914366722107,
-0.026623517274856567,
-0.29113009572029114,
-1.1523888111114502,
0.590848982334137,
-0.048721857368946075,
0.35905787348747253,
0.07400225847959518,
0.06295624375343323,
0.6567258834838867,
-0.5341771245002747,
1.1022677421569824,
-0.042382460087537766,
-0.9440300464630127,
0.6751094460487366,
-0.4251878559589386,
0.3994041681289673,
0.7347639203071594,
0.32125014066696167,
-0.3654470443725586,
-0.7621778845787048,
-0.9500043392181396,
-1.0157092809677124,
0.8364627957344055,
0.6392865777015686,
-0.1143835112452507,
-0.09239453077316284,
0.05712251737713814,
-0.0029507670551538467,
-0.21590013802051544,
-1.3477087020874023,
-0.5250821113586426,
0.1750985085964203,
-0.42945951223373413,
0.14469610154628754,
-0.4354012906551361,
-0.18293830752372742,
-0.2840837836265564,
1.192468523979187,
0.22516053915023804,
0.19909951090812683,
0.5008692741394043,
-0.18482226133346558,
0.055830903351306915,
0.42239511013031006,
0.7305186986923218,
0.491108238697052,
-0.30053839087486267,
-0.14667871594429016,
0.4738334119319916,
-0.5611080527305603,
0.11493193358182907,
0.05040084943175316,
-0.5978654026985168,
0.38078826665878296,
0.5626925230026245,
0.9669270515441895,
0.26770347356796265,
-0.5029195547103882,
0.6347231864929199,
-0.05089740455150604,
-0.5051442384719849,
-0.4576404392719269,
-0.2985661029815674,
0.11208881437778473,
0.12097515910863876,
0.3679879903793335,
-0.04525049403309822,
0.06595510244369507,
-0.21156689524650574,
0.09252999722957611,
0.13405852019786835,
-0.20413272082805634,
-0.43306562304496765,
0.5735390186309814,
0.10212375223636627,
-0.39210689067840576,
0.22645051777362823,
-0.3178507685661316,
-0.40657302737236023,
0.6249600052833557,
0.31458842754364014,
1.2033159732818604,
-0.22671611607074738,
-0.1288905143737793,
0.8051584362983704,
0.5867921113967896,
-0.07914899289608002,
0.37534382939338684,
0.28864747285842896,
-0.6467053294181824,
-0.39282727241516113,
-0.8293567299842834,
0.09152493625879288,
0.11659849435091019,
-0.8224054574966431,
0.43735700845718384,
0.04703753814101219,
-0.3976045548915863,
-0.13202714920043945,
0.454182505607605,
-0.6636788845062256,
0.04983603209257126,
-0.423045814037323,
1.1711347103118896,
-1.1100653409957886,
0.8176500797271729,
0.7841902375221252,
-0.8874929547309875,
-1.0942878723144531,
-0.16967524588108063,
-0.3060842454433441,
-0.6340465545654297,
0.575922429561615,
0.0010819206945598125,
0.01952744647860527,
-0.015108862891793251,
-0.2888748049736023,
-0.8596249222755432,
1.2827569246292114,
0.3757968842983246,
-0.3647885322570801,
-0.2693246603012085,
-0.0073079513385891914,
0.6321240663528442,
-0.03215476870536804,
0.2750732898712158,
0.425181120634079,
0.8352774977684021,
-0.1364697515964508,
-1.2077728509902954,
0.1557723432779312,
-0.5245532989501953,
-0.02493559569120407,
0.32891905307769775,
-0.877649188041687,
0.8699173927307129,
0.20758406817913055,
-0.26244068145751953,
0.04331548884510994,
0.6200302243232727,
0.41509249806404114,
0.037165459245443344,
0.5782346725463867,
0.9694395661354065,
0.4606480896472931,
-0.626564085483551,
1.0378345251083374,
-0.44856783747673035,
0.7168030738830566,
0.9706470370292664,
0.30435818433761597,
0.8460198044776917,
0.5852488279342651,
-0.3791293799877167,
0.6513683795928955,
0.8779690265655518,
-0.20402036607265472,
0.34636035561561584,
-0.15245208144187927,
-0.053020160645246506,
-0.20581528544425964,
-0.18352210521697998,
-0.577543318271637,
0.372964084148407,
0.10152006894350052,
-0.20898988842964172,
-0.05932291969656944,
-0.20708699524402618,
0.45599275827407837,
0.09925652295351028,
-0.17452207207679749,
0.7302003502845764,
-0.2243199348449707,
-0.7401184439659119,
0.7380768060684204,
0.00578892370685935,
0.7311146259307861,
-0.7012616395950317,
0.09079967439174652,
-0.2678109109401703,
0.1171775534749031,
-0.12761922180652618,
-0.9753312468528748,
0.36498934030532837,
0.258180171251297,
-0.29460301995277405,
-0.3094591200351715,
0.18412041664123535,
-0.46523401141166687,
-0.7900530695915222,
0.4677768349647522,
0.5248203277587891,
0.28370895981788635,
0.2572762668132782,
-0.8497924208641052,
0.013421178795397282,
0.18405219912528992,
-0.8902119398117065,
-0.047129563987255096,
0.9133048057556152,
0.06374616175889969,
0.7806947827339172,
0.5111542344093323,
0.2779834270477295,
0.15434616804122925,
0.032968491315841675,
0.7782585024833679,
-0.7961465716362,
-0.5108323097229004,
-0.9034890532493591,
0.709778904914856,
-0.160138800740242,
-0.6271616816520691,
0.7215696573257446,
0.8986195921897888,
0.9395936727523804,
-0.050161026418209076,
0.3311028480529785,
-0.29723381996154785,
0.5802038908004761,
-0.6917226314544678,
0.7219377160072327,
-0.9976690411567688,
0.10721708834171295,
-0.20616759359836578,
-0.8270362019538879,
-0.3048013746738434,
0.3160325586795807,
-0.2810412049293518,
-0.03685977682471275,
1.0862910747528076,
0.8480961918830872,
0.15804201364517212,
-0.3879041373729706,
0.01377292163670063,
0.4592754542827606,
0.3036070168018341,
0.9032423496246338,
0.2701870799064636,
-0.9330490827560425,
0.7947283983230591,
-0.3162303566932678,
0.04326154664158821,
-0.0017549965996295214,
-0.8075253963470459,
-0.8607215881347656,
-0.8255783319473267,
-0.19477182626724243,
-0.4961465299129486,
-0.12399175018072128,
1.1128089427947998,
0.33606672286987305,
-1.0451806783676147,
-0.3503091335296631,
-0.004874718375504017,
0.13960814476013184,
-0.29401150345802307,
-0.2849036455154419,
0.781173050403595,
-0.16876891255378723,
-1.1552608013153076,
0.1585116684436798,
0.053621359169483185,
0.1213795393705368,
0.015524241141974926,
-0.04985995218157768,
-0.7113963961601257,
-0.026427246630191803,
0.2819686830043793,
0.11588753759860992,
-0.9243960976600647,
-0.2137395590543747,
0.17599186301231384,
-0.32004880905151367,
0.2592596709728241,
0.02912886068224907,
-0.2829129993915558,
0.17013861238956451,
0.7460845112800598,
0.4257689416408539,
0.6215735077857971,
-0.15573614835739136,
0.3072206974029541,
-0.8129379749298096,
0.5224872827529907,
0.32727566361427307,
0.7000831961631775,
0.20255684852600098,
-0.18796716630458832,
0.930071234703064,
0.43281880021095276,
-0.32008233666419983,
-1.1595945358276367,
-0.06192582845687866,
-1.3002058267593384,
-0.11249583959579468,
1.1636579036712646,
-0.25702816247940063,
-0.38644906878471375,
0.2288394272327423,
-0.26181161403656006,
0.3853014409542084,
-0.4940175414085388,
0.5606992244720459,
1.007277250289917,
0.32433876395225525,
0.13675493001937866,
-0.478255033493042,
0.27230966091156006,
0.52955162525177,
-0.8416083455085754,
-0.16668473184108734,
0.30694156885147095,
0.4703749120235443,
0.3652597665786743,
0.7756583094596863,
-0.42397239804267883,
0.2145741730928421,
-0.1607990264892578,
0.38695257902145386,
-0.25092822313308716,
-0.08991967886686325,
-0.27605047821998596,
0.22057880461215973,
-0.08180795609951019,
-0.21743151545524597
] |
GroNLP/bert-base-dutch-cased | GroNLP | "2023-09-11T08:57:51Z" | 151,845 | 18 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"BERTje",
"nl",
"arxiv:1912.09582",
"doi:10.57967/hf/0149",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | fill-mask | "2022-03-02T23:29:04Z" | ---
language: nl
thumbnail: "https://raw.githubusercontent.com/wietsedv/bertje/master/bertje.png"
tags:
- BERTje
---
# BERTje: A Dutch BERT model
[Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) •
[Andreas van Cranenburgh](https://www.semanticscholar.org/author/Andreas-van-Cranenburgh/2791585) •
[Arianna Bisazza](https://www.semanticscholar.org/author/Arianna-Bisazza/3242253) •
[Tommaso Caselli](https://www.semanticscholar.org/author/Tommaso-Caselli/1864635) •
[Gertjan van Noord](https://www.semanticscholar.org/author/Gertjan-van-Noord/143715131) •
[Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475)
## Model description
BERTje is a Dutch pre-trained BERT model developed at the University of Groningen.
<img src="https://raw.githubusercontent.com/wietsedv/bertje/master/bertje.png" height="250">
For details, check out our paper on [arXiv](https://arxiv.org/abs/1912.09582), the code on [Github](https://github.com/wietsedv/bertje) and related work on [Semantic Scholar](https://www.semanticscholar.org/paper/BERTje%3A-A-Dutch-BERT-Model-Vries-Cranenburgh/a4d5e425cac0bf84c86c0c9f720b6339d6288ffa).
The paper and Github page mention fine-tuned models that are available [here](https://huggingface.co/wietsedv).
## How to use
```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained("GroNLP/bert-base-dutch-cased")
model = AutoModel.from_pretrained("GroNLP/bert-base-dutch-cased") # PyTorch
model = TFAutoModel.from_pretrained("GroNLP/bert-base-dutch-cased") # Tensorflow
```
**WARNING:** The vocabulary size of BERTje has changed in 2021. If you use an older fine-tuned model and experience problems with the `GroNLP/bert-base-dutch-cased` tokenizer, use use the following tokenizer:
```python
tokenizer = AutoTokenizer.from_pretrained("GroNLP/bert-base-dutch-cased", revision="v1") # v1 is the old vocabulary
```
## Benchmarks
The arXiv paper lists benchmarks. Here are a couple of comparisons between BERTje, multilingual BERT, BERT-NL and RobBERT that were done after writing the paper. Unlike some other comparisons, the fine-tuning procedures for these benchmarks are identical for each pre-trained model. You may be able to achieve higher scores for individual models by optimizing fine-tuning procedures.
More experimental results will be added to this page when they are finished. Technical details about how a fine-tuned these models will be published later as well as downloadable fine-tuned checkpoints.
All of the tested models are *base* sized (12) layers with cased tokenization.
Headers in the tables below link to original data sources. Scores link to the model pages that corresponds to that specific fine-tuned model. These tables will be updated when more simple fine-tuned models are made available.
### Named Entity Recognition
| Model | [CoNLL-2002](https://www.clips.uantwerpen.be/conll2002/ner/) | [SoNaR-1](https://ivdnt.org/downloads/taalmaterialen/tstc-sonar-corpus) | spaCy UD LassySmall |
| ---------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| **BERTje** | [**90.24**](https://huggingface.co/wietsedv/bert-base-dutch-cased-finetuned-conll2002-ner) | [**84.93**](https://huggingface.co/wietsedv/bert-base-dutch-cased-finetuned-sonar-ner) | [86.10](https://huggingface.co/wietsedv/bert-base-dutch-cased-finetuned-udlassy-ner) |
| [mBERT](https://github.com/google-research/bert/blob/master/multilingual.md) | [88.61](https://huggingface.co/wietsedv/bert-base-multilingual-cased-finetuned-conll2002-ner) | [84.19](https://huggingface.co/wietsedv/bert-base-multilingual-cased-finetuned-sonar-ner) | [**86.77**](https://huggingface.co/wietsedv/bert-base-multilingual-cased-finetuned-udlassy-ner) |
| [BERT-NL](http://textdata.nl) | 85.05 | 80.45 | 81.62 |
| [RobBERT](https://github.com/iPieter/RobBERT) | 84.72 | 81.98 | 79.84 |
### Part-of-speech tagging
| Model | [UDv2.5 LassySmall](https://universaldependencies.org/treebanks/nl_lassysmall/index.html) |
| ---------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- |
| **BERTje** | **96.48** |
| [mBERT](https://github.com/google-research/bert/blob/master/multilingual.md) | 96.20 |
| [BERT-NL](http://textdata.nl) | 96.10 |
| [RobBERT](https://github.com/iPieter/RobBERT) | 95.91 |
### BibTeX entry and citation info
```bibtex
@misc{devries2019bertje,
\ttitle = {{BERTje}: {A} {Dutch} {BERT} {Model}},
\tshorttitle = {{BERTje}},
\tauthor = {de Vries, Wietse and van Cranenburgh, Andreas and Bisazza, Arianna and Caselli, Tommaso and Noord, Gertjan van and Nissim, Malvina},
\tyear = {2019},
\tmonth = dec,
\thowpublished = {arXiv:1912.09582},
\turl = {http://arxiv.org/abs/1912.09582},
}
```
| [
-0.8432686924934387,
-0.6290907263755798,
0.20645615458488464,
0.3501213788986206,
-0.2068490982055664,
-0.1874672919511795,
-0.4113909602165222,
-0.6627547144889832,
0.4600394070148468,
0.1713058352470398,
-0.39583125710487366,
-0.5889526009559631,
-0.7038199305534363,
0.03660762682557106,
-0.15430742502212524,
1.0426214933395386,
0.023765431717038155,
0.2087980955839157,
0.11354769766330719,
-0.23963457345962524,
-0.3745920956134796,
-0.6082545518875122,
-0.5007940530776978,
-0.21810419857501984,
0.5070498585700989,
-0.07505293935537338,
0.398467481136322,
0.49356991052627563,
0.5468419194221497,
0.2430795580148697,
-0.27860063314437866,
0.18198944628238678,
-0.09656939655542374,
-0.08334315568208694,
0.024051817134022713,
-0.030673611909151077,
-0.5991610288619995,
-0.11152731627225876,
0.648286759853363,
0.6547734141349792,
-0.02074269764125347,
0.12497210502624512,
0.0908278301358223,
0.5358113646507263,
-0.26849856972694397,
0.29968300461769104,
-0.6435847282409668,
-0.23199370503425598,
-0.25529012084007263,
-0.1565338522195816,
-0.25936341285705566,
-0.2621362507343292,
0.373064249753952,
-0.5952674150466919,
0.28054293990135193,
-0.18386228382587433,
1.5788445472717285,
0.1807640790939331,
-0.3380028009414673,
-0.25324857234954834,
-0.5365552306175232,
0.8200929164886475,
-0.9755517840385437,
0.6462478637695312,
0.35004517436027527,
0.0015914360992610455,
-0.3077009320259094,
-0.65017169713974,
-0.5689118504524231,
-0.19374877214431763,
-0.325545072555542,
0.2659301459789276,
-0.25506412982940674,
-0.09724920988082886,
0.13881564140319824,
0.16700983047485352,
-0.5984140634536743,
0.0324716717004776,
-0.48076367378234863,
-0.3124080002307892,
0.7063310742378235,
-0.1874791532754898,
0.19719071686267853,
-0.5699072480201721,
-0.512222409248352,
-0.34672725200653076,
-0.43942058086395264,
0.2534114420413971,
0.437987357378006,
0.5993819832801819,
-0.35635319352149963,
0.47337570786476135,
-0.0038608149625360966,
0.7956757545471191,
0.0289393849670887,
-0.1740443855524063,
0.6552234292030334,
-0.5058883428573608,
-0.02936181053519249,
-0.060155924409627914,
0.7908309102058411,
0.35069724917411804,
0.1717974692583084,
-0.12306265532970428,
-0.30333617329597473,
-0.06767233461141586,
0.05123336613178253,
-0.706725537776947,
-0.37424972653388977,
0.2800470292568207,
-0.5636698603630066,
-0.09225678443908691,
0.042989470064640045,
-0.716158926486969,
0.07130954414606094,
-0.32669544219970703,
0.6243185997009277,
-0.8977713584899902,
-0.4531317949295044,
0.1296175718307495,
-0.23385100066661835,
0.4834480583667755,
0.21660222113132477,
-0.7891305685043335,
0.06700906902551651,
0.5648595094680786,
0.8174766302108765,
-0.007261313032358885,
-0.2746494710445404,
0.023345135152339935,
0.04937184229493141,
-0.2895665168762207,
0.5780043601989746,
-0.2588851749897003,
-0.29057732224464417,
-0.10564564913511276,
0.07186662405729294,
-0.2043725997209549,
-0.14636917412281036,
0.7279782295227051,
-0.47091713547706604,
0.38829073309898376,
-0.3876054883003235,
-0.719078540802002,
-0.3020382225513458,
0.361667662858963,
-0.6763249635696411,
1.1963473558425903,
0.020742537453770638,
-0.9481048583984375,
0.5646380186080933,
-0.8648838996887207,
-0.5357363224029541,
-0.11820511519908905,
0.045046888291835785,
-0.5674243569374084,
-0.1094614565372467,
0.45155107975006104,
0.5153719186782837,
-0.09778754413127899,
0.29276585578918457,
-0.2597573697566986,
0.0003695540362969041,
-0.07671657204627991,
-0.14371690154075623,
1.258009672164917,
0.3906667232513428,
-0.3342278003692627,
0.0014108892064541578,
-0.9068089127540588,
0.12355434149503708,
0.27117589116096497,
-0.5536094903945923,
-0.36783793568611145,
-0.009174022823572159,
0.1871153861284256,
0.2301868349313736,
0.4782998859882355,
-0.5062467455863953,
0.27500587701797485,
-0.48647475242614746,
0.4520438015460968,
0.7190099954605103,
-0.006203001365065575,
0.25899046659469604,
-0.5514819622039795,
0.2522635757923126,
0.012503988109529018,
0.11110805720090866,
-0.09636196494102478,
-0.5382356643676758,
-1.037434697151184,
-0.7525438070297241,
0.8230305910110474,
0.5527450442314148,
-0.7553281188011169,
0.7853215932846069,
-0.5098085999488831,
-0.7280571460723877,
-0.6939597129821777,
-0.14321105182170868,
0.33725765347480774,
0.4546847343444824,
0.5253936648368835,
-0.34509629011154175,
-0.7420505285263062,
-0.998117208480835,
-0.026053495705127716,
-0.213948056101799,
0.09317172318696976,
0.449652761220932,
0.6566795706748962,
-0.21197810769081116,
0.9474512934684753,
-0.3095018267631531,
-0.35105592012405396,
-0.020372550934553146,
0.21559205651283264,
0.5386757850646973,
0.7578822374343872,
1.0761770009994507,
-0.7772682905197144,
-0.5317006707191467,
-0.12007354944944382,
-0.7002578973770142,
0.07707852870225906,
0.020174328237771988,
-0.058643635362386703,
0.5240979194641113,
0.3135542571544647,
-0.6453094482421875,
0.23768669366836548,
0.4513256549835205,
-0.3507274389266968,
0.587228000164032,
-0.31837818026542664,
-0.05644789710640907,
-1.293646216392517,
0.2771758437156677,
0.12571901082992554,
-0.04395900294184685,
-0.5390570163726807,
0.0981534793972969,
-0.028263768181204796,
0.31670206785202026,
-0.34229156374931335,
0.7786649465560913,
-0.5221909880638123,
-0.022448984906077385,
0.2606903314590454,
-0.04608066752552986,
-0.10783732682466507,
0.6588969230651855,
0.12565553188323975,
0.7298624515533447,
0.6410167217254639,
-0.661681056022644,
0.10903581976890564,
0.38986825942993164,
-0.6201400756835938,
0.3349972069263458,
-0.8014665246009827,
-0.11512131989002228,
-0.10691581666469574,
0.3157905638217926,
-1.049243688583374,
-0.11174391955137253,
0.20042577385902405,
-0.7017888426780701,
0.4687124788761139,
-0.28146228194236755,
-0.6755223870277405,
-0.5566551089286804,
-0.44091400504112244,
0.04669841378927231,
0.3930221498012543,
-0.5957128405570984,
0.598257839679718,
0.3564925789833069,
-0.11415307223796844,
-0.6758683919906616,
-0.7249705791473389,
-0.06563908606767654,
-0.14381317794322968,
-0.8805656433105469,
0.4542297124862671,
-0.07428357750177383,
0.09903014451265335,
0.14907348155975342,
-0.0037691721227020025,
-0.04033816233277321,
0.08786763995885849,
0.11537687480449677,
0.5175704956054688,
-0.24891939759254456,
0.26045212149620056,
-0.12737008929252625,
0.02769516222178936,
-0.16983209550380707,
-0.34585630893707275,
0.7577396631240845,
-0.2885962724685669,
-0.09584099054336548,
-0.37013909220695496,
0.27527424693107605,
0.6063788533210754,
-0.5424143075942993,
0.7961177229881287,
0.9143231511116028,
-0.3600286543369293,
0.09407397359609604,
-0.709758996963501,
-0.19112415611743927,
-0.4345516264438629,
0.2563328444957733,
-0.5966880321502686,
-0.8845473527908325,
0.739437460899353,
0.19395232200622559,
0.31758037209510803,
0.8630995154380798,
0.637236475944519,
-0.37142670154571533,
0.8781101703643799,
0.6161178350448608,
-0.044824518263339996,
0.6796667575836182,
-0.5698114037513733,
0.1710188388824463,
-0.7925609946250916,
-0.212888702750206,
-0.6993024349212646,
-0.2926678955554962,
-1.0590534210205078,
-0.22351016104221344,
0.35397103428840637,
0.10161198675632477,
-0.31179678440093994,
0.7036190629005432,
-0.7664723992347717,
0.004147085826843977,
0.8959085941314697,
0.01930747553706169,
-0.10681974142789841,
0.1526099443435669,
-0.5804080367088318,
-0.07667812705039978,
-0.6932746171951294,
-0.5974195599555969,
1.187190055847168,
0.3183503746986389,
0.4616250693798065,
0.318380743265152,
0.867307722568512,
0.15864188969135284,
-0.03572540357708931,
-0.5850265622138977,
0.508392333984375,
-0.242181196808815,
-1.171685814857483,
-0.30001941323280334,
-0.3610318601131439,
-1.2761669158935547,
0.433115154504776,
-0.2971366345882416,
-0.8336257934570312,
0.38646867871284485,
0.09823933243751526,
-0.3225424587726593,
0.37923452258110046,
-0.9738975763320923,
0.8976925611495972,
-0.29564961791038513,
-0.13090044260025024,
-0.013691975735127926,
-0.8478710651397705,
0.15612931549549103,
0.004426192957907915,
0.19458647072315216,
-0.24515558779239655,
0.14410170912742615,
0.9682389497756958,
-0.5383018255233765,
0.7438977956771851,
-0.3683488070964813,
-0.04197576269507408,
0.392435759305954,
-0.10440084338188171,
0.5368722677230835,
-0.07104910910129547,
-0.16457955539226532,
0.4370804727077484,
0.264748752117157,
-0.5425775051116943,
-0.0659867376089096,
0.8251683115959167,
-1.0572357177734375,
-0.48177167773246765,
-0.6499157547950745,
-0.4354567229747772,
-0.16724741458892822,
0.41506606340408325,
0.3642984628677368,
0.3101975619792938,
-0.02672622911632061,
0.25963640213012695,
0.6676838397979736,
-0.29452383518218994,
0.7185461521148682,
0.6459937691688538,
-0.027871182188391685,
-0.41967839002609253,
0.8950731754302979,
0.3604179918766022,
-0.02665792964398861,
0.39404502511024475,
0.003278186544775963,
-0.2932271659374237,
-0.678942084312439,
-0.305609792470932,
0.30588480830192566,
-0.5765775442123413,
-0.31504231691360474,
-0.901939332485199,
-0.3778769075870514,
-0.6325066089630127,
-0.09633743017911911,
-0.3513805568218231,
-0.6079056859016418,
-0.4130697548389435,
-0.14146152138710022,
0.6056410074234009,
0.35729530453681946,
-0.39564600586891174,
0.07882671058177948,
-0.7043994069099426,
0.17863266170024872,
0.3095298707485199,
0.4273930490016937,
-0.0008329941774718463,
-0.5398873686790466,
-0.09657900780439377,
0.13577960431575775,
-0.2447717934846878,
-0.6780518293380737,
0.5474240779876709,
0.1857488602399826,
0.7982038855552673,
0.1158141940832138,
-0.0444541871547699,
0.7130022644996643,
-0.46278414130210876,
0.9125701785087585,
0.22075000405311584,
-0.9476487636566162,
0.6432672142982483,
-0.5555236339569092,
0.15834645926952362,
0.5399453043937683,
0.5134530663490295,
-0.38806042075157166,
-0.13665036857128143,
-0.7815960645675659,
-1.2781778573989868,
0.7921767234802246,
0.14478708803653717,
0.15988236665725708,
-0.0007214321522042155,
0.14568009972572327,
0.07037366181612015,
0.12396673858165741,
-0.9192949533462524,
-0.5415201187133789,
-0.2864890694618225,
-0.18284371495246887,
-0.013917304575443268,
-0.26515480875968933,
-0.06700383126735687,
-0.5915019512176514,
1.044398307800293,
0.14466910064220428,
0.638558566570282,
0.3606216311454773,
-0.17520852386951447,
0.08807509392499924,
0.23436444997787476,
0.7907274961471558,
0.5334469079971313,
-0.5401117205619812,
0.03448905423283577,
0.2566426992416382,
-0.3853241503238678,
-0.09372008591890335,
0.44251298904418945,
-0.2491358518600464,
0.3480766713619232,
0.60765540599823,
0.8759568929672241,
0.04749678820371628,
-0.35427701473236084,
0.4791494607925415,
-0.01988639123737812,
-0.4899839758872986,
-0.49532777070999146,
-0.11049847304821014,
0.14585894346237183,
0.29829105734825134,
0.4513944983482361,
0.05162666365504265,
-0.06317088752985,
-0.33588799834251404,
0.2589386999607086,
0.5431573987007141,
-0.31242835521698,
-0.2584831416606903,
0.6612064838409424,
0.20198659598827362,
0.02660282328724861,
0.43521153926849365,
-0.33872178196907043,
-0.6411899328231812,
0.6673539876937866,
0.3601258099079132,
0.7873355150222778,
-0.09982757270336151,
-0.022952131927013397,
0.7546644806861877,
0.5357525944709778,
0.07388759404420853,
0.5535215139389038,
0.03493209555745125,
-0.8138360977172852,
-0.4194929301738739,
-0.8719022870063782,
0.061990369111299515,
0.19872593879699707,
-0.6251956820487976,
0.3900344669818878,
-0.3597341775894165,
-0.3923850953578949,
0.5484380125999451,
0.32204899191856384,
-0.785610556602478,
0.14961189031600952,
0.16450978815555573,
1.1199889183044434,
-0.6986829042434692,
1.0771620273590088,
0.827697217464447,
-0.5793885588645935,
-0.9427688121795654,
-0.2081909477710724,
-0.2401389330625534,
-0.6969525218009949,
0.7479131817817688,
-0.09342591464519501,
0.10685859620571136,
-0.051609065383672714,
-0.5509257912635803,
-1.17658269405365,
1.0584458112716675,
0.32515600323677063,
-0.5174767374992371,
-0.024418659508228302,
-0.1938183456659317,
0.6926152110099792,
-0.07995009422302246,
0.19418418407440186,
0.38119545578956604,
0.7913841605186462,
0.10804813355207443,
-1.1975116729736328,
-0.02099849469959736,
-0.4943753778934479,
0.15737949311733246,
0.27645573019981384,
-0.8301593661308289,
1.0836104154586792,
-0.07901269942522049,
-0.05261373519897461,
0.06340481340885162,
0.6283388137817383,
0.1886378526687622,
-0.027116291224956512,
0.47524377703666687,
0.8865916132926941,
0.648575484752655,
-0.4212705194950104,
1.0733875036239624,
-0.520313560962677,
0.6811963319778442,
1.1106109619140625,
0.1081143245100975,
0.8095796704292297,
0.5378584861755371,
-0.35948505997657776,
0.46945735812187195,
0.9036430716514587,
-0.3521840274333954,
0.7862235903739929,
0.12446381151676178,
-0.07061002403497696,
-0.2496475726366043,
-0.012543854303658009,
-0.7294297218322754,
0.5443399548530579,
0.30481839179992676,
-0.3514522314071655,
-0.1730349063873291,
-0.09517081826925278,
0.371861070394516,
-0.3271680176258087,
-0.15878885984420776,
0.6778156161308289,
-0.14764957129955292,
-0.5795217156410217,
0.8632087111473083,
0.1558009684085846,
0.9887295961380005,
-0.7158551812171936,
0.22908364236354828,
-0.015396871604025364,
0.13309450447559357,
-0.1769886165857315,
-0.6793705821037292,
0.15802782773971558,
-0.024096550419926643,
-0.2611989676952362,
-0.2521217465400696,
0.683356523513794,
-0.39065253734588623,
-0.6445282101631165,
0.4679385721683502,
0.5080848932266235,
0.16597668826580048,
0.36424317955970764,
-0.894945502281189,
-0.09888854622840881,
0.03729628771543503,
-0.5016784071922302,
0.11026103794574738,
0.4508649408817291,
0.036084678024053574,
0.46835342049598694,
0.8153521418571472,
0.07979799807071686,
0.3712892532348633,
-0.10621582716703415,
0.8988091945648193,
-0.6563122868537903,
-0.4209991991519928,
-0.7066687941551208,
0.519782304763794,
-0.04659814387559891,
-0.4669918119907379,
0.8986849784851074,
0.6749382019042969,
1.1519571542739868,
-0.11305873095989227,
0.7731444835662842,
-0.4532982110977173,
0.6927529573440552,
-0.2930617332458496,
0.835780143737793,
-0.7567246556282043,
0.037314094603061676,
-0.4477200508117676,
-0.8388170003890991,
-0.4757319390773773,
0.8492915630340576,
-0.38348865509033203,
0.27459433674812317,
0.3850661814212799,
0.724980354309082,
0.043765876442193985,
-0.27804452180862427,
0.02372518740594387,
0.3810316324234009,
0.343388170003891,
0.5510451793670654,
0.5609554648399353,
-0.6021985411643982,
0.5578999519348145,
-0.39251527190208435,
0.08647547662258148,
-0.4285273551940918,
-0.9385801553726196,
-0.8622850179672241,
-0.9004337787628174,
-0.4550088346004486,
-0.35634875297546387,
0.0761442705988884,
1.1238502264022827,
0.944442868232727,
-1.1137453317642212,
-0.12356310337781906,
-0.03436926007270813,
0.09397749602794647,
-0.318056583404541,
-0.21697156131267548,
0.6766728162765503,
-0.3087766468524933,
-0.8620790839195251,
0.1855469048023224,
-0.04712891951203346,
0.33344802260398865,
-0.01609947346150875,
-0.1637517511844635,
-0.7308406233787537,
0.21406060457229614,
0.5443904995918274,
0.3379020690917969,
-0.8202058672904968,
-0.41217106580734253,
-0.0526527501642704,
-0.31092414259910583,
0.12967316806316376,
0.2604808509349823,
-0.5054900050163269,
0.5746338963508606,
0.6259888410568237,
0.3495369851589203,
0.7295940518379211,
-0.32405784726142883,
0.14850963652133942,
-0.8137015700340271,
0.2354240119457245,
0.18191780149936676,
0.5639452338218689,
0.2631796896457672,
-0.040596477687358856,
0.7893456220626831,
0.10359541326761246,
-0.32106634974479675,
-0.8597133755683899,
-0.26011165976524353,
-1.2946091890335083,
-0.41148295998573303,
1.1043246984481812,
-0.2851599454879761,
-0.13544496893882751,
0.09674372524023056,
-0.09694068878889084,
0.49671220779418945,
-0.5837640166282654,
0.7489587664604187,
1.0172191858291626,
-0.026616418734192848,
0.0646432563662529,
-0.6175671219825745,
0.4397111237049103,
0.4913804531097412,
-0.6884973645210266,
-0.2954075038433075,
0.32390937209129333,
0.44135257601737976,
0.4776218831539154,
0.3922226130962372,
-0.21579241752624512,
0.08711543679237366,
-0.15412668883800507,
0.5077427625656128,
-0.1600119024515152,
-0.11696361005306244,
-0.16874581575393677,
0.05424343794584274,
-0.12490572780370712,
-0.3749554753303528
] |
petals-team/StableBeluga2 | petals-team | "2023-08-23T18:00:41Z" | 151,797 | 12 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"dataset:conceptofmind/cot_submix_original",
"dataset:conceptofmind/flan2021_submix_original",
"dataset:conceptofmind/t0_submix_original",
"dataset:conceptofmind/niv2_submix_original",
"arxiv:2307.09288",
"arxiv:2306.02707",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-08-12T22:04:01Z" | ---
datasets:
- conceptofmind/cot_submix_original
- conceptofmind/flan2021_submix_original
- conceptofmind/t0_submix_original
- conceptofmind/niv2_submix_original
language:
- en
pipeline_tag: text-generation
---
# Stable Beluga 2
## Changes in this fork
This repository contains the model from the [stabilityai/StableBeluga2](https://huggingface.co/stabilityai/StableBeluga2) repository with the following changes:
1. **Storing weights in `bfloat16` instead of `float32`.**
This leads to 2x smaller files and a small quality loss, which is not significant compared to the loss caused by NF4 quantization used in Petals by default.
1. **Storing weights in small shards.**
Each transformer block is stored in its own shard (1.71 GB each). The input and output embeddings and adjacent layernorms are in a separate shard (1.05 GB) too.
This way, Petals clients and servers don't have to download any excess data besides the layers they actually use.
1. **Using [Safetensors](https://github.com/huggingface/safetensors) instead of Pickle.**
This allows faster loading with smaller RAM requirements.
We provide the original README below. Please refer there for model details and licensing information.
## Model Description
`Stable Beluga 2` is a Llama2 70B model finetuned on an Orca style Dataset
## Usage
Start chatting with `Stable Beluga 2` using the following code snippet:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga2", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga2", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Stable Beluga 2 should be used with this prompt format:
```
### System:
This is a system prompt, please behave and help the user.
### User:
Your prompt here
### Assistant:
The output of Stable Beluga 2
```
## Other Beluga Models
[StableBeluga 1 - Delta](https://huggingface.co/stabilityai/StableBeluga1-Delta)
[StableBeluga 13B](https://huggingface.co/stabilityai/StableBeluga-13B)
[StableBeluga 7B](https://huggingface.co/stabilityai/StableBeluga-7B)
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: Stable Beluga 2 is an auto-regressive language model fine-tuned on Llama2 70B.
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: Fine-tuned checkpoints (`Stable Beluga 2`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga2/blob/main/LICENSE.txt)
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Training Dataset
` Stable Beluga 2` is trained on our internal Orca-style dataset
### Training Procedure
Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:
| Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas |
|-------------------|------------|---------------|-------------------|---------|--------------|-------------|
| Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
| Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
## Ethical Considerations and Limitations
Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.
## How to cite
```bibtex
@misc{StableBelugaModels,
url={[https://huggingface.co/stabilityai/StableBeluga2](https://huggingface.co/stabilityai/StableBeluga2)},
title={Stable Beluga models},
author={Mahan, Dakota and Carlow, Ryan and Castricato, Louis and Cooper, Nathan and Laforte, Christian}
}
```
## Citations
```bibtext
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtext
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
-0.45190155506134033,
-0.7787381410598755,
0.0350869782269001,
0.43921905755996704,
-0.2284400761127472,
-0.10694679617881775,
-0.08925250172615051,
-0.6069087982177734,
0.03763936832547188,
0.3684273958206177,
-0.5751169919967651,
-0.3843075633049011,
-0.6407565474510193,
-0.04203638434410095,
-0.27072763442993164,
1.1078026294708252,
-0.00794975459575653,
-0.1540755033493042,
0.04318005219101906,
-0.1907171756029129,
-0.5996460914611816,
-0.23925082385540009,
-0.7947189807891846,
-0.3880440294742584,
0.328225702047348,
0.16668087244033813,
0.6742167472839355,
0.7451310753822327,
0.24881136417388916,
0.34341275691986084,
-0.4585137963294983,
-0.037931762635707855,
-0.6224504709243774,
-0.20587646961212158,
0.1812353879213333,
-0.5824535489082336,
-0.6328527331352234,
-0.07135289907455444,
0.5497016906738281,
0.47290411591529846,
-0.06449200212955475,
0.24478329718112946,
0.2589248716831207,
0.5649217367172241,
-0.38211843371391296,
0.4247617721557617,
-0.31680628657341003,
-0.16607457399368286,
-0.2379116714000702,
0.2136867344379425,
-0.2914977967739105,
-0.6234383583068848,
0.1456800252199173,
-0.7663524150848389,
0.08048215508460999,
-0.21406249701976776,
1.4642294645309448,
0.32820960879325867,
-0.4782349169254303,
-0.006487944629043341,
-0.5126582980155945,
0.8762426972389221,
-0.8743504881858826,
0.41145119071006775,
0.2861764132976532,
0.3422400653362274,
-0.29862359166145325,
-0.7882931232452393,
-0.5404657125473022,
0.07858125120401382,
-0.17742298543453217,
0.29783451557159424,
-0.21074075996875763,
-0.1621336191892624,
0.34097519516944885,
0.36539506912231445,
-0.5394790172576904,
0.18690375983715057,
-0.6321739554405212,
-0.4467165470123291,
0.5543137192726135,
0.02564486302435398,
0.030473213642835617,
-0.2937949001789093,
-0.38124918937683105,
-0.38754788041114807,
-0.7878609299659729,
0.3852044343948364,
0.2998018264770508,
0.16086319088935852,
-0.7125560641288757,
0.5837578773498535,
-0.02286629006266594,
0.5152850151062012,
0.14428511261940002,
-0.37705129384994507,
0.5521599054336548,
-0.38123396039009094,
-0.3650966286659241,
-0.018840642645955086,
0.8810109496116638,
0.40427282452583313,
0.033020470291376114,
0.24856513738632202,
-0.031204067170619965,
0.30172061920166016,
-0.06476298719644547,
-1.0049105882644653,
-0.37635451555252075,
0.3188110888004303,
-0.6060610413551331,
-0.5535746812820435,
-0.20924146473407745,
-1.0201573371887207,
-0.18133677542209625,
-0.04643075540661812,
0.32699596881866455,
-0.39813122153282166,
-0.4791611135005951,
0.06854218244552612,
0.17589068412780762,
0.5030937194824219,
0.12577444314956665,
-1.0274064540863037,
0.35319650173187256,
0.5012317299842834,
0.8312312960624695,
0.184969961643219,
-0.22716541588306427,
-0.2378915399312973,
0.018570369109511375,
-0.4201420545578003,
0.6153675317764282,
-0.1714800000190735,
-0.474579781293869,
-0.06428886204957962,
0.3231554925441742,
0.018263060599565506,
-0.3828526735305786,
0.725142240524292,
-0.32013556361198425,
0.35882529616355896,
-0.4510745406150818,
-0.3265253007411957,
-0.5451186895370483,
0.08282780647277832,
-0.5477327108383179,
1.2156766653060913,
0.10388237237930298,
-0.747832179069519,
0.23650753498077393,
-0.5574648380279541,
-0.36346298456192017,
-0.30941706895828247,
-0.017443791031837463,
-0.8265488147735596,
-0.33382609486579895,
0.23421335220336914,
0.43384018540382385,
-0.28860044479370117,
0.19539491832256317,
-0.42592617869377136,
-0.22686953842639923,
0.11747469007968903,
-0.13624215126037598,
1.1651697158813477,
0.29296913743019104,
-0.5730924606323242,
0.14303408563137054,
-0.9147034883499146,
-0.18857093155384064,
0.4263262152671814,
-0.3933950662612915,
-0.07596255093812943,
-0.168410524725914,
-0.17473438382148743,
0.033467937260866165,
0.33170339465141296,
-0.4937501847743988,
0.20489121973514557,
-0.4390031397342682,
0.5652668476104736,
0.7308650016784668,
-0.044690534472465515,
0.31941336393356323,
-0.4064843952655792,
0.17440393567085266,
0.04968203231692314,
0.39829325675964355,
-0.15937121212482452,
-0.9028498530387878,
-0.9348397254943848,
-0.2935846745967865,
0.45330724120140076,
0.5415666699409485,
-0.2926676273345947,
0.5322427153587341,
-0.01809179224073887,
-0.7810150980949402,
-0.5690780282020569,
-0.07354801148176193,
0.6268947720527649,
0.6528996825218201,
0.38047751784324646,
-0.29482266306877136,
-0.7136547565460205,
-0.8707988262176514,
0.24106831848621368,
-0.3416520953178406,
0.16758012771606445,
0.13134928047657013,
0.49870437383651733,
-0.4474155604839325,
0.8020758032798767,
-0.5015609264373779,
-0.17383313179016113,
-0.045284371823072433,
0.2202480286359787,
0.33592134714126587,
0.6610148549079895,
0.9391518235206604,
-0.6579384207725525,
-0.28176507353782654,
-0.1198619082570076,
-0.7731826305389404,
-0.0936102345585823,
0.04653499275445938,
-0.3505129814147949,
0.574603259563446,
0.1018003597855568,
-0.7499830722808838,
0.5331962704658508,
0.7298954129219055,
-0.36515963077545166,
0.6908048391342163,
-0.09994852542877197,
0.014706367626786232,
-1.1973590850830078,
0.17236308753490448,
0.18421684205532074,
-0.12346557527780533,
-0.5572382807731628,
-0.06659270823001862,
0.1865486353635788,
0.01725723408162594,
-0.29029136896133423,
0.5397371053695679,
-0.39649197459220886,
-0.1105002835392952,
-0.14371490478515625,
0.07096926122903824,
0.04955756664276123,
0.6540372967720032,
-0.0004430550616234541,
0.39316579699516296,
0.7645673751831055,
-0.6997758150100708,
0.3131198287010193,
0.5745658874511719,
-0.32881125807762146,
0.2827366292476654,
-0.9261164665222168,
0.06214182451367378,
0.14478856325149536,
0.3796599507331848,
-1.1430778503417969,
-0.20024117827415466,
0.45847442746162415,
-0.6607332229614258,
0.590650200843811,
-0.38704222440719604,
-0.3633330464363098,
-0.5267096161842346,
-0.30550065636634827,
0.14576195180416107,
0.8117763996124268,
-0.48734423518180847,
0.49598756432533264,
0.42111143469810486,
-0.09807529300451279,
-0.6203992962837219,
-0.9180425405502319,
-0.29925698041915894,
-0.2677731215953827,
-0.8832822442054749,
0.31225889921188354,
-0.24063515663146973,
0.074407197535038,
-0.025101253762841225,
-0.12155072391033173,
0.12675316631793976,
0.13313308358192444,
0.3942019045352936,
0.548524022102356,
-0.0632050409913063,
-0.3244200050830841,
0.3652626574039459,
-0.31151917576789856,
0.14991149306297302,
-0.13488909602165222,
0.6014193892478943,
-0.4361005425453186,
-0.038316696882247925,
-0.5238381028175354,
-0.07962997257709503,
0.5070009231567383,
-0.343774676322937,
0.7936880588531494,
0.7943695783615112,
-0.5417115688323975,
0.3360329270362854,
-0.5842186808586121,
-0.28995609283447266,
-0.5160953998565674,
0.32505249977111816,
-0.4645465910434723,
-0.7731031775474548,
0.925020158290863,
0.07569484412670135,
0.5025918483734131,
0.6360002756118774,
0.7459126114845276,
0.08695149421691895,
0.997156023979187,
0.7033730149269104,
0.07055110484361649,
0.2357432097196579,
-0.6336678266525269,
-0.030515450984239578,
-0.9596798419952393,
-0.6740959286689758,
-0.5981852412223816,
-0.28951871395111084,
-0.6315209269523621,
-0.12924562394618988,
0.24325977265834808,
0.2953142523765564,
-0.6016840934753418,
0.47200527787208557,
-0.5917426943778992,
-0.1418524533510208,
0.44001609086990356,
0.07751097530126572,
0.07000094652175903,
-0.14052726328372955,
-0.320122092962265,
-0.0069988444447517395,
-0.6622421741485596,
-0.4308917820453644,
1.1188414096832275,
0.656303346157074,
0.6523213386535645,
0.19914662837982178,
0.42673420906066895,
-0.2009354531764984,
0.1802622526884079,
-0.4388097822666168,
0.5719102621078491,
0.08608623594045639,
-0.8423228859901428,
-0.11021656543016434,
-0.5167381167411804,
-1.139250636100769,
0.131010964512825,
-0.2963462471961975,
-0.713146984577179,
0.4359144866466522,
0.08585501462221146,
-0.4545981287956238,
0.22293105721473694,
-0.6975259780883789,
1.0630366802215576,
-0.24122309684753418,
-0.3212479054927826,
-0.07600461691617966,
-0.9172930121421814,
0.6042712926864624,
-0.03459141030907631,
0.28306370973587036,
0.0519995242357254,
0.002411127556115389,
0.9104781746864319,
-0.5580899715423584,
0.9379372596740723,
-0.10459275543689728,
-0.1363876610994339,
0.4448640048503876,
0.15073780715465546,
0.6052446365356445,
0.16751059889793396,
-0.11381211876869202,
0.3735925853252411,
0.16351178288459778,
-0.46134424209594727,
-0.31477630138397217,
0.7854670286178589,
-1.2076987028121948,
-0.36461561918258667,
-0.50855553150177,
-0.2894829213619232,
0.1264055222272873,
0.41736090183258057,
0.407404363155365,
0.5224078893661499,
0.25210040807724,
0.2645474374294281,
0.708003580570221,
-0.3596881031990051,
0.37610355019569397,
0.5187535881996155,
-0.3930835425853729,
-0.608403742313385,
0.638344407081604,
0.2624998688697815,
0.2825532853603363,
0.0791250616312027,
0.2678440511226654,
-0.4539507329463959,
-0.44669437408447266,
-0.5720829963684082,
0.567461371421814,
-0.5996608138084412,
-0.22906988859176636,
-0.6195017099380493,
-0.15673203766345978,
-0.52594393491745,
-0.05103631317615509,
-0.6450108885765076,
-0.39709174633026123,
-0.4607327878475189,
-0.23122425377368927,
0.7188213467597961,
0.5325785875320435,
-0.2006390392780304,
0.1279865950345993,
-0.7388564944267273,
0.14473384618759155,
0.2037442922592163,
0.32506656646728516,
-0.015834908932447433,
-0.8208178877830505,
-0.216434046626091,
0.2415308803319931,
-0.4774777293205261,
-0.9624433517456055,
0.2982842028141022,
-0.10465220361948013,
0.638599157333374,
0.31061306595802307,
0.009000444784760475,
0.8579503297805786,
-0.10281253606081009,
0.945853054523468,
0.3550127446651459,
-0.7710720896720886,
0.6015639901161194,
-0.42421600222587585,
0.11123940348625183,
0.3124048113822937,
0.5016506314277649,
-0.17694129049777985,
-0.1374858021736145,
-0.7085624933242798,
-0.8016706705093384,
0.8346163630485535,
0.3870352804660797,
-0.09156690537929535,
0.24407105147838593,
0.6248574256896973,
0.11247329413890839,
0.15147468447685242,
-0.9179226756095886,
-0.6034529209136963,
-0.7083319425582886,
0.07645700871944427,
0.10779628902673721,
-0.33059316873550415,
-0.20983877778053284,
-0.42839115858078003,
0.931125819683075,
0.09904330223798752,
0.4821017384529114,
0.19493454694747925,
0.27825137972831726,
-0.34273120760917664,
-0.14518137276172638,
0.5748640894889832,
0.49684441089630127,
-0.43619808554649353,
-0.14344574511051178,
0.315352201461792,
-0.5795714259147644,
-0.10677764564752579,
0.44868531823158264,
-0.41645684838294983,
-0.2120402753353119,
0.05068952590227127,
1.0045068264007568,
0.23486296832561493,
-0.31429368257522583,
0.2316046506166458,
-0.041138503700494766,
-0.3567903935909271,
-0.3623901903629303,
-0.0447038859128952,
0.23125340044498444,
0.4093663990497589,
0.18707647919654846,
0.2313876748085022,
-0.18440869450569153,
-0.6970284581184387,
0.027217313647270203,
0.11582853645086288,
-0.27791905403137207,
-0.445586621761322,
0.9578736424446106,
0.13967886567115784,
-0.0589810349047184,
0.5280498266220093,
-0.18785391747951508,
-0.48753562569618225,
0.5466263294219971,
0.6189885139465332,
0.7149075269699097,
-0.36956796050071716,
0.1058381125330925,
0.707395076751709,
0.4430959224700928,
-0.18469247221946716,
0.4036092162132263,
0.3546462655067444,
-0.5343121290206909,
-0.4069938063621521,
-0.5823071599006653,
-0.3529815375804901,
0.37323668599128723,
-0.6014558672904968,
0.6020267605781555,
-0.48126882314682007,
-0.27041861414909363,
-0.2358950525522232,
0.3402780294418335,
-0.417182594537735,
0.28684359788894653,
0.10627290606498718,
0.8612573146820068,
-0.8267468214035034,
0.8169639706611633,
0.7729016542434692,
-0.5691215395927429,
-1.1676304340362549,
-0.33642280101776123,
0.08939244598150253,
-0.49936339259147644,
0.21585796773433685,
0.11324257403612137,
0.15159058570861816,
0.031613539904356,
-0.5337212681770325,
-0.9658169150352478,
1.4279202222824097,
0.3947598934173584,
-0.5445191264152527,
0.20113785564899445,
-0.033348165452480316,
0.5549089908599854,
-0.03954920917749405,
0.4642452895641327,
0.6011829376220703,
0.6726334095001221,
0.19038508832454681,
-0.9194454550743103,
0.37826019525527954,
-0.45191657543182373,
-0.08166752755641937,
0.12503062188625336,
-1.1883747577667236,
0.9519645571708679,
-0.19288554787635803,
-0.06101471185684204,
0.340304970741272,
0.8746248483657837,
0.7805630564689636,
0.2962537109851837,
0.4306532144546509,
0.7563345432281494,
0.6983922719955444,
-0.34950336813926697,
1.0926520824432373,
-0.29812583327293396,
0.4892502427101135,
0.5504499673843384,
0.026674628257751465,
0.6938072443008423,
0.060818713158369064,
-0.3561613857746124,
0.7130905389785767,
1.0094366073608398,
-0.21374371647834778,
0.5652341246604919,
-0.15796349942684174,
0.17972733080387115,
-0.0036616832949221134,
0.1893804371356964,
-0.7493395805358887,
0.06856982409954071,
0.37502822279930115,
-0.11659910529851913,
-0.06515803933143616,
-0.1324172019958496,
0.49297502636909485,
-0.2675015330314636,
-0.12635503709316254,
0.4595138132572174,
0.3190392851829529,
-0.5674696564674377,
1.2630285024642944,
0.05730176344513893,
0.6856395602226257,
-0.8490709662437439,
0.10457772016525269,
-0.29620835185050964,
0.22859717905521393,
-0.4403221309185028,
-0.7684188485145569,
0.3100840747356415,
0.04825476184487343,
-0.003392772749066353,
0.14782483875751495,
0.7320912480354309,
-0.1264469176530838,
-0.4585005044937134,
0.5305035710334778,
-0.025414159521460533,
0.3270505368709564,
0.28854823112487793,
-1.0376399755477905,
0.4490215480327606,
0.11032132804393768,
-0.7073054313659668,
0.3656845986843109,
0.40483856201171875,
0.022460540756583214,
0.6716721057891846,
0.7706462740898132,
-0.1866224706172943,
0.3027156889438629,
-0.08989148586988449,
1.0981382131576538,
-0.38162481784820557,
-0.3740553855895996,
-0.6470834612846375,
0.7082642316818237,
0.04081824794411659,
-0.5423570275306702,
0.852156400680542,
0.6621996760368347,
0.760410726070404,
0.14960885047912598,
0.798058271408081,
-0.30557170510292053,
0.5210449695587158,
-0.4382892847061157,
0.6834899187088013,
-0.605552077293396,
0.3403540253639221,
-0.3529825806617737,
-1.0839874744415283,
-0.18705734610557556,
0.797310471534729,
-0.2706605792045593,
0.1365957111120224,
0.47921696305274963,
0.9032678008079529,
-0.045303553342819214,
0.09806689620018005,
-0.058396343141794205,
0.7018356919288635,
0.49071362614631653,
0.516573429107666,
0.49757465720176697,
-0.8367229104042053,
0.8982659578323364,
-0.667381227016449,
-0.4487864077091217,
-0.3346468508243561,
-0.9198719263076782,
-0.9745007753372192,
-0.5332412123680115,
-0.49765846133232117,
-0.7239556908607483,
-0.013625836931169033,
0.6234439611434937,
0.7246109247207642,
-0.7701857686042786,
-0.3066558837890625,
-0.18431147933006287,
-0.0765472948551178,
-0.398995965719223,
-0.19483867287635803,
0.5694500207901001,
0.051486507058143616,
-0.7287935614585876,
0.2688792943954468,
0.07309852540493011,
0.3557344973087311,
-0.3436689078807831,
-0.37668243050575256,
-0.2538784146308899,
0.027880247682332993,
0.43604692816734314,
0.5399308204650879,
-0.4572560787200928,
-0.284604549407959,
0.08806618303060532,
-0.03439255431294441,
-0.01708078198134899,
0.03081824630498886,
-0.6053059101104736,
0.33986911177635193,
0.616746187210083,
0.29901403188705444,
0.9522275924682617,
-0.1247357428073883,
0.2708868086338043,
-0.37844374775886536,
0.30829647183418274,
-0.12823249399662018,
0.5389293432235718,
0.2775813639163971,
-0.16990424692630768,
0.6611184477806091,
0.42272651195526123,
-0.7534573674201965,
-0.9828099012374878,
0.12344273179769516,
-1.415901780128479,
-0.15697157382965088,
1.19850754737854,
-0.2629488408565521,
-0.40721380710601807,
-0.07701490819454193,
-0.3394584357738495,
0.6789671182632446,
-0.4148715138435364,
0.8397173881530762,
0.41620153188705444,
0.09511038661003113,
-0.3533382713794708,
-0.6045989394187927,
0.4624482989311218,
0.342517226934433,
-0.6546257138252258,
-0.1521700769662857,
0.2944302260875702,
0.4283181428909302,
0.3601973056793213,
0.38770192861557007,
-0.5435518026351929,
0.2828480005264282,
-0.1107427179813385,
0.1642383188009262,
-0.22431634366512299,
-0.1352699100971222,
-0.12478010356426239,
-0.2333819419145584,
-0.2500668466091156,
-0.17510727047920227
] |
naver-clova-ix/donut-base-finetuned-cord-v2 | naver-clova-ix | "2022-08-13T08:28:13Z" | 150,684 | 53 | transformers | [
"transformers",
"pytorch",
"vision-encoder-decoder",
"donut",
"image-to-text",
"vision",
"arxiv:2111.15664",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | image-to-text | "2022-07-19T01:53:24Z" | ---
license: mit
tags:
- donut
- image-to-text
- vision
---
# Donut (base-sized model, fine-tuned on CORD)
Donut model fine-tuned on CORD. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut).
Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg)
## Intended uses & limitations
This model is fine-tuned on CORD, a document parsing dataset.
We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-15664,
author = {Geewook Kim and
Teakgyu Hong and
Moonbin Yim and
Jinyoung Park and
Jinyeong Yim and
Wonseok Hwang and
Sangdoo Yun and
Dongyoon Han and
Seunghyun Park},
title = {Donut: Document Understanding Transformer without {OCR}},
journal = {CoRR},
volume = {abs/2111.15664},
year = {2021},
url = {https://arxiv.org/abs/2111.15664},
eprinttype = {arXiv},
eprint = {2111.15664},
timestamp = {Thu, 02 Dec 2021 10:50:44 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-15664.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | [
-0.3427570164203644,
-0.6171593070030212,
0.26661643385887146,
-0.2589052617549896,
-0.05198671296238899,
-0.018426300957798958,
-0.09890477359294891,
-0.45268139243125916,
0.24257393181324005,
0.5433440208435059,
-0.5162395238876343,
-0.2324858009815216,
-0.5879364013671875,
0.02948920801281929,
-0.39694854617118835,
1.1314200162887573,
-0.227211594581604,
0.0026853058952838182,
-0.19604365527629852,
-0.0565374493598938,
-0.12589269876480103,
-0.5551062822341919,
-0.293432354927063,
-0.4537086486816406,
0.19772879779338837,
0.36524614691734314,
0.8566318154335022,
0.6310085654258728,
0.5858879089355469,
0.2848871350288391,
-0.3658583164215088,
-0.08531178534030914,
-0.49398326873779297,
-0.3312278091907501,
0.08068347722291946,
-0.7911431193351746,
-0.9267169237136841,
0.058481618762016296,
0.2619706988334656,
0.5858060121536255,
0.09010734409093857,
0.13706471025943756,
-0.011796409264206886,
0.5710364580154419,
-0.3677336871623993,
0.01659221202135086,
-0.5152001976966858,
-0.033344585448503494,
-0.12050741165876389,
0.23908919095993042,
-0.3767976760864258,
-0.33671048283576965,
-0.07430025190114975,
-0.6355187296867371,
0.7415488362312317,
0.24032089114189148,
1.6055681705474854,
0.11993970721960068,
-0.15253768861293793,
-0.2187952995300293,
-0.8036131858825684,
0.8267861604690552,
-0.5333227515220642,
0.6200735569000244,
0.33776161074638367,
0.40770018100738525,
0.1253477782011032,
-0.8783254027366638,
-0.8032028079032898,
-0.271208256483078,
-0.5375887751579285,
0.16791117191314697,
-0.5095764398574829,
-0.22289158403873444,
0.5546596646308899,
0.6980726718902588,
-0.5191845893859863,
-0.17082446813583374,
-0.6480409502983093,
0.06423904746770859,
0.6314523220062256,
-0.009878911077976227,
0.47603026032447815,
-0.5173959732055664,
-0.5098567008972168,
-0.25448304414749146,
-0.4813094437122345,
0.13177554309368134,
0.37463241815567017,
-0.10957875847816467,
-0.6471771001815796,
0.5852961540222168,
0.1568070352077484,
0.3676294982433319,
0.4157505929470062,
0.037394098937511444,
0.5848576426506042,
-0.3764207363128662,
-0.36818912625312805,
0.04539621248841286,
1.0175501108169556,
0.5065242052078247,
0.37717995047569275,
-0.2725270390510559,
-0.3314826190471649,
0.09498490393161774,
0.6745671033859253,
-0.8015832304954529,
-0.4546450972557068,
-0.03394564986228943,
-0.5187914967536926,
-0.33282163739204407,
0.1424817591905594,
-0.7823389768600464,
0.10275422781705856,
-0.30912891030311584,
0.13647520542144775,
-0.44760674238204956,
-0.5719380974769592,
-0.05202292278409004,
0.04638686403632164,
0.3004049062728882,
0.3494236469268799,
-0.9329804182052612,
0.5400978326797485,
0.46783140301704407,
0.8137252926826477,
-0.005314462818205357,
-0.008366930298507214,
-0.16498607397079468,
-0.07703253626823425,
-0.3478474020957947,
0.7015117406845093,
-0.4034378230571747,
-0.5509211421012878,
-0.2004065215587616,
0.5075656771659851,
-0.1531786322593689,
-0.5799388289451599,
1.1078273057937622,
-0.4772314429283142,
0.018061218783259392,
-0.36650002002716064,
-0.2834799587726593,
-0.23780815303325653,
0.2927762269973755,
-0.8888411521911621,
1.1064010858535767,
0.31740209460258484,
-0.9334262609481812,
0.3288532495498657,
-0.6435880661010742,
-0.21137337386608124,
-0.05804343894124031,
-0.07691885530948639,
-0.4900079667568207,
0.32825297117233276,
0.39775314927101135,
0.21197964251041412,
-0.24512340128421783,
0.09223545342683792,
-0.22984902560710907,
-0.09393244981765747,
0.26221802830696106,
-0.09553122520446777,
0.8397311568260193,
0.15091632306575775,
-0.08675511926412582,
0.14913783967494965,
-0.6540631651878357,
-0.3340999186038971,
0.8019179701805115,
0.20097588002681732,
-0.19056759774684906,
-0.33022013306617737,
0.37524932622909546,
0.054699819535017014,
0.25670939683914185,
-0.7942789793014526,
0.39108893275260925,
-0.4605236351490021,
0.5413484573364258,
0.32866403460502625,
-0.423179030418396,
0.7261763215065002,
-0.5258035659790039,
0.4978088438510895,
0.05240087956190109,
0.3062746226787567,
-0.38355547189712524,
-0.4543858766555786,
-0.9265960454940796,
-0.12232942134141922,
0.4887494742870331,
0.6115033626556396,
-0.3146599531173706,
0.5797683596611023,
-0.4997968375682831,
-0.7278521060943604,
-0.6409990787506104,
-0.17634177207946777,
0.17593830823898315,
0.7325577735900879,
0.4719945192337036,
-0.25801870226860046,
-0.3830713927745819,
-0.9707329273223877,
-0.018390124663710594,
0.026935221627354622,
-0.02440020814538002,
0.39105162024497986,
0.4645885229110718,
-0.07325468957424164,
1.0835518836975098,
-0.666050374507904,
-0.3467874825000763,
-0.4421498477458954,
-0.10059387981891632,
0.4658166468143463,
0.5540985465049744,
0.8591547012329102,
-0.7522983551025391,
-0.6532952785491943,
0.03978799656033516,
-0.6047192215919495,
-0.1624685823917389,
0.04567677900195122,
-0.15833309292793274,
0.2679179012775421,
0.4356106221675873,
-0.8132655620574951,
0.8109349012374878,
0.41573524475097656,
-0.162054181098938,
0.5673126578330994,
-0.20407170057296753,
0.19272364675998688,
-1.0673863887786865,
0.2785760760307312,
0.0424230694770813,
-0.34387996792793274,
-0.6448849439620972,
-0.05931525304913521,
0.3723159432411194,
-0.06283983588218689,
-0.3548787534236908,
0.7282202243804932,
-0.4279325306415558,
0.24067670106887817,
-0.2219645082950592,
0.31697753071784973,
0.3202109634876251,
0.4841950833797455,
-0.04026579484343529,
0.47166165709495544,
0.4490721523761749,
-0.3947193920612335,
0.24538053572177887,
0.45246756076812744,
-0.15654748678207397,
0.8370956182479858,
-0.9283651113510132,
0.12255794554948807,
-0.03376910090446472,
0.21245302259922028,
-1.1397732496261597,
-0.24338427186012268,
0.4669625759124756,
-0.5050016045570374,
0.5223683714866638,
-0.35325467586517334,
-0.8971078991889954,
-0.6604793071746826,
-0.08420679718255997,
0.39300426840782166,
0.8092441558837891,
-0.6711445450782776,
0.6964243054389954,
0.20543746650218964,
0.18102911114692688,
-0.28728049993515015,
-0.8680259585380554,
-0.3505510985851288,
-0.10152605921030045,
-0.9219164848327637,
0.8285946846008301,
-0.28977078199386597,
0.09698617458343506,
0.2497572898864746,
-0.34252119064331055,
-0.11178311705589294,
-0.22902269661426544,
0.39804738759994507,
0.398313969373703,
-0.18691283464431763,
-0.08776871860027313,
0.19207176566123962,
-0.3786076605319977,
-0.045746829360723495,
0.31488731503486633,
0.6522393822669983,
-0.11375196278095245,
-0.2305644452571869,
-0.7237647175788879,
0.08813237398862839,
0.48855626583099365,
-0.11368129402399063,
0.48153236508369446,
0.8201635479927063,
-0.5870014429092407,
0.14711971580982208,
-0.5797857642173767,
-0.19293111562728882,
-0.5105675458908081,
-0.07875395566225052,
-0.5900953412055969,
-0.5037503242492676,
0.7458590269088745,
-0.060525473207235336,
-0.010471053421497345,
0.8859806656837463,
0.40793076157569885,
0.042940910905599594,
0.7784436345100403,
0.6635902523994446,
0.15017321705818176,
0.44479647278785706,
-0.4427552819252014,
0.4280000925064087,
-1.0843943357467651,
-0.40677914023399353,
-0.5380501747131348,
-0.4986017048358917,
-0.42998239398002625,
-0.27076444029808044,
0.18358469009399414,
0.7471112608909607,
-0.13750813901424408,
0.7377409338951111,
-0.7859380841255188,
0.39069443941116333,
0.4604758024215698,
-0.09221528470516205,
0.2933679223060608,
-0.00672802934423089,
-0.4922778308391571,
-0.2253943383693695,
-0.41767647862434387,
-0.6791805624961853,
0.8852555155754089,
0.43944722414016724,
0.8592187762260437,
0.062409669160842896,
0.5574598908424377,
-0.10161823779344559,
0.12435294687747955,
-0.8393538594245911,
0.41361698508262634,
-0.17009007930755615,
-0.6568068861961365,
0.3375263214111328,
-0.2660583555698395,
-1.1051197052001953,
-0.15932726860046387,
-0.14061640202999115,
-1.0435715913772583,
0.12456469982862473,
0.2782129943370819,
-0.20729734003543854,
0.6168074607849121,
-0.9294788241386414,
0.8850400447845459,
-0.41132646799087524,
-0.03365205228328705,
0.08690282702445984,
-0.4563466012477875,
0.2761419415473938,
0.14083482325077057,
0.08616252988576889,
-0.031039880588650703,
0.2038431465625763,
0.7137718200683594,
-0.42196422815322876,
0.7969867587089539,
-0.10457056760787964,
0.021575937047600746,
0.204825296998024,
0.20023943483829498,
0.45143136382102966,
0.1526276171207428,
0.021286796778440475,
0.806459903717041,
0.29518264532089233,
-0.19535723328590393,
-0.5016733407974243,
0.8102803826332092,
-0.9625263214111328,
-0.4310391843318939,
-0.44289523363113403,
-0.36572641134262085,
0.1858118772506714,
0.46811503171920776,
0.6098102927207947,
0.203155517578125,
-0.26998719573020935,
0.04495454207062721,
0.46658045053482056,
-0.21256113052368164,
0.5989990830421448,
0.11412535607814789,
-0.47027498483657837,
-0.4659362733364105,
0.5726775527000427,
0.16465242207050323,
0.13076747953891754,
0.4468936324119568,
0.322740763425827,
-0.26834070682525635,
-0.10328922420740128,
-0.717322826385498,
0.6583399772644043,
-0.5365731716156006,
-0.36094483733177185,
-0.9468594193458557,
-0.6139373779296875,
-0.4955291450023651,
-0.4072765111923218,
-0.6278362274169922,
-0.326434850692749,
-0.6441115140914917,
0.12693284451961517,
0.5100414752960205,
0.8755967617034912,
0.06365188211202621,
0.7357232570648193,
-0.8054186701774597,
0.43578168749809265,
-0.10692691802978516,
0.5914522409439087,
0.25283709168434143,
-0.6007165908813477,
-0.16392037272453308,
-0.06757389008998871,
-0.6782376170158386,
-0.807126522064209,
0.5067408084869385,
-0.28352004289627075,
0.6766011118888855,
0.30866682529449463,
0.1552208960056305,
0.5190145373344421,
-0.7444431185722351,
0.9551284313201904,
0.4610980451107025,
-1.0262255668640137,
0.4154724180698395,
-0.12487324327230453,
0.33326929807662964,
0.15541554987430573,
0.39316779375076294,
-0.5283287167549133,
0.1612531989812851,
-0.958945095539093,
-0.8013074398040771,
1.134953498840332,
0.3127525746822357,
0.35869988799095154,
0.25270333886146545,
0.24443109333515167,
0.39116308093070984,
0.0707312524318695,
-0.638975977897644,
-0.4722907841205597,
-0.5357462167739868,
-0.28620797395706177,
0.2490648329257965,
-0.3606603443622589,
-0.20470961928367615,
-0.3672578036785126,
0.35324203968048096,
0.22478817403316498,
0.6595000624656677,
0.28251999616622925,
-0.2203887403011322,
-0.28747713565826416,
0.06366631388664246,
0.6445789933204651,
0.37670251727104187,
-0.4246753454208374,
-0.179141104221344,
-0.07539504766464233,
-0.6620858311653137,
-0.361881822347641,
0.13235394656658173,
-0.11128328740596771,
0.06584419310092926,
0.28135547041893005,
1.0677940845489502,
0.05830065533518791,
-0.3262925446033478,
0.6404973268508911,
-0.18316498398780823,
-0.4584811329841614,
-0.5693707466125488,
0.2040734887123108,
0.09993237257003784,
0.21262341737747192,
0.36019769310951233,
0.3009757399559021,
-0.14830298721790314,
0.09621632844209671,
0.18080802261829376,
0.15938623249530792,
-0.4545423984527588,
-0.781699538230896,
0.8318055868148804,
-0.01801302842795849,
-0.5421614050865173,
0.5100047588348389,
-0.37760916352272034,
-0.45319026708602905,
0.5279479622840881,
0.6524356603622437,
0.8494526147842407,
-0.19989700615406036,
-0.04639292135834694,
0.7071795463562012,
0.5259868502616882,
0.036140892654657364,
0.23539571464061737,
0.0784694030880928,
-0.6801459193229675,
0.020247044041752815,
-0.6980834603309631,
-0.16602249443531036,
0.4299447536468506,
-0.7079683542251587,
0.6657252907752991,
-0.6065974235534668,
-0.2438894510269165,
0.06727522611618042,
-0.07051345705986023,
-1.0802597999572754,
0.2192612886428833,
0.057129740715026855,
0.9198446273803711,
-0.6459192633628845,
0.7211851477622986,
0.682765781879425,
-0.4447236955165863,
-0.6598899364471436,
0.22231967747211456,
0.00898719858378172,
-0.7962754368782043,
0.748158872127533,
0.2689218521118164,
0.21710102260112762,
-0.16366256773471832,
-0.5688339471817017,
-1.047728180885315,
1.0674675703048706,
0.33596494793891907,
-0.7638420462608337,
-0.14578810334205627,
-0.11378613114356995,
0.37388667464256287,
-0.39681869745254517,
0.6166672706604004,
0.22494469583034515,
0.31279319524765015,
0.31506162881851196,
-1.1991877555847168,
0.17453941702842712,
-0.30618348717689514,
-0.061643339693546295,
0.239676833152771,
-0.7943901419639587,
0.9011736512184143,
-0.1435164213180542,
-0.20940138399600983,
0.06158869341015816,
0.5062100291252136,
-0.07562634348869324,
0.3001948893070221,
0.54659104347229,
0.8963508605957031,
0.5998882055282593,
-0.2693755328655243,
1.06461501121521,
-0.25218889117240906,
0.617262601852417,
0.9790943264961243,
0.03816048800945282,
0.6306091547012329,
0.206644207239151,
-0.2904321253299713,
0.5339459776878357,
0.5982730388641357,
-0.3276238441467285,
0.4974386394023895,
0.02832142636179924,
0.36636069416999817,
-0.06722389906644821,
-0.061593085527420044,
-0.480241596698761,
0.3818947970867157,
0.5361602902412415,
-0.6620603203773499,
-0.28174474835395813,
-0.15359783172607422,
0.269335001707077,
-0.07516036182641983,
-0.1783439815044403,
0.47122839093208313,
0.18623998761177063,
-0.1349736899137497,
0.7811000943183899,
-0.025694144889712334,
0.6580318808555603,
-0.313703715801239,
0.1094675213098526,
-0.09816315025091171,
0.02625991776585579,
-0.3673767149448395,
-0.6417447924613953,
0.5617372989654541,
0.08770140260457993,
-0.4077851474285126,
-0.08466038107872009,
0.5957863330841064,
-0.04788844659924507,
-0.8127585053443909,
0.3929750919342041,
0.29193490743637085,
0.18423788249492645,
0.2958352565765381,
-0.9189891219139099,
0.41124075651168823,
-0.12610390782356262,
-0.36429736018180847,
0.0790049359202385,
0.40961262583732605,
0.04761234298348427,
0.22170154750347137,
0.6073688864707947,
-0.09645072370767593,
0.02713361196219921,
0.06254052370786667,
0.9771170020103455,
-0.6839012503623962,
-0.4035723805427551,
-0.6799546480178833,
0.8182539939880371,
-0.2504560351371765,
-0.28656235337257385,
0.4697214663028717,
0.5140281319618225,
1.1853467226028442,
-0.15682531893253326,
0.6909970641136169,
-0.3024587631225586,
0.5623693466186523,
-0.299645334482193,
0.9151145219802856,
-0.9600545763969421,
-0.13779675960540771,
-0.40872228145599365,
-0.9224075675010681,
-0.44660401344299316,
0.7394566535949707,
-0.5595234036445618,
0.26660796999931335,
0.8086395859718323,
0.7637908458709717,
-0.6927109956741333,
0.049214452505111694,
0.33822351694107056,
0.14722158014774323,
0.2810938060283661,
0.0581696555018425,
0.36186492443084717,
-0.8236996531486511,
0.6127958297729492,
-0.46422097086906433,
-0.17399244010448456,
-0.576196014881134,
-0.7612788081169128,
-1.1678541898727417,
-0.6293420791625977,
-0.44154638051986694,
-0.42790284752845764,
-0.6099852323532104,
0.6733551025390625,
0.905107319355011,
-0.8225647807121277,
-0.0037067960947752,
-0.04468318074941635,
0.06772423535585403,
-0.15002526342868805,
-0.2758581042289734,
0.5919627547264099,
-0.11693271994590759,
-1.0312384366989136,
-0.034513287246227264,
0.070992112159729,
0.11809156090021133,
0.027391688898205757,
-0.013997437432408333,
0.1197076290845871,
0.0009134333813562989,
0.3106667697429657,
0.016759319230914116,
-0.9014288783073425,
-0.1135644018650055,
0.3787860870361328,
-0.13090942800045013,
0.5435255765914917,
0.7018843293190002,
-0.48677968978881836,
0.4755011796951294,
0.5066649317741394,
0.45137205719947815,
0.7005410194396973,
-0.08595190942287445,
0.13611789047718048,
-0.6484836339950562,
0.11868519335985184,
0.02217990718781948,
0.46821898221969604,
0.47129300236701965,
-0.5042198300361633,
0.38833826780319214,
0.47879743576049805,
-0.595927357673645,
-0.8500670790672302,
0.37548914551734924,
-1.4924370050430298,
0.03881262615323067,
1.0375303030014038,
-0.10128891468048096,
-0.5389242172241211,
0.21428212523460388,
-0.3404557704925537,
0.514663577079773,
-0.6743292212486267,
0.49983930587768555,
0.5675110220909119,
-0.09376181662082672,
-0.5868607759475708,
-0.6245474815368652,
0.27639809250831604,
0.10229852795600891,
-0.5142241716384888,
-0.05291404947638512,
0.04577747359871864,
0.36458125710487366,
0.7076564431190491,
0.37643298506736755,
-0.25560328364372253,
-0.1302340030670166,
0.09315088391304016,
0.29079070687294006,
-0.03038381226360798,
-0.1388784646987915,
-0.07832405716180801,
-0.026933632791042328,
-0.15130308270454407,
-0.2923019826412201
] |
flair/ner-german | flair | "2023-04-05T09:42:58Z" | 150,460 | 14 | flair | [
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"de",
"dataset:conll2003",
"region:us"
] | token-classification | "2022-03-02T23:29:05Z" | ---
tags:
- flair
- token-classification
- sequence-tagger-model
language: de
datasets:
- conll2003
widget:
- text: "George Washington ging nach Washington"
---
## German NER in Flair (default model)
This is the standard 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/).
F1-Score: **87,94** (CoNLL-03 German revised)
Predicts 4 tags:
| **tag** | **meaning** |
|---------------------------------|-----------|
| PER | person name |
| LOC | location name |
| ORG | organization name |
| MISC | other name |
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/ner-german")
# make example sentence
sentence = Sentence("George Washington ging nach Washington")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
This yields the following output:
```
Span [1,2]: "George Washington" [− Labels: PER (0.9977)]
Span [5]: "Washington" [− Labels: LOC (0.9895)]
```
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import Corpus
from flair.datasets import CONLL_03_GERMAN
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. get the corpus
corpus: Corpus = CONLL_03_GERMAN()
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# GloVe embeddings
WordEmbeddings('de'),
# contextual string embeddings, forward
FlairEmbeddings('de-forward'),
# contextual string embeddings, backward
FlairEmbeddings('de-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/ner-german',
train_with_dev=True,
max_epochs=150)
```
---
### Cite
Please cite the following paper when using this model.
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
---
### Issues?
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
| [
-0.5564509034156799,
-0.7007871866226196,
0.16235946118831635,
0.010549413040280342,
-0.1584910750389099,
-0.19430074095726013,
-0.23963278532028198,
-0.41667693853378296,
0.4755895733833313,
0.1702965945005417,
-0.5422348976135254,
-0.6167116165161133,
-0.45353683829307556,
0.31233665347099304,
0.022268952801823616,
1.2225950956344604,
0.16766460239887238,
0.40677526593208313,
-0.09592867642641068,
-0.05350475013256073,
-0.3702573776245117,
-0.7941660284996033,
-0.5513564944267273,
-0.4609301686286926,
0.5557689070701599,
0.31335264444351196,
0.5827220678329468,
0.6156840920448303,
0.3757800757884979,
0.29620984196662903,
-0.2380310446023941,
-0.08731143921613693,
-0.20050130784511566,
-0.10046277195215225,
-0.1292264312505722,
-0.24708938598632812,
-0.8373749256134033,
0.09739986807107925,
0.6859818696975708,
0.5156440734863281,
0.12178792804479599,
0.03245417773723602,
-0.042569104582071304,
0.2195664644241333,
-0.24903155863285065,
0.36235150694847107,
-0.543532133102417,
-0.29813826084136963,
-0.24237209558486938,
0.015550315380096436,
-0.4334559440612793,
-0.31937098503112793,
0.3052853047847748,
-0.46729061007499695,
0.26235395669937134,
0.11405931413173676,
1.4521489143371582,
0.16465051472187042,
-0.40670228004455566,
-0.12306303530931473,
-0.44699257612228394,
0.7218880653381348,
-1.0629055500030518,
0.40620192885398865,
0.3423091471195221,
-0.05966832861304283,
-0.14907418191432953,
-0.6401082873344421,
-0.6395718455314636,
-0.16031509637832642,
-0.1317058950662613,
0.11605164408683777,
-0.3500407338142395,
-0.1724846065044403,
0.30299705266952515,
0.16334141790866852,
-0.7516508102416992,
0.016171438619494438,
-0.224908247590065,
-0.27086520195007324,
0.7804118990898132,
0.17278288304805756,
0.12907429039478302,
-0.31836792826652527,
-0.4156497120857239,
-0.2930948734283447,
-0.32137635350227356,
-0.08708123117685318,
0.20903225243091583,
0.5098612904548645,
-0.25215384364128113,
0.42273327708244324,
-0.1303667277097702,
0.9028893709182739,
0.28850990533828735,
-0.19632771611213684,
0.850741446018219,
-0.1525878757238388,
-0.2304457128047943,
-0.07632800936698914,
0.9551041722297668,
0.3786103427410126,
0.29934272170066833,
-0.13876554369926453,
-0.19698821008205414,
0.11143631488084793,
-0.09265194088220596,
-0.7077322006225586,
-0.2427637279033661,
0.08778016269207001,
-0.29480260610580444,
-0.3292386531829834,
0.17650476098060608,
-0.8373340964317322,
-0.08162178099155426,
-0.09029655903577805,
0.5416154861450195,
-0.5898749232292175,
-0.17998644709587097,
0.04720861092209816,
-0.3731774687767029,
0.4144516885280609,
0.06785845756530762,
-0.9006169438362122,
0.07694810628890991,
0.3511972427368164,
0.5983611941337585,
0.15586817264556885,
-0.3651771545410156,
-0.23920920491218567,
-0.13129328191280365,
-0.2064104825258255,
0.6644757390022278,
-0.3958255350589752,
-0.3652833104133606,
-0.013079997152090073,
0.18544459342956543,
-0.26557159423828125,
-0.22398029267787933,
0.6250600814819336,
-0.7262209057807922,
0.41767618060112,
-0.20785710215568542,
-0.9112389087677002,
-0.5518462657928467,
0.19444231688976288,
-0.6221655011177063,
0.9536650776863098,
0.1587591916322708,
-1.055302619934082,
0.4345144033432007,
-0.4626457095146179,
-0.5969446897506714,
0.09144192934036255,
0.06904837489128113,
-0.47576186060905457,
-0.06780789792537689,
0.11767126619815826,
0.7897972464561462,
-0.10381479561328888,
0.4993284344673157,
-0.5124644041061401,
-0.048643797636032104,
0.1910858303308487,
0.04382965341210365,
0.8303844332695007,
0.03906170651316643,
-0.32560378313064575,
0.09733846783638,
-0.924460768699646,
-0.018074799329042435,
0.23439691960811615,
-0.43198731541633606,
-0.21565228700637817,
-0.03927101567387581,
0.24361805617809296,
0.2896158695220947,
0.21355335414409637,
-0.41846993565559387,
0.3801494836807251,
-0.5442447066307068,
0.33332833647727966,
0.5758774280548096,
0.015035253949463367,
0.724838376045227,
-0.4608776569366455,
0.4389611482620239,
0.01903236284852028,
-0.296347439289093,
0.02086496539413929,
-0.6936448812484741,
-0.8386175036430359,
-0.2091038078069687,
0.526828408241272,
0.7950833439826965,
-0.6912773847579956,
0.8991762399673462,
-0.43710899353027344,
-0.8671033978462219,
-0.2628791928291321,
-0.3312576711177826,
0.2498805820941925,
0.7845647931098938,
0.5437209606170654,
-0.17998188734054565,
-0.8653383851051331,
-0.9044703245162964,
-0.20406422019004822,
-0.16375499963760376,
0.27834245562553406,
0.2598389983177185,
0.997504472732544,
-0.4082033634185791,
0.8766627907752991,
-0.42980560660362244,
-0.22630269825458527,
-0.3632338047027588,
0.19789397716522217,
0.5957387685775757,
0.6878989934921265,
0.5025718808174133,
-0.6433377265930176,
-0.6334596872329712,
-0.19744139909744263,
-0.6150697469711304,
0.11729618161916733,
-0.09017716348171234,
0.08151790499687195,
0.5520687103271484,
0.3528593182563782,
-0.4378340244293213,
0.45209217071533203,
0.30423206090927124,
-0.6361083984375,
0.5575011372566223,
0.06294362246990204,
-0.2880030870437622,
-1.3767009973526,
0.36364617943763733,
0.3428784906864166,
-0.28508198261260986,
-0.8193626999855042,
-0.24538002908229828,
0.11663057655096054,
0.2622394561767578,
-0.3313342332839966,
0.9343117475509644,
-0.35805290937423706,
0.16351796686649323,
-0.05789084732532501,
-0.18031112849712372,
-0.0742255374789238,
0.49365004897117615,
0.40920278429985046,
0.44701269268989563,
0.6537507176399231,
-0.7374975681304932,
0.08796089142560959,
0.4453626871109009,
-0.3359419107437134,
0.2291685789823532,
-0.5028539299964905,
-0.09442417323589325,
-0.13251391053199768,
0.33731216192245483,
-0.8606721758842468,
-0.4650704562664032,
0.4040014445781708,
-0.771503746509552,
0.7077815532684326,
-0.005190554540604353,
-0.4799066483974457,
-0.49017471075057983,
-0.08204852044582367,
0.009184817783534527,
0.5636788606643677,
-0.3683610260486603,
0.5526493191719055,
0.3149983286857605,
0.10972833633422852,
-0.6472766995429993,
-0.6769241690635681,
-0.19647739827632904,
-0.3932836651802063,
-0.7079213857650757,
0.6095917224884033,
-0.10079770535230637,
0.046704865992069244,
0.11418379098176956,
-0.0067045665346086025,
-0.01578124426305294,
0.25604262948036194,
0.16758859157562256,
0.5611677765846252,
-0.21223782002925873,
0.09423182159662247,
-0.35013145208358765,
-0.06398539245128632,
-0.07083962857723236,
-0.1270618885755539,
0.7865891456604004,
-0.39032602310180664,
0.2847687602043152,
-0.5562728047370911,
0.09364053606987,
0.2380531132221222,
-0.20885057747364044,
0.8581230044364929,
0.9260189533233643,
-0.46585220098495483,
-0.08732182532548904,
-0.44601598381996155,
-0.3452279269695282,
-0.4067053496837616,
0.6120335459709167,
-0.45622846484184265,
-0.8492283821105957,
0.5550665855407715,
0.14301182329654694,
0.03617878630757332,
0.9293770790100098,
0.5833360552787781,
-0.027659747749567032,
1.147816777229309,
0.7458462119102478,
-0.2924027144908905,
0.5102123022079468,
-0.49089574813842773,
0.07476827502250671,
-0.7178440093994141,
-0.16103914380073547,
-0.4701853394508362,
-0.1625131368637085,
-0.7875508666038513,
-0.21199603378772736,
0.21046482026576996,
0.40865224599838257,
-0.7375800013542175,
0.5781736373901367,
-0.4872877895832062,
0.21684756875038147,
0.7407582998275757,
-0.14253173768520355,
-0.09948054701089859,
-0.028992582112550735,
-0.27067697048187256,
-0.14995495975017548,
-0.8085658550262451,
-0.608552098274231,
0.9106584787368774,
0.45645931363105774,
0.6900713443756104,
0.03056824952363968,
0.9815369844436646,
-0.053904857486486435,
0.35090240836143494,
-0.9385362267494202,
0.4363921582698822,
-0.07740618288516998,
-0.9536524415016174,
-0.09700651466846466,
-0.26340973377227783,
-0.856799304485321,
0.19980451464653015,
-0.32275015115737915,
-0.920638382434845,
0.2778523862361908,
0.10990505665540695,
-0.4462859332561493,
0.34226372838020325,
-0.42691466212272644,
1.0421092510223389,
-0.08596445620059967,
-0.20644532144069672,
0.3257491886615753,
-0.9534461498260498,
0.25170981884002686,
0.037846051156520844,
0.33826425671577454,
-0.16707873344421387,
0.08912019431591034,
1.1017259359359741,
-0.17832717299461365,
1.099617838859558,
-0.07119738310575485,
0.22401882708072662,
0.13696159422397614,
0.008912638761103153,
0.4444754719734192,
0.05181650444865227,
-0.24656455218791962,
0.18434296548366547,
-0.04895365610718727,
-0.14467023313045502,
-0.054242875427007675,
0.6287367939949036,
-0.8014745116233826,
-0.4260627031326294,
-0.9889219999313354,
-0.2645229399204254,
-0.12334251403808594,
0.4229385256767273,
0.76905757188797,
0.44174331426620483,
-0.385925829410553,
-0.09775219112634659,
0.45253604650497437,
-0.20770618319511414,
0.747502326965332,
0.5680846571922302,
-0.33258068561553955,
-0.6776636242866516,
0.8607786893844604,
0.012509732507169247,
-0.05566662549972534,
0.2921750545501709,
0.14041443169116974,
-0.37996119260787964,
-0.12285488843917847,
-0.41439881920814514,
0.49067428708076477,
-0.7686358094215393,
-0.5081689357757568,
-0.6778175234794617,
-0.3295791447162628,
-0.7678004503250122,
-0.15851861238479614,
-0.16103586554527283,
-0.4195094108581543,
-0.8500316143035889,
-0.046697553247213364,
0.3701474666595459,
0.7641138434410095,
-0.38178586959838867,
0.45019322633743286,
-0.7071966528892517,
-0.16536365449428558,
-0.07799895852804184,
0.1569383591413498,
-0.08176732063293457,
-0.9510053396224976,
-0.3012109100818634,
-0.09531321376562119,
-0.45939725637435913,
-1.1854338645935059,
1.0014747381210327,
0.3225221037864685,
0.5600088238716125,
0.39157846570014954,
-0.11810002475976944,
0.48183178901672363,
-0.539543628692627,
0.8819268941879272,
0.18422606587409973,
-0.9385352730751038,
0.49083611369132996,
-0.3543750047683716,
0.23070546984672546,
0.27285289764404297,
0.7507978677749634,
-0.5838649868965149,
-0.05047464743256569,
-1.0041978359222412,
-0.9371418952941895,
0.8479999303817749,
-0.1407785266637802,
0.15985485911369324,
-0.42419493198394775,
0.14504283666610718,
-0.12739433348178864,
-0.01861659437417984,
-1.0752893686294556,
-0.6441800594329834,
-0.24785085022449493,
-0.13922397792339325,
-0.45995083451271057,
-0.21435734629631042,
0.1173102855682373,
-0.5637384057044983,
1.3185482025146484,
-0.076007179915905,
0.45555993914604187,
0.3375011384487152,
0.030102018266916275,
0.0548037514090538,
0.26583442091941833,
0.6302719712257385,
0.26596853137016296,
-0.4510786533355713,
-0.11967599391937256,
0.3008187711238861,
-0.07771993428468704,
-0.10264480113983154,
0.2895224094390869,
-0.16718237102031708,
0.33575519919395447,
0.5139394402503967,
1.0405339002609253,
0.20781168341636658,
-0.1632762849330902,
0.5644993185997009,
0.1251973807811737,
-0.2884383201599121,
-0.5632743835449219,
-0.2079397290945053,
0.20325224101543427,
0.16954836249351501,
0.2026348114013672,
0.19960635900497437,
-0.012472887523472309,
-0.4279894232749939,
0.2402784675359726,
0.4368463158607483,
-0.5356918573379517,
-0.5396653413772583,
0.899230420589447,
0.02607646770775318,
-0.1555200070142746,
0.5031110644340515,
-0.5254644155502319,
-0.91139817237854,
0.6675807237625122,
0.7577160000801086,
0.8295319676399231,
-0.21103301644325256,
0.14246606826782227,
0.9529248476028442,
0.07022373378276825,
-0.2427062690258026,
0.6365278363227844,
0.4418196678161621,
-1.0173025131225586,
-0.2643454670906067,
-0.9444864988327026,
0.12666556239128113,
0.21957065165042877,
-0.6998540163040161,
0.4700375497341156,
-0.3376523554325104,
-0.5907202959060669,
0.3474675118923187,
0.0799185037612915,
-0.908694863319397,
0.2596743702888489,
0.4965022802352905,
1.153508186340332,
-0.9778273105621338,
1.0875157117843628,
1.0032023191452026,
-0.7466391921043396,
-1.001112937927246,
-0.13505084812641144,
0.09756835550069809,
-0.7022111415863037,
0.8430012464523315,
0.37480199337005615,
0.37574702501296997,
0.26481524109840393,
-0.6995969414710999,
-1.3547295331954956,
1.0150779485702515,
-0.20819182693958282,
-0.4473896026611328,
-0.19366972148418427,
-0.3537784218788147,
0.4735502302646637,
-0.41453805565834045,
0.33207157254219055,
0.5866403579711914,
0.5656454563140869,
0.027161408215761185,
-0.9852125644683838,
-0.006269806995987892,
-0.2487044781446457,
-0.07930930703878403,
0.10690301656723022,
-0.5614684224128723,
1.0977866649627686,
-0.19927333295345306,
-0.22136344015598297,
0.28071117401123047,
0.8881189823150635,
0.08272528648376465,
0.053072717040777206,
0.26667520403862,
0.9209166169166565,
0.8039742112159729,
-0.22756396234035492,
1.0412670373916626,
-0.351782888174057,
0.6546913981437683,
1.3192813396453857,
-0.12818694114685059,
0.9481956362724304,
0.330760657787323,
-0.08627123385667801,
0.6846398711204529,
0.8534265160560608,
-0.36319026350975037,
0.6592512726783752,
0.23765039443969727,
-0.062442027032375336,
-0.3571436107158661,
-0.05845871567726135,
-0.5700259804725647,
0.6429377794265747,
0.34586209058761597,
-0.520795464515686,
-0.1163385659456253,
-0.13894054293632507,
0.5117773413658142,
-0.200103297829628,
-0.21584837138652802,
0.90565425157547,
0.006862418260425329,
-0.6658676862716675,
0.7616854906082153,
0.2094995677471161,
0.9877173900604248,
-0.4596768319606781,
0.09744653105735779,
-0.0678023099899292,
0.26973265409469604,
-0.19135423004627228,
-0.6320075988769531,
0.16007792949676514,
-0.17368198931217194,
-0.2907961905002594,
-0.03458201512694359,
0.689937949180603,
-0.43783995509147644,
-0.5209519863128662,
0.3150795102119446,
0.5846666693687439,
0.19241949915885925,
0.03289681673049927,
-0.7535558938980103,
-0.263841450214386,
0.14104390144348145,
-0.4581994116306305,
0.15483273565769196,
0.1135682612657547,
-0.014195474795997143,
0.4412776529788971,
0.49941909313201904,
-0.058027200400829315,
0.040224459022283554,
-0.15795771777629852,
0.8665550947189331,
-0.8573204278945923,
-0.41969016194343567,
-1.0030707120895386,
0.5857373476028442,
-0.017362495884299278,
-0.49688345193862915,
0.763194739818573,
0.7572291493415833,
0.9671868085861206,
-0.24356918036937714,
0.9037669897079468,
-0.5389471054077148,
0.6815211772918701,
-0.1412162333726883,
0.7568445801734924,
-0.7055131196975708,
-0.09397514164447784,
-0.2332332283258438,
-0.7632958292961121,
-0.47449740767478943,
0.7973052263259888,
-0.4056857228279114,
0.03888818249106407,
0.5647438764572144,
0.7821232080459595,
0.0866638794541359,
-0.027894960716366768,
0.12998487055301666,
0.3210349977016449,
0.1162710189819336,
0.46586814522743225,
0.5975942611694336,
-0.5184608101844788,
0.12002965062856674,
-0.6234180331230164,
-0.2197226732969284,
-0.34064188599586487,
-0.9538506865501404,
-1.0121910572052002,
-0.7643006443977356,
-0.384555846452713,
-0.7556216716766357,
-0.2852793335914612,
1.1067041158676147,
0.5849598050117493,
-1.0157150030136108,
-0.2433888018131256,
0.11212291568517685,
-0.11487814038991928,
-0.03817353397607803,
-0.281571626663208,
0.4887427091598511,
-0.3413677513599396,
-0.7171677350997925,
0.37318286299705505,
-0.35118189454078674,
0.366974413394928,
0.2825987637042999,
-0.11311681568622589,
-0.6651039123535156,
-0.1288319230079651,
0.3651678264141083,
0.39650923013687134,
-0.9549669623374939,
-0.2562256455421448,
0.14561067521572113,
-0.34174075722694397,
0.17310643196105957,
0.09165249764919281,
-0.7586556077003479,
0.23195604979991913,
0.6300094723701477,
0.30830442905426025,
0.46621647477149963,
-0.03644885495305061,
0.49599841237068176,
-0.7156750559806824,
-0.026016391813755035,
0.4129303991794586,
0.6203962564468384,
0.3459399938583374,
-0.15572592616081238,
0.575185239315033,
0.3801991939544678,
-0.6824163198471069,
-0.6008954048156738,
-0.03499597683548927,
-1.0849984884262085,
-0.35073280334472656,
1.2952765226364136,
-0.06429746001958847,
-0.34058868885040283,
0.15577954053878784,
-0.020808055996894836,
0.6406559944152832,
-0.53058922290802,
0.201527938246727,
0.6784929633140564,
-0.10441798716783524,
0.2261369675397873,
-0.46287035942077637,
0.8156973719596863,
0.35605236887931824,
-0.4330352544784546,
-0.2946406900882721,
0.43950703740119934,
0.6572842001914978,
0.265224814414978,
0.5423689484596252,
0.12602481245994568,
0.17710793018341064,
-0.05827895179390907,
0.5317131876945496,
0.17139963805675507,
-0.10088646411895752,
-0.6723451018333435,
-0.24583791196346283,
-0.16272500157356262,
-0.13344499468803406
] |
nateraw/bert-base-uncased-emotion | nateraw | "2021-05-20T01:18:38Z" | 149,328 | 4 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"text-classification",
"emotion",
"en",
"dataset:emotion",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | text-classification | "2022-03-02T23:29:05Z" | ---
language:
- en
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
tags:
- text-classification
- emotion
- pytorch
license: apache-2.0
datasets:
- emotion
metrics:
- accuracy
---
# bert-base-uncased-emotion
## Model description
`bert-base-uncased` finetuned on the emotion dataset using PyTorch Lightning. Sequence length 128, learning rate 2e-5, batch size 32, 2 GPUs, 4 epochs.
For more details, please see, [the emotion dataset on nlp viewer](https://huggingface.co/nlp/viewer/?dataset=emotion).
#### Limitations and bias
- Not the best model, but it works in a pinch I guess...
- Code not available as I just hacked this together.
- [Follow me on github](https://github.com/nateraw) to get notified when code is made available.
## Training data
Data came from HuggingFace's `datasets` package. The data can be viewed [on nlp viewer](https://huggingface.co/nlp/viewer/?dataset=emotion).
## Training procedure
...
## Eval results
val_acc - 0.931 (useless, as this should be precision/recall/f1)
The score was calculated using PyTorch Lightning metrics.
| [
-0.5097765922546387,
-0.6078482866287231,
0.09038436412811279,
0.6512157917022705,
-0.41971325874328613,
-0.13924625515937805,
-0.35424619913101196,
-0.3268970847129822,
0.5842035412788391,
0.020578470081090927,
-0.6792523264884949,
-0.6272791028022766,
-0.5804903507232666,
-0.3105927109718323,
-0.3956104815006256,
1.462735891342163,
0.12005968391895294,
0.10332801938056946,
0.061897680163383484,
-0.14618152379989624,
-0.07694660127162933,
-0.5079510807991028,
-0.301791250705719,
-0.653183102607727,
0.40702369809150696,
0.40318670868873596,
0.6134565472602844,
-0.08517297357320786,
0.49482929706573486,
0.1839922070503235,
-0.26629000902175903,
-0.40631288290023804,
-0.6665236949920654,
-0.14718259871006012,
0.0273677296936512,
-0.08786288648843765,
-0.6424561738967896,
-0.009960772469639778,
0.3778475821018219,
0.4218263030052185,
-0.31515631079673767,
0.16962102055549622,
-0.016899826005101204,
0.8954474925994873,
-0.348764568567276,
0.32476091384887695,
-0.5846062302589417,
0.4051094353199005,
0.07471305131912231,
0.04833246022462845,
-0.3679904341697693,
-0.25137460231781006,
0.47411954402923584,
-0.08172408491373062,
0.3163723349571228,
0.1304970532655716,
0.972162663936615,
-0.04685286805033684,
-0.25421395897865295,
-0.13638167083263397,
-0.2151641994714737,
0.5914291143417358,
-0.6395993828773499,
0.18035706877708435,
0.2892184853553772,
0.035963717848062515,
0.04887871444225311,
-0.6201953291893005,
-0.38490912318229675,
-0.12457017600536346,
0.2785593271255493,
0.1832485944032669,
-0.5083498954772949,
0.24430455267429352,
0.3854575455188751,
0.6133221387863159,
-0.4927350878715515,
-0.2209244966506958,
-0.15636897087097168,
-0.12059801816940308,
0.6496398448944092,
-0.0677725225687027,
0.11346534639596939,
-0.4730430841445923,
-0.4598311483860016,
-0.27436771988868713,
-0.3433334529399872,
0.19992776215076447,
0.5963497757911682,
0.2670677602291107,
-0.598422646522522,
0.7015732526779175,
0.18686506152153015,
0.26000073552131653,
0.3197011947631836,
0.447147935628891,
0.7808548808097839,
0.35174912214279175,
-0.4757940471172333,
0.048254478722810745,
0.9692265391349792,
0.5059878826141357,
0.33678823709487915,
-0.11472226679325104,
-0.3789941072463989,
-0.006321179214864969,
0.4485887587070465,
-0.7909168601036072,
-0.4713599979877472,
0.3929920494556427,
-0.6696042418479919,
-0.3179876208305359,
-0.11424555629491806,
-0.9448420405387878,
-0.2767735421657562,
-0.16976265609264374,
0.6206080317497253,
-0.7755807638168335,
-0.34789976477622986,
0.1452612727880478,
-0.2645493447780609,
0.2524876296520233,
0.15888521075248718,
-0.9662708044052124,
0.3178554177284241,
0.3091006278991699,
0.704697847366333,
0.14819447696208954,
-0.0277263056486845,
0.01909482479095459,
-0.7877625823020935,
-0.17764227092266083,
0.26560020446777344,
-0.05484265834093094,
-0.43725016713142395,
0.10048431903123856,
-0.0002665432111825794,
0.15127448737621307,
-0.18031808733940125,
0.9922317266464233,
-0.3637438118457794,
0.15838958323001862,
-0.22712627053260803,
-0.7197190523147583,
-0.2740694284439087,
0.12467394024133682,
-0.5046046376228333,
1.1395460367202759,
0.47680339217185974,
-0.958132266998291,
0.10813503712415695,
-0.632587730884552,
-0.36001965403556824,
-0.03127744793891907,
0.1433241367340088,
-0.5169695019721985,
0.5027011036872864,
0.032944921404123306,
0.6322788000106812,
0.048165325075387955,
0.28676021099090576,
-0.45818978548049927,
-0.3734678030014038,
0.12450771778821945,
-0.16875648498535156,
0.7821744084358215,
0.018881646916270256,
-0.5724513530731201,
0.05626422166824341,
-0.8286289572715759,
0.08770675957202911,
0.15414109826087952,
-0.24985739588737488,
0.040597137063741684,
-0.32485103607177734,
0.6510436534881592,
0.23658430576324463,
0.3070187568664551,
-0.8111252188682556,
0.33805495500564575,
-0.5020413398742676,
-0.06609366089105606,
0.8414614200592041,
-0.21571661531925201,
0.2642501890659332,
-0.08830777555704117,
0.4080770015716553,
-0.10772371292114258,
0.06526030600070953,
0.2875716984272003,
-0.6569493412971497,
-0.8519116044044495,
-0.15512242913246155,
0.3277853727340698,
0.42893943190574646,
-0.48294687271118164,
1.0922693014144897,
0.1698564887046814,
-0.6750787496566772,
-0.8011963367462158,
-0.20810137689113617,
0.5603885054588318,
0.5989078879356384,
0.448459267616272,
-0.6505166888237,
-0.7448238730430603,
-0.8454431891441345,
0.06883438676595688,
0.012479620054364204,
-0.11126398295164108,
0.3803970515727997,
0.5559717416763306,
-0.4202682375907898,
0.9268839955329895,
-0.42319756746292114,
-0.18478842079639435,
-0.28250911831855774,
0.4872579276561737,
0.4170242249965668,
0.6873740553855896,
0.6464880704879761,
-0.42203256487846375,
-0.27170035243034363,
-0.3509211838245392,
-0.7434802651405334,
-0.11704086512327194,
0.056786078959703445,
-0.1444154977798462,
0.25017768144607544,
-0.1827709823846817,
-0.6895888447761536,
0.6902215480804443,
0.592953622341156,
-0.4704110026359558,
0.7784294486045837,
-0.16917134821414948,
-0.008008337579667568,
-0.8169806599617004,
0.12957869470119476,
0.27844616770744324,
-0.13616862893104553,
-0.4718931019306183,
-0.1264285147190094,
0.18184569478034973,
-0.12753835320472717,
-0.5106876492500305,
0.48725321888923645,
-0.2547757625579834,
-0.24912799894809723,
-0.18371054530143738,
-0.20929357409477234,
-0.12267116457223892,
0.8884001970291138,
0.21081960201263428,
0.2615462839603424,
0.7559426426887512,
-0.28972142934799194,
0.6814336776733398,
0.5982585549354553,
-0.5021765232086182,
0.4423685073852539,
-0.7432530522346497,
0.26620468497276306,
-0.08904917538166046,
0.14853137731552124,
-0.7348802089691162,
-0.32530197501182556,
0.12992480397224426,
-0.6475433707237244,
0.4172472655773163,
-0.09014705568552017,
-0.6408898830413818,
-0.29408079385757446,
-0.41028130054473877,
0.23806102573871613,
0.9577873945236206,
-0.5582366585731506,
0.4344218075275421,
0.11981810629367828,
-0.07357939332723618,
-0.5582486987113953,
-0.7646070718765259,
-0.04924405738711357,
-0.08629421889781952,
-0.5141077637672424,
0.3871944844722748,
-0.22455766797065735,
-0.032855745404958725,
-0.12439978122711182,
0.04558369517326355,
0.05591043084859848,
-0.2071944773197174,
0.40678533911705017,
0.14227695763111115,
0.029233986511826515,
0.29452836513519287,
-0.04135067015886307,
-0.015927908942103386,
0.3462383449077606,
0.17415933310985565,
0.5702346563339233,
-0.6021198630332947,
-0.19772091507911682,
-0.5196613669395447,
0.19806717336177826,
0.39578187465667725,
0.2543025612831116,
0.7354082465171814,
1.028613567352295,
-0.6327921748161316,
-0.17119142413139343,
-0.4314373731613159,
-0.21080902218818665,
-0.3902452290058136,
0.25960439443588257,
-0.0687725692987442,
-0.5318319201469421,
0.7510240077972412,
0.2506483495235443,
-0.15829285979270935,
0.6247910857200623,
0.7394124865531921,
-0.23307053744792938,
0.9375039339065552,
0.6634297966957092,
-0.34027940034866333,
0.5699619650840759,
-0.33523431420326233,
0.07304698973894119,
-0.8710625171661377,
-0.32650521397590637,
-0.12382195144891739,
-0.6165981292724609,
-0.5140153765678406,
0.0217501949518919,
0.2544372081756592,
0.159212127327919,
-0.433606892824173,
0.3144102394580841,
-0.6037885546684265,
0.13631479442119598,
0.6488788723945618,
0.46795710921287537,
-0.3112412691116333,
-0.035355109721422195,
-0.3011505603790283,
-0.2332780361175537,
-0.40128853917121887,
-0.11876068264245987,
1.08992338180542,
0.6873510479927063,
0.9558866620063782,
0.015905175358057022,
0.7609580159187317,
0.3390274941921234,
0.20481041073799133,
-0.7391091585159302,
0.36445093154907227,
-0.03895675390958786,
-0.7046875953674316,
-0.03934904560446739,
-0.37568333745002747,
-0.840167224407196,
-0.09156589210033417,
-0.4105234742164612,
-0.9354023337364197,
-0.021384669467806816,
0.04605476185679436,
-0.23372039198875427,
0.18045061826705933,
-0.9380953907966614,
1.010378360748291,
-0.4255550801753998,
-0.190973699092865,
0.03963709995150566,
-1.0875436067581177,
0.3344559073448181,
0.23016607761383057,
-0.13650284707546234,
-0.31934303045272827,
0.5685001015663147,
0.840609610080719,
-0.4435253143310547,
0.8900322914123535,
-0.44933390617370605,
0.12703962624073029,
0.13967964053153992,
-0.016521446406841278,
0.29499027132987976,
0.09279555827379227,
-0.13544680178165436,
0.115741066634655,
-0.27968451380729675,
-0.49431705474853516,
-0.3576509952545166,
0.6473761796951294,
-0.9610269665718079,
0.19160495698451996,
-0.5982853770256042,
-0.4913899600505829,
-0.3315373659133911,
-0.030197633430361748,
0.5839738845825195,
0.3797639012336731,
-0.3924759328365326,
0.33052384853363037,
0.9062878489494324,
-0.3311059772968292,
0.516833484172821,
0.18957458436489105,
-0.2945895791053772,
-0.4491751194000244,
0.6627494692802429,
-0.335521936416626,
0.015760449692606926,
0.0922231674194336,
0.272830992937088,
-0.4811922311782837,
-0.14938172698020935,
-0.2853820323944092,
0.04350718483328819,
-0.61981201171875,
-0.3068197965621948,
-0.4845508635044098,
-0.2655734121799469,
-0.36122509837150574,
-0.21811941266059875,
-0.4385813772678375,
-0.25648364424705505,
-0.5698622465133667,
-0.37658563256263733,
0.8813872933387756,
0.45984283089637756,
-0.2156364917755127,
0.3682284355163574,
-0.7545435428619385,
0.41236749291419983,
0.053953640162944794,
0.77887362241745,
0.10065694898366928,
-0.7024853825569153,
-0.19213762879371643,
-0.049270328134298325,
-0.22973084449768066,
-0.8275838494300842,
0.8277315497398376,
0.14259199798107147,
0.16721485555171967,
0.4356977641582489,
0.2015640288591385,
0.5331159234046936,
-0.3870551884174347,
0.7745445966720581,
0.5539453029632568,
-1.227266550064087,
0.6437870860099792,
-0.34386229515075684,
0.33505868911743164,
0.5835609436035156,
0.27013081312179565,
-0.3844548761844635,
-0.09885137528181076,
-1.1557340621948242,
-1.1341428756713867,
0.7438493967056274,
0.6038777828216553,
0.2299468219280243,
0.03986052796244621,
0.35475394129753113,
0.03639685735106468,
0.4739653170108795,
-1.1303558349609375,
-0.6022331118583679,
-0.3940306007862091,
-0.531064510345459,
-0.12124763429164886,
-0.365757554769516,
-0.18051858246326447,
-0.5347628593444824,
0.8848150372505188,
0.0022860520984977484,
0.7015206813812256,
0.28310734033584595,
-0.09937212616205215,
-0.3684806525707245,
0.016667675226926804,
0.4197882413864136,
0.012320778332650661,
-1.0619457960128784,
-0.18018393218517303,
-0.02877557836472988,
-0.49320754408836365,
-0.1786474585533142,
0.3453390896320343,
0.22088132798671722,
0.29900193214416504,
0.4122612476348877,
1.1696311235427856,
0.38316816091537476,
-0.6234219670295715,
0.7631810307502747,
-0.19856004416942596,
-0.2528855800628662,
-0.3516991138458252,
-0.2567726969718933,
0.03714120388031006,
0.3079775273799896,
0.3843110203742981,
0.2208506166934967,
0.18484187126159668,
-0.49062734842300415,
0.5327456593513489,
0.29137933254241943,
-0.6294540166854858,
-0.4207959771156311,
0.49524328112602234,
0.33657047152519226,
-0.1840660125017166,
0.8236398100852966,
-0.3493524491786957,
-0.5576567053794861,
0.6772072911262512,
0.3897595703601837,
1.1056619882583618,
0.13598202168941498,
0.009495659731328487,
0.25604307651519775,
0.10966935008764267,
0.014013909734785557,
0.6846828460693359,
0.03651730716228485,
-0.8571556806564331,
-0.05713285505771637,
-0.6785441637039185,
-0.6150422692298889,
0.10074816644191742,
-1.1375380754470825,
0.17193739116191864,
-0.6057063937187195,
-0.20554259419441223,
-0.09679852426052094,
0.16414901614189148,
-0.7587106823921204,
0.576038658618927,
0.42751798033714294,
1.303378701210022,
-1.0022844076156616,
0.7889620661735535,
0.4887288808822632,
-0.42894288897514343,
-0.813607394695282,
-0.20916631817817688,
0.041342444717884064,
-0.8527131080627441,
0.4238916337490082,
0.3347703218460083,
0.12570101022720337,
0.009728753939270973,
-0.8632382750511169,
-0.3983955681324005,
0.76121586561203,
0.36999738216400146,
-0.4439387023448944,
0.08452946692705154,
-0.4308019280433655,
0.897283673286438,
-0.2946707606315613,
0.5245800614356995,
0.4579721689224243,
0.16384761035442352,
0.1685517132282257,
-0.793735921382904,
-0.41034573316574097,
-0.4964996874332428,
-0.18867482244968414,
0.04666534438729286,
-0.5698098540306091,
0.7216720581054688,
0.02142210118472576,
0.22184063494205475,
0.049569834023714066,
0.6890431046485901,
0.17637228965759277,
0.26942017674446106,
0.37224510312080383,
0.9611709713935852,
0.5111621022224426,
-0.27210530638694763,
1.0026873350143433,
-0.20516569912433624,
1.0187931060791016,
0.7760382890701294,
-0.27649933099746704,
0.8403006792068481,
0.34149861335754395,
-0.2845149636268616,
0.620152473449707,
0.9543818235397339,
-0.09726861119270325,
0.6809316873550415,
0.37510988116264343,
-0.1941172480583191,
0.10523410886526108,
0.08049944043159485,
-0.48363354802131653,
0.26878952980041504,
0.3611144721508026,
-0.5537959933280945,
-0.09576229751110077,
0.06628644466400146,
-0.010286328382790089,
-0.38836944103240967,
-0.48527631163597107,
0.5763994455337524,
0.06602673977613449,
-0.3141835927963257,
0.6189515590667725,
0.010480575263500214,
0.909587562084198,
-0.649342954158783,
0.1850397288799286,
-0.2815159559249878,
0.08967603743076324,
-0.344235897064209,
-1.0103912353515625,
0.16325543820858002,
0.26094725728034973,
-0.2603916525840759,
-0.45947161316871643,
0.6196571588516235,
-0.6099771857261658,
-0.44327858090400696,
0.5235487222671509,
0.2877389192581177,
0.31223806738853455,
-0.2551093101501465,
-1.0541048049926758,
0.08963126689195633,
0.04581529274582863,
-0.4677458703517914,
0.31850558519363403,
0.42731714248657227,
0.44130566716194153,
0.5567398071289062,
0.37368854880332947,
-0.2404623031616211,
-0.07438528537750244,
0.45284247398376465,
0.8496402502059937,
-0.8136862516403198,
-0.4303353428840637,
-0.6873202919960022,
0.7722359299659729,
0.04745925962924957,
-0.5730358362197876,
0.4134477972984314,
0.4585462510585785,
0.44806531071662903,
-0.3760398328304291,
0.5982301235198975,
-0.41324958205223083,
0.4423482120037079,
-0.45362067222595215,
0.628398597240448,
-0.4962283670902252,
-0.3164013922214508,
-0.8055954575538635,
-0.6685742139816284,
-0.23274558782577515,
0.919970691204071,
0.22753888368606567,
0.13409139215946198,
0.6680406332015991,
0.4356687068939209,
0.11558987200260162,
0.14101576805114746,
0.11103594303131104,
0.21423712372779846,
-0.10452237725257874,
0.7577736973762512,
0.4132775068283081,
-0.6193675994873047,
0.1062520444393158,
-0.5142928957939148,
-0.38213106989860535,
-0.428091436624527,
-1.1561269760131836,
-0.8149766325950623,
-0.5008338093757629,
-0.401493638753891,
-0.7274342775344849,
-0.17970117926597595,
1.1658262014389038,
0.7081618905067444,
-0.8569324016571045,
-0.11557356268167496,
-0.19276641309261322,
-0.06721305102109909,
-0.08208845555782318,
-0.28520700335502625,
0.3990812599658966,
-0.06435369700193405,
-0.5738465785980225,
0.08331570774316788,
0.06720331311225891,
0.21685311198234558,
0.011241529136896133,
-0.1408962905406952,
-0.2767431437969208,
-0.16392894089221954,
0.4405521750450134,
0.36784592270851135,
-0.7133198380470276,
-0.4321262538433075,
-0.19800423085689545,
-0.1830747425556183,
0.2354515641927719,
0.3244944214820862,
-0.5906834006309509,
0.5614201426506042,
0.4142489731311798,
0.5487531423568726,
0.6074450016021729,
0.1384381800889969,
0.43426692485809326,
-1.3499501943588257,
0.13012301921844482,
0.4531421661376953,
0.7463290095329285,
0.3566652834415436,
-0.4068664610385895,
0.4501825273036957,
0.33480024337768555,
-0.6783871054649353,
-0.6031465530395508,
0.05863064527511597,
-1.5246673822402954,
0.1706763207912445,
1.1307204961776733,
-0.09929382055997849,
-0.15257123112678528,
0.43678927421569824,
-0.433820515871048,
0.3668331801891327,
-0.8078547716140747,
0.9365379214286804,
0.8352380990982056,
-0.48435986042022705,
-0.32876166701316833,
-0.1791304647922516,
0.5714086890220642,
0.5391674041748047,
-0.6495132446289062,
-0.17895396053791046,
0.5196998119354248,
0.18852953612804413,
0.1927729696035385,
0.5057083368301392,
0.11751766502857208,
0.30340254306793213,
0.034401051700115204,
0.9188381433486938,
0.3956076502799988,
-0.17494893074035645,
-0.7698835134506226,
0.13179214298725128,
-0.11075956374406815,
-0.3773120939731598
] |
darkstorm2150/Protogen_x5.8_Official_Release | darkstorm2150 | "2023-03-21T18:20:14Z" | 149,196 | 196 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"art",
"artistic",
"en",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-01-06T01:18:34Z" | ---
language:
- en
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- art
- artistic
- diffusers
inference: true
license: creativeml-openrail-m
---
<center><img src="https://huggingface.co/darkstorm2150/Protogen_x5.8_Official_Release/resolve/main/Protogen%20x5.8-512.png" style="height:690px; border-radius: 8%; border: 10px solid #663380; padding-top:0px;" span title="Protogen x5.8 Raw Output"></center>
<center><h1>Protogen x5.8 (Scifi-Anime) Official Release</h1></center>
<center><p><em>Research Model by <a href="https://instagram.com/officialvictorespinoza">darkstorm2150</a></em></p></center>
</div>
## Table of contents
* [General info](#general-info)
* [Granular Adaptive Learning](#granular-adaptive-learning)
* [Trigger Words](#trigger-words)
* [Setup](#setup)
* [Space](#space)
* [CompVis](#compvis)
* [Diffusers](#🧨-diffusers)
* [Checkpoint Merging Data Reference](#checkpoint-merging-data-reference)
* [License](#license)
## General info
Protogen x5.8
Protogen was warm-started with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and
is rebuilt using dreamlikePhotoRealV2.ckpt as a core, adding small amounts during merge checkpoints.
## Granular Adaptive Learning
Granular adaptive learning is a machine learning technique that focuses on adjusting the learning process at a fine-grained level, rather than making global adjustments to the model. This approach allows the model to adapt to specific patterns or features in the data, rather than making assumptions based on general trends.
Granular adaptive learning can be achieved through techniques such as active learning, which allows the model to select the data it wants to learn from, or through the use of reinforcement learning, where the model receives feedback on its performance and adapts based on that feedback. It can also be achieved through techniques such as online learning where the model adjust itself as it receives more data.
Granular adaptive learning is often used in situations where the data is highly diverse or non-stationary and where the model needs to adapt quickly to changing patterns. This is often the case in dynamic environments such as robotics, financial markets, and natural language processing.
## Trigger Words
modelshoot style, analog style, mdjrny-v4 style, nousr robot
Trigger words are available for the hassan1.4 and f222, might have to google them :)
## Setup
To run this model, download the model.ckpt or model.safetensor and install it in your "stable-diffusion-webui\models\Stable-diffusion" directory
## Space
We support a [Gradio](https://github.com/gradio-app/gradio) Web UI:
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/darkstorm2150/Stable-Diffusion-Protogen-webui)
## CompVis
## CKPT
[Download ProtoGen x5.8.ckpt (7.7GB)](https://huggingface.co/darkstorm2150/Protogen_x5.8_Official_Release/resolve/main/ProtoGen_X5.8.ckpt)
[Download ProtoGen X5.8-pruned-fp16.ckpt (1.72 GB)](https://huggingface.co/darkstorm2150/Protogen_x5.8_Official_Release/resolve/main/ProtoGen_X5.8-pruned-fp16.ckpt)
## Safetensors
[Download ProtoGen x5.8.safetensors (7.7GB)](https://huggingface.co/darkstorm2150/Protogen_x5.8_Official_Release/resolve/main/ProtoGen_X5.8.safetensors)
[Download ProtoGen x5.8-pruned-fp16.safetensors (1.72GB)](https://huggingface.co/darkstorm2150/Protogen_x5.8_Official_Release/resolve/main/ProtoGen_X5.8-pruned-fp16.safetensors)
### 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
```python
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
prompt = (
"modelshoot style, (extremely detailed CG unity 8k wallpaper), full shot body photo of the most beautiful artwork in the world, "
"english medieval witch, black silk vale, pale skin, black silk robe, black cat, necromancy magic, medieval era, "
"photorealistic painting by Ed Blinkey, Atey Ghailan, Studio Ghibli, by Jeremy Mann, Greg Manchess, Antonio Moro, trending on ArtStation, "
"trending on CGSociety, Intricate, High Detail, Sharp focus, dramatic, photorealistic painting art by midjourney and greg rutkowski"
)
model_id = "darkstorm2150/Protogen_v5.8_Official_Release"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("./result.jpg")
```
## - PENDING DATA FOR MERGE, RPGv2 not accounted..
## Checkpoint Merging Data Reference
<style>
.myTable {
border-collapse:collapse;
}
.myTable th {
background-color:#663380;
color:white;
}
.myTable td, .myTable th {
padding:5px;
border:1px solid #663380;
}
</style>
<table class="myTable">
<tr>
<th>Models</th>
<th>Protogen v2.2 (Anime)</th>
<th>Protogen x3.4 (Photo)</th>
<th>Protogen x5.3 (Photo)</th>
<th>Protogen x5.8 (Sci-fi/Anime)</th>
<th>Protogen x5.9 (Dragon)</th>
<th>Protogen x7.4 (Eclipse)</th>
<th>Protogen x8.0 (Nova)</th>
<th>Protogen x8.6 (Infinity)</th>
</tr>
<tr>
<td>seek_art_mega v1</td>
<td>52.50%</td>
<td>42.76%</td>
<td>42.63%</td>
<td></td>
<td></td>
<td></td>
<td>25.21%</td>
<td>14.83%</td>
</tr>
<tr>
<td>modelshoot v1</td>
<td>30.00%</td>
<td>24.44%</td>
<td>24.37%</td>
<td>2.56%</td>
<td>2.05%</td>
<td>3.48%</td>
<td>22.91%</td>
<td>13.48%</td>
</tr>
<tr>
<td>elldreth v1</td>
<td>12.64%</td>
<td>10.30%</td>
<td>10.23%</td>
<td></td>
<td></td>
<td></td>
<td>6.06%</td>
<td>3.57%</td>
</tr>
<tr>
<td>photoreal v2</td>
<td></td>
<td></td>
<td>10.00%</td>
<td>48.64%</td>
<td>38.91%</td>
<td>66.33%</td>
<td>20.49%</td>
<td>12.06%</td>
</tr>
<tr>
<td>analogdiffusion v1</td>
<td></td>
<td>4.75%</td>
<td>4.50%</td>
<td></td>
<td></td>
<td></td>
<td>1.75%</td>
<td>1.03%</td>
</tr>
<tr>
<td>openjourney v2</td>
<td></td>
<td>4.51%</td>
<td>4.28%</td>
<td></td>
<td></td>
<td>4.75%</td>
<td>2.26%</td>
<td>1.33%</td>
</tr>
<tr>
<td>hassan1.4</td>
<td>2.63%</td>
<td>2.14%</td>
<td>2.13%</td>
<td></td>
<td></td>
<td></td>
<td>1.26%</td>
<td>0.74%</td>
</tr>
<tr>
<td>f222</td>
<td>2.23%</td>
<td>1.82%</td>
<td>1.81%</td>
<td></td>
<td></td>
<td></td>
<td>1.07%</td>
<td>0.63%</td>
</tr>
<tr>
<td>hasdx</td>
<td></td>
<td></td>
<td></td>
<td>20.00%</td>
<td>16.00%</td>
<td>4.07%</td>
<td>5.01%</td>
<td>2.95%</td>
</tr>
<tr>
<td>moistmix</td>
<td></td>
<td></td>
<td></td>
<td>16.00%</td>
<td>12.80%</td>
<td>3.86%</td>
<td>4.08%</td>
<td>2.40%</td>
</tr>
<tr>
<td>roboDiffusion v1</td>
<td></td>
<td>4.29%</td>
<td></td>
<td>12.80%</td>
<td>10.24%</td>
<td>3.67%</td>
<td>4.41%</td>
<td>2.60%</td>
</tr>
<tr>
<td>RPG v3</td>
<td></td>
<td>5.00%</td>
<td></td>
<td></td>
<td>20.00%</td>
<td>4.29%</td>
<td>4.29%</td>
<td>2.52%</td>
</tr>
<tr>
<td>anything&everything</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.51%</td>
<td>0.56%</td>
<td>0.33%</td>
</tr>
<tr>
<td>dreamlikediff v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0%</td>
<td>0.63%</td>
<td>0.37%</td>
</tr>
<tr>
<td>sci-fidiff v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.10%</td>
</tr>
<tr>
<td>synthwavepunk v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.26%</td>
</tr>
<tr>
<td>mashupv2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.51%</td>
</tr>
<tr>
<td>dreamshaper 252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.04%</td>
</tr>
<tr>
<td>comicdiff v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.25%</td>
</tr>
<tr>
<td>artEros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00%</td>
</tr>
</table>
## License
License
This model is licesed under a modified CreativeML OpenRAIL-M license.
You are not allowed to host, finetune, or do inference with the model or its derivatives on websites/apps/etc. If you want to, please email us at contact@dreamlike.art
You are free to host the model card and files (Without any actual inference or finetuning) on both commercial and non-commercial websites/apps/etc. Please state the full model name (Dreamlike Photoreal 2.0) and include the license as well as a link to the model card (https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0)
You are free to use the outputs (images) of the model for commercial purposes in teams of 10 or less
You can't use the model to deliberately produce nor share illegal or harmful outputs or content
The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
You may re-distribute the weights. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the modified CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here: https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/blob/main/LICENSE.md | [
-0.7095484137535095,
-0.6624621152877808,
0.17986831068992615,
0.48248156905174255,
-0.16787390410900116,
0.07415132969617844,
0.1520788073539734,
-0.4408317804336548,
0.3853122293949127,
0.09508083015680313,
-0.6728918552398682,
-0.380586713552475,
-0.6103603839874268,
0.011469986289739609,
-0.12306636571884155,
0.859415590763092,
-0.02210053987801075,
-0.2264794111251831,
0.06495880335569382,
0.11395725607872009,
-0.24592365324497223,
-0.03106125444173813,
-0.3975042998790741,
-0.36442312598228455,
0.3143431544303894,
0.4740857183933258,
0.8523927330970764,
0.5790576338768005,
0.36993786692619324,
0.36478015780448914,
-0.3674159049987793,
0.04013082757592201,
-0.49429014325141907,
-0.03844016417860985,
0.04563932493329048,
-0.27163684368133545,
-0.48465263843536377,
-0.03210445120930672,
0.3505452275276184,
0.4541447162628174,
-0.16499194502830505,
0.34317296743392944,
0.3232145607471466,
0.8106526136398315,
-0.5474090576171875,
0.17069703340530396,
-0.06276717782020569,
0.30727335810661316,
-0.03900502622127533,
-0.047060079872608185,
-0.04790576919913292,
-0.5938783884048462,
-0.05940767750144005,
-0.8818193078041077,
0.2048957645893097,
-0.023221170529723167,
1.159345030784607,
-0.06783129274845123,
-0.25708821415901184,
-0.031461913138628006,
-0.7438616156578064,
0.802765965461731,
-0.7542691826820374,
0.38490182161331177,
0.18804007768630981,
0.14208215475082397,
-0.21531985700130463,
-0.8082329034805298,
-0.9349466562271118,
0.24332602322101593,
0.01179511845111847,
0.6532889008522034,
-0.4174840450286865,
-0.3867562413215637,
0.16733349859714508,
0.3043521046638489,
-0.7474719882011414,
-0.13837695121765137,
-0.48086729645729065,
-0.16742651164531708,
0.6007410287857056,
0.1955215036869049,
0.37318092584609985,
-0.15922769904136658,
-0.6173856854438782,
-0.26612532138824463,
-0.23020049929618835,
0.4454112946987152,
0.3053585886955261,
-0.03653542697429657,
-0.5472006797790527,
0.4671628773212433,
-0.10693676024675369,
0.6722400784492493,
0.2597771883010864,
-0.41291266679763794,
0.5418853163719177,
-0.4967956244945526,
-0.3498615026473999,
-0.1864553540945053,
0.7770577073097229,
0.6458359956741333,
-0.08678151667118073,
0.030849939212203026,
0.12672385573387146,
0.14994052052497864,
0.023765478283166885,
-1.0298001766204834,
-0.316027969121933,
0.5304388403892517,
-0.3832959532737732,
-0.5001612901687622,
0.004571663681417704,
-1.101617455482483,
-0.06633464246988297,
0.1300525963306427,
0.3269751965999603,
-0.5086057186126709,
-0.43580859899520874,
0.21627947688102722,
-0.34557613730430603,
0.1823277771472931,
0.3454834818840027,
-0.6963061690330505,
0.35995104908943176,
0.3486182391643524,
1.0432230234146118,
-0.02670847810804844,
-0.136727437376976,
0.35877808928489685,
0.32554829120635986,
-0.5128281712532043,
0.7956386804580688,
-0.17009328305721283,
-0.6664980053901672,
-0.555107831954956,
0.35929805040359497,
-0.20230023562908173,
-0.07209062576293945,
0.6425125002861023,
-0.3527420163154602,
0.3979201316833496,
-0.30187809467315674,
-0.6066497564315796,
-0.23237869143486023,
0.19678547978401184,
-0.6155090928077698,
0.8935733437538147,
0.18062888085842133,
-0.9955232739448547,
0.38795801997184753,
-0.8028730750083923,
-0.019175788387656212,
-0.23958078026771545,
0.029316719621419907,
-0.8384156227111816,
-0.35503292083740234,
0.17720766365528107,
0.2810201644897461,
-0.2246565818786621,
-0.32045117020606995,
-0.49382710456848145,
-0.3474688231945038,
0.09443900734186172,
-0.2830360233783722,
1.129524827003479,
0.5028294920921326,
-0.683010995388031,
-0.042800191789865494,
-0.7997172474861145,
0.04863607510924339,
0.6457638144493103,
-0.28738051652908325,
0.14665615558624268,
-0.43959370255470276,
0.018297338858246803,
0.3954484760761261,
0.15361113846302032,
-0.6010726690292358,
0.23761582374572754,
-0.37176233530044556,
0.42499902844429016,
0.987403392791748,
0.34986478090286255,
0.4984276592731476,
-0.8568382263183594,
0.5627644658088684,
0.34960243105888367,
0.11635424941778183,
0.37298890948295593,
-0.5651454925537109,
-0.7122043371200562,
-0.3853757977485657,
0.26634681224823,
0.5203536152839661,
-0.44465532898902893,
0.45908835530281067,
-0.26105642318725586,
-0.9749330282211304,
-0.26095497608184814,
-0.07083971053361893,
0.35027503967285156,
0.6890971660614014,
0.30678698420524597,
-0.05852104723453522,
-0.5708556175231934,
-0.7434929013252258,
0.2534383535385132,
-0.1713113784790039,
0.30223074555397034,
0.6190302968025208,
0.7560369968414307,
-0.31484439969062805,
0.8401416540145874,
-0.9462043046951294,
-0.30082279443740845,
-0.32992538809776306,
-0.0933459922671318,
0.4970097541809082,
0.7708604335784912,
0.8751657009124756,
-1.0000038146972656,
-0.6155411005020142,
0.07244046777486801,
-0.6907159090042114,
-0.015717053785920143,
0.11060945689678192,
-0.3929921090602875,
-0.0786014273762703,
0.13974106311798096,
-0.6782493591308594,
0.5021604895591736,
0.5899513959884644,
-0.7467191219329834,
0.8229126334190369,
-0.45460906624794006,
0.4075954556465149,
-1.1893677711486816,
0.32920119166374207,
0.040674589574337006,
-0.07936321198940277,
-0.8091898560523987,
0.1526012271642685,
-0.0844450443983078,
-0.012672144919633865,
-0.7251060605049133,
0.7186039686203003,
-0.6118242144584656,
0.29742002487182617,
0.020127763971686363,
0.0630652979016304,
0.08751185983419418,
0.5694639682769775,
-0.18065057694911957,
1.0152020454406738,
0.6220329403877258,
-0.7150121331214905,
0.2697099447250366,
0.30755582451820374,
-0.49122756719589233,
0.21051955223083496,
-0.6490428447723389,
-0.07958447933197021,
-0.26184478402137756,
0.18776877224445343,
-1.1390684843063354,
-0.19820928573608398,
0.294460654258728,
-0.6215640306472778,
0.031373415142297745,
0.052702486515045166,
-0.3453386127948761,
-0.7829932570457458,
-0.3779747188091278,
0.11006481200456619,
0.9039772748947144,
-0.16538310050964355,
0.46183595061302185,
0.1948726773262024,
0.22877515852451324,
-0.5074512958526611,
-0.6014794111251831,
-0.2286696881055832,
-0.39628225564956665,
-1.0446724891662598,
0.7519688010215759,
-0.22912251949310303,
-0.17908382415771484,
-0.03387555480003357,
-0.26376762986183167,
-0.13835985958576202,
0.10854194313287735,
0.36293524503707886,
0.11522729694843292,
0.06818526238203049,
-0.32254520058631897,
-0.3459518551826477,
-0.1217394545674324,
-0.1993032693862915,
-0.1377253383398056,
0.6979577541351318,
0.051672764122486115,
-0.2409731149673462,
-0.5851098895072937,
-0.04910732060670853,
0.8267120718955994,
0.03119737096130848,
0.7580337524414062,
0.727192759513855,
-0.23653289675712585,
-0.19419865310192108,
-0.24515263736248016,
-0.18628567457199097,
-0.49175915122032166,
0.04346076399087906,
-0.3476528823375702,
-0.6111408472061157,
0.7812077403068542,
0.07642827928066254,
-0.06182792782783508,
0.6250964999198914,
0.5005161762237549,
-0.32183265686035156,
0.9399956464767456,
0.5246804356575012,
0.006488835904747248,
0.42951902747154236,
-0.962038516998291,
-0.11404277384281158,
-0.8397889733314514,
-0.5331964492797852,
-0.3917054831981659,
-0.6605939269065857,
-0.4897444248199463,
-0.7335516810417175,
0.5900629162788391,
0.23538774251937866,
-0.6438021063804626,
0.38566267490386963,
-0.6985431909561157,
0.10776297748088837,
0.5107702016830444,
0.7011368870735168,
0.006301155313849449,
-0.18098467588424683,
-0.5028998255729675,
-0.1594952642917633,
-0.539068877696991,
-0.35126328468322754,
0.8602926731109619,
0.10262015461921692,
0.5621841549873352,
0.5117027163505554,
0.7775754928588867,
0.16810733079910278,
-0.013002846390008926,
-0.2721053957939148,
0.4741382300853729,
0.1317032426595688,
-1.0325089693069458,
-0.3226875364780426,
-0.31937411427497864,
-1.1402840614318848,
0.34157779812812805,
-0.4903400242328644,
-0.8960316181182861,
0.45821723341941833,
0.18358157575130463,
-0.5847244262695312,
0.48677149415016174,
-0.6267065405845642,
1.0211561918258667,
-0.11250799894332886,
-0.80503910779953,
0.27480408549308777,
-0.7482858896255493,
0.1885131448507309,
0.10520754009485245,
0.6473873853683472,
-0.21637099981307983,
-0.27348190546035767,
0.8544957041740417,
-0.6819528341293335,
0.7415161728858948,
-0.23313668370246887,
0.28875792026519775,
0.5895859599113464,
0.10059177875518799,
0.6726862192153931,
0.06469108909368515,
-0.036480680108070374,
-0.17339324951171875,
-0.17305059731006622,
-0.654180109500885,
-0.4044632911682129,
0.8222184777259827,
-1.1080734729766846,
-0.575735330581665,
-0.8393313884735107,
-0.2765195667743683,
0.165114626288414,
0.38599494099617004,
0.4616996645927429,
0.17652933299541473,
-0.06138565391302109,
0.08225750178098679,
0.7721437811851501,
-0.17891620099544525,
0.7191367149353027,
0.29292795062065125,
-0.3934025764465332,
-0.5645829439163208,
1.0400055646896362,
0.33171346783638,
0.3330013155937195,
0.25992050766944885,
0.7005224823951721,
-0.2709429860115051,
-0.7240077257156372,
-0.27307528257369995,
0.09950454533100128,
-0.39958107471466064,
-0.2518933415412903,
-0.8766265511512756,
-0.10665399581193924,
-0.5542652606964111,
-0.4781002104282379,
-0.13380250334739685,
-0.5105397701263428,
-0.41885560750961304,
-0.3117181360721588,
0.6112362742424011,
0.39475539326667786,
-0.36696189641952515,
0.11765068024396896,
-0.5044059753417969,
0.39907190203666687,
0.4539759159088135,
0.2297842651605606,
0.06865528970956802,
-0.4898129403591156,
0.1464456021785736,
0.24332872033119202,
-0.6123857498168945,
-1.152214765548706,
0.6828584671020508,
-0.017927631735801697,
0.48055675625801086,
0.2755623757839203,
-0.07850027084350586,
1.1698204278945923,
-0.2893573045730591,
0.9803531765937805,
0.4418559968471527,
-0.818829357624054,
0.5975930094718933,
-0.6469552516937256,
0.41782453656196594,
0.445078581571579,
0.5310387015342712,
-0.34473708271980286,
-0.3459905683994293,
-0.9249379634857178,
-0.9544849395751953,
0.5920748114585876,
0.5749540328979492,
-0.2768971025943756,
0.22584106028079987,
-0.026084914803504944,
-0.1866656094789505,
0.10299384593963623,
-0.9304867386817932,
-0.6659677624702454,
-0.2724599540233612,
0.028691427782177925,
-0.08331868797540665,
0.18040870130062103,
-0.002300810534507036,
-0.5866034030914307,
0.8656376600265503,
0.22278384864330292,
0.6460301280021667,
0.3826616108417511,
0.1620180755853653,
-0.19226302206516266,
0.18345846235752106,
0.5694694519042969,
0.6925528645515442,
-0.4186599850654602,
0.010248154401779175,
0.1409815102815628,
-0.7268860340118408,
0.39301538467407227,
-0.16471520066261292,
-0.5591251254081726,
-0.0724896714091301,
0.33155521750450134,
0.49230003356933594,
0.22570808231830597,
-0.13552506268024445,
0.4600151777267456,
0.04125576093792915,
-0.4118715226650238,
-0.554319441318512,
0.3692713677883148,
0.4088514745235443,
0.3280751407146454,
0.23407892882823944,
0.43603208661079407,
0.08436088263988495,
-0.5843203067779541,
0.2777027189731598,
0.3325655162334442,
-0.549926221370697,
-0.07739726454019547,
1.1348835229873657,
0.06337757408618927,
0.011138135567307472,
0.16308607161045074,
-0.13398446142673492,
-0.5799373984336853,
1.0681113004684448,
0.764200747013092,
0.5183550715446472,
-0.1699075847864151,
0.3029296398162842,
0.7281602621078491,
0.017249243333935738,
-0.1635921597480774,
0.575263500213623,
0.2441355586051941,
-0.5546616911888123,
0.04175899550318718,
-0.8449269533157349,
-0.20410870015621185,
0.07029014080762863,
-0.3446921110153198,
0.49054670333862305,
-0.5917539596557617,
-0.3226342797279358,
0.07224951684474945,
0.18376007676124573,
-0.5313630104064941,
0.589887261390686,
-0.09757999330759048,
1.0049196481704712,
-0.8432190418243408,
0.7151473760604858,
0.6153111457824707,
-0.730797290802002,
-1.0980068445205688,
-0.11465287208557129,
0.18023720383644104,
-0.7727517485618591,
0.5116672515869141,
-0.12770384550094604,
0.08073512464761734,
0.20987862348556519,
-0.6112311482429504,
-1.1570671796798706,
1.4969838857650757,
0.10004650801420212,
-0.33284100890159607,
0.06570989638566971,
-0.010204445570707321,
0.6838275194168091,
-0.11372145265340805,
0.5278769731521606,
0.39700573682785034,
0.6039654612541199,
0.45823755860328674,
-0.6901807188987732,
0.13861094415187836,
-0.5714600086212158,
0.16463521122932434,
0.1398206502199173,
-1.0626214742660522,
1.0021740198135376,
-0.35177886486053467,
-0.2172231525182724,
-0.04152965545654297,
0.749821126461029,
0.5121632218360901,
0.19933374226093292,
0.47781163454055786,
1.0060372352600098,
0.38325417041778564,
-0.42450135946273804,
0.9849379658699036,
-0.3884010910987854,
0.6639310121536255,
0.7039247751235962,
0.14668451249599457,
0.6065747737884521,
0.3118710517883301,
-0.636762261390686,
0.44432950019836426,
0.7391027212142944,
-0.024653952568769455,
0.7237757444381714,
0.29809004068374634,
-0.28845900297164917,
0.014024466276168823,
0.16635116934776306,
-0.6755698919296265,
0.21419475972652435,
0.14046914875507355,
-0.29259708523750305,
0.10449273139238358,
0.025871872901916504,
0.3178577423095703,
0.11503137648105621,
-0.29909875988960266,
0.7578221559524536,
-0.14261899888515472,
-0.48614394664764404,
0.5581231713294983,
-0.12225590646266937,
0.693195104598999,
-0.5600806474685669,
0.0975354015827179,
-0.25632745027542114,
0.4209482967853546,
-0.5121210813522339,
-1.06280517578125,
0.08505378663539886,
-0.12783192098140717,
-0.08213429898023605,
-0.2275465875864029,
0.4266813099384308,
-0.1339353322982788,
-0.8373491764068604,
0.31922876834869385,
0.15333403646945953,
0.052923109382390976,
0.4484877288341522,
-1.0169241428375244,
0.22924573719501495,
0.26172032952308655,
-0.46616271138191223,
0.22465811669826508,
0.4202388525009155,
0.3131440281867981,
0.8638474941253662,
0.8182936310768127,
0.27662786841392517,
0.2726157605648041,
-0.49301236867904663,
1.023076057434082,
-0.833440363407135,
-0.6415696740150452,
-0.7966979146003723,
0.8452668786048889,
-0.27107077836990356,
-0.3598848879337311,
1.1221389770507812,
0.728635847568512,
0.70196533203125,
-0.1551147848367691,
0.9269078969955444,
-0.5924089550971985,
0.4822388291358948,
-0.13964125514030457,
0.6971116065979004,
-0.6822648644447327,
-0.1362614780664444,
-0.6971241235733032,
-0.9144461750984192,
-0.21959540247917175,
0.7836232781410217,
-0.09641444683074951,
0.3701329827308655,
0.5047432780265808,
0.8091147541999817,
-0.12502023577690125,
-0.05538829043507576,
0.07069583982229233,
0.433370441198349,
0.36836305260658264,
0.6901872158050537,
0.3395565152168274,
-0.6285382509231567,
0.43054187297821045,
-0.7923358678817749,
-0.3270382881164551,
-0.2236693948507309,
-0.7286978960037231,
-0.45128118991851807,
-0.5301980376243591,
-0.504432737827301,
-0.6872173547744751,
0.1184067502617836,
0.8721477389335632,
0.581768810749054,
-0.7431155443191528,
-0.40641409158706665,
-0.2906478941440582,
0.14732655882835388,
-0.4767683148384094,
-0.2707296311855316,
0.41294437646865845,
0.17295457422733307,
-0.7923082709312439,
-0.06400549411773682,
0.20072434842586517,
0.5849121809005737,
0.06314845383167267,
-0.2132805585861206,
-0.4286843538284302,
0.09715557098388672,
0.2874157428741455,
0.2944210171699524,
-0.4118450880050659,
-0.21552613377571106,
-0.04621313139796257,
-0.09766080975532532,
0.3160761296749115,
0.13285288214683533,
-0.42533010244369507,
0.4620401859283447,
0.6903482675552368,
0.07943370938301086,
0.8876582384109497,
0.12824562191963196,
0.10519050061702728,
-0.23476673662662506,
0.19257044792175293,
0.27841871976852417,
0.31479188799858093,
-0.020211031660437584,
-0.3281784653663635,
0.7284367680549622,
0.4739001393318176,
-0.8100237846374512,
-0.6942131519317627,
-0.06082223355770111,
-1.317691683769226,
-0.3787313997745514,
1.2811076641082764,
-0.02291894145309925,
-0.6167573928833008,
0.13143599033355713,
-0.31346461176872253,
0.27565431594848633,
-0.6404846906661987,
0.5155008435249329,
0.47014319896698,
-0.4772898852825165,
-0.1862485557794571,
-0.6113292574882507,
0.5062323808670044,
0.038463834673166275,
-0.8182469010353088,
-0.14870205521583557,
0.4090888500213623,
0.4814363121986389,
0.4134734869003296,
0.7399885058403015,
-0.393863320350647,
0.153372660279274,
0.23326466977596283,
-0.020443875342607498,
0.043405935168266296,
-0.007889271713793278,
-0.03477031737565994,
0.42060449719429016,
-0.1412808895111084,
-0.21330514550209045
] |
facebook/mms-lid-126 | facebook | "2023-06-13T10:15:48Z" | 148,869 | 12 | transformers | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"audio-classification",
"mms",
"ab",
"af",
"ak",
"am",
"ar",
"as",
"av",
"ay",
"az",
"ba",
"bm",
"be",
"bn",
"bi",
"bo",
"sh",
"br",
"bg",
"ca",
"cs",
"ce",
"cv",
"ku",
"cy",
"da",
"de",
"dv",
"dz",
"el",
"en",
"eo",
"et",
"eu",
"ee",
"fo",
"fa",
"fj",
"fi",
"fr",
"fy",
"ff",
"ga",
"gl",
"gn",
"gu",
"zh",
"ht",
"ha",
"he",
"hi",
"hu",
"hy",
"ig",
"ia",
"ms",
"is",
"it",
"jv",
"ja",
"kn",
"ka",
"kk",
"kr",
"km",
"ki",
"rw",
"ky",
"ko",
"kv",
"lo",
"la",
"lv",
"ln",
"lt",
"lb",
"lg",
"mh",
"ml",
"mr",
"mk",
"mg",
"mt",
"mn",
"mi",
"my",
"nl",
"no",
"ne",
"ny",
"oc",
"om",
"or",
"os",
"pa",
"pl",
"pt",
"ps",
"qu",
"ro",
"rn",
"ru",
"sg",
"sk",
"sl",
"sm",
"sn",
"sd",
"so",
"es",
"sq",
"su",
"sv",
"sw",
"ta",
"tt",
"te",
"tg",
"tl",
"th",
"ti",
"ts",
"tr",
"uk",
"vi",
"wo",
"xh",
"yo",
"zu",
"za",
"dataset:google/fleurs",
"arxiv:2305.13516",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"has_space",
"region:us"
] | audio-classification | "2023-06-13T08:44:05Z" | ---
tags:
- mms
language:
- ab
- af
- ak
- am
- ar
- as
- av
- ay
- az
- ba
- bm
- be
- bn
- bi
- bo
- sh
- br
- bg
- ca
- cs
- ce
- cv
- ku
- cy
- da
- de
- dv
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- fj
- fi
- fr
- fy
- ff
- ga
- gl
- gn
- gu
- zh
- ht
- ha
- he
- hi
- sh
- hu
- hy
- ig
- ia
- ms
- is
- it
- jv
- ja
- kn
- ka
- kk
- kr
- km
- ki
- rw
- ky
- ko
- kv
- lo
- la
- lv
- ln
- lt
- lb
- lg
- mh
- ml
- mr
- ms
- mk
- mg
- mt
- mn
- mi
- my
- zh
- nl
- 'no'
- 'no'
- ne
- ny
- oc
- om
- or
- os
- pa
- pl
- pt
- ms
- ps
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- ro
- rn
- ru
- sg
- sk
- sl
- sm
- sn
- sd
- so
- es
- sq
- su
- sv
- sw
- ta
- tt
- te
- tg
- tl
- th
- ti
- ts
- tr
- uk
- ms
- vi
- wo
- xh
- ms
- yo
- ms
- zu
- za
license: cc-by-nc-4.0
datasets:
- google/fleurs
metrics:
- acc
---
# Massively Multilingual Speech (MMS) - Finetuned LID
This checkpoint is a model fine-tuned for speech language identification (LID) and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and classifies raw audio input to a probability distribution over 126 output classes (each class representing a language).
The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 126 languages.
## Table Of Content
- [Example](#example)
- [Supported Languages](#supported-languages)
- [Model details](#model-details)
- [Additional links](#additional-links)
## Example
This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to identify
the spoken language of an audio. It can recognize the [following 126 languages](#supported-languages).
Let's look at a simple example.
First, we install transformers and some other libraries
```
pip install torch accelerate torchaudio datasets
pip install --upgrade transformers
````
**Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
source:
```
pip install git+https://github.com/huggingface/transformers.git
```
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# Arabic
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
ar_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch
model_id = "facebook/mms-lid-126"
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition)
```py
# English
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'eng'
# Arabic
inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'ara'
```
To see all the supported languages of a checkpoint, you can print out the language ids as follows:
```py
processor.id2label.values()
```
For more details, about the architecture please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
## Supported Languages
This model supports 126 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
<details>
<summary>Click to toggle</summary>
- ara
- cmn
- eng
- spa
- fra
- mlg
- swe
- por
- vie
- ful
- sun
- asm
- ben
- zlm
- kor
- ind
- hin
- tuk
- urd
- aze
- slv
- mon
- hau
- tel
- swh
- bod
- rus
- tur
- heb
- mar
- som
- tgl
- tat
- tha
- cat
- ron
- mal
- bel
- pol
- yor
- nld
- bul
- hat
- afr
- isl
- amh
- tam
- hun
- hrv
- lit
- cym
- fas
- mkd
- ell
- bos
- deu
- sqi
- jav
- nob
- uzb
- snd
- lat
- nya
- grn
- mya
- orm
- lin
- hye
- yue
- pan
- jpn
- kaz
- npi
- kat
- guj
- kan
- tgk
- ukr
- ces
- lav
- bak
- khm
- fao
- glg
- ltz
- lao
- mlt
- sin
- sna
- ita
- srp
- mri
- nno
- pus
- eus
- ory
- lug
- bre
- luo
- slk
- fin
- dan
- yid
- est
- ceb
- war
- san
- kir
- oci
- wol
- haw
- kam
- umb
- xho
- epo
- zul
- ibo
- abk
- ckb
- nso
- gle
- kea
- ast
- sco
- glv
- ina
</details>
## Model details
- **Developed by:** Vineel Pratap et al.
- **Model type:** Multi-Lingual Automatic Speech Recognition model
- **Language(s):** 126 languages, see [supported languages](#supported-languages)
- **License:** CC-BY-NC 4.0 license
- **Num parameters**: 1 billion
- **Audio sampling rate**: 16,000 kHz
- **Cite as:**
@article{pratap2023mms,
title={Scaling Speech Technology to 1,000+ Languages},
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
journal={arXiv},
year={2023}
}
## Additional Links
- [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
- [Paper](https://arxiv.org/abs/2305.13516)
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
- MMS base checkpoints:
- [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
- [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
- [Official Space](https://huggingface.co/spaces/facebook/MMS)
| [
-0.5961408019065857,
-0.3812921643257141,
0.14205056428909302,
0.426572322845459,
-0.0550471656024456,
0.06938750296831131,
-0.23088008165359497,
-0.48008590936660767,
0.20694580674171448,
0.21753530204296112,
-0.70074462890625,
-0.5696302056312561,
-0.6914809942245483,
0.026662198826670647,
-0.2516711950302124,
0.8362696766853333,
0.027759773656725883,
0.16788718104362488,
0.3974442481994629,
-0.27728304266929626,
-0.2788705825805664,
-0.33614760637283325,
-0.7564959526062012,
-0.18112441897392273,
0.26939231157302856,
0.42402395606040955,
0.36462315917015076,
0.5968099236488342,
0.458951860666275,
0.36075299978256226,
-0.2765728235244751,
-0.006058728322386742,
-0.1316273957490921,
-0.1936277151107788,
0.15947668254375458,
-0.2033367156982422,
-0.48180490732192993,
0.01761399768292904,
1.0006448030471802,
0.5345452427864075,
-0.089043527841568,
0.23765982687473297,
0.006200718227773905,
0.5295228362083435,
-0.29155921936035156,
0.28825291991233826,
-0.42466551065444946,
-0.04894978553056717,
-0.28857311606407166,
-0.044945236295461655,
-0.4078125059604645,
-0.028164880350232124,
0.15739062428474426,
-0.4818299114704132,
0.09288890659809113,
-0.23170050978660583,
1.109397292137146,
0.10616663098335266,
-0.389923095703125,
-0.35466447472572327,
-0.7698493599891663,
0.935550332069397,
-0.6555893421173096,
0.7636470794677734,
0.3976779580116272,
0.3554748594760895,
0.03175128251314163,
-0.7385035157203674,
-0.6910771131515503,
-0.012891323305666447,
0.1079534962773323,
0.33359014987945557,
-0.30776286125183105,
-0.06512710452079773,
0.4512842297554016,
0.35430794954299927,
-0.6060733795166016,
0.2007138878107071,
-0.7590106725692749,
-0.6651967167854309,
0.5478201508522034,
-0.07903052121400833,
0.35985615849494934,
-0.33665475249290466,
-0.1830553263425827,
-0.3124731183052063,
-0.3988744914531708,
0.3016776442527771,
0.24202466011047363,
0.44283345341682434,
-0.6474016904830933,
0.5566816329956055,
-0.32554295659065247,
0.7237445712089539,
-0.010763200931251049,
-0.5310407876968384,
0.8252661228179932,
-0.38943517208099365,
-0.08372927457094193,
0.11503071337938309,
0.9729048609733582,
0.19897329807281494,
0.14173497259616852,
0.038165971636772156,
-0.014183404855430126,
0.2212459295988083,
-0.3324883282184601,
-0.986344039440155,
-0.03054843284189701,
0.45148488879203796,
-0.2918224036693573,
0.0514729879796505,
-0.05229221284389496,
-0.6267720460891724,
0.08858851343393326,
-0.2370530217885971,
0.46771949529647827,
-0.6597779989242554,
-0.49069347977638245,
0.07939339429140091,
-0.28375908732414246,
0.3474830687046051,
0.02466098964214325,
-0.8846644759178162,
-0.03179081901907921,
0.37808409333229065,
1.0809015035629272,
0.0989462211728096,
-0.447831392288208,
-0.512685239315033,
0.15340441465377808,
-0.1267721951007843,
0.501450777053833,
-0.24297180771827698,
-0.42515918612480164,
-0.0805894210934639,
0.2066323459148407,
-0.27637559175491333,
-0.511826753616333,
0.7059510946273804,
-0.2548697590827942,
0.4198741614818573,
-0.35083386301994324,
-0.4022831618785858,
-0.23970913887023926,
-0.056391987949609756,
-0.5434295535087585,
1.1878321170806885,
0.1289074569940567,
-0.8511315584182739,
0.41169363260269165,
-0.5643385052680969,
-0.44128769636154175,
-0.0574028305709362,
-0.045455142855644226,
-0.44738006591796875,
-0.25289592146873474,
0.3956741392612457,
0.4827572703361511,
-0.19130676984786987,
0.045608747750520706,
-0.09628701210021973,
-0.3606407642364502,
-0.011604423634707928,
-0.40411531925201416,
1.320216178894043,
0.5666254758834839,
-0.6504793763160706,
0.04262058809399605,
-0.8263837695121765,
-0.048839375376701355,
-0.043304335325956345,
-0.6156264543533325,
0.258427232503891,
0.043731462210416794,
0.2723710536956787,
0.5519123077392578,
0.13946755230426788,
-0.7437536120414734,
-0.15998509526252747,
-0.5297548770904541,
0.6325815320014954,
0.5377575159072876,
-0.20576463639736176,
0.43901726603507996,
-0.451351135969162,
0.3417755961418152,
0.19581754505634308,
0.005443568807095289,
-0.34502726793289185,
-0.711030900478363,
-0.9715058207511902,
-0.7467852234840393,
0.16032494604587555,
0.8859192728996277,
-0.6867348551750183,
0.5889105200767517,
-0.4367430806159973,
-0.8271108269691467,
-0.8311946392059326,
0.014397704042494297,
0.3501584529876709,
0.4566994905471802,
0.49234244227409363,
-0.287861168384552,
-0.742514967918396,
-0.8069050312042236,
-0.010739360004663467,
-0.3727012276649475,
-0.2652760148048401,
0.32147160172462463,
0.31651875376701355,
-0.4582885503768921,
0.9280032515525818,
-0.11827604472637177,
-0.5002949237823486,
-0.27229708433151245,
0.011670907028019428,
0.2713594436645508,
0.5858461260795593,
0.5928061604499817,
-0.6656762957572937,
-0.4592171907424927,
-0.033463358879089355,
-0.6472101211547852,
-0.1456153839826584,
0.08652888238430023,
0.09353470802307129,
0.3891602158546448,
0.5351967811584473,
-0.4920555353164673,
0.09551851451396942,
0.7950146198272705,
-0.23937159776687622,
0.4954826831817627,
-0.0011551574571058154,
0.16333405673503876,
-1.3525960445404053,
0.060871485620737076,
0.045116424560546875,
-0.10688098520040512,
-0.6491794586181641,
-0.09337520599365234,
0.0037718762177973986,
-0.08328334987163544,
-0.701345682144165,
0.6849319934844971,
-0.40178051590919495,
-0.07803059369325638,
-0.09802522510290146,
0.18121758103370667,
-0.2793845236301422,
0.6274248957633972,
0.16176414489746094,
0.7425946593284607,
0.9926645159721375,
-0.7279204726219177,
0.41113078594207764,
0.20589813590049744,
-0.5166086554527283,
0.5904010534286499,
-0.6480531692504883,
-0.05941711738705635,
0.05937330052256584,
0.4281075596809387,
-1.1319911479949951,
-0.13470996916294098,
0.23235946893692017,
-0.902946412563324,
0.30364856123924255,
-0.30320143699645996,
-0.6966162919998169,
-0.555842936038971,
-0.045348092913627625,
0.44321516156196594,
0.664442241191864,
-0.5331586599349976,
0.5843120813369751,
0.6366995573043823,
-0.16462112963199615,
-0.6058081984519958,
-0.8737818598747253,
-0.08507289737462997,
-0.3968203663825989,
-0.907351553440094,
0.29772576689720154,
-0.1223733201622963,
0.08884841948747635,
-0.3461598753929138,
0.0016708149341866374,
-0.01971299946308136,
-0.1441819965839386,
0.24018515646457672,
0.21693721413612366,
-0.13778169453144073,
-0.05501529574394226,
0.043078623712062836,
-0.31814342737197876,
-0.0642339214682579,
-0.37706300616264343,
0.8405197858810425,
-0.23787149786949158,
-0.16852565109729767,
-0.8228150010108948,
0.23467271029949188,
0.7523290514945984,
-0.4576317071914673,
0.6534703969955444,
1.213300108909607,
-0.4891376197338104,
0.25044193863868713,
-0.6985636353492737,
-0.1792866438627243,
-0.5586171746253967,
0.5924896001815796,
-0.5071378350257874,
-0.9760380983352661,
0.8620973825454712,
0.06147985905408859,
0.17463284730911255,
0.7548449635505676,
0.876991331577301,
-0.06514409929513931,
1.177358627319336,
0.4840182065963745,
-0.41475969552993774,
0.5945766568183899,
-0.4726905822753906,
0.05099032074213028,
-0.9034566879272461,
-0.35813838243484497,
-0.7704671621322632,
-0.14804381132125854,
-0.7652538418769836,
-0.6144022345542908,
0.4194130003452301,
-0.009613407775759697,
-0.3036711513996124,
0.5830060243606567,
-0.5078692436218262,
0.045612722635269165,
0.5922497510910034,
-0.12106844782829285,
0.050703976303339005,
0.2202937752008438,
-0.47068729996681213,
-0.1523512750864029,
-0.6237517595291138,
-0.4315648078918457,
0.8953759074211121,
0.5464388728141785,
0.3264421224594116,
0.18944676220417023,
0.6250901222229004,
-0.07333075255155563,
0.03632422536611557,
-0.7901694178581238,
0.5789808630943298,
-0.12479779124259949,
-0.928733766078949,
-0.28204217553138733,
-0.5576906800270081,
-0.8478357791900635,
0.22120438516139984,
-0.021839741617441177,
-1.0214627981185913,
0.24503950774669647,
-0.0812225192785263,
-0.1951688528060913,
0.29042860865592957,
-0.7335136532783508,
0.726774275302887,
0.1584150344133377,
0.009407532401382923,
-0.26189979910850525,
-0.6711840629577637,
0.17111922800540924,
0.04566198214888573,
0.4321099817752838,
-0.31920772790908813,
0.27721258997917175,
1.225611686706543,
-0.2359032928943634,
0.6401681303977966,
-0.3134936988353729,
-0.09810706973075867,
0.44316449761390686,
-0.15732719004154205,
0.32777854800224304,
-0.08631712943315506,
-0.1875545084476471,
0.4766371548175812,
0.18720874190330505,
-0.3992045521736145,
-0.16689807176589966,
0.6714340448379517,
-0.9193215370178223,
-0.24408912658691406,
-0.36634811758995056,
-0.5789861679077148,
-0.13130269944667816,
0.2671510875225067,
0.6085387468338013,
0.49648141860961914,
0.11012151837348938,
0.2073807418346405,
0.509552538394928,
-0.41403019428253174,
0.6155940890312195,
0.6623086929321289,
-0.17471015453338623,
-0.5590358376502991,
1.0811347961425781,
0.33321914076805115,
0.3849336504936218,
0.28683099150657654,
0.06982263922691345,
-0.40522804856300354,
-0.35363659262657166,
-0.72003573179245,
0.3950674831867218,
-0.6429058909416199,
-0.046241145581007004,
-0.8656700253486633,
-0.4040490388870239,
-0.7519822120666504,
-0.07820656150579453,
-0.5406777262687683,
-0.4958189129829407,
-0.19910211861133575,
-0.06007780879735947,
0.4617072641849518,
0.15202125906944275,
-0.2796174883842468,
0.4087200164794922,
-0.7599257230758667,
0.44087666273117065,
0.13079650700092316,
0.1985906958580017,
-0.14328141510486603,
-1.056208848953247,
-0.3882247805595398,
0.3127247989177704,
-0.23476912081241608,
-0.8757107257843018,
0.42290443181991577,
0.17654787003993988,
0.5499150156974792,
0.4746682643890381,
-0.14722763001918793,
0.7866479158401489,
-0.6055505871772766,
0.7643999457359314,
0.15531079471111298,
-1.1440396308898926,
0.525506854057312,
-0.4643292725086212,
0.4864441454410553,
0.33624979853630066,
0.4275232255458832,
-0.9086605906486511,
-0.5850476622581482,
-0.4894891083240509,
-0.936913788318634,
1.0532959699630737,
0.3174388110637665,
0.14528155326843262,
0.078192800283432,
0.02640491910278797,
-0.38014528155326843,
-0.1113494262099266,
-0.7684126496315002,
-0.5583726167678833,
-0.17974409461021423,
-0.2729887068271637,
-0.18321280181407928,
-0.20351091027259827,
-0.03899358958005905,
-0.5196979641914368,
0.8328713774681091,
0.1574191302061081,
0.526327908039093,
0.2875085771083832,
-0.05845269188284874,
-0.056083615869283676,
0.17831888794898987,
0.5954796075820923,
0.261292040348053,
-0.2695693075656891,
-0.03614503890275955,
0.3274998366832733,
-0.6921398639678955,
0.11504794657230377,
0.3205051124095917,
-0.12748803198337555,
0.18014080822467804,
0.3277477025985718,
0.8665449023246765,
-0.025872914120554924,
-0.6251632571220398,
0.36676809191703796,
0.02941954880952835,
-0.22238467633724213,
-0.412153035402298,
-0.12047876417636871,
0.3321705460548401,
0.2779138386249542,
0.4520862102508545,
-0.05974147096276283,
0.03224244713783264,
-0.5785084366798401,
0.34941551089286804,
0.4164111912250519,
-0.542575478553772,
-0.23133127391338348,
0.7461608052253723,
0.15469136834144592,
-0.24242575466632843,
0.7810476422309875,
-0.2650986909866333,
-0.6630362272262573,
0.634950578212738,
0.47675228118896484,
0.8093146085739136,
-0.684053897857666,
0.11807907372713089,
0.7794914245605469,
0.5515233874320984,
0.04584258794784546,
0.3469400107860565,
-0.07174709439277649,
-0.7871692776679993,
-0.37023434042930603,
-0.772609293460846,
-0.17977024614810944,
0.0047850836999714375,
-0.6223979592323303,
0.5878834128379822,
-0.3087119460105896,
-0.14921094477176666,
0.13439668715000153,
0.18501074612140656,
-0.6593496203422546,
0.31435731053352356,
0.2870992422103882,
0.9219751954078674,
-0.8954441547393799,
1.0971152782440186,
0.381197065114975,
-0.36958250403404236,
-1.0328700542449951,
-0.27327844500541687,
0.16411766409873962,
-0.7493146657943726,
0.4632937014102936,
0.3526572287082672,
-0.1525372862815857,
0.16346026957035065,
-0.16101989150047302,
-1.0511832237243652,
1.122676968574524,
0.3488008975982666,
-0.45470863580703735,
0.13059812784194946,
0.2624656856060028,
0.50452721118927,
-0.136541485786438,
0.33415648341178894,
0.6623582243919373,
0.5542687177658081,
0.3423677384853363,
-1.3093572854995728,
0.01300982665270567,
-0.39963072538375854,
-0.36785125732421875,
0.024470429867506027,
-0.6943057179450989,
0.8189555406570435,
-0.2979588508605957,
-0.35941001772880554,
0.02025381475687027,
0.6968663930892944,
0.5717068910598755,
0.28078651428222656,
0.5315125584602356,
0.6496484279632568,
0.5793153643608093,
-0.30089548230171204,
0.8824629783630371,
-0.26731741428375244,
0.37323421239852905,
0.7674782872200012,
0.09268542379140854,
0.9055397510528564,
0.24327844381332397,
-0.3155238628387451,
0.41830602288246155,
0.7871643304824829,
-0.07800772786140442,
0.4158370792865753,
-0.049538418650627136,
-0.31016430258750916,
0.06702734529972076,
-0.08149363100528717,
-0.6329047679901123,
0.6472962498664856,
0.4985182285308838,
-0.27142900228500366,
0.009878947399556637,
0.14027012884616852,
0.32011741399765015,
-0.5120254755020142,
-0.12065383046865463,
0.6156238317489624,
0.023922868072986603,
-0.47020041942596436,
0.797989547252655,
0.3596316874027252,
0.8724098801612854,
-0.6774258613586426,
0.29062390327453613,
-0.06915245950222015,
0.15858562290668488,
-0.31531259417533875,
-0.5779842734336853,
0.31962358951568604,
0.03650927543640137,
-0.19931235909461975,
-0.0754358172416687,
0.1996580958366394,
-0.5868392586708069,
-0.6652489900588989,
0.4819500744342804,
0.28146806359291077,
0.4074798822402954,
-0.07155197113752365,
-0.7695698142051697,
0.2573792636394501,
0.13457632064819336,
-0.21583685278892517,
0.1608283668756485,
0.29893025755882263,
0.13037173449993134,
0.677508533000946,
0.6593266725540161,
0.18407657742500305,
0.42401963472366333,
0.09099308401346207,
0.7087043523788452,
-0.5408717393875122,
-0.5838711261749268,
-0.6201751232147217,
0.6295422911643982,
0.14936389029026031,
-0.276137113571167,
0.9820444583892822,
0.7744950652122498,
1.1002625226974487,
0.17761801183223724,
0.6937848329544067,
-0.22182506322860718,
0.6828373074531555,
-0.43481674790382385,
0.7613871693611145,
-0.5628418326377869,
0.21588823199272156,
-0.6343202590942383,
-0.9329201579093933,
-0.31183990836143494,
0.80689537525177,
-0.10346882790327072,
0.2947118580341339,
0.5466406345367432,
0.9660195708274841,
-0.03813425078988075,
-0.20982638001441956,
0.15923163294792175,
0.2792324125766754,
0.5227434635162354,
0.6062211394309998,
0.43143048882484436,
-0.6797643303871155,
0.8236697316169739,
-0.5096412897109985,
-0.2316439002752304,
-0.06268810480833054,
-0.4338401257991791,
-0.6593497395515442,
-1.0171667337417603,
-0.41074371337890625,
-0.5152208209037781,
-0.39774081110954285,
0.7273520231246948,
0.8934124112129211,
-0.8007313013076782,
-0.47749629616737366,
0.10885290801525116,
-0.019454246386885643,
-0.29856395721435547,
-0.22870709002017975,
0.5749504566192627,
-0.059978239238262177,
-1.1820391416549683,
0.4324359893798828,
0.23243655264377594,
0.14028961956501007,
-0.13127486407756805,
-0.3430512249469757,
-0.18602041900157928,
0.052225686609745026,
0.4109349548816681,
0.4569879472255707,
-0.7334611415863037,
-0.12680652737617493,
-0.01847950927913189,
-0.15727674961090088,
0.038874831050634384,
0.46496230363845825,
-0.605631411075592,
0.6128575205802917,
0.5417214035987854,
0.306148886680603,
0.6703933477401733,
-0.45935896039009094,
0.2179136723279953,
-0.6383230090141296,
0.5855080485343933,
0.11492667347192764,
0.5160836577415466,
0.369413822889328,
0.027033615857362747,
0.3283519744873047,
0.3869001865386963,
-0.5292779803276062,
-0.896742045879364,
0.22433817386627197,
-1.301008939743042,
-0.019253283739089966,
1.3004928827285767,
-0.06012960523366928,
0.08476652950048447,
-0.17883051931858063,
-0.27473515272140503,
0.6494755744934082,
-0.4073582887649536,
0.5924007296562195,
0.7445460557937622,
0.0541524738073349,
-0.11610753834247589,
-0.6013143658638,
0.5290248394012451,
0.4793638586997986,
-0.5381247997283936,
-0.09865040332078934,
0.3928835690021515,
0.40577223896980286,
0.33623307943344116,
0.8652654886245728,
-0.34420984983444214,
0.3005715012550354,
0.007876291871070862,
0.17154927551746368,
0.14923407137393951,
-0.2962084412574768,
-0.42169421911239624,
-0.15177315473556519,
-0.191642627120018,
-0.38194411993026733
] |
dreamlike-art/dreamlike-photoreal-2.0 | dreamlike-art | "2023-03-13T01:05:06Z" | 148,654 | 1,563 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"photorealistic",
"photoreal",
"en",
"license:other",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-01-04T03:01:40Z" | ---
language:
- en
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- photorealistic
- photoreal
- diffusers
inference: false
---
# Dreamlike Photoreal 2.0 is a photorealistic model based on Stable Diffusion 1.5, made by [dreamlike.art](https://dreamlike.art/).
# If you want to use dreamlike models on your website/app/etc., check the license at the bottom first!
Warning: This model is horny! Add "nude, naked" to the negative prompt if want to avoid NSFW.
You can add **photo** to your prompt to make your gens look more photorealistic.
Non-square aspect ratios work better for some prompts. If you want a portrait photo, try using a vertical aspect ratio. If you want a landscape photo, try using a horizontal aspect ratio.
This model was trained on 768x768px images, so use 768x768px, 640x896px, 896x640px, etc. It also works pretty good with higher resolutions such as 768x1024px or 1024x768px.
### Examples
<img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/preview1.jpg" style="max-width: 800px;" width="100%"/>
<img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/preview2.jpg" style="max-width: 800px;" width="100%"/>
<img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/preview3.jpg" style="max-width: 800px;" width="100%"/>
### dreamlike.art
You can use this model for free on [dreamlike.art](https://dreamlike.art/)!
<img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/dreamlike.jpg" style="max-width: 1000px;" width="100%"/>
### CKPT
[Download dreamlike-photoreal-2.0.ckpt (2.13GB)](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/dreamlike-photoreal-2.0.ckpt)
### Safetensors
[Download dreamlike-photoreal-2.0.safetensors (2.13GB)](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/dreamlike-photoreal-2.0.safetensors)
### 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "dreamlike-art/dreamlike-photoreal-2.0"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "photo, a church in the middle of a field of crops, bright cinematic lighting, gopro, fisheye lens"
image = pipe(prompt).images[0]
image.save("./result.jpg")
```
<img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/church.jpg" style="max-width: 640px;" width="100%"/>
# License
This model is licesed under a **modified** CreativeML OpenRAIL-M license.
- **You are not allowed to host, finetune, or do inference with the model or its derivatives on websites/apps/etc. If you want to, please email us at contact@dreamlike.art**
- **You are free to host the model card and files (Without any actual inference or finetuning) on both commercial and non-commercial websites/apps/etc. Please state the full model name (Dreamlike Photoreal 2.0) and include the license as well as a link to the model card (https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0)**
- **You are free to use the outputs (images) of the model for commercial purposes in teams of 10 or less**
- You can't use the model to deliberately produce nor share illegal or harmful outputs or content
- The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
- You may re-distribute the weights. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the **modified** CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here: https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/blob/main/LICENSE.md
| [
-0.4180684983730316,
-0.7106546759605408,
0.2542329728603363,
0.41562747955322266,
-0.4100255072116852,
-0.21846351027488708,
0.03610929846763611,
-0.7638587951660156,
0.40860608220100403,
0.5379369854927063,
-0.5589708089828491,
-0.5789989829063416,
-0.41491934657096863,
-0.24322514235973358,
-0.18551112711429596,
0.8891279697418213,
-0.26532402634620667,
-0.15961402654647827,
-0.3562261164188385,
0.029171226546168327,
-0.1778324544429779,
0.033110182732343674,
-0.7707918286323547,
-0.19815777242183685,
0.4302903711795807,
0.06786990165710449,
0.823095977306366,
0.25947415828704834,
0.4079814851284027,
0.3099813759326935,
-0.09681637585163116,
-0.15717321634292603,
-0.5080562829971313,
-0.0060667539946734905,
-0.0019847515504807234,
-0.5395633578300476,
-0.9942014217376709,
0.349611759185791,
0.29698264598846436,
0.08092669397592545,
-0.3107840418815613,
0.24460966885089874,
0.08455421030521393,
0.6952129602432251,
-0.11858858913183212,
0.206789031624794,
-0.10468786209821701,
0.21719835698604584,
-0.14260703325271606,
0.17036134004592896,
-0.008275019936263561,
-0.5513840913772583,
-0.018797699362039566,
-0.8314149975776672,
0.3210601806640625,
0.15225929021835327,
1.1391851902008057,
0.00036473546060733497,
-0.26862335205078125,
0.19238939881324768,
-0.6128270030021667,
0.45480144023895264,
-0.6409730911254883,
0.3707033693790436,
0.19931313395500183,
0.47047168016433716,
-0.12622013688087463,
-0.7921093106269836,
-0.4371899664402008,
-0.010409209877252579,
0.07045642286539078,
0.46381622552871704,
-0.47153764963150024,
0.17952170968055725,
0.4035561680793762,
0.43526771664619446,
-0.919137716293335,
-0.2577861547470093,
-0.5652762651443481,
-0.10923347622156143,
0.8067736029624939,
-0.05281844735145569,
0.5363425016403198,
-0.2756091058254242,
-0.4881446659564972,
-0.05688057839870453,
-0.4602556824684143,
0.18609212338924408,
0.40095055103302,
0.0827251672744751,
-0.9594240784645081,
0.6558336019515991,
0.1279655396938324,
0.5431317687034607,
0.11475401371717453,
-0.0864674374461174,
0.2795288562774658,
0.035807207226753235,
-0.23507678508758545,
-0.47841116786003113,
0.7587655186653137,
1.0797446966171265,
0.10873998701572418,
-0.11490822583436966,
-0.2719387710094452,
0.17207403481006622,
-0.024094829335808754,
-1.2537482976913452,
-0.48221373558044434,
0.5098371505737305,
-0.7589033842086792,
-0.49059823155403137,
-0.2925218343734741,
-0.8608295917510986,
-0.19539302587509155,
-0.03255631402134895,
0.24280670285224915,
-0.4421705901622772,
-0.8885599374771118,
0.10623785853385925,
-0.3299368917942047,
0.20881636440753937,
0.45118895173072815,
-0.5295942425727844,
0.23284383118152618,
0.24702806770801544,
1.1113369464874268,
0.09637867659330368,
0.24047556519508362,
0.1462937891483307,
0.08954580128192902,
-0.38905856013298035,
0.7842600345611572,
-0.19343622028827667,
-0.5380849838256836,
-0.1756565421819687,
0.19819194078445435,
0.05232742428779602,
-0.5203237533569336,
0.4847516417503357,
-0.6031179428100586,
0.3102753460407257,
-0.2803739607334137,
-0.663004994392395,
-0.2952645421028137,
0.058660488575696945,
-0.6012664437294006,
0.6640797853469849,
0.4773561954498291,
-0.750511884689331,
0.3053007423877716,
-0.6819741129875183,
0.07809498906135559,
0.13567622005939484,
0.027488449588418007,
-0.3575645387172699,
0.17552167177200317,
-0.28312256932258606,
0.24657756090164185,
0.046077046543359756,
-0.1207103505730629,
-0.547189474105835,
-0.18869368731975555,
-0.22232933342456818,
0.049365121871232986,
1.1012415885925293,
0.48193448781967163,
-0.10445468872785568,
0.10005354136228561,
-0.448542982339859,
0.060585346072912216,
0.6101570129394531,
0.02540041133761406,
-0.16651204228401184,
-0.31769973039627075,
0.6528922319412231,
0.5058781504631042,
0.11179095506668091,
-0.6900780200958252,
0.34879109263420105,
-0.5986394286155701,
0.06881792098283768,
0.5398449301719666,
0.018131129443645477,
0.393981009721756,
-0.6535703539848328,
0.8121984004974365,
0.24426878988742828,
0.30411896109580994,
0.42720821499824524,
-0.6461382508277893,
-0.6284297108650208,
-0.27027416229248047,
0.16025124490261078,
0.3174271285533905,
-0.6909529566764832,
0.029033014550805092,
0.08621315658092499,
-0.819798469543457,
-0.4040438234806061,
-0.017125900834798813,
0.40369144082069397,
0.2931714355945587,
0.1077391505241394,
-0.4406997859477997,
-0.4379182457923889,
-0.9623746871948242,
-0.07503286004066467,
0.02730025164783001,
-0.012993327341973782,
0.4160473048686981,
0.5459638237953186,
-0.020136838778853416,
0.6871488690376282,
-0.44648638367652893,
-0.3387596309185028,
-0.23547029495239258,
-0.31566837430000305,
0.3375362157821655,
0.8649126291275024,
1.2702549695968628,
-0.9102665185928345,
-0.5910588502883911,
-0.3178490698337555,
-0.999505341053009,
0.02331480197608471,
0.13729463517665863,
-0.4174480438232422,
0.2208077311515808,
0.016005462035536766,
-1.0980570316314697,
0.5963883399963379,
0.8027148246765137,
-0.8027713298797607,
0.6633744835853577,
-0.3172207772731781,
0.17466388642787933,
-1.3267700672149658,
0.07111114263534546,
0.4731944501399994,
-0.5381417870521545,
-0.44263461232185364,
0.5121591091156006,
-0.24756956100463867,
-0.11430022865533829,
-0.6756455898284912,
0.9649633765220642,
-0.45980650186538696,
0.17549557983875275,
-0.41716158390045166,
0.1125296950340271,
0.0696910098195076,
0.39187273383140564,
0.0722443014383316,
0.45365026593208313,
0.8350323438644409,
-0.4332219958305359,
0.5768566727638245,
0.42822539806365967,
-0.3071950674057007,
0.8027534484863281,
-0.8718409538269043,
0.13328954577445984,
-0.32619309425354004,
0.4486945569515228,
-0.8098131418228149,
-0.4877448081970215,
0.6164174675941467,
-0.4754449725151062,
0.22285708785057068,
-0.32255247235298157,
-0.4096895158290863,
-0.5855886936187744,
-0.08521346002817154,
0.4764757454395294,
1.0151633024215698,
-0.27892225980758667,
0.5876613855361938,
0.2889055609703064,
0.17057029902935028,
-0.08314605057239532,
-0.597499430179596,
-0.08277245610952377,
-0.33139586448669434,
-0.8795772194862366,
0.573133647441864,
-0.14278917014598846,
-0.33874276280403137,
0.3408379554748535,
0.06743352115154266,
0.1622568666934967,
-0.34674060344696045,
0.6365844011306763,
0.3713229298591614,
0.024782268330454826,
-0.39550691843032837,
0.2372523546218872,
-0.0031096595339477062,
-0.013555070385336876,
-0.3053155541419983,
0.47620779275894165,
-0.2356419414281845,
-0.07019864022731781,
-0.8868987560272217,
0.3427874445915222,
0.5583013296127319,
0.10959155112504959,
0.8903505802154541,
0.5749304890632629,
-0.7748033404350281,
-0.14330777525901794,
-0.5101146697998047,
-0.19086351990699768,
-0.4902176558971405,
-0.0071595702320337296,
-0.5506450533866882,
-0.5779646039009094,
0.6811162233352661,
0.1059955507516861,
0.45335879921913147,
0.619137167930603,
0.49360331892967224,
-0.4105159640312195,
1.0449049472808838,
0.7372311353683472,
0.4700475335121155,
0.39980942010879517,
-0.8606927990913391,
-0.3396827280521393,
-0.7789254784584045,
-0.6079260110855103,
0.04384799674153328,
-0.6792570352554321,
-0.2942681312561035,
-0.6851650476455688,
0.2675977349281311,
0.27416518330574036,
-0.2566607594490051,
0.5594505667686462,
-0.3817816972732544,
0.29247376322746277,
0.1799253225326538,
0.4639081060886383,
0.18064241111278534,
0.11500825732946396,
-0.31859248876571655,
-0.1721784919500351,
-0.44351857900619507,
-0.34856972098350525,
0.7606799006462097,
0.26837173104286194,
0.67783522605896,
0.21348823606967926,
0.5327785611152649,
0.16748331487178802,
0.34471145272254944,
-0.5828268527984619,
0.6264882683753967,
0.06471951305866241,
-0.8745280504226685,
0.3523331880569458,
-0.29313036799430847,
-0.7092186808586121,
0.24336054921150208,
-0.337348997592926,
-0.7375450134277344,
0.18023617565631866,
0.499630331993103,
-0.4498489797115326,
0.6572206616401672,
-0.6823227405548096,
0.8715013861656189,
-0.01715816929936409,
-0.5945062637329102,
-0.18585596978664398,
-0.48518651723861694,
0.39718395471572876,
0.31685540080070496,
0.11613057553768158,
-0.33874988555908203,
-0.09945538640022278,
0.7067945599555969,
-0.589452862739563,
0.8147744536399841,
-0.7462148070335388,
0.0006500080926343799,
0.3974142074584961,
0.40704604983329773,
0.4200229048728943,
0.08599691838026047,
-0.14909356832504272,
0.151031032204628,
0.283509224653244,
-0.6297953724861145,
-0.5344647765159607,
0.7447977066040039,
-0.8370364308357239,
-0.47734546661376953,
-0.32955053448677063,
-0.5740839242935181,
0.0002464494900777936,
0.21275675296783447,
0.7629426717758179,
0.41588518023490906,
-0.29765814542770386,
-0.05819595232605934,
0.5635993480682373,
-0.11549044400453568,
0.45220911502838135,
0.17155620455741882,
-0.8490083813667297,
-0.28927069902420044,
0.6382582783699036,
-0.016104310750961304,
0.2798389792442322,
-0.12052125483751297,
0.2557690143585205,
-0.37042492628097534,
-0.4826420247554779,
-0.5597580075263977,
0.4641410708427429,
-0.29745855927467346,
-0.29499492049217224,
-0.6773468255996704,
-0.3040563762187958,
-0.38346269726753235,
-0.24694226682186127,
-0.5801048874855042,
-0.514712393283844,
-0.40701958537101746,
-0.10157783329486847,
0.7506047487258911,
0.5363696813583374,
-0.25484946370124817,
0.17483831942081451,
-0.5330038666725159,
0.30851468443870544,
0.1398831605911255,
0.6871862411499023,
-0.08150555193424225,
-0.6674466133117676,
0.09794449806213379,
0.13640569150447845,
-0.19850453734397888,
-0.8336640000343323,
0.5471696853637695,
0.0432257279753685,
0.24298730492591858,
0.4467366337776184,
-0.04778250679373741,
0.6460614204406738,
-0.3745330274105072,
0.732458233833313,
0.5545562505722046,
-0.45456624031066895,
0.7630966305732727,
-0.7924917936325073,
0.020568881183862686,
0.27221596240997314,
0.36594903469085693,
-0.5080359578132629,
-0.3358978033065796,
-0.8484394550323486,
-0.5520724058151245,
0.5351988673210144,
0.531460702419281,
0.3662274479866028,
0.47689375281333923,
0.863953173160553,
-0.011286674998700619,
0.21970027685165405,
-0.9413041472434998,
-0.35393086075782776,
-0.33385059237480164,
-0.018336383625864983,
0.1526457816362381,
-0.1570410430431366,
-0.3245546221733093,
-0.42270559072494507,
0.7920082807540894,
0.14245839416980743,
0.5367680788040161,
0.2341037541627884,
0.3194495439529419,
-0.4776633381843567,
-0.3810402452945709,
0.2328738123178482,
0.47327014803886414,
-0.3460741937160492,
-0.24788805842399597,
-0.18164174258708954,
-0.2877817451953888,
0.03868123143911362,
0.20878277719020844,
-0.41951867938041687,
-0.00679420493543148,
-0.20009075105190277,
0.7725323438644409,
-0.15959817171096802,
-0.37112951278686523,
0.6681528687477112,
-0.07600534707307816,
-0.5429171323776245,
-0.640235185623169,
0.21948638558387756,
0.3653247356414795,
0.7647737264633179,
-0.21174266934394836,
0.7630980610847473,
0.22665053606033325,
-0.1792871356010437,
0.11304327845573425,
0.7281413674354553,
-0.5006780028343201,
-0.6482844948768616,
1.3429160118103027,
0.12731601297855377,
-0.2649044394493103,
0.4067043960094452,
-0.49669328331947327,
-0.10883717983961105,
0.6766638159751892,
0.7982173562049866,
0.8164730668067932,
-0.28146812319755554,
0.5237765908241272,
0.5611587762832642,
0.02295120805501938,
-0.07012513279914856,
0.693395733833313,
0.3200553357601166,
-0.6141079068183899,
0.015961889177560806,
-0.7375649809837341,
-0.08959391713142395,
0.042276669293642044,
-0.49595487117767334,
0.5263233184814453,
-0.7678037285804749,
-0.31532904505729675,
-0.16500309109687805,
-0.003344064811244607,
-0.6931144595146179,
0.35291895270347595,
0.360276460647583,
1.3011473417282104,
-0.746425211429596,
0.7737841606140137,
0.6566658616065979,
-0.5682951211929321,
-0.9454598426818848,
-0.2118128389120102,
0.4308921694755554,
-0.6514829397201538,
0.0414600595831871,
0.12645117938518524,
-0.06557828187942505,
0.16832144558429718,
-0.6833333969116211,
-0.7205930948257446,
1.1448776721954346,
0.4757592976093292,
-0.4639153778553009,
-0.4577247202396393,
-0.466338187456131,
0.6273439526557922,
-0.4883659780025482,
0.22772924602031708,
0.15938730537891388,
0.16468025743961334,
0.6568998098373413,
-0.6892340779304504,
0.23809976875782013,
-0.5616273880004883,
0.42989376187324524,
-0.13863781094551086,
-1.1779383420944214,
0.6035189032554626,
-0.5409029722213745,
-0.22722665965557098,
0.5819852948188782,
0.8362188339233398,
0.3448377251625061,
0.26833733916282654,
0.5810161232948303,
0.8704503774642944,
0.4808034896850586,
-0.1785324513912201,
1.2284574508666992,
-0.1871812492609024,
0.623363733291626,
0.6175566911697388,
-0.039415694773197174,
0.7215358018875122,
0.13734903931617737,
-0.22379545867443085,
0.6845187544822693,
0.9046896696090698,
-0.15451829135417938,
0.3868435025215149,
0.29563626646995544,
-0.4532097280025482,
-0.24196366965770721,
-0.21639490127563477,
-0.6415859460830688,
0.2948104739189148,
0.16063688695430756,
-0.4311838150024414,
-0.1437324583530426,
0.25398826599121094,
0.045851487666368484,
-0.18092338740825653,
-0.15939846634864807,
0.4059212803840637,
0.28230851888656616,
-0.15961723029613495,
0.4443792700767517,
0.016792036592960358,
0.6753894090652466,
-0.4691244661808014,
0.005542814265936613,
-0.34675613045692444,
0.045490965247154236,
-0.46467918157577515,
-0.6773126125335693,
0.2948143184185028,
0.029500095173716545,
0.10390438884496689,
-0.34064191579818726,
0.7995941638946533,
-0.3631291687488556,
-0.7275661826133728,
0.40259847044944763,
0.5267676115036011,
0.4330981969833374,
-0.01763864979147911,
-1.1650899648666382,
0.21463420987129211,
-0.11013612151145935,
-0.5473019480705261,
0.16516253352165222,
-0.1164727583527565,
0.4362489879131317,
0.7354769706726074,
0.30511927604675293,
0.23159117996692657,
-0.30849283933639526,
-0.05360357090830803,
0.9221970438957214,
-0.49039745330810547,
-0.4320005774497986,
-0.46680450439453125,
0.7258793711662292,
-0.1842794120311737,
-0.14613741636276245,
0.6939107775688171,
0.8070980310440063,
0.7262956500053406,
-0.2610522210597992,
0.7670619487762451,
-0.536477267742157,
0.34455281496047974,
-0.25677725672721863,
0.9827376008033752,
-1.1485294103622437,
-0.10326263308525085,
-0.6738796830177307,
-1.1450364589691162,
-0.2571560740470886,
0.6902889013290405,
0.050124797970056534,
0.3533727526664734,
0.03805425018072128,
0.9438733458518982,
-0.26206067204475403,
0.06724950671195984,
0.22746236622333527,
0.1891079694032669,
0.1471841186285019,
0.532548725605011,
0.669887363910675,
-0.6146209836006165,
0.24213890731334686,
-0.5934117436408997,
-0.535126268863678,
-0.04620315134525299,
-0.7232906222343445,
-0.9231308102607727,
-0.5821841955184937,
-0.7359752655029297,
-0.9122698903083801,
-0.008829747326672077,
1.111397624015808,
0.9894326329231262,
-0.6336047053337097,
-0.19997327029705048,
-0.13226208090782166,
-0.12914325296878815,
-0.11583451181650162,
-0.25402089953422546,
0.15654538571834564,
0.5751795172691345,
-1.077242136001587,
0.02012433297932148,
0.14345885813236237,
0.8149011731147766,
-0.0543382503092289,
-0.06566724926233292,
0.12122627347707748,
-0.21173670887947083,
0.5592021346092224,
0.312565416097641,
-0.7393446564674377,
-0.22840535640716553,
-0.12148477137088776,
-0.0487956777215004,
0.004635217133909464,
0.31045404076576233,
-0.5508281588554382,
0.36019283533096313,
0.2354448139667511,
-0.08478058129549026,
0.5870811939239502,
0.0873335525393486,
0.3245769441127777,
-0.4817878305912018,
0.3578857183456421,
0.26953667402267456,
0.40361908078193665,
0.08656119555234909,
-0.43966662883758545,
0.5167757868766785,
0.7342361807823181,
-0.5117618441581726,
-0.487770676612854,
0.2250235378742218,
-1.4240137338638306,
-0.17739078402519226,
1.1171503067016602,
-0.13300634920597076,
-0.05675815790891647,
0.3014155626296997,
-0.359512060880661,
0.15382269024848938,
-0.3486102521419525,
0.36877790093421936,
0.37427371740341187,
-0.5250284671783447,
-0.5123918056488037,
-0.7597714066505432,
0.7101001143455505,
0.06960884481668472,
-0.6963648200035095,
-0.1575039029121399,
0.8402002453804016,
0.6077478528022766,
0.12676602602005005,
0.7396723031997681,
-0.4496806263923645,
0.18524855375289917,
0.21672098338603973,
0.20149752497673035,
-0.06277970224618912,
-0.14186009764671326,
-0.14082887768745422,
0.1675776243209839,
-0.24018381536006927,
-0.16753484308719635
] |
timm/resnet101.a1h_in1k | timm | "2023-04-05T18:20:31Z" | 144,778 | 0 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"arxiv:2110.00476",
"arxiv:1512.03385",
"license:apache-2.0",
"region:us"
] | image-classification | "2023-04-05T18:19:44Z" | ---
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
---
# Model card for resnet101.a1h_in1k
A ResNet-B image classification model.
This model features:
* ReLU activations
* single layer 7x7 convolution with pooling
* 1x1 convolution shortcut downsample
Trained on ImageNet-1k in `timm` using recipe template described below.
Recipe details:
* Based on [ResNet Strikes Back](https://arxiv.org/abs/2110.00476) `A1` recipe
* LAMB optimizer
* Stronger dropout, stochastic depth, and RandAugment than paper `A1` recipe
* Cosine LR schedule with warmup
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 44.5
- GMACs: 7.8
- Activations (M): 16.2
- Image size: train = 224 x 224, test = 288 x 288
- **Papers:**
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385
- **Original:** https://github.com/huggingface/pytorch-image-models
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('resnet101.a1h_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnet101.a1h_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 112, 112])
# torch.Size([1, 256, 56, 56])
# torch.Size([1, 512, 28, 28])
# torch.Size([1, 1024, 14, 14])
# torch.Size([1, 2048, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnet101.a1h_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|model |img_size|top1 |top5 |param_count|gmacs|macts|img/sec|
|------------------------------------------|--------|-----|-----|-----------|-----|-----|-------|
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|320 |86.72|98.17|93.6 |35.2 |69.7 |451 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|288 |86.51|98.08|93.6 |28.5 |56.4 |560 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|288 |86.49|98.03|93.6 |28.5 |56.4 |557 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|224 |85.96|97.82|93.6 |17.2 |34.2 |923 |
|[resnext101_32x32d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x32d.fb_wsl_ig1b_ft_in1k)|224 |85.11|97.44|468.5 |87.3 |91.1 |254 |
|[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|416 |85.0 |97.12|191.9 |108.4|213.8|134 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|320 |84.73|97.18|102.1 |41.5 |83.7 |353 |
|[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|384 |84.71|96.99|164.0 |77.6 |154.7|183 |
|[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|288 |84.57|97.08|93.6 |28.5 |56.4 |557 |
|[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|320 |84.45|97.08|93.2 |31.5 |67.8 |446 |
|[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|352 |84.43|96.97|129.9 |51.1 |105.5|280 |
|[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|288 |84.36|96.92|93.6 |27.6 |53.0 |595 |
|[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|320 |84.35|97.04|66.8 |24.1 |47.7 |610 |
|[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|288 |84.3 |96.94|164.0 |43.7 |87.1 |333 |
|[resnext101_32x8d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_swsl_ig1b_ft_in1k)|224 |84.28|97.17|88.8 |16.5 |31.2 |1100 |
|[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|320 |84.24|96.86|191.9 |64.2 |126.6|228 |
|[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|288 |84.19|96.87|93.6 |27.2 |51.6 |613 |
|[resnext101_32x16d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_wsl_ig1b_ft_in1k)|224 |84.18|97.19|194.0 |36.3 |51.2 |581 |
|[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|288 |84.11|97.11|44.6 |15.1 |29.0 |1144 |
|[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|320 |83.97|96.82|64.7 |31.2 |67.3 |518 |
|[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|256 |83.87|96.75|93.2 |20.2 |43.4 |692 |
|[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|224 |83.86|96.65|93.6 |17.2 |34.2 |923 |
|[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|320 |83.72|96.61|86.6 |24.3 |48.1 |617 |
|[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|256 |83.69|96.78|66.8 |15.4 |30.6 |943 |
|[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|224 |83.68|96.61|93.6 |16.7 |32.0 |986 |
|[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|320 |83.67|96.74|60.2 |24.1 |47.7 |706 |
|[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|256 |83.59|96.61|129.9 |27.1 |55.8 |526 |
|[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|224 |83.58|96.4 |93.6 |16.5 |31.2 |1013 |
|[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|224 |83.54|96.83|44.6 |9.1 |17.6 |1864 |
|[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|288 |83.46|96.54|60.2 |19.1 |37.3 |904 |
|[resnext101_32x16d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_swsl_ig1b_ft_in1k)|224 |83.35|96.85|194.0 |36.3 |51.2 |582 |
|[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|256 |83.23|96.53|64.7 |20.0 |43.1 |809 |
|[resnext101_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_swsl_ig1b_ft_in1k)|224 |83.22|96.75|44.2 |8.0 |21.2 |1814 |
|[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|288 |83.16|96.38|83.5 |25.7 |51.6 |590 |
|[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|256 |83.14|96.38|60.2 |15.4 |30.5 |1096 |
|[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|320 |83.02|96.45|44.6 |16.5 |34.8 |992 |
|[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|288 |82.98|96.54|44.6 |13.4 |28.2 |1077 |
|[resnext101_64x4d.tv_in1k](https://huggingface.co/timm/resnext101_64x4d.tv_in1k)|224 |82.98|96.25|83.5 |15.5 |31.2 |989 |
|[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|256 |82.86|96.28|86.6 |15.6 |30.8 |951 |
|[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|224 |82.83|96.22|88.8 |16.5 |31.2 |1099 |
|[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|224 |82.8 |96.13|60.2 |11.6 |22.6 |1486 |
|[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|288 |82.8 |96.32|44.6 |13.0 |26.8 |1291 |
|[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|288 |82.74|95.71|60.2 |19.1 |37.3 |905 |
|[resnext101_32x8d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_wsl_ig1b_ft_in1k)|224 |82.69|96.63|88.8 |16.5 |31.2 |1100 |
|[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|288 |82.62|95.75|60.2 |19.1 |37.3 |904 |
|[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|288 |82.61|96.49|25.6 |8.9 |20.6 |1729 |
|[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|288 |82.53|96.13|36.8 |9.9 |21.5 |1773 |
|[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|224 |82.5 |96.02|126.9 |22.8 |21.2 |1078 |
|[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|224 |82.46|95.92|83.5 |15.5 |31.2 |987 |
|[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|288 |82.36|96.18|35.7 |8.1 |20.9 |1964 |
|[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|320 |82.35|96.14|25.6 |8.8 |24.1 |1386 |
|[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|288 |82.31|95.63|44.6 |13.0 |26.8 |1291 |
|[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|288 |82.29|96.01|63.6 |13.6 |28.5 |1078 |
|[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|224 |82.29|96.0 |60.2 |11.6 |22.6 |1484 |
|[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|288 |82.27|96.06|68.9 |18.9 |23.8 |1176 |
|[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|256 |82.26|96.07|44.6 |10.6 |22.2 |1542 |
|[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|288 |82.24|95.73|44.6 |13.0 |26.8 |1290 |
|[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|288 |82.2 |96.14|27.6 |7.0 |23.8 |1547 |
|[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|224 |82.18|96.05|44.6 |8.1 |17.1 |1771 |
|[resnext50_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_swsl_ig1b_ft_in1k)|224 |82.17|96.22|25.0 |4.3 |14.4 |2943 |
|[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|288 |82.12|95.65|25.6 |7.1 |19.6 |1704 |
|[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|288 |82.03|95.94|25.0 |7.0 |23.8 |1745 |
|[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|288 |82.0 |96.15|24.9 |5.8 |12.7 |1787 |
|[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|256 |81.99|95.85|36.8 |7.8 |17.0 |2230 |
|[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|176 |81.98|95.72|88.8 |10.3 |19.4 |1768 |
|[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|224 |81.97|95.24|60.2 |11.6 |22.6 |1486 |
|[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|224 |81.93|95.75|44.6 |7.8 |16.2 |2122 |
|[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|224 |81.9 |95.77|44.6 |7.8 |16.2 |2118 |
|[resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k)|224 |81.84|96.1 |194.0 |36.3 |51.2 |583 |
|[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|256 |81.78|95.94|35.7 |6.4 |16.6 |2471 |
|[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|224 |81.77|95.22|60.2 |11.6 |22.6 |1485 |
|[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|224 |81.74|96.06|25.6 |5.4 |12.4 |2813 |
|[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|288 |81.65|95.54|25.6 |7.1 |19.6 |1703 |
|[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|288 |81.64|95.88|25.6 |7.2 |19.7 |1694 |
|[resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k)|224 |81.62|96.04|88.8 |16.5 |31.2 |1101 |
|[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|224 |81.61|95.76|68.9 |11.4 |14.4 |1930 |
|[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|288 |81.61|95.83|25.6 |8.5 |19.2 |1868 |
|[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|224 |81.5 |95.16|44.6 |7.8 |16.2 |2125 |
|[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|288 |81.48|95.16|25.0 |7.0 |23.8 |1745 |
|[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|288 |81.47|95.71|25.9 |6.9 |18.6 |2071 |
|[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|224 |81.45|95.53|68.9 |11.4 |14.4 |1929 |
|[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|288 |81.44|95.22|25.6 |7.2 |19.7 |1908 |
|[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|256 |81.44|95.67|25.6 |5.6 |15.4 |2168 |
|[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|288 |81.4 |95.82|30.2 |6.8 |13.9 |2132 |
|[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|288 |81.37|95.74|25.6 |7.2 |19.7 |1910 |
|[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|224 |81.32|95.19|44.6 |7.8 |16.2 |2125 |
|[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|288 |81.3 |95.65|28.1 |6.8 |18.4 |1803 |
|[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|288 |81.3 |95.11|25.0 |7.0 |23.8 |1746 |
|[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|224 |81.27|95.62|27.6 |4.3 |14.4 |2591 |
|[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|224 |81.26|95.16|25.6 |4.3 |11.8 |2823 |
|[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|288 |81.23|95.54|15.7 |4.8 |19.6 |2117 |
|[senet154.gluon_in1k](https://huggingface.co/timm/senet154.gluon_in1k)|224 |81.23|95.35|115.1 |20.8 |38.7 |545 |
|[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|288 |81.22|95.11|25.6 |6.8 |18.4 |2089 |
|[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|288 |81.22|95.63|25.6 |6.8 |18.4 |676 |
|[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|288 |81.18|95.09|25.6 |7.2 |19.7 |1908 |
|[resnet50.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet50.fb_swsl_ig1b_ft_in1k)|224 |81.18|95.98|25.6 |4.1 |11.1 |3455 |
|[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|224 |81.17|95.34|25.0 |4.3 |14.4 |2933 |
|[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|224 |81.1 |95.33|25.0 |4.3 |14.4 |2934 |
|[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|288 |81.1 |95.23|28.1 |6.8 |18.4 |1801 |
|[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|288 |81.1 |95.12|28.1 |6.8 |18.4 |1799 |
|[resnet152s.gluon_in1k](https://huggingface.co/timm/resnet152s.gluon_in1k)|224 |81.02|95.41|60.3 |12.9 |25.0 |1347 |
|[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|288 |80.97|95.44|25.6 |6.8 |18.4 |2085 |
|[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|256 |80.94|95.45|25.9 |5.4 |14.7 |2571 |
|[resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.93|95.73|44.2 |8.0 |21.2 |1814 |
|[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|288 |80.91|95.55|25.6 |6.8 |18.4 |2084 |
|[seresnext101_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_32x4d.gluon_in1k)|224 |80.9 |95.31|49.0 |8.0 |21.3 |1585 |
|[seresnext101_64x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_64x4d.gluon_in1k)|224 |80.9 |95.3 |88.2 |15.5 |31.2 |918 |
|[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|288 |80.86|95.52|25.6 |6.8 |18.4 |2085 |
|[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|224 |80.85|95.43|25.6 |4.1 |11.1 |3450 |
|[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|224 |80.84|95.02|25.6 |4.3 |11.8 |2821 |
|[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|224 |80.79|95.62|24.9 |3.5 |7.7 |2961 |
|[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|288 |80.79|95.36|19.8 |6.0 |14.8 |2506 |
|[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|288 |80.79|95.58|19.9 |4.2 |10.6 |2349 |
|[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|288 |80.78|94.99|25.6 |6.8 |18.4 |2088 |
|[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|288 |80.71|95.43|25.6 |6.8 |18.4 |2087 |
|[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|288 |80.7 |95.39|25.0 |7.0 |23.8 |1749 |
|[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|192 |80.69|95.24|63.6 |6.0 |12.7 |2270 |
|[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|224 |80.68|94.71|25.6 |4.4 |11.9 |3162 |
|[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|288 |80.68|95.36|19.7 |6.0 |14.8 |2637 |
|[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|224 |80.67|95.3 |25.6 |4.1 |11.1 |3452 |
|[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|288 |80.67|95.42|25.0 |7.4 |25.1 |1626 |
|[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|224 |80.63|95.21|25.6 |5.2 |11.6 |3034 |
|[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|224 |80.61|95.32|25.6 |4.4 |11.9 |2813 |
|[resnext101_64x4d.gluon_in1k](https://huggingface.co/timm/resnext101_64x4d.gluon_in1k)|224 |80.61|94.99|83.5 |15.5 |31.2 |989 |
|[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|288 |80.6 |95.31|19.9 |6.0 |14.8 |2578 |
|[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|256 |80.57|95.17|15.7 |3.8 |15.5 |2710 |
|[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|224 |80.56|95.0 |60.2 |11.6 |22.6 |1483 |
|[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|224 |80.53|95.16|25.6 |4.4 |11.9 |3164 |
|[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|224 |80.53|94.46|25.0 |4.3 |14.4 |2930 |
|[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|176 |80.48|94.98|126.9 |14.3 |13.2 |1719 |
|[resnet152d.gluon_in1k](https://huggingface.co/timm/resnet152d.gluon_in1k)|224 |80.47|95.2 |60.2 |11.8 |23.4 |1428 |
|[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|288 |80.45|95.32|25.6 |6.8 |18.4 |2086 |
|[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|224 |80.45|95.24|30.2 |4.1 |8.4 |3530 |
|[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|224 |80.45|94.63|25.0 |4.3 |14.4 |2936 |
|[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|176 |80.43|95.09|68.9 |7.3 |9.0 |3015 |
|[resnet101d.gluon_in1k](https://huggingface.co/timm/resnet101d.gluon_in1k)|224 |80.42|95.01|44.6 |8.1 |17.0 |2007 |
|[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|224 |80.38|94.6 |25.6 |4.1 |11.1 |3461 |
|[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|256 |80.36|95.1 |19.8 |4.8 |11.7 |3267 |
|[resnext101_32x4d.gluon_in1k](https://huggingface.co/timm/resnext101_32x4d.gluon_in1k)|224 |80.34|94.93|44.2 |8.0 |21.2 |1814 |
|[resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.32|95.4 |25.0 |4.3 |14.4 |2941 |
|[resnet101s.gluon_in1k](https://huggingface.co/timm/resnet101s.gluon_in1k)|224 |80.28|95.16|44.7 |9.2 |18.6 |1851 |
|[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|224 |80.26|95.08|28.1 |4.1 |11.1 |2972 |
|[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|288 |80.24|95.24|25.6 |8.5 |19.9 |1523 |
|[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|224 |80.22|94.63|25.6 |4.4 |11.9 |3162 |
|[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|176 |80.2 |94.64|60.2 |7.2 |14.0 |2346 |
|[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|224 |80.08|94.74|28.1 |4.1 |11.1 |2969 |
|[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|256 |80.08|94.97|19.7 |4.8 |11.7 |3284 |
|[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|256 |80.06|94.99|19.9 |4.8 |11.7 |3216 |
|[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|224 |80.06|94.95|25.6 |4.1 |11.1 |1109 |
|[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|224 |80.02|94.71|28.1 |4.1 |11.1 |2962 |
|[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|288 |79.97|95.05|25.6 |6.8 |18.4 |2086 |
|[resnet152c.gluon_in1k](https://huggingface.co/timm/resnet152c.gluon_in1k)|224 |79.92|94.84|60.2 |11.8 |23.4 |1455 |
|[seresnext50_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext50_32x4d.gluon_in1k)|224 |79.91|94.82|27.6 |4.3 |14.4 |2591 |
|[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|224 |79.91|94.67|25.6 |4.1 |11.1 |3456 |
|[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|176 |79.9 |94.6 |44.6 |4.9 |10.1 |3341 |
|[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|224 |79.89|94.97|35.7 |4.5 |12.1 |2774 |
|[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|224 |79.88|94.87|25.6 |4.1 |11.1 |3455 |
|[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|320 |79.86|95.07|16.0 |5.2 |16.4 |2168 |
|[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|224 |79.85|94.56|25.6 |4.1 |11.1 |3460 |
|[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|288 |79.83|94.97|25.6 |6.8 |18.4 |2087 |
|[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|224 |79.82|94.62|44.6 |7.8 |16.2 |2114 |
|[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|224 |79.76|94.6 |25.0 |4.3 |14.4 |2943 |
|[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|224 |79.74|94.95|25.6 |4.1 |11.1 |3455 |
|[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|224 |79.74|94.87|19.9 |2.5 |6.4 |3929 |
|[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|288 |79.71|94.83|19.7 |6.0 |14.8 |2710 |
|[resnet152.gluon_in1k](https://huggingface.co/timm/resnet152.gluon_in1k)|224 |79.68|94.74|60.2 |11.6 |22.6 |1486 |
|[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|224 |79.67|94.87|25.0 |4.5 |15.2 |2729 |
|[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|288 |79.63|94.91|25.6 |6.8 |18.4 |2086 |
|[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|224 |79.56|94.72|25.6 |4.3 |11.8 |2805 |
|[resnet101c.gluon_in1k](https://huggingface.co/timm/resnet101c.gluon_in1k)|224 |79.53|94.58|44.6 |8.1 |17.0 |2062 |
|[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|224 |79.52|94.61|25.6 |4.1 |11.1 |3459 |
|[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|176 |79.42|94.64|25.6 |2.6 |6.9 |5397 |
|[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|288 |79.4 |94.66|18.0 |5.9 |14.6 |2752 |
|[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|224 |79.38|94.57|25.6 |4.1 |11.1 |3459 |
|[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|176 |79.37|94.3 |25.0 |2.7 |9.0 |4577 |
|[resnext50_32x4d.gluon_in1k](https://huggingface.co/timm/resnext50_32x4d.gluon_in1k)|224 |79.36|94.43|25.0 |4.3 |14.4 |2942 |
|[resnext101_32x8d.tv_in1k](https://huggingface.co/timm/resnext101_32x8d.tv_in1k)|224 |79.31|94.52|88.8 |16.5 |31.2 |1100 |
|[resnet101.gluon_in1k](https://huggingface.co/timm/resnet101.gluon_in1k)|224 |79.31|94.53|44.6 |7.8 |16.2 |2125 |
|[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|224 |79.31|94.63|25.6 |5.2 |12.0 |2524 |
|[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|176 |79.27|94.49|25.6 |2.6 |6.9 |5404 |
|[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|224 |79.25|94.31|25.0 |4.3 |14.4 |2931 |
|[resnet50.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet50.fb_ssl_yfcc100m_ft_in1k)|224 |79.22|94.84|25.6 |4.1 |11.1 |3451 |
|[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|256 |79.21|94.56|19.7 |4.8 |11.7 |3392 |
|[resnet50d.gluon_in1k](https://huggingface.co/timm/resnet50d.gluon_in1k)|224 |79.07|94.48|25.6 |4.4 |11.9 |3162 |
|[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|224 |79.03|94.38|25.6 |4.1 |11.1 |3453 |
|[resnet50.am_in1k](https://huggingface.co/timm/resnet50.am_in1k)|224 |79.01|94.39|25.6 |4.1 |11.1 |3461 |
|[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|256 |79.01|94.37|18.0 |4.6 |11.6 |3440 |
|[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|256 |78.9 |94.54|16.0 |3.4 |10.5 |3421 |
|[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|160 |78.89|94.11|60.2 |5.9 |11.5 |2745 |
|[wide_resnet101_2.tv_in1k](https://huggingface.co/timm/wide_resnet101_2.tv_in1k)|224 |78.84|94.28|126.9 |22.8 |21.2 |1079 |
|[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|288 |78.83|94.24|16.8 |4.5 |16.8 |2251 |
|[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|224 |78.81|94.32|25.6 |4.1 |11.1 |3454 |
|[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|288 |78.74|94.33|16.8 |4.5 |16.7 |2264 |
|[resnet50s.gluon_in1k](https://huggingface.co/timm/resnet50s.gluon_in1k)|224 |78.72|94.23|25.7 |5.5 |13.5 |2796 |
|[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|224 |78.71|94.24|25.6 |4.4 |11.9 |3154 |
|[wide_resnet50_2.tv_in1k](https://huggingface.co/timm/wide_resnet50_2.tv_in1k)|224 |78.47|94.09|68.9 |11.4 |14.4 |1934 |
|[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|224 |78.46|94.27|25.6 |4.1 |11.1 |3454 |
|[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|288 |78.43|94.35|21.8 |6.5 |7.5 |3291 |
|[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|288 |78.42|94.04|10.5 |3.1 |13.3 |3226 |
|[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|320 |78.33|94.13|16.0 |5.2 |16.4 |2391 |
|[resnet152.tv_in1k](https://huggingface.co/timm/resnet152.tv_in1k)|224 |78.32|94.04|60.2 |11.6 |22.6 |1487 |
|[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|288 |78.28|94.1 |10.4 |3.1 |13.3 |3062 |
|[bat_resnext26ts.ch_in1k](https://huggingface.co/timm/bat_resnext26ts.ch_in1k)|256 |78.25|94.1 |10.7 |2.5 |12.5 |3393 |
|[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|224 |78.06|93.78|25.6 |4.1 |11.1 |3450 |
|[resnet50c.gluon_in1k](https://huggingface.co/timm/resnet50c.gluon_in1k)|224 |78.0 |93.99|25.6 |4.4 |11.9 |3286 |
|[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|288 |78.0 |93.91|10.3 |3.1 |13.3 |3297 |
|[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|224 |77.98|93.75|16.8 |2.7 |10.1 |3841 |
|[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|288 |77.92|93.77|21.8 |6.1 |6.2 |3609 |
|[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|160 |77.88|93.71|44.6 |4.0 |8.3 |3926 |
|[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|256 |77.87|93.84|16.0 |3.4 |10.5 |3772 |
|[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|256 |77.86|93.79|10.4 |2.4 |10.5 |4263 |
|[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|160 |77.82|93.81|35.7 |2.3 |6.2 |5238 |
|[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|256 |77.81|93.82|10.5 |2.4 |10.5 |4183 |
|[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|160 |77.79|93.6 |25.6 |2.2 |6.0 |5329 |
|[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|160 |77.73|93.32|25.0 |2.2 |7.4 |5576 |
|[resnext50_32x4d.tv_in1k](https://huggingface.co/timm/resnext50_32x4d.tv_in1k)|224 |77.61|93.7 |25.0 |4.3 |14.4 |2944 |
|[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|224 |77.59|93.61|16.8 |2.7 |10.2 |3807 |
|[resnet50.gluon_in1k](https://huggingface.co/timm/resnet50.gluon_in1k)|224 |77.58|93.72|25.6 |4.1 |11.1 |3455 |
|[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|256 |77.44|93.56|10.3 |2.4 |10.5 |4284 |
|[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|288 |77.41|93.63|16.0 |4.3 |13.5 |2907 |
|[resnet101.tv_in1k](https://huggingface.co/timm/resnet101.tv_in1k)|224 |77.38|93.54|44.6 |7.8 |16.2 |2125 |
|[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|160 |77.22|93.27|25.6 |2.2 |6.1 |5982 |
|[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|288 |77.17|93.47|10.3 |3.1 |13.3 |3392 |
|[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|288 |77.15|93.27|21.8 |6.1 |6.2 |3615 |
|[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|224 |77.1 |93.37|21.8 |3.9 |4.5 |5436 |
|[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|224 |77.02|93.07|28.1 |4.1 |11.1 |2952 |
|[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|256 |76.78|93.13|10.3 |2.4 |10.5 |4410 |
|[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|224 |76.7 |93.17|16.0 |2.6 |8.2 |4859 |
|[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|288 |76.5 |93.35|21.8 |6.1 |6.2 |3617 |
|[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|224 |76.42|92.87|21.8 |3.7 |3.7 |5984 |
|[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|288 |76.35|93.18|16.0 |3.9 |12.2 |3331 |
|[resnet50.tv_in1k](https://huggingface.co/timm/resnet50.tv_in1k)|224 |76.13|92.86|25.6 |4.1 |11.1 |3457 |
|[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|160 |75.96|92.5 |25.6 |2.1 |5.7 |6490 |
|[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|224 |75.52|92.44|21.8 |3.7 |3.7 |5991 |
|[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|224 |75.3 |92.58|16.0 |2.4 |7.4 |5583 |
|[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|224 |75.16|92.18|21.8 |3.7 |3.7 |5994 |
|[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|160 |75.1 |92.08|28.1 |2.1 |5.7 |5513 |
|[resnet34.gluon_in1k](https://huggingface.co/timm/resnet34.gluon_in1k)|224 |74.57|91.98|21.8 |3.7 |3.7 |5984 |
|[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|288 |73.81|91.83|11.7 |3.4 |5.4 |5196 |
|[resnet34.tv_in1k](https://huggingface.co/timm/resnet34.tv_in1k)|224 |73.32|91.42|21.8 |3.7 |3.7 |5979 |
|[resnet18.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet18.fb_swsl_ig1b_ft_in1k)|224 |73.28|91.73|11.7 |1.8 |2.5 |10213 |
|[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|288 |73.16|91.03|11.7 |3.0 |4.1 |6050 |
|[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|224 |72.98|91.11|21.8 |3.7 |3.7 |5967 |
|[resnet18.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet18.fb_ssl_yfcc100m_ft_in1k)|224 |72.6 |91.42|11.7 |1.8 |2.5 |10213 |
|[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|288 |72.37|90.59|11.7 |3.0 |4.1 |6051 |
|[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|224 |72.26|90.31|10.1 |1.7 |5.8 |7026 |
|[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|224 |72.26|90.68|11.7 |2.1 |3.3 |8707 |
|[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|224 |71.49|90.07|11.7 |1.8 |2.5 |10187 |
|[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|176 |71.31|89.69|10.1 |1.1 |3.6 |10970 |
|[resnet18.gluon_in1k](https://huggingface.co/timm/resnet18.gluon_in1k)|224 |70.84|89.76|11.7 |1.8 |2.5 |10210 |
|[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|224 |70.64|89.47|11.7 |1.8 |2.5 |10194 |
|[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|160 |70.56|89.52|21.8 |1.9 |1.9 |10737 |
|[resnet18.tv_in1k](https://huggingface.co/timm/resnet18.tv_in1k)|224 |69.76|89.07|11.7 |1.8 |2.5 |10205 |
|[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|224 |68.34|88.03|5.4 |1.1 |2.4 |13079 |
|[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|224 |68.25|88.17|11.7 |1.8 |2.5 |10167 |
|[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|176 |66.71|86.96|5.4 |0.7 |1.5 |20327 |
|[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|160 |65.66|86.26|11.7 |0.9 |1.3 |18229 |
## Citation
```bibtex
@inproceedings{wightman2021resnet,
title={ResNet strikes back: An improved training procedure in timm},
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
```bibtex
@article{He2015,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {arXiv preprint arXiv:1512.03385},
year = {2015}
}
```
| [
-0.8750565052032471,
-0.23286999762058258,
0.027016514912247658,
0.37982481718063354,
-0.4182167649269104,
-0.1309962272644043,
-0.13305534422397614,
-0.3927742540836334,
1.172304391860962,
0.30257073044776917,
-0.6445332765579224,
-0.5489479303359985,
-0.641982913017273,
0.004051558207720518,
0.30712270736694336,
0.8879433274269104,
0.010030300356447697,
-0.09175979346036911,
0.22221918404102325,
-0.2751728296279907,
-0.06560955196619034,
-0.33600401878356934,
-1.0946922302246094,
-0.19102251529693604,
0.4482727646827698,
0.16775546967983246,
0.6848648190498352,
0.6398118138313293,
0.411770761013031,
0.6091829538345337,
-0.27494701743125916,
0.2974123954772949,
-0.07458213716745377,
-0.118009053170681,
0.6223692893981934,
-0.3971555829048157,
-0.9299872517585754,
-0.022462250664830208,
0.7453554272651672,
0.6351051330566406,
0.06697443872690201,
0.3717607855796814,
0.36640676856040955,
0.632095217704773,
0.015800198540091515,
-0.05229545757174492,
0.006420493591576815,
0.13580231368541718,
-0.3066774308681488,
0.09201698750257492,
-0.08079752326011658,
-0.7236892580986023,
0.1627086102962494,
-0.6164267659187317,
-0.06033701449632645,
0.014621404930949211,
1.364507794380188,
-0.11333191394805908,
-0.22020463645458221,
0.10079547017812729,
0.14603319764137268,
0.7683034539222717,
-0.8444246053695679,
0.347358763217926,
0.5616657733917236,
0.03191939368844032,
-0.19966384768486023,
-0.6989118456840515,
-0.5228995084762573,
0.11958397179841995,
-0.44108492136001587,
0.3036551773548126,
-0.30025655031204224,
-0.23760481178760529,
0.40192878246307373,
0.34626448154449463,
-0.4542340636253357,
-0.11885563284158707,
-0.37360167503356934,
-0.10066840797662735,
0.6999488472938538,
0.08064985275268555,
0.7044476270675659,
-0.34941616654396057,
-0.5029698610305786,
-0.15013043582439423,
-0.17198733985424042,
0.487829327583313,
0.2509458661079407,
0.16189129650592804,
-1.098602294921875,
0.41304537653923035,
0.13548646867275238,
0.25557032227516174,
0.3806103765964508,
-0.15593038499355316,
0.8462145328521729,
-0.07248542457818985,
-0.5343120694160461,
-0.48844650387763977,
1.1014699935913086,
0.6432830691337585,
0.2578648328781128,
-0.08363300561904907,
-0.05926553159952164,
-0.19451245665550232,
-0.3755425214767456,
-0.9670913219451904,
-0.05140424892306328,
0.2657104432582855,
-0.5760155916213989,
-0.2728031873703003,
0.33397236466407776,
-0.8967577815055847,
-0.06721273064613342,
-0.07999861985445023,
0.08806419372558594,
-0.7462718486785889,
-0.4471021294593811,
0.01117842085659504,
-0.2340419888496399,
0.5191123485565186,
0.23499006032943726,
-0.3321649432182312,
0.4431021213531494,
0.0878511443734169,
0.913270890712738,
0.2773103713989258,
-0.08640825003385544,
-0.24839136004447937,
0.005223109852522612,
-0.35524243116378784,
0.38723933696746826,
0.15232160687446594,
-0.16904956102371216,
-0.36461418867111206,
0.45505279302597046,
-0.2765945792198181,
-0.25281432271003723,
0.610217273235321,
0.25652021169662476,
0.19668622314929962,
-0.2985730469226837,
-0.24680057168006897,
-0.2643604576587677,
0.38342222571372986,
-0.602202296257019,
1.0425962209701538,
0.3922615349292755,
-1.1295870542526245,
0.14542779326438904,
-0.5168524980545044,
-0.017314447090029716,
-0.30275705456733704,
0.07712104916572571,
-0.9289579391479492,
0.030544068664312363,
0.20705120265483856,
0.7055915594100952,
-0.2506159245967865,
-0.16197241842746735,
-0.36501434445381165,
0.042982928454875946,
0.4080906808376312,
0.1795407235622406,
0.9488255977630615,
0.31428638100624084,
-0.47282087802886963,
-0.2054797261953354,
-0.7381150722503662,
0.45686906576156616,
0.4534795582294464,
-0.01910308189690113,
-0.050439104437828064,
-0.8103481531143188,
0.03009430691599846,
0.5916768908500671,
0.23065318167209625,
-0.7075848579406738,
0.2533721923828125,
-0.19674339890480042,
0.34861886501312256,
0.6510358452796936,
0.03752949461340904,
0.19087529182434082,
-0.7203774452209473,
0.607069730758667,
-0.007172901649028063,
0.2785624861717224,
-0.02787831425666809,
-0.4200597107410431,
-0.7641177177429199,
-0.7357693910598755,
0.2558380663394928,
0.4297926425933838,
-0.4150691628456116,
0.8759104609489441,
0.12443923950195312,
-0.6217260956764221,
-0.6380075812339783,
0.041767191141843796,
0.6057026982307434,
0.28295403718948364,
0.11249036341905594,
-0.38897964358329773,
-0.7390207052230835,
-0.986754834651947,
-0.3285430073738098,
0.12158964574337006,
-0.015953920781612396,
0.6744624376296997,
0.4448762834072113,
-0.1869724690914154,
0.5288217663764954,
-0.37900152802467346,
-0.22343260049819946,
-0.15712016820907593,
-0.10453115403652191,
0.4538944959640503,
0.8223861455917358,
1.0471302270889282,
-0.7405493855476379,
-0.9367722272872925,
0.14508426189422607,
-1.1185336112976074,
-0.08209366351366043,
-0.02310696244239807,
-0.26854845881462097,
0.44031357765197754,
0.23399384319782257,
-0.8565436005592346,
0.7961812019348145,
0.3868817687034607,
-0.8217721581459045,
0.4584210515022278,
-0.3450532853603363,
0.5735021233558655,
-1.1277910470962524,
0.28583386540412903,
0.28324782848358154,
-0.24675412476062775,
-0.590806782245636,
0.07248985767364502,
-0.08065736293792725,
0.10523267835378647,
-0.5765708088874817,
0.8058692216873169,
-0.7181415557861328,
-0.04868995025753975,
0.13475307822227478,
0.03095419704914093,
-0.0015093827387318015,
0.45512130856513977,
-0.04826245456933975,
0.6048757433891296,
0.9022881388664246,
-0.18945102393627167,
0.3319392800331116,
0.4250459671020508,
0.0583001933991909,
0.7600765228271484,
-0.6453559398651123,
0.13072000443935394,
0.03161332383751869,
0.4561408758163452,
-1.0284970998764038,
-0.4009162187576294,
0.563673198223114,
-0.8278887271881104,
0.673302412033081,
-0.2782084345817566,
-0.28182104229927063,
-0.8469162583351135,
-0.8898539543151855,
0.26846981048583984,
0.6687414050102234,
-0.6181844472885132,
0.3916264474391937,
0.22213144600391388,
-0.018539180979132652,
-0.49445641040802,
-0.7147496342658997,
0.08306022733449936,
-0.4417875111103058,
-0.8400751352310181,
0.45958223938941956,
0.331362247467041,
-0.18017363548278809,
0.09551738202571869,
-0.1419828087091446,
-0.15231508016586304,
-0.20170626044273376,
0.6149505376815796,
0.3246631324291229,
-0.3092561960220337,
-0.42340999841690063,
-0.393917441368103,
-0.3016122877597809,
-0.074186772108078,
-0.12386306375265121,
0.5278815627098083,
-0.46105337142944336,
0.0736074298620224,
-1.4796613454818726,
0.11033345758914948,
0.9032660722732544,
-0.024776052683591843,
1.0125254392623901,
0.7844181060791016,
-0.4904346466064453,
0.1893196702003479,
-0.47667452692985535,
-0.23472996056079865,
-0.5281800627708435,
-0.23442071676254272,
-0.7120543122291565,
-0.5872547626495361,
0.95654296875,
0.058221716433763504,
-0.137482151389122,
0.7802426815032959,
0.14084622263908386,
-0.2509685456752777,
0.8310768604278564,
0.4864037334918976,
-0.0369090735912323,
0.5708441734313965,
-0.8615958094596863,
0.08630266040563583,
-0.8513249158859253,
-0.7479608654975891,
-0.2661150097846985,
-0.6052874326705933,
-0.6046879887580872,
-0.3212463855743408,
0.2592812478542328,
0.3910346031188965,
-0.283301442861557,
0.6230451464653015,
-0.5863494873046875,
0.04052100330591202,
0.3606768548488617,
0.5481367707252502,
-0.23673629760742188,
-0.09792327135801315,
-0.13798868656158447,
-0.3357534110546112,
-0.5320489406585693,
-0.3619067072868347,
0.7769340872764587,
0.6323236227035522,
0.4302524924278259,
0.10394951701164246,
0.6134071946144104,
0.05105578154325485,
0.19711802899837494,
-0.3094713091850281,
0.6968076825141907,
0.03902275860309601,
-0.4276316463947296,
-0.3408503830432892,
-0.42007869482040405,
-1.0988318920135498,
0.16712114214897156,
-0.45901307463645935,
-0.859554648399353,
-0.16426710784435272,
-0.042845528572797775,
-0.37601834535598755,
0.7748923301696777,
-0.6299208998680115,
0.6581330895423889,
-0.06442857533693314,
-0.5483639240264893,
-0.02287476137280464,
-0.8235083818435669,
0.07382725924253464,
0.37893760204315186,
0.03938864544034004,
0.011920866556465626,
-0.0414692759513855,
0.7990143895149231,
-0.848015308380127,
0.6300381422042847,
-0.3570792078971863,
0.15981394052505493,
0.3991663455963135,
-0.026452288031578064,
0.40634676814079285,
-0.03483369201421738,
-0.20704485476016998,
-0.06468052417039871,
0.10996244847774506,
-0.8327904939651489,
-0.35600727796554565,
0.6685485243797302,
-0.7577613592147827,
-0.400147020816803,
-0.6600126028060913,
-0.2546389400959015,
0.11017972975969315,
0.03557927906513214,
0.49556195735931396,
0.673844575881958,
0.011402525007724762,
0.24347266554832458,
0.5317428112030029,
-0.46683576703071594,
0.5274642705917358,
-0.11805467307567596,
-0.0024483678862452507,
-0.6004734635353088,
0.7200573682785034,
0.07216797769069672,
-0.003267883788794279,
-0.016566842794418335,
0.043433621525764465,
-0.4151383936405182,
-0.234571173787117,
-0.3237082362174988,
0.7459679245948792,
-0.16230452060699463,
-0.3313159644603729,
-0.6504837870597839,
-0.37005677819252014,
-0.5878562927246094,
-0.412489116191864,
-0.4481365978717804,
-0.37717944383621216,
-0.30270299315452576,
0.04484030604362488,
0.7264193892478943,
0.8722624778747559,
-0.3640284240245819,
0.43033286929130554,
-0.5479831695556641,
0.2908686399459839,
0.0710945725440979,
0.5707120895385742,
-0.3138383626937866,
-0.7289919257164001,
0.04578382149338722,
-0.04710047319531441,
-0.10495340079069138,
-0.8649814128875732,
0.6799048185348511,
0.0065336693078279495,
0.3837568759918213,
0.3977113366127014,
-0.22594387829303741,
0.763165295124054,
-0.023059524595737457,
0.4821169972419739,
0.6300093531608582,
-0.7214057445526123,
0.3822759687900543,
-0.4279804229736328,
0.02042420022189617,
0.28488555550575256,
0.20230872929096222,
-0.41649866104125977,
-0.3300255537033081,
-0.9236536622047424,
-0.42577165365219116,
0.7736957669258118,
0.10992768406867981,
-0.03806382045149803,
-0.03181878477334976,
0.7660313248634338,
-0.07776542007923126,
0.056943174451589584,
-0.5530732870101929,
-0.9200947284698486,
-0.10578600317239761,
-0.147442027926445,
0.08252012729644775,
-0.06336607038974762,
0.053883299231529236,
-0.6814393401145935,
0.6807255148887634,
0.07125282287597656,
0.504547655582428,
0.17709793150424957,
0.06558793783187866,
0.03522283211350441,
-0.3260960578918457,
0.6181915402412415,
0.35673150420188904,
-0.18994782865047455,
-0.11852214485406876,
0.3782750070095062,
-0.5234194397926331,
0.1034841537475586,
0.19788311421871185,
-0.025080658495426178,
0.07469924539327621,
0.11134186387062073,
0.534410297870636,
0.33778414130210876,
-0.05333489924669266,
0.5157575607299805,
-0.2520064115524292,
-0.5464761257171631,
-0.22236831486225128,
-0.19513486325740814,
0.25063419342041016,
0.44010064005851746,
0.31769639253616333,
0.07472003251314163,
-0.4019954800605774,
-0.3714195787906647,
0.537969172000885,
0.7202613353729248,
-0.3905583620071411,
-0.42879414558410645,
0.6033832430839539,
-0.03880268335342407,
-0.24943245947360992,
0.41307878494262695,
-0.12020974606275558,
-0.6982970833778381,
1.0613001585006714,
0.3604313135147095,
0.6606811285018921,
-0.5055276155471802,
0.08529239147901535,
0.8842639923095703,
-0.01183697022497654,
0.17466256022453308,
0.34046679735183716,
0.47544440627098083,
-0.3560746908187866,
-0.06901001930236816,
-0.5554385781288147,
0.18842177093029022,
0.5195360779762268,
-0.43209517002105713,
0.2991369962692261,
-0.7508994936943054,
-0.3688288629055023,
0.09449275583028793,
0.5025325417518616,
-0.6438333988189697,
0.3468640446662903,
-0.0392584428191185,
1.0899684429168701,
-0.8399360775947571,
0.8605411052703857,
0.9390150308609009,
-0.5758679509162903,
-0.9018383026123047,
-0.01831693947315216,
0.13680824637413025,
-0.8939810991287231,
0.49921420216560364,
0.10734143108129501,
0.03273361176252365,
-0.010638897307217121,
-0.5099141597747803,
-0.6957730054855347,
1.4057649374008179,
0.4205515682697296,
-0.03174380585551262,
0.28475069999694824,
-0.43889471888542175,
0.37951183319091797,
-0.1982177048921585,
0.5975680351257324,
0.37603092193603516,
0.5201562643051147,
0.17830771207809448,
-0.8993685245513916,
0.3735564351081848,
-0.43159160017967224,
-0.109581857919693,
0.3279654383659363,
-1.3287609815597534,
0.9188128113746643,
-0.24333252012729645,
-0.054143667221069336,
0.23495376110076904,
0.6598691344261169,
0.32447054982185364,
-0.013538099825382233,
0.27347591519355774,
0.9617253541946411,
0.5121064782142639,
-0.24044616520404816,
1.0776636600494385,
-0.229341521859169,
0.5362374782562256,
0.2440747171640396,
0.557422935962677,
0.3658795654773712,
0.3818061947822571,
-0.564348042011261,
0.2659904658794403,
0.8565395474433899,
-0.038002245128154755,
0.1379716992378235,
0.28201451897621155,
-0.3921877443790436,
-0.1906532198190689,
-0.22052639722824097,
-0.7012515068054199,
0.23309822380542755,
0.09626111388206482,
-0.17074641585350037,
-0.1575615257024765,
-0.04563881829380989,
0.24062064290046692,
0.297124445438385,
-0.25798287987709045,
0.5407445430755615,
0.07967719435691833,
-0.39265379309654236,
0.48847201466560364,
-0.015789376571774483,
1.061174988746643,
-0.3397084176540375,
0.16860613226890564,
-0.3794545829296112,
0.2884350121021271,
-0.2528176009654999,
-1.091133713722229,
0.3511492908000946,
-0.09343765676021576,
0.06389495730400085,
-0.22946368157863617,
0.680567741394043,
-0.34137365221977234,
-0.3446747362613678,
0.38337281346321106,
0.4093461334705353,
0.538673460483551,
0.29241061210632324,
-1.1494413614273071,
0.28636372089385986,
0.0936703309416771,
-0.6240686774253845,
0.44742780923843384,
0.5122973918914795,
0.3585677444934845,
0.7719823122024536,
0.3468998074531555,
0.31560489535331726,
0.18942970037460327,
-0.34687289595603943,
0.7682191729545593,
-0.6633503437042236,
-0.45474693179130554,
-0.8465073108673096,
0.5325120091438293,
-0.4189000427722931,
-0.5393504500389099,
0.7359651327133179,
0.5735905766487122,
0.3879925310611725,
0.024187123402953148,
0.6609361171722412,
-0.5385902523994446,
0.5135676264762878,
-0.2706643044948578,
0.7705589532852173,
-0.6809328198432922,
-0.23670350015163422,
-0.19793163239955902,
-0.6161055564880371,
-0.4166392385959625,
0.8675301671028137,
-0.13765431940555573,
0.24845895171165466,
0.31302744150161743,
0.7002106308937073,
0.05603845790028572,
-0.13201016187667847,
0.016435083001852036,
0.16595669090747833,
-0.13091374933719635,
0.8758654594421387,
0.5208987593650818,
-0.7877835631370544,
0.05088420584797859,
-0.4974471628665924,
-0.2855656147003174,
-0.34300392866134644,
-0.7731915712356567,
-1.1805938482284546,
-0.6910119652748108,
-0.5428986549377441,
-0.6992120742797852,
-0.24106919765472412,
1.2206130027770996,
0.8371888995170593,
-0.6261277794837952,
-0.14851956069469452,
0.1447497457265854,
0.08861103653907776,
-0.1601523458957672,
-0.2178419530391693,
0.5556032061576843,
0.07611645758152008,
-0.9899083971977234,
-0.4221286475658417,
0.14642184972763062,
0.6270695328712463,
0.40467730164527893,
-0.49286746978759766,
-0.22149710357189178,
-0.09270890802145004,
0.337718665599823,
0.856989860534668,
-0.8137446641921997,
-0.29123347997665405,
0.010013789869844913,
-0.4892216920852661,
0.13360434770584106,
0.2974695861339569,
-0.470996230840683,
-0.11363215744495392,
0.4932120442390442,
0.42497551441192627,
0.7282841205596924,
0.07925153523683548,
0.1575298011302948,
-0.4651446044445038,
0.5754451751708984,
-0.03458531200885773,
0.3485834300518036,
0.2298421859741211,
-0.3056955933570862,
0.7858452796936035,
0.5510193705558777,
-0.4036129117012024,
-1.0474095344543457,
-0.18278063833713531,
-1.325597882270813,
-0.05788141489028931,
0.6646934747695923,
-0.08526872843503952,
-0.4607604444026947,
0.4434874355792999,
-0.4381145238876343,
0.5223004221916199,
-0.22492839395999908,
0.2885842025279999,
0.2397128790616989,
-0.3542618453502655,
-0.3775484561920166,
-0.5510948300361633,
0.622282087802887,
0.36874642968177795,
-0.7002043128013611,
-0.4127335250377655,
0.0017180577851831913,
0.3165299892425537,
0.20054510235786438,
0.7692996263504028,
-0.3898158669471741,
0.13821981847286224,
-0.11642032116651535,
0.2553287148475647,
-0.04916897788643837,
0.1540035605430603,
-0.32954204082489014,
-0.1308780312538147,
-0.23725488781929016,
-0.6577292680740356
] |
facebook/hubert-base-ls960 | facebook | "2021-11-05T12:43:12Z" | 144,715 | 24 | transformers | [
"transformers",
"pytorch",
"tf",
"hubert",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2106.07447",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | feature-extraction | "2022-03-02T23:29:05Z" | ---
language: en
datasets:
- librispeech_asr
tags:
- speech
license: apache-2.0
---
# Hubert-Base
[Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
[Paper](https://arxiv.org/abs/2106.07447)
Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
**Abstract**
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`. | [
-0.35776305198669434,
-0.4707850217819214,
0.32102859020233154,
0.17915913462638855,
-0.20034705102443695,
-0.08824775367975235,
-0.33347979187965393,
-0.4664543569087982,
0.1740843653678894,
0.3032298684120178,
-0.6333318948745728,
-0.37370815873146057,
-0.45485803484916687,
-0.2621839940547943,
-0.14579777419567108,
0.7144147157669067,
0.17499923706054688,
0.32205334305763245,
0.020559893921017647,
-0.13252146542072296,
-0.5523804426193237,
-0.5697998404502869,
-0.6855838298797607,
-0.3815346956253052,
0.3155721127986908,
0.4126397371292114,
0.19663579761981964,
0.5321911573410034,
0.15862612426280975,
0.25832754373550415,
-0.06196966767311096,
-0.0008723088540136814,
-0.5920219421386719,
0.03332587331533432,
0.05282779410481453,
-0.1279170960187912,
-0.39502066373825073,
0.20927520096302032,
0.7516984939575195,
0.6136406064033508,
-0.3939492702484131,
0.31169235706329346,
0.11126048862934113,
0.461852103471756,
-0.4014931917190552,
0.2745460569858551,
-0.786949098110199,
-0.08028256148099899,
-0.07645201683044434,
0.11761327087879181,
-0.454837828874588,
0.06745953112840652,
-0.05910957604646683,
-0.4411922097206116,
0.26983150839805603,
-0.11054342240095139,
0.9296478033065796,
0.32507383823394775,
-0.34081825613975525,
-0.008653825148940086,
-0.7420945763587952,
1.0096123218536377,
-0.5314432382583618,
0.7242524027824402,
0.6437907814979553,
0.3033496141433716,
0.05480064079165459,
-0.7633206844329834,
-0.2643084228038788,
-0.1785244345664978,
0.08673249930143356,
0.2662079334259033,
-0.3352465331554413,
0.046077124774456024,
0.23807457089424133,
0.20800858736038208,
-0.5221349596977234,
0.29778924584388733,
-0.69061279296875,
-0.500781774520874,
0.7278324365615845,
-0.3274209499359131,
-0.16312125325202942,
-0.27310654520988464,
-0.3840021789073944,
-0.2502257823944092,
-0.4463930130004883,
0.3391261398792267,
0.3527100086212158,
0.3620907962322235,
-0.1335211992263794,
0.19151440262794495,
0.07476634532213211,
0.576685905456543,
0.23498296737670898,
-0.14005382359027863,
0.4378122091293335,
0.09700462967157364,
-0.04496517404913902,
0.3106164336204529,
0.7837545871734619,
-0.0962958112359047,
0.1568211168050766,
0.08298607915639877,
-0.4190831184387207,
-0.07491886615753174,
0.2356066107749939,
-0.7263587713241577,
-0.6480374336242676,
0.16363191604614258,
-0.5262108445167542,
-0.08513180166482925,
0.19442056119441986,
0.014081903733313084,
0.3269880712032318,
-0.6081292033195496,
0.8268348574638367,
-0.3972552716732025,
-0.18301911652088165,
-0.29556459188461304,
0.03286762908101082,
-0.03377264365553856,
0.040327299386262894,
-1.1876919269561768,
0.4263257086277008,
0.47861629724502563,
0.6290631890296936,
-0.1899438351392746,
-0.06615155190229416,
-0.6049578785896301,
0.022290511056780815,
-0.5590944886207581,
0.4291495978832245,
-0.09845519810914993,
-0.30446454882621765,
-0.31733447313308716,
-0.04290975257754326,
0.22210468351840973,
-0.6270480751991272,
0.3994406461715698,
-0.24295929074287415,
0.06819143146276474,
-0.17398302257061005,
-0.7287915945053101,
-0.16782718896865845,
-0.35437464714050293,
-0.5222866535186768,
1.2837777137756348,
0.23733730614185333,
-0.4623683989048004,
0.15650643408298492,
-0.4126341640949249,
-0.4195065200328827,
-0.013859851285815239,
-0.26429659128189087,
-0.5884099006652832,
0.2749120891094208,
0.3703840374946594,
0.6306339502334595,
0.2484431117773056,
0.3688327372074127,
-0.2453339397907257,
-0.36918988823890686,
0.13658413290977478,
-0.40816372632980347,
0.7252650260925293,
0.3373400568962097,
-0.23404206335544586,
0.17420773208141327,
-1.0806443691253662,
0.2163354903459549,
-0.028061024844646454,
-0.337869793176651,
-0.07076447457075119,
-0.11326553672552109,
0.2505393326282501,
0.09827297925949097,
0.3182917535305023,
-0.6061564087867737,
-0.060458675026893616,
-0.5809085369110107,
0.567938506603241,
0.7724074721336365,
-0.11042352765798569,
0.4123700261116028,
-0.1879516839981079,
0.08424056321382523,
-0.25471633672714233,
0.19297336041927338,
-0.09969931095838547,
-0.5294336080551147,
-0.666007936000824,
-0.347940593957901,
0.7191197872161865,
0.3392443358898163,
-0.23996159434318542,
0.6034888625144958,
0.08371169120073318,
-0.4760424792766571,
-0.9052591323852539,
0.08967763930559158,
0.26881489157676697,
0.4803786873817444,
0.7282450795173645,
-0.26207247376441956,
-0.6919129490852356,
-0.9781203866004944,
0.11987259984016418,
-0.3261045217514038,
-0.2814272940158844,
0.2549562156200409,
0.22736002504825592,
-0.30477914214134216,
0.9901845455169678,
-0.19470860064029694,
-0.4159356653690338,
-0.047376327216625214,
0.32073649764060974,
0.17924804985523224,
0.8010504841804504,
0.4026457369327545,
-0.5406843423843384,
-0.35589081048965454,
-0.20778632164001465,
-0.4233815371990204,
-0.16514496505260468,
0.0966934785246849,
0.22346922755241394,
0.2560456693172455,
0.619234561920166,
-0.23151397705078125,
0.29039087891578674,
0.6826691627502441,
0.1898288130760193,
0.3450410068035126,
-0.3346203863620758,
-0.31275996565818787,
-1.1153862476348877,
-0.16605041921138763,
-0.21177083253860474,
-0.4703006446361542,
-0.6321806907653809,
-0.2316293567419052,
0.23463484644889832,
-0.16546301543712616,
-0.3268181383609772,
0.41970357298851013,
-0.4590318500995636,
-0.19223277270793915,
-0.3206941485404968,
0.07576806098222733,
-0.16177140176296234,
0.5272969603538513,
0.05710839852690697,
0.6206617951393127,
0.6272383332252502,
-0.5723932981491089,
0.3039599359035492,
0.13566656410694122,
-0.3263091444969177,
0.12066273391246796,
-0.7861828207969666,
0.3463945686817169,
-0.018119122833013535,
0.22835135459899902,
-0.9463444948196411,
-0.14227847754955292,
0.04495854303240776,
-0.7880760431289673,
0.8031430840492249,
-0.1052209809422493,
-0.33572250604629517,
-0.324928879737854,
-0.03765346109867096,
0.39173972606658936,
0.7221753597259521,
-0.8345039486885071,
0.48972564935684204,
0.5623983144760132,
0.0602024644613266,
-0.48042601346969604,
-0.848861813545227,
-0.11702544242143631,
0.009351851418614388,
-0.5678250789642334,
0.6070912480354309,
-0.1446262151002884,
0.12514564394950867,
-0.12387917935848236,
-0.2825194001197815,
0.028019428253173828,
0.01222025603055954,
0.4507797360420227,
-0.07818219810724258,
-0.09618867188692093,
0.6389583945274353,
0.2272532433271408,
-0.31986841559410095,
0.060580071061849594,
-0.42533326148986816,
0.4272741675376892,
-0.1106225922703743,
-0.17275960743427277,
-0.753909707069397,
0.3459073603153229,
-0.017879270017147064,
-0.23082605004310608,
0.23937368392944336,
1.14077889919281,
-0.48412075638771057,
-0.26550790667533875,
-0.7015183568000793,
-0.5055869817733765,
-0.5094491243362427,
0.49283725023269653,
-0.4506710171699524,
-1.085420846939087,
0.3468412160873413,
0.019213389605283737,
-0.16905783116817474,
0.6943250894546509,
0.6114614009857178,
-0.4972234070301056,
0.9063804745674133,
0.6278855800628662,
-0.22875908017158508,
0.4545183777809143,
-0.5228209495544434,
0.1302008330821991,
-0.7506304979324341,
-0.3080481290817261,
-0.379489541053772,
-0.279200941324234,
-0.6918564438819885,
-0.4987274408340454,
0.3095525801181793,
0.32733944058418274,
-0.12219550460577011,
0.43568524718284607,
-0.6279774308204651,
0.08604879677295685,
0.8461165428161621,
0.10160970687866211,
-0.12342764437198639,
0.321071594953537,
-0.17913760244846344,
-0.1978926807641983,
-0.8099973797798157,
-0.20232293009757996,
0.9452816247940063,
0.5958854556083679,
0.7702205181121826,
-0.014984250999987125,
1.1838102340698242,
0.2212701290845871,
-0.13224166631698608,
-0.920441210269928,
0.3220134377479553,
-0.09092021733522415,
-0.6976784467697144,
-0.5274115800857544,
-0.5477727651596069,
-0.9795125126838684,
0.22426341474056244,
-0.18306587636470795,
-0.8617056608200073,
0.26697349548339844,
0.25370368361473083,
-0.32540270686149597,
0.06281039118766785,
-0.6574523448944092,
0.7279047966003418,
-0.13653045892715454,
0.030225198715925217,
-0.3732869327068329,
-0.7420157790184021,
0.005018727853894234,
-0.1361168771982193,
0.23625819385051727,
-0.3153708875179291,
0.32976090908050537,
0.9778225421905518,
-0.4311937689781189,
0.7397921681404114,
-0.38925230503082275,
0.046195466071367264,
0.509431779384613,
-0.09495071321725845,
0.34972089529037476,
0.11324944347143173,
0.142400324344635,
0.42220497131347656,
0.24126972258090973,
-0.40723347663879395,
-0.3768886625766754,
0.714039146900177,
-1.0361396074295044,
-0.34867820143699646,
-0.2224172055721283,
-0.3079949617385864,
-0.3486095368862152,
-0.05553780868649483,
0.49091559648513794,
0.5726777911186218,
-0.23497842252254486,
0.2662794888019562,
0.6552879214286804,
0.12047862261533737,
0.5522370338439941,
0.43841561675071716,
-0.22627468407154083,
-0.5028536915779114,
1.0969125032424927,
0.38551223278045654,
0.07412224262952805,
0.32528871297836304,
0.3769954741001129,
-0.4099627435207367,
-0.4551540017127991,
-0.2950952351093292,
0.27333518862724304,
-0.6408671736717224,
-0.23486213386058807,
-0.6053979992866516,
-0.4087817966938019,
-0.6529906392097473,
0.30647581815719604,
-0.6785688400268555,
-0.6784225106239319,
-0.7547540664672852,
-0.18486714363098145,
0.2794575095176697,
0.7456526756286621,
-0.6989387273788452,
0.5244677662849426,
-0.5235952138900757,
0.3860941231250763,
0.6676517128944397,
0.13322152197360992,
-0.1010785698890686,
-0.970554769039154,
-0.3847292959690094,
0.04283088445663452,
-0.1709367036819458,
-0.7559365034103394,
0.23732011020183563,
0.39873209595680237,
0.5861756205558777,
0.45622703433036804,
-0.0031302666757255793,
0.595827043056488,
-0.5239008069038391,
0.7118859887123108,
0.2751576006412506,
-1.0095651149749756,
0.7904640436172485,
-0.15518967807292938,
0.15417155623435974,
0.48443078994750977,
0.25929680466651917,
-0.2995300590991974,
-0.10388066619634628,
-0.7366782426834106,
-0.7190465927124023,
0.8471552133560181,
0.3188905417919159,
0.2500861585140228,
0.130796417593956,
0.3673880994319916,
-0.01756878010928631,
-0.008510468527674675,
-0.7693319320678711,
-0.4506758749485016,
-0.41052696108818054,
-0.134316548705101,
-0.21780017018318176,
-0.5616694688796997,
0.06869012862443924,
-0.6438263654708862,
1.0058828592300415,
0.04656902700662613,
0.3066417872905731,
0.22507841885089874,
-0.028239674866199493,
-0.1030522808432579,
0.13426123559474945,
0.38432273268699646,
0.47279658913612366,
-0.4049525260925293,
0.06770717352628708,
0.1990218609571457,
-0.2909235954284668,
0.037475116550922394,
0.3159160315990448,
-0.03952489048242569,
0.22400201857089996,
0.35927814245224,
1.1493175029754639,
0.15837526321411133,
-0.11572923511266708,
0.5260917544364929,
0.019996806979179382,
-0.4800400137901306,
-0.39055535197257996,
0.008130821399390697,
0.04559063911437988,
0.18571390211582184,
0.5622061491012573,
0.01680201292037964,
0.1688944548368454,
-0.37136518955230713,
0.33382630348205566,
0.27089422941207886,
-0.8088495135307312,
-0.30532196164131165,
0.6779456734657288,
0.005208942573517561,
-0.28869178891181946,
0.5279747247695923,
-0.4076438844203949,
-0.3613840937614441,
0.32288819551467896,
0.646824300289154,
0.7529351711273193,
-0.7306504249572754,
0.20316360890865326,
0.5648891925811768,
0.3023146092891693,
-0.11782340705394745,
0.39740195870399475,
-0.3408733010292053,
-0.5119909644126892,
-0.4690755307674408,
-0.6762005686759949,
-0.1450907438993454,
0.2740562856197357,
-0.7233090996742249,
0.17003785073757172,
-0.3015204668045044,
-0.35993486642837524,
0.12892328202724457,
0.06766203045845032,
-0.49059146642684937,
0.2312387079000473,
0.262357234954834,
0.4929291307926178,
-0.622032105922699,
1.1804288625717163,
0.37543630599975586,
-0.1180981919169426,
-1.2688084840774536,
-0.18095800280570984,
-0.16023898124694824,
-0.7208805084228516,
0.46491575241088867,
0.20567543804645538,
-0.05560396984219551,
0.12506961822509766,
-0.6130983233451843,
-1.1254734992980957,
0.9183659553527832,
0.4032197594642639,
-0.9356668591499329,
0.21452277898788452,
-0.16263145208358765,
0.4595010280609131,
-0.25771403312683105,
-0.13148155808448792,
0.4260748326778412,
0.2785417139530182,
0.059288423508405685,
-1.0515881776809692,
-0.2571996748447418,
0.04769682139158249,
0.1516769677400589,
-0.07741431146860123,
-0.530281126499176,
0.9710243344306946,
-0.20847219228744507,
-0.23719799518585205,
0.0680285170674324,
0.9431290626525879,
0.12522105872631073,
0.2909078598022461,
0.46183276176452637,
0.6143112182617188,
0.9159281253814697,
-0.16612622141838074,
0.58547443151474,
-0.2602226734161377,
0.695055365562439,
1.2754344940185547,
0.2473183423280716,
0.984137237071991,
0.3776344358921051,
-0.39197444915771484,
0.41010481119155884,
0.6720052361488342,
-0.2650294005870819,
0.6293982267379761,
0.3487474322319031,
-0.09700258821249008,
-0.3823821246623993,
0.036602966487407684,
-0.616000771522522,
0.7968272566795349,
0.3261464834213257,
-0.26248863339424133,
0.1562896966934204,
0.12687468528747559,
-0.33995726704597473,
-0.03206688165664673,
-0.32309529185295105,
0.7349398732185364,
0.3426332473754883,
-0.2511390447616577,
0.8087987899780273,
0.1962452083826065,
0.5073764324188232,
-0.5424720644950867,
0.05371560528874397,
0.016147559508681297,
-0.0465666726231575,
-0.2056710422039032,
-0.3135948181152344,
0.0646388977766037,
-0.3502088189125061,
-0.25669920444488525,
-0.164695605635643,
0.7341117858886719,
-0.6550207734107971,
-0.6148022413253784,
0.43986210227012634,
0.32503756880760193,
0.40194937586784363,
-0.22562965750694275,
-0.7048642039299011,
0.09440325200557709,
0.026312371715903282,
-0.051379140466451645,
0.17753703892230988,
0.2232397347688675,
0.12439166009426117,
0.28406813740730286,
0.5075340270996094,
0.023137303069233894,
0.00810979027301073,
0.3605460226535797,
0.5990259647369385,
-0.4348398745059967,
-0.572674572467804,
-0.46637076139450073,
0.24463050067424774,
0.10531312227249146,
0.018311157822608948,
0.46369537711143494,
0.5665556788444519,
1.0626860857009888,
-0.021488569676876068,
0.4536888301372528,
0.23550280928611755,
0.7477948069572449,
-0.5381579399108887,
0.7263710498809814,
-0.5890049934387207,
0.10061104595661163,
-0.14829406142234802,
-0.8054900169372559,
-0.11938236653804779,
0.913074254989624,
0.06385033577680588,
0.3057837188243866,
0.3845084309577942,
0.7295083999633789,
-0.04141208156943321,
-0.16479294002056122,
0.5869549512863159,
0.2164221853017807,
0.11765971779823303,
0.1946759968996048,
0.7589185833930969,
-0.6892418265342712,
0.5228901505470276,
-0.49631327390670776,
-0.1903875172138214,
-0.2170279622077942,
-0.45022884011268616,
-0.9165563583374023,
-0.8434833884239197,
-0.4258660078048706,
-0.2227352410554886,
0.08144477754831314,
1.0519402027130127,
1.2249521017074585,
-1.0068517923355103,
-0.32295334339141846,
0.1923317164182663,
-0.11120890825986862,
-0.23556271195411682,
-0.1731063276529312,
0.5381532311439514,
-0.39110079407691956,
-0.5254334807395935,
0.7969970703125,
0.11904238909482956,
0.23922307789325714,
-0.2539306879043579,
-0.23858237266540527,
0.021674156188964844,
-0.10800866037607193,
0.5761529803276062,
0.17947837710380554,
-1.0099451541900635,
-0.28945407271385193,
-0.26202407479286194,
0.045293159782886505,
0.2684532105922699,
0.622577428817749,
-0.9227361679077148,
0.707278847694397,
0.12588241696357727,
0.31963247060775757,
1.020998239517212,
-0.03176835551857948,
0.15374748408794403,
-1.1584702730178833,
0.01222891267389059,
0.30638882517814636,
0.3598115146160126,
0.39497750997543335,
-0.1834111213684082,
0.27901098132133484,
0.24297815561294556,
-0.6784965395927429,
-0.650026798248291,
0.16300709545612335,
-1.3007025718688965,
-0.33707669377326965,
1.006261944770813,
0.03427625447511673,
-0.09927979111671448,
0.14650985598564148,
-0.3288164734840393,
0.5146110653877258,
-0.666705846786499,
0.5743150115013123,
0.49369296431541443,
-0.1656569093465805,
-0.19770045578479767,
-0.4127800166606903,
0.5812292695045471,
0.4094005227088928,
-0.17417293787002563,
-0.07434668391942978,
0.38843682408332825,
0.37685173749923706,
0.12475705146789551,
0.6803568601608276,
0.09077659249305725,
0.09377075731754303,
-0.06370895355939865,
0.21840129792690277,
-0.11658947169780731,
-0.5079777240753174,
-0.6028469800949097,
0.042699310928583145,
0.10288825631141663,
-0.4474492073059082
] |
claudfuen/photorealistic-fuen-v1 | claudfuen | "2022-12-06T21:38:04Z" | 144,023 | 85 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"endpoints-template",
"license:creativeml-openrail-m",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2022-12-03T14:18:05Z" | ---
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- endpoints-template
inference: true
--- | [
-0.12853388488292694,
-0.18616782128810883,
0.6529127359390259,
0.4943625330924988,
-0.19319313764572144,
0.23607465624809265,
0.36071982979774475,
0.05056332051753998,
0.5793652534484863,
0.740013837814331,
-0.6508103013038635,
-0.2378396987915039,
-0.710224986076355,
-0.04782581701874733,
-0.3894752264022827,
0.8470761775970459,
-0.09598272293806076,
0.024004854261875153,
0.047120071947574615,
-0.14317826926708221,
-0.6121037602424622,
-0.04771740734577179,
-1.0524537563323975,
-0.06787490844726562,
0.3002279996871948,
0.5120972990989685,
0.8275896310806274,
0.39602896571159363,
0.5030564069747925,
1.7515558004379272,
-0.08836919069290161,
-0.22754427790641785,
-0.45892032980918884,
0.4223068356513977,
-0.33277371525764465,
-0.42133718729019165,
-0.2624166011810303,
-0.07449338585138321,
0.32380399107933044,
0.790371298789978,
-0.38104110956192017,
0.19328099489212036,
-0.22438454627990723,
1.008224368095398,
-0.8202074766159058,
0.22630876302719116,
-0.16698351502418518,
0.14053204655647278,
0.042308706790208817,
-0.14591927826404572,
-0.1326323002576828,
-0.6440033912658691,
0.06469469517469406,
-0.899596095085144,
0.1027495265007019,
-0.04461126774549484,
0.8789561986923218,
0.21909058094024658,
-0.5102370977401733,
-0.0459773913025856,
-0.6883594989776611,
1.0972508192062378,
-0.17556026577949524,
0.7615712881088257,
0.4507811963558197,
0.45288562774658203,
-0.5849329829216003,
-1.178217887878418,
-0.4441864490509033,
-0.13579002022743225,
0.14722809195518494,
0.30556100606918335,
-0.3453029692173004,
-0.022343844175338745,
0.10801105946302414,
0.5610314011573792,
-0.5003758072853088,
-0.311959445476532,
-0.9579929113388062,
-0.18164916336536407,
0.6820483207702637,
0.319308340549469,
0.834044337272644,
0.1873151659965515,
-0.7347195744514465,
0.12866291403770447,
-1.3239703178405762,
0.07650735974311829,
0.6465023756027222,
0.239467591047287,
-0.554598867893219,
0.8594784736633301,
-0.28587982058525085,
0.626249372959137,
0.2728465497493744,
-0.1164526641368866,
0.2784252464771271,
-0.23030735552310944,
-0.2735062837600708,
0.033087607473134995,
0.34597301483154297,
0.8204491138458252,
0.16248634457588196,
-0.019984982907772064,
-0.22123965620994568,
0.0020717978477478027,
0.2684449553489685,
-0.7935096025466919,
-0.4712669551372528,
0.1926696002483368,
-0.558952808380127,
-0.0910850465297699,
0.4327022135257721,
-1.0976827144622803,
-0.4812980592250824,
-0.1879846155643463,
0.05468139797449112,
-0.5451693534851074,
-0.3697946071624756,
0.07273250073194504,
-0.79254150390625,
-0.1243419200181961,
0.570950984954834,
-0.6230252981185913,
0.43974608182907104,
0.533625602722168,
0.7861635684967041,
0.2330387681722641,
-0.23613610863685608,
-0.6695019602775574,
0.48848265409469604,
-0.8661867380142212,
0.36860740184783936,
-0.3073781132698059,
-0.8298640251159668,
-0.09631050378084183,
0.5393159985542297,
0.20664852857589722,
-0.6653256416320801,
0.7074045538902283,
-0.5496984720230103,
-0.07806532829999924,
-0.4308285415172577,
-0.2432200014591217,
0.17460417747497559,
0.11115431040525436,
-0.6238909363746643,
0.9402233362197876,
0.5551108121871948,
-0.584109902381897,
0.31701239943504333,
-0.4869506359100342,
-0.6865583658218384,
0.26748135685920715,
-0.008750975131988525,
-0.047152332961559296,
0.3279528021812439,
-0.15983973443508148,
-0.0020511597394943237,
0.10505761206150055,
0.008299741894006729,
-0.21891699731349945,
-0.4786304235458374,
0.06349936127662659,
0.151650071144104,
1.25368332862854,
0.4083622097969055,
-0.3771882951259613,
-0.13140122592449188,
-1.0526149272918701,
0.025432661175727844,
0.0505015105009079,
-0.42306768894195557,
-0.2504565119743347,
-0.14882194995880127,
-0.20381587743759155,
0.4307260811328888,
0.2118472456932068,
-0.813115119934082,
0.22643625736236572,
-0.2064024657011032,
0.364496648311615,
0.8222091794013977,
0.2703101634979248,
0.39760565757751465,
-0.6625286340713501,
0.6563138365745544,
0.2076188325881958,
0.49590179324150085,
0.35404202342033386,
-0.3845822811126709,
-0.9641586542129517,
-0.442161500453949,
-0.10117404907941818,
0.2975531220436096,
-0.7744957804679871,
0.5847322940826416,
0.012979604303836823,
-0.5836705565452576,
-0.4465281367301941,
-0.15488101541996002,
0.2755330502986908,
-0.06606576591730118,
0.03334902226924896,
-0.4049779176712036,
-0.7394417524337769,
-1.0127898454666138,
-0.13788150250911713,
-0.5021388530731201,
-0.21892830729484558,
0.3160586357116699,
0.2617739737033844,
-0.34290042519569397,
0.7610747814178467,
-0.6059278249740601,
-0.704064130783081,
-0.13973554968833923,
-0.0995984673500061,
0.6187719702720642,
0.9297672510147095,
0.749138355255127,
-0.7224893569946289,
-0.8973818421363831,
-0.056230708956718445,
-0.5420039892196655,
-0.020044349133968353,
0.038149889558553696,
-0.18260693550109863,
-0.10514980554580688,
0.22352531552314758,
-0.6100803017616272,
0.8851073980331421,
0.43224984407424927,
-0.681546688079834,
0.5210590958595276,
-0.4444413483142853,
0.6073803901672363,
-0.8642839193344116,
-0.2911490201950073,
-0.16823577880859375,
-0.1976117193698883,
-0.7090160846710205,
0.19411544501781464,
-0.3002234101295471,
-0.33029863238334656,
-0.7474032044410706,
0.5274897813796997,
-0.9497010707855225,
-0.18781527876853943,
-0.33672773838043213,
-0.03423111140727997,
0.25807833671569824,
0.19490505754947662,
-0.23560254275798798,
0.8900529742240906,
0.9160482287406921,
-0.7121306657791138,
0.5487277507781982,
0.3930906653404236,
-0.1920013427734375,
0.7131237387657166,
-0.3887738585472107,
0.05161993205547333,
-0.12344931066036224,
0.14374595880508423,
-1.126388430595398,
-0.561158299446106,
0.13677382469177246,
-0.712703287601471,
0.17686958611011505,
-0.16556859016418457,
-0.09428537636995316,
-0.6608465313911438,
-0.33806395530700684,
0.25910091400146484,
0.48612290620803833,
-0.47969940304756165,
0.6188148260116577,
0.5728040337562561,
0.02651876211166382,
-0.5307406783103943,
-0.7206818461418152,
0.20418110489845276,
0.039646461606025696,
-0.5569695830345154,
0.3011690080165863,
0.006543457508087158,
-0.6622446775436401,
-0.371124804019928,
-0.26354190707206726,
-0.6043857336044312,
-0.2267974615097046,
0.7826986312866211,
0.1199423298239708,
-0.09012264013290405,
-0.20310267806053162,
-0.3199536204338074,
-0.06167525798082352,
0.30487415194511414,
-0.07575298100709915,
0.7232834696769714,
-0.33623749017715454,
-0.17850083112716675,
-0.887734055519104,
0.652754545211792,
0.9970465302467346,
0.09446714073419571,
0.806644082069397,
0.46324217319488525,
-0.35647475719451904,
-0.1304660439491272,
-0.3535459041595459,
-0.15120601654052734,
-0.685774564743042,
-0.1806798279285431,
-0.5322476625442505,
-0.5411434769630432,
0.40530654788017273,
0.10101459175348282,
-0.0021042972803115845,
0.5167046785354614,
0.2533605694770813,
-0.28806859254837036,
0.7550324201583862,
1.034340739250183,
0.1391797959804535,
0.3602915108203888,
-0.2854715585708618,
0.6341594457626343,
-0.8329949378967285,
-0.34052175283432007,
-0.4548071026802063,
-0.2563585042953491,
-0.31214389204978943,
-0.10750849545001984,
0.5791022181510925,
0.2818215489387512,
-0.4463467597961426,
0.1250680536031723,
-0.5994209051132202,
0.6587361693382263,
0.6273988485336304,
0.5719727873802185,
0.1997303068637848,
-0.46199458837509155,
0.19982971251010895,
0.04816687852144241,
-0.45745599269866943,
-0.4009109139442444,
0.7711143493652344,
0.2399624139070511,
0.8364022374153137,
0.20927050709724426,
0.4957774877548218,
0.33375421166419983,
0.2528058588504791,
-0.6318977475166321,
0.2009797990322113,
-0.22282809019088745,
-1.245961308479309,
-0.206426739692688,
-0.16551318764686584,
-1.0080583095550537,
-0.11792082339525223,
-0.18288995325565338,
-0.8406620025634766,
0.2665729820728302,
-0.19225634634494781,
-0.6640645265579224,
0.5206149220466614,
-0.5103875398635864,
0.69347083568573,
-0.23555898666381836,
-0.2817087769508362,
0.11930079013109207,
-0.6889920830726624,
0.5254612565040588,
0.3667147755622864,
0.29168397188186646,
-0.37968993186950684,
-0.3192872405052185,
0.5068994760513306,
-0.881224513053894,
0.44081127643585205,
-0.10564978420734406,
0.19428130984306335,
0.5358879566192627,
0.4153591990470886,
0.3823971152305603,
0.28699052333831787,
-0.2459377944469452,
-0.23415414988994598,
0.2250344604253769,
-0.7581346035003662,
-0.27754613757133484,
0.9095459580421448,
-0.7519428730010986,
-0.8586915731430054,
-0.6954255700111389,
-0.30644941329956055,
0.28865277767181396,
0.02781464159488678,
0.7154772281646729,
0.6456884145736694,
-0.18821057677268982,
0.23776991665363312,
0.7208225727081299,
-0.0146945184096694,
0.7235562801361084,
0.29411184787750244,
-0.4056646227836609,
-0.6169787645339966,
0.7182320356369019,
0.2627044916152954,
0.05162655562162399,
0.028327951207756996,
0.3058736026287079,
-0.17546698451042175,
-0.15078596770763397,
-0.6318323612213135,
-0.06395323574542999,
-0.7465729117393494,
-0.0927949845790863,
-0.7541396617889404,
-0.2507742643356323,
-0.7114590406417847,
-0.8068137764930725,
-0.7080163955688477,
-0.45604395866394043,
-0.43011948466300964,
-0.23352204263210297,
0.5163108706474304,
1.1627086400985718,
-0.2613152861595154,
0.8011051416397095,
-0.8900954723358154,
0.41936296224594116,
0.4969540238380432,
0.7519731521606445,
-0.11061006784439087,
-0.6746935844421387,
-0.07836239039897919,
-0.5338755249977112,
-0.29485058784484863,
-1.0156972408294678,
0.31774646043777466,
-0.03688591718673706,
0.40537136793136597,
0.42938894033432007,
0.25190269947052,
0.49392756819725037,
-0.30073118209838867,
1.1130688190460205,
0.7274302244186401,
-0.803381085395813,
0.519527792930603,
-0.7635002136230469,
0.16122324764728546,
0.9363659620285034,
0.54477459192276,
-0.4417075514793396,
-0.15113934874534607,
-1.025976538658142,
-0.843137264251709,
0.5963036417961121,
0.15439945459365845,
0.016843896359205246,
0.01821417547762394,
0.03168272227048874,
0.29466384649276733,
0.3591304123401642,
-0.7847291231155396,
-0.8240220546722412,
-0.13851122558116913,
0.25803306698799133,
0.31456053256988525,
-0.1648542582988739,
-0.3003871440887451,
-0.611615777015686,
0.8711391091346741,
0.18286482989788055,
0.3546231985092163,
0.12073354423046112,
0.04369349032640457,
-0.35506919026374817,
0.14787021279335022,
0.5522999167442322,
1.2529057264328003,
-0.40983331203460693,
0.3673911392688751,
0.1751260608434677,
-0.6540069580078125,
0.6494997143745422,
-0.3036349415779114,
-0.021784601733088493,
0.6203135251998901,
0.17760884761810303,
0.28528398275375366,
0.315599262714386,
-0.3621427118778229,
0.6047801971435547,
-0.029422052204608917,
-0.17758512496948242,
-0.7005696296691895,
0.15866968035697937,
0.029350608587265015,
0.27507954835891724,
0.4392024278640747,
0.24443313479423523,
0.08246771991252899,
-1.0602877140045166,
0.5711055397987366,
0.24493910372257233,
-0.8676618337631226,
-0.3011006712913513,
0.7047957181930542,
0.4075389802455902,
-0.47599563002586365,
0.38749054074287415,
0.012702330946922302,
-0.6710241436958313,
0.5987741351127625,
0.5510413646697998,
0.7569674253463745,
-0.4702427089214325,
0.3088020086288452,
0.6245602965354919,
0.06711331009864807,
0.20550549030303955,
0.6923202872276306,
0.03149382025003433,
-0.44738656282424927,
0.23022446036338806,
-0.5986733436584473,
-0.1468990594148636,
0.13735318183898926,
-0.8047426342964172,
0.351533442735672,
-0.9312615394592285,
-0.24089956283569336,
0.08751589059829712,
0.11761097609996796,
-0.6130945086479187,
0.6674696207046509,
-0.008524954319000244,
0.9280490875244141,
-0.8549083471298218,
0.9626278281211853,
0.8559581637382507,
-0.31830817461013794,
-0.7709448337554932,
-0.33556753396987915,
0.02013934776186943,
-0.6660526990890503,
0.7108278274536133,
-0.18973003327846527,
-0.41207411885261536,
-0.09323947876691818,
-0.622982919216156,
-1.0003730058670044,
0.030618250370025635,
0.017415650188922882,
-0.4625031054019928,
0.4454794228076935,
-0.5157257318496704,
0.3289681673049927,
-0.19169732928276062,
0.30509495735168457,
0.7719469666481018,
0.7958452701568604,
0.22960808873176575,
-0.6354780197143555,
-0.4466685652732849,
-0.010276071727275848,
-0.16682815551757812,
0.4545809030532837,
-1.0710972547531128,
0.967736542224884,
-0.4652574360370636,
-0.34733209013938904,
0.2706642150878906,
0.797762393951416,
0.2538500428199768,
0.3524126708507538,
0.6219537258148193,
0.9016807079315186,
0.36450111865997314,
-0.31178343296051025,
0.7276745438575745,
0.2426338493824005,
0.4152539074420929,
0.7364203333854675,
-0.22712187469005585,
0.5403846502304077,
0.8906413316726685,
-0.786162257194519,
0.5381765365600586,
0.7879031896591187,
0.16047371923923492,
0.7758157253265381,
0.5944145917892456,
-0.611952543258667,
-0.1185941994190216,
-0.1464141309261322,
-0.6171560287475586,
0.1979752480983734,
0.052926212549209595,
-0.11974738538265228,
-0.2846010625362396,
-0.13567376136779785,
0.12295057624578476,
0.2836454212665558,
-0.5959328413009644,
0.606866717338562,
0.34341585636138916,
-0.6328282356262207,
0.21025103330612183,
-0.25779569149017334,
0.6709501147270203,
-0.5978154540061951,
0.02733636647462845,
-0.226993590593338,
0.41810402274131775,
-0.4618742763996124,
-1.007582426071167,
0.47138404846191406,
-0.2920241355895996,
-0.40551304817199707,
-0.26942431926727295,
0.8072363138198853,
-0.22133907675743103,
-0.5572860240936279,
0.37486034631729126,
0.13466592133045197,
0.41473662853240967,
0.40145981311798096,
-0.548729419708252,
0.047790080308914185,
0.13760165870189667,
-0.20061805844306946,
0.3601190149784088,
0.2973729372024536,
0.25488772988319397,
0.7100128531455994,
0.5052477717399597,
0.22198708355426788,
0.25694364309310913,
-0.18668605387210846,
0.8387458324432373,
-0.9102796316146851,
-0.8167635202407837,
-0.9497333765029907,
0.3849896192550659,
0.025727711617946625,
-0.880144476890564,
0.7920305728912354,
0.7652608156204224,
0.5113964080810547,
-0.4877890348434448,
0.4755283296108246,
-0.326479434967041,
0.5047136545181274,
-0.13870958983898163,
1.001089096069336,
-0.760762631893158,
-0.29587265849113464,
-0.030554059892892838,
-0.9216439723968506,
-0.2533753216266632,
0.5375741720199585,
0.1540832668542862,
-0.14608067274093628,
0.4385907053947449,
0.44216376543045044,
0.022173406556248665,
0.25223150849342346,
0.32861006259918213,
0.06042787432670593,
0.14508451521396637,
0.5510438680648804,
1.0931141376495361,
-0.43394410610198975,
0.18694786727428436,
-0.4923475384712219,
-0.4536249041557312,
-0.4153490662574768,
-0.9548057913780212,
-0.6640313863754272,
-0.48185449838638306,
-0.2973935008049011,
-0.5915579199790955,
0.11726461350917816,
0.9300885796546936,
0.9018137454986572,
-0.6256728172302246,
-0.41243645548820496,
0.25713539123535156,
0.30293411016464233,
-0.2295418381690979,
-0.146267831325531,
0.2736492455005646,
-0.006407544948160648,
-0.7211178541183472,
0.3930943012237549,
0.807976245880127,
0.3887130320072174,
0.08444006741046906,
-0.07217127084732056,
-0.4407080411911011,
0.026101574301719666,
0.5373561382293701,
0.5729561448097229,
-0.6281182169914246,
-0.4099644422531128,
-0.5328317880630493,
-0.21386730670928955,
0.15529435873031616,
0.48077550530433655,
-0.5166378617286682,
0.32661110162734985,
0.8128959536552429,
0.17017659544944763,
0.7187885642051697,
-0.0022492259740829468,
0.6678642630577087,
-0.8970246315002441,
0.4446259140968323,
0.3953385353088379,
0.5681870579719543,
0.08998038619756699,
-0.7339164614677429,
0.9820241928100586,
0.49674350023269653,
-0.6334057450294495,
-1.0034242868423462,
0.03079957515001297,
-1.193113923072815,
-0.3788175582885742,
0.9890843629837036,
-0.09595765173435211,
-0.9597458839416504,
-0.36448943614959717,
-0.3677716851234436,
0.07989637553691864,
-0.33809733390808105,
0.35498204827308655,
0.8268195986747742,
-0.2538071274757385,
-0.2204185128211975,
-0.9505581855773926,
0.4752943515777588,
0.3102525472640991,
-0.5886632204055786,
-0.05114369094371796,
0.329391211271286,
0.45236870646476746,
0.3009701371192932,
0.5239557027816772,
0.10428227484226227,
0.8970529437065125,
0.25200390815734863,
0.30491405725479126,
-0.04526621103286743,
-0.590078592300415,
-0.0160664189606905,
0.2621477246284485,
0.04487839341163635,
-0.6869441270828247
] |
prithivida/parrot_fluency_model | prithivida | "2022-06-24T09:54:04Z" | 143,234 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"text-classification",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-classification | "2022-05-27T02:04:04Z" | ---
license: apache-2.0
---
Parrot
THIS IS AN ANCILLARY MODEL FOR PARROT PARAPHRASER
1. What is Parrot?
Parrot is a paraphrase-based utterance augmentation framework purpose-built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model. Please refer to the GitHub page or The model card prithivida/parrot_paraphraser_on_T5 | [
-0.10157536715269089,
-1.072129249572754,
-0.000429558742325753,
0.48505765199661255,
-0.19428329169750214,
-0.3085114061832428,
0.2563242018222809,
-0.3527683615684509,
0.07239455729722977,
0.7536970973014832,
-0.5993884801864624,
0.27334335446357727,
-0.030462969094514847,
0.27100181579589844,
-0.7163374423980713,
0.7781134843826294,
0.770021915435791,
0.10601595044136047,
-0.3559400737285614,
-0.11427979171276093,
-0.2317049503326416,
-0.7819911241531372,
-0.7531073689460754,
-0.41111618280410767,
0.4132170081138611,
0.46173951029777527,
1.179237723350525,
0.6827033162117004,
0.5637935400009155,
0.3921484351158142,
-0.274017870426178,
-0.446513295173645,
-0.19361574947834015,
0.03263337165117264,
-0.3124070167541504,
-0.7452542781829834,
-0.5843151211738586,
-0.07953692227602005,
0.4525577425956726,
0.7398314476013184,
-0.27569612860679626,
0.1135500818490982,
0.12526154518127441,
0.4179190695285797,
-0.6885547637939453,
0.17498564720153809,
-0.5990000367164612,
0.2716026306152344,
-0.3671678900718689,
-0.4320161044597626,
-0.18674826622009277,
-0.24416939914226532,
0.28486526012420654,
-0.8408394455909729,
0.08162934333086014,
-0.14309823513031006,
0.5710461735725403,
0.2218414545059204,
-0.4061993360519409,
-0.4540495276451111,
-0.4977278709411621,
0.8406490683555603,
-1.122384786605835,
-0.005138262175023556,
0.35315564274787903,
0.5904744267463684,
-0.004733165260404348,
-1.2139326333999634,
-0.8775722980499268,
0.007719704881310463,
-0.1437448412179947,
0.06067885458469391,
0.05028073117136955,
0.3594215512275696,
0.10035480558872223,
0.7282257080078125,
-0.2825135886669159,
-0.5848032832145691,
-0.47704657912254333,
0.03167640417814255,
0.4409095346927643,
0.11668787896633148,
0.6459132432937622,
-0.241641104221344,
-0.480771541595459,
0.039244186133146286,
-0.37463587522506714,
0.1106901466846466,
0.13645006716251373,
0.3158531188964844,
-0.01870005950331688,
0.568053126335144,
-0.09238950908184052,
1.075047492980957,
0.042804185301065445,
0.026225347071886063,
0.2127387970685959,
-0.12884090840816498,
-0.45640867948532104,
0.08247098326683044,
0.5500516891479492,
0.10797854512929916,
0.23693567514419556,
-0.2981272041797638,
0.023928824812173843,
-0.12908101081848145,
0.5790985822677612,
-0.5707367062568665,
-0.4331819415092468,
0.12618327140808105,
-0.8272871375083923,
-0.853187620639801,
0.013474511913955212,
-0.5944727659225464,
-0.1286444067955017,
-0.07269289344549179,
0.36053648591041565,
-0.631572425365448,
-0.3847755491733551,
-0.05107706040143967,
-0.7122976779937744,
0.5366249084472656,
0.1469353288412094,
-0.7759684920310974,
0.3241848349571228,
0.7517184019088745,
0.8704284429550171,
0.397239089012146,
-0.8560832738876343,
-0.44717609882354736,
0.22965721786022186,
-0.4318286180496216,
0.6431509852409363,
-1.1218700408935547,
-0.7425071001052856,
-0.034359537065029144,
0.31636855006217957,
-0.35837522149086,
-0.18340767920017242,
0.8517463803291321,
-0.37690794467926025,
0.5696591734886169,
-0.4860197603702545,
-0.9868183732032776,
-0.8305987119674683,
0.20968210697174072,
-0.6691266298294067,
0.6772451400756836,
0.18593761324882507,
-0.9406920671463013,
0.0925833135843277,
-1.0408284664154053,
-0.47863465547561646,
0.5070751905441284,
-0.029175959527492523,
-0.022467875853180885,
0.14261247217655182,
0.2530868947505951,
0.25849446654319763,
-0.3960884213447571,
0.10693851113319397,
-0.5478938817977905,
-0.6123034954071045,
0.4330369830131531,
-0.4853683114051819,
1.103797197341919,
0.4677049517631531,
0.008557582274079323,
0.24580208957195282,
-0.9576608538627625,
-0.05104004964232445,
-0.15752245485782623,
-0.4402320981025696,
-0.21674878895282745,
0.20502334833145142,
0.48180559277534485,
0.37189722061157227,
0.25434404611587524,
-0.5891373753547668,
0.01381048746407032,
-0.37227699160575867,
1.1684777736663818,
0.14122223854064941,
0.38740667700767517,
0.3028450310230255,
-0.9983544945716858,
0.7448827028274536,
-0.17767994105815887,
0.3396155536174774,
-0.21944744884967804,
-0.517970085144043,
-0.5015577673912048,
-0.2554895281791687,
0.16758550703525543,
0.5730290412902832,
-0.6620935201644897,
0.34985825419425964,
-0.06541159749031067,
-0.3962309956550598,
-0.4282173216342926,
0.13490624725818634,
0.32035011053085327,
0.8277806639671326,
0.4459143280982971,
0.04771217703819275,
-0.5215990543365479,
-0.8929274678230286,
-0.2231534719467163,
-0.4137883186340332,
-0.0204560998827219,
-0.09935708343982697,
0.212932288646698,
0.08587665110826492,
0.889544665813446,
0.4356692135334015,
-0.35189199447631836,
-0.4885556995868683,
-0.08307719975709915,
0.0587204247713089,
0.6527794003486633,
1.0242091417312622,
-1.0153430700302124,
-0.2410382628440857,
-0.11607155203819275,
-1.1464717388153076,
0.1169816255569458,
-0.40053465962409973,
-0.021924657747149467,
-0.5846261978149414,
0.7072743773460388,
-0.4933774769306183,
0.30823925137519836,
0.25356972217559814,
-0.18812590837478638,
0.48266541957855225,
-0.15396231412887573,
0.09933868050575256,
-1.0710805654525757,
0.1818815916776657,
-0.5305403470993042,
-0.1928960382938385,
-0.6538768410682678,
0.6636555194854736,
0.09254668653011322,
-0.25969958305358887,
-0.6770071983337402,
0.3891323506832123,
-0.2773158550262451,
-0.05531841889023781,
-0.6166530847549438,
-0.10038072615861893,
0.31030401587486267,
0.3666957914829254,
0.23698973655700684,
1.1718497276306152,
1.0402973890304565,
-0.7303254008293152,
0.45701920986175537,
0.8536180257797241,
-0.07949066907167435,
0.6518591046333313,
-0.8951566815376282,
0.05278988555073738,
0.23593966662883759,
0.19841262698173523,
-0.7181229591369629,
-0.4233216941356659,
-0.008008875884115696,
-0.27765151858329773,
-0.20537689328193665,
-0.03301743417978287,
-0.1930766999721527,
-0.5765541195869446,
-0.25267884135246277,
0.499541699886322,
0.2784786820411682,
-0.7971765995025635,
0.5758943557739258,
0.04571616277098656,
-0.37490853667259216,
-0.2894582748413086,
-1.1549491882324219,
0.5145456194877625,
-0.4584846496582031,
-0.4750991761684418,
0.10248586535453796,
0.05753307417035103,
-0.07271019369363785,
0.10802064836025238,
0.37018856406211853,
-0.2518705427646637,
0.18724322319030762,
0.1214350163936615,
-0.141786590218544,
-0.5245625972747803,
0.22562293708324432,
-0.07718423008918762,
0.2959895133972168,
0.11849601566791534,
-0.23150083422660828,
0.3423691689968109,
-0.3883838951587677,
-0.12935279309749603,
-0.7595516443252563,
0.5870218873023987,
0.816429078578949,
-0.2929130494594574,
0.5510845184326172,
0.13103824853897095,
-0.045942071825265884,
0.1401941478252411,
-0.3977614939212799,
0.0329020693898201,
-0.5494368076324463,
0.2274325042963028,
-0.8356377482414246,
-0.1579531878232956,
0.5990490913391113,
0.19443868100643158,
-0.0944446250796318,
0.3449538052082062,
0.2219121903181076,
-0.023500286042690277,
0.6188278198242188,
0.5236926674842834,
-0.2254466861486435,
0.6593890190124512,
-0.09524418413639069,
-0.4130857288837433,
-0.9292405843734741,
0.03152860701084137,
-0.23118489980697632,
-0.22936972975730896,
-0.13674579560756683,
-0.35095497965812683,
-0.08046194911003113,
0.6365640163421631,
-0.29108330607414246,
0.314688116312027,
-0.4337279796600342,
0.40795838832855225,
0.9443628787994385,
0.10586123913526535,
0.14682894945144653,
-0.13451442122459412,
-0.016661861911416054,
0.38175836205482483,
-0.9750574827194214,
-0.7109074592590332,
1.1431924104690552,
0.12065349519252777,
0.5345832705497742,
0.16481982171535492,
0.40051931142807007,
0.4076894223690033,
-0.2855837643146515,
-0.535801112651825,
0.6128197312355042,
-0.0349087193608284,
-0.755446195602417,
-0.37421661615371704,
0.14221921563148499,
-0.618553102016449,
0.33000612258911133,
-0.18591508269309998,
-0.6519952416419983,
0.5849340558052063,
0.14910420775413513,
-0.21514862775802612,
0.34790343046188354,
-0.26374953985214233,
0.8853888511657715,
-0.08602717518806458,
-0.11465910077095032,
-0.1673729419708252,
-0.5027233362197876,
0.39700376987457275,
0.05268839746713638,
0.07160808891057968,
0.22969500720500946,
0.10957153886556625,
0.7981512546539307,
-1.2321536540985107,
0.6400734186172485,
-0.15471673011779785,
0.3162281811237335,
0.6010390520095825,
0.04887904226779938,
0.40028855204582214,
-0.0735316053032875,
-0.8118605613708496,
0.08833286166191101,
0.38334333896636963,
-0.9453567266464233,
-0.5901436805725098,
0.41688355803489685,
-0.6230114698410034,
-0.4654582440853119,
-0.1762157380580902,
-0.5939984917640686,
-0.1591537445783615,
0.04103473573923111,
0.48680606484413147,
0.545867919921875,
-0.329111784696579,
0.7984380125999451,
-0.24804021418094635,
-0.23237177729606628,
0.7007805109024048,
0.1406085193157196,
-0.1141970232129097,
-0.36416327953338623,
0.8410595655441284,
-0.436797559261322,
0.26822349429130554,
0.5416520237922668,
0.46402794122695923,
-0.3679005205631256,
-0.5109349489212036,
-0.32301658391952515,
-0.06878547370433807,
-0.8313605189323425,
0.08769702166318893,
-0.6338679194450378,
-0.5078673362731934,
-0.4918016195297241,
-0.41746410727500916,
0.09724608808755875,
-0.8057064414024353,
-0.26126939058303833,
-0.17043623328208923,
0.6417319774627686,
0.7835206985473633,
-0.08991781622171402,
0.8536710739135742,
-0.6194520592689514,
0.25906574726104736,
0.6569749712944031,
-0.329115629196167,
0.18250977993011475,
-0.45159342885017395,
0.20787203311920166,
0.30871230363845825,
-0.47688814997673035,
-0.9693194627761841,
0.4799983501434326,
1.0638465881347656,
0.7224622964859009,
0.6475984454154968,
0.09975187480449677,
0.9745559692382812,
-0.3113957643508911,
1.267374038696289,
0.18005530536174774,
-1.1929786205291748,
0.7090854048728943,
-0.4549749493598938,
0.24440781772136688,
0.5838189125061035,
-0.1878020018339157,
-0.4133085608482361,
-0.7746341228485107,
-0.5648041367530823,
-0.7186474204063416,
0.6291735172271729,
0.4325515031814575,
0.25211775302886963,
-0.20543235540390015,
0.5224565863609314,
0.10191606730222702,
0.4944929778575897,
-0.8166449666023254,
-0.10613426566123962,
-0.9365227818489075,
-0.12944257259368896,
-0.22301635146141052,
-0.43428874015808105,
0.02541622892022133,
-0.2484472095966339,
0.658239483833313,
-0.09422081708908081,
0.13099190592765808,
0.2333710491657257,
-0.3973722755908966,
-0.10296536237001419,
0.28293606638908386,
0.41543570160865784,
0.425048291683197,
-0.27716735005378723,
-0.1970151960849762,
0.11325079947710037,
-0.3832550346851349,
-0.010204029269516468,
-0.13597673177719116,
-0.27751514315605164,
0.01508960872888565,
0.996846079826355,
0.982844889163971,
0.4023059010505676,
-0.3926670551300049,
0.6283228993415833,
-0.020759036764502525,
-0.5083814263343811,
-0.2550840377807617,
0.23421981930732727,
0.01443815790116787,
0.4284173846244812,
0.6067153215408325,
0.09221965819597244,
0.6608118414878845,
-0.7480201125144958,
0.40440019965171814,
0.28065553307533264,
-0.43120503425598145,
-0.15963298082351685,
1.2147809267044067,
0.4738313555717468,
-0.5662784576416016,
0.5210921764373779,
0.20122744143009186,
-0.5051385164260864,
0.6230503916740417,
0.6540805101394653,
0.8633848428726196,
-0.1024099662899971,
0.2853553891181946,
0.02845863811671734,
-0.09629222005605698,
-0.058581963181495667,
0.45969581604003906,
-0.5757809281349182,
-0.3648234009742737,
-0.06403899937868118,
-0.9321327805519104,
-0.5898516178131104,
0.20939329266548157,
-1.250400424003601,
0.2741128206253052,
-0.42572978138923645,
0.05557691305875778,
0.19261033833026886,
-0.2669526934623718,
-0.4332490563392639,
0.5732449293136597,
-0.10100523382425308,
1.1358256340026855,
-0.5010493993759155,
1.2113536596298218,
0.8926148414611816,
-0.7141441106796265,
-0.8925849199295044,
0.24992495775222778,
-0.07219664007425308,
-0.7550538182258606,
0.7183197140693665,
0.006709326524287462,
0.09238450974225998,
0.11358986794948578,
-0.10233668237924576,
-0.6332929134368896,
0.8758593797683716,
0.25546640157699585,
-0.5498474836349487,
-0.5476180911064148,
0.2097679078578949,
0.5381340980529785,
-0.5474799871444702,
0.5981000661849976,
0.20546768605709076,
0.1731613576412201,
0.2202727496623993,
-0.8858098983764648,
0.0032088253647089005,
-0.607580304145813,
0.4010546803474426,
-0.6918184161186218,
-0.5738729238510132,
1.103417992591858,
0.23436219990253448,
0.22810493409633636,
0.6572551727294922,
0.5990734696388245,
0.03117522969841957,
-0.11665835976600647,
0.41733652353286743,
0.10652514547109604,
0.6584494113922119,
0.3846019208431244,
1.268602967262268,
-0.727891206741333,
0.26613086462020874,
1.4751827716827393,
-0.05117608234286308,
1.1188478469848633,
0.5260361433029175,
-0.20021608471870422,
0.6765052676200867,
0.6853213906288147,
0.05738478899002075,
0.6537478566169739,
-0.1650731861591339,
-0.06804577261209488,
-0.43579384684562683,
0.4455026388168335,
-0.8379313349723816,
0.6727819442749023,
0.43410032987594604,
-0.34620437026023865,
-0.3785741925239563,
0.541151762008667,
-0.8041558265686035,
0.17391005158424377,
-0.23212870955467224,
1.0004814863204956,
0.011688414961099625,
-0.3353387713432312,
0.7835068702697754,
-0.2837221622467041,
0.4860599935054779,
-0.48041442036628723,
-0.002867182018235326,
-0.15538406372070312,
0.26863014698028564,
-0.08650453388690948,
-0.3924733102321625,
0.5662158727645874,
-0.346746027469635,
-0.03534861281514168,
0.09874765574932098,
0.43652063608169556,
-0.45043322443962097,
-0.9541149735450745,
0.3612407147884369,
0.12389054894447327,
0.22262006998062134,
-0.3270130455493927,
-1.311511516571045,
-0.2591599225997925,
-0.23846125602722168,
-0.3126333951950073,
-0.21967145800590515,
0.5658305883407593,
0.020574690774083138,
0.8701869249343872,
0.47464480996131897,
0.15389448404312134,
0.34062764048576355,
0.04789753630757332,
0.5509448647499084,
-0.7727869749069214,
-1.1374969482421875,
-0.8276439905166626,
0.19089429080486298,
-0.2835426330566406,
-0.2714789807796478,
1.1102181673049927,
0.709129273891449,
0.2926538288593292,
-0.4754965603351593,
1.2023762464523315,
-0.06906645745038986,
0.6208030581474304,
-0.27706509828567505,
0.7765185832977295,
-0.7661159038543701,
0.29798004031181335,
-0.3301233649253845,
-0.8983793258666992,
0.032988544553518295,
1.0215253829956055,
-0.07578970491886139,
-0.32388925552368164,
0.5004928112030029,
0.6624247431755066,
-0.2557273209095001,
0.6288781762123108,
0.6336519718170166,
0.09379851073026657,
0.11948144435882568,
0.24547024071216583,
1.024040699005127,
-0.8157640099525452,
0.5559660792350769,
-0.2740470767021179,
0.19338160753250122,
-0.31747666001319885,
-0.6756816506385803,
-1.0648647546768188,
-0.5132566094398499,
-0.5199444890022278,
-0.21629126369953156,
0.47635015845298767,
0.598175585269928,
0.9779085516929626,
-1.0864862203598022,
-0.3584755063056946,
-0.9916917681694031,
-0.1494060903787613,
-0.5896711349487305,
-0.2967144548892975,
0.006298060063272715,
-0.8087214231491089,
-0.7002153396606445,
0.6541032791137695,
0.0759689211845398,
0.012498823925852776,
-0.07242972403764725,
-0.18718689680099487,
-0.43601617217063904,
0.588335394859314,
0.22159627079963684,
0.5650801062583923,
-1.037419080734253,
-0.348336786031723,
-0.38760921359062195,
0.1289726048707962,
-0.005082638934254646,
0.6195926070213318,
-0.6901781558990479,
0.4939071536064148,
0.26059308648109436,
0.4470458924770355,
0.39189884066581726,
0.29295477271080017,
1.154295563697815,
-0.8452021479606628,
0.6924355030059814,
0.10194786638021469,
0.39160335063934326,
0.3442516624927521,
-0.3054026663303375,
0.351163387298584,
0.10162542015314102,
-0.5846481323242188,
-0.8343668580055237,
0.036383286118507385,
-0.980226993560791,
-0.7035248875617981,
1.001678705215454,
-0.31154391169548035,
-0.5383445620536804,
-0.24167034029960632,
-0.3671042025089264,
0.0925941988825798,
-0.012559673748910427,
0.3739369809627533,
0.6005037426948547,
0.08831273019313812,
-0.22290194034576416,
-0.25617578625679016,
0.6534777283668518,
0.25514936447143555,
-0.5292050838470459,
-0.051408376544713974,
0.08118563890457153,
0.45316264033317566,
0.05132002383470535,
0.553301990032196,
-0.03461550176143646,
0.7079163193702698,
0.5751962661743164,
0.05908403918147087,
-0.3644700050354004,
-0.014631836675107479,
-0.24415256083011627,
0.4980836510658264,
0.06512284278869629,
-0.7646821737289429
] |
bigscience/bloomz-560m | bigscience | "2023-05-27T17:27:11Z" | 142,706 | 85 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bloom",
"text-generation",
"ak",
"ar",
"as",
"bm",
"bn",
"ca",
"code",
"en",
"es",
"eu",
"fon",
"fr",
"gu",
"hi",
"id",
"ig",
"ki",
"kn",
"lg",
"ln",
"ml",
"mr",
"ne",
"nso",
"ny",
"or",
"pa",
"pt",
"rn",
"rw",
"sn",
"st",
"sw",
"ta",
"te",
"tn",
"ts",
"tum",
"tw",
"ur",
"vi",
"wo",
"xh",
"yo",
"zh",
"zu",
"dataset:bigscience/xP3",
"arxiv:2211.01786",
"license:bigscience-bloom-rail-1.0",
"model-index",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2022-10-08T16:14:42Z" | ---
datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
example_title: "zh-en sentiment"
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
example_title: "zh-zh sentiment"
- text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
example_title: "vi-en query"
- text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
example_title: "fr-fr query"
- text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
example_title: "te-en qa"
- text: "Why is the sky blue?"
example_title: "en-en qa"
- text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
example_title: "es-en fable"
- text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
example_title: "hi-en fable"
model-index:
- name: bloomz-560m
results:
- task:
type: Coreference resolution
dataset:
type: winogrande
name: Winogrande XL (xl)
config: xl
split: validation
revision: a80f460359d1e9a67c006011c94de42a8759430c
metrics:
- type: Accuracy
value: 52.41
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (en)
config: en
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 51.01
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (fr)
config: fr
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 51.81
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (jp)
config: jp
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 52.03
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (pt)
config: pt
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.99
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (ru)
config: ru
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.97
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (zh)
config: zh
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 54.76
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r1)
config: r1
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 33.4
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r2)
config: r2
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 33.4
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r3)
config: r3
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 33.5
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (cb)
config: cb
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 53.57
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (rte)
config: rte
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 67.15
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ar)
config: ar
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 44.46
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (bg)
config: bg
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 39.76
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (de)
config: de
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 39.36
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (el)
config: el
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 40.96
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (en)
config: en
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 46.43
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (es)
config: es
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 44.98
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (fr)
config: fr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 45.54
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (hi)
config: hi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 41.81
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ru)
config: ru
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 39.64
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (sw)
config: sw
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 38.35
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (th)
config: th
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 35.5
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (tr)
config: tr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 37.31
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ur)
config: ur
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 38.96
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (vi)
config: vi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 44.74
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (zh)
config: zh
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 44.66
- task:
type: Program synthesis
dataset:
type: openai_humaneval
name: HumanEval
config: None
split: test
revision: e8dc562f5de170c54b5481011dd9f4fa04845771
metrics:
- type: Pass@1
value: 2.18
- type: Pass@10
value: 4.11
- type: Pass@100
value: 9.00
- task:
type: Sentence completion
dataset:
type: story_cloze
name: StoryCloze (2016)
config: "2016"
split: validation
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
metrics:
- type: Accuracy
value: 60.29
- task:
type: Sentence completion
dataset:
type: super_glue
name: SuperGLUE (copa)
config: copa
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 52.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (et)
config: et
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 53.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ht)
config: ht
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 49.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (id)
config: id
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 57.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (it)
config: it
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 52.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (qu)
config: qu
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 55.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (sw)
config: sw
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 56.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ta)
config: ta
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 58.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (th)
config: th
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 58.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (tr)
config: tr
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 61.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (vi)
config: vi
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 61.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (zh)
config: zh
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 61.0
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ar)
config: ar
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 54.4
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (es)
config: es
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 56.45
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (eu)
config: eu
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 50.56
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (hi)
config: hi
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 55.79
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (id)
config: id
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 57.84
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (my)
config: my
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 47.05
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ru)
config: ru
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 53.14
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (sw)
config: sw
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 51.36
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (te)
config: te
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 54.86
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (zh)
config: zh
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 56.52
---
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
7. [Citation](#citation)
# Model Summary
> We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.
- **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
- **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
- **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co)
- **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
- **BLOOMZ & mT0 Model Family:**
<div class="max-w-full overflow-auto">
<table>
<tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
</tr>
<tr>
<td>Parameters</td>
<td>300M</td>
<td>580M</td>
<td>1.2B</td>
<td>3.7B</td>
<td>13B</td>
<td>560M</td>
<td>1.1B</td>
<td>1.7B</td>
<td>3B</td>
<td>7.1B</td>
<td>176B</td>
</tr>
<tr>
<td>Finetuned Model</td>
<td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
</tr>
</tr>
<tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
</tr>
<th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
</tr>
<tr>
<td>Finetuned Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
<td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
</tr>
<th colspan="12">Original pretrained checkpoints. Not recommended.</th>
<tr>
<td>Pretrained Model</td>
<td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>
<td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
<td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
<td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
<td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
<td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
<td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
</tr>
</table>
</div>
# Use
## Intended use
We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
- 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
- Suggest at least five related search terms to "Mạng neural nhân tạo".
- Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
- Explain in a sentence in Telugu what is backpropagation in neural networks.
**Feel free to share your generations in the Community tab!**
## How to use
### CPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-560m"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-560m"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU in 8bit
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz-560m"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
<!-- Necessary for whitespace -->
###
# Limitations
**Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
# Training
## Model
- **Architecture:** Same as [bloom-560m](https://huggingface.co/bigscience/bloom-560m), also refer to the `config.json` file
- **Finetuning steps:** 1750
- **Finetuning tokens:** 3.67 billion
- **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 1x data parallel
- **Precision:** float16
## Hardware
- **CPUs:** AMD CPUs with 512GB memory per node
- **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
- **Communication:** NCCL-communications network with a fully dedicated subnet
## Software
- **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
- **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# Evaluation
We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.
# Citation
```bibtex
@article{muennighoff2022crosslingual,
title={Crosslingual generalization through multitask finetuning},
author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others},
journal={arXiv preprint arXiv:2211.01786},
year={2022}
}
``` | [
-0.4317687153816223,
-0.5817657709121704,
0.3069528639316559,
0.3973209261894226,
-0.07826165109872818,
-0.08492738008499146,
-0.3412165343761444,
-0.3398350477218628,
0.42535632848739624,
-0.16442003846168518,
-0.92802494764328,
-0.5399629473686218,
-0.5484136939048767,
0.15571512281894684,
0.015856558457016945,
0.8059013485908508,
-0.13838697969913483,
0.16540344059467316,
0.030136454850435257,
-0.04983643442392349,
-0.2897888422012329,
-0.41226327419281006,
-0.755129337310791,
-0.6097520589828491,
0.5236929655075073,
0.16843627393245697,
0.500481128692627,
0.5317341685295105,
0.30451807379722595,
0.3899326026439667,
-0.32909631729125977,
0.07464762777090073,
-0.21672745048999786,
-0.13996760547161102,
0.029835373163223267,
-0.39193442463874817,
-0.7446170449256897,
-0.06954871863126755,
0.5926822423934937,
0.6056668162345886,
0.19807784259319305,
0.2970985174179077,
0.31960728764533997,
0.5316866636276245,
-0.46225276589393616,
0.37554875016212463,
-0.04086349159479141,
0.40124407410621643,
-0.17515623569488525,
0.041344042867422104,
-0.15479494631290436,
-0.324802964925766,
-0.041451528668403625,
-0.8029873967170715,
0.2023136019706726,
0.1328892558813095,
1.3603003025054932,
0.022274037823081017,
0.04058685526251793,
0.06738603115081787,
-0.33471494913101196,
1.0320615768432617,
-0.8969437479972839,
0.4119040369987488,
0.41954243183135986,
-0.04768083617091179,
0.01440554577857256,
-0.6221271753311157,
-0.8011820316314697,
-0.07254239171743393,
-0.3448656499385834,
0.4188515543937683,
-0.25197210907936096,
-0.16199176013469696,
0.2645254135131836,
0.5139856934547424,
-0.7121977806091309,
0.07156375050544739,
-0.337893545627594,
-0.23761944472789764,
0.5710216164588928,
0.20901881158351898,
0.5767333507537842,
-0.3169577419757843,
-0.2667134404182434,
-0.4386589229106903,
-0.4654275178909302,
0.1504947394132614,
0.16989919543266296,
0.5419909358024597,
-0.6608639359474182,
0.4115901291370392,
-0.09337189048528671,
0.6144620180130005,
0.3034311830997467,
0.005363591015338898,
0.7774832248687744,
-0.48799964785575867,
-0.3891499638557434,
-0.2613385021686554,
1.2157751321792603,
0.21510355174541473,
0.05494612455368042,
-0.09646862000226974,
0.1072840690612793,
-0.20026768743991852,
-0.014045007526874542,
-0.9728410243988037,
-0.06087806448340416,
0.3026324510574341,
-0.5824439525604248,
-0.34551939368247986,
-0.11270400881767273,
-1.0030628442764282,
0.11926466226577759,
-0.22822219133377075,
0.700437068939209,
-0.5855777859687805,
-0.3797270655632019,
0.2178511768579483,
0.015667585656046867,
0.2110534906387329,
0.15350468456745148,
-0.9583032727241516,
0.1756778061389923,
0.32089129090309143,
0.921875,
-0.14759494364261627,
-0.584499180316925,
0.024200256913900375,
0.06974673271179199,
-0.14938639104366302,
0.5250905752182007,
-0.16600508987903595,
-0.3993443548679352,
-0.32716792821884155,
0.3236066997051239,
-0.45200181007385254,
-0.09223799407482147,
0.5844663977622986,
-0.11490721255540848,
0.6279971599578857,
-0.5759801268577576,
-0.34951287508010864,
-0.20677649974822998,
0.298735648393631,
-0.5394541025161743,
1.085108757019043,
0.2097577303647995,
-0.9274610280990601,
0.1712946593761444,
-0.9793803095817566,
-0.23789413273334503,
-0.20011873543262482,
-0.013720211572945118,
-0.6965557336807251,
-0.36900076270103455,
0.4530155062675476,
0.5211053490638733,
-0.23523373901844025,
-0.2593749165534973,
-0.29710420966148376,
-0.021287737414240837,
-0.019735120236873627,
-0.1601286679506302,
1.0725444555282593,
0.2641701102256775,
-0.6372452974319458,
0.24847479164600372,
-0.6699371337890625,
0.13795284926891327,
0.5621001720428467,
-0.2245711386203766,
0.11400356888771057,
-0.4363349974155426,
-0.027432776987552643,
0.48337629437446594,
0.32163316011428833,
-0.5258104205131531,
0.184683158993721,
-0.5460131764411926,
0.6601173877716064,
0.6369993090629578,
-0.057325176894664764,
0.4345249533653259,
-0.5328295230865479,
0.4993205666542053,
0.17337211966514587,
0.15498636662960052,
-0.26488104462623596,
-0.44356968998908997,
-0.8644128441810608,
-0.20777663588523865,
0.26413947343826294,
0.4902460277080536,
-0.551725447177887,
0.5739064812660217,
-0.3068394958972931,
-0.6515404582023621,
-0.37073883414268494,
0.007803705055266619,
0.6002249121665955,
0.712870717048645,
0.676286518573761,
-0.051499951630830765,
-0.590761125087738,
-0.7994282841682434,
-0.0027899653650820255,
-0.09917355328798294,
0.13483312726020813,
0.5433661341667175,
0.7767555117607117,
-0.13571596145629883,
0.5310069918632507,
-0.6278630495071411,
-0.05092794820666313,
-0.3968938887119293,
0.04354218766093254,
0.27903738617897034,
0.8125354647636414,
0.5735612511634827,
-0.7811354994773865,
-0.45115867257118225,
0.009264880791306496,
-0.9355989694595337,
0.23200780153274536,
0.020856233313679695,
-0.4115307033061981,
0.11542036384344101,
0.34488022327423096,
-0.772815465927124,
0.47419989109039307,
0.3116903305053711,
-0.5132261514663696,
0.6165791749954224,
-0.2369968295097351,
0.2452019453048706,
-1.3445472717285156,
0.4287508428096771,
0.1623835563659668,
0.07280008494853973,
-0.6564110517501831,
0.18901999294757843,
0.06778628379106522,
0.05900062993168831,
-0.5993337035179138,
0.9040119051933289,
-0.4957599341869354,
0.17612431943416595,
0.0341983437538147,
-0.10850193351507187,
0.24152979254722595,
0.7528505325317383,
0.18320506811141968,
0.7199950814247131,
0.7007074952125549,
-0.6871856451034546,
0.30598101019859314,
0.5803117156028748,
-0.1251874417066574,
0.3709624707698822,
-0.8735244870185852,
-0.060107626020908356,
0.008939049206674099,
0.1478516012430191,
-0.8705479502677917,
-0.22850891947746277,
0.41904976963996887,
-0.7490438222885132,
0.6359841823577881,
0.06230558827519417,
-0.5365753769874573,
-0.8315315246582031,
-0.329434871673584,
0.31426167488098145,
0.5524853467941284,
-0.5147309899330139,
0.3876551687717438,
-0.012292854487895966,
0.08321483433246613,
-0.5770165920257568,
-0.9675056338310242,
-0.1578759104013443,
-0.39148005843162537,
-0.8810723423957825,
0.626139760017395,
-0.2086612433195114,
0.17786239087581635,
-0.2412910908460617,
0.06470804661512375,
-0.09181404858827591,
-0.051675550639629364,
0.3357042372226715,
0.4358002841472626,
-0.3864389955997467,
0.07559312880039215,
-0.1559019386768341,
0.0582624152302742,
-0.005812020506709814,
-0.25151804089546204,
0.734948992729187,
-0.252492755651474,
-0.09637138992547989,
-0.7763664126396179,
0.15414555370807648,
0.5411592721939087,
-0.16416774690151215,
0.9207864999771118,
0.9333939552307129,
-0.4509446918964386,
0.10126958787441254,
-0.40009087324142456,
-0.38830751180648804,
-0.5413802862167358,
0.15252433717250824,
-0.32424211502075195,
-0.6471869349479675,
0.7296169996261597,
0.2658028304576874,
-0.04181966930627823,
0.7678901553153992,
0.6400792002677917,
0.15318350493907928,
0.9687207937240601,
0.5792372822761536,
-0.08385531604290009,
0.4995326101779938,
-0.6810044050216675,
0.14367954432964325,
-0.9804018139839172,
-0.48139500617980957,
-0.4005846381187439,
-0.3118811547756195,
-0.25003260374069214,
-0.33729538321495056,
0.2467135190963745,
0.06580564379692078,
-0.6483798027038574,
0.5176988244056702,
-0.6970288157463074,
-0.02554989978671074,
0.6275891661643982,
0.3658158481121063,
-0.10278169810771942,
0.004329646471887827,
-0.4963265061378479,
-0.169831782579422,
-0.7630696892738342,
-0.2294798642396927,
0.9839107990264893,
0.2785121202468872,
0.4241279661655426,
-0.1017448753118515,
0.6777368187904358,
-0.2292964905500412,
-0.049109864979982376,
-0.5257247686386108,
0.43484923243522644,
0.045504890382289886,
-0.7044441103935242,
-0.3267667591571808,
-0.3947598338127136,
-1.1675598621368408,
0.2887333929538727,
-0.47899293899536133,
-0.9685412645339966,
0.18713778257369995,
0.3180408775806427,
-0.754814863204956,
0.49033111333847046,
-0.7144262194633484,
1.0971158742904663,
-0.21366256475448608,
-0.7773795127868652,
0.1672719120979309,
-0.6550753712654114,
0.18274423480033875,
0.3809797167778015,
0.27303531765937805,
0.10013182461261749,
0.21229900419712067,
0.8423166871070862,
-0.6158370971679688,
0.8609583377838135,
-0.14515884220600128,
0.09387897700071335,
0.28853684663772583,
-0.2246702015399933,
0.33136487007141113,
-0.16137611865997314,
-0.06523231416940689,
0.06739366054534912,
-0.06813809275627136,
-0.47688448429107666,
-0.3532206416130066,
0.8197685480117798,
-0.9128515124320984,
-0.4765201210975647,
-0.5596497058868408,
-0.5386158227920532,
-0.1289851814508438,
0.487146258354187,
0.6372438073158264,
0.236206516623497,
0.06968437880277634,
-0.056216996163129807,
0.6592413783073425,
-0.3414927124977112,
0.7157753705978394,
0.14832715690135956,
-0.1944284588098526,
-0.24257512390613556,
0.9528664350509644,
0.07937978953123093,
0.10683047771453857,
0.3945794701576233,
0.3954877555370331,
-0.37018799781799316,
-0.3977460265159607,
-0.5336830019950867,
0.5027147531509399,
-0.33113572001457214,
-0.30904626846313477,
-0.8811662197113037,
-0.36028578877449036,
-0.7996396422386169,
-0.1733851581811905,
-0.435261607170105,
-0.45160454511642456,
-0.5817486643791199,
-0.17719785869121552,
0.4811069965362549,
0.4559926390647888,
-0.2567251920700073,
0.34139344096183777,
-0.5192008018493652,
0.3620833158493042,
0.2430674433708191,
0.30894216895103455,
0.21066389977931976,
-0.5523183941841125,
-0.21830542385578156,
0.23812679946422577,
-0.5888727307319641,
-0.6806564927101135,
0.6954682469367981,
0.021170349791646004,
0.5313111543655396,
0.23561418056488037,
-0.35875025391578674,
0.828753650188446,
-0.4658918082714081,
0.8276786804199219,
0.43218475580215454,
-0.8586386442184448,
0.6384027600288391,
-0.3926149904727936,
0.5026270747184753,
0.3696480393409729,
0.540814220905304,
-0.41785913705825806,
-0.16583777964115143,
-0.783562421798706,
-0.9239334464073181,
0.7812374830245972,
0.3291573226451874,
0.029733318835496902,
0.08451703190803528,
0.391547828912735,
-0.07078129798173904,
0.09815063327550888,
-0.9802587032318115,
-0.6238192319869995,
-0.49925246834754944,
-0.2731938362121582,
-0.06008147820830345,
0.09952201694250107,
-0.03251273185014725,
-0.6043873429298401,
0.7154075503349304,
0.025240430608391762,
0.5800080895423889,
0.30013641715049744,
0.01425172109156847,
-0.038859859108924866,
0.11298581212759018,
0.6028169393539429,
0.4244905114173889,
-0.06812050193548203,
-0.2217661589384079,
0.20984898507595062,
-0.6840056777000427,
0.013065163046121597,
0.07874161750078201,
-0.29736119508743286,
-0.13399738073349,
0.22785350680351257,
0.8865290880203247,
0.21692392230033875,
-0.15932036936283112,
0.44059130549430847,
-0.04103368520736694,
-0.37757477164268494,
-0.28399673104286194,
0.14962732791900635,
0.3425976037979126,
0.2159169614315033,
0.23921094834804535,
0.06882502883672714,
0.011346555314958096,
-0.39791443943977356,
0.027888517826795578,
0.41382962465286255,
-0.2645237147808075,
-0.5064885020256042,
0.9071111083030701,
-0.05245806649327278,
-0.04019783064723015,
0.3096437156200409,
-0.31808528304100037,
-0.7825315594673157,
0.6807142496109009,
0.6458374857902527,
0.623439371585846,
-0.28578314185142517,
0.06719055771827698,
1.0298548936843872,
0.08476043492555618,
-0.22461585700511932,
0.33678963780403137,
0.025742698460817337,
-0.5366686582565308,
-0.2811940610408783,
-0.8173010349273682,
0.01068951841443777,
0.3547646403312683,
-0.6410749554634094,
0.3776398003101349,
-0.5030230283737183,
-0.23896078765392303,
0.24938422441482544,
0.27791866660118103,
-0.7857269048690796,
0.5740082263946533,
0.25706934928894043,
0.8433053493499756,
-0.7524839639663696,
0.7753543853759766,
0.6462859511375427,
-0.84308260679245,
-1.0290192365646362,
-0.10551648586988449,
0.021127089858055115,
-0.9648293852806091,
0.865150511264801,
0.14422763884067535,
0.149770587682724,
0.16897360980510712,
-0.6219450235366821,
-1.1541638374328613,
1.3466145992279053,
0.07867199927568436,
-0.2571676969528198,
-0.2988657057285309,
0.05118676275014877,
0.5618181824684143,
-0.20647026598453522,
0.41904887557029724,
0.3422342538833618,
0.65948885679245,
0.27366331219673157,
-0.9408044815063477,
0.36941924691200256,
-0.6173588037490845,
-0.04730121046304703,
-0.03808419406414032,
-1.1470979452133179,
1.2448512315750122,
-0.17491015791893005,
-0.12171144038438797,
0.04655660316348076,
0.8212788701057434,
0.37637996673583984,
0.20162251591682434,
0.20867933332920074,
0.8164768815040588,
0.5000838041305542,
-0.3194485306739807,
1.0171279907226562,
-0.39324328303337097,
0.5675821900367737,
0.7884342670440674,
0.23147280514240265,
0.5846711993217468,
0.3475705087184906,
-0.5190560817718506,
0.5508908629417419,
0.6551194190979004,
-0.2882212698459625,
0.27624350786209106,
0.22664642333984375,
-0.07602207362651825,
-0.0925852507352829,
0.1423652023077011,
-0.652927815914154,
0.09281142055988312,
0.4088301658630371,
-0.3084059953689575,
-0.03540977090597153,
0.09525138884782791,
0.37551629543304443,
-0.03519856929779053,
-0.4819703996181488,
0.37760743498802185,
0.12799733877182007,
-0.6963012218475342,
0.7019425630569458,
-0.051794495433568954,
1.0231318473815918,
-0.5410981774330139,
0.2604520320892334,
-0.15318544209003448,
0.1751505732536316,
-0.39884239435195923,
-0.7498594522476196,
0.19015400111675262,
-0.06426934152841568,
-0.12186487764120102,
-0.19486136734485626,
0.4883907735347748,
-0.32141685485839844,
-0.6232454776763916,
0.3033042550086975,
0.3598024249076843,
0.11967017501592636,
0.06409061700105667,
-1.0991535186767578,
0.03994224593043327,
-0.033041708171367645,
-0.4670611619949341,
0.20121800899505615,
0.18503323197364807,
0.2135302573442459,
0.729607880115509,
0.5966724753379822,
0.11849760264158249,
0.37017449736595154,
-0.07725159078836441,
0.8529722690582275,
-0.7138000130653381,
-0.48627057671546936,
-0.8452569842338562,
0.5720799565315247,
-0.13768631219863892,
-0.35214605927467346,
1.0773931741714478,
0.5778590440750122,
0.8129504323005676,
-0.07404153794050217,
0.8193838596343994,
-0.24072080850601196,
0.6087234020233154,
-0.4038509428501129,
0.9493404626846313,
-0.8061075806617737,
-0.2542578876018524,
-0.3708401322364807,
-0.509941041469574,
-0.3230019807815552,
0.8100109100341797,
-0.27759987115859985,
0.5642598867416382,
0.787661075592041,
0.6703063249588013,
-0.13122855126857758,
-0.05755800008773804,
-0.05540551617741585,
0.3981819152832031,
0.17741629481315613,
0.8723551034927368,
0.3364475965499878,
-0.7620136737823486,
0.3886922001838684,
-0.6878707408905029,
-0.029904237017035484,
-0.2527020573616028,
-0.6523029208183289,
-0.9246092438697815,
-0.7099863886833191,
-0.4935908615589142,
-0.5618259906768799,
-0.10285590589046478,
0.8876842260360718,
0.7570590376853943,
-0.9085932970046997,
-0.20607741177082062,
-0.18060997128486633,
0.0013403005432337523,
-0.14709395170211792,
-0.24130581319332123,
0.7484415173530579,
-0.29557591676712036,
-0.9731807708740234,
0.07890613377094269,
0.012299529276788235,
0.5367874503135681,
-0.0701848566532135,
-0.2032807469367981,
-0.4151368737220764,
-0.05012330785393715,
0.32395139336586,
0.6591038107872009,
-0.4739440679550171,
-0.09506972879171371,
0.17272602021694183,
-0.2132621705532074,
0.35791149735450745,
0.33202022314071655,
-0.5380064249038696,
0.10822193324565887,
0.4802079200744629,
0.2990659773349762,
0.7026209831237793,
-0.1952751874923706,
0.34367379546165466,
-0.49592602252960205,
0.24170412123203278,
0.17106640338897705,
0.4678301215171814,
0.35928085446357727,
-0.45740807056427,
0.38024938106536865,
0.27058926224708557,
-0.582999587059021,
-0.7832068800926208,
-0.11703173071146011,
-1.1446486711502075,
-0.22169432044029236,
1.1583244800567627,
-0.28166288137435913,
-0.6852182149887085,
0.35210731625556946,
-0.14364086091518402,
0.5853333473205566,
-0.3512863516807556,
0.6439681649208069,
0.7768632769584656,
-0.3038197159767151,
-0.12180589139461517,
-0.6039931178092957,
0.5640560984611511,
0.6043055653572083,
-0.882239580154419,
-0.16570459306240082,
0.14855797588825226,
0.4447673559188843,
0.41512027382850647,
0.4169323742389679,
-0.2638830840587616,
0.2101147174835205,
-0.008744941093027592,
0.21018390357494354,
-0.18577605485916138,
0.044378627091646194,
-0.3892368972301483,
-0.035477377474308014,
-0.31428223848342896,
-0.2732730209827423
] |
vinai/xphonebert-base | vinai | "2023-08-29T04:01:53Z" | 141,418 | 4 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | fill-mask | "2023-04-13T15:46:03Z" | # <a name="introduction"></a> XPhoneBERT : A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech
XPhoneBERT is the first pre-trained multilingual model for phoneme representations for text-to-speech(TTS). XPhoneBERT has the same model architecture as BERT-base, trained using the RoBERTa pre-training approach on 330M phoneme-level sentences from nearly 100 languages and locales. Experimental results show that employing XPhoneBERT as an input phoneme encoder significantly boosts the performance of a strong neural TTS model in terms of naturalness and prosody and also helps produce fairly high-quality speech with limited training data.
The general architecture and experimental results of XPhoneBERT can be found in [our INTERSPEECH 2023 paper](https://www.doi.org/10.21437/Interspeech.2023-444):
@inproceedings{xphonebert,
title = {{XPhoneBERT: A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech}},
author = {Linh The Nguyen and Thinh Pham and Dat Quoc Nguyen},
booktitle = {Proceedings of the 24th Annual Conference of the International Speech Communication Association (INTERSPEECH)},
year = {2023},
pages = {5506--5510}
}
**Please CITE** our paper when XPhoneBERT is used to help produce published results or is incorporated into other software.
For further information or requests, please go to [XPhoneBERT's homepage](https://github.com/VinAIResearch/XPhoneBERT)!
## <a name="transformers"></a> Using XPhoneBERT with `transformers`
### Installation <a name="install2"></a>
- Install `transformers` with pip: `pip install transformers`, or install `transformers` [from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
- Install `text2phonemesequence`: `pip install text2phonemesequence` <br> Our [`text2phonemesequence`](https://github.com/thelinhbkhn2014/Text2PhonemeSequence) package is to convert text sequences into phoneme-level sequences, employed to construct our multilingual phoneme-level pre-training data. We build `text2phonemesequence` by incorporating the [CharsiuG2P](https://github.com/lingjzhu/CharsiuG2P/tree/main) and the [segments](https://pypi.org/project/segments/) toolkits that perform text-to-phoneme conversion and phoneme segmentation, respectively.
- **Notes**
- Initializing `text2phonemesequence` for each language requires its corresponding ISO 639-3 code. The ISO 639-3 codes of supported languages are available at [HERE](https://github.com/VinAIResearch/XPhoneBERT/blob/main/LanguageISO639-3Codes.md).
- `text2phonemesequence` takes a word-segmented sequence as input. And users might also perform text normalization on the word-segmented sequence before feeding into `text2phonemesequence`. When creating our pre-training data, we perform word and sentence segmentation on all text documents in each language by using the [spaCy](https://spacy.io) toolkit, except for Vietnamese where we employ the [VnCoreNLP](https://github.com/vncorenlp/VnCoreNLP) toolkit. We also use the text normalization component from the [NVIDIA NeMo toolkit](https://github.com/NVIDIA/NeMo) for English, German, Spanish and Chinese, and the [Vinorm](https://github.com/v-nhandt21/Vinorm) text normalization package for Vietnamese.
### <a name="models2"></a> Pre-trained model
Model | #params | Arch. | Max length | Pre-training data
---|---|---|---|---
`vinai/xphonebert-base` | 88M | base | 512 | 330M phoneme-level sentences from nearly 100 languages and locales
### Example usage <a name="usage2"></a>
```python
from transformers import AutoModel, AutoTokenizer
from text2phonemesequence import Text2PhonemeSequence
# Load XPhoneBERT model and its tokenizer
xphonebert = AutoModel.from_pretrained("vinai/xphonebert-base")
tokenizer = AutoTokenizer.from_pretrained("vinai/xphonebert-base")
# Load Text2PhonemeSequence
# text2phone_model = Text2PhonemeSequence(language='eng-us', is_cuda=True)
text2phone_model = Text2PhonemeSequence(language='jpn', is_cuda=True)
# Input sequence that is already WORD-SEGMENTED (and text-normalized if applicable)
# sentence = "That is , it is a testing text ."
sentence = "これ は 、 テスト テキスト です ."
input_phonemes = text2phone_model.infer_sentence(sentence)
input_ids = tokenizer(input_phonemes, return_tensors="pt")
with torch.no_grad():
features = xphonebert(**input_ids)
```
| [
-0.23421695828437805,
-0.4841374158859253,
0.18441537022590637,
0.35493916273117065,
-0.4921001195907593,
-0.08446516841650009,
-0.36495134234428406,
-0.3789324164390564,
0.12481763958930969,
0.2672611474990845,
-0.4014981687068939,
-0.7522082328796387,
-0.5816989541053772,
0.13251057267189026,
-0.4140360355377197,
0.7994204759597778,
0.003268272615969181,
0.09495172649621964,
0.1797395944595337,
-0.2856927812099457,
-0.2513912618160248,
-0.7290917038917542,
-0.6991667151451111,
-0.2137276530265808,
0.29644739627838135,
0.49330708384513855,
0.45311927795410156,
0.47742047905921936,
0.11989810317754745,
0.3069418668746948,
-0.11472158879041672,
0.20798258483409882,
-0.2031187266111374,
0.06411591917276382,
0.20707976818084717,
-0.7080215215682983,
-0.23783135414123535,
0.10737009346485138,
0.717909574508667,
0.4749339520931244,
0.0012221888173371553,
-0.04074973240494728,
-0.0017467422876507044,
0.29583123326301575,
-0.3806137442588806,
0.15975631773471832,
-0.5203010439872742,
0.09464813768863678,
-0.2760968506336212,
-0.14528782665729523,
-0.4345054626464844,
-0.38289308547973633,
0.35905760526657104,
-0.5647905468940735,
-0.08539034426212311,
-0.10321737080812454,
1.2447301149368286,
0.05549204722046852,
-0.44042468070983887,
-0.43498465418815613,
-0.5239545106887817,
0.8440333604812622,
-0.7200974225997925,
0.41263747215270996,
0.386874258518219,
-0.09712689369916916,
0.20066708326339722,
-0.905465304851532,
-0.6840597987174988,
-0.19202667474746704,
-0.15176483988761902,
0.3233778774738312,
-0.27022361755371094,
0.07541034370660782,
0.3102794587612152,
0.3225526213645935,
-0.8517440557479858,
0.09964802116155624,
-0.45916450023651123,
-0.31955885887145996,
0.5267598032951355,
-0.11759249866008759,
0.36468634009361267,
-0.4268319606781006,
-0.3766810894012451,
-0.41635972261428833,
-0.389710396528244,
0.2811853289604187,
0.3988719880580902,
0.23261292278766632,
-0.3819083273410797,
0.45671769976615906,
0.10502821952104568,
0.6706845164299011,
-0.007422157097607851,
-0.22659417986869812,
0.8432402610778809,
-0.3939259946346283,
-0.12194038182497025,
0.29814818501472473,
1.0624208450317383,
0.12650340795516968,
0.44033753871917725,
0.06332796066999435,
-0.1461668610572815,
0.057638462632894516,
-0.23973378539085388,
-0.942695140838623,
-0.22760172188282013,
0.4205363094806671,
-0.3862168490886688,
-0.11656267940998077,
0.04090661555528641,
-0.42719072103500366,
0.00959867425262928,
-0.2873746454715729,
0.6348267793655396,
-0.8529794812202454,
-0.3072306215763092,
0.21217411756515503,
-0.09281967580318451,
0.2860218286514282,
-0.050358496606349945,
-0.6596123576164246,
0.22206223011016846,
0.22078560292720795,
0.9872088432312012,
-0.04614955559372902,
-0.46773403882980347,
-0.4615013599395752,
-0.18280203640460968,
-0.19638089835643768,
0.48814088106155396,
-0.1920272409915924,
-0.5476571321487427,
0.03175283595919609,
0.14696301519870758,
-0.43662023544311523,
-0.6281731724739075,
0.8926918506622314,
-0.21535278856754303,
0.7235599160194397,
0.15038222074508667,
-0.5489286184310913,
-0.06666743755340576,
-0.00783232320100069,
-0.3406727910041809,
1.3759888410568237,
0.15471000969409943,
-0.9343430995941162,
0.20676302909851074,
-0.6567318439483643,
-0.6690372228622437,
-0.20336495339870453,
-0.15227040648460388,
-0.46912020444869995,
-0.013353186659514904,
0.19570769369602203,
0.3543856739997864,
-0.13531869649887085,
0.06694652885198593,
0.1259021908044815,
-0.45092251896858215,
0.22527818381786346,
-0.3001684546470642,
1.2961395978927612,
0.19097641110420227,
-0.5508260726928711,
0.19334986805915833,
-0.9791128039360046,
0.28607678413391113,
0.14128482341766357,
-0.3664562702178955,
-0.3714950382709503,
-0.2100738137960434,
0.22076407074928284,
0.48055300116539,
0.17891038954257965,
-0.6929929256439209,
-0.011504736728966236,
-0.6871315836906433,
0.706464946269989,
0.40007245540618896,
-0.3338361084461212,
0.5600693821907043,
-0.04386981576681137,
0.2627902328968048,
0.40421390533447266,
-0.0030685921665281057,
-0.6225003600120544,
-0.3697021007537842,
-1.0689927339553833,
-0.18672262132167816,
0.45860975980758667,
0.9236506819725037,
-0.7613926529884338,
0.7169872522354126,
-0.35301077365875244,
-0.5846300721168518,
-0.5315388441085815,
-0.15920095145702362,
0.301504522562027,
0.4240442216396332,
0.47752949595451355,
-0.3820085823535919,
-0.6430328488349915,
-0.8154616355895996,
-0.12484968453645706,
-0.4034940302371979,
0.02362849935889244,
0.19845432043075562,
0.33922725915908813,
-0.34349507093429565,
0.9840556383132935,
-0.35321691632270813,
-0.34902554750442505,
-0.39375218749046326,
0.292708158493042,
0.27154484391212463,
0.6578195691108704,
0.5707255601882935,
-0.6636324524879456,
-0.35993921756744385,
-0.09331955760717392,
-0.49041473865509033,
-0.15500305593013763,
-0.20418208837509155,
-0.0021919459104537964,
0.341837614774704,
0.6524180769920349,
-0.6413812041282654,
0.24180932343006134,
0.5667834877967834,
-0.28498703241348267,
0.5445599555969238,
-0.26725468039512634,
-0.0794283002614975,
-1.415946364402771,
0.07930509746074677,
0.12234603613615036,
-0.29630711674690247,
-0.6636316776275635,
-0.4736553728580475,
0.26075848937034607,
-0.34789034724235535,
-0.3959447145462036,
0.503974437713623,
-0.5748963356018066,
0.07693186402320862,
-0.10817645490169525,
0.302291601896286,
0.08914707601070404,
0.5806018114089966,
0.18467336893081665,
0.8293291926383972,
0.7009873986244202,
-0.7111808061599731,
0.16062456369400024,
0.43599075078964233,
-0.41932156682014465,
0.30710265040397644,
-0.8796579241752625,
0.12909062206745148,
0.018254725262522697,
0.22672568261623383,
-1.022315263748169,
-0.03291206434369087,
0.3354414701461792,
-0.7709479928016663,
0.26439183950424194,
-0.15306682884693146,
-0.7600775957107544,
-0.31640490889549255,
-0.13961251080036163,
0.3954900801181793,
0.6561939120292664,
-0.49709534645080566,
0.4120748043060303,
0.39277055859565735,
-0.31316691637039185,
-0.39578261971473694,
-0.890989363193512,
0.18719927966594696,
-0.20237627625465393,
-0.8730552196502686,
0.5339392423629761,
0.14821012318134308,
0.16004596650600433,
-0.30454885959625244,
0.0355805940926075,
-0.3173500597476959,
-0.12868927419185638,
0.1807754784822464,
0.18768756091594696,
-0.06787444651126862,
0.3047575354576111,
0.18161650002002716,
-0.24183063209056854,
0.08546141535043716,
-0.6161836981773376,
0.8519235849380493,
0.006824331358075142,
-0.026003055274486542,
-0.6463959813117981,
0.345530241727829,
0.47074055671691895,
-0.5823716521263123,
0.4702270030975342,
0.9254449605941772,
-0.20364150404930115,
-0.019528990611433983,
-0.35242781043052673,
-0.20469312369823456,
-0.4658605754375458,
0.6866787075996399,
-0.4105913043022156,
-0.9311185479164124,
0.2231568694114685,
-0.015223626047372818,
0.1396569311618805,
0.26846256852149963,
0.44223278760910034,
0.038205020129680634,
1.0976788997650146,
0.5872929692268372,
-0.12573421001434326,
0.6237043142318726,
-0.43136221170425415,
0.3159222900867462,
-0.6115072965621948,
-0.23484665155410767,
-0.5518555641174316,
-0.03852905333042145,
-0.6771249771118164,
-0.46944376826286316,
0.2676883637905121,
0.023774251341819763,
-0.10906331986188889,
0.7459226250648499,
-0.41685330867767334,
-0.008774315007030964,
0.6445521712303162,
-0.1489696055650711,
0.07978478074073792,
0.33811381459236145,
-0.390846848487854,
-0.06565437465906143,
-0.7466970682144165,
-0.6149721145629883,
0.8266666531562805,
0.49733832478523254,
0.5472123026847839,
-0.16563032567501068,
0.9324254393577576,
-0.18565335869789124,
-0.2502816319465637,
-0.8824585676193237,
0.5245989561080933,
-0.1664409637451172,
-0.3799177408218384,
-0.18781714141368866,
-0.5076192021369934,
-1.1063807010650635,
0.32660192251205444,
0.009548762813210487,
-0.9075413346290588,
0.41089949011802673,
0.05655522644519806,
-0.4601571559906006,
0.05218765512108803,
-0.9371799826622009,
0.7985665202140808,
-0.2679107189178467,
-0.14530141651630402,
-0.09222167730331421,
-0.8167475461959839,
0.10178200900554657,
0.0791616141796112,
0.08156359940767288,
-0.03577854484319687,
-0.07096265256404877,
0.9225149750709534,
-0.5456988215446472,
0.6949329376220703,
-0.2972811460494995,
-0.27135249972343445,
0.42173686623573303,
-0.34124821424484253,
0.3554244637489319,
0.15160824358463287,
-0.13105423748493195,
0.275944322347641,
0.16976916790008545,
-0.3644123375415802,
-0.28341206908226013,
0.619316816329956,
-1.0431097745895386,
-0.3546229898929596,
-0.47851818799972534,
-0.36575785279273987,
-0.14989794790744781,
0.2791844308376312,
0.8449753522872925,
0.559056282043457,
0.004897523205727339,
-0.040065035223960876,
0.7387961149215698,
-0.5183467864990234,
0.5721683502197266,
0.20547550916671753,
-0.2138555496931076,
-0.5012485980987549,
0.9389388561248779,
0.3456241190433502,
0.21007667481899261,
0.1969044804573059,
-0.011061270721256733,
-0.4432664215564728,
-0.3862578272819519,
-0.5927801728248596,
0.23047971725463867,
-0.5418133735656738,
0.14568431675434113,
-0.9853723049163818,
-0.35319754481315613,
-0.47344544529914856,
0.35534653067588806,
-0.4194328188896179,
-0.6289025545120239,
-0.41986143589019775,
0.10504220426082611,
0.1911686360836029,
0.13958542048931122,
-0.07878285646438599,
0.47043493390083313,
-0.9020505547523499,
0.10968828201293945,
0.0873989537358284,
0.022145245224237442,
-0.29728102684020996,
-0.9044215679168701,
-0.4719471335411072,
0.07494264841079712,
-0.1598130613565445,
-0.7943356037139893,
0.371805340051651,
0.2783523499965668,
0.2529240548610687,
0.3225795328617096,
-0.007746011950075626,
0.5218633413314819,
-0.44298794865608215,
0.7853295803070068,
0.3035988509654999,
-1.1995970010757446,
0.6118109226226807,
-0.10484499484300613,
0.5090219378471375,
0.4862918555736542,
0.37014251947402954,
-0.859686017036438,
-0.07389546185731888,
-0.5816211700439453,
-1.1560437679290771,
0.9693372249603271,
0.5402067303657532,
0.44268956780433655,
-0.027057472616434097,
0.15367090702056885,
-0.07833834737539291,
0.13357560336589813,
-0.8150869011878967,
-0.5166998505592346,
-0.3609381914138794,
-0.25563839077949524,
0.023763520643115044,
-0.2725905776023865,
0.13420462608337402,
-0.37644290924072266,
0.7455861568450928,
0.1040462926030159,
0.5678511261940002,
0.6202273368835449,
-0.4645463228225708,
0.38790544867515564,
0.22895929217338562,
0.714009702205658,
0.4150357246398926,
0.024483153596520424,
0.06784360110759735,
0.227927103638649,
-0.6408185362815857,
0.3547135591506958,
0.591654896736145,
-0.12870469689369202,
0.5638984441757202,
0.26064932346343994,
1.1328754425048828,
-0.04067061468958855,
-0.6034284830093384,
0.6137746572494507,
-0.19088900089263916,
-0.3951757550239563,
-0.5633630156517029,
-0.09813255071640015,
0.049685556441545486,
-0.06974607706069946,
0.41786888241767883,
0.04939337447285652,
-0.06320568174123764,
-0.37598422169685364,
0.17412595450878143,
-0.02904827520251274,
-0.5944890379905701,
-0.36567503213882446,
0.48261353373527527,
0.35194477438926697,
-0.13885989785194397,
0.6167873740196228,
-0.37072762846946716,
-0.7142720222473145,
0.5284284949302673,
0.4823240637779236,
0.806938648223877,
-0.30473875999450684,
0.2398766130208969,
0.6265086531639099,
0.29041609168052673,
0.009665053337812424,
0.4300882816314697,
-0.03287049010396004,
-0.7487020492553711,
-0.45244914293289185,
-0.39320462942123413,
0.011166817508637905,
0.10325105488300323,
-0.45768824219703674,
0.42814740538597107,
-0.31753218173980713,
-0.2778477668762207,
-0.1615772843360901,
-0.10271455347537994,
-0.4957934021949768,
0.41702327132225037,
0.3012668788433075,
1.039823293685913,
-0.6034825444221497,
1.0830434560775757,
0.7888363599777222,
-0.36967557668685913,
-0.9918379187583923,
0.16580457985401154,
-0.23948295414447784,
-0.7426270246505737,
0.7611184120178223,
0.46815821528434753,
-0.07114008069038391,
0.26044246554374695,
-0.25494253635406494,
-0.828158974647522,
0.8927032351493835,
0.31524452567100525,
-0.6263906955718994,
-0.13239525258541107,
0.3868633806705475,
0.3384513556957245,
-0.21900241076946259,
0.48248291015625,
0.6233634948730469,
0.44019779562950134,
-0.17274458706378937,
-0.9201704859733582,
-0.10631009936332703,
-0.47042956948280334,
0.003327202284708619,
0.21611183881759644,
-0.7134037017822266,
0.9335601329803467,
-0.2185223251581192,
-0.4775131940841675,
0.2972556948661804,
0.677992045879364,
0.1672341376543045,
0.10139985382556915,
0.666653573513031,
0.669904887676239,
0.8473765254020691,
-0.28219330310821533,
0.7893670201301575,
-0.5310958623886108,
0.3055499196052551,
1.157449722290039,
-0.11584091931581497,
0.6639005541801453,
0.3775278627872467,
-0.07102467864751816,
0.5812321901321411,
0.8404626250267029,
-0.015487554483115673,
0.35674262046813965,
0.25943633913993835,
-0.3159971535205841,
-0.03353850170969963,
-0.01768573746085167,
-0.46076637506484985,
0.6993131637573242,
0.22671420872211456,
-0.5605252385139465,
-0.09151328355073929,
0.18622244894504547,
0.40932804346084595,
-0.2316066324710846,
0.04989787936210632,
0.46544983983039856,
0.16316160559654236,
-0.6309583187103271,
0.9034586548805237,
0.21261972188949585,
0.9546392560005188,
-0.6499964594841003,
0.2520689368247986,
-0.1498919576406479,
0.21772508323192596,
-0.33828386664390564,
-0.5247963666915894,
0.06748519837856293,
-0.05046745762228966,
-0.02721208706498146,
-0.03779304027557373,
0.5434026718139648,
-0.7231391668319702,
-0.3828035593032837,
0.4079415798187256,
0.4692259728908539,
0.3071690499782562,
-0.17022331058979034,
-0.8951570987701416,
0.08285775780677795,
0.181108757853508,
-0.25879916548728943,
0.0578506737947464,
0.46914446353912354,
-0.011590082198381424,
0.38954561948776245,
0.4771431088447571,
-0.05804762244224548,
0.1564474254846573,
0.23247578740119934,
0.8065787553787231,
-0.5893959999084473,
-0.6305001378059387,
-0.8399678468704224,
0.6524215936660767,
-0.321071058511734,
-0.6333032846450806,
0.8025183081626892,
0.8953701257705688,
1.02908194065094,
-0.011087439954280853,
1.0320372581481934,
-0.15704163908958435,
0.49953514337539673,
-0.3521527349948883,
0.6850776672363281,
-0.5113663673400879,
0.12116216868162155,
-0.29250431060791016,
-0.9522683024406433,
-0.1663072407245636,
0.8078416585922241,
-0.2884994447231293,
0.07802283018827438,
0.7708208560943604,
0.9380730986595154,
-0.03730804845690727,
-0.05811341106891632,
0.3106287121772766,
0.2176257222890854,
0.1758851408958435,
0.5736608505249023,
0.7227607369422913,
-0.7486212849617004,
0.9444580078125,
-0.3409947454929352,
-0.26858779788017273,
-0.051828403025865555,
-0.3959619402885437,
-0.9095315933227539,
-0.7210859656333923,
-0.4067729413509369,
-0.4233745038509369,
0.06000471115112305,
1.1016085147857666,
0.8525285720825195,
-0.6600571274757385,
-0.5316910743713379,
-0.17605452239513397,
-0.1957058608531952,
0.035658400505781174,
-0.2472897469997406,
0.4751175343990326,
-0.5897645354270935,
-1.0919750928878784,
0.2987375855445862,
0.2890567481517792,
0.2590562403202057,
-0.015881633386015892,
-0.02711879275739193,
-0.2227405160665512,
-0.023052923381328583,
0.6388734579086304,
0.21031014621257782,
-0.389864981174469,
0.11508440971374512,
0.15019483864307404,
-0.29543542861938477,
0.40425387024879456,
0.7859826683998108,
-0.7544354200363159,
0.3101649582386017,
0.49478933215141296,
0.39436861872673035,
0.5661988258361816,
-0.3131154477596283,
0.5663547515869141,
-0.6908861994743347,
0.5109803080558777,
0.19741110503673553,
0.4541108012199402,
0.3446415066719055,
-0.06755518913269043,
0.3621826171875,
0.22819814085960388,
-0.45212098956108093,
-0.6711344718933105,
0.244609534740448,
-0.9087481498718262,
-0.17924444377422333,
1.189489722251892,
-0.39709120988845825,
-0.06776189059019089,
-0.17204883694648743,
-0.7368491888046265,
0.48822858929634094,
-0.43409398198127747,
0.3911508023738861,
0.5484625697135925,
0.05555766448378563,
-0.2388921082019806,
-0.31709519028663635,
0.5115574598312378,
0.8709535598754883,
-0.8160367012023926,
-0.11877333372831345,
0.10869500041007996,
0.12425301969051361,
0.30640390515327454,
0.5159450173377991,
-0.2734093964099884,
0.17791886627674103,
-0.14379961788654327,
0.20182150602340698,
0.15307794511318207,
0.018291186541318893,
-0.3164846897125244,
-0.07297823578119278,
-0.07029188424348831,
-0.4499143958091736
] |
BubbleSheep/Hgn_trans_en2zh | BubbleSheep | "2022-08-22T10:14:19Z" | 141,197 | 3 | transformers | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"en",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-07-28T14:03:50Z" | ---
language:
- en
- zh
thumbnail: "url to a thumbnail used in social sharing"
tags:
- translation
license: apache-2.0
datasets:
- THUOCL清华大学开放中文词库
metrics:
- bleu
---
# Model Details
- **Model Description:**
This model has been pre-trained for English-Chinese Translation, and use datasets of THUOCL to fine tune the model.
- **source group**: English
- **target group**: Chinese
- **Parent Model:** Helsinki-NLP/opus-mt-en-zh, see https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
- **Model Type:** Translation
#### Training Data
- 清华大学中文开放词库(THUOCL)
- **Data link**: http://thuocl.thunlp.org/
## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("BubbleSheep/Hgn_trans_en2zh")
model = AutoModelForSeq2SeqLM.from_pretrained("BubbleSheep/Hgn_trans_en2zh")
```
| [
0.0862291157245636,
-0.407024085521698,
0.13401859998703003,
0.37257492542266846,
-0.5390911102294922,
-0.18872800469398499,
-0.30251890420913696,
-0.22343619167804718,
0.01566503942012787,
0.46259450912475586,
-0.7512307167053223,
-0.5286494493484497,
-0.6709928512573242,
0.2506900727748871,
-0.18750576674938202,
1.0198733806610107,
-0.191299706697464,
0.5835177302360535,
0.4972279667854309,
0.013377736322581768,
-0.3141116201877594,
-0.48532044887542725,
-0.828864336013794,
-0.4285406172275543,
0.15927061438560486,
0.3432024419307709,
0.5744271278381348,
0.8023274540901184,
0.3076813817024231,
0.3250557780265808,
0.02540355920791626,
0.007083232048898935,
-0.613275945186615,
-0.3255273401737213,
0.019499871879816055,
-0.5584085583686829,
-0.6278085708618164,
0.012334393337368965,
0.7387478351593018,
0.59525066614151,
-0.20522308349609375,
0.4886222183704376,
0.04429556429386139,
0.42577308416366577,
-0.12671366333961487,
0.2873213589191437,
-0.5922273397445679,
0.3959917724132538,
-0.186287060379982,
0.03862186148762703,
-0.41368553042411804,
-0.20496512949466705,
0.09620710462331772,
-0.8285806179046631,
0.2588728070259094,
0.22619688510894775,
1.336316466331482,
0.18430480360984802,
-0.5844722390174866,
0.15059971809387207,
-0.6710833311080933,
0.9803138971328735,
-0.9021881222724915,
0.39301368594169617,
0.6589629650115967,
0.21800114214420319,
0.02545245923101902,
-1.0748202800750732,
-0.46382009983062744,
-0.003044804325327277,
-0.3864738345146179,
0.1241714134812355,
0.006395023316144943,
-0.13132594525814056,
0.15703949332237244,
0.7075440287590027,
-0.7366335391998291,
0.05364520475268364,
-0.7262234091758728,
-0.4016696512699127,
0.7397686243057251,
0.29340457916259766,
0.3633887767791748,
-0.20818129181861877,
-0.5600337982177734,
-0.028963567689061165,
-0.4912002682685852,
-0.01170327514410019,
0.07909155637025833,
0.36271825432777405,
-0.4621402323246002,
0.7163275480270386,
-0.12209267169237137,
0.7222194075584412,
0.22534792125225067,
-0.008483203127980232,
0.5154416561126709,
-0.5782884955406189,
-0.28630387783050537,
-0.030694635584950447,
1.0550566911697388,
0.23295854032039642,
0.24874253571033478,
0.10064969211816788,
-0.39114320278167725,
-0.4621853530406952,
-0.049118395894765854,
-0.8913928866386414,
-0.3461306691169739,
0.15141873061656952,
-0.7333664298057556,
-0.35101160407066345,
0.05152318999171257,
-0.3478584885597229,
0.3273243010044098,
-0.34276071190834045,
0.7017683386802673,
-0.39427095651626587,
-0.5235647559165955,
0.2973281145095825,
0.011026108637452126,
0.25640982389450073,
-0.014536434784531593,
-0.7773204445838928,
0.03912486508488655,
0.31648728251457214,
0.7782174944877625,
-0.2851811349391937,
-0.509505033493042,
-0.3892996609210968,
0.29289108514785767,
-0.20781652629375458,
0.47140559554100037,
-0.04925661161541939,
-0.5019184350967407,
0.10919159650802612,
0.46885597705841064,
-0.4443895220756531,
-0.2617838680744171,
0.8812743425369263,
-0.3827384412288666,
1.0130646228790283,
-0.03995821624994278,
-0.7229711413383484,
-0.32896122336387634,
0.3190973103046417,
-0.717614471912384,
1.1173509359359741,
0.5492649674415588,
-0.7403615713119507,
0.11689277738332748,
-0.902350127696991,
-0.46278542280197144,
0.25492042303085327,
0.2873809337615967,
-0.4737682044506073,
0.03884007781744003,
0.20229390263557434,
0.3172294795513153,
-0.2172214388847351,
0.23653294146060944,
0.03275243192911148,
-0.15339620411396027,
-0.16238586604595184,
-0.37803104519844055,
1.2770414352416992,
0.3495028018951416,
-0.2308812141418457,
0.3418300449848175,
-0.7116925120353699,
0.012930640950798988,
0.47470638155937195,
-0.2798824608325958,
-0.22727853059768677,
-0.28971657156944275,
0.5021989941596985,
0.5336169600486755,
0.6010984182357788,
-0.3923667073249817,
0.39461174607276917,
-0.5021375417709351,
0.6538927555084229,
0.5741839408874512,
-0.16894803941249847,
0.30797064304351807,
-0.27779656648635864,
0.501244068145752,
0.2048373818397522,
0.3789973258972168,
0.007635982241481543,
-0.4979591965675354,
-0.8481123447418213,
-0.08171088993549347,
0.464225709438324,
0.7323784828186035,
-1.0171383619308472,
0.8407672047615051,
-0.2538495659828186,
-0.6984815001487732,
-0.6403524875640869,
0.0553324855864048,
0.3654855489730835,
0.6588528156280518,
0.6470598578453064,
-0.09000692516565323,
-0.4013110101222992,
-0.8184047341346741,
-0.10100580006837845,
-0.3124597370624542,
-0.20063237845897675,
-0.1402239203453064,
0.6319411993026733,
-0.43717044591903687,
0.46139779686927795,
-0.456050843000412,
-0.6802040338516235,
-0.3854362368583679,
0.05162728950381279,
0.41687455773353577,
0.7796003818511963,
0.6590781211853027,
-0.8773037195205688,
-0.7532928586006165,
-0.1630704551935196,
-0.4352002441883087,
-0.11807730048894882,
0.1498262882232666,
-0.47552111744880676,
0.2239372432231903,
0.3397301733493805,
-0.5669850707054138,
0.4364883303642273,
0.6730372905731201,
-0.6073483228683472,
0.7018194794654846,
-0.24673090875148773,
0.07626822590827942,
-1.7028529644012451,
0.12702028453350067,
-0.21311013400554657,
-0.23499828577041626,
-0.6706168055534363,
-0.12462784349918365,
0.1871519684791565,
0.11165468394756317,
-0.8370427489280701,
0.6351518034934998,
-0.319470077753067,
0.24289348721504211,
-0.16808448731899261,
-0.2091856449842453,
0.22225919365882874,
0.6276647448539734,
0.41045185923576355,
0.6272436380386353,
0.5742000341415405,
-0.7863439917564392,
0.5372838377952576,
0.6234493851661682,
-0.26913872361183167,
0.19723886251449585,
-1.004487156867981,
-0.15139394998550415,
0.396422415971756,
0.06177017465233803,
-0.8738701343536377,
-0.23874837160110474,
0.5373493432998657,
-0.5091718435287476,
0.458952397108078,
-0.08004184812307358,
-0.8237568140029907,
-0.5697828531265259,
-0.10657760500907898,
0.7625320553779602,
0.42406007647514343,
-0.5991833209991455,
0.760223925113678,
0.1707783192396164,
0.02858778089284897,
-0.35408303141593933,
-0.9238048195838928,
-0.08693267405033112,
-0.3611520826816559,
-0.5915522575378418,
0.5264432430267334,
-0.19474539160728455,
0.35320162773132324,
0.05672675743699074,
0.29838958382606506,
-0.3458930552005768,
0.03404491767287254,
-0.2677324116230011,
0.5077978372573853,
-0.3885032534599304,
0.07404196262359619,
-0.029610883444547653,
-0.16579152643680573,
-0.06395605206489563,
-0.5803518295288086,
0.6941249370574951,
-0.19834229350090027,
0.0986766368150711,
-0.6632987856864929,
0.0821256935596466,
0.30349254608154297,
-0.4556232988834381,
0.9496186971664429,
0.9595330953598022,
-0.45359358191490173,
-0.031618669629096985,
-0.2650890052318573,
-0.18104417622089386,
-0.4874844551086426,
0.6036494374275208,
-0.38275158405303955,
-0.6494521498680115,
0.5762245655059814,
0.2643517255783081,
0.08383277803659439,
1.0372294187545776,
0.7133828997612,
0.11971167474985123,
1.0819954872131348,
0.6853368282318115,
-0.3159937560558319,
0.4504331052303314,
-0.48756539821624756,
-0.0008476672228425741,
-0.7019951343536377,
0.015057805925607681,
-0.4668855369091034,
0.025544943287968636,
-0.5744247436523438,
-0.1628284603357315,
0.1415288746356964,
-0.03041495382785797,
-0.3761292099952698,
0.8529711961746216,
-0.5035359859466553,
0.15840362012386322,
0.6218600273132324,
-0.21425950527191162,
0.3258639872074127,
0.025970488786697388,
-0.1340779960155487,
-0.12432170659303665,
-0.9163625240325928,
-0.46438491344451904,
0.9726701974868774,
0.4966600835323334,
0.39133939146995544,
0.08030544221401215,
0.32306843996047974,
0.004384822677820921,
0.29204294085502625,
-0.7187609076499939,
0.3202519416809082,
-0.30801498889923096,
-0.9656835794448853,
-0.35998407006263733,
-0.48912593722343445,
-0.996771514415741,
0.2422509789466858,
-0.1305321455001831,
-0.5012236833572388,
-0.0347897969186306,
0.08266126364469528,
-0.23367667198181152,
0.37080857157707214,
-0.4945632815361023,
1.2988739013671875,
-0.569790244102478,
-0.05020352452993393,
0.01262473501265049,
-0.703511655330658,
0.5517135858535767,
-0.22483958303928375,
0.12078461796045303,
-0.017347414046525955,
0.04345220327377319,
0.8485820293426514,
-0.3576825261116028,
0.5388044118881226,
-0.06549520790576935,
-0.30395394563674927,
0.13648752868175507,
-0.0748727023601532,
0.30767878890037537,
-0.11157073825597763,
-0.19697271287441254,
0.5438259840011597,
0.18596938252449036,
-0.4682925045490265,
-0.02944583259522915,
0.39098554849624634,
-0.9363012313842773,
-0.33754265308380127,
-0.39600491523742676,
-0.529070258140564,
0.13554304838180542,
0.6429265737533569,
0.8862307667732239,
0.2249336838722229,
-0.24531452357769012,
0.19408629834651947,
0.34197109937667847,
-0.18959873914718628,
0.39516791701316833,
0.9219058752059937,
-0.38314884901046753,
-0.503888726234436,
0.7842111587524414,
0.1086602583527565,
0.2847527265548706,
0.27772000432014465,
0.31264838576316833,
-0.526123046875,
-0.34872275590896606,
-0.6727941036224365,
0.4995964765548706,
-0.37214651703834534,
-0.051180072128772736,
-0.4986453950405121,
-0.5186778903007507,
-0.6585095524787903,
0.49631786346435547,
-0.5561239719390869,
-0.4883604347705841,
-0.5742653012275696,
-0.19028007984161377,
0.03856132552027702,
0.45492056012153625,
-0.19340775907039642,
0.6004835963249207,
-1.1264747381210327,
0.3946889042854309,
0.058346740901470184,
0.26938316226005554,
-0.3763658106327057,
-1.2506276369094849,
-0.716140866279602,
0.2314600944519043,
-0.2510692775249481,
-0.8180243968963623,
0.8400419354438782,
0.33933931589126587,
0.6039190888404846,
0.5699849724769592,
0.1504887491464615,
0.5244974493980408,
-0.5858149528503418,
1.0726685523986816,
-0.02353007160127163,
-0.7910038828849792,
0.5849438905715942,
-0.309964120388031,
0.27700772881507874,
0.5875316262245178,
0.5086870193481445,
-0.44903725385665894,
-0.21508356928825378,
-0.7485027313232422,
-0.9223426580429077,
0.8464816808700562,
0.4865267276763916,
0.1088014468550682,
0.3530539572238922,
0.21820536255836487,
0.0045224446803331375,
0.27237239480018616,
-1.196626901626587,
-0.5185738205909729,
-0.4059356451034546,
-0.3799079656600952,
-0.21783530712127686,
-0.2300598919391632,
-0.09914692491292953,
-0.5927740335464478,
1.290126919746399,
0.08385999500751495,
0.12779344618320465,
0.13961194455623627,
-0.17433109879493713,
-0.3083057701587677,
-0.14182977378368378,
0.6664509773254395,
0.3280792832374573,
-0.2563200294971466,
-0.21238581836223602,
0.019412295892834663,
-0.5167463421821594,
0.012401272542774677,
0.43004730343818665,
-0.44767481088638306,
0.3204197883605957,
0.4659059941768646,
1.0371288061141968,
-0.2227955013513565,
-0.2485380470752716,
0.5130720734596252,
-0.3259480595588684,
-0.29859378933906555,
-0.7992029190063477,
0.008075373247265816,
-0.07204999029636383,
-0.07324791699647903,
0.4583274722099304,
-0.2631041407585144,
0.033750519156455994,
-0.2060094177722931,
0.128657266497612,
0.0595070980489254,
-0.554703414440155,
-0.4661358892917633,
0.8840208053588867,
0.15892842411994934,
-0.3057461082935333,
0.7723106145858765,
-0.19936229288578033,
-0.8217582106590271,
0.5941043496131897,
0.5658736824989319,
1.0944766998291016,
-0.5939468145370483,
0.01987934671342373,
0.8363220691680908,
0.4597853124141693,
-0.24722731113433838,
0.16362886130809784,
0.09855585545301437,
-0.8441304564476013,
-0.3776833117008209,
-0.5531718134880066,
0.0713554099202156,
0.5135869383811951,
-0.8063300251960754,
0.40986815094947815,
0.15522605180740356,
-0.19783052802085876,
-0.3654382526874542,
0.1172763779759407,
-0.6332813501358032,
0.2949439287185669,
0.08155804872512817,
1.0217458009719849,
-1.083520531654358,
1.2056784629821777,
0.746845006942749,
-0.5073102116584778,
-1.0904223918914795,
0.011059997603297234,
-0.19590064883232117,
-0.8115564584732056,
0.8255050778388977,
0.2986583113670349,
0.3023931384086609,
0.3824325203895569,
-0.68751460313797,
-1.0175731182098389,
1.0522780418395996,
0.033205728977918625,
-0.4472314119338989,
-0.046140965074300766,
0.21571661531925201,
0.5981964468955994,
-0.585250198841095,
0.07361873239278793,
0.5497177839279175,
0.6235278844833374,
-0.08158165961503983,
-1.1551117897033691,
-0.3187626004219055,
-0.6241611242294312,
0.004292625002563,
-0.2616223990917206,
-0.7424484491348267,
1.085131049156189,
-0.004967513028532267,
-0.2221929430961609,
0.2064102590084076,
0.9694814682006836,
0.14185209572315216,
0.09194362163543701,
0.6709790825843811,
0.47170767188072205,
0.4180600643157959,
-0.14963318407535553,
0.7444912195205688,
-0.6610478758811951,
0.4877587556838989,
1.3533254861831665,
-0.024975167587399483,
0.7001923322677612,
0.3740812838077545,
-0.14948929846286774,
0.523472011089325,
0.9723864793777466,
-0.5077164173126221,
0.5608838796615601,
-0.08082843571901321,
-0.013669224455952644,
-0.16886892914772034,
-0.2138644903898239,
-0.7045235633850098,
0.3986629247665405,
0.4871170222759247,
-0.45108529925346375,
0.005980397574603558,
0.01906687207520008,
-0.026421399787068367,
-0.0720018669962883,
-0.4870852530002594,
0.6291029453277588,
0.08735605329275131,
-0.6834227442741394,
0.7249807119369507,
0.2954076826572418,
0.6367034912109375,
-0.7530083656311035,
0.11371880769729614,
-0.14604033529758453,
0.15667662024497986,
-0.009918528608977795,
-0.5764709115028381,
0.19840794801712036,
-0.19628076255321503,
-0.10374508798122406,
-0.10173467546701431,
0.5855007767677307,
-0.9728197455406189,
-0.8905817270278931,
0.3564276397228241,
0.4859895408153534,
0.19498902559280396,
0.07286550104618073,
-1.1836857795715332,
-0.4602120816707611,
0.2522994577884674,
-0.686100423336029,
-0.16509447991847992,
0.4908663034439087,
0.0421324297785759,
0.5575287342071533,
0.5455382466316223,
0.22670385241508484,
0.049437228590250015,
0.09444639086723328,
0.6544495224952698,
-0.5368707776069641,
-0.6676483750343323,
-0.777637779712677,
0.6238100528717041,
-0.0864933505654335,
-0.4458387494087219,
0.8972277045249939,
0.821135401725769,
1.0912519693374634,
-0.4286089837551117,
0.7100847959518433,
0.0883515402674675,
0.5893809199333191,
-0.520283043384552,
0.7843363881111145,
-0.7814057469367981,
-0.163755863904953,
-0.038660284131765366,
-0.9826071262359619,
-0.14905530214309692,
0.7012723088264465,
-0.032741792500019073,
-0.04140293598175049,
0.6130759119987488,
0.752173662185669,
-0.1512177586555481,
-0.17486870288848877,
0.2676146626472473,
0.48347556591033936,
0.28895825147628784,
0.7484853863716125,
0.5949562788009644,
-0.957791805267334,
0.5625841617584229,
-0.5674243569374084,
0.06798826903104782,
-0.2661837935447693,
-0.7920504808425903,
-1.09160578250885,
-0.6818450093269348,
-0.4365372955799103,
-0.5418670773506165,
-0.42862340807914734,
1.104133129119873,
0.5582037568092346,
-1.0969054698944092,
-0.3245967626571655,
0.04481888562440872,
-0.11161831766366959,
-0.16582991182804108,
-0.2081790417432785,
0.7259540557861328,
-0.25047919154167175,
-1.0246891975402832,
0.2852317690849304,
-0.15035398304462433,
0.5019160509109497,
-0.2593892216682434,
-0.28758084774017334,
-0.28276368975639343,
-0.15545004606246948,
0.40515899658203125,
0.21367952227592468,
-0.6692474484443665,
0.08595027774572372,
0.05275225266814232,
-0.48743027448654175,
0.030407628044486046,
0.30895814299583435,
-0.17623169720172882,
0.25396573543548584,
0.4832504093647003,
0.22563880681991577,
0.5191758275032043,
0.025717217475175858,
0.8573840856552124,
-0.574624240398407,
0.4188123643398285,
0.035338904708623886,
0.5521122217178345,
0.39764872193336487,
-0.2902645170688629,
0.7907024621963501,
0.45562222599983215,
-0.40579161047935486,
-0.7775425314903259,
0.0857628583908081,
-0.8381709456443787,
-0.20574964582920074,
1.295566201210022,
-0.28604668378829956,
-0.31922250986099243,
-0.015336990356445312,
-0.43936875462532043,
0.741629958152771,
-0.07317990809679031,
0.5816746354103088,
0.7875925898551941,
0.4169901907444,
0.0006112019764259458,
-0.5416908860206604,
0.6188239455223083,
0.4463937282562256,
-0.5379655361175537,
-0.17615048587322235,
0.2890501320362091,
0.22412046790122986,
0.13374505937099457,
0.5181508660316467,
-0.15851998329162598,
0.17407351732254028,
-0.47032344341278076,
0.31390297412872314,
-0.25964754819869995,
0.003718980588018894,
-0.3114836812019348,
-0.14156951010227203,
-0.08953017741441727,
-0.33514103293418884
] |
cross-encoder/stsb-TinyBERT-L-4 | cross-encoder | "2021-08-05T08:41:47Z" | 141,100 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"text-classification",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-classification | "2022-03-02T23:29:05Z" | ---
license: apache-2.0
---
# Cross-Encoder for Quora Duplicate Questions Detection
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
## Usage and Performance
Pre-trained models can be used like this:
```
from sentence_transformers import CrossEncoder
model = CrossEncoder('model_name')
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
```
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class | [
-0.2337435483932495,
-0.8359883427619934,
0.2704041600227356,
0.23892052471637726,
-0.39293766021728516,
-0.03495657816529274,
0.1684756577014923,
-0.17820724844932556,
0.12467557191848755,
0.7178803086280823,
-0.7079653143882751,
-0.441781222820282,
-0.48284655809402466,
0.4586295485496521,
-0.8812296986579895,
1.0624881982803345,
-0.15582185983657837,
0.4117394685745239,
-0.7210993766784668,
-0.34884294867515564,
-0.3752514719963074,
-0.44514721632003784,
-0.5014163255691528,
-0.25818243622779846,
0.13688044250011444,
0.35915908217430115,
0.3952420651912689,
0.12024358659982681,
0.33845776319503784,
0.4170320928096771,
-0.015857765451073647,
0.10859864950180054,
-0.2458478808403015,
0.07400453835725784,
-0.32146069407463074,
-0.6293549537658691,
0.17587168514728546,
-0.18226923048496246,
0.38658279180526733,
0.2561603784561157,
-0.14221584796905518,
0.4847038686275482,
0.03870009630918503,
0.3054753243923187,
-0.14875145256519318,
-0.20902274549007416,
-0.7331336140632629,
0.20473618805408478,
0.07508869469165802,
-0.28866046667099,
-0.05913437530398369,
-0.6431150436401367,
-0.07070872187614441,
-0.5795235633850098,
0.3973231911659241,
0.012193565256893635,
1.1396411657333374,
0.35961952805519104,
-0.5087421536445618,
-0.2227366864681244,
-0.4304977357387543,
0.8463109135627747,
-0.5363669395446777,
0.18907280266284943,
0.3750622272491455,
0.3323788344860077,
0.09360936284065247,
-0.8670312166213989,
-1.045505166053772,
0.12362257391214371,
-0.2283414751291275,
0.12427078932523727,
-0.451626181602478,
-0.5526468753814697,
0.2862018346786499,
0.3629502058029175,
-1.0314747095108032,
-0.0525381974875927,
-0.7903012037277222,
-0.36903488636016846,
0.4049226939678192,
0.46116000413894653,
0.26279643177986145,
-0.5991887450218201,
-0.7804632782936096,
-0.20130489766597748,
-0.1301984190940857,
0.25819873809814453,
0.3647986650466919,
-0.039426613599061966,
-0.10291874408721924,
0.6177671551704407,
-0.4270491898059845,
0.553059458732605,
0.21995261311531067,
0.23183493316173553,
0.7629356384277344,
-0.544670581817627,
-0.013767316937446594,
-0.26744702458381653,
1.090348482131958,
0.26546379923820496,
0.5012702345848083,
0.05889822542667389,
0.0023061896208673716,
0.1794733703136444,
0.4356907904148102,
-0.6181126236915588,
-0.08773007243871689,
0.27874401211738586,
-0.4132935702800751,
-0.4408397674560547,
0.14371687173843384,
-0.4781820476055145,
0.1432569921016693,
-0.21760235726833344,
0.8166073560714722,
-0.5302343368530273,
0.015351387672126293,
0.3847143352031708,
-0.3946138322353363,
0.4271673262119293,
-0.020205672830343246,
-0.42433658242225647,
0.47100237011909485,
0.5812572240829468,
0.623746395111084,
-0.16424930095672607,
-0.6663837432861328,
-0.3551398515701294,
-0.34009721875190735,
0.12529805302619934,
0.994377613067627,
-0.3972465693950653,
-0.17739035189151764,
-0.1685241460800171,
0.30231523513793945,
-0.15917237102985382,
-0.5417366027832031,
0.6245054602622986,
-0.5861890316009521,
0.9618236422538757,
-0.3101558983325958,
-0.7017820477485657,
-0.4855155944824219,
0.5989780426025391,
-0.7752678990364075,
1.2606602907180786,
0.3146687150001526,
-0.9398790001869202,
0.170999214053154,
-0.4010327160358429,
-0.48888376355171204,
0.0866703987121582,
-0.1457994133234024,
-0.7187998294830322,
-0.23645974695682526,
0.29029491543769836,
0.1863303780555725,
-0.3330638110637665,
0.12766170501708984,
-0.08684077858924866,
-0.41555312275886536,
0.3872620463371277,
-0.27288591861724854,
0.8376720547676086,
0.04596583917737007,
-0.2971179187297821,
0.10778679698705673,
-0.6756772398948669,
0.3930101990699768,
0.20408639311790466,
-0.2968771457672119,
-0.28141242265701294,
-0.4835553765296936,
0.2994682192802429,
0.4065314829349518,
0.38202735781669617,
-0.7824657559394836,
-0.23836106061935425,
-0.22547118365764618,
0.2990085184574127,
0.49053245782852173,
0.19005393981933594,
0.19246208667755127,
-0.48114070296287537,
0.9425013065338135,
0.28513646125793457,
0.18316398561000824,
0.1575324982404709,
-0.58051997423172,
-0.7283249497413635,
0.33167049288749695,
0.3261161148548126,
0.8986366391181946,
-0.8288432359695435,
0.8349912166595459,
-0.15212325751781464,
-0.573782742023468,
-0.8107203841209412,
0.2643511891365051,
0.31941157579421997,
0.34800857305526733,
0.682111382484436,
-0.2315889298915863,
-0.7600811719894409,
-1.0134280920028687,
-0.5298272967338562,
0.03421464189887047,
0.01456092856824398,
0.013223077170550823,
0.9341298341751099,
-0.10894978046417236,
1.073784351348877,
-0.47921785712242126,
-0.2215041071176529,
-0.38967734575271606,
0.15332511067390442,
0.05574584752321243,
0.6917460560798645,
0.4702345132827759,
-1.0701409578323364,
-0.6787818074226379,
-0.38839390873908997,
-0.7809937000274658,
0.044273778796195984,
0.0015977614093571901,
-0.17684416472911835,
0.09543734043836594,
0.4284745752811432,
-0.7604367136955261,
0.42579540610313416,
0.43825381994247437,
-0.24015268683433533,
0.3916965425014496,
0.013524680398404598,
0.3443058133125305,
-1.483167052268982,
-0.012432306073606014,
-0.14439204335212708,
-0.3530257046222687,
-0.41137561202049255,
0.07976531982421875,
0.031249426305294037,
-0.04536992684006691,
-0.43761152029037476,
0.4909367859363556,
-0.10238274186849594,
0.13215062022209167,
-0.2039979249238968,
0.11396785825490952,
0.3224136233329773,
0.5659842491149902,
0.02207917347550392,
0.7143713235855103,
0.48465782403945923,
-0.5246923565864563,
0.5606997609138489,
0.699164867401123,
-0.7154791355133057,
0.48748165369033813,
-1.0898164510726929,
0.3581011891365051,
-0.04674313962459564,
0.32243597507476807,
-1.013802409172058,
0.17611218988895416,
0.3812180757522583,
-0.7281274199485779,
-0.47595101594924927,
0.11893182247877121,
-0.570310652256012,
-0.7527107000350952,
-0.3731379210948944,
0.6667370796203613,
0.5010291934013367,
-0.6439645290374756,
0.6176217794418335,
0.2287386655807495,
-0.0631178468465805,
-0.7406480312347412,
-0.9744651913642883,
-0.37578684091567993,
-0.03290901705622673,
-0.6069730520248413,
0.1539447158575058,
-0.19515129923820496,
0.2802504599094391,
0.2652072608470917,
0.051972754299640656,
-0.21698129177093506,
-0.089598149061203,
0.29969409108161926,
0.11072410643100739,
-0.3246428966522217,
0.21031664311885834,
0.1604936271905899,
-0.15665514767169952,
0.10746998339891434,
-0.32720327377319336,
0.8909398913383484,
-0.11742429435253143,
-0.3245575726032257,
-0.46704360842704773,
0.48174574971199036,
0.3700312674045563,
-0.31576207280158997,
0.7137433290481567,
0.6882554888725281,
-0.3985687494277954,
-0.23642593622207642,
-0.6717294454574585,
-0.047024961560964584,
-0.48833340406417847,
0.4991886019706726,
-0.4601691663265228,
-0.9856826663017273,
0.5159586668014526,
0.3268860876560211,
-0.45262622833251953,
0.5342050790786743,
0.4353596866130829,
0.0842023566365242,
0.7730830311775208,
0.49517714977264404,
-0.2031729519367218,
0.2472933530807495,
-0.20713825523853302,
0.21520434319972992,
-0.5019439458847046,
-0.4617500305175781,
-0.47296154499053955,
-0.214406818151474,
-0.5097629427909851,
-0.6173014640808105,
0.17647850513458252,
-0.004524949472397566,
-0.14189468324184418,
0.6689287424087524,
-0.6781512498855591,
0.7189804911613464,
0.723632276058197,
0.17768940329551697,
0.11776704341173172,
0.22117812931537628,
0.09880669414997101,
0.09752245247364044,
-0.7224960327148438,
-0.2781740427017212,
1.040744423866272,
-0.02928205393254757,
0.6321334838867188,
-0.2891663908958435,
0.6728101372718811,
0.19828397035598755,
-0.238698348402977,
-0.45158088207244873,
0.718201220035553,
-0.30052435398101807,
-0.5944111347198486,
-0.27226191759109497,
-0.6053239703178406,
-1.1531039476394653,
0.3050462603569031,
-0.1665075123310089,
-0.19186459481716156,
0.0700819119811058,
-0.23055483400821686,
-0.5428656339645386,
0.26531165838241577,
-0.3002870976924896,
1.1980208158493042,
-0.3229517936706543,
0.05738913640379906,
-0.3520582616329193,
-0.5341038703918457,
0.28802087903022766,
-0.18459920585155487,
-0.08398041874170303,
0.03523065894842148,
-0.03106832690536976,
0.8862242698669434,
-0.3828865885734558,
0.6179867386817932,
0.08302462846040726,
0.20111757516860962,
0.39295071363449097,
-0.18353170156478882,
0.11847566813230515,
-0.050787266343832016,
-0.049947600811719894,
0.223345547914505,
0.10802837461233139,
-0.42926162481307983,
-0.3172658383846283,
0.7982756495475769,
-0.9771583080291748,
-0.3780404031276703,
-0.37437301874160767,
-0.3656727373600006,
0.10951390862464905,
0.1830756813287735,
0.6279690265655518,
0.31769314408302307,
-0.41644400358200073,
0.05972462520003319,
0.39662858843803406,
-0.31564849615097046,
0.09768533706665039,
0.626569390296936,
-0.14820609986782074,
-0.5800223350524902,
0.577756941318512,
-0.044785160571336746,
0.17942170798778534,
0.6055930852890015,
0.059960417449474335,
-0.3967055082321167,
-0.18994717299938202,
-0.16904012858867645,
0.1786094307899475,
-0.7998886108398438,
-0.4099295735359192,
-1.0637766122817993,
-0.631014347076416,
-0.5892221927642822,
0.31515344977378845,
-0.12106674164533615,
-0.6096689105033875,
-0.3157561719417572,
-0.26835307478904724,
0.7521350979804993,
0.6088438034057617,
-0.13311368227005005,
0.2093125283718109,
-0.8753235936164856,
0.7105798125267029,
0.4274623692035675,
0.11473777890205383,
-0.08106474578380585,
-0.8469987511634827,
-0.1487179696559906,
-0.08366109430789948,
-0.28050002455711365,
-0.5751782059669495,
0.4518513083457947,
-0.06396016478538513,
0.5594485998153687,
0.01396746002137661,
0.0569261834025383,
0.5431370735168457,
-0.33797141909599304,
0.7558349967002869,
0.16714663803577423,
-1.02359938621521,
0.6064820289611816,
0.17161862552165985,
0.46924856305122375,
0.7683005928993225,
0.7488300204277039,
-0.6286729574203491,
-0.3703174293041229,
-0.633419930934906,
-0.7813321352005005,
0.7526677846908569,
0.28104448318481445,
0.4274415075778961,
-0.09817610681056976,
0.18605007231235504,
0.5191801190376282,
0.12886758148670197,
-1.059627890586853,
-0.2367653250694275,
-0.530189037322998,
-0.43190860748291016,
-0.018327565863728523,
-0.15318991243839264,
0.14187006652355194,
-0.5235999822616577,
0.6609126925468445,
0.12539012730121613,
-0.055219028145074844,
0.20303405821323395,
-0.2602558434009552,
-0.09034276753664017,
0.3200041651725769,
0.2962549328804016,
0.30445969104766846,
-0.024085769429802895,
-0.2327425330877304,
0.4178037941455841,
-0.34574806690216064,
0.017861800268292427,
0.2696623206138611,
-0.385458767414093,
0.30387258529663086,
0.3011210262775421,
0.8966200947761536,
0.100064218044281,
-0.506963849067688,
0.6977032423019409,
-0.18086707592010498,
-0.315094530582428,
-0.8767592906951904,
-0.054496534168720245,
0.07027489691972733,
0.47262412309646606,
0.13086071610450745,
0.24254867434501648,
0.0874873474240303,
-0.497158944606781,
0.40596455335617065,
0.19118840992450714,
-0.31588101387023926,
-0.19698838889598846,
0.6932678818702698,
0.11156756430864334,
-0.6478545069694519,
0.8152192234992981,
-0.14857470989227295,
-1.1654188632965088,
0.7012839913368225,
0.30234044790267944,
0.7710106372833252,
-0.08799417316913605,
0.38324642181396484,
0.7029372453689575,
0.21131424605846405,
-0.30673959851264954,
0.7021884322166443,
-0.15873363614082336,
-1.0028932094573975,
0.04005781561136246,
-0.5938705205917358,
-0.3495708405971527,
0.29126429557800293,
-1.0490741729736328,
0.3456451892852783,
-0.30893397331237793,
-0.12901794910430908,
-0.0089648999273777,
-0.14306969940662384,
-0.8355007767677307,
0.26257216930389404,
-0.0218253955245018,
0.8038650155067444,
-0.9502451419830322,
0.7637928128242493,
0.6124128103256226,
-0.8453248143196106,
-0.7540746927261353,
-0.04691990464925766,
-0.15704986453056335,
-0.8842324018478394,
0.6857191324234009,
0.37279650568962097,
0.09875359386205673,
-0.15900784730911255,
-0.6013889312744141,
-0.8148505091667175,
1.073102593421936,
-0.16886261105537415,
-0.5061779618263245,
-0.010879037901759148,
0.5213351249694824,
0.6556836366653442,
-0.3253064453601837,
0.3850518763065338,
0.5108503103256226,
0.2422531694173813,
-0.23884952068328857,
-0.8812428712844849,
0.15095122158527374,
-0.7103018760681152,
-0.20709124207496643,
0.04454128071665764,
-0.638300359249115,
1.2232028245925903,
0.021131742745637894,
-0.04143884778022766,
0.6251171231269836,
0.5162319540977478,
0.3744798004627228,
0.32477647066116333,
0.648758053779602,
0.7667257189750671,
0.5862427949905396,
0.08854750543832779,
1.0260452032089233,
-0.27026796340942383,
0.48131904006004333,
1.2399945259094238,
-0.33521080017089844,
0.9907751083374023,
0.3181205987930298,
-0.14845044910907745,
0.9820255041122437,
0.3574466407299042,
-0.6328139901161194,
0.47712355852127075,
0.24601396918296814,
0.1740572601556778,
-0.4692111313343048,
0.20332786440849304,
-0.5738855004310608,
0.5436069369316101,
-0.08032175153493881,
-0.3418547213077545,
-0.04466300830245018,
0.23344704508781433,
-0.39391976594924927,
0.43130606412887573,
0.011044139973819256,
0.6013944745063782,
0.022742630913853645,
-0.7193617820739746,
0.5041977167129517,
-0.09582778066396713,
0.9209587574005127,
-0.8060336112976074,
0.02479068748652935,
-0.32153791189193726,
0.3583761155605316,
-0.030960163101553917,
-0.993513286113739,
0.18966078758239746,
-0.03368549793958664,
-0.41935116052627563,
-0.007546249311417341,
0.8178482055664062,
-0.702567994594574,
-0.7208782434463501,
0.596778154373169,
0.6408606767654419,
0.22891739010810852,
-0.19672469794750214,
-1.060227632522583,
-0.300864040851593,
0.06320830434560776,
0.03366286680102348,
-0.012929225340485573,
0.6030928492546082,
0.08536618947982788,
0.6890925168991089,
0.6119635105133057,
-0.2709258198738098,
0.1666395515203476,
0.42156514525413513,
0.8229193687438965,
-1.054868459701538,
-0.6669396758079529,
-0.5563499927520752,
0.19833281636238098,
-0.342617392539978,
-0.6741082668304443,
0.9538940787315369,
0.9862798452377319,
1.0785549879074097,
-0.37573376297950745,
0.7584690451622009,
0.19077736139297485,
0.9544984102249146,
-0.39492082595825195,
0.6385753750801086,
-0.7335911393165588,
0.12965507805347443,
-0.017469968646764755,
-0.6271412968635559,
0.1449972242116928,
0.5338446497917175,
-0.2524075210094452,
0.053105782717466354,
0.9912139773368835,
1.0219708681106567,
-0.1652723252773285,
0.26166415214538574,
0.02682485431432724,
0.17405343055725098,
-0.376143217086792,
0.7917618155479431,
1.1292061805725098,
-0.9439566731452942,
1.0453846454620361,
-0.31101396679878235,
0.44465744495391846,
0.06636542826890945,
-0.12911728024482727,
-1.0380210876464844,
-0.5351217985153198,
-0.4548296332359314,
-0.47349363565444946,
-0.11680720746517181,
0.6471579074859619,
0.4789963662624359,
-1.14995539188385,
-0.07770555466413498,
0.06552242487668991,
0.14475733041763306,
-0.17828039824962616,
-0.27972105145454407,
0.2325800210237503,
0.016014311462640762,
-0.5941177606582642,
0.11477412283420563,
-0.06271017342805862,
-0.047573961317539215,
-0.0681915134191513,
0.03372245281934738,
-0.5189976692199707,
0.18658243119716644,
0.3388668894767761,
0.12219875305891037,
-0.7310510873794556,
-0.30290836095809937,
0.004537483677268028,
-0.40916144847869873,
0.03794887289404869,
0.5517133474349976,
-1.1108365058898926,
-0.03534756600856781,
0.8254148364067078,
0.5014280676841736,
0.7046147584915161,
0.24325618147850037,
0.40272364020347595,
-0.45815983414649963,
0.0332852303981781,
0.23963330686092377,
0.38194844126701355,
0.5390134453773499,
-0.27901193499565125,
0.5492445230484009,
0.34923186898231506,
-0.44627246260643005,
-0.6285543441772461,
-0.036775629967451096,
-1.1439110040664673,
-0.4026256203651428,
1.1038340330123901,
-0.07806581258773804,
-0.26885393261909485,
-0.18121035397052765,
-0.1385723501443863,
0.3166533410549164,
-0.1972455382347107,
0.7474128007888794,
0.44392159581184387,
0.19125919044017792,
-0.12024934589862823,
-0.07789372652769089,
0.1189703494310379,
0.7706339359283447,
-0.962205171585083,
-0.4860088527202606,
0.054238513112068176,
0.8913545608520508,
0.17716357111930847,
0.46022504568099976,
-0.07202313095331192,
0.5246529579162598,
0.15787352621555328,
0.10635751485824585,
-0.03206239268183708,
0.18662871420383453,
-0.4204172194004059,
0.19138669967651367,
-0.6670414805412292,
-0.6109390258789062
] |
mohitsha/tiny-random-testing-bert2gpt2 | mohitsha | "2023-09-01T12:59:38Z" | 140,956 | 0 | transformers | [
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2023-09-01T12:56:21Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |
Helsinki-NLP/opus-mt-da-en | Helsinki-NLP | "2023-08-16T11:27:21Z" | 140,408 | 3 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"da",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-da-en
* source languages: da
* target languages: en
* OPUS readme: [da-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.da.en | 63.6 | 0.769 |
| [
-0.31909292936325073,
-0.576150119304657,
0.30211007595062256,
0.3950868248939514,
-0.4577995240688324,
-0.43229371309280396,
-0.4350039064884186,
-0.06877487897872925,
0.0730157122015953,
0.4708092510700226,
-0.7254953384399414,
-0.6413882374763489,
-0.7150548100471497,
0.2965811789035797,
-0.08738849312067032,
0.7919926643371582,
-0.16909943521022797,
0.5195796489715576,
0.2247156947851181,
-0.45607781410217285,
-0.3912351131439209,
-0.4478757977485657,
-0.5571131706237793,
-0.3276844620704651,
0.35939040780067444,
0.4168039560317993,
0.4151807427406311,
0.4831971228122711,
0.9819391965866089,
0.2500658631324768,
-0.08977549523115158,
0.12027690559625626,
-0.483890563249588,
-0.05941098928451538,
0.11746654659509659,
-0.5783831477165222,
-0.9085144400596619,
-0.13462960720062256,
1.1038061380386353,
0.4540092349052429,
-0.06787109375,
0.38995790481567383,
-0.07884863764047623,
1.0590288639068604,
-0.3987730145454407,
0.13687969744205475,
-0.6357371211051941,
0.0030567788053303957,
-0.3690214157104492,
-0.3056347370147705,
-0.7282467484474182,
-0.23606200516223907,
0.14433549344539642,
-0.7238548398017883,
-0.12207619100809097,
0.057610124349594116,
1.552093267440796,
0.4345201849937439,
-0.5065057873725891,
-0.17402766644954681,
-0.6186726093292236,
1.1207352876663208,
-0.9022768139839172,
0.6070014238357544,
0.5154277682304382,
0.33417487144470215,
0.22136832773685455,
-0.6504750847816467,
-0.40310823917388916,
0.1489485502243042,
-0.1534292995929718,
0.1924295425415039,
-0.12280458211898804,
-0.2798837125301361,
0.2907925844192505,
0.8319531679153442,
-0.7575636506080627,
0.02449663355946541,
-0.5692919492721558,
0.040981318801641464,
0.8160473108291626,
0.09069114178419113,
0.1923118233680725,
-0.16389261186122894,
-0.4589875340461731,
-0.6174067854881287,
-0.8183403611183167,
0.02192898839712143,
0.4184015095233917,
0.22846229374408722,
-0.5428622961044312,
0.7389529347419739,
-0.13678863644599915,
0.7195771336555481,
0.03909984976053238,
0.011100362986326218,
1.0711954832077026,
-0.4018608033657074,
-0.395146906375885,
-0.20809684693813324,
1.2910983562469482,
0.3716595470905304,
0.10922343283891678,
0.05145067721605301,
-0.27146947383880615,
-0.23273345828056335,
0.14943204820156097,
-1.004927158355713,
-0.11385146528482437,
0.1694096475839615,
-0.4869619905948639,
-0.13953642547130585,
0.062478844076395035,
-0.7333670258522034,
0.20738768577575684,
-0.46287015080451965,
0.7106075286865234,
-0.6795479655265808,
-0.3088214099407196,
0.43067607283592224,
0.062347158789634705,
0.39210712909698486,
-0.04371464625000954,
-0.7079939842224121,
0.24710100889205933,
0.38880443572998047,
0.8069725036621094,
-0.5033767819404602,
-0.3010469079017639,
-0.569951057434082,
-0.19704006612300873,
-0.11933961510658264,
0.7124454379081726,
-0.07655436545610428,
-0.4698733985424042,
-0.07855462282896042,
0.47679486870765686,
-0.4359350800514221,
-0.3573318123817444,
1.5325337648391724,
-0.3832085132598877,
0.7400804162025452,
-0.5121406316757202,
-0.594928503036499,
-0.45126745104789734,
0.49016284942626953,
-0.7034981846809387,
1.3515520095825195,
0.1010504737496376,
-0.9313357472419739,
0.29523447155952454,
-0.9681530594825745,
-0.22120976448059082,
-0.0600622333586216,
0.02255091443657875,
-0.6736225485801697,
0.09485214948654175,
0.21500563621520996,
0.4236844480037689,
-0.38731157779693604,
0.3405669033527374,
0.014374803751707077,
-0.3775896430015564,
0.029259206727147102,
-0.4825301766395569,
1.169073224067688,
0.3506928086280823,
-0.4112998843193054,
0.2370133250951767,
-1.0598478317260742,
-0.061004798859357834,
0.01646597869694233,
-0.5178659558296204,
-0.2556057572364807,
0.10327184945344925,
0.31075650453567505,
0.1598345935344696,
0.3614656925201416,
-0.7145000100135803,
0.32828181982040405,
-0.7394193410873413,
0.20489701628684998,
0.6823283433914185,
-0.31734803318977356,
0.3857055902481079,
-0.4808225929737091,
0.3775997757911682,
0.17383317649364471,
0.05688140541315079,
0.038257356733083725,
-0.5250704884529114,
-0.8996708989143372,
-0.34998196363449097,
0.7294214367866516,
1.1172280311584473,
-0.8434043526649475,
0.9965659379959106,
-0.7660247087478638,
-0.8360095620155334,
-0.8846979141235352,
-0.2149241715669632,
0.4441767930984497,
0.40720900893211365,
0.5881161093711853,
-0.20261745154857635,
-0.462213933467865,
-1.1545841693878174,
-0.07077894359827042,
-0.1053614541888237,
-0.25683996081352234,
0.20113682746887207,
0.7253111600875854,
-0.2594044506549835,
0.5749409198760986,
-0.6053428053855896,
-0.47114190459251404,
-0.0895620658993721,
0.1622290164232254,
0.5012217164039612,
0.6465684175491333,
0.6897678971290588,
-1.0248502492904663,
-0.6830533742904663,
-0.04606585577130318,
-0.7858471870422363,
-0.1961785852909088,
0.19845668971538544,
-0.1771671324968338,
0.18867968022823334,
0.05086960643529892,
-0.35134032368659973,
0.1565808355808258,
0.7645921111106873,
-0.7230191230773926,
0.5892841219902039,
-0.2240855097770691,
0.39539194107055664,
-1.4793970584869385,
0.14843180775642395,
-0.2159050703048706,
-0.03257725387811661,
-0.4201120436191559,
-0.0076726083643734455,
0.2874545156955719,
0.13654814660549164,
-0.8587130308151245,
0.6170617341995239,
-0.3023522198200226,
-0.01428921613842249,
0.21439129114151,
-0.015348045155405998,
0.10243299603462219,
0.7878170013427734,
-0.0691777914762497,
0.9571837186813354,
0.8689647912979126,
-0.6368192434310913,
0.20683908462524414,
0.6680155396461487,
-0.48703065514564514,
0.4672310948371887,
-0.9224105477333069,
-0.22541749477386475,
0.38140058517456055,
-0.12850028276443481,
-0.6885632872581482,
0.1261376589536667,
0.2819150388240814,
-0.6654849052429199,
0.4442906081676483,
-0.04696666821837425,
-0.8722869157791138,
0.0015795690705999732,
-0.3009865880012512,
0.6225140690803528,
0.7692374587059021,
-0.25977182388305664,
0.6325196623802185,
0.17994235455989838,
-0.010115955956280231,
-0.5251309275627136,
-1.0868805646896362,
-0.05847980082035065,
-0.4622655510902405,
-0.859864354133606,
0.3357619047164917,
-0.467748761177063,
-0.08123625069856644,
0.02909429743885994,
0.35943764448165894,
-0.1519557386636734,
0.06951689720153809,
0.07154440879821777,
0.2094426304101944,
-0.4733966886997223,
0.12347733229398727,
0.043804068118333817,
-0.16622115671634674,
-0.12910614907741547,
-0.15174192190170288,
0.641061544418335,
-0.347151517868042,
-0.2698403298854828,
-0.6411926746368408,
0.09037259221076965,
0.6658192873001099,
-0.4826127588748932,
0.9585615396499634,
0.5904187560081482,
-0.1380605548620224,
0.13461564481258392,
-0.43354982137680054,
0.1322760432958603,
-0.475681871175766,
0.11136461049318314,
-0.5835155248641968,
-0.7324844598770142,
0.5581783652305603,
0.17266127467155457,
0.4426611065864563,
0.9618322253227234,
0.7657390832901001,
0.12885907292366028,
0.7124232649803162,
0.36862266063690186,
0.014789363369345665,
0.4327106475830078,
-0.579666793346405,
-0.18069615960121155,
-1.1299198865890503,
0.11273093521595001,
-0.7768064141273499,
-0.3770272135734558,
-0.9007090330123901,
-0.27758023142814636,
0.2943359613418579,
-0.029895497485995293,
-0.241058349609375,
0.756557047367096,
-0.5946550965309143,
0.21982033550739288,
0.6314792633056641,
-0.14817461371421814,
0.38014480471611023,
0.011172166094183922,
-0.5539025664329529,
-0.2651291787624359,
-0.4864279329776764,
-0.6326836347579956,
1.479263424873352,
0.4033934473991394,
0.3417886793613434,
0.26104193925857544,
0.5553088784217834,
0.03971931338310242,
0.1314345747232437,
-0.694828987121582,
0.4657035768032074,
-0.32845762372016907,
-0.745620608329773,
-0.3584354817867279,
-0.6621190905570984,
-0.9873892664909363,
0.49225735664367676,
-0.24851685762405396,
-0.4825079143047333,
0.2255687117576599,
-0.10660531371831894,
-0.08060123771429062,
0.4920191466808319,
-0.7736122012138367,
1.2537862062454224,
-0.042103614658117294,
-0.07405199855566025,
0.23336391150951385,
-0.44618088006973267,
0.2863214313983917,
-0.0773056298494339,
0.29688677191734314,
-0.17030586302280426,
0.0910102128982544,
0.7167766094207764,
-0.08983325958251953,
0.42522132396698,
-0.05780141428112984,
-0.1834549754858017,
0.09890694916248322,
0.05967041850090027,
0.38535356521606445,
-0.1381545513868332,
-0.5370374917984009,
0.49310430884361267,
0.1101561039686203,
-0.5189669728279114,
-0.1350541114807129,
0.6573269367218018,
-0.7896822690963745,
-0.024428965523838997,
-0.5450787544250488,
-0.8058757781982422,
0.028903823345899582,
0.35949599742889404,
0.7574445605278015,
0.7318722605705261,
-0.3312731087207794,
0.5932251214981079,
0.8666000366210938,
-0.29329782724380493,
0.4521728456020355,
0.7859324216842651,
-0.14170894026756287,
-0.6232817769050598,
0.8467579483985901,
0.21285536885261536,
0.38131704926490784,
0.621268630027771,
0.08299939334392548,
-0.18964965641498566,
-0.8222534656524658,
-0.7759276032447815,
0.28307855129241943,
-0.29871755838394165,
-0.1901235580444336,
-0.6333386301994324,
-0.07189708948135376,
-0.3330399990081787,
0.33328279852867126,
-0.473479688167572,
-0.63861483335495,
-0.1404840648174286,
-0.24496987462043762,
0.24315708875656128,
0.2859857380390167,
-0.06665287166833878,
0.47004663944244385,
-1.0937955379486084,
0.2994382977485657,
-0.06459496915340424,
0.40199071168899536,
-0.46896716952323914,
-0.9036623239517212,
-0.5005912184715271,
0.15091007947921753,
-0.7869576811790466,
-0.8057584166526794,
0.5775367617607117,
0.1557474136352539,
0.28604674339294434,
0.34442389011383057,
0.27334272861480713,
0.3289182186126709,
-0.8020743727684021,
1.0528498888015747,
-0.13076680898666382,
-0.7821521162986755,
0.5307636260986328,
-0.5018695592880249,
0.4838714003562927,
0.9814052581787109,
0.3386450707912445,
-0.2882119119167328,
-0.48129263520240784,
-0.8081136345863342,
-0.840840220451355,
0.8210639357566833,
0.7810010313987732,
-0.16534440219402313,
0.16077487170696259,
-0.09358856827020645,
0.001686014118604362,
0.1632111668586731,
-1.1835347414016724,
-0.47401976585388184,
0.10054688155651093,
-0.4054211378097534,
-0.24838386476039886,
-0.33488714694976807,
-0.2701917290687561,
-0.2107403427362442,
1.1858397722244263,
0.17636831104755402,
0.15035781264305115,
0.4493560194969177,
-0.1461561769247055,
-0.23335367441177368,
0.3807910084724426,
1.0186548233032227,
0.6380191445350647,
-0.5831717848777771,
-0.19818753004074097,
0.3226572275161743,
-0.5064071416854858,
-0.09594416618347168,
0.15982523560523987,
-0.5238195657730103,
0.31939104199409485,
0.4548349380493164,
1.1365610361099243,
0.13738466799259186,
-0.6588263511657715,
0.5343500971794128,
-0.4188534915447235,
-0.5042105317115784,
-0.6696171760559082,
-0.167816162109375,
0.09627735614776611,
-0.03219171240925789,
0.31618157029151917,
0.10969403386116028,
0.24469222128391266,
-0.2356250137090683,
0.20669835805892944,
0.07612750679254532,
-0.6915846467018127,
-0.6227368712425232,
0.5498613119125366,
0.19240844249725342,
-0.3838639557361603,
0.5160549879074097,
-0.46926966309547424,
-0.5395744442939758,
0.46113184094429016,
0.13503560423851013,
1.1805059909820557,
-0.22930623590946198,
-0.20511344075202942,
0.8292372822761536,
0.5677399039268494,
-0.20628972351551056,
0.5121318697929382,
0.13455191254615784,
-0.7384516000747681,
-0.627211332321167,
-0.9140328168869019,
-0.1810159683227539,
0.13554778695106506,
-0.9191219210624695,
0.46298080682754517,
0.4157285988330841,
0.00422690249979496,
-0.3612079918384552,
0.3291044533252716,
-0.5548009276390076,
0.1812637746334076,
-0.3451915681362152,
1.166928768157959,
-1.0197495222091675,
1.0329629182815552,
0.5674170255661011,
-0.338532030582428,
-0.8325671553611755,
-0.1976490467786789,
-0.23148955404758453,
-0.444030225276947,
0.6929411888122559,
0.19415326416492462,
0.32502201199531555,
-0.10670650005340576,
-0.16633734107017517,
-0.8480103015899658,
1.2572537660598755,
0.2861219346523285,
-0.6399933695793152,
0.005283414386212826,
0.09411697834730148,
0.5407187938690186,
-0.4136081635951996,
0.10939280688762665,
0.49768030643463135,
0.8289362788200378,
0.07930584996938705,
-1.265485167503357,
-0.32108640670776367,
-0.5811335444450378,
-0.4044715464115143,
0.5601991415023804,
-0.5879192352294922,
1.0652410984039307,
0.4514351189136505,
-0.20584866404533386,
0.07025818526744843,
0.6830599308013916,
0.3463151156902313,
0.3586369752883911,
0.6132623553276062,
1.3065015077590942,
0.4047987759113312,
-0.4984639286994934,
1.1196084022521973,
-0.3395254909992218,
0.49659326672554016,
1.2621744871139526,
-0.08156738430261612,
1.004961609840393,
0.370234876871109,
-0.14929454028606415,
0.5921439528465271,
0.6716854572296143,
-0.3019377887248993,
0.5925917625427246,
0.0686149001121521,
0.16539950668811798,
-0.06640765070915222,
0.22795537114143372,
-0.8108490705490112,
0.3108709454536438,
0.15975338220596313,
-0.1636645495891571,
0.06581331789493561,
-0.06994599103927612,
0.013654018752276897,
0.07975199073553085,
-0.12678645551204681,
0.7191490530967712,
0.006547122728079557,
-0.6372667551040649,
0.8560057282447815,
-0.05738179013133049,
0.8107067346572876,
-0.7507386207580566,
0.09351418912410736,
-0.04334867373108864,
0.2678515315055847,
0.004273899365216494,
-0.6008298993110657,
0.5812029838562012,
0.0012580039910972118,
-0.3199979066848755,
-0.4406038820743561,
0.13984790444374084,
-0.5995906591415405,
-0.9487012028694153,
0.5057526230812073,
0.46622735261917114,
0.3776419758796692,
0.00765139888972044,
-0.9286950826644897,
0.021122220903635025,
0.08545545488595963,
-0.6799413561820984,
0.08205659687519073,
0.8717745542526245,
0.354797899723053,
0.5087333917617798,
0.6443750262260437,
0.3078959584236145,
0.2337818592786789,
-0.03697895631194115,
0.6940007209777832,
-0.4423949420452118,
-0.4918970465660095,
-0.8698887825012207,
0.8845124244689941,
-0.12226980924606323,
-0.7237352132797241,
0.8302322626113892,
1.0916823148727417,
1.1085790395736694,
-0.19621634483337402,
0.27521273493766785,
-0.13409821689128876,
0.7909579277038574,
-0.7164828181266785,
0.733521580696106,
-1.0232489109039307,
0.26854512095451355,
-0.11738063395023346,
-1.056019902229309,
-0.18844912946224213,
0.35257962346076965,
-0.2542385160923004,
-0.3548452854156494,
0.8817474842071533,
0.704211413860321,
-0.22166402637958527,
-0.31247812509536743,
0.36619457602500916,
0.36166244745254517,
0.24251540005207062,
0.6544180512428284,
0.353813111782074,
-1.1861300468444824,
0.5980701446533203,
-0.30949628353118896,
-0.1379019320011139,
0.008334935642778873,
-0.8508616089820862,
-0.9246041774749756,
-0.7502300143241882,
-0.25546249747276306,
-0.19914376735687256,
-0.349522203207016,
0.8745861649513245,
0.6189818978309631,
-1.0374088287353516,
-0.6059889197349548,
0.015760572627186775,
0.1404101550579071,
-0.263484388589859,
-0.2700331509113312,
0.7420142292976379,
-0.34450840950012207,
-1.1827021837234497,
0.5286855101585388,
0.05351078510284424,
-0.08759863674640656,
0.00002072225288429763,
-0.3728097081184387,
-0.6178112626075745,
-0.0430331751704216,
0.31834715604782104,
-0.016696849837899208,
-0.5898556113243103,
0.1472080498933792,
0.14241580665111542,
-0.1209249421954155,
0.41665685176849365,
0.3318324685096741,
-0.3061041533946991,
0.27706873416900635,
0.91255784034729,
0.4653509557247162,
0.5003814697265625,
-0.15776973962783813,
0.6597863435745239,
-0.733241617679596,
0.3722092807292938,
0.24538104236125946,
0.6567471623420715,
0.39420026540756226,
-0.06431221961975098,
0.9382336735725403,
0.2058166116476059,
-0.7810944318771362,
-1.1489776372909546,
0.10564085096120834,
-1.345281958580017,
-0.018147310242056847,
1.0049020051956177,
-0.3465667963027954,
-0.3005554676055908,
0.3790837824344635,
-0.2444998174905777,
0.19140926003456116,
-0.37178853154182434,
0.5251172184944153,
0.9848392009735107,
0.4766519367694855,
0.14468151330947876,
-0.7996451258659363,
0.4145400822162628,
0.5754495859146118,
-0.839687168598175,
-0.22058118879795074,
0.2663397192955017,
0.12711060047149658,
0.42111703753471375,
0.5417131185531616,
-0.3763146698474884,
0.13777652382850647,
-0.29631003737449646,
0.41285818815231323,
-0.1308041661977768,
-0.21932561695575714,
-0.42434847354888916,
0.005369618069380522,
-0.0878417119383812,
-0.3932262063026428
] |
facebook/maskformer-swin-large-ade | facebook | "2023-02-27T15:08:57Z" | 139,635 | 44 | transformers | [
"transformers",
"pytorch",
"maskformer",
"vision",
"image-segmentation",
"dataset:scene_parse_150",
"arxiv:2107.06278",
"license:other",
"endpoints_compatible",
"has_space",
"region:us"
] | image-segmentation | "2022-03-02T23:29:05Z" | ---
license: other
tags:
- vision
- image-segmentation
datasets:
- scene_parse_150
widget:
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
example_title: House
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
example_title: Castle
---
# MaskFormer
MaskFormer model trained on ADE20k semantic segmentation (large-sized version, Swin backbone). It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
Disclaimer: The team releasing MaskFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
MaskFormer addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png)
## Intended uses & limitations
You can use this particular checkpoint for semantic segmentation. See the [model hub](https://huggingface.co/models?search=maskformer) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-large-ade")
inputs = processor(images=image, return_tensors="pt")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-ade")
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
# we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs)
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer). | [
-0.6101593971252441,
-0.7980231046676636,
0.35146814584732056,
0.18408995866775513,
-0.2250080108642578,
-0.3626191020011902,
0.07203642278909683,
-0.6532955169677734,
0.3720047175884247,
0.616024911403656,
-0.9110620021820068,
-0.6393390893936157,
-0.7637254595756531,
-0.2423974871635437,
-0.13622872531414032,
0.9037446975708008,
-0.15429963171482086,
0.11694762855768204,
-0.34554919600486755,
-0.06994903087615967,
-0.12239920347929001,
-0.3915986716747284,
-0.7073603868484497,
-0.2428038865327835,
0.25564298033714294,
0.08951891213655472,
0.3128242790699005,
0.530114471912384,
0.4137660264968872,
0.4049054682254791,
-0.26571688055992126,
-0.07433196902275085,
-0.30518022179603577,
-0.07286958396434784,
0.12945455312728882,
-0.3257429003715515,
-0.4813804626464844,
0.19720274209976196,
0.609167754650116,
0.6685457825660706,
0.08273078501224518,
0.40200483798980713,
-0.31190505623817444,
0.4131070077419281,
-0.6631097793579102,
0.22238899767398834,
-0.4254171848297119,
0.09068401902914047,
-0.13085158169269562,
0.4661113917827606,
-0.13162752985954285,
-0.08981245756149292,
0.17557331919670105,
-0.6239752769470215,
0.3546377718448639,
-0.16948415338993073,
1.2408275604248047,
0.23683424293994904,
-0.2274375855922699,
-0.04121648892760277,
-0.3339056372642517,
0.7032479047775269,
-0.5577431321144104,
0.24617569148540497,
0.34361913800239563,
0.5655078291893005,
0.011265545152127743,
-1.0413641929626465,
-0.5791889429092407,
0.15832017362117767,
-0.0186409130692482,
-0.02459598518908024,
-0.16447196900844574,
0.20326006412506104,
0.5056430101394653,
0.4169197678565979,
-0.48528823256492615,
0.022601112723350525,
-0.7540626525878906,
-0.574732780456543,
0.7088966369628906,
-0.12905874848365784,
0.3935530483722687,
-0.29556581377983093,
-0.6744539737701416,
-0.32930317521095276,
-0.07174067199230194,
0.3786861300468445,
0.07454989105463028,
-0.11579116433858871,
-0.18520483374595642,
0.5031409859657288,
-0.3416723906993866,
0.9180930256843567,
0.28206107020378113,
-0.2782866656780243,
0.3432439863681793,
0.1426725834608078,
-0.37011945247650146,
-0.02191769890487194,
0.6544436812400818,
0.38350388407707214,
-0.02968544512987137,
0.13335618376731873,
-0.3400055170059204,
0.38383030891418457,
0.20912356674671173,
-1.1958905458450317,
-0.4367140829563141,
0.20539769530296326,
-0.39665257930755615,
-0.41282883286476135,
0.27146846055984497,
-0.5738993287086487,
-0.09135734289884567,
-0.2991499602794647,
0.6565256118774414,
-0.34909626841545105,
-0.06602713465690613,
0.19389337301254272,
-0.31706732511520386,
0.4723130762577057,
0.5443710684776306,
-0.612013578414917,
0.494365394115448,
0.5460386276245117,
0.7712021470069885,
-0.11396781355142593,
-0.13370846211910248,
-0.29412543773651123,
-0.1071145236492157,
-0.13524401187896729,
0.9668574333190918,
-0.4300166964530945,
0.04909346252679825,
-0.29832926392555237,
0.4872376620769501,
-0.476897656917572,
-0.581994354724884,
0.4489744305610657,
-0.5388944149017334,
0.4062822461128235,
0.06908713281154633,
-0.4507368505001068,
-0.7205825448036194,
0.11965994536876678,
-0.6372590065002441,
0.8226489424705505,
0.3515503704547882,
-0.5368823409080505,
0.4199330806732178,
-0.6979107856750488,
-0.12395027279853821,
0.014831781387329102,
-0.013948822394013405,
-0.7764750123023987,
-0.09099341183900833,
0.3387271463871002,
0.6119356751441956,
0.17140726745128632,
-0.002227345947176218,
-0.5059975981712341,
-0.2638639807701111,
0.030983831733465195,
0.2209452986717224,
0.993087112903595,
0.11801964789628983,
-0.4735058844089508,
0.5401986837387085,
-0.7485066056251526,
0.08872245997190475,
0.2927168607711792,
0.14927083253860474,
-0.014860744588077068,
-0.5439093112945557,
0.31314510107040405,
0.6633249521255493,
0.1913771629333496,
-0.8186536431312561,
0.02189737558364868,
-0.14918462932109833,
0.5745717883110046,
0.7125219106674194,
0.054437655955553055,
0.5209723114967346,
-0.32613056898117065,
0.43937236070632935,
0.15475262701511383,
0.38398388028144836,
-0.1476304829120636,
-0.5479506254196167,
-0.7283260822296143,
-0.5681835412979126,
0.10047455132007599,
0.32741254568099976,
-0.3529745042324066,
0.43446511030197144,
0.1411886215209961,
-0.8127197623252869,
-0.3778141438961029,
-0.02703123539686203,
0.314690500497818,
0.5933650135993958,
0.24806927144527435,
-0.5308132767677307,
-0.7365151643753052,
-0.9607552289962769,
0.21789200603961945,
0.14830875396728516,
-0.09646380692720413,
0.30194953083992004,
0.6404971480369568,
-0.5357557535171509,
0.7541435360908508,
-0.6907497048377991,
-0.2997726798057556,
-0.0782785415649414,
-0.15204797685146332,
0.04933301359415054,
0.6692387461662292,
0.6606712341308594,
-0.8759598731994629,
-0.15571065247058868,
-0.47235241532325745,
-0.5798009037971497,
0.014931617304682732,
0.19807088375091553,
-0.46872422099113464,
0.3652738034725189,
0.37498345971107483,
-0.7337299585342407,
0.6047905683517456,
0.5661215782165527,
-0.5045342445373535,
0.7115258574485779,
0.20711560547351837,
-0.039850544184446335,
-0.901041567325592,
0.12223567068576813,
0.23406730592250824,
-0.34350553154945374,
-0.4579245150089264,
0.08948296308517456,
0.053821370005607605,
-0.43692129850387573,
-0.5742937922477722,
0.6052283644676208,
-0.32934701442718506,
-0.116535983979702,
-0.19627663493156433,
-0.18533530831336975,
0.2902591824531555,
0.5873888731002808,
0.34225019812583923,
0.19389626383781433,
0.7570604085922241,
-0.628589928150177,
0.451189786195755,
0.46896466612815857,
-0.34510475397109985,
0.5350252985954285,
-0.8923549056053162,
0.09005457162857056,
-0.1546165496110916,
0.5755499601364136,
-1.0206531286239624,
-0.6393935084342957,
0.41422298550605774,
-0.4012610614299774,
0.3311254680156708,
-0.22498315572738647,
-0.14817027747631073,
-0.6270018815994263,
-0.4276491403579712,
0.5001004338264465,
0.5084843635559082,
-0.5853036046028137,
0.3964298665523529,
0.5800122618675232,
0.22791753709316254,
-0.2972134053707123,
-0.6642865538597107,
-0.2910444140434265,
-0.32243236899375916,
-1.1897863149642944,
0.6291645169258118,
-0.02872156724333763,
-0.0347764827311039,
-0.0180665273219347,
-0.37240681052207947,
-0.2191174179315567,
-0.17602601647377014,
0.4377197027206421,
0.5093858242034912,
-0.24204613268375397,
-0.31665095686912537,
-0.1746455281972885,
-0.2306702733039856,
0.12415114790201187,
-0.3979140818119049,
0.5195659399032593,
-0.27174901962280273,
-0.2635382413864136,
-0.6300380229949951,
0.04353020712733269,
0.42254123091697693,
-0.2553641200065613,
0.6389626264572144,
1.1179620027542114,
-0.7482940554618835,
-0.18668359518051147,
-0.8875684142112732,
-0.3499826490879059,
-0.45861485600471497,
0.2843206226825714,
-0.40631288290023804,
-0.8547214269638062,
0.7669820189476013,
0.06097159907221794,
-0.1268022060394287,
0.7811175584793091,
0.33036673069000244,
0.12764281034469604,
1.0091177225112915,
0.7004170417785645,
0.4358145296573639,
0.6798568964004517,
-0.6045161485671997,
-0.08475559204816818,
-0.9643014669418335,
-0.42276179790496826,
-0.04946191981434822,
-0.4452694356441498,
-0.409044086933136,
-0.5518325567245483,
0.4198637008666992,
0.39089274406433105,
-0.29224762320518494,
0.46339958906173706,
-0.8649799227714539,
0.21976707875728607,
0.5857685208320618,
0.23186258971691132,
-0.21365247666835785,
0.12051128596067429,
0.1832440048456192,
0.12624682486057281,
-0.5982482433319092,
-0.3890621066093445,
0.599141001701355,
0.4570251405239105,
0.6472687125205994,
-0.40639728307724,
0.6790421605110168,
-0.31417495012283325,
-0.016369732096791267,
-0.9281940460205078,
0.644607663154602,
-0.12411514669656754,
-0.4807426929473877,
-0.25260746479034424,
-0.19511955976486206,
-0.8342978358268738,
0.3823104798793793,
-0.16485007107257843,
-0.9913309812545776,
0.37940558791160583,
-0.03846512734889984,
-0.33581677079200745,
0.4129410982131958,
-0.8330349326133728,
1.3583099842071533,
0.09108898788690567,
-0.17168201506137848,
0.1667134314775467,
-0.7650597095489502,
0.439258873462677,
0.06832735240459442,
-0.07666092365980148,
-0.2742306590080261,
0.11374598741531372,
1.1925275325775146,
-0.6636937260627747,
1.0001006126403809,
-0.48380622267723083,
0.22134530544281006,
0.4180365800857544,
-0.12624479830265045,
0.14323464035987854,
-0.11869592219591141,
0.10124071687459946,
0.37308019399642944,
0.3620208501815796,
-0.540729284286499,
-0.48957914113998413,
0.5884609818458557,
-0.8164827823638916,
-0.4386204779148102,
-0.25793635845184326,
-0.32214635610580444,
0.12416800856590271,
0.29531198740005493,
0.4647713005542755,
0.45258715748786926,
-0.06319545954465866,
0.012246254831552505,
0.5793276429176331,
-0.173948734998703,
0.35210609436035156,
0.0943937748670578,
-0.20579327642917633,
-0.4301198124885559,
0.6883611679077148,
0.07911141216754913,
0.2510617971420288,
0.1529095321893692,
0.31373849511146545,
-0.29955053329467773,
-0.2011449635028839,
-0.5503988862037659,
0.46866297721862793,
-0.6528580784797668,
-0.33036789298057556,
-0.758477509021759,
-0.5097514986991882,
-0.7513916492462158,
-0.31391704082489014,
-0.4322632849216461,
-0.676845908164978,
-0.11849658191204071,
0.1193816065788269,
0.5476192235946655,
0.6293784379959106,
-0.12269677221775055,
0.39325714111328125,
-0.47898849844932556,
0.25560903549194336,
0.3989659547805786,
0.39870530366897583,
-0.26281172037124634,
-0.4238320291042328,
0.03732460364699364,
-0.02290388196706772,
-0.3983786404132843,
-0.6494091153144836,
0.3066653609275818,
0.14253166317939758,
0.5244864821434021,
0.43777069449424744,
-0.08345524966716766,
0.8265658020973206,
-0.14890173077583313,
0.7064672708511353,
0.21151457726955414,
-0.8019536733627319,
0.8009535670280457,
-0.14652259647846222,
0.2612636089324951,
0.2432502955198288,
0.3095354437828064,
-0.5930778384208679,
-0.02181754820048809,
-0.8193317651748657,
-0.9963600039482117,
1.0785988569259644,
-0.06169382110238075,
-0.10624634474515915,
0.18892474472522736,
0.35439547896385193,
0.07306116074323654,
0.082706019282341,
-0.6774554252624512,
-0.24307431280612946,
-0.4389544725418091,
0.02876918576657772,
0.016177715733647346,
-0.3889037072658539,
-0.0990978255867958,
-0.46963194012641907,
0.6875329613685608,
0.0566755048930645,
0.2911929190158844,
0.4108309745788574,
-0.3107646107673645,
-0.16472874581813812,
-0.3538818657398224,
0.5054954886436462,
0.6279708743095398,
-0.27392545342445374,
-0.01103120855987072,
0.015692101791501045,
-0.5888313055038452,
-0.19701984524726868,
0.4015829563140869,
-0.22444602847099304,
-0.04016147553920746,
0.3482820391654968,
1.1175888776779175,
0.0969427302479744,
-0.36364591121673584,
0.7349908947944641,
0.0852283388376236,
-0.44933873414993286,
-0.5099454522132874,
0.008472178131341934,
-0.07889183610677719,
0.20041914284229279,
0.02542886696755886,
0.25600942969322205,
0.19467246532440186,
-0.14755864441394806,
0.3083263337612152,
0.39999961853027344,
-0.5414143204689026,
-0.3326079547405243,
0.7557433247566223,
-0.10942855477333069,
-0.02997569553554058,
0.5364287495613098,
-0.24854116141796112,
-0.7910112142562866,
0.86734539270401,
0.6072422862052917,
0.8742255568504333,
-0.31645718216896057,
0.3612705171108246,
0.6718511581420898,
-0.06986063718795776,
0.07849825173616409,
-0.08154285699129105,
-0.1699579954147339,
-0.6151202321052551,
-0.43178656697273254,
-1.024846076965332,
-0.02961697243154049,
0.21159331500530243,
-0.5639677047729492,
0.38180285692214966,
-0.5599998235702515,
-0.10893277078866959,
0.27464473247528076,
0.14802035689353943,
-0.7766571044921875,
0.43598902225494385,
0.3637872040271759,
0.8385640382766724,
-0.8110277056694031,
0.4479879140853882,
1.2515082359313965,
-0.3986372649669647,
-0.7973645925521851,
-0.3699198365211487,
0.2083980143070221,
-1.0639712810516357,
0.5283359885215759,
0.6216498613357544,
0.060758884996175766,
-0.2656843364238739,
-0.5796182155609131,
-0.7721356749534607,
1.1918292045593262,
0.11120396852493286,
-0.0988982617855072,
-0.058424029499292374,
-0.10261127352714539,
0.2524165213108063,
-0.5411702990531921,
0.2835499942302704,
0.25485366582870483,
0.39519962668418884,
0.6709982752799988,
-0.7692244648933411,
0.3285524249076843,
-0.40641555190086365,
0.2130400687456131,
0.0066029466688632965,
-0.6092239022254944,
0.9541431069374084,
-0.26201868057250977,
-0.15853263437747955,
-0.03748154267668724,
0.4943222105503082,
0.24694643914699554,
0.4132344722747803,
0.8142914772033691,
0.8026590347290039,
0.5723938941955566,
-0.0703020766377449,
1.0142436027526855,
-0.04408977925777435,
0.3364402949810028,
0.6709574460983276,
0.25288379192352295,
0.5348345041275024,
0.2546933591365814,
-0.050617516040802,
0.6292722225189209,
0.9308313727378845,
-0.2865971028804779,
0.22832754254341125,
0.2577034831047058,
-0.18936365842819214,
-0.3717549741268158,
-0.06712750345468521,
-0.2814074456691742,
0.7265942096710205,
0.2836303412914276,
-0.32280221581459045,
-0.2584376633167267,
0.14783363044261932,
0.061350174248218536,
-0.2409331202507019,
-0.42644986510276794,
0.8662400841712952,
0.0072785657830536366,
-0.4438200294971466,
0.7060656547546387,
0.09370556473731995,
0.846741795539856,
-0.6244063377380371,
-0.07122543454170227,
0.08730997890233994,
0.25809603929519653,
-0.484294593334198,
-0.6162588596343994,
0.5714712738990784,
-0.42638862133026123,
-0.0942087471485138,
-0.09118600934743881,
1.1140599250793457,
-0.38251206278800964,
-0.6839361190795898,
0.17082247138023376,
0.19564445316791534,
0.3552948534488678,
-0.42588987946510315,
-0.8388516306877136,
0.3769693374633789,
-0.11167573183774948,
-0.45257502794265747,
0.24661988019943237,
0.294666051864624,
-0.23001593351364136,
0.4791073203086853,
0.6428471207618713,
-0.11119619756937027,
0.03910971060395241,
0.0007472282159142196,
1.0177849531173706,
-0.5178345441818237,
-0.4482337236404419,
-0.5766353607177734,
0.5437752604484558,
-0.24244250357151031,
-0.21091803908348083,
0.642119824886322,
0.5925882458686829,
1.1098613739013672,
-0.2304646074771881,
0.36906149983406067,
-0.1567225158214569,
0.2197035402059555,
-0.3019254207611084,
0.6294435858726501,
-0.574325442314148,
-0.26761162281036377,
-0.42786723375320435,
-1.0379292964935303,
-0.3724703788757324,
0.9861000776290894,
-0.541990339756012,
0.14459747076034546,
0.4483082890510559,
0.9536314606666565,
-0.27580636739730835,
-0.07336761057376862,
0.06599325686693192,
0.015638547018170357,
0.16683951020240784,
0.42771220207214355,
0.505456268787384,
-0.5476901531219482,
0.3767167329788208,
-0.8758668899536133,
-0.5912992358207703,
-0.11768513917922974,
-0.46273523569107056,
-0.8545673489570618,
-0.7881477475166321,
-0.5785291194915771,
-0.5307198762893677,
-0.1861124336719513,
0.5965093970298767,
1.2969077825546265,
-0.8191765546798706,
-0.08829629421234131,
0.026917513459920883,
0.10374642163515091,
-0.11265408247709274,
-0.31450873613357544,
0.5278284549713135,
-0.2573496997356415,
-0.8414648175239563,
-0.15715880692005157,
0.06450088322162628,
0.16910934448242188,
-0.06281518191099167,
0.1146790012717247,
0.017372049391269684,
-0.2581310570240021,
0.7749507427215576,
0.28061383962631226,
-0.7006515264511108,
-0.23994533717632294,
-0.10337164252996445,
0.06004825234413147,
0.07607603818178177,
0.5198042988777161,
-0.7254114747047424,
0.4132303297519684,
0.3645394742488861,
0.37606897950172424,
0.9763018488883972,
0.013987568207085133,
0.258091539144516,
-0.4683656096458435,
0.33440127968788147,
0.15826073288917542,
0.4509235918521881,
0.37724223732948303,
-0.3980502188205719,
0.3990826904773712,
0.4820643663406372,
-0.5353270769119263,
-0.6054738759994507,
0.27794620394706726,
-1.317876935005188,
-0.2620681822299957,
1.0188803672790527,
-0.15988881886005402,
-0.8182806968688965,
0.2620775103569031,
-0.41171836853027344,
0.30587345361709595,
-0.21688590943813324,
0.5523337125778198,
0.4313267767429352,
-0.3284792900085449,
-0.1954122632741928,
-0.2846359312534332,
0.6063851714134216,
0.07396115362644196,
-0.5158224701881409,
-0.4186999201774597,
0.5801853537559509,
0.5986425280570984,
0.2880423963069916,
0.6416252851486206,
-0.4613461494445801,
0.2501828968524933,
0.24176670610904694,
0.35621893405914307,
-0.2330475002527237,
0.035820987075567245,
-0.2892962694168091,
0.056170422583818436,
-0.3479783236980438,
-0.5481122732162476
] |
ckiplab/bert-base-chinese-ws | ckiplab | "2022-05-10T03:28:12Z" | 137,997 | 6 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"token-classification",
"zh",
"license:gpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2022-03-02T23:29:05Z" | ---
language:
- zh
thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
tags:
- pytorch
- token-classification
- bert
- zh
license: gpl-3.0
---
# CKIP BERT Base Chinese
This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
## Homepage
- https://github.com/ckiplab/ckip-transformers
## Contributers
- [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer)
## Usage
Please use BertTokenizerFast as tokenizer instead of AutoTokenizer.
請使用 BertTokenizerFast 而非 AutoTokenizer。
```
from transformers import (
BertTokenizerFast,
AutoModel,
)
tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
model = AutoModel.from_pretrained('ckiplab/bert-base-chinese-ws')
```
For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.
有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
| [
-0.3167250454425812,
-0.35928216576576233,
0.027822494506835938,
0.7947803139686584,
-0.4204804599285126,
0.05737711489200592,
-0.20292499661445618,
-0.2709733843803406,
-0.03451165929436684,
0.4488958418369293,
-0.3964790403842926,
-0.31017303466796875,
-0.6239327788352966,
0.021059466525912285,
-0.25569334626197815,
0.9017072916030884,
-0.20349739491939545,
0.3645796775817871,
0.4526885151863098,
0.1295270025730133,
-0.267768532037735,
-0.464597225189209,
-0.7265673875808716,
-0.6190502047538757,
-0.031015265733003616,
0.2725495994091034,
0.7035539746284485,
0.40632519125938416,
0.5121614336967468,
0.32841479778289795,
0.03656924143433571,
-0.09853848814964294,
-0.18628060817718506,
-0.2856377363204956,
-0.0039255437441170216,
-0.5454844832420349,
-0.3834907114505768,
-0.20528185367584229,
0.6908289194107056,
0.5086509585380554,
0.023028910160064697,
-0.008066949434578419,
0.21412412822246552,
0.37384021282196045,
-0.35947954654693604,
0.44287392497062683,
-0.6249524354934692,
0.32250019907951355,
-0.1701691895723343,
-0.08936011791229248,
-0.38616499304771423,
-0.26793068647384644,
0.20380441844463348,
-0.6517167091369629,
0.347339928150177,
-0.16721966862678528,
1.3837451934814453,
0.034175410866737366,
-0.3270496428012848,
-0.27167555689811707,
-0.7157601714134216,
1.1009974479675293,
-0.9111779928207397,
0.47182855010032654,
0.3614293038845062,
0.2922118008136749,
-0.06849120557308197,
-1.1253944635391235,
-0.6731675863265991,
-0.19460651278495789,
-0.22753052413463593,
0.3414158821105957,
0.13767027854919434,
-0.032758768647909164,
0.3907526135444641,
0.30715489387512207,
-0.6275548934936523,
0.21733279526233673,
-0.40188369154930115,
-0.4526078402996063,
0.5513362288475037,
-0.09488140046596527,
0.4877522885799408,
-0.4554523527622223,
-0.5707973837852478,
-0.3614164888858795,
-0.6453163027763367,
0.24879468977451324,
0.2804778218269348,
0.13588404655456543,
-0.4885598421096802,
0.603358805179596,
-0.02186300978064537,
0.31003332138061523,
0.18133950233459473,
-0.0941581279039383,
0.46941864490509033,
-0.2860282063484192,
-0.0847083106637001,
-0.14508187770843506,
0.9305707216262817,
0.24022524058818817,
0.10308621823787689,
0.0689925029873848,
-0.33449262380599976,
-0.341671884059906,
-0.24544502794742584,
-0.7954127192497253,
-0.6998035907745361,
0.2180004119873047,
-0.8179894089698792,
-0.2174372524023056,
0.16982688009738922,
-0.6359805464744568,
0.30337831377983093,
-0.25773969292640686,
0.43771469593048096,
-0.7324683666229248,
-0.6282262802124023,
-0.01678476482629776,
-0.4408505856990814,
0.854754626750946,
0.14131423830986023,
-1.2491425275802612,
0.026783131062984467,
0.6182051301002502,
0.7674462795257568,
0.13757239282131195,
-0.17730391025543213,
0.13528761267662048,
0.3879173994064331,
-0.21783114969730377,
0.5565623641014099,
-0.11141706258058548,
-0.74447101354599,
0.15690511465072632,
0.08903945982456207,
0.026067323982715607,
-0.4274132251739502,
0.8385976552963257,
-0.34024131298065186,
0.4213445782661438,
-0.2519169747829437,
-0.30371254682540894,
-0.06512895971536636,
0.09635403752326965,
-0.5331075191497803,
1.254413366317749,
0.2305554896593094,
-0.895209550857544,
0.2488303929567337,
-0.9109601974487305,
-0.620174765586853,
0.3386654555797577,
-0.10252394527196884,
-0.42461320757865906,
-0.16870059072971344,
0.23505736887454987,
0.33373531699180603,
-0.061538126319646835,
0.22256673872470856,
-0.030246233567595482,
-0.23318232595920563,
0.0024067717604339123,
-0.45636430382728577,
1.3930147886276245,
0.36210495233535767,
-0.33868056535720825,
0.18839527666568756,
-0.6920419931411743,
0.14580535888671875,
0.3223738670349121,
-0.26381567120552063,
-0.2584969401359558,
0.22124986350536346,
0.6029819846153259,
0.17289265990257263,
0.585641086101532,
-0.6218649744987488,
0.5040445923805237,
-0.5707611441612244,
0.7475523948669434,
0.8673198819160461,
-0.3416256904602051,
0.27892473340034485,
-0.1555924266576767,
-0.01055961474776268,
0.056888263672590256,
0.38946032524108887,
-0.13465307652950287,
-0.5319544076919556,
-1.1569993495941162,
-0.3589909076690674,
0.45224228501319885,
0.8087098598480225,
-1.169148325920105,
0.9488568902015686,
-0.25341224670410156,
-0.6608579158782959,
-0.3290161192417145,
-0.07975549250841141,
0.02715056762099266,
0.19081057608127594,
0.5744497776031494,
-0.3120191693305969,
-0.6161156892776489,
-1.063768982887268,
0.12710930407047272,
-0.5890378952026367,
-0.5961480736732483,
-0.01979602314531803,
0.5724741220474243,
-0.45898616313934326,
1.035332441329956,
-0.555564820766449,
-0.29411187767982483,
-0.33220165967941284,
0.5791620016098022,
0.35399329662323,
0.9322394728660583,
0.6545385122299194,
-1.0469938516616821,
-0.7326191067695618,
-0.23701657354831696,
-0.3611764907836914,
-0.06687337160110474,
-0.21903322637081146,
-0.15266355872154236,
0.05998259782791138,
0.07511239498853683,
-0.6382293701171875,
0.20785333216190338,
0.41410011053085327,
0.0012054957915097475,
0.9069826006889343,
-0.05787419155240059,
-0.2968657314777374,
-1.3721694946289062,
0.19445525109767914,
-0.20447057485580444,
-0.04047054052352905,
-0.43137598037719727,
-0.011371904984116554,
0.1899857372045517,
-0.09128623455762863,
-0.5606637001037598,
0.5707084536552429,
-0.36382800340652466,
0.32584571838378906,
-0.27306246757507324,
-0.17440441250801086,
-0.20786702632904053,
0.6343647241592407,
0.4218226671218872,
0.730351448059082,
0.6338749527931213,
-0.7367029190063477,
0.44611048698425293,
0.7031969428062439,
-0.27754682302474976,
-0.09413039684295654,
-0.978279173374176,
-0.03302164375782013,
0.3325885832309723,
0.18479076027870178,
-0.9970296621322632,
-0.04285869374871254,
0.6213243007659912,
-0.7847159504890442,
0.6291263103485107,
0.06637314707040787,
-0.9633385539054871,
-0.49080392718315125,
-0.4799642264842987,
0.34159204363822937,
0.720153272151947,
-0.654305636882782,
0.5184226036071777,
0.27888259291648865,
-0.21793228387832642,
-0.6308202147483826,
-0.8243350386619568,
-0.02899738773703575,
0.29147544503211975,
-0.5926250219345093,
0.6769570708274841,
-0.23488004505634308,
0.3595089912414551,
-0.004522714298218489,
0.08860950917005539,
-0.48444056510925293,
-0.08877263218164444,
-0.14603206515312195,
0.42863520979881287,
-0.1563195139169693,
-0.021827783435583115,
0.2062000036239624,
-0.3200395107269287,
0.14555945992469788,
-0.01765795424580574,
0.7624687552452087,
0.04599330201745033,
-0.3396652340888977,
-0.595676839351654,
0.28403592109680176,
0.21955031156539917,
-0.2693297564983368,
0.32575225830078125,
1.084393858909607,
-0.27073362469673157,
-0.19306637346744537,
-0.44608378410339355,
-0.16134172677993774,
-0.5748607516288757,
0.6378974914550781,
-0.4764484167098999,
-0.8479454517364502,
0.34093141555786133,
-0.11894955486059189,
0.21171818673610687,
0.7867358922958374,
0.6545103192329407,
-0.02969334088265896,
1.2932841777801514,
0.9605348110198975,
-0.5834643840789795,
0.4723605811595917,
-0.43248260021209717,
0.39105331897735596,
-0.9340069890022278,
0.2433266043663025,
-0.6609959006309509,
0.09701260924339294,
-0.8687219023704529,
-0.3005787134170532,
-0.016597039997577667,
0.16109229624271393,
-0.28621694445610046,
0.7480326890945435,
-0.8292266726493835,
-0.0640048235654831,
0.8234456777572632,
-0.3123334050178528,
-0.1130077987909317,
-0.10004062205553055,
-0.2880418002605438,
-0.027910126373171806,
-0.6159347891807556,
-0.6795410513877869,
0.7719552516937256,
0.6932831406593323,
0.7475078701972961,
-0.023727240040898323,
0.515018880367279,
-0.017965536564588547,
0.45153534412384033,
-0.8264082074165344,
0.5745725631713867,
-0.21993479132652283,
-0.8530070185661316,
-0.328885018825531,
-0.23561258614063263,
-0.8802891373634338,
0.2480800300836563,
-0.033976126462221146,
-0.9038769006729126,
0.15680894255638123,
0.06461938470602036,
-0.08753327280282974,
0.40456026792526245,
-0.4521920084953308,
0.767177164554596,
-0.5005610585212708,
0.11715323477983475,
-0.0908699780702591,
-0.753319501876831,
0.40509748458862305,
0.020926345139741898,
-0.09109421074390411,
-0.08007936924695969,
0.10716374963521957,
0.8036218881607056,
-0.2217000424861908,
0.8649261593818665,
-0.21180011332035065,
-0.07213276624679565,
0.33572596311569214,
-0.3074586093425751,
0.3261639475822449,
0.16596540808677673,
0.12797623872756958,
0.6307641863822937,
0.23173123598098755,
-0.39620527625083923,
-0.22627779841423035,
0.491821825504303,
-0.9533496499061584,
-0.4445739686489105,
-0.6117967367172241,
-0.24014773964881897,
0.13115465641021729,
0.5643531680107117,
0.588956892490387,
0.018118303269147873,
-0.008083334192633629,
0.2708148956298828,
0.34248998761177063,
-0.45600348711013794,
0.620184600353241,
0.5903196334838867,
-0.06873836368322372,
-0.47241440415382385,
0.972515881061554,
0.14590050280094147,
0.09091765433549881,
0.6686526536941528,
-0.041832085698843,
-0.25766289234161377,
-0.47225525975227356,
-0.352141410112381,
0.4010785222053528,
-0.44313061237335205,
-0.00988934375345707,
-0.3783564865589142,
-0.6157546639442444,
-0.681317150592804,
0.1449090540409088,
-0.37508782744407654,
-0.4181528389453888,
-0.3004337251186371,
0.01081213727593422,
-0.3434661626815796,
0.13340505957603455,
-0.2965356111526489,
0.4880389869213104,
-1.1109507083892822,
0.5230368971824646,
0.2176058143377304,
0.2612675428390503,
0.03697201609611511,
-0.25863638520240784,
-0.5789995193481445,
0.13806188106536865,
-0.9142901301383972,
-0.7686233520507812,
0.5826228857040405,
-0.0006083374610170722,
0.755365252494812,
0.6450494527816772,
0.19748443365097046,
0.5479099154472351,
-0.6852309703826904,
1.1771321296691895,
0.3956216275691986,
-1.2659540176391602,
0.4209325909614563,
-0.1881544142961502,
0.3518926799297333,
0.30429694056510925,
0.5175564885139465,
-0.8220943808555603,
-0.3601324260234833,
-0.5109796524047852,
-1.2146483659744263,
0.6914968490600586,
0.3914436995983124,
0.3638957738876343,
-0.009651390835642815,
0.002038181060925126,
-0.03238051012158394,
0.17421838641166687,
-1.1543830633163452,
-0.5812845230102539,
-0.5566309690475464,
-0.3328418731689453,
0.248274028301239,
-0.4289194643497467,
0.08780957758426666,
-0.23719193041324615,
1.133322834968567,
0.06730873882770538,
0.8627957105636597,
0.5012705326080322,
-0.05130911245942116,
-0.13880784809589386,
0.08794737607240677,
0.494373619556427,
0.5773945450782776,
-0.28220683336257935,
-0.2480974793434143,
0.09462600201368332,
-0.6700981259346008,
-0.24196560680866241,
0.4246424436569214,
-0.4037761986255646,
0.467672735452652,
0.5294656753540039,
0.6525197625160217,
0.1435895562171936,
-0.4390292167663574,
0.5760630369186401,
-0.17335273325443268,
-0.25635048747062683,
-1.017473578453064,
-0.0417713038623333,
0.04733972251415253,
0.022412752732634544,
0.7389771938323975,
-0.17136095464229584,
0.145559161901474,
-0.19466346502304077,
0.2248084992170334,
0.45038220286369324,
-0.5446268916130066,
-0.4806811213493347,
0.6949105262756348,
0.5067014098167419,
-0.27947351336479187,
0.8920318484306335,
-0.0622032955288887,
-1.008875846862793,
0.7065058350563049,
0.48654645681381226,
1.063767671585083,
-0.35517656803131104,
0.04657377302646637,
0.6701539754867554,
0.5220173001289368,
0.06416606903076172,
0.26231372356414795,
-0.2827035188674927,
-0.9717643857002258,
-0.551179826259613,
-0.3882027566432953,
-0.4770891070365906,
0.443605899810791,
-0.5358374118804932,
0.6114177107810974,
-0.47980934381484985,
-0.130995512008667,
-0.06577830761671066,
-0.04883795976638794,
-0.5167604684829712,
0.15961839258670807,
0.1297086477279663,
1.2082858085632324,
-0.6685818433761597,
1.2439829111099243,
0.6099976897239685,
-0.5591650605201721,
-0.8789479732513428,
0.17897295951843262,
-0.4152330458164215,
-0.7719741463661194,
1.1012179851531982,
0.3647472560405731,
0.2851034700870514,
0.07766695320606232,
-0.7845677137374878,
-0.8195786476135254,
1.0633549690246582,
-0.16571936011314392,
-0.35368812084198,
-0.10675840824842453,
0.36061322689056396,
0.41854920983314514,
-0.04203898459672928,
0.4563974440097809,
0.07250181585550308,
0.6625937819480896,
-0.17573365569114685,
-1.2124444246292114,
-0.23308305442333221,
-0.2882656455039978,
0.06296446919441223,
0.256502628326416,
-0.8969889879226685,
0.8856955170631409,
0.10473748296499252,
-0.34443390369415283,
0.3991279602050781,
0.9614641070365906,
0.007285187486559153,
0.11866800487041473,
0.6013039946556091,
0.47538936138153076,
-0.031999535858631134,
-0.24017569422721863,
0.5133875012397766,
-0.5946242809295654,
0.834807813167572,
0.8664379715919495,
-0.07658256590366364,
0.7880027294158936,
0.37787139415740967,
-0.5423624515533447,
0.583824872970581,
0.722991943359375,
-0.6346461176872253,
0.658013641834259,
0.022368721663951874,
-0.10513719171285629,
-0.10647440701723099,
0.13345779478549957,
-0.6017661690711975,
0.24973736703395844,
0.33065131306648254,
-0.3693714141845703,
-0.1577962040901184,
-0.1920488476753235,
-0.022961167618632317,
-0.44386520981788635,
-0.057131078094244,
0.5415314435958862,
0.13972273468971252,
-0.3268367052078247,
0.5142347812652588,
0.3781338036060333,
1.032380223274231,
-1.1301552057266235,
-0.3662627041339874,
0.27931731939315796,
0.15337133407592773,
-0.057825133204460144,
-0.6638651490211487,
0.1539258509874344,
-0.35709500312805176,
-0.16558250784873962,
-0.1543806493282318,
0.8390915393829346,
-0.3457573652267456,
-0.549946129322052,
0.45061999559402466,
0.08606959134340286,
0.13023188710212708,
0.3123305141925812,
-1.2048782110214233,
-0.34357014298439026,
0.3783108592033386,
-0.45686739683151245,
0.16438370943069458,
0.17192262411117554,
0.09932306408882141,
0.6807845234870911,
0.9217905402183533,
0.09504546970129013,
-0.1440141648054123,
-0.04052866995334625,
0.9451180100440979,
-0.6040316820144653,
-0.5931659936904907,
-0.7139092683792114,
0.7934793829917908,
-0.2589931786060333,
-0.37626418471336365,
0.7397873401641846,
0.7445386052131653,
1.1832756996154785,
-0.3709578514099121,
1.0829802751541138,
-0.41724205017089844,
0.8001144528388977,
-0.20212092995643616,
0.8360086679458618,
-0.42836445569992065,
-0.15209992229938507,
-0.3578237295150757,
-0.9166029095649719,
-0.2244337499141693,
0.9153760671615601,
-0.1360936462879181,
-0.07507231831550598,
0.7256344556808472,
0.6221097111701965,
0.01693066954612732,
-0.2271847426891327,
0.1614985316991806,
0.18598957359790802,
0.6580930948257446,
0.459165096282959,
0.584377646446228,
-0.5423672795295715,
0.6646541357040405,
-0.6800770163536072,
-0.22301478683948517,
-0.13641376793384552,
-0.7342643141746521,
-0.7392094731330872,
-0.6401795744895935,
-0.28377339243888855,
-0.10888249427080154,
-0.27942436933517456,
0.8706263899803162,
0.8016737103462219,
-1.105162262916565,
-0.46615108847618103,
-0.011923352256417274,
0.11050926148891449,
-0.36773985624313354,
-0.36529406905174255,
0.6613119840621948,
-0.4575416147708893,
-1.197235107421875,
0.009466108866035938,
0.08542082458734512,
0.11888888478279114,
-0.3400547206401825,
0.005697379354387522,
-0.29144489765167236,
-0.1833234429359436,
0.45660120248794556,
0.46296799182891846,
-0.7837929129600525,
-0.3385864496231079,
-0.023080626502633095,
-0.22248485684394836,
0.11032924801111221,
0.6494956612586975,
-0.23915977776050568,
0.3799106776714325,
0.7005735635757446,
0.28493890166282654,
0.3648667335510254,
-0.16388435661792755,
0.7361269593238831,
-0.5305753946304321,
0.30699408054351807,
0.3387905955314636,
0.5849077701568604,
0.329955130815506,
-0.23170755803585052,
0.506695568561554,
0.45741942524909973,
-0.7372534275054932,
-0.6165785789489746,
0.35447683930397034,
-1.0814300775527954,
-0.3068149983882904,
0.9539963603019714,
-0.2939271628856659,
-0.13062338531017303,
-0.11920969188213348,
-0.6214012503623962,
0.6720733046531677,
-0.31258702278137207,
0.6318522691726685,
0.8993251919746399,
-0.0629589855670929,
-0.06524072587490082,
-0.5340306758880615,
0.42770811915397644,
0.45416533946990967,
-0.35867711901664734,
-0.3583812415599823,
0.010009600780904293,
0.19901923835277557,
0.6450729966163635,
0.4597051739692688,
-0.1302988976240158,
0.11404693871736526,
-0.17639125883579254,
0.6298857927322388,
0.01679813489317894,
0.20866303145885468,
0.0718572735786438,
-0.19233934581279755,
0.039984237402677536,
-0.46235930919647217
] |
bennyguo/zero123-xl-diffusers | bennyguo | "2023-08-25T04:43:32Z" | 137,932 | 5 | diffusers | [
"diffusers",
"arxiv:2303.11328",
"license:mit",
"has_space",
"diffusers:Zero123Pipeline",
"region:us"
] | null | "2023-08-23T13:37:15Z" | ---
license: mit
---
# Uses
_Note: This section is originally taken from the [Stable Diffusion v2 model card](https://huggingface.co/stabilityai/stable-diffusion-2), but applies in the same way to Zero-1-to-3._
## Direct Use
The model is intended for research purposes only. Possible research areas and tasks include:
- Safe deployment of large-scale models.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism.
- The model cannot render legible text.
- Faces and people in general may not be parsed or generated properly.
- The autoencoding part of the model is lossy.
- Stable Diffusion was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, Stability AI has filtered the dataset using LAION's NSFW detector.
- Zero-1-to-3 was subsequently finetuned on a subset of the large-scale dataset [Objaverse](https://objaverse.allenai.org/), which might also potentially contain inappropriate content. To partially mitigate this, our demo applies a safety check to every uploaded image.
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions.
Images and concepts from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as Western cultures are often overrepresented.
Stable Diffusion mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent.
### Safety Module
The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers.
This checker works by checking model inputs against known hard-coded NSFW concepts.
Specifically, the checker compares the class probability of harmful concepts in the embedding space of the uploaded input images.
The concepts are passed into the model with the image and compared to a hand-engineered weight for each NSFW concept.
## Citation
```
@misc{liu2023zero1to3,
title={Zero-1-to-3: Zero-shot One Image to 3D Object},
author={Ruoshi Liu and Rundi Wu and Basile Van Hoorick and Pavel Tokmakov and Sergey Zakharov and Carl Vondrick},
year={2023},
eprint={2303.11328},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
| [
-0.3385634124279022,
-0.9378726482391357,
0.3477683663368225,
0.2731204926967621,
-0.29719552397727966,
-0.6174255609512329,
0.3197462856769562,
-0.518235981464386,
-0.1789499819278717,
0.5689391493797302,
-0.28841668367385864,
-0.4713050425052643,
-0.6525837182998657,
-0.08806192874908447,
-0.6698644161224365,
0.9272042512893677,
-0.09692513197660446,
-0.08308593928813934,
-0.22274282574653625,
-0.1059778481721878,
-0.26428350806236267,
-0.16236576437950134,
-0.789561927318573,
-0.21307548880577087,
0.4185236990451813,
0.16300924122333527,
0.811055600643158,
0.5500482320785522,
0.40853914618492126,
0.23504294455051422,
-0.22469820082187653,
-0.29091548919677734,
-0.868707001209259,
0.000939613557420671,
-0.15784215927124023,
-0.1973336637020111,
-0.5119669437408447,
0.1911516934633255,
0.5724166631698608,
0.3453547954559326,
-0.16904784739017487,
0.09363041818141937,
-0.09945046901702881,
0.5483574271202087,
-0.6795705556869507,
-0.2991274297237396,
-0.256864070892334,
0.3413620591163635,
-0.37893354892730713,
0.30375292897224426,
-0.3401094079017639,
-0.27350446581840515,
0.020030543208122253,
-0.6520049571990967,
0.2798600196838379,
-0.3500669598579407,
1.0349973440170288,
0.26543256640434265,
-0.4312267005443573,
0.08441569656133652,
-0.7893669009208679,
0.5818511247634888,
-0.6007425785064697,
0.28315475583076477,
0.617089033126831,
-0.017810093238949776,
-0.0013928958214819431,
-0.6872593760490417,
-0.5912801623344421,
-0.010189468041062355,
0.07921266555786133,
0.2974814772605896,
-0.3595900535583496,
-0.13395605981349945,
0.49982959032058716,
0.09039945155382156,
-0.5922739505767822,
-0.03358802571892738,
-0.6519574522972107,
-0.03783838823437691,
0.6679229140281677,
-0.00718836160376668,
0.4110502600669861,
-0.21765853464603424,
-0.537276566028595,
-0.03236960992217064,
-0.6161133646965027,
-0.1257975697517395,
0.4080325663089752,
-0.39170336723327637,
-0.32149940729141235,
0.5668371915817261,
-0.031154217198491096,
0.5083633065223694,
0.0905957818031311,
-0.18812711536884308,
0.3443390130996704,
-0.22269324958324432,
-0.19637788832187653,
-0.4210371673107147,
0.8149855732917786,
0.8124485015869141,
0.11780866235494614,
0.05697382241487503,
-0.015251968055963516,
0.10190954059362411,
0.36183780431747437,
-1.118770956993103,
-0.17295469343662262,
0.12833687663078308,
-0.6236611008644104,
-0.6219791769981384,
-0.0567421019077301,
-0.887859582901001,
-0.31830185651779175,
0.2824639678001404,
0.39936479926109314,
-0.30762407183647156,
-0.6807618737220764,
0.11191389709711075,
-0.43387165665626526,
0.14745751023292542,
0.31662145256996155,
-0.49724915623664856,
0.1921633929014206,
0.13748793303966522,
1.033290147781372,
-0.25107425451278687,
-0.07056091725826263,
0.0749514028429985,
0.21111366152763367,
-0.42320892214775085,
0.5502170324325562,
-0.20013102889060974,
-0.5741875767707825,
-0.06083718687295914,
0.2904844284057617,
0.37727102637290955,
-0.462611585855484,
0.607288658618927,
-0.4392954409122467,
0.2012300044298172,
-0.049612075090408325,
-0.30059972405433655,
-0.33462247252464294,
0.06142664700746536,
-0.6977696418762207,
0.9085028767585754,
0.24260365962982178,
-0.8812864422798157,
0.2200980931520462,
-0.6250933408737183,
-0.3560095727443695,
-0.05060090869665146,
0.10278332233428955,
-0.6440223455429077,
-0.18358886241912842,
-0.2414710819721222,
0.4887376129627228,
0.063798688352108,
0.25003519654273987,
-0.5361768007278442,
-0.2983146905899048,
-0.007762376684695482,
-0.5467442274093628,
1.0636942386627197,
0.4208972454071045,
-0.42377498745918274,
-0.003922331612557173,
-0.5309057235717773,
-0.38927629590034485,
0.5337139368057251,
-0.07032949477434158,
-0.39849144220352173,
-0.006131499074399471,
0.23248077929019928,
0.2536799907684326,
-0.04699927195906639,
-0.5140801668167114,
-0.20178961753845215,
-0.10473315417766571,
0.2988354563713074,
0.6790887117385864,
0.27355271577835083,
0.6177287697792053,
-0.5080750584602356,
0.5556310415267944,
0.30285292863845825,
0.4280529320240021,
-0.025858242064714432,
-0.8608872294425964,
-0.5714548230171204,
-0.08334553986787796,
-0.03128065913915634,
0.4699956774711609,
-0.768670916557312,
0.1378747671842575,
0.19912807643413544,
-0.5488826036453247,
-0.0977172702550888,
0.04140889272093773,
0.311676025390625,
0.6112377047538757,
0.2650337517261505,
-0.3442767560482025,
-0.2485538125038147,
-0.7219194173812866,
0.3646651804447174,
-0.11596409976482391,
0.03713071718811989,
0.19610106945037842,
0.5810125470161438,
-0.31657931208610535,
0.5409194231033325,
-0.4631202816963196,
-0.26340991258621216,
0.22032491862773895,
0.14809207618236542,
0.008024460636079311,
0.6933366060256958,
0.864458441734314,
-1.0827010869979858,
-0.47533154487609863,
-0.22444342076778412,
-1.1279758214950562,
0.04673214629292488,
0.023287521675229073,
-0.4524795413017273,
0.250455766916275,
0.3433239758014679,
-0.6315779685974121,
0.6864613890647888,
0.5069049596786499,
-0.42149388790130615,
0.38716134428977966,
-0.18184636533260345,
-0.04498478025197983,
-0.9054352045059204,
0.09254895150661469,
0.5038199424743652,
-0.34267932176589966,
-0.8061676025390625,
0.4417559802532196,
-0.009297912009060383,
-0.13587352633476257,
-0.8361356854438782,
0.6817618608474731,
-0.2807113230228424,
0.5075262188911438,
-0.2998247444629669,
0.1682913601398468,
0.09792473912239075,
0.09082245081663132,
0.2950420379638672,
0.5202768445014954,
0.7784818410873413,
-0.6313654184341431,
0.00601889519020915,
0.16865788400173187,
-0.15572838485240936,
0.6226019263267517,
-0.776556134223938,
0.16811618208885193,
-0.4857320785522461,
0.21073347330093384,
-0.7618905305862427,
-0.23586933314800262,
0.643291175365448,
-0.2755752503871918,
0.32500535249710083,
-0.15732735395431519,
-0.3131880462169647,
-0.39510107040405273,
-0.45843231678009033,
0.49891558289527893,
0.7905173897743225,
-0.29789021611213684,
0.3009050786495209,
0.5554381012916565,
0.23325426876544952,
-0.6399856805801392,
-0.6909107565879822,
-0.23035025596618652,
-0.4677794277667999,
-0.8037833571434021,
0.2448418289422989,
-0.16939595341682434,
-0.28993043303489685,
0.1365811675786972,
-0.06669645756483078,
-0.06913568079471588,
0.2036610096693039,
0.4516508877277374,
0.280714750289917,
0.08766477555036545,
-0.2432553470134735,
0.1471785604953766,
-0.023589905351400375,
0.13498404622077942,
-0.04475446790456772,
0.24163444340229034,
0.13742287456989288,
-0.18887068331241608,
-0.4743824303150177,
0.5127714276313782,
0.5387565493583679,
0.2216058373451233,
0.743630588054657,
0.982519268989563,
-0.6726484298706055,
-0.043896984308958054,
-0.4022093415260315,
-0.11372924596071243,
-0.4668963849544525,
0.3709997534751892,
-0.09822391718626022,
-0.6513199806213379,
0.5699244737625122,
0.09868627041578293,
-0.08126350492238998,
0.5683131814002991,
0.5820253491401672,
-0.16313272714614868,
1.0485312938690186,
0.6600198745727539,
0.1968928426504135,
0.5241596698760986,
-0.6552832722663879,
0.0042164805345237255,
-0.9333291053771973,
-0.38783973455429077,
-0.31151628494262695,
-0.17808876931667328,
-0.5135044455528259,
-0.5777750611305237,
0.30704113841056824,
0.40808728337287903,
-0.35570457577705383,
0.2131250649690628,
-0.4742233455181122,
0.48205307126045227,
0.1677781343460083,
0.3344971835613251,
0.028165196999907494,
0.0514192096889019,
0.11427543312311172,
-0.000357846642145887,
-0.6357458233833313,
-0.5021774768829346,
0.9667669534683228,
0.6113541722297668,
0.9937731027603149,
0.3390898108482361,
0.4358544647693634,
0.4611356854438782,
0.6638770699501038,
-0.5823322534561157,
0.5588791370391846,
-0.4239305853843689,
-0.9703224301338196,
-0.1996687650680542,
-0.3471657335758209,
-0.7723373770713806,
0.23036646842956543,
-0.16677962243556976,
-0.6594658493995667,
0.5591437816619873,
0.10679364949464798,
-0.1172393262386322,
0.3678063750267029,
-0.5904335379600525,
0.8200808167457581,
-0.055386465042829514,
-0.8084779977798462,
-0.10903450846672058,
-0.6084620356559753,
0.6202422976493835,
-0.14636720716953278,
0.30669158697128296,
-0.18296179175376892,
0.08231030404567719,
0.770866870880127,
-0.2302558571100235,
1.045291781425476,
-0.3590623438358307,
-0.0989382341504097,
0.3688555955886841,
0.20917785167694092,
0.1796264797449112,
0.31177714467048645,
-0.28917068243026733,
0.6788686513900757,
0.06855787336826324,
-0.3217097818851471,
-0.08797882497310638,
0.7042849063873291,
-1.0270367860794067,
-0.5899539589881897,
-0.4843047857284546,
-0.2565805912017822,
0.5033189654350281,
0.3790464699268341,
0.636075496673584,
0.23520612716674805,
-0.2877213954925537,
0.2201177030801773,
0.7837544679641724,
-0.25322893261909485,
0.28306689858436584,
0.38948023319244385,
-0.49044257402420044,
-0.30875155329704285,
0.676179826259613,
0.10163577646017075,
0.522137463092804,
-0.1667817384004593,
0.27132588624954224,
-0.20918244123458862,
-0.397122323513031,
-0.5386686325073242,
0.171892449259758,
-0.8716536164283752,
-0.26632171869277954,
-0.6658051609992981,
-0.3851867914199829,
-0.39100444316864014,
-0.1839253157377243,
-0.12698639929294586,
-0.2131010740995407,
-0.7060946822166443,
-0.1751982569694519,
0.22416222095489502,
0.6397796273231506,
-0.460302472114563,
0.20278218388557434,
-0.358799546957016,
0.5403734445571899,
0.20322178304195404,
0.41577449440956116,
-0.00526889692991972,
-0.5226465463638306,
-0.009228894487023354,
0.13793505728244781,
-0.5481483340263367,
-0.999218225479126,
0.1742011308670044,
0.04423841834068298,
0.5530074834823608,
0.8450744152069092,
0.05781722441315651,
0.42033734917640686,
-0.3775477111339569,
1.0507615804672241,
0.28706738352775574,
-0.6568573117256165,
0.6093127727508545,
-0.6107894778251648,
0.11969082057476044,
0.29918721318244934,
0.7850164771080017,
-0.3375787138938904,
-0.35749393701553345,
-0.670357346534729,
-0.8694618940353394,
0.7670555114746094,
0.4406093955039978,
0.4583115875720978,
-0.2523479759693146,
0.6565089821815491,
-0.042972855269908905,
-0.14331208169460297,
-1.1410789489746094,
-0.5535895824432373,
-0.5217334628105164,
0.25100284814834595,
0.19059327244758606,
-0.49528616666793823,
-0.35736414790153503,
-0.35066884756088257,
0.9167443513870239,
0.08483249694108963,
0.35547205805778503,
0.21764197945594788,
0.09191811829805374,
-0.6247493624687195,
-0.2950773537158966,
0.5614436864852905,
0.4391773045063019,
-0.38289690017700195,
0.022458475083112717,
-0.034445080906152725,
-0.6066320538520813,
0.24202509224414825,
-0.022497626021504402,
-0.7581895589828491,
-0.07441944628953934,
-0.09732989221811295,
0.775103747844696,
-0.20782719552516937,
-0.3197796046733856,
0.6219956278800964,
-0.20674993097782135,
-0.41092267632484436,
-0.4417589604854584,
0.2666877210140228,
-0.07288415729999542,
0.12031065672636032,
0.06102887913584709,
0.5140900611877441,
0.3169296979904175,
-0.4641159474849701,
0.16671128571033478,
0.5197678804397583,
-0.3518639802932739,
-0.2616555690765381,
1.1002551317214966,
0.0918920710682869,
-0.356980562210083,
0.530946671962738,
-0.4528122544288635,
-0.14318501949310303,
0.6528657078742981,
0.8387685418128967,
0.7783408761024475,
-0.26102975010871887,
0.6990866661071777,
0.6859249472618103,
0.3473784029483795,
-0.4362315535545349,
0.13157100975513458,
0.08004191517829895,
-0.9785410761833191,
-0.07909324765205383,
-0.472035676240921,
-0.10101529210805893,
0.34880325198173523,
-0.6747797131538391,
0.35440289974212646,
-0.5830903649330139,
-0.4915957748889923,
-0.04008791595697403,
-0.5191768407821655,
-0.5047304034233093,
0.12577521800994873,
0.3983879089355469,
0.7169924974441528,
-1.0753543376922607,
0.7164251804351807,
0.6946614384651184,
-0.6274102330207825,
-0.4810848534107208,
0.09503434598445892,
0.15577147901058197,
-0.34018391370773315,
0.38436809182167053,
0.09802398085594177,
-0.1486755758523941,
-0.11672227829694748,
-0.899420976638794,
-0.936690092086792,
1.0374259948730469,
0.227385476231575,
-0.18181467056274414,
0.09899446368217468,
-0.10946410894393921,
0.5711739659309387,
-0.14695757627487183,
0.21280452609062195,
0.20775043964385986,
0.3934410512447357,
0.3723216652870178,
-0.36971768736839294,
0.23922371864318848,
-0.45405313372612,
0.4135570526123047,
-0.11291421949863434,
-0.8011080622673035,
0.8766620755195618,
-0.22759036719799042,
-0.3585596978664398,
0.23248271644115448,
0.4407505691051483,
0.252004474401474,
0.3140440583229065,
0.5068790316581726,
0.7561299800872803,
0.42107075452804565,
-0.07609027624130249,
1.1187527179718018,
0.018161986023187637,
0.4322802424430847,
0.7730028629302979,
-0.2736468017101288,
0.6341781616210938,
0.289661705493927,
-0.0864429771900177,
0.5019060969352722,
0.4919189512729645,
-0.26312536001205444,
0.7498324513435364,
0.00030195960425771773,
-0.2014474868774414,
-0.09040577709674835,
-0.17342738807201385,
-0.5146825909614563,
0.14732204377651215,
0.41147083044052124,
-0.23287934064865112,
-0.2406909316778183,
0.21367013454437256,
0.21352654695510864,
-0.24119524657726288,
0.05867883190512657,
0.582514226436615,
0.15434382855892181,
-0.23143625259399414,
0.5291082262992859,
0.1665114462375641,
0.7609308362007141,
-0.4657827317714691,
-0.16387467086315155,
-0.21763582527637482,
0.09308124333620071,
-0.3325018286705017,
-0.8406617641448975,
0.48856207728385925,
0.09897606819868088,
-0.0816374123096466,
-0.3268321454524994,
0.9774964451789856,
-0.14508680999279022,
-0.6032726764678955,
0.472859650850296,
0.2689705491065979,
0.3248516917228699,
0.14946585893630981,
-0.8780832886695862,
0.08789665251970291,
-0.05113676190376282,
-0.32609009742736816,
0.2742132842540741,
0.21981219947338104,
-0.025934338569641113,
0.5851100087165833,
0.6221336126327515,
-0.04930311441421509,
-0.0880374163389206,
0.14437375962734222,
0.7255822420120239,
-0.24987825751304626,
-0.24375389516353607,
-0.7019655108451843,
0.7899339199066162,
-0.09561411291360855,
-0.24059464037418365,
0.818795382976532,
0.40731459856033325,
0.949370801448822,
-0.045434802770614624,
0.7032457590103149,
-0.33755770325660706,
-0.05015411600470543,
-0.34154650568962097,
1.0186758041381836,
-0.7701606154441833,
0.04695955291390419,
-0.4817916750907898,
-0.8457788825035095,
-0.4102853536605835,
1.1033798456192017,
-0.04241722449660301,
0.16576877236366272,
0.4042658805847168,
0.7955858111381531,
-0.05281602591276169,
-0.11795272678136826,
0.4450388550758362,
0.36948665976524353,
0.2887892723083496,
-0.05877223238348961,
0.9052958488464355,
-0.5751768946647644,
0.15368379652500153,
-0.7041875720024109,
-0.3251805007457733,
-0.014971132390201092,
-0.9104527831077576,
-0.9057122468948364,
-0.5301898121833801,
-0.6757577657699585,
-0.7691115140914917,
-0.05262671411037445,
0.25408393144607544,
1.0393414497375488,
-0.6050757169723511,
-0.07535187155008316,
-0.10271798819303513,
0.24018222093582153,
-0.12099174410104752,
-0.29586681723594666,
0.03241785615682602,
0.36366546154022217,
-0.609751284122467,
0.00480263028293848,
0.15838131308555603,
0.42189374566078186,
-0.6904281377792358,
-0.09614899009466171,
-0.28382769227027893,
-0.09630870074033737,
0.6611232757568359,
0.1564582735300064,
-0.5634847283363342,
-0.2151496261358261,
-0.06974069774150848,
0.09791157394647598,
-0.09871448576450348,
0.14539313316345215,
-0.4452921748161316,
0.4570348262786865,
0.5162108540534973,
0.0015210924902930856,
0.8398265242576599,
0.08663437515497208,
0.11361198872327805,
-0.5303535461425781,
0.25346413254737854,
0.04723860323429108,
0.3981183171272278,
0.2607686221599579,
-0.7040709853172302,
0.625078022480011,
0.4448232054710388,
-0.5806718468666077,
-0.6826942563056946,
0.19758090376853943,
-0.9595305919647217,
-0.29402241110801697,
1.298439621925354,
-0.22604233026504517,
-0.25811710953712463,
-0.08086061477661133,
-0.07059125602245331,
0.18911094963550568,
-0.347038209438324,
0.7424375414848328,
0.5250769853591919,
-0.038580797612667084,
-0.36045849323272705,
-0.7648696303367615,
0.3839624226093292,
-0.017257416620850563,
-0.6097153425216675,
-0.31192103028297424,
0.6024230718612671,
0.7621075510978699,
0.3429771363735199,
0.8355675339698792,
-0.4048047959804535,
0.23615093529224396,
-0.023645691573619843,
0.05729204788804054,
0.09509224444627762,
-0.2825377881526947,
-0.470005065202713,
0.16408197581768036,
-0.22674274444580078,
0.07586999982595444
] |
DionTimmer/controlnet_qrcode-control_v1p_sd15 | DionTimmer | "2023-06-15T23:34:29Z" | 137,896 | 189 | diffusers | [
"diffusers",
"stable-diffusion",
"controlnet",
"image-to-image",
"en",
"license:openrail++",
"has_space",
"diffusers:ControlNetModel",
"region:us"
] | image-to-image | "2023-06-15T21:50:00Z" | ---
tags:
- stable-diffusion
- controlnet
- image-to-image
license: openrail++
language:
- en
library_name: diffusers
pipeline_tag: image-to-image
---
# QR Code Conditioned ControlNet Models for Stable Diffusion 1.5
![1](https://www.dropbox.com/s/fxyuqpot2z2ftty/5.png?raw=1)
## Model Description
This repo holds the safetensors & diffusers versions of the QR code conditioned ControlNet for Stable Diffusion v1.5.
The Stable Diffusion 2.1 version is marginally more effective, as it was developed to address my specific needs. However, this 1.5 version model was also trained on the same dataset for those who are using the older version.
## How to use with Diffusers
```bash
pip -q install diffusers transformers accelerate torch xformers
```
```python
import torch
from PIL import Image
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.utils import load_image
controlnet = ControlNetModel.from_pretrained("DionTimmer/controlnet_qrcode-control_v1p_sd15",
torch_dtype=torch.float16)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
pipe.enable_xformers_memory_efficient_attention()
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
def resize_for_condition_image(input_image: Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
# play with guidance_scale, controlnet_conditioning_scale and strength to make a valid QR Code Image
# qr code image
source_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/6064e095abd8d3692e3e2ed6/A_RqHaAM6YHBodPLwqtjn.png")
# initial image, anything
init_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/noauth/KfMBABpOwIuNolv1pe3qX.jpeg")
condition_image = resize_for_condition_image(source_image, 768)
init_image = resize_for_condition_image(init_image, 768)
generator = torch.manual_seed(123121231)
image = pipe(prompt="a bilboard in NYC with a qrcode",
negative_prompt="ugly, disfigured, low quality, blurry, nsfw",
image=init_image,
control_image=condition_image,
width=768,
height=768,
guidance_scale=20,
controlnet_conditioning_scale=1.5,
generator=generator,
strength=0.9,
num_inference_steps=150,
)
image.images[0]
```
## Performance and Limitations
These models perform quite well in most cases, but please note that they are not 100% accurate. In some instances, the QR code shape might not come through as expected. You can increase the ControlNet weight to emphasize the QR code shape. However, be cautious as this might negatively impact the style of your output.**To optimize for scanning, please generate your QR codes with correction mode 'H' (30%).**
To balance between style and shape, a gentle fine-tuning of the control weight might be required based on the individual input and the desired output, aswell as the correct prompt. Some prompts do not work until you increase the weight by a lot. The process of finding the right balance between these factors is part art and part science. For the best results, it is recommended to generate your artwork at a resolution of 768. This allows for a higher level of detail in the final product, enhancing the quality and effectiveness of the QR code-based artwork.
## Installation
The simplest way to use this is to place the .safetensors model and its .yaml config file in the folder where your other controlnet models are installed, which varies per application.
For usage in auto1111 they can be placed in the webui/models/ControlNet folder. They can be loaded using the controlnet webui extension which you can install through the extensions tab in the webui (https://github.com/Mikubill/sd-webui-controlnet). Make sure to enable your controlnet unit and set your input image as the QR code. Set the model to either the SD2.1 or 1.5 version depending on your base stable diffusion model, or it will error. No pre-processor is needed, though you can use the invert pre-processor for a different variation of results. 768 is the preferred resolution for generation since it allows for more detail.
Make sure to look up additional info on how to use controlnet if you get stuck, once you have the webui up and running its really easy to install the controlnet extension aswell. | [
-0.33245551586151123,
-0.08711633831262589,
0.04625420644879341,
0.36743226647377014,
-0.46415725350379944,
-0.12267409265041351,
0.2511608302593231,
-0.2518160939216614,
0.22014053165912628,
0.5297214984893799,
-0.15587812662124634,
-0.3855745792388916,
-0.6175908446311951,
0.05909212306141853,
-0.148110032081604,
0.7562487125396729,
-0.09958664327859879,
0.05122959241271019,
0.3158676326274872,
0.026153307408094406,
-0.24455933272838593,
-0.0789729580283165,
-1.0687671899795532,
-0.3446511924266815,
0.4441545009613037,
0.32676073908805847,
0.7812561392784119,
0.6690101027488708,
0.5348827242851257,
0.29457905888557434,
0.05119195580482483,
-0.08006536215543747,
-0.42845067381858826,
-0.11648466438055038,
0.16940155625343323,
-0.3182539641857147,
-0.42901644110679626,
-0.13186436891555786,
0.46008577942848206,
-0.0032103785779327154,
-0.17392632365226746,
0.009085129015147686,
-0.06329154223203659,
0.8775096535682678,
-0.7287357449531555,
-0.024024968966841698,
-0.08971191942691803,
0.2318967878818512,
0.13249808549880981,
-0.3926922678947449,
-0.2100343406200409,
-0.5609922409057617,
-0.19269832968711853,
-0.6916823983192444,
0.15258947014808655,
0.018748814240098,
1.2047209739685059,
0.3402990400791168,
-0.6869667172431946,
-0.20407584309577942,
-0.8416693210601807,
0.569462776184082,
-0.7769847512245178,
0.2807910740375519,
0.40679165720939636,
0.3361053764820099,
-0.16224730014801025,
-1.126428484916687,
-0.4948122501373291,
-0.36202093958854675,
0.08502447605133057,
0.4362517297267914,
-0.540978729724884,
0.09057731926441193,
0.5805371403694153,
0.21907249093055725,
-0.6562591791152954,
-0.08185847848653793,
-0.6968616247177124,
-0.20023982226848602,
0.6558441519737244,
0.32792726159095764,
0.4054661691188812,
-0.162872314453125,
-0.4864932894706726,
-0.34834223985671997,
-0.3309289813041687,
0.5076960921287537,
0.23110096156597137,
-0.29380449652671814,
-0.44263362884521484,
0.45634332299232483,
-0.23883099853992462,
0.45743528008461,
0.679768979549408,
-0.11757022887468338,
0.3401179015636444,
-0.3208703398704529,
-0.374798446893692,
-0.11711668223142624,
1.0477120876312256,
0.6212726831436157,
0.012427990324795246,
0.12895652651786804,
-0.2841563820838928,
-0.17003071308135986,
0.37641483545303345,
-1.1682872772216797,
-0.6608022451400757,
0.5298920273780823,
-0.6189953684806824,
-0.36693716049194336,
0.04454738274216652,
-0.5555282831192017,
-0.2263789176940918,
0.12903155386447906,
0.5699013471603394,
-0.3944306969642639,
-0.365790456533432,
0.3440985083580017,
-0.4879695475101471,
0.31409358978271484,
0.35013657808303833,
-0.591824471950531,
0.050216179341077805,
-0.06689341366291046,
0.8834004402160645,
0.17356054484844208,
-0.001998588675633073,
-0.3519359529018402,
0.014629349112510681,
-0.6355257034301758,
0.4185120165348053,
-0.02578425593674183,
-0.3898307681083679,
-0.3440924286842346,
0.28231698274612427,
0.11952996999025345,
-0.5367545485496521,
0.695501983165741,
-1.0006803274154663,
0.007544351741671562,
0.04719168320298195,
-0.3359011709690094,
-0.20883682370185852,
-0.08703970164060593,
-0.828194260597229,
0.9058288335800171,
0.4278128147125244,
-1.0386744737625122,
0.17684286832809448,
-0.5992828011512756,
-0.14905090630054474,
0.09301076829433441,
-0.06255798786878586,
-0.712732195854187,
-0.22781509160995483,
-0.15636491775512695,
0.3400132954120636,
0.050278112292289734,
-0.03988458216190338,
-0.06554002314805984,
-0.494255930185318,
0.2978605628013611,
-0.17080219089984894,
1.3665515184402466,
0.49106737971305847,
-0.6024215221405029,
0.21684043109416962,
-0.7887511253356934,
0.43680208921432495,
0.08171948045492172,
-0.527534008026123,
-0.009453813545405865,
-0.2827545702457428,
0.332693874835968,
0.37608209252357483,
0.29259827733039856,
-0.4312661588191986,
0.12184420228004456,
-0.19390258193016052,
0.6022195219993591,
0.43450912833213806,
0.17465820908546448,
0.5975283980369568,
-0.4799146354198456,
0.8000727891921997,
0.1438502073287964,
0.39415431022644043,
0.33695027232170105,
-0.26569437980651855,
-0.7140758633613586,
-0.40008512139320374,
0.2566361725330353,
0.6942890286445618,
-1.1048527956008911,
0.5919537544250488,
-0.09028179198503494,
-0.7969462871551514,
-0.1363074630498886,
-0.13148660957813263,
0.323113352060318,
0.34262606501579285,
0.22004693746566772,
-0.4019559323787689,
-0.4232771396636963,
-0.8415117859840393,
0.509459912776947,
0.16610310971736908,
-0.3297235667705536,
-0.09739037603139877,
0.564972460269928,
-0.21898172795772552,
0.7305823564529419,
-0.3467855453491211,
-0.09114133566617966,
-0.07372775673866272,
0.023582281544804573,
0.33518096804618835,
0.9455817937850952,
0.663227379322052,
-0.9265394806861877,
-0.5559143424034119,
-0.1389944851398468,
-0.6212667226791382,
0.09771312028169632,
-0.23466965556144714,
-0.36992692947387695,
-0.01998075656592846,
0.30166345834732056,
-0.610992968082428,
0.8057610988616943,
0.49680665135383606,
-0.5872541666030884,
0.9262624382972717,
-0.5812416672706604,
0.37591245770454407,
-1.074901819229126,
0.13253562152385712,
0.16872826218605042,
-0.2837834656238556,
-0.5115718245506287,
0.19432294368743896,
0.4500761330127716,
0.01460074819624424,
-0.46009165048599243,
0.4662625789642334,
-0.4828013777732849,
0.2845735251903534,
-0.41287729144096375,
-0.3956049978733063,
0.39091411232948303,
0.4750836491584778,
0.005668369121849537,
0.8242239952087402,
0.7329981327056885,
-0.848217785358429,
0.6258918642997742,
-0.0009437036351300776,
-0.3534223735332489,
0.08813083171844482,
-1.0876407623291016,
-0.018498564139008522,
0.07513070851564407,
0.3545079231262207,
-0.9147521257400513,
-0.10196108371019363,
0.7724220156669617,
-0.5815179347991943,
0.36145129799842834,
-0.2368209809064865,
-0.16410157084465027,
-0.46759212017059326,
-0.4643699526786804,
0.4437556564807892,
0.8127485513687134,
-0.3309394121170044,
0.46834418177604675,
0.040840692818164825,
0.35747575759887695,
-0.5312528610229492,
-0.8776262998580933,
-0.10061115771532059,
-0.290208101272583,
-0.5551299452781677,
0.39756911993026733,
-0.13201642036437988,
-0.03225689008831978,
-0.09966940432786942,
-0.028885582461953163,
-0.30963829159736633,
-0.004410083871334791,
0.35375267267227173,
0.01448039896786213,
-0.07133237272500992,
-0.147117480635643,
0.09887608140707016,
-0.31713104248046875,
0.1288188248872757,
-0.30676087737083435,
0.3647220730781555,
0.15643252432346344,
-0.15498435497283936,
-0.8104526996612549,
0.2748379409313202,
0.7144541144371033,
-0.17969301342964172,
0.6054225564002991,
0.7797690033912659,
-0.5163550972938538,
-0.05084269121289253,
-0.1924176663160324,
-0.16759340465068817,
-0.5348859429359436,
0.22243869304656982,
-0.3691020905971527,
-0.4116734564304352,
0.7259669303894043,
0.14437544345855713,
-0.04400167241692543,
0.32734885811805725,
0.48000290989875793,
-0.20597510039806366,
1.1124671697616577,
0.633192777633667,
0.2812391519546509,
0.6953197121620178,
-0.7981763482093811,
0.1092178076505661,
-1.049774408340454,
-0.1946427971124649,
-0.4696151316165924,
-0.18841944634914398,
-0.4587806165218353,
-0.3771931827068329,
0.48962703347206116,
0.7110990881919861,
-0.7437470555305481,
0.2490639090538025,
-0.7708330750465393,
0.10119951516389847,
0.6876782774925232,
0.4845180809497833,
0.04740018770098686,
-0.010125775821506977,
-0.14742158353328705,
0.036297328770160675,
-0.7947043776512146,
-0.585046648979187,
0.847603976726532,
0.2939212918281555,
0.9009954929351807,
0.09369996190071106,
0.5846440196037292,
0.31663936376571655,
-0.006962168496102095,
-0.5703946352005005,
0.2115214765071869,
0.03923649340867996,
-0.4571586847305298,
-0.26392698287963867,
-0.31041520833969116,
-1.1985087394714355,
0.045156948268413544,
-0.28497636318206787,
-0.4481244385242462,
0.5962702035903931,
0.24369686841964722,
-0.5642346739768982,
0.2852073609828949,
-0.708906352519989,
0.7526871562004089,
-0.297762006521225,
-0.4096474349498749,
0.17583639919757843,
-0.48728829622268677,
0.2512767016887665,
0.12154513597488403,
-0.04749346897006035,
0.10821686685085297,
-0.1355437934398651,
0.85017329454422,
-0.8811864852905273,
0.6488076448440552,
-0.17337734997272491,
-0.05732450261712074,
0.38944971561431885,
0.04695655405521393,
0.39138004183769226,
0.12745881080627441,
-0.27374890446662903,
0.0017673473339527845,
0.4429726302623749,
-0.6940154433250427,
-0.5269777178764343,
0.35466763377189636,
-0.9452395439147949,
-0.17928250133991241,
-0.39460331201553345,
-0.1953812837600708,
0.506500244140625,
0.26509687304496765,
0.9418302774429321,
0.6381661295890808,
0.29743969440460205,
0.05334731563925743,
0.7047590017318726,
-0.16781529784202576,
0.368428111076355,
0.189933180809021,
-0.34051623940467834,
-0.5892485976219177,
0.6482079029083252,
0.23726074397563934,
0.18006531894207,
0.1819545328617096,
0.1944039911031723,
-0.29265347123146057,
-0.6724316477775574,
-0.680556058883667,
-0.08992201089859009,
-0.7546932101249695,
-0.5599648356437683,
-0.5312478542327881,
-0.39931461215019226,
-0.3983207643032074,
-0.19835834205150604,
-0.2284517139196396,
-0.16652563214302063,
-0.576797366142273,
0.2321135401725769,
0.8308883309364319,
0.46521633863449097,
-0.36819028854370117,
0.4154548943042755,
-0.7669745087623596,
0.37659338116645813,
0.33749282360076904,
0.3495522141456604,
0.19509045779705048,
-0.6923307776451111,
-0.4428150951862335,
0.23082208633422852,
-0.37085261940956116,
-1.0418897867202759,
0.46198177337646484,
-0.13840627670288086,
0.3396064043045044,
0.6027323007583618,
0.4819381833076477,
0.45199745893478394,
-0.1919722557067871,
0.6722675561904907,
0.45136117935180664,
-0.8049577474594116,
0.48461663722991943,
-0.4216509461402893,
0.3698663115501404,
0.08157920837402344,
0.6330596804618835,
-0.41479626297950745,
-0.2776952385902405,
-0.4764349162578583,
-0.7417187690734863,
0.41642749309539795,
0.3204762935638428,
-0.017758239060640335,
0.1481703668832779,
0.6695894002914429,
-0.34570249915122986,
-0.1686471849679947,
-0.8070349097251892,
-0.44732651114463806,
-0.4351407587528229,
0.000667496002279222,
0.12129072099924088,
-0.19096426665782928,
-0.03046417236328125,
-0.4145088791847229,
0.6903648376464844,
0.0944143608212471,
0.5431591868400574,
0.4851987957954407,
0.08672787994146347,
-0.38226765394210815,
-0.0074004833586514,
0.5262898802757263,
0.7642485499382019,
-0.23119086027145386,
0.020173383876681328,
-0.20922978222370148,
-0.8037712574005127,
0.34663674235343933,
-0.014700026251375675,
-0.4281310737133026,
-0.1251031756401062,
0.21241112053394318,
0.694664478302002,
-0.1804833561182022,
-0.29769831895828247,
0.44757506251335144,
-0.35057827830314636,
-0.48087236285209656,
-0.4690884053707123,
0.3331772983074188,
0.18186034262180328,
0.553646981716156,
0.5726497769355774,
0.3093779981136322,
0.24253131449222565,
0.009402895346283913,
0.11184457689523697,
0.2893354892730713,
-0.19281554222106934,
-0.07145896553993225,
0.865242600440979,
0.002395610325038433,
-0.2974589467048645,
0.5700332522392273,
-0.7302038669586182,
-0.6087899804115295,
1.1727126836776733,
0.5651443004608154,
0.8342269062995911,
0.01653258316218853,
0.2942374348640442,
0.8099285364151001,
0.3710426390171051,
-0.034010302275419235,
0.5724999904632568,
0.14940795302391052,
-0.8596155047416687,
-0.2345583438873291,
-0.31006956100463867,
-0.2300407886505127,
-0.03715146332979202,
-0.779473602771759,
0.35956132411956787,
-0.6308324337005615,
-0.36680254340171814,
-0.3094082176685333,
0.4049845039844513,
-0.6732426881790161,
0.3645733594894409,
-0.12237226217985153,
0.9267173409461975,
-0.6474727392196655,
0.9941113591194153,
0.6845186352729797,
-0.6334036588668823,
-1.2807260751724243,
-0.23263633251190186,
-0.38668057322502136,
-0.4743242859840393,
0.7019700407981873,
-0.1487993746995926,
-0.27332353591918945,
0.3644822835922241,
-0.7466074228286743,
-0.849016010761261,
1.3901350498199463,
0.06632871180772781,
-0.36997190117836,
0.23702794313430786,
-0.37206360697746277,
0.5187333822250366,
-0.28446856141090393,
0.5679160952568054,
0.03016437031328678,
0.30059877038002014,
0.12023323029279709,
-0.7631092667579651,
0.3866804242134094,
-0.45130932331085205,
0.3265402019023895,
0.08836536109447479,
-0.6727883815765381,
1.004744291305542,
-0.3558128774166107,
-0.36521491408348083,
0.16696679592132568,
0.6424648761749268,
0.34984108805656433,
0.23354198038578033,
0.3872523605823517,
0.5505889654159546,
0.6737061738967896,
0.17275026440620422,
0.8419808149337769,
-0.3301119804382324,
0.4727065861225128,
0.5812239646911621,
0.024810664355754852,
0.6279934048652649,
0.21263377368450165,
-0.19876320660114288,
0.43273255228996277,
0.9364612698554993,
-0.228793203830719,
0.5370956659317017,
0.4260662794113159,
-0.14454640448093414,
-0.004209340084344149,
0.31529495120048523,
-0.6800840497016907,
0.18329666554927826,
0.15827976167201996,
-0.22970183193683624,
-0.134615957736969,
0.3842666745185852,
-0.1328095644712448,
-0.2541370093822479,
-0.44730719923973083,
0.31478193402290344,
-0.21756376326084137,
-0.1642451286315918,
1.0127019882202148,
0.19843009114265442,
1.0888340473175049,
-0.5162913799285889,
-0.14757859706878662,
-0.14820784330368042,
-0.005582490004599094,
-0.4785306751728058,
-0.6154797077178955,
0.2206205129623413,
-0.15641894936561584,
-0.35459116101264954,
-0.03345474600791931,
0.6514582633972168,
-0.26809340715408325,
-0.43421924114227295,
0.25387701392173767,
0.24066835641860962,
0.44037801027297974,
0.11976400762796402,
-0.8730511665344238,
0.25247564911842346,
0.16847601532936096,
-0.375500351190567,
0.18264710903167725,
0.5096947550773621,
0.074632428586483,
0.8624157309532166,
0.4042646586894989,
0.030816905200481415,
0.377528578042984,
-0.20037007331848145,
0.8603386282920837,
-0.6291819214820862,
-0.48308420181274414,
-0.40414637327194214,
0.6183927655220032,
0.15922801196575165,
-0.4505392909049988,
0.608599066734314,
0.5839540958404541,
0.7270208597183228,
-0.3192999064922333,
0.7788813710212708,
-0.287466824054718,
0.11730437725782394,
-0.6405484676361084,
1.103270173072815,
-0.6584804654121399,
0.0035372416023164988,
-0.0731918141245842,
-0.4470292031764984,
-0.12532168626785278,
0.9553169012069702,
-0.20209109783172607,
0.24644385278224945,
0.48594024777412415,
1.0760164260864258,
-0.06162192299962044,
-0.38667014241218567,
0.20940442383289337,
-0.08472675830125809,
0.1813042312860489,
0.6608300805091858,
0.6894708871841431,
-0.963948667049408,
0.5460368990898132,
-0.8122521042823792,
-0.391684353351593,
-0.1723891794681549,
-0.8927660584449768,
-0.5774742364883423,
-0.523887574672699,
-0.7952476143836975,
-0.8435736298561096,
-0.22129784524440765,
0.8311691880226135,
0.8722509741783142,
-0.5560086965560913,
-0.17760556936264038,
-0.17271824181079865,
0.22087626159191132,
-0.2516763210296631,
-0.29766032099723816,
0.47134897112846375,
0.1387525349855423,
-0.7160792350769043,
-0.19414544105529785,
-0.057294752448797226,
0.4377066493034363,
-0.039294399321079254,
-0.30607056617736816,
-0.1647053360939026,
-0.224130779504776,
0.17376473546028137,
0.5121339559555054,
-0.4506588578224182,
-0.16046591103076935,
-0.1278649866580963,
-0.5261198878288269,
0.21838371455669403,
0.4507618546485901,
-0.5980084538459778,
0.32306239008903503,
0.5946749448776245,
0.1184287741780281,
0.429567813873291,
-0.16663581132888794,
0.18380451202392578,
-0.20864607393741608,
0.1773013323545456,
0.29869160056114197,
0.21231114864349365,
-0.06830278784036636,
-0.6454100608825684,
0.2495627999305725,
-0.042680054903030396,
-0.7948698997497559,
-0.46631109714508057,
0.10255323350429535,
-1.202346920967102,
-0.2345615029335022,
0.9300996661186218,
-0.2775346636772156,
-0.260302871465683,
-0.2855478823184967,
-0.352556049823761,
0.4723827540874481,
-0.3287063539028168,
0.5501952767372131,
0.24991931021213531,
-0.32186946272850037,
-0.6040825247764587,
-0.49670180678367615,
0.5892365574836731,
0.04722839221358299,
-0.5200100541114807,
-0.4745452105998993,
0.5117413997650146,
0.5526309609413147,
0.3419724106788635,
0.9555450081825256,
0.015119832940399647,
0.5883699059486389,
0.31741511821746826,
0.6346944570541382,
-0.11304407566785812,
0.12709969282150269,
-0.6132396459579468,
-0.05502082780003548,
0.12853704392910004,
-0.5651541948318481
] |
openai/whisper-base | openai | "2023-09-08T13:08:06Z" | 137,666 | 141 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | automatic-speech-recognition | "2022-09-26T06:50:46Z" | ---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: whisper-base
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 5.008769117619326
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 12.84936273212057
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args:
language: hi
metrics:
- name: Test WER
type: wer
value: 131
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
for fine-tuning.
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
copied and pasted from the original model card.
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
The models were trained on either English-only data or multilingual data. The English-only models were trained
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
For speech translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes.
The smallest four are trained on either English-only or multilingual data.
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
# Usage
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
The `WhisperProcessor` is used to:
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
2. Post-process the model outputs (converting them from tokens to text)
The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
1. The transcription always starts with the `<|startoftranscript|>` token
2. The second token is the language token (e.g. `<|en|>` for English)
3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
Thus, a typical sequence of context tokens might look as follows:
```
<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
```
Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
the Whisper model will automatically predict the output langauge and task itself.
The context tokens can be set accordingly:
```python
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
```
Which forces the model to predict in English under the task of speech recognition.
## Transcription
### English to English
In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
(English) and task (transcribe).
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-base")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
>>> model.config.forced_decoder_ids = None
>>> # load dummy dataset and read audio files
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
### French to French
The following example demonstrates French to French transcription by setting the decoder ids appropriately.
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-base")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids)
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
```
## Translation
Setting the task to "translate" forces the Whisper model to perform speech translation.
### French to English
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import Audio, load_dataset
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-base")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
>>> # load streaming dataset and read first audio sample
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
[' A very interesting work, we will finally be given on this subject.']
```
## Evaluation
This code snippet shows how to evaluate Whisper Base on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from evaluate import load
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-base")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda")
>>> def map_to_pred(batch):
>>> audio = batch["audio"]
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
>>>
>>> with torch.no_grad():
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
>>> transcription = processor.decode(predicted_ids)
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
>>> return batch
>>> result = librispeech_test_clean.map(map_to_pred)
>>> wer = load("wer")
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
5.082316555716899
```
## Long-Form Transcription
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
```python
>>> import torch
>>> from transformers import pipeline
>>> from datasets import load_dataset
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> pipe = pipeline(
>>> "automatic-speech-recognition",
>>> model="openai/whisper-base",
>>> chunk_length_s=30,
>>> device=device,
>>> )
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
>>> # we can also return timestamps for the predictions
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
'timestamp': (0.0, 5.44)}]
```
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
| [
-0.1840142458677292,
-0.5866656303405762,
0.10247877240180969,
0.48527970910072327,
-0.12381235510110855,
-0.12593261897563934,
-0.32388970255851746,
-0.547931432723999,
0.21222810447216034,
0.4799562096595764,
-0.8484940528869629,
-0.6052232384681702,
-0.7955062389373779,
-0.013015289790928364,
-0.5695486664772034,
1.0444021224975586,
0.09272930771112442,
-0.01526165846735239,
0.17318063974380493,
-0.11400169134140015,
-0.4469511806964874,
-0.47635382413864136,
-0.7099611163139343,
-0.2158614844083786,
0.12851151823997498,
0.16884125769138336,
0.40712088346481323,
0.5112494230270386,
0.10484927147626877,
0.4250716269016266,
-0.42832374572753906,
-0.02679193951189518,
-0.4310648441314697,
-0.06053604185581207,
0.3642975091934204,
-0.5398535132408142,
-0.6078230738639832,
0.09299270808696747,
0.7452690601348877,
0.5358675122261047,
-0.27054154872894287,
0.3985427916049957,
0.2412310093641281,
0.341720312833786,
-0.26691731810569763,
0.3085666298866272,
-0.6418288946151733,
-0.1450892984867096,
-0.27949580550193787,
-0.05226700380444527,
-0.3283334970474243,
-0.27384984493255615,
0.5491204261779785,
-0.5853245854377747,
0.2920592427253723,
0.014256144873797894,
1.0545928478240967,
0.22346089780330658,
-0.1704663187265396,
-0.3906918466091156,
-0.735004186630249,
1.0681381225585938,
-0.900528609752655,
0.4971032738685608,
0.5095405578613281,
0.17866294085979462,
-0.07359644770622253,
-0.8978508710861206,
-0.7143222093582153,
-0.015993885695934296,
-0.10446764528751373,
0.30919209122657776,
-0.48438572883605957,
0.0051108309999108315,
0.23537497222423553,
0.2783120572566986,
-0.5029543042182922,
-0.01312984712421894,
-0.6623963713645935,
-0.7280312776565552,
0.5882062315940857,
-0.010406709276139736,
0.3630237579345703,
-0.2734776437282562,
-0.21727655827999115,
-0.32767486572265625,
-0.3179393410682678,
0.47530612349510193,
0.3799397647380829,
0.48652908205986023,
-0.6702553629875183,
0.41180917620658875,
-0.14103387296199799,
0.6682507991790771,
0.16599872708320618,
-0.6921923756599426,
0.6861977577209473,
-0.20374706387519836,
-0.18154457211494446,
0.3759819269180298,
1.0289911031723022,
0.29124611616134644,
0.16607889533042908,
0.04059361666440964,
-0.24095381796360016,
0.12027852237224579,
-0.09401316195726395,
-0.7352598905563354,
0.0849965289235115,
0.51151442527771,
-0.5660560131072998,
-0.3461979627609253,
-0.2437099665403366,
-0.5116550326347351,
0.25869619846343994,
-0.24316802620887756,
0.7271296381950378,
-0.584018349647522,
-0.3886409103870392,
0.16894114017486572,
-0.4065277576446533,
0.25747111439704895,
0.022786611691117287,
-0.8500956296920776,
0.3802609443664551,
0.42027711868286133,
0.9267300963401794,
0.07085701823234558,
-0.6872228980064392,
-0.5784706473350525,
0.08888804167509079,
0.05243144556879997,
0.46890655159950256,
-0.2627639174461365,
-0.6009296774864197,
-0.0842900350689888,
0.17452433705329895,
-0.4244731068611145,
-0.5214951038360596,
0.7169405221939087,
-0.1246981993317604,
0.486654132604599,
-0.06243617460131645,
-0.49720266461372375,
-0.28147926926612854,
-0.17100790143013,
-0.46139705181121826,
0.9776147603988647,
0.16584531962871552,
-0.7297877073287964,
0.12330561876296997,
-0.5579348802566528,
-0.537107527256012,
-0.178767591714859,
0.2555997371673584,
-0.44538405537605286,
-0.027735061943531036,
0.46717149019241333,
0.48181334137916565,
-0.12079810351133347,
0.1242976114153862,
0.11579772084951401,
-0.4206814467906952,
0.37395793199539185,
-0.4769914448261261,
1.045925498008728,
0.16612963378429413,
-0.4065364897251129,
0.19620859622955322,
-0.8015924096107483,
0.07532838732004166,
0.06339393556118011,
-0.2735547423362732,
0.10072306543588638,
-0.0009051491506397724,
0.28119316697120667,
0.09722264111042023,
0.1995716392993927,
-0.7180074453353882,
-0.08115076273679733,
-0.6960502862930298,
0.8987013697624207,
0.5842757821083069,
-0.04268506541848183,
0.36420053243637085,
-0.5636200904846191,
0.31925395131111145,
0.15237975120544434,
0.3695506751537323,
-0.2612767517566681,
-0.6511512994766235,
-0.8549783229827881,
-0.3877231776714325,
0.45088955760002136,
0.8333737850189209,
-0.44610780477523804,
0.5991021990776062,
-0.2989760637283325,
-0.6081426739692688,
-1.300350308418274,
-0.0876462310552597,
0.5822952389717102,
0.6658968925476074,
0.6840368509292603,
-0.05715405195951462,
-0.6820977330207825,
-0.8078389763832092,
-0.15489833056926727,
-0.3094525635242462,
-0.16807512938976288,
0.3560965061187744,
0.3696567118167877,
-0.40397316217422485,
0.7206541895866394,
-0.41812822222709656,
-0.5587830543518066,
-0.34929320216178894,
0.05246272310614586,
0.47280216217041016,
0.648296058177948,
0.34786128997802734,
-0.7837581634521484,
-0.38834646344184875,
-0.20303967595100403,
-0.5824818015098572,
-0.1759938895702362,
-0.12471925467252731,
-0.01931062340736389,
0.21290063858032227,
0.4567319452762604,
-0.7197151184082031,
0.4944818615913391,
0.7078301906585693,
-0.19616426527500153,
0.6607674956321716,
0.07458014786243439,
-0.02718847058713436,
-1.2308104038238525,
0.024197407066822052,
-0.23979103565216064,
-0.16942113637924194,
-0.7383028268814087,
-0.24041800200939178,
-0.08553708344697952,
-0.09690666943788528,
-0.5963436961174011,
0.6308137774467468,
-0.3436421751976013,
0.07149538397789001,
-0.06010647490620613,
0.13336850702762604,
-0.043996140360832214,
0.6809788346290588,
0.26469886302948,
0.7113760113716125,
0.8677598237991333,
-0.5989591479301453,
0.23129959404468536,
0.601673424243927,
-0.27027472853660583,
0.3037288188934326,
-0.9910274147987366,
0.12028755992650986,
0.08362037688493729,
0.16817788779735565,
-0.9200103878974915,
-0.10526146739721298,
0.08712492138147354,
-0.9850090742111206,
0.4294290244579315,
-0.35111045837402344,
-0.3040742576122284,
-0.5356388092041016,
-0.09577792137861252,
0.0756012424826622,
0.8871884942054749,
-0.5024498701095581,
0.7411937117576599,
0.43630746006965637,
-0.23271863162517548,
-0.6003586649894714,
-0.72331702709198,
-0.08266261219978333,
-0.13618740439414978,
-0.7839758396148682,
0.5242782235145569,
-0.0206610057502985,
0.07136218249797821,
-0.09958376735448837,
-0.06603370606899261,
0.11922799050807953,
-0.20410442352294922,
0.4879167675971985,
0.4206370413303375,
-0.07368221133947372,
-0.28128761053085327,
0.25381454825401306,
-0.25826606154441833,
0.0028983771335333586,
-0.2920844256877899,
0.6875314712524414,
-0.24021054804325104,
-0.024696489796042442,
-0.7996293902397156,
0.38713201880455017,
0.6483651995658875,
-0.3743155300617218,
0.6773114204406738,
0.7706276178359985,
-0.2784620225429535,
-0.17053081095218658,
-0.6510194540023804,
-0.1681833267211914,
-0.548234224319458,
0.22681553661823273,
-0.5066221356391907,
-0.8163149952888489,
0.8165739178657532,
0.23519429564476013,
0.1790851503610611,
0.6687535047531128,
0.5347181558609009,
-0.13727350533008575,
1.0877594947814941,
0.509487509727478,
-0.2872413694858551,
0.2605948746204376,
-0.7033055424690247,
-0.08676034212112427,
-1.0411193370819092,
-0.44059112668037415,
-0.5668814182281494,
-0.1838875561952591,
-0.4535503387451172,
-0.277534544467926,
0.4725072681903839,
0.195230171084404,
-0.004376196768134832,
0.539474368095398,
-0.723092794418335,
0.0025457364972680807,
0.6911748051643372,
0.009971382096409798,
0.060577958822250366,
-0.02553267404437065,
-0.28831788897514343,
0.0036643657367676497,
-0.5014029741287231,
-0.3971003592014313,
1.0118778944015503,
0.4764740765094757,
0.47684141993522644,
-0.03782782331109047,
0.7403122186660767,
-0.028147319331765175,
0.008326890878379345,
-0.8144341707229614,
0.519533097743988,
-0.1303018480539322,
-0.5258537530899048,
-0.4108008146286011,
-0.26886728405952454,
-0.8716115355491638,
0.17653729021549225,
-0.1634226143360138,
-0.7498595714569092,
0.12573839724063873,
-0.022247159853577614,
-0.28098368644714355,
0.2019347995519638,
-0.7324286699295044,
0.6434677243232727,
0.16274169087409973,
0.15911151468753815,
0.018713869154453278,
-0.7574313282966614,
0.15208028256893158,
0.09942033886909485,
0.12222635746002197,
-0.07102401554584503,
0.15802790224552155,
1.0538500547409058,
-0.5173104405403137,
0.9794589281082153,
-0.31341272592544556,
0.02354544587433338,
0.462607741355896,
-0.10873467475175858,
0.3654187023639679,
-0.2211136370897293,
-0.11155031621456146,
0.511809766292572,
0.3722594976425171,
-0.30468353629112244,
-0.2807950973510742,
0.5458311438560486,
-1.1111078262329102,
-0.39645105600357056,
-0.25857600569725037,
-0.3361605703830719,
-0.09967564791440964,
0.2570090889930725,
0.937371015548706,
0.7783080339431763,
-0.1555972546339035,
-0.04056229442358017,
0.43362921476364136,
-0.2581547796726227,
0.5849732756614685,
0.6609188914299011,
-0.2195751816034317,
-0.5178338289260864,
0.9386163353919983,
0.2955988049507141,
0.23515638709068298,
0.289907306432724,
0.3519599139690399,
-0.4781372547149658,
-0.6917808055877686,
-0.5721717476844788,
0.3185290992259979,
-0.5341752171516418,
-0.15659669041633606,
-0.9498564600944519,
-0.5919995307922363,
-0.7273188233375549,
0.03562105447053909,
-0.3753369152545929,
-0.2914598882198334,
-0.49465519189834595,
0.1074894443154335,
0.5735805034637451,
0.4326402246952057,
0.01761666312813759,
0.5750690698623657,
-1.0262980461120605,
0.4339624047279358,
0.3239189088344574,
0.10301388800144196,
0.028379591181874275,
-1.046949028968811,
-0.06874075531959534,
0.22378426790237427,
-0.2105874866247177,
-0.7673671841621399,
0.5707401037216187,
0.36577314138412476,
0.5874271392822266,
0.2742769718170166,
0.0048665860667824745,
0.8367979526519775,
-0.7625427842140198,
0.8847035765647888,
0.1604059636592865,
-1.306612253189087,
0.7608444094657898,
-0.35722967982292175,
0.35583388805389404,
0.3978605270385742,
0.37549108266830444,
-0.7476637959480286,
-0.503659188747406,
-0.6441765427589417,
-0.6656411290168762,
0.8500925302505493,
0.38209283351898193,
0.18321962654590607,
0.10106343030929565,
0.30760979652404785,
0.07997643202543259,
0.13500775396823883,
-0.5052599906921387,
-0.44806385040283203,
-0.5022940635681152,
-0.2690568268299103,
-0.17357955873012543,
-0.14647985994815826,
-0.03640282154083252,
-0.537074625492096,
0.7787445783615112,
-0.022997865453362465,
0.5764622688293457,
0.4632003605365753,
-0.062058817595243454,
-0.022404246032238007,
0.09283571690320969,
0.5988771319389343,
0.3028530180454254,
-0.1970139443874359,
-0.3775404393672943,
0.3132849335670471,
-0.819431722164154,
-0.002115249866619706,
0.2674080431461334,
-0.3089767396450043,
0.17670869827270508,
0.8283247947692871,
1.2659029960632324,
0.22032158076763153,
-0.5026135444641113,
0.7401787042617798,
-0.1170317679643631,
-0.42957809567451477,
-0.5688602924346924,
0.04694347456097603,
0.3051990568637848,
0.2052612006664276,
0.3651532828807831,
0.13467203080654144,
0.0815887525677681,
-0.4906545579433441,
0.06662784516811371,
0.27875271439552307,
-0.4619516134262085,
-0.5482163429260254,
0.8428621888160706,
0.16508373618125916,
-0.5148101449012756,
0.7417725324630737,
0.11333856731653214,
-0.8040279746055603,
0.49053138494491577,
0.723262369632721,
1.0520790815353394,
-0.5248862504959106,
0.03857152536511421,
0.45933181047439575,
0.2423366904258728,
-0.07153209298849106,
0.5411494970321655,
-0.12504979968070984,
-0.7985109090805054,
-0.47347214818000793,
-1.033990740776062,
-0.24664001166820526,
0.1692209541797638,
-0.959799587726593,
0.31093698740005493,
-0.24231357872486115,
-0.29784834384918213,
0.30539047718048096,
-0.005050084553658962,
-0.7901137471199036,
0.13188406825065613,
0.07547372579574585,
1.0825973749160767,
-0.7676291465759277,
1.051848292350769,
0.2533072233200073,
-0.2704392969608307,
-1.1251521110534668,
0.0298025980591774,
0.02261250652372837,
-1.0803241729736328,
0.4322107136249542,
0.3493306338787079,
-0.21953925490379333,
0.19278226792812347,
-0.571366548538208,
-0.8720522522926331,
1.0076870918273926,
0.13186071813106537,
-0.7302602529525757,
-0.10415849089622498,
-0.04151872172951698,
0.5361101031303406,
-0.31566888093948364,
0.14635616540908813,
0.7475646138191223,
0.4386443495750427,
0.0930192843079567,
-1.4337581396102905,
-0.09309487044811249,
-0.290699303150177,
-0.17784608900547028,
0.013036763295531273,
-0.7277070879936218,
0.8650470972061157,
-0.33538705110549927,
-0.263766884803772,
0.27116137742996216,
0.6907567381858826,
0.22743970155715942,
0.22261427342891693,
0.6362636089324951,
0.5136953592300415,
0.7176762223243713,
-0.17227627336978912,
1.03225839138031,
-0.2802123725414276,
0.13735446333885193,
0.8996583819389343,
-0.05787790194153786,
1.1637604236602783,
0.28377941250801086,
-0.3879436254501343,
0.6003413200378418,
0.3920971155166626,
-0.0009791303891688585,
0.5595045685768127,
-0.09469369053840637,
-0.3075248599052429,
0.10442862659692764,
-0.047036588191986084,
-0.438935786485672,
0.8075210452079773,
0.42401695251464844,
-0.27273792028427124,
0.3302357494831085,
0.3244887590408325,
0.11579427868127823,
-0.14107480645179749,
-0.26034364104270935,
0.991095781326294,
0.13219605386257172,
-0.6248102188110352,
0.914321780204773,
0.02609231509268284,
1.0053184032440186,
-0.8668829798698425,
0.217251256108284,
0.051820073276758194,
0.15385735034942627,
-0.18466362357139587,
-0.6664648652076721,
0.34363892674446106,
-0.15089577436447144,
-0.3315730094909668,
-0.1936875432729721,
0.5671730637550354,
-0.7620289325714111,
-0.5408583283424377,
0.589243471622467,
0.3642234206199646,
0.33774614334106445,
-0.13023774325847626,
-0.9144229292869568,
0.4126340448856354,
0.23846730589866638,
-0.2480636090040207,
0.17118528485298157,
0.184128537774086,
0.236275777220726,
0.6644213795661926,
0.8946913480758667,
0.4173065721988678,
0.15338890254497528,
0.19272668659687042,
0.8307840824127197,
-0.6576361060142517,
-0.6982554793357849,
-0.7016961574554443,
0.5006403923034668,
0.06079161539673805,
-0.47460824251174927,
0.8122736811637878,
0.505401611328125,
0.7039094567298889,
-0.005799269303679466,
0.7992151379585266,
0.07229860872030258,
0.970711886882782,
-0.5742985606193542,
0.8671354651451111,
-0.4262504577636719,
0.010827318765223026,
-0.34277084469795227,
-0.7689797282218933,
0.06367799639701843,
0.5945045351982117,
-0.058473262935876846,
-0.12426025420427322,
0.3821958899497986,
0.9225534796714783,
0.08294063806533813,
0.17313100397586823,
0.1380675733089447,
0.4151005446910858,
0.23053914308547974,
0.5639522075653076,
0.5946164131164551,
-0.7927818894386292,
0.6654459834098816,
-0.5050154328346252,
-0.2568061649799347,
0.06326789408922195,
-0.6125240325927734,
-1.0185799598693848,
-0.9012455940246582,
-0.2794722318649292,
-0.5811700224876404,
-0.23806172609329224,
0.804995596408844,
0.9211897253990173,
-0.8690887689590454,
-0.34865424036979675,
0.28683605790138245,
-0.047689516097307205,
-0.4212785065174103,
-0.25693950057029724,
0.5835328102111816,
-0.03627951443195343,
-0.9240567088127136,
0.6495501399040222,
0.035855554044246674,
0.39719587564468384,
-0.19221343100070953,
-0.23050495982170105,
0.02947354130446911,
0.10926295816898346,
0.565518319606781,
0.2937811613082886,
-0.8958337306976318,
-0.12622897326946259,
0.12191779166460037,
0.065998874604702,
-0.028036417439579964,
0.432733952999115,
-0.7448015809059143,
0.3696407079696655,
0.3857153356075287,
0.12287905812263489,
0.8352875709533691,
-0.29977914690971375,
0.4018038511276245,
-0.7696792483329773,
0.468388170003891,
0.20393747091293335,
0.33323657512664795,
0.3617166578769684,
-0.30505695939064026,
0.14996981620788574,
0.3017759621143341,
-0.5656359195709229,
-1.057133674621582,
-0.13040682673454285,
-1.1514232158660889,
-0.16945435106754303,
1.0194200277328491,
0.01534685492515564,
-0.3551856577396393,
-0.12082473933696747,
-0.34910619258880615,
0.4564257562160492,
-0.4915080666542053,
0.32429060339927673,
0.5943434834480286,
0.05975644290447235,
-0.03433055430650711,
-0.604306697845459,
0.7521934509277344,
0.2252839207649231,
-0.23873040080070496,
-0.02478034235537052,
0.034047048538923264,
0.629878044128418,
0.2780594229698181,
0.8793069124221802,
-0.2354859709739685,
0.17810635268688202,
0.1251494586467743,
0.17807641625404358,
-0.11714133620262146,
-0.1988983005285263,
-0.46465742588043213,
-0.06329288333654404,
-0.3529534637928009,
-0.4471595585346222
] |
meta-llama/Llama-2-70b-hf | meta-llama | "2023-11-13T16:33:55Z" | 137,276 | 682 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"llama-2",
"en",
"arxiv:2307.09288",
"has_space",
"text-generation-inference",
"region:us"
] | text-generation | "2023-07-11T08:56:34Z" | ---
extra_gated_heading: Access Llama 2 on Hugging Face
extra_gated_description: >-
This is a form to enable access to Llama 2 on Hugging Face after you have been
granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our
license terms and acceptable use policy before submitting this form. Requests
will be processed in 1-2 days.
extra_gated_prompt: "**Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved.**"
extra_gated_button_content: Submit
extra_gated_fields:
I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
---
# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 70B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>|
*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
## Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
## Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/meta-llama/Llama-2-7b) | [Link](https://huggingface.co/meta-llama/Llama-2-7b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-7b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/meta-llama/Llama-2-13b) | [Link](https://huggingface.co/meta-llama/Llama-2-13b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-13b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)|
|70B| [Link](https://huggingface.co/meta-llama/Llama-2-70b) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf)| | [
-0.22224554419517517,
-0.7200070023536682,
0.3796452283859253,
0.20208263397216797,
-0.3838045299053192,
0.24299409985542297,
-0.05847785249352455,
-0.7647157311439514,
0.07163066416978836,
0.3090946674346924,
-0.7211586236953735,
-0.5691739916801453,
-0.6911783218383789,
0.06959934532642365,
-0.22625702619552612,
1.0975165367126465,
-0.019376179203391075,
-0.2926901578903198,
-0.12475265562534332,
0.09520440548658371,
-0.4948672354221344,
-0.4056312143802643,
-0.5426424741744995,
-0.43215179443359375,
0.39674776792526245,
0.4955866038799286,
0.6136290431022644,
0.663517415523529,
0.5580374002456665,
0.2489509880542755,
-0.2615613639354706,
0.22454342246055603,
-0.7315233945846558,
-0.2722218632698059,
0.131791889667511,
-0.5066205263137817,
-0.7012755870819092,
0.16616304218769073,
0.3690126836299896,
0.17725849151611328,
-0.28846457600593567,
0.5424121618270874,
0.077669158577919,
0.4878253638744354,
-0.573397159576416,
0.17215871810913086,
-0.7487794160842896,
0.03903428465127945,
-0.23306137323379517,
-0.08291357010602951,
-0.1961503028869629,
-0.30011337995529175,
-0.19551528990268707,
-0.8449180126190186,
-0.11795677989721298,
0.0776103064417839,
1.0702065229415894,
0.6626502871513367,
-0.4639715552330017,
-0.11690177023410797,
-0.29666224122047424,
0.9699323773384094,
-0.8650109767913818,
0.05920173600316048,
0.5985729098320007,
0.2926674485206604,
-0.227920264005661,
-0.7819052934646606,
-0.6579936742782593,
-0.14004886150360107,
0.06600455939769745,
0.3631356954574585,
-0.41937771439552307,
0.003939367365092039,
0.17358723282814026,
0.38384556770324707,
-0.5887507796287537,
0.5886807441711426,
-0.5225614905357361,
-0.17663255333900452,
1.077010154724121,
0.24386239051818848,
-0.010529505088925362,
-0.043343253433704376,
-0.5023460388183594,
-0.29812461137771606,
-0.8151195049285889,
0.18050234019756317,
0.5001227855682373,
-0.04487909376621246,
-0.48389631509780884,
0.6335009932518005,
-0.42486050724983215,
0.29270124435424805,
0.024141361936926842,
-0.5244840979576111,
0.4942329525947571,
-0.4825873374938965,
-0.27648013830184937,
-0.130862757563591,
0.9144749045372009,
0.7415786981582642,
0.16614404320716858,
0.10279697924852371,
-0.06347661465406418,
0.11737897992134094,
-0.013548411428928375,
-0.8385639786720276,
-0.05248507112264633,
0.2505531311035156,
-0.381194144487381,
-0.6047493815422058,
-0.3085409700870514,
-0.7620475888252258,
-0.15839648246765137,
-0.10115010291337967,
0.254543662071228,
-0.040214359760284424,
-0.39706161618232727,
0.11602218449115753,
0.049091823399066925,
0.5670260787010193,
0.21466512978076935,
-0.9724523425102234,
0.22740505635738373,
0.5765032172203064,
0.801847517490387,
-0.25153279304504395,
-0.36712321639060974,
0.01595992222428322,
-0.02413216419517994,
-0.3249809443950653,
0.9262992143630981,
-0.3589695692062378,
-0.5474969148635864,
-0.2269982099533081,
-0.024960868060588837,
0.16832314431667328,
-0.5227687358856201,
0.4337378740310669,
-0.4065617620944977,
0.18452736735343933,
-0.34107711911201477,
-0.38152360916137695,
-0.33862340450286865,
0.2015129029750824,
-0.3969091773033142,
1.4876455068588257,
0.1235426515340805,
-0.4972752630710602,
0.314355731010437,
-0.6930433511734009,
-0.1900213062763214,
-0.20783020555973053,
0.10102203488349915,
-0.5398451685905457,
-0.27674129605293274,
0.13186362385749817,
0.3711664080619812,
-0.6588934659957886,
0.48141932487487793,
-0.20764930546283722,
-0.44757020473480225,
0.04492028057575226,
-0.4256672263145447,
0.8594262003898621,
0.29781973361968994,
-0.4768370985984802,
0.07164062559604645,
-0.8414465188980103,
0.06777279824018478,
0.46782270073890686,
-0.48791953921318054,
0.28106823563575745,
0.0795738697052002,
-0.12018978595733643,
0.19437985122203827,
0.5068989396095276,
-0.3712201714515686,
0.16779804229736328,
-0.3230254352092743,
0.5136790871620178,
0.7667513489723206,
0.04234389588236809,
0.1710239201784134,
-0.5288605093955994,
0.5252963304519653,
-0.04084131121635437,
0.3985067903995514,
0.020791763439774513,
-0.7301694750785828,
-1.048650860786438,
-0.18705330789089203,
-0.03738383576273918,
0.8645307421684265,
-0.2613025903701782,
0.7168904542922974,
-0.01583997532725334,
-0.7623889446258545,
-0.4248485267162323,
0.37783747911453247,
0.6921196579933167,
0.514411211013794,
0.43736720085144043,
-0.29163646697998047,
-0.628762423992157,
-1.033442735671997,
0.05903024598956108,
-0.4551195502281189,
-0.02893233112990856,
0.36245954036712646,
0.6678224802017212,
-0.3444027900695801,
0.7492454648017883,
-0.554313600063324,
-0.17960059642791748,
-0.26808300614356995,
-0.13692130148410797,
0.05958940088748932,
0.3593851327896118,
0.6729248762130737,
-0.394367516040802,
-0.2235194891691208,
-0.12909646332263947,
-0.9210623502731323,
-0.10538212209939957,
0.12259945273399353,
-0.2201215773820877,
0.24121050536632538,
0.3196016252040863,
-0.6260703206062317,
0.4638752341270447,
0.7290725111961365,
-0.18009315431118011,
0.5349259376525879,
0.003983575850725174,
-0.17730391025543213,
-1.1033436059951782,
0.036658260971307755,
-0.2154347449541092,
0.03395839408040047,
-0.44520482420921326,
-0.04234522208571434,
-0.21582989394664764,
0.08684581518173218,
-0.625316321849823,
0.6090357303619385,
-0.314969927072525,
-0.16619688272476196,
-0.1345507949590683,
0.05931753292679787,
0.060018811374902725,
0.6343142986297607,
-0.1305110603570938,
1.0946873426437378,
0.4125310778617859,
-0.5999356508255005,
0.26622602343559265,
0.4063364863395691,
-0.5117894411087036,
0.15773579478263855,
-0.9060540795326233,
0.3785123825073242,
0.115948885679245,
0.5449613332748413,
-1.0052223205566406,
-0.3942706286907196,
0.3303983211517334,
-0.4447619616985321,
0.10058313608169556,
0.23824019730091095,
-0.5665188431739807,
-0.41315674781799316,
-0.4399542510509491,
0.3227809965610504,
0.8428612947463989,
-0.46294528245925903,
0.17652955651283264,
0.3929692208766937,
0.026985183358192444,
-0.7072216868400574,
-0.8520532846450806,
0.06123049557209015,
-0.36902904510498047,
-0.545225203037262,
0.30745449662208557,
-0.19132430851459503,
-0.23956309258937836,
-0.26711973547935486,
0.07187747210264206,
-0.004485083278268576,
0.3862648606300354,
0.37752899527549744,
0.3758660852909088,
-0.12427281588315964,
-0.021516649052500725,
0.14857085049152374,
-0.21030353009700775,
0.037941932678222656,
0.2042035013437271,
0.6102314591407776,
-0.176548033952713,
-0.2299625426530838,
-0.7564938068389893,
0.04104940593242645,
0.2893332242965698,
-0.2626148462295532,
0.6232896447181702,
0.4404403567314148,
-0.22337940335273743,
0.23824545741081238,
-0.7948907613754272,
-0.11441598832607269,
-0.5488985776901245,
0.5606886148452759,
-0.22110362350940704,
-0.8536946773529053,
0.5410388708114624,
-0.008076497353613377,
0.4494849145412445,
0.7637200355529785,
0.6430375576019287,
-0.08983463048934937,
0.818537175655365,
0.5846206545829773,
-0.07244627177715302,
0.3504791855812073,
-0.5019543170928955,
-0.10816588997840881,
-0.9622290134429932,
-0.634804904460907,
-0.32742491364479065,
-0.4492320418357849,
-0.6757586598396301,
-0.4303610324859619,
0.26771047711372375,
0.19458620250225067,
-0.6996972560882568,
0.32937970757484436,
-0.5985336899757385,
0.5895360708236694,
0.5443626046180725,
0.13740140199661255,
0.3042908012866974,
0.11340788006782532,
0.15080875158309937,
0.051487840712070465,
-0.5285094976425171,
-0.7606163024902344,
1.5116147994995117,
0.4405881464481354,
0.45603761076927185,
0.10551086813211441,
0.6922872066497803,
0.14516665041446686,
0.3328537344932556,
-0.7218124866485596,
0.6683990955352783,
0.04812346398830414,
-0.7348785996437073,
-0.1597210019826889,
-0.1176770031452179,
-0.9139788746833801,
0.15005932748317719,
-0.21259114146232605,
-0.8046184182167053,
0.02256566286087036,
-0.024209775030612946,
-0.37370505928993225,
0.2998981475830078,
-0.6841633319854736,
0.6129477024078369,
-0.5817738175392151,
-0.3162685036659241,
-0.3613380789756775,
-0.8204740881919861,
0.7007636427879333,
-0.20980319380760193,
0.09586870670318604,
-0.510289192199707,
-0.2688371539115906,
0.9253487586975098,
-0.3580780029296875,
1.025823950767517,
-0.05088737607002258,
-0.10393618047237396,
0.5882975459098816,
-0.18820112943649292,
0.46169573068618774,
0.032250117510557175,
-0.27641400694847107,
0.684950590133667,
-0.13285714387893677,
-0.3310147225856781,
-0.1569540798664093,
0.5455032587051392,
-1.246038794517517,
-0.807418704032898,
-0.4995631277561188,
-0.520529568195343,
-0.0450306311249733,
0.08870532363653183,
0.5275125503540039,
-0.09946994483470917,
-0.03507685288786888,
0.1265879124403,
0.4677428901195526,
-0.5192208886146545,
0.4809114336967468,
0.5672494769096375,
-0.10240636020898819,
-0.47058746218681335,
0.6688712239265442,
0.05030052363872528,
0.37426310777664185,
0.23013095557689667,
0.04060373827815056,
-0.42216482758522034,
-0.43375062942504883,
-0.5175141096115112,
0.283936083316803,
-0.47877737879753113,
-0.4970618784427643,
-0.5538041591644287,
-0.3650846481323242,
-0.33697041869163513,
-0.0740562453866005,
-0.4545011818408966,
-0.4464487135410309,
-0.7645586133003235,
-0.3927633762359619,
0.5354437232017517,
0.8353392481803894,
-0.0004769731895066798,
0.6614985466003418,
-0.33335524797439575,
0.18691398203372955,
0.3917630612850189,
0.1905338168144226,
-0.021994944661855698,
-0.7919281721115112,
0.0639144629240036,
0.1378980576992035,
-0.7797519564628601,
-0.6312490105628967,
0.24067974090576172,
0.2865740656852722,
0.47759145498275757,
0.4892132878303528,
-0.07828806340694427,
0.7976877093315125,
-0.36457839608192444,
1.1192744970321655,
0.37058278918266296,
-0.6776672005653381,
0.7189223766326904,
-0.20938298106193542,
0.0400669202208519,
0.6535326242446899,
0.27289071679115295,
-0.08003503084182739,
-0.16326862573623657,
-0.6506498456001282,
-0.6903173923492432,
0.8230502605438232,
0.24000027775764465,
0.19412636756896973,
0.06400502473115921,
0.47002437710762024,
0.059939540922641754,
0.11051610857248306,
-0.8410248756408691,
-0.31567487120628357,
-0.28038182854652405,
-0.10525686293840408,
-0.20354145765304565,
-0.5200295448303223,
-0.0719909518957138,
-0.324165940284729,
0.648809015750885,
0.05701706185936928,
0.35358408093452454,
-0.14291340112686157,
0.019954338669776917,
-0.10601845383644104,
0.0446946807205677,
0.7460697293281555,
0.5047715306282043,
-0.26256680488586426,
-0.15297667682170868,
0.6608164310455322,
-0.650266170501709,
0.3531947135925293,
0.008984854444861412,
-0.1264563500881195,
-0.379125714302063,
0.41687530279159546,
0.9056233763694763,
0.26615408062934875,
-0.7225267291069031,
0.348526269197464,
0.1450212150812149,
-0.37985384464263916,
-0.4316072463989258,
0.3757648766040802,
0.08956104516983032,
0.3394094407558441,
0.2849636673927307,
-0.14697949588298798,
0.07520745694637299,
-0.5172056555747986,
-0.12175272405147552,
0.3958812355995178,
0.11929257959127426,
-0.43596675992012024,
1.0221562385559082,
0.32590651512145996,
-0.2970728874206543,
0.5454135537147522,
-0.17604860663414001,
-0.3740369379520416,
0.9252045750617981,
0.646912157535553,
0.6664164066314697,
-0.27520424127578735,
0.12247726321220398,
0.7275332808494568,
0.46153712272644043,
-0.2364373505115509,
0.23433299362659454,
-0.015040237456560135,
-0.5001145601272583,
-0.21830177307128906,
-0.7153716087341309,
-0.48119211196899414,
0.3647507131099701,
-0.5767078995704651,
0.31811395287513733,
-0.6390388011932373,
-0.2818896472454071,
-0.326376736164093,
0.46759533882141113,
-0.6979133486747742,
0.2101544439792633,
0.11017239838838577,
0.9439438581466675,
-0.7357122898101807,
0.7860329747200012,
0.5046782493591309,
-0.5045912265777588,
-0.9058523178100586,
-0.3014778792858124,
0.20308294892311096,
-1.2686856985092163,
0.5438995361328125,
0.3804808557033539,
-0.06392282992601395,
0.12974807620048523,
-0.7769571542739868,
-1.242662787437439,
1.7360368967056274,
0.46662241220474243,
-0.7768409848213196,
-0.024719443172216415,
0.3504038155078888,
0.5062320232391357,
-0.11497245728969574,
0.4634625315666199,
0.8457096219062805,
0.5061953067779541,
0.1273747980594635,
-1.0865516662597656,
0.09710480272769928,
-0.36463645100593567,
-0.03394365310668945,
-0.1979132443666458,
-1.3423396348953247,
0.8314579725265503,
-0.40584123134613037,
-0.24070250988006592,
0.22138789296150208,
0.6599960327148438,
0.7020291090011597,
0.5609836578369141,
0.3596135675907135,
0.8057810068130493,
0.9297258257865906,
-0.03462021052837372,
1.1338831186294556,
-0.373762845993042,
0.18668042123317719,
0.9112379550933838,
-0.3040260076522827,
0.996430516242981,
0.24314306676387787,
-0.6110173463821411,
0.6299951672554016,
1.0344208478927612,
-0.02902643010020256,
0.607170045375824,
0.06409522891044617,
-0.16837045550346375,
-0.18648192286491394,
-0.16969211399555206,
-0.672831118106842,
0.5289426445960999,
0.2539811432361603,
-0.14200133085250854,
-0.029753590002655983,
-0.3424922823905945,
0.23566512763500214,
-0.34424811601638794,
-0.003445008071139455,
0.8253993988037109,
0.16744814813137054,
-0.6297261118888855,
0.9098739624023438,
0.04333147034049034,
0.8715753555297852,
-0.6712100505828857,
0.09737465530633926,
-0.5350473523139954,
0.010690970346331596,
-0.38032394647598267,
-0.7229835391044617,
0.07235834002494812,
0.377522736787796,
-0.0024078108835965395,
-0.09705977141857147,
0.5593684911727905,
0.039360299706459045,
-0.5738962292671204,
0.358822762966156,
0.28331372141838074,
0.3643938899040222,
0.21681103110313416,
-0.6894262433052063,
0.18485654890537262,
0.0925864577293396,
-0.5589322447776794,
0.39252564311027527,
0.03373229503631592,
-0.06163560226559639,
0.8122549653053284,
0.7588708996772766,
-0.21145400404930115,
0.13897714018821716,
-0.22220046818256378,
1.022652268409729,
-0.5063945055007935,
-0.20360760390758514,
-0.7779029607772827,
0.5448647141456604,
0.04715975373983383,
-0.7285834550857544,
0.5572288036346436,
0.659142017364502,
0.7103294134140015,
0.2776627540588379,
0.6662502288818359,
0.07232799381017685,
0.3218500316143036,
-0.5363442301750183,
0.6300574541091919,
-0.7935012578964233,
0.38714319467544556,
0.082057423889637,
-0.999655544757843,
-0.06138584762811661,
0.6812647581100464,
-0.24425789713859558,
0.05340297147631645,
0.3754802644252777,
0.8738418817520142,
0.17469246685504913,
-0.16897301375865936,
0.12269113957881927,
0.1765209287405014,
0.36195847392082214,
0.914303719997406,
0.8624765872955322,
-0.6507424116134644,
0.7247940897941589,
-0.39452236890792847,
-0.24782267212867737,
-0.2843356132507324,
-0.7506961822509766,
-0.9968918561935425,
-0.2771042585372925,
-0.24977491796016693,
-0.15958833694458008,
0.06375619024038315,
0.759255051612854,
0.5204724073410034,
-0.5984377264976501,
-0.3014514446258545,
-0.07025692611932755,
-0.09010453522205353,
0.039484817534685135,
-0.16218598186969757,
0.34570905566215515,
-0.12248702347278595,
-0.5971501469612122,
0.48831334710121155,
0.00621025450527668,
0.21073085069656372,
-0.3336300849914551,
-0.27957403659820557,
-0.19552524387836456,
0.14731578528881073,
0.6309393048286438,
0.29051101207733154,
-0.944354772567749,
-0.23389874398708344,
0.04412056878209114,
-0.1511128693819046,
0.1265738606452942,
0.01648295298218727,
-0.7875792384147644,
0.09467220306396484,
0.1480846256017685,
0.3891662657260895,
0.6827685832977295,
0.05915720388293266,
0.05885009840130806,
-0.5311020016670227,
0.46805721521377563,
0.009257533587515354,
0.14186932146549225,
0.30640798807144165,
-0.41791996359825134,
0.8093997240066528,
0.15001091361045837,
-0.717062771320343,
-0.9728773832321167,
0.11260537803173065,
-1.0686708688735962,
-0.002797967055812478,
1.4095033407211304,
0.00926249846816063,
-0.12278158962726593,
0.19804342091083527,
-0.21480226516723633,
0.39453643560409546,
-0.3828790783882141,
0.8253206610679626,
0.5725247263908386,
-0.08008763939142227,
-0.09692858904600143,
-0.8079943060874939,
0.3578694760799408,
0.405514121055603,
-1.1174713373184204,
-0.26239416003227234,
0.4584504961967468,
0.5023059248924255,
-0.09879898279905319,
0.7054638266563416,
0.020838988944888115,
0.23903481662273407,
0.07632268965244293,
0.1092718169093132,
-0.2541414201259613,
-0.15172798931598663,
-0.0965060293674469,
-0.26676392555236816,
-0.055664654821157455,
-0.23005670309066772
] |
Babelscape/wikineural-multilingual-ner | Babelscape | "2023-05-23T08:47:23Z" | 136,292 | 59 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"named-entity-recognition",
"sequence-tagger-model",
"de",
"en",
"es",
"fr",
"it",
"nl",
"pl",
"pt",
"ru",
"multilingual",
"dataset:Babelscape/wikineural",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | token-classification | "2022-03-02T23:29:04Z" | ---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
widget:
- text: My name is Wolfgang and I live in Berlin.
- text: George Washington went to Washington.
- text: Mi nombre es Sarah y vivo en Londres.
- text: Меня зовут Симона, и я живу в Риме.
tags:
- named-entity-recognition
- sequence-tagger-model
datasets:
- Babelscape/wikineural
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- multilingual
license:
- cc-by-nc-sa-4.0
pretty_name: wikineural-dataset
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---
# WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER
This is the model card for the EMNLP 2021 paper [WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER](https://aclanthology.org/2021.findings-emnlp.215/). We fine-tuned a multilingual language model (mBERT) for 3 epochs on our [WikiNEuRal dataset](https://huggingface.co/datasets/Babelscape/wikineural) for Named Entity Recognition (NER). The resulting multilingual NER model supports the 9 languages covered by WikiNEuRal (de, en, es, fr, it, nl, pl, pt, ru), and it was trained on all 9 languages jointly.
**If you use the model, please reference this work in your paper**:
```bibtex
@inproceedings{tedeschi-etal-2021-wikineural-combined,
title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
author = "Tedeschi, Simone and
Maiorca, Valentino and
Campolungo, Niccol{\`o} and
Cecconi, Francesco and
Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.215",
pages = "2521--2533",
abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}
```
The original repository for the paper can be found at [https://github.com/Babelscape/wikineural](https://github.com/Babelscape/wikineural).
## How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner")
model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Wolfgang and I live in Berlin"
ner_results = nlp(example)
print(ner_results)
```
## Limitations and bias
This model is trained on WikiNEuRal, a state-of-the-art dataset for Multilingual NER automatically derived from Wikipedia. Therefore, it might not generalize well to all textual genres (e.g. news). On the other hand, models trained only on news articles (e.g. only on CoNLL03) have been proven to obtain much lower scores on encyclopedic articles. To obtain more robust systems, we encourage you to train a system on the combination of WikiNEuRal with other datasets (e.g. WikiNEuRal + CoNLL).
## Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents and models belongs to the original copyright holders. | [
-0.4777533710002899,
-0.5610995888710022,
0.1110910102725029,
0.08901819586753845,
0.07966267317533493,
-0.18046782910823822,
-0.4561339318752289,
-0.5060980319976807,
0.39756742119789124,
0.29291149973869324,
-0.3526823818683624,
-0.5439661741256714,
-0.5382372140884399,
0.39639005064964294,
-0.3761943578720093,
1.1948635578155518,
0.010736661031842232,
0.15309983491897583,
-0.2915349304676056,
-0.17914970219135284,
-0.20340445637702942,
-0.5902000069618225,
-0.8160642385482788,
-0.2654452323913574,
0.7068215012550354,
0.38962429761886597,
0.21372342109680176,
0.2628791332244873,
0.25767770409584045,
0.3019523024559021,
-0.046714551746845245,
0.4870530068874359,
-0.25615978240966797,
0.03029424138367176,
-0.18667566776275635,
-0.18561019003391266,
-0.4416145086288452,
-0.1638503223657608,
0.5182724595069885,
0.6474413275718689,
-0.1562308371067047,
0.08921277523040771,
0.0983848050236702,
0.5364416837692261,
-0.41547390818595886,
0.13280443847179413,
-0.7454781532287598,
0.08716202527284622,
-0.16903336346149445,
-0.04322376847267151,
-0.47027456760406494,
-0.003349986858665943,
0.1263020634651184,
-0.7468292713165283,
0.24443092942237854,
0.008952900767326355,
1.006517767906189,
-0.004748055245727301,
-0.4695167541503906,
-0.16526831686496735,
-0.514146625995636,
0.6232681274414062,
-0.9311853647232056,
0.5125941634178162,
0.3766375184059143,
-0.02760312519967556,
-0.0766354575753212,
-0.666045069694519,
-0.8118587136268616,
-0.2216600775718689,
-0.02268766611814499,
0.20360830426216125,
-0.2068856656551361,
-0.34451156854629517,
0.3123256266117096,
-0.02823568880558014,
-0.5569123029708862,
0.15598930418491364,
-0.5953802466392517,
-0.2975136637687683,
0.546840488910675,
-0.055448468774557114,
0.17336000502109528,
-0.4134795665740967,
-0.1421450525522232,
-0.053208041936159134,
-0.5179937481880188,
-0.23148801922798157,
0.5754802823066711,
0.3733850419521332,
-0.27602308988571167,
0.5925630331039429,
-0.36055341362953186,
0.7973839044570923,
0.34999343752861023,
-0.19217334687709808,
0.731875479221344,
-0.25743475556373596,
0.22259247303009033,
0.04609093442559242,
0.9348291754722595,
0.40182796120643616,
0.3182550370693207,
-0.472824364900589,
-0.10105115920305252,
-0.19827771186828613,
0.05909261852502823,
-0.5883318185806274,
-0.26636406779289246,
-0.036863479763269424,
-0.24554188549518585,
-0.2037522792816162,
0.010383323766291142,
-0.6953783631324768,
-0.13667353987693787,
-0.44912075996398926,
0.4112791121006012,
-0.4737531244754791,
-0.526374876499176,
-0.10975495725870132,
-0.03504498302936554,
0.0799802839756012,
0.04590841010212898,
-0.8612533211708069,
0.27414584159851074,
0.4239683151245117,
0.7173890471458435,
-0.25962793827056885,
-0.7527589201927185,
-0.38035550713539124,
0.21513311564922333,
-0.18113382160663605,
0.8130155801773071,
-0.16166386008262634,
0.03601054847240448,
-0.3212769627571106,
0.22336703538894653,
-0.16576936841011047,
-0.4121026396751404,
0.25937503576278687,
-0.4658811092376709,
0.3409864604473114,
0.005306772887706757,
-0.5528504848480225,
-0.24700242280960083,
0.43369126319885254,
-0.8337770104408264,
1.023917317390442,
-0.03201594576239586,
-1.0655030012130737,
0.3865724802017212,
-0.6276330947875977,
-0.415659099817276,
-0.09822528064250946,
0.05282429978251457,
-0.22289027273654938,
0.09017456322908401,
0.19373907148838043,
0.3865230083465576,
-0.09446121007204056,
0.5634710788726807,
-0.2836313247680664,
0.05827462673187256,
0.37037739157676697,
-0.585947573184967,
0.6870540976524353,
0.07365880161523819,
-0.3716903328895569,
-0.3479701578617096,
-0.929722249507904,
0.0970863625407219,
-0.09778375923633575,
-0.34939494729042053,
-0.3399002254009247,
-0.0815151184797287,
0.40949150919914246,
0.49664631485939026,
0.28173351287841797,
-0.5974643230438232,
-0.11170820891857147,
-0.6889815926551819,
0.35568520426750183,
0.5445816516876221,
-0.025406021624803543,
0.5318603515625,
-0.14779675006866455,
0.24736832082271576,
0.23613712191581726,
0.03456401452422142,
0.28332847356796265,
-0.4555025100708008,
-1.0044565200805664,
0.14467521011829376,
0.8540683388710022,
0.6251552104949951,
-0.8219231367111206,
0.49122506380081177,
-0.4484104812145233,
-0.6150417327880859,
-0.4633471965789795,
-0.048729997128248215,
0.1908711940050125,
0.6557389497756958,
0.5301957130432129,
-0.16812394559383392,
-0.5805456638336182,
-0.9029439687728882,
-0.028695035725831985,
0.04924232140183449,
0.2622506320476532,
0.24302010238170624,
0.6251494288444519,
-0.25652822852134705,
0.8739397525787354,
-0.1893342286348343,
-0.2536540925502777,
-0.09414954483509064,
-0.0010745483450591564,
0.30160418152809143,
0.6262145638465881,
0.32682037353515625,
-0.9852545261383057,
-0.7330528497695923,
0.31129953265190125,
-0.8833637833595276,
0.03385520353913307,
0.04505171999335289,
-0.16174805164337158,
0.45095834136009216,
0.510765790939331,
-0.6713905334472656,
0.10688171535730362,
0.5470649600028992,
-0.2458462417125702,
0.5111485719680786,
-0.3526911735534668,
-0.016352016478776932,
-1.357471227645874,
0.32979822158813477,
-0.036094553768634796,
0.09603702276945114,
-0.6790727376937866,
-0.1384204626083374,
0.06024153530597687,
-0.15488138794898987,
-0.4524620473384857,
0.8940441012382507,
-0.6070193648338318,
0.2290596067905426,
-0.19330249726772308,
0.12925134599208832,
0.0027573194820433855,
0.4306730329990387,
0.14415243268013,
0.413680762052536,
0.5904067754745483,
-0.6779718399047852,
0.4389178454875946,
0.2738879919052124,
-0.19613851606845856,
0.7054774165153503,
-0.5037521719932556,
0.05778707563877106,
-0.1791616976261139,
-0.020388785749673843,
-0.23519477248191833,
-0.2168099731206894,
0.30418333411216736,
-0.6287021040916443,
0.6402378082275391,
-0.20993709564208984,
-0.5762543678283691,
-0.19741839170455933,
0.1815824657678604,
0.24670462310314178,
0.10877998173236847,
-0.45807164907455444,
0.6794137954711914,
0.5689880847930908,
-0.2756291925907135,
-0.8722255229949951,
-0.8832946419715881,
0.34441936016082764,
-0.34204334020614624,
-0.47670334577560425,
0.5541243553161621,
-0.24556486308574677,
-0.029197052121162415,
0.29180651903152466,
-0.0046140700578689575,
-0.16194911301136017,
-0.08288127183914185,
0.04060804843902588,
0.22368401288986206,
-0.09553849697113037,
0.38653871417045593,
0.09557230025529861,
-0.3693513572216034,
-0.14881709218025208,
-0.4686192572116852,
0.46880391240119934,
-0.07712993770837784,
-0.12152550369501114,
-0.22309871017932892,
0.5055044889450073,
0.39540329575538635,
-0.30442047119140625,
0.8279151320457458,
0.7910227179527283,
-0.45998406410217285,
-0.09100561589002609,
-0.7347358465194702,
-0.1724487841129303,
-0.41053563356399536,
0.4876972436904907,
-0.400900661945343,
-0.6887386441230774,
0.45573872327804565,
0.22956480085849762,
0.014509284868836403,
0.8379765152931213,
0.35215529799461365,
0.03476109355688095,
0.7839697003364563,
0.5439794659614563,
-0.12518607079982758,
0.226636603474617,
-0.4282569885253906,
0.24587970972061157,
-0.8247174620628357,
-0.5005217790603638,
-0.46149274706840515,
-0.26635101437568665,
-0.8646291494369507,
-0.13283048570156097,
0.1467505544424057,
0.04177920147776604,
-0.09143421798944473,
0.3972185254096985,
-0.4997187554836273,
0.3742126524448395,
0.5394696593284607,
-0.0328681655228138,
0.2039794623851776,
0.3247838616371155,
-0.21592645347118378,
-0.23381291329860687,
-0.8946695923805237,
-0.3371918201446533,
1.2027873992919922,
-0.0647326335310936,
0.5393818616867065,
0.028249090537428856,
0.9246705174446106,
0.017946559935808182,
0.22848869860172272,
-0.5987590551376343,
0.42335057258605957,
-0.34150952100753784,
-0.6554351449012756,
-0.1916441023349762,
-0.6449388861656189,
-1.0638784170150757,
0.1296398639678955,
-0.3972199857234955,
-0.591097891330719,
0.4290146827697754,
-0.07878945022821426,
-0.08783452957868576,
0.34718555212020874,
-0.6903822422027588,
0.835025429725647,
-0.3073999881744385,
-0.1747213751077652,
-0.022951852530241013,
-0.5232163667678833,
-0.05016051232814789,
-0.2786618173122406,
0.3923947811126709,
-0.1114267110824585,
-0.09220357984304428,
0.9312791228294373,
-0.19348740577697754,
0.7429670095443726,
-0.2561838924884796,
0.0917508453130722,
0.046429626643657684,
-0.3000577986240387,
0.4368661940097809,
0.19381141662597656,
-0.2986030578613281,
0.4905056655406952,
-0.049577970057725906,
-0.14388789236545563,
-0.39736953377723694,
1.087064504623413,
-0.8126739263534546,
-0.18915079534053802,
-0.48283401131629944,
-0.7117488384246826,
-0.09720183908939362,
0.418215811252594,
0.5658588409423828,
0.6233401298522949,
-0.12316424399614334,
0.12345339357852936,
0.5203806161880493,
-0.2778910994529724,
0.4799647927284241,
0.6747766733169556,
-0.033366017043590546,
-0.6653971076011658,
1.164351463317871,
0.6265569925308228,
0.013613177463412285,
0.392937034368515,
-0.021625570952892303,
-0.2574586272239685,
-0.6545241475105286,
-0.4850523769855499,
0.4041385054588318,
-0.6953904628753662,
-0.4206864833831787,
-1.0452704429626465,
-0.42866337299346924,
-0.4215368926525116,
0.154243603348732,
-0.18941713869571686,
-0.6813751459121704,
-0.5475796461105347,
-0.056359123438596725,
0.4292265474796295,
0.5182434916496277,
-0.3570778965950012,
-0.052554354071617126,
-0.619149386882782,
0.2174639254808426,
0.085393026471138,
0.2097366899251938,
0.04714737460017204,
-0.5667861700057983,
-0.5052517056465149,
0.16361646354198456,
-0.10750875622034073,
-0.7628244757652283,
0.6588179469108582,
0.46343132853507996,
0.8064415454864502,
0.07155198603868484,
0.023273373022675514,
0.5419862270355225,
-0.7344575524330139,
0.4251708388328552,
0.24558481574058533,
-0.6613315939903259,
0.31955137848854065,
-0.10161910206079483,
0.23646852374076843,
0.7232248187065125,
0.5244992971420288,
-0.7743618488311768,
-0.38904446363449097,
-0.9521061778068542,
-1.0088493824005127,
0.5710815787315369,
-0.1299259066581726,
0.4135444760322571,
-0.2891051471233368,
0.2981032729148865,
0.20764486491680145,
0.17135964334011078,
-1.056251049041748,
-0.3735394775867462,
-0.09331350028514862,
-0.34705978631973267,
-0.10156355053186417,
-0.05259505659341812,
0.09412377327680588,
-0.30637484788894653,
1.085731029510498,
-0.2167811393737793,
0.29244545102119446,
0.18820124864578247,
-0.40364885330200195,
0.20487503707408905,
0.2501351237297058,
0.3161207139492035,
0.6126490235328674,
0.15249145030975342,
0.08915358781814575,
0.43530428409576416,
-0.5284029841423035,
0.04916998744010925,
0.4881649315357208,
-0.5417672395706177,
0.2986210584640503,
0.1499166339635849,
0.7911478281021118,
0.1956855058670044,
-0.31992027163505554,
0.4180036783218384,
0.07538749277591705,
-0.2625561058521271,
-0.5047028660774231,
-0.17512205243110657,
0.19538593292236328,
0.24587120115756989,
0.4298115372657776,
0.35032933950424194,
0.10847817361354828,
-0.08763331919908524,
0.2369021773338318,
0.313811331987381,
-0.26200437545776367,
-0.27080395817756653,
0.4153072237968445,
0.021356435492634773,
-0.18741309642791748,
0.7561325430870056,
-0.4949340224266052,
-0.369907021522522,
0.5539332628250122,
0.6777637004852295,
0.5986050367355347,
-0.08582162857055664,
0.3502674102783203,
0.81441730260849,
0.35358303785324097,
-0.052264608442783356,
0.2647242546081543,
0.16953407227993011,
-0.9056597948074341,
-0.5465389490127563,
-0.7763321995735168,
-0.07293140143156052,
0.15285545587539673,
-0.6445584297180176,
0.3618037700653076,
-0.1499590128660202,
-0.28299546241760254,
0.2073027342557907,
0.012458303943276405,
-0.768887460231781,
0.17338691651821136,
0.1550227254629135,
0.8475193977355957,
-0.7542039155960083,
0.8005024194717407,
0.5838492512702942,
-0.419156014919281,
-0.8344747424125671,
-0.17117969691753387,
-0.2727448642253876,
-0.34846916794776917,
0.7805447578430176,
0.21007560193538666,
0.29190897941589355,
0.3060052990913391,
-0.25499236583709717,
-1.1844840049743652,
0.8756327629089355,
0.3876763582229614,
-0.4856747090816498,
-0.32392653822898865,
-0.06008727103471756,
0.4168955683708191,
-0.32975876331329346,
0.21890118718147278,
0.1607881337404251,
0.6251497268676758,
-0.19035832583904266,
-0.9496797323226929,
-0.17646770179271698,
-0.5799049139022827,
-0.20759841799736023,
0.2331957072019577,
-0.3862110674381256,
0.8258099555969238,
-0.25747379660606384,
-0.15284888446331024,
-0.03289778530597687,
0.6570397615432739,
0.17618516087532043,
0.2808845043182373,
0.3327536880970001,
0.8623000383377075,
0.8720420002937317,
-0.130010724067688,
0.7935347557067871,
-0.3555748760700226,
0.41828733682632446,
1.1281306743621826,
-0.12094730138778687,
0.9230080246925354,
0.6056185364723206,
-0.09797699749469757,
0.6305608153343201,
0.5220282673835754,
-0.4047148823738098,
0.6534125804901123,
0.009141597896814346,
-0.20711921155452728,
0.06842733174562454,
-0.15747691690921783,
-0.5069356560707092,
0.598233163356781,
0.2755187451839447,
-0.21630364656448364,
-0.14889633655548096,
0.32564884424209595,
0.1928708851337433,
-0.21779829263687134,
-0.25433817505836487,
0.8346633315086365,
0.10959581285715103,
-0.5660925507545471,
0.5569384694099426,
0.11298655718564987,
1.0239418745040894,
-0.6367637515068054,
0.06545390188694,
-0.11360637843608856,
0.016310829669237137,
-0.35314473509788513,
-0.41871950030326843,
0.27103111147880554,
0.11325839906930923,
-0.529728889465332,
0.031018292531371117,
0.7058182954788208,
-0.7193172574043274,
-0.8227276802062988,
0.3496570885181427,
0.6216270327568054,
0.28098735213279724,
0.13537313044071198,
-0.7367366552352905,
-0.4241274893283844,
-0.10420410335063934,
-0.23478566110134125,
0.3872744143009186,
0.587541401386261,
0.02094648778438568,
0.3946068584918976,
0.8184579610824585,
0.4045424461364746,
0.2041608840227127,
0.1443217247724533,
0.6412243247032166,
-0.49897298216819763,
-0.4378775656223297,
-0.6481003761291504,
0.49858173727989197,
-0.31625011563301086,
-0.356627494096756,
0.9117075204849243,
0.7835445404052734,
1.1897608041763306,
-0.11879400163888931,
0.7628564238548279,
-0.37841397523880005,
0.42199912667274475,
-0.48134946823120117,
1.040367841720581,
-0.6616424322128296,
-0.14050251245498657,
-0.2896726727485657,
-0.9539607763290405,
-0.2826707065105438,
0.6128455996513367,
-0.2174001932144165,
0.08215048909187317,
0.6694842576980591,
0.947899580001831,
-0.20473578572273254,
-0.3497902750968933,
0.20532798767089844,
0.20244553685188293,
-0.16190379858016968,
0.4848177134990692,
0.7276898622512817,
-0.6215426325798035,
0.558349609375,
-0.5173762440681458,
0.13191355764865875,
0.12641611695289612,
-0.8633497357368469,
-0.6081255674362183,
-0.7437421679496765,
-0.4323425590991974,
-0.3323562443256378,
-0.09812206029891968,
0.7427032589912415,
0.6777052879333496,
-0.9369677305221558,
-0.14158640801906586,
-0.06885484606027603,
0.01496378518640995,
-0.22458183765411377,
-0.19141076505184174,
0.4011577367782593,
-0.27260348200798035,
-0.7332448363304138,
0.4552920162677765,
0.028247937560081482,
0.05345706269145012,
-0.13128849864006042,
-0.27540862560272217,
-0.4292328655719757,
-0.27143049240112305,
0.50662761926651,
0.18997535109519958,
-0.595600426197052,
-0.016494959592819214,
0.18152211606502533,
-0.023486008867621422,
-0.05286605283617973,
0.38827991485595703,
-0.6864687204360962,
0.49470964074134827,
0.3319280743598938,
0.500254213809967,
0.6758837103843689,
-0.5768017768859863,
0.3007413148880005,
-0.7159713506698608,
0.19283907115459442,
0.18977530300617218,
0.3938407599925995,
0.6911506652832031,
-0.33217236399650574,
0.46442919969558716,
0.3385782539844513,
-0.4797419607639313,
-0.8039003610610962,
-0.13370338082313538,
-0.7912336587905884,
-0.12204845994710922,
1.1912928819656372,
-0.0012267011916264892,
-0.10811521112918854,
-0.21048620343208313,
0.0581340454518795,
0.3909333646297455,
-0.23425185680389404,
0.5491388440132141,
0.7399060130119324,
0.2273654192686081,
-0.24763594567775726,
-0.7641787528991699,
0.20738902688026428,
0.1320829838514328,
-0.9001169204711914,
-0.21336188912391663,
0.4733074903488159,
0.5644130706787109,
0.36654752492904663,
0.4806804358959198,
-0.06740576773881912,
0.2670762240886688,
0.04679224640130997,
0.3127368986606598,
-0.2593882083892822,
-0.4325231611728668,
-0.3289981186389923,
0.10203193128108978,
-0.08934492617845535,
0.29229193925857544
] |
baichuan-inc/Baichuan2-13B-Chat | baichuan-inc | "2023-10-19T03:19:30Z" | 135,162 | 318 | transformers | [
"transformers",
"pytorch",
"baichuan",
"text-generation",
"custom_code",
"en",
"zh",
"license:other",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2023-08-29T02:30:01Z" | ---
language:
- en
- zh
license: other
tasks:
- text-generation
---
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<div align="center">
<h1>
Baichuan 2
</h1>
</div>
<div align="center">
<a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">🦉GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">💬WeChat</a>
</div>
<div align="center">
🚀 <a href="https://www.baichuan-ai.com/" target="_blank">百川大模型在线对话平台</a> 已正式向公众开放 🎉
</div>
# 目录/Table of Contents
- [📖 模型介绍/Introduction](#Introduction)
- [⚙️ 快速开始/Quick Start](#Start)
- [📊 Benchmark评估/Benchmark Evaluation](#Benchmark)
- [📜 声明与协议/Terms and Conditions](#Terms)
# <span id="Introduction">模型介绍/Introduction</span>
Baichuan 2 是[百川智能]推出的新一代开源大语言模型,采用 **2.6 万亿** Tokens 的高质量语料训练,在权威的中文和英文 benchmark
上均取得同尺寸最好的效果。本次发布包含有 7B、13B 的 Base 和 Chat 版本,并提供了 Chat 版本的 4bits
量化,所有版本不仅对学术研究完全开放,开发者也仅需[邮件申请]并获得官方商用许可后,即可以免费商用。具体发布版本和下载见下表:
Baichuan 2 is the new generation of large-scale open-source language models launched by [Baichuan Intelligence inc.](https://www.baichuan-ai.com/).
It is trained on a high-quality corpus with 2.6 trillion tokens and has achieved the best performance in authoritative Chinese and English benchmarks of the same size.
This release includes 7B and 13B versions for both Base and Chat models, along with a 4bits quantized version for the Chat model.
All versions are fully open to academic research, and developers can also use them for free in commercial applications after obtaining an official commercial license through [email request](mailto:opensource@baichuan-inc.com).
The specific release versions and download links are listed in the table below:
| | Base Model | Chat Model | 4bits Quantized Chat Model |
|:---:|:--------------------:|:--------------------:|:--------------------------:|
| 7B | [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) | [Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) | [Baichuan2-7B-Chat-4bits](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base-4bits) |
| 13B | [Baichuan2-13B-Base](https://huggingface.co/baichuan-inc/Baichuan2-13B-Base) | [Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) | [Baichuan2-13B-Chat-4bits](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits) |
# <span id="Start">快速开始/Quick Start</span>
在Baichuan2系列模型中,我们为了加快推理速度使用了Pytorch2.0加入的新功能F.scaled_dot_product_attention,因此模型需要在Pytorch2.0环境下运行。
In the Baichuan 2 series models, we have utilized the new feature `F.scaled_dot_product_attention` introduced in PyTorch 2.0 to accelerate inference speed. Therefore, the model needs to be run in a PyTorch 2.0 environment.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat")
messages = []
messages.append({"role": "user", "content": "解释一下“温故而知新”"})
response = model.chat(tokenizer, messages)
print(response)
"温故而知新"是一句中国古代的成语,出自《论语·为政》篇。这句话的意思是:通过回顾过去,我们可以发现新的知识和理解。换句话说,学习历史和经验可以让我们更好地理解现在和未来。
这句话鼓励我们在学习和生活中不断地回顾和反思过去的经验,从而获得新的启示和成长。通过重温旧的知识和经历,我们可以发现新的观点和理解,从而更好地应对不断变化的世界和挑战。
```
# <span id="Benchmark">Benchmark 结果/Benchmark Evaluation</span>
我们在[通用]、[法律]、[医疗]、[数学]、[代码]和[多语言翻译]六个领域的中英文权威数据集上对模型进行了广泛测试,更多详细测评结果可查看[GitHub]。
We have extensively tested the model on authoritative Chinese-English datasets across six domains: [General](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#general-domain), [Legal](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#law-and-medicine), [Medical](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#law-and-medicine), [Mathematics](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#mathematics-and-code), [Code](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#mathematics-and-code), and [Multilingual Translation](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#multilingual-translation). For more detailed evaluation results, please refer to [GitHub](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md).
### 7B Model Results
| | **C-Eval** | **MMLU** | **CMMLU** | **Gaokao** | **AGIEval** | **BBH** |
|:-----------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:|
| | 5-shot | 5-shot | 5-shot | 5-shot | 5-shot | 3-shot |
| **GPT-4** | 68.40 | 83.93 | 70.33 | 66.15 | 63.27 | 75.12 |
| **GPT-3.5 Turbo** | 51.10 | 68.54 | 54.06 | 47.07 | 46.13 | 61.59 |
| **LLaMA-7B** | 27.10 | 35.10 | 26.75 | 27.81 | 28.17 | 32.38 |
| **LLaMA2-7B** | 28.90 | 45.73 | 31.38 | 25.97 | 26.53 | 39.16 |
| **MPT-7B** | 27.15 | 27.93 | 26.00 | 26.54 | 24.83 | 35.20 |
| **Falcon-7B** | 24.23 | 26.03 | 25.66 | 24.24 | 24.10 | 28.77 |
| **ChatGLM2-6B** | 50.20 | 45.90 | 49.00 | 49.44 | 45.28 | 31.65 |
| **[Baichuan-7B]** | 42.80 | 42.30 | 44.02 | 36.34 | 34.44 | 32.48 |
| **[Baichuan2-7B-Base]** | 54.00 | 54.16 | 57.07 | 47.47 | 42.73 | 41.56 |
### 13B Model Results
| | **C-Eval** | **MMLU** | **CMMLU** | **Gaokao** | **AGIEval** | **BBH** |
|:---------------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:|
| | 5-shot | 5-shot | 5-shot | 5-shot | 5-shot | 3-shot |
| **GPT-4** | 68.40 | 83.93 | 70.33 | 66.15 | 63.27 | 75.12 |
| **GPT-3.5 Turbo** | 51.10 | 68.54 | 54.06 | 47.07 | 46.13 | 61.59 |
| **LLaMA-13B** | 28.50 | 46.30 | 31.15 | 28.23 | 28.22 | 37.89 |
| **LLaMA2-13B** | 35.80 | 55.09 | 37.99 | 30.83 | 32.29 | 46.98 |
| **Vicuna-13B** | 32.80 | 52.00 | 36.28 | 30.11 | 31.55 | 43.04 |
| **Chinese-Alpaca-Plus-13B** | 38.80 | 43.90 | 33.43 | 34.78 | 35.46 | 28.94 |
| **XVERSE-13B** | 53.70 | 55.21 | 58.44 | 44.69 | 42.54 | 38.06 |
| **[Baichuan-13B-Base]** | 52.40 | 51.60 | 55.30 | 49.69 | 43.20 | 43.01 |
| **[Baichuan2-13B-Base]** | 58.10 | 59.17 | 61.97 | 54.33 | 48.17 | 48.78 |
## 训练过程模型/Training Dynamics
除了训练了 2.6 万亿 Tokens 的 [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) 模型,我们还提供了在此之前的另外 11 个中间过程的模型(分别对应训练了约 0.2 ~ 2.4 万亿 Tokens)供社区研究使用
([训练过程checkpoint下载](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints))。下图给出了这些 checkpoints 在 C-Eval、MMLU、CMMLU 三个 benchmark 上的效果变化:
In addition to the [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) model trained on 2.6 trillion tokens, we also offer 11 additional intermediate-stage models for community research, corresponding to training on approximately 0.2 to 2.4 trillion tokens each ([Intermediate Checkpoints Download](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints)). The graph below shows the performance changes of these checkpoints on three benchmarks: C-Eval, MMLU, and CMMLU.
![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg)
# <span id="Terms">声明与协议/Terms and Conditions</span>
## 声明
我们在此声明,我们的开发团队并未基于 Baichuan 2 模型开发任何应用,无论是在 iOS、Android、网页或任何其他平台。我们强烈呼吁所有使用者,不要利用
Baichuan 2 模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Baichuan 2
模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用
Baichuan 2 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
We hereby declare that our team has not developed any applications based on Baichuan 2 models, not on iOS, Android, the web, or any other platform. We strongly call on all users not to use Baichuan 2 models for any activities that harm national / social security or violate the law. Also, we ask users not to use Baichuan 2 models for Internet services that have not undergone appropriate security reviews and filings. We hope that all users can abide by this principle and ensure that the development of technology proceeds in a regulated and legal environment.
We have done our best to ensure the compliance of the data used in the model training process. However, despite our considerable efforts, there may still be some unforeseeable issues due to the complexity of the model and data. Therefore, if any problems arise due to the use of Baichuan 2 open-source models, including but not limited to data security issues, public opinion risks, or any risks and problems brought about by the model being misled, abused, spread or improperly exploited, we will not assume any responsibility.
## 协议
社区使用 Baichuan 2 模型需要遵循 [Apache 2.0](https://github.com/baichuan-inc/Baichuan2/blob/main/LICENSE) 和[《Baichuan 2 模型社区许可协议》](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)。Baichuan 2 模型支持商业用途,如果您计划将 Baichuan 2 模型或其衍生品用于商业目的,请您确认您的主体符合以下情况:
1. 您或您的关联方的服务或产品的日均用户活跃量(DAU)低于100万。
2. 您或您的关联方不是软件服务提供商、云服务提供商。
3. 您或您的关联方不存在将授予您的商用许可,未经百川许可二次授权给其他第三方的可能。
在符合以上条件的前提下,您需要通过以下联系邮箱 opensource@baichuan-inc.com ,提交《Baichuan 2 模型社区许可协议》要求的申请材料。审核通过后,百川将特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销的商用版权许可。
The community usage of Baichuan 2 model requires adherence to [Apache 2.0](https://github.com/baichuan-inc/Baichuan2/blob/main/LICENSE) and [Community License for Baichuan2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). The Baichuan 2 model supports commercial use. If you plan to use the Baichuan 2 model or its derivatives for commercial purposes, please ensure that your entity meets the following conditions:
1. The Daily Active Users (DAU) of your or your affiliate's service or product is less than 1 million.
2. Neither you nor your affiliates are software service providers or cloud service providers.
3. There is no possibility for you or your affiliates to grant the commercial license given to you, to reauthorize it to other third parties without Baichuan's permission.
Upon meeting the above conditions, you need to submit the application materials required by the Baichuan 2 Model Community License Agreement via the following contact email: opensource@baichuan-inc.com. Once approved, Baichuan will hereby grant you a non-exclusive, global, non-transferable, non-sublicensable, revocable commercial copyright license.
[GitHub]:https://github.com/baichuan-inc/Baichuan2
[Baichuan2]:https://github.com/baichuan-inc/Baichuan2
[Baichuan-7B]:https://huggingface.co/baichuan-inc/Baichuan-7B
[Baichuan2-7B-Base]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base
[Baichuan2-7B-Chat]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
[Baichuan2-7B-Chat-4bits]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bits
[Baichuan-13B-Base]:https://huggingface.co/baichuan-inc/Baichuan-13B-Base
[Baichuan2-13B-Base]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Base
[Baichuan2-13B-Chat]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
[Baichuan2-13B-Chat-4bits]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits
[通用]:https://github.com/baichuan-inc/Baichuan2#%E9%80%9A%E7%94%A8%E9%A2%86%E5%9F%9F
[法律]:https://github.com/baichuan-inc/Baichuan2#%E6%B3%95%E5%BE%8B%E5%8C%BB%E7%96%97
[医疗]:https://github.com/baichuan-inc/Baichuan2#%E6%B3%95%E5%BE%8B%E5%8C%BB%E7%96%97
[数学]:https://github.com/baichuan-inc/Baichuan2#%E6%95%B0%E5%AD%A6%E4%BB%A3%E7%A0%81
[代码]:https://github.com/baichuan-inc/Baichuan2#%E6%95%B0%E5%AD%A6%E4%BB%A3%E7%A0%81
[多语言翻译]:https://github.com/baichuan-inc/Baichuan2#%E5%A4%9A%E8%AF%AD%E8%A8%80%E7%BF%BB%E8%AF%91
[《Baichuan 2 模型社区许可协议》]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf
[邮件申请]: mailto:opensource@baichuan-inc.com
[Email]: mailto:opensource@baichuan-inc.com
[opensource@baichuan-inc.com]: mailto:opensource@baichuan-inc.com
[训练过程heckpoint下载]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints
[百川智能]: https://www.baichuan-ai.com
| [
-0.35889649391174316,
-0.7405844926834106,
0.027139250189065933,
0.40585097670555115,
-0.26957908272743225,
-0.045033615082502365,
-0.3098333477973938,
-0.4226207733154297,
0.28483209013938904,
0.11214867234230042,
-0.4858078956604004,
-0.5205988883972168,
-0.6672038435935974,
-0.04982595145702362,
0.08920243382453918,
0.9514596462249756,
-0.019015716388821602,
0.031070858240127563,
0.24880270659923553,
-0.1411840319633484,
-0.6252312660217285,
-0.30764541029930115,
-0.8395816683769226,
-0.22565896809101105,
0.2698475122451782,
0.29481056332588196,
0.7427676916122437,
0.6503491401672363,
0.7423170208930969,
0.2627358138561249,
-0.24823889136314392,
0.25185564160346985,
-0.42559394240379333,
-0.20944969356060028,
0.33003371953964233,
-0.49158748984336853,
-0.8049253225326538,
0.020343000069260597,
0.3810480535030365,
0.3831789195537567,
-0.03840896114706993,
0.2789984941482544,
0.3100530505180359,
0.5196050405502319,
-0.35201290249824524,
0.35314035415649414,
-0.2595326006412506,
-0.07780216634273529,
-0.20125240087509155,
-0.014018229208886623,
-0.2648598253726959,
-0.3590644598007202,
0.10308586806058884,
-0.6230212450027466,
0.13782253861427307,
0.06239279359579086,
1.571812391281128,
-0.06415971368551254,
-0.393795371055603,
-0.12395864725112915,
-0.3061715066432953,
0.9452625513076782,
-1.1373326778411865,
0.20347203314304352,
0.38878095149993896,
0.2260437309741974,
-0.16030345857143402,
-0.8805714249610901,
-0.5107775926589966,
-0.0614435039460659,
-0.5303781032562256,
0.39362549781799316,
-0.23623965680599213,
-0.19359320402145386,
0.07216210663318634,
0.46037575602531433,
-0.7330112457275391,
0.018012911081314087,
-0.6139634847640991,
-0.17335186898708344,
0.8661292195320129,
0.26628854870796204,
0.3275596797466278,
-0.500190258026123,
-0.5246160626411438,
-0.0513581857085228,
-0.5330996513366699,
0.39993342757225037,
0.02591567486524582,
0.15922868251800537,
-0.6587070822715759,
0.35772374272346497,
-0.08836282044649124,
0.496452271938324,
0.19076606631278992,
-0.21172000467777252,
0.5887595415115356,
-0.6437870264053345,
-0.34552404284477234,
-0.3248423933982849,
1.3169548511505127,
0.5758234858512878,
-0.2215074896812439,
0.1915290802717209,
-0.19532237946987152,
-0.2738478183746338,
-0.3715091347694397,
-0.9547873139381409,
-0.42806562781333923,
0.6124415397644043,
-0.8282071352005005,
-0.42263519763946533,
0.1707003265619278,
-0.8077719807624817,
-0.025226714089512825,
-0.02806321531534195,
0.48420965671539307,
-0.6627803444862366,
-0.6204426884651184,
-0.06294332444667816,
-0.05564099922776222,
0.3140391707420349,
0.2773452699184418,
-0.9317091107368469,
0.23707562685012817,
0.5444368124008179,
1.1527823209762573,
-0.11168456822633743,
-0.4293609857559204,
-0.1290094554424286,
-0.02626907266676426,
-0.4377562999725342,
0.5875194072723389,
-0.009908554144203663,
-0.37384355068206787,
-0.18803851306438446,
0.33772262930870056,
-0.2062244713306427,
-0.4280838668346405,
0.379585325717926,
-0.22922436892986298,
0.17767871916294098,
-0.47244930267333984,
-0.4183027148246765,
-0.21128615736961365,
0.43232089281082153,
-0.6384613513946533,
1.1983588933944702,
0.06283827126026154,
-0.9305431842803955,
0.25209352374076843,
-0.5760916471481323,
-0.31698939204216003,
-0.20971466600894928,
0.05041737109422684,
-0.5673743486404419,
-0.44824954867362976,
0.3669392168521881,
0.5220937728881836,
-0.49921712279319763,
0.1545831263065338,
-0.1448909491300583,
-0.34981924295425415,
0.1627686619758606,
-0.33764204382896423,
1.292431116104126,
0.427115797996521,
-0.6533898711204529,
0.23131661117076874,
-0.7100759744644165,
-0.0010104791726917028,
0.4804166257381439,
-0.31312093138694763,
0.056149955838918686,
-0.13435107469558716,
0.07823128998279572,
0.3772597014904022,
0.40169432759284973,
-0.20506128668785095,
0.1126951053738594,
-0.4805789589881897,
0.7369646430015564,
0.893794059753418,
0.09792688488960266,
0.2910783290863037,
-0.7010535597801208,
0.36925363540649414,
0.3714091181755066,
0.45606204867362976,
-0.32079440355300903,
-0.7407111525535583,
-1.0921047925949097,
-0.3321738541126251,
0.31902948021888733,
0.6420790553092957,
-0.5637312531471252,
0.7262328863143921,
-0.1718735247850418,
-0.7037031054496765,
-0.5423505902290344,
-0.061705153435468674,
0.4228808879852295,
0.4080243706703186,
0.3851882517337799,
-0.0998108834028244,
-0.6113913059234619,
-0.7729282975196838,
0.13718439638614655,
-0.30291157960891724,
0.06511588394641876,
0.4088634252548218,
0.7797459363937378,
-0.12713146209716797,
0.7404158115386963,
-0.5680971741676331,
-0.2765379250049591,
-0.3851531147956848,
-0.06970248371362686,
0.5222176909446716,
0.6057032942771912,
0.7506537437438965,
-0.7124279737472534,
-0.8623476028442383,
0.21874383091926575,
-0.8635593056678772,
0.16019223630428314,
-0.11394108831882477,
-0.40843167901039124,
0.4088216722011566,
0.16043256223201752,
-0.6770621538162231,
0.5292928218841553,
0.6487847566604614,
-0.36855289340019226,
0.8045123219490051,
-0.2561478316783905,
0.32780584692955017,
-1.3043290376663208,
0.25301939249038696,
-0.06049157679080963,
0.03789049759507179,
-0.6104361414909363,
0.07211844623088837,
0.2295609414577484,
0.18198449909687042,
-0.4658014178276062,
0.8004105687141418,
-0.6926248669624329,
0.3703429400920868,
0.06630241870880127,
0.34579116106033325,
0.09885668754577637,
0.7058196067810059,
0.008712002076208591,
0.8081233501434326,
0.7031244039535522,
-0.6493375301361084,
0.5314534306526184,
0.42902886867523193,
-0.3460127115249634,
0.06083851680159569,
-0.7610024213790894,
-0.037032224237918854,
0.18674136698246002,
0.2630957067012787,
-1.1662052869796753,
-0.2197510451078415,
0.5650770664215088,
-0.8292551636695862,
0.2565525770187378,
-0.17668484151363373,
-0.2932863235473633,
-0.7184723019599915,
-0.6357589364051819,
0.10717625170946121,
0.569826602935791,
-0.5057536959648132,
0.32406917214393616,
0.1876743584871292,
-0.02293291501700878,
-0.6395196318626404,
-0.8195552825927734,
-0.19374844431877136,
-0.23806701600551605,
-0.9427129626274109,
0.31808334589004517,
-0.04154481738805771,
-0.065590038895607,
-0.056386251002550125,
0.026537751778960228,
-0.04118648171424866,
0.06691446900367737,
0.12970010936260223,
0.6015504598617554,
-0.3109802305698395,
-0.1987375020980835,
-0.12417203933000565,
0.0033967052586376667,
-0.01150544360280037,
-0.1477024257183075,
0.7457301020622253,
-0.09556479007005692,
0.016023242846131325,
-0.6161804795265198,
0.041933413594961166,
0.461613267660141,
-0.5373669862747192,
1.0427570343017578,
0.6711748838424683,
-0.3790245056152344,
0.14388473331928253,
-0.487056165933609,
-0.19453810155391693,
-0.49045243859291077,
0.38216981291770935,
-0.39014729857444763,
-0.6187976598739624,
0.8766476511955261,
0.3537837266921997,
0.33653491735458374,
0.7447970509529114,
0.7131232023239136,
-0.04255910590291023,
0.9315702319145203,
0.2005312591791153,
-0.1587989181280136,
0.4201125502586365,
-0.8146592974662781,
0.10771098732948303,
-0.8891211152076721,
-0.51670902967453,
-0.40716618299484253,
-0.2943759560585022,
-0.6265316009521484,
-0.44525784254074097,
0.3587908446788788,
0.09827787429094315,
-0.46685296297073364,
0.5801891088485718,
-0.5277854800224304,
-0.0005204817862249911,
0.7289431691169739,
0.33026230335235596,
0.05379815772175789,
-0.19804708659648895,
-0.08005042374134064,
-0.02970734052360058,
-0.636570394039154,
-0.3334476947784424,
1.2520581483840942,
0.4309662878513336,
0.6340004801750183,
0.2810012996196747,
0.5075106024742126,
0.09345214813947678,
0.1689041256904602,
-0.6194501519203186,
0.36624985933303833,
-0.04352869465947151,
-0.8892253041267395,
-0.20893482863903046,
-0.5051531791687012,
-1.0149366855621338,
0.3622899055480957,
-0.15779981017112732,
-0.889735758304596,
0.12999635934829712,
0.01515460666269064,
-0.5606667399406433,
0.38800695538520813,
-0.7729946970939636,
0.9670477509498596,
-0.4158449172973633,
-0.5543498396873474,
-0.009296055883169174,
-0.8461271524429321,
0.5914756655693054,
0.11559652537107468,
0.2822663486003876,
-0.10087141394615173,
0.17552442848682404,
0.933306097984314,
-0.6983599662780762,
0.6225235462188721,
-0.18634285032749176,
-0.03763142600655556,
0.5787437558174133,
0.042247600853443146,
0.7409661412239075,
0.19439564645290375,
-0.13595521450042725,
0.3551954925060272,
0.11699243634939194,
-0.5158718228340149,
-0.4542141556739807,
0.6701555252075195,
-0.9436827301979065,
-0.6640253067016602,
-0.5582330822944641,
-0.4412091076374054,
0.1592177152633667,
0.3805033564567566,
0.627845823764801,
0.3302282989025116,
0.10968220978975296,
0.23499536514282227,
0.49680057168006897,
-0.38969433307647705,
0.6143913865089417,
0.3989817798137665,
-0.24426963925361633,
-0.6102755665779114,
0.8239629864692688,
0.17264626920223236,
0.4489479959011078,
0.3407008945941925,
0.23341096937656403,
-0.26302242279052734,
-0.3880699574947357,
-0.4874483048915863,
0.37571072578430176,
-0.45233944058418274,
-0.28575029969215393,
-0.6240323185920715,
-0.4768116772174835,
-0.9528255462646484,
-0.04880184680223465,
-0.3323667347431183,
-0.2953641712665558,
-0.28712335228919983,
-0.16018636524677277,
0.41878625750541687,
0.39045417308807373,
-0.20664756000041962,
0.27746883034706116,
-0.827191174030304,
0.21309268474578857,
0.06784296035766602,
0.12345900386571884,
0.16611945629119873,
-0.7716167569160461,
-0.5426252484321594,
0.37070971727371216,
-0.5702323913574219,
-0.7786131501197815,
0.6529161930084229,
0.00016493895964231342,
0.565914511680603,
0.6417461037635803,
0.024073980748653412,
0.7952431440353394,
-0.2763461768627167,
1.1618187427520752,
0.3703269362449646,
-0.8200225234031677,
0.6982733607292175,
-0.4669632017612457,
-0.011041547171771526,
0.2276531606912613,
0.36464598774909973,
-0.6645353436470032,
-0.2587990164756775,
-0.6145739555358887,
-0.8396356105804443,
1.088337779045105,
0.5497188568115234,
-0.014959665015339851,
0.12067939341068268,
0.1901739537715912,
-0.18306967616081238,
0.051752835512161255,
-0.8551325798034668,
-0.8292247653007507,
-0.34738948941230774,
-0.08006130158901215,
0.0824434906244278,
-0.2063470482826233,
-0.055187925696372986,
-0.370063453912735,
0.8925932049751282,
0.21737731993198395,
0.4838455617427826,
0.2534879446029663,
-0.01135536190122366,
0.045957520604133606,
-0.10660411417484283,
0.49040278792381287,
0.5861513018608093,
-0.4562053084373474,
-0.27559012174606323,
0.18898701667785645,
-0.6539731025695801,
-0.007271475158631802,
0.16799549758434296,
-0.3847865164279938,
0.0465051531791687,
0.4327408969402313,
0.8922181725502014,
0.08166087418794632,
-0.37721312046051025,
0.6077143549919128,
-0.028311634436249733,
-0.24758024513721466,
-0.25042960047721863,
0.08258888870477676,
0.06079220771789551,
0.2400875687599182,
0.26556259393692017,
-0.02799113094806671,
-0.014649112708866596,
-0.5500022172927856,
0.13914097845554352,
0.23143234848976135,
-0.24746917188167572,
-0.27765631675720215,
1.0111510753631592,
0.2199798822402954,
0.0035866089165210724,
0.5717036128044128,
-0.18606075644493103,
-0.6127813458442688,
0.9322929978370667,
0.4461689293384552,
0.6737188100814819,
-0.3347848057746887,
0.14653198421001434,
1.0423798561096191,
0.369747519493103,
-0.16463765501976013,
0.09659574925899506,
0.22052884101867676,
-0.5834392309188843,
0.06637950986623764,
-0.41216006875038147,
0.04173456132411957,
0.2660236656665802,
-0.6281057596206665,
0.6057350039482117,
-0.4770278334617615,
-0.4176294803619385,
-0.09595954418182373,
0.4569167494773865,
-0.5109105110168457,
0.37546929717063904,
0.0674932450056076,
0.9891749620437622,
-0.6298311948776245,
0.8925566673278809,
0.48563152551651,
-0.7983493208885193,
-1.1800862550735474,
-0.14171721041202545,
0.09357383847236633,
-0.8025038242340088,
0.4560645520687103,
0.1446162611246109,
0.30559006333351135,
-0.10893035680055618,
-0.5274547338485718,
-1.0191922187805176,
1.60206139087677,
0.010541221126914024,
-0.4793597459793091,
-0.1086278185248375,
-0.004453253000974655,
0.445764422416687,
0.010465182363986969,
0.6548569798469543,
0.6770817041397095,
0.4952743947505951,
0.1128561794757843,
-1.1461048126220703,
0.2592637240886688,
-0.6116596460342407,
-0.09361674636602402,
-0.0780697837471962,
-1.4704183340072632,
1.3794862031936646,
-0.25112050771713257,
-0.07107320427894592,
0.2185209095478058,
0.7860447764396667,
0.5144038796424866,
0.1891632378101349,
0.23407864570617676,
0.43165522813796997,
0.7217717170715332,
-0.4018213152885437,
0.894173800945282,
-0.4679134488105774,
0.8089644908905029,
0.9043934345245361,
0.06912454962730408,
0.659052312374115,
0.1144179254770279,
-0.5774819850921631,
0.4982852339744568,
1.0065293312072754,
-0.2909810543060303,
0.4985898435115814,
-0.14406409859657288,
-0.20757821202278137,
-0.07018875330686569,
0.22408881783485413,
-0.713380753993988,
0.179473876953125,
0.2769816517829895,
-0.2869569957256317,
0.10678800940513611,
-0.21842116117477417,
0.4837123453617096,
-0.355552613735199,
-0.14182153344154358,
0.5462397336959839,
0.0556194931268692,
-0.6942678689956665,
0.945568323135376,
0.2239738553762436,
0.97638338804245,
-0.7671788930892944,
0.10667821019887924,
-0.5957149267196655,
0.18103176355361938,
-0.33466029167175293,
-0.7687616348266602,
-0.022928442806005478,
-0.016467683017253876,
-0.020988186821341515,
0.2727018892765045,
0.546600878238678,
-0.2893461585044861,
-0.4912349581718445,
0.4334043264389038,
0.19242596626281738,
0.14641235768795013,
0.20561034977436066,
-0.9400091767311096,
0.013574795797467232,
0.19490639865398407,
-0.6179717779159546,
0.1972346156835556,
0.5068116188049316,
0.03698098659515381,
0.7493545413017273,
0.6648967862129211,
0.04566485062241554,
0.26798707246780396,
-0.15820007026195526,
0.9263153672218323,
-0.6632856726646423,
-0.47587087750434875,
-0.8898028135299683,
0.7288610935211182,
-0.1546846330165863,
-0.5034143328666687,
1.016339659690857,
0.8643824458122253,
0.7567197680473328,
0.027500273659825325,
0.9371566772460938,
-0.5758888721466064,
0.39654555916786194,
-0.48492470383644104,
1.034171462059021,
-0.7593101859092712,
0.12453416734933853,
-0.3412894904613495,
-0.5297114253044128,
-0.2586771249771118,
0.7237554788589478,
-0.2501142919063568,
0.16343186795711517,
0.6889957189559937,
0.9676700234413147,
0.1077432632446289,
-0.13971452414989471,
0.11810789257287979,
0.47701337933540344,
0.5457525849342346,
0.9862141609191895,
0.504345715045929,
-1.0712754726409912,
0.7888523936271667,
-0.6842730641365051,
-0.24457885324954987,
-0.4089639484882355,
-0.4041809141635895,
-1.0279910564422607,
-0.597480297088623,
-0.29227906465530396,
-0.7375568151473999,
-0.19157445430755615,
0.9982630014419556,
0.8265554904937744,
-0.9922456741333008,
-0.4085613191127777,
0.09118758141994476,
0.056483473628759384,
-0.4218977689743042,
-0.25980594754219055,
0.8406547904014587,
-0.2896045744419098,
-0.9517022371292114,
-0.001950858160853386,
0.030582046136260033,
0.1520523726940155,
0.05307396873831749,
-0.43766650557518005,
-0.4284653663635254,
0.008691300638020039,
0.46034157276153564,
0.21342577040195465,
-0.7440763711929321,
-0.041907768696546555,
0.28205034136772156,
-0.33677029609680176,
0.2169349193572998,
0.2650133967399597,
-0.3282257318496704,
0.2625592350959778,
0.5654864311218262,
0.1371777504682541,
0.5419835448265076,
-0.018047822639346123,
0.2611449956893921,
-0.3516685962677002,
0.37784430384635925,
-0.1288585364818573,
0.4976533055305481,
0.06410858035087585,
-0.32495418190956116,
0.6740711331367493,
0.40102389454841614,
-0.4911665916442871,
-0.8365885019302368,
-0.32212772965431213,
-1.0729748010635376,
-0.3089236617088318,
1.406144618988037,
-0.5051475167274475,
-0.35746681690216064,
0.17203427851200104,
-0.45383143424987793,
0.5543271899223328,
-0.4312865436077118,
0.7282609939575195,
0.8106120824813843,
0.09310996532440186,
-0.1874578297138214,
-0.6224929094314575,
0.3939718008041382,
0.27428334951400757,
-0.8442726731300354,
0.03707702085375786,
0.2301696538925171,
0.38633832335472107,
0.10453157126903534,
0.7370096445083618,
-0.16927580535411835,
0.4084067642688751,
0.09337734431028366,
0.053801752626895905,
-0.09822407364845276,
-0.04209093004465103,
-0.013631043955683708,
-0.3085058629512787,
-0.18695464730262756,
-0.47405073046684265
] |
bert-large-uncased-whole-word-masking-finetuned-squad | null | "2023-04-06T13:42:50Z" | 134,575 | 100 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"question-answering",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | question-answering | "2022-03-02T23:29:04Z" | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (uncased) whole word masking finetuned on SQuAD
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co/transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### Fine-tuning
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command:
```
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \
--model_name_or_path bert-large-uncased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_uncased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```
## Evaluation results
The results obtained are the following:
```
f1 = 93.15
exact_match = 86.91
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | [
-0.4904721975326538,
-0.7777954936027527,
0.21729521453380585,
0.3411521017551422,
-0.3629087805747986,
-0.03249210864305496,
-0.33145517110824585,
-0.53990238904953,
0.25813043117523193,
0.4960426688194275,
-0.8056738376617432,
-0.3438413739204407,
-0.5915043950080872,
0.11942024528980255,
-0.3329666256904602,
1.1211358308792114,
0.11142141371965408,
0.13656596839427948,
-0.0657225102186203,
0.12344261258840561,
-0.46662694215774536,
-0.653104305267334,
-0.6300576329231262,
-0.33478298783302307,
0.4441755712032318,
0.22002720832824707,
0.4318546950817108,
0.4353761374950409,
0.4917641282081604,
0.3379773795604706,
-0.04185452684760094,
0.01981801725924015,
-0.4784526228904724,
-0.08881527930498123,
0.10559043288230896,
-0.36636218428611755,
-0.24890980124473572,
0.2728179395198822,
0.6384566426277161,
0.6517372727394104,
0.018567146733403206,
0.12635673582553864,
0.022422470152378082,
0.5116915702819824,
-0.3162926435470581,
0.17346268892288208,
-0.7549120783805847,
0.05563303083181381,
-0.10039643943309784,
0.010963824577629566,
-0.44768497347831726,
-0.17002341151237488,
0.37234315276145935,
-0.4580172002315521,
0.3834506571292877,
0.09554235637187958,
1.2241445779800415,
0.08683908730745316,
-0.12454059720039368,
-0.09954153001308441,
-0.5966134071350098,
0.8835231065750122,
-0.7518990635871887,
0.33913397789001465,
0.4330335855484009,
0.16389423608779907,
0.0459110252559185,
-0.9429180026054382,
-0.7554875612258911,
-0.23161563277244568,
-0.1946844905614853,
0.21624226868152618,
-0.10688112676143646,
0.13525497913360596,
0.30147501826286316,
0.2117200791835785,
-0.6183885335922241,
0.2311689257621765,
-0.5917451977729797,
-0.32617196440696716,
0.735559344291687,
-0.09574519842863083,
0.08333353698253632,
-0.20961594581604004,
-0.6138940453529358,
-0.3082137107849121,
-0.49405190348625183,
0.19804500043392181,
0.4170176684856415,
0.2663106620311737,
-0.15644608438014984,
0.5449848771095276,
-0.08819641172885895,
0.6299472451210022,
0.08107299357652664,
0.020992210134863853,
0.4660014510154724,
-0.27800941467285156,
-0.3314450979232788,
-0.020618265494704247,
0.8716123104095459,
0.21411879360675812,
0.45879092812538147,
-0.26829954981803894,
-0.27852290868759155,
-0.13397246599197388,
0.42382368445396423,
-0.8898844718933105,
-0.23710758984088898,
0.18198779225349426,
-0.40193480253219604,
-0.24553261697292328,
0.1629883199930191,
-0.45477208495140076,
0.08527123928070068,
-0.2115984410047531,
0.7330023050308228,
-0.5912497043609619,
0.014336216263473034,
0.13071608543395996,
-0.2284521758556366,
0.38117361068725586,
0.07077343016862869,
-0.7305416464805603,
0.1399364173412323,
0.4745449721813202,
0.6353882551193237,
-0.120305635035038,
-0.3889364004135132,
-0.20717336237430573,
-0.14967705309391022,
-0.24137869477272034,
0.6614764928817749,
-0.26658278703689575,
-0.1445867270231247,
0.05402076616883278,
0.2320028841495514,
-0.2403651475906372,
-0.25824713706970215,
0.41651520133018494,
-0.6749494671821594,
0.4505029022693634,
-0.10794341564178467,
-0.7123138904571533,
-0.28586921095848083,
0.09717657417058945,
-0.50376957654953,
1.1026166677474976,
0.025606175884604454,
-0.5788637399673462,
0.40236201882362366,
-0.6211177706718445,
-0.5290802121162415,
0.03720572218298912,
0.1782970130443573,
-0.5667760372161865,
0.015480398200452328,
0.2417919635772705,
0.5605953931808472,
-0.012530065141618252,
0.27342331409454346,
-0.18536221981048584,
-0.41852226853370667,
0.3553623855113983,
-0.3118044137954712,
1.0299183130264282,
0.0824432447552681,
-0.39157387614250183,
0.028133096173405647,
-0.7111268043518066,
0.0947800725698471,
0.17281170189380646,
-0.3303101360797882,
-0.06368375569581985,
-0.05919231101870537,
0.07205300033092499,
0.3358152210712433,
0.3767193853855133,
-0.6917827725410461,
0.062032975256443024,
-0.622265100479126,
0.43169689178466797,
0.7430206537246704,
0.017765501514077187,
0.2909347414970398,
-0.3978174328804016,
0.38172727823257446,
0.024484552443027496,
0.1639416664838791,
-0.17488349974155426,
-0.656874418258667,
-0.9274405241012573,
-0.31316593289375305,
0.5560340881347656,
0.6496740579605103,
-0.5816927552223206,
0.8012308478355408,
-0.14348763227462769,
-0.49749502539634705,
-0.7420262694358826,
0.04808493331074715,
0.5012503266334534,
0.4917448163032532,
0.5507286190986633,
-0.3699357807636261,
-0.8278207182884216,
-1.0365746021270752,
0.06077711656689644,
-0.14366433024406433,
-0.18080206215381622,
0.1367674171924591,
0.6377083659172058,
-0.17482905089855194,
0.9240680932998657,
-0.511997640132904,
-0.3744628429412842,
-0.41093534231185913,
0.22424200177192688,
0.19404572248458862,
0.6099817156791687,
0.4276253879070282,
-0.6024011969566345,
-0.4383607506752014,
-0.3980400860309601,
-0.5786636471748352,
-0.04960320517420769,
-0.1690182387828827,
-0.19359555840492249,
0.38598671555519104,
0.6273496150970459,
-0.6302111744880676,
0.39027875661849976,
0.45985642075538635,
-0.1668548882007599,
0.5297271609306335,
-0.23413008451461792,
-0.213516965508461,
-1.1843124628067017,
0.064266137778759,
-0.07090108841657639,
-0.09447044879198074,
-0.625831663608551,
-0.027948841452598572,
0.028862960636615753,
-0.1005566418170929,
-0.5071176886558533,
0.4515344202518463,
-0.4716159701347351,
0.05211162194609642,
-0.10276813060045242,
0.1453179121017456,
0.05490879714488983,
0.8342815041542053,
0.15943770110607147,
0.7259186506271362,
0.40108591318130493,
-0.5983504056930542,
0.21049430966377258,
0.4061380624771118,
-0.5688111186027527,
0.12780509889125824,
-0.852465808391571,
0.24097946286201477,
-0.10428928583860397,
0.22207389771938324,
-1.178195834159851,
0.013833261094987392,
0.008368801325559616,
-0.638416588306427,
0.43687689304351807,
0.13443417847156525,
-0.6150928735733032,
-0.555465817451477,
-0.3053262233734131,
0.18263447284698486,
0.7438288927078247,
-0.3035379648208618,
0.2958488166332245,
0.30955225229263306,
-0.04016067832708359,
-0.6478978991508484,
-0.7789005637168884,
-0.09346146881580353,
-0.007639002986252308,
-0.6079151630401611,
0.5686529278755188,
-0.23029887676239014,
0.09989286214113235,
-0.1101142019033432,
0.03448454663157463,
-0.17885909974575043,
0.06743625551462173,
0.1844448298215866,
0.3649647533893585,
-0.1893565058708191,
0.31732308864593506,
-0.07242849469184875,
0.03547341004014015,
0.04572408273816109,
-0.23040826618671417,
0.7806641459465027,
-0.018469886854290962,
-0.037954047322273254,
-0.4447806179523468,
0.35745522379875183,
0.2730090022087097,
-0.20920012891292572,
0.9899508357048035,
0.9023642539978027,
-0.37839075922966003,
-0.019944116473197937,
-0.7010024189949036,
-0.3530348837375641,
-0.48815709352493286,
0.5454294085502625,
-0.28978708386421204,
-0.8094794154167175,
0.5631077289581299,
0.39489054679870605,
0.1295616328716278,
0.7246946692466736,
0.4986506700515747,
-0.4125021994113922,
0.9165773987770081,
0.7217320799827576,
-0.07151059806346893,
0.5419338941574097,
-0.38176462054252625,
0.2549610733985901,
-0.7903856635093689,
-0.4449305534362793,
-0.4689807891845703,
-0.43187013268470764,
-0.666183590888977,
-0.255634069442749,
0.18400514125823975,
0.24806708097457886,
-0.3552340865135193,
0.489233136177063,
-0.49361419677734375,
0.29074880480766296,
0.8179739713668823,
0.34456557035446167,
-0.08705277740955353,
0.07049021124839783,
-0.21463635563850403,
-0.051814861595630646,
-0.652474582195282,
-0.28838270902633667,
1.1809042692184448,
0.4236002266407013,
0.4535296857357025,
-0.08081384003162384,
0.6960451006889343,
0.17856259644031525,
0.13488031923770905,
-0.7873154282569885,
0.6566463708877563,
-0.19736722111701965,
-0.8701941967010498,
-0.43100711703300476,
-0.20303766429424286,
-1.1520785093307495,
0.0483245812356472,
-0.3999055325984955,
-0.686076819896698,
0.02276420220732689,
-0.10766934603452682,
-0.2690297067165375,
0.22538313269615173,
-0.908692479133606,
0.7638975977897644,
-0.14687535166740417,
-0.06860097497701645,
-0.07095809280872345,
-0.9666988253593445,
0.21559248864650726,
-0.164094477891922,
-0.16196884214878082,
0.058849964290857315,
0.1630268394947052,
1.0712521076202393,
-0.4419112503528595,
0.9446228742599487,
-0.174484983086586,
0.11365167796611786,
0.27365395426750183,
-0.36746084690093994,
0.3633102774620056,
-0.22411711513996124,
0.1073644831776619,
0.35346704721450806,
-0.09707769751548767,
-0.4936628043651581,
-0.30854496359825134,
0.3529684543609619,
-0.926821768283844,
-0.6090825796127319,
-0.41853946447372437,
-0.6681542992591858,
-0.21978378295898438,
0.2875557541847229,
0.5303005576133728,
0.35381826758384705,
-0.1251964420080185,
0.41953712701797485,
0.8163419365882874,
-0.4321608543395996,
0.7018436789512634,
0.4790094494819641,
-0.07392227649688721,
-0.24430403113365173,
0.6455919742584229,
0.18309396505355835,
0.3269529342651367,
0.5931240320205688,
0.08473554998636246,
-0.48629245162010193,
-0.4917888939380646,
-0.21855665743350983,
0.38062575459480286,
-0.42109501361846924,
-0.258410781621933,
-0.8112056255340576,
-0.6761027574539185,
-0.6238079071044922,
-0.03316537290811539,
-0.1924343705177307,
-0.47634485363960266,
-0.33679670095443726,
-0.11887137591838837,
0.40495365858078003,
0.535286545753479,
0.0019833457190543413,
0.5007084608078003,
-0.6465405821800232,
0.262222558259964,
0.4862614572048187,
0.26856333017349243,
-0.10187552124261856,
-0.8163933753967285,
-0.3715013265609741,
0.19279751181602478,
-0.41309216618537903,
-0.763701319694519,
0.35681602358818054,
0.2890476584434509,
0.5790854692459106,
0.38355717062950134,
0.031417366117239,
0.6828365325927734,
-0.6333371996879578,
0.8970049619674683,
0.1814984530210495,
-0.8228866457939148,
0.5619824528694153,
-0.11545945703983307,
0.33756598830223083,
0.4641270935535431,
0.4169461131095886,
-0.3200457990169525,
-0.43033313751220703,
-0.8696454763412476,
-0.8833826184272766,
0.7848735451698303,
0.29474085569381714,
0.35441580414772034,
-0.08057878911495209,
0.21291232109069824,
0.0036385722924023867,
0.31052136421203613,
-0.908008873462677,
-0.4045478403568268,
-0.16444800794124603,
-0.12163455039262772,
-0.3292534649372101,
-0.38953542709350586,
-0.0031535520683974028,
-0.4828506112098694,
0.789280354976654,
0.23733416199684143,
0.7958154678344727,
0.17794542014598846,
-0.2928715646266937,
0.21091780066490173,
0.11699843406677246,
0.7646766304969788,
0.5024373531341553,
-0.506913959980011,
-0.14787384867668152,
0.18422919511795044,
-0.7152818441390991,
-0.16697601974010468,
0.36036917567253113,
-0.12065433710813522,
0.20297275483608246,
0.47764304280281067,
0.9773018956184387,
0.13924723863601685,
-0.6005631685256958,
0.5952332019805908,
0.13208360970020294,
-0.3842768669128418,
-0.4521006643772125,
-0.06310924142599106,
-0.04598420113325119,
0.21909859776496887,
0.512596845626831,
-0.040069665759801865,
-0.11695266515016556,
-0.5663999915122986,
0.36308443546295166,
0.48642975091934204,
-0.3821510970592499,
-0.2165263146162033,
0.6222324967384338,
0.1047397255897522,
-0.3854440748691559,
0.7677473425865173,
-0.2030685544013977,
-0.7509534955024719,
0.6710596680641174,
0.6478758454322815,
0.9076634645462036,
-0.2341955006122589,
0.2412378489971161,
0.38732582330703735,
0.5846878886222839,
0.053559280931949615,
0.19041866064071655,
0.06735870987176895,
-0.8497263789176941,
-0.4798658490180969,
-0.781694769859314,
-0.16682225465774536,
0.389644056558609,
-0.6894256472587585,
0.23066146671772003,
-0.3339802622795105,
-0.06095927953720093,
0.11176993697881699,
0.23040954768657684,
-0.8645302653312683,
0.4178640842437744,
0.029899852350354195,
1.0088179111480713,
-0.8341653943061829,
0.9536314010620117,
0.5990967154502869,
-0.5749520063400269,
-0.9093321561813354,
-0.052516039460897446,
-0.44793036580085754,
-1.167728304862976,
0.7406544089317322,
0.3088468015193939,
0.2782999575138092,
0.0876130536198616,
-0.6201643943786621,
-0.6936968564987183,
0.9630774855613708,
0.17761971056461334,
-0.4518337845802307,
-0.1845085322856903,
0.16295281052589417,
0.6289631724357605,
-0.41588613390922546,
0.2388586550951004,
0.4208713471889496,
0.2951439619064331,
0.08404449373483658,
-0.8698630928993225,
-0.027510659769177437,
-0.21297679841518402,
0.07091213017702103,
0.08387260884046555,
-0.5253329277038574,
0.9363027811050415,
-0.15045566856861115,
-0.043620795011520386,
0.0384613461792469,
0.548174262046814,
0.14483289420604706,
0.10589522868394852,
0.45672354102134705,
0.6760718822479248,
0.6347474455833435,
-0.18167102336883545,
0.9954873323440552,
-0.27118703722953796,
0.3694193959236145,
0.993518590927124,
0.055127665400505066,
0.9520556330680847,
0.43937060236930847,
-0.28312137722969055,
0.6387499570846558,
0.7005041241645813,
-0.14808014035224915,
0.759554922580719,
0.24149134755134583,
-0.019311891868710518,
-0.12351194024085999,
0.10024634748697281,
-0.4682440459728241,
0.46428507566452026,
0.21942737698554993,
-0.5113023519515991,
0.017273446545004845,
0.06553132086992264,
0.12425677478313446,
-0.2365294247865677,
-0.2516968250274658,
0.7715165615081787,
0.00790832657366991,
-0.7445766925811768,
0.6695243716239929,
0.017388200387358665,
0.7355964779853821,
-0.761154294013977,
0.15838325023651123,
-0.2326798141002655,
0.049217674881219864,
0.00025744957383722067,
-0.6826174855232239,
0.2505113184452057,
-0.1353914588689804,
-0.31539347767829895,
-0.3816048204898834,
0.576386570930481,
-0.5285964012145996,
-0.6177075505256653,
0.13862024247646332,
0.38879701495170593,
0.2910391688346863,
-0.08942569047212601,
-0.742882490158081,
-0.2020859271287918,
0.07081641256809235,
-0.27356189489364624,
0.32841646671295166,
0.41512584686279297,
0.16802558302879333,
0.5337421298027039,
0.634605884552002,
-0.018237391486763954,
0.23767635226249695,
0.0012724461266770959,
0.7572264671325684,
-0.5886915922164917,
-0.5134377479553223,
-0.7324315309524536,
0.636512041091919,
-0.18799103796482086,
-0.4368205666542053,
0.6850764751434326,
0.5855162739753723,
0.9754028916358948,
-0.21691976487636566,
0.5897836685180664,
-0.11207952350378036,
0.48713523149490356,
-0.5874258279800415,
0.695453941822052,
-0.504041314125061,
0.14114457368850708,
-0.2496996372938156,
-0.9422909021377563,
-0.1469358652830124,
0.8010241985321045,
-0.1515185385942459,
0.15029512345790863,
0.8537114262580872,
0.70176100730896,
0.0919765830039978,
-0.08393561840057373,
0.29010942578315735,
0.3013540208339691,
0.02785508893430233,
0.5310323238372803,
0.4610847532749176,
-0.6276046633720398,
0.6461994647979736,
-0.3976471424102783,
-0.0886395126581192,
-0.1586761176586151,
-0.7692853808403015,
-1.156391978263855,
-0.815027117729187,
-0.2777769863605499,
-0.4925417900085449,
-0.0017501668771728873,
0.769586443901062,
0.7626500725746155,
-0.8194614052772522,
-0.16924069821834564,
-0.08018040657043457,
-0.08514070510864258,
-0.32113948464393616,
-0.25726819038391113,
0.4424683749675751,
-0.500321626663208,
-0.7027643918991089,
0.13493956625461578,
-0.06088261306285858,
0.14077827334403992,
-0.24970465898513794,
0.08103497326374054,
-0.5970497727394104,
0.156255841255188,
0.7190243005752563,
0.09732072800397873,
-0.592120349407196,
-0.40545180439949036,
0.20673607289791107,
-0.15001782774925232,
0.005053016822785139,
0.5120988488197327,
-0.7667069435119629,
0.41008156538009644,
0.3358146548271179,
0.6518424153327942,
0.843167781829834,
-0.15339094400405884,
0.4897928833961487,
-1.1447398662567139,
0.2896566689014435,
0.24676059186458588,
0.2635543644428253,
0.16815268993377686,
-0.2289494425058365,
0.4175208806991577,
0.33957141637802124,
-0.5252298712730408,
-0.7926874756813049,
0.04053916037082672,
-1.1133098602294922,
-0.304518461227417,
1.083518147468567,
-0.2133444994688034,
-0.09461312741041183,
-0.028293587267398834,
-0.13805434107780457,
0.46692508459091187,
-0.2860889434814453,
0.840868353843689,
0.8934650421142578,
0.09821493923664093,
-0.18814246356487274,
-0.512342095375061,
0.45908865332603455,
0.44524964690208435,
-0.5871664881706238,
-0.4389754831790924,
0.18833640217781067,
0.33099085092544556,
0.2122822105884552,
0.5417615175247192,
0.09285447746515274,
0.05723176524043083,
-0.20542386174201965,
0.23739200830459595,
-0.05045858025550842,
-0.22865626215934753,
-0.24673683941364288,
0.08742183446884155,
-0.311403751373291,
-0.5850903987884521
] |
SAPOSS/password-model | SAPOSS | "2022-11-09T10:12:15Z" | 133,841 | 7 | transformers | [
"transformers",
"tf",
"roberta",
"text-classification",
"en",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | text-classification | "2022-03-02T23:29:04Z" | ---
language:
- en
---
# Model Card for Password-Model
# Model Details
## Model Description
The Password Model is intended to be used with [Credential Digger](https://github.com/SAP/credential-digger) in order to automatically filter false positive password discoveries.
- **Developed by:** SAP OSS
- **Shared by [Optional]:** Hugging Face
- **Model type:** Text Classification
- **Language(s) (NLP):** en
- **License:** Apache-2.0
- **Related Models:**
- **Parent Model:** RoBERTa
- **Resources for more information:**
- [GitHub Repo](https://github.com/SAP/credential-digger)
- [Associated Paper](https://www.scitepress.org/Papers/2021/102381/102381.pdf)
# Uses
## Direct Use
The model is directly integrated into [Credential Digger]((https://github.com/SAP/credential-digger) and can be used to filter the false positive password discoveries of a scan.
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Training Details
## Training Data
[CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) fine-tuned on a dataset for leak detection.
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
More information needed
## Testing Data, Factors & Metrics
### Testing Data
More information needed
### Factors
More information needed
### Metrics
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed
# Citation
**BibTeX:**
```
TBD
```
# Model Card Authors [optional]
SAP OSS in collaboration with Ezi Ozoani and the Hugging Face team.
# Model Card Contact
More information needed
# How to Get Started with the Model
The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("SAPOSS/password-model")
model = AutoModelForSequenceClassification.from_pretrained("SAPOSS/password-model")
```
</details>
| [
-0.2894834280014038,
-0.34292072057724,
0.2601065933704376,
-0.027121325954794884,
-0.32649925351142883,
-0.13752686977386475,
0.5484873652458191,
-0.5219833850860596,
0.0011785340029746294,
0.8622624278068542,
-0.6967472434043884,
-0.5383370518684387,
-0.6097222566604614,
-0.13946087658405304,
-0.49024298787117004,
0.9396949410438538,
0.03194095194339752,
0.2348899394273758,
-0.08259966969490051,
0.05315642058849335,
-0.5314915180206299,
-0.8104057908058167,
-0.4249286651611328,
-0.4999871850013733,
0.05198070779442787,
0.1086098700761795,
0.29961690306663513,
0.34882381558418274,
0.6729834675788879,
0.23879316449165344,
-0.24389760196208954,
0.03461083769798279,
0.08720812201499939,
-0.22713682055473328,
-0.2666265070438385,
-0.5241420269012451,
-0.7631376385688782,
0.07808512449264526,
0.3728395402431488,
0.23502126336097717,
-0.35431215167045593,
0.6052455306053162,
-0.08953456580638885,
0.5432651042938232,
-0.7535498142242432,
0.4072510004043579,
-0.8549563884735107,
-0.112668976187706,
-0.21964168548583984,
-0.2002054899930954,
-0.32289350032806396,
-0.04691208153963089,
-0.14268453419208527,
-0.2760933041572571,
0.4263848662376404,
0.28699401021003723,
1.2381263971328735,
0.20071548223495483,
-0.2944345772266388,
-0.41118374466896057,
-0.7271071672439575,
0.7182571887969971,
-0.6848422288894653,
0.15492956340312958,
0.452310174703598,
0.35261619091033936,
0.3188595771789551,
-0.6845895648002625,
-0.3957176208496094,
-0.0018384205177426338,
-0.18736544251441956,
0.07828637212514877,
-0.09498550742864609,
0.11177840083837509,
0.7218703031539917,
0.3911040127277374,
-0.5993897318840027,
-0.11058302968740463,
-0.7839615345001221,
-0.427307665348053,
0.6761916279792786,
0.5226771831512451,
0.23491370677947998,
-0.5313745737075806,
-0.7065538167953491,
-0.22177810966968536,
-0.44188693165779114,
0.26881271600723267,
0.3962072432041168,
0.33837178349494934,
-0.2618274986743927,
0.5197075009346008,
-0.06618892401456833,
0.651340901851654,
-0.2708737254142761,
-0.10984394699335098,
0.5553190112113953,
-0.30446290969848633,
-0.39731365442276,
0.12765993177890778,
0.5811942219734192,
0.02553918957710266,
-0.23431570827960968,
0.2640678882598877,
-0.5772619247436523,
0.11297669261693954,
0.17708271741867065,
-1.0625452995300293,
-0.4899824559688568,
0.4217379689216614,
-0.6000127196311951,
-0.5474503040313721,
0.4401848316192627,
-0.6345470547676086,
-0.21622931957244873,
-0.20560616254806519,
0.4932060241699219,
-0.5106745958328247,
-0.32553693652153015,
0.04088583216071129,
-0.5685485005378723,
0.4397974908351898,
0.25452375411987305,
-0.7418836355209351,
0.5028069615364075,
0.7044740319252014,
0.858384370803833,
0.1864459067583084,
-0.23250114917755127,
-0.22996962070465088,
0.20243705809116364,
-0.12825803458690643,
0.4814451336860657,
-0.31532061100006104,
-0.4100143611431122,
-0.11724776774644852,
0.0693473070859909,
-0.26479071378707886,
-0.4422403872013092,
0.8486263751983643,
-0.6161847114562988,
0.4548758268356323,
-0.15031924843788147,
-0.6530184745788574,
-0.30965256690979004,
0.14297081530094147,
-0.5520164966583252,
1.2959264516830444,
0.27250587940216064,
-0.8916096687316895,
0.1288965493440628,
-0.9366466403007507,
-0.1549878567457199,
0.48183342814445496,
0.1645224541425705,
-0.5969637036323547,
-0.20293070375919342,
-0.1003023162484169,
0.2939072251319885,
-0.25603199005126953,
0.2671264111995697,
-0.09859675168991089,
-0.26681435108184814,
-0.17771653831005096,
-0.17716626822948456,
1.5459142923355103,
0.32379150390625,
-0.30232274532318115,
-0.16724708676338196,
-0.6453861594200134,
0.02887880988419056,
0.34261688590049744,
-0.03733402490615845,
-0.3512082099914551,
-0.25310230255126953,
-0.06393157690763474,
0.2044958919286728,
0.4461294412612915,
-0.5394554138183594,
-0.13493481278419495,
-0.2448519766330719,
0.4431174695491791,
0.5847243070602417,
0.11083810776472092,
0.26229217648506165,
-0.41294533014297485,
0.5147196650505066,
0.12062210589647293,
0.6180095076560974,
-0.27168118953704834,
-0.610487699508667,
-0.5764877200126648,
-0.41413751244544983,
0.2990484833717346,
1.065702199935913,
-0.29311564564704895,
0.8681321144104004,
-0.09658583998680115,
-0.9483117461204529,
-0.20482303202152252,
0.17123639583587646,
0.3247343599796295,
0.8224077224731445,
0.5054932236671448,
-0.44500359892845154,
-0.5916573405265808,
-0.9542532563209534,
-0.18829095363616943,
-0.37170901894569397,
-0.18467505276203156,
0.5422146320343018,
0.9160134792327881,
-0.35148218274116516,
0.823186457157135,
-0.7338354587554932,
-0.5583291053771973,
-0.12069419026374817,
0.17120341956615448,
0.271187961101532,
0.7144280672073364,
0.7499628067016602,
-1.0130021572113037,
-0.07247675955295563,
-0.8639830946922302,
-0.6752827167510986,
0.13542544841766357,
-0.11611336469650269,
-0.09643927216529846,
0.2474486380815506,
0.30774641036987305,
-0.6379405856132507,
0.70699542760849,
0.39797067642211914,
-0.5501925945281982,
0.7445030212402344,
-0.23049376904964447,
-0.0322021022439003,
-1.0175620317459106,
0.463405579328537,
-0.1058199480175972,
-0.1656506508588791,
-0.5401318669319153,
0.1983623206615448,
0.3106643557548523,
-0.44953030347824097,
-0.6461394429206848,
0.6350271105766296,
-0.5036776661872864,
0.01901926100254059,
-0.136977419257164,
-0.04429507628083229,
0.3518602252006531,
0.45836856961250305,
0.11582031100988388,
0.6070296764373779,
0.7188816070556641,
-0.914714515209198,
0.42571523785591125,
0.6057227849960327,
-0.39482349157333374,
0.47864750027656555,
-0.6016748547554016,
0.04067403823137283,
0.10181695967912674,
0.4165019094944,
-0.5737816095352173,
-0.09294978529214859,
0.5406489372253418,
-0.7586475014686584,
0.4087393283843994,
-0.24945068359375,
-0.5691491961479187,
-0.6371529698371887,
-0.13663573563098907,
0.19755011796951294,
0.6598761081695557,
-0.5366197228431702,
1.0743443965911865,
0.38191789388656616,
0.1822195053100586,
-0.39820587635040283,
-0.9337113499641418,
0.11427261680364609,
-0.2290615290403366,
-0.6543574333190918,
0.5213761925697327,
-0.08816500753164291,
-0.25147745013237,
-0.018341511487960815,
-0.08575281500816345,
-0.29812857508659363,
0.31033989787101746,
0.3642173409461975,
0.8468179702758789,
-0.013134031556546688,
-0.018750203773379326,
-0.38384580612182617,
-0.3538101613521576,
0.28272467851638794,
0.011036843992769718,
0.5537621378898621,
-0.04874388128519058,
-0.10369240492582321,
-0.4072052240371704,
0.3652936816215515,
0.40139836072921753,
-0.4295981824398041,
1.1841939687728882,
0.5524690747261047,
-0.8403851389884949,
-0.18705666065216064,
-0.5038185119628906,
-0.42036136984825134,
-0.49753156304359436,
0.16459088027477264,
-0.4018745422363281,
-0.31514328718185425,
0.7809793949127197,
0.17948652803897858,
0.1260463297367096,
0.7702848315238953,
0.244461789727211,
-0.012410207651555538,
0.8220637440681458,
0.6191236972808838,
-0.06436019390821457,
0.610034167766571,
-0.34474772214889526,
0.4450121521949768,
-1.190004587173462,
-0.4569816291332245,
-0.8402162194252014,
0.31299886107444763,
-0.48326802253723145,
-0.10801117867231369,
0.05360998213291168,
0.2544572651386261,
-0.6068406105041504,
0.6699907779693604,
-0.753952145576477,
0.1235196515917778,
0.6617986559867859,
0.2862047255039215,
-0.10545351356267929,
-0.23541709780693054,
0.08271419256925583,
0.20652899146080017,
-0.668353796005249,
-0.5354892611503601,
0.8133169412612915,
0.3161083459854126,
0.4496421217918396,
0.04018806293606758,
0.8524315357208252,
0.32990753650665283,
0.23020289838314056,
-0.233564093708992,
0.6657488942146301,
0.03252536430954933,
-1.1887181997299194,
-0.2643459439277649,
-0.6054625511169434,
-0.7253779172897339,
0.1812664270401001,
-0.05955236405134201,
-0.8969895839691162,
0.3383297324180603,
0.3560173213481903,
-0.28150343894958496,
0.6891230940818787,
-0.634409487247467,
1.03715980052948,
-0.3954077959060669,
0.07251568883657455,
-0.1294151097536087,
-0.57129967212677,
0.7895547747612,
-0.1118646189570427,
0.3102750778198242,
-0.19467216730117798,
0.006683951709419489,
0.8727261424064636,
-0.8490109443664551,
0.7531718611717224,
-0.5458058714866638,
0.2828023433685303,
0.43421757221221924,
0.08251137286424637,
0.6814515590667725,
-0.026380352675914764,
-0.2930801212787628,
0.6518838405609131,
0.16539475321769714,
-0.41672283411026,
-0.25524938106536865,
0.5612690448760986,
-0.6073368787765503,
-0.4495798349380493,
-0.8475693464279175,
-0.13541461527347565,
0.08672107756137848,
0.3983549475669861,
0.4109761714935303,
0.3137965500354767,
0.03256114944815636,
-0.026734158396720886,
0.9464155435562134,
-0.42292094230651855,
0.2236008495092392,
0.5523107051849365,
0.029346497729420662,
-0.4007093608379364,
0.7868465185165405,
0.035030435770750046,
0.27720361948013306,
0.30054691433906555,
0.26961925625801086,
-0.21227648854255676,
-0.19764821231365204,
-0.37740591168403625,
0.3248751163482666,
-0.7195703983306885,
-0.5624016523361206,
-0.7816462516784668,
-0.6764633655548096,
-0.7199961543083191,
0.07759735733270645,
-0.31518852710723877,
-0.21952277421951294,
-0.43595775961875916,
-0.14382854104042053,
0.43921294808387756,
0.11289413273334503,
-0.29381564259529114,
0.3264612853527069,
-0.8951334953308105,
0.4239028990268707,
0.0021172461565583944,
0.3341327905654907,
0.03780558332800865,
-0.7668216228485107,
-0.07819812744855881,
0.06066903844475746,
-0.20566681027412415,
-1.0146443843841553,
0.41262510418891907,
0.06463801860809326,
0.600909411907196,
0.22684749960899353,
0.3589939475059509,
0.22038407623767853,
-0.10406158119440079,
1.0416826009750366,
0.17119957506656647,
-1.083638072013855,
0.6988899111747742,
-0.19500517845153809,
0.10064054280519485,
0.6877365112304688,
0.3021887242794037,
-0.44905567169189453,
0.02725132927298546,
-1.114126443862915,
-1.136101245880127,
0.9689072966575623,
0.3873428702354431,
0.131429523229599,
0.4074951112270355,
0.3114357590675354,
-0.39228224754333496,
0.34133511781692505,
-0.7509652972221375,
-0.5933605432510376,
-0.36358004808425903,
0.16292820870876312,
0.06555990129709244,
-0.37233778834342957,
-0.13526122272014618,
-0.2252790927886963,
1.2834664583206177,
0.3476142883300781,
0.4754532277584076,
0.14093738794326782,
-0.11551690846681595,
0.11826691776514053,
-0.1787053495645523,
0.3893064856529236,
0.3184814453125,
-0.6624817252159119,
-0.19155889749526978,
0.3187979459762573,
-0.6478068232536316,
-0.3125322163105011,
0.19433581829071045,
-0.5916365385055542,
0.18470074236392975,
0.23889106512069702,
0.8642900586128235,
-0.18984335660934448,
-0.3176895081996918,
0.674425482749939,
-0.0571783110499382,
-0.478205144405365,
-0.8179240226745605,
0.38125908374786377,
0.09530626982450485,
-0.19979490339756012,
0.320566862821579,
0.43398353457450867,
0.24110019207000732,
-0.5883408188819885,
0.08434892445802689,
0.37532949447631836,
-0.4385490119457245,
0.12628620862960815,
0.6793608069419861,
0.2676745057106018,
-0.7190195322036743,
0.9234102964401245,
-0.2393694967031479,
-0.9699380397796631,
0.8425329327583313,
0.2987574636936188,
0.9817585945129395,
-0.4890119433403015,
-0.07905768603086472,
0.7498700618743896,
0.6080401539802551,
-0.0330105796456337,
0.33135655522346497,
-0.24973410367965698,
-0.5890426635742188,
0.3170813024044037,
-0.5374505519866943,
-0.4575999677181244,
0.12681856751441956,
-0.8567485213279724,
0.6703683733940125,
-0.5734957456588745,
0.050016745924949646,
-0.06806447356939316,
0.20765669643878937,
-0.9555932283401489,
0.3949768543243408,
0.18544895946979523,
1.2442474365234375,
-1.0541372299194336,
0.6698583364486694,
0.3558692932128906,
-0.5905255675315857,
-1.026984691619873,
-0.4682360887527466,
0.059309497475624084,
-0.7422615885734558,
0.39169418811798096,
0.1121344193816185,
-0.014806115068495274,
-0.2959609031677246,
-0.6246556043624878,
-0.8193089962005615,
1.3751980066299438,
0.019337251782417297,
-0.6006920337677002,
0.02891695685684681,
0.03710127994418144,
0.20353153347969055,
-0.3392101228237152,
0.41073086857795715,
0.45271244645118713,
0.5759607553482056,
0.16611646115779877,
-0.6113340258598328,
0.14575974643230438,
-0.20885559916496277,
-0.31299930810928345,
0.1836523413658142,
-0.7598366141319275,
0.8430911898612976,
-0.1060151606798172,
-0.1915140151977539,
-0.03865784779191017,
0.33372750878334045,
0.45046690106391907,
0.48758894205093384,
0.6250011324882507,
0.4818437099456787,
1.0048359632492065,
0.09983205050230026,
0.8693994283676147,
-0.674091100692749,
0.4150169789791107,
1.3015193939208984,
-0.23158201575279236,
0.7200059294700623,
0.050554025918245316,
-0.007261406164616346,
0.6215185523033142,
0.905536949634552,
-0.5531697273254395,
0.30557072162628174,
0.1299157291650772,
-0.13439993560314178,
-0.3786865472793579,
0.027005497366189957,
-0.5289239883422852,
0.16669265925884247,
0.33448073267936707,
-0.6647031307220459,
-0.0829104483127594,
-0.241232231259346,
-0.19846639037132263,
-0.47080567479133606,
-0.2853734791278839,
0.5719397068023682,
0.17066417634487152,
-0.2870219051837921,
0.15660656988620758,
0.3061617612838745,
0.5502930879592896,
-0.8775317072868347,
0.07697468996047974,
0.1012955754995346,
0.224887877702713,
-0.5021637082099915,
-0.421469509601593,
0.41423484683036804,
0.03216402977705002,
-0.31499338150024414,
-0.20332206785678864,
0.9049727320671082,
0.07528932392597198,
-0.6327060461044312,
0.3316030204296112,
0.1970820277929306,
0.3306666910648346,
-0.26663920283317566,
-1.171550989151001,
-0.03412237763404846,
0.05857209861278534,
-0.25363436341285706,
0.05306519940495491,
0.09265045821666718,
0.0676707997918129,
0.8292356133460999,
0.691847562789917,
0.1578073650598526,
-0.1522621214389801,
0.062118049710989,
0.6939445734024048,
-0.5872524976730347,
-0.7070174217224121,
-0.786662757396698,
0.453920841217041,
-0.37703049182891846,
-0.5142784118652344,
0.8235245943069458,
1.0616521835327148,
0.7020619511604309,
0.15183430910110474,
0.7456886768341064,
-0.07691968232393265,
0.6772826910018921,
-0.17996525764465332,
0.624735414981842,
-0.4255285859107971,
0.3735024929046631,
-0.43182843923568726,
-0.9449135661125183,
-0.03078886680305004,
0.5444564819335938,
-0.23096200823783875,
0.13327008485794067,
0.5635815262794495,
0.9970800876617432,
-0.05712779983878136,
0.18806354701519012,
0.16399136185646057,
0.08631451427936554,
0.3489644527435303,
0.196981742978096,
0.2619219422340393,
-0.9425801634788513,
0.5005044341087341,
-0.2897123694419861,
-0.37130072712898254,
-0.18074871599674225,
-0.8349877595901489,
-0.8426126837730408,
-0.5192452073097229,
-0.5421717762947083,
-0.7325494289398193,
-0.16805683076381683,
0.6101093888282776,
0.849385142326355,
-0.8220571875572205,
-0.03573969379067421,
-0.032145168632268906,
0.12254883348941803,
-0.1462414711713791,
-0.23115743696689606,
0.406070739030838,
-0.037227656692266464,
-0.3042263984680176,
-0.033175501972436905,
-0.00911173690110445,
0.17026446759700775,
-0.48327431082725525,
-0.11389623582363129,
-0.023178700357675552,
0.4645303785800934,
0.16758176684379578,
0.3090698719024658,
-0.377673476934433,
0.03845791518688202,
-0.062304433435201645,
-0.3063335418701172,
-0.10020404309034348,
0.6707696914672852,
-0.5174129605293274,
0.025178268551826477,
0.6288400292396545,
0.05177536979317665,
0.7364873886108398,
0.041930604726076126,
0.2562120854854584,
-0.18902257084846497,
-0.04449549689888954,
0.4390571713447571,
0.6547687649726868,
0.3595357835292816,
-0.6599880456924438,
0.4535607695579529,
0.3556157052516937,
-0.5546528100967407,
-1.0818198919296265,
0.17217209935188293,
-0.867699921131134,
-0.40390023589134216,
0.9612988233566284,
-0.10018780082464218,
-0.5853341817855835,
-0.18630419671535492,
-0.06508278846740723,
0.053332265466451645,
-0.373008668422699,
0.7492431998252869,
0.6347537040710449,
-0.03299073874950409,
-0.031683966517448425,
-0.3203446865081787,
0.5474902987480164,
0.06640344113111496,
-0.697453498840332,
0.10831838101148605,
0.314301460981369,
0.436922162771225,
0.2129131406545639,
0.5092180371284485,
-0.22853970527648926,
0.31755515933036804,
0.36776283383369446,
0.5355789661407471,
-0.3281010687351227,
-0.2651706635951996,
-0.3443721532821655,
-0.10098794102668762,
-0.2602085471153259,
-0.3303404152393341
] |
Mitsua/mitsua-diffusion-cc0 | Mitsua | "2023-03-03T11:04:16Z" | 133,799 | 60 | diffusers | [
"diffusers",
"stable-diffusion",
"text-to-image",
"stable-diffusion-diffusers",
"license:openrail++",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2022-12-21T23:04:27Z" | ---
license: openrail++
tags:
- stable-diffusion
- text-to-image
- stable-diffusion-diffusers
- diffusers
inference: true
---
# .
# .
# .
# .
# .
# .
# ❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗
# This version is deprecated.
# Please use [Mitsua Diffusion One](https://huggingface.co/Mitsua/mitsua-diffusion-one), which is a successor of this model.
# ❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗❗
# .
# .
# .
# .
# .
# Mitsua Diffusion CC0 Model Card
Mitsua Diffusion CC0 is a latent text-to-image diffusion model, whose U-Net is **trained from scratch using only public domain/CC0 or copyright images with permission for use**.
Text Encoder and VAE are borrowed from [Stable Diffusion v2.1 base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base/).
This will be used as a base model for [**AI VTuber Elan Mitsua🖌️**](https://elanmitsua.com/en/)’s activity.
❗❗ **Currently the model has super low visual quality and limited diversity** ❗❗
Yes, the visual quality is not so good. Most of modern artistic concept is lost completely. However, since she is a growing AI in an ethical fashion, it would be good starting point for Mitsua-chan!
You can join [her training on Twitter](https://twitter.com/elanmitsua)! Please support Mitsua-chan!🎉
Further training will be done in a fully opt-in basis. If you are interested in, [please click here to submit an opt-in application](https://forms.gle/Nk3M7UyqSgYAqdpA6).
We are active on [a Discord server for opt-in participants only](https://discord.com/invite/7VTGRweTUg). Communication is currently in Japanese.
![Header](https://huggingface.co/Mitsua/mitsua-diffusion-cc0/resolve/main/images/mitsua_cc0_works.webp)
You can check [here to all prompts to generate these images](https://huggingface.co/Mitsua/mitsua-diffusion-cc0/resolve/main/images/mitsua_cc0_works_prompts.csv).
## Training Data Sources
All data was obtained ethically and in compliance with the site's terms and conditions.
No copyright images are used in the training of this model without the permission.
No AI generated images are in the dataset.
- Traditional Artwork in public domain / CC0
- MET Museum Open Access
- Smithsonian Open Access
- Cleveland Museum of Art Open Access
- National Gallery of Art Open Access
- ArtBench-10 (public domain subset)
- CC0 Photos
- Flickr, Wikimedia Commons
- CC0 NFTs *1
- goblintown.nft, mfer, tubby-cats, Timeless
- CC0 VRM models
- made by VRoid Project, pastelkies, yomox9 (all CC0 subset)
- We generated a bunch of synthesized images dataset rendered with various poses and camera angles.
- Copyright images with permission for use
- Generative and Visual Artworks made by Rhizomatiks
Approx 11M images in total with data augmentation.
1. Their work is released under a CC0 license, but if you are considering using this model to create a work inspired by their NFT and sell it as NFT, please consider paying them a royalty to help the CC0 NFT community grow.
## License
[Creative Open-Rail++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
❗❗ “Mitsua Diffusion CC0” means most of the training data is CC0. **the model license itself is NOT CC0**.❗❗
This model is open access and available to all, with a CreativeML OpenRAIL++-M license further specifying rights and usage. The CreativeML OpenRAIL++-M License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL++-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
## Developed by
- Stable Diffusion 2.1: Robin Rombach, Patrick Esser
- Mitsua Diffusion CC0 : Abstract Engine dev team
| [
-0.4405783414840698,
-0.7070141434669495,
0.40706390142440796,
0.1605527251958847,
-0.5046784281730652,
-0.13315407931804657,
0.1768616884946823,
-0.5261439085006714,
0.2670452892780304,
0.40779680013656616,
-0.6947498917579651,
-0.31996798515319824,
-0.5409723520278931,
-0.24120715260505676,
-0.27113649249076843,
0.9254089593887329,
-0.10277281701564789,
0.36872127652168274,
-0.26893284916877747,
-0.2782779335975647,
-0.2625541687011719,
-0.18961718678474426,
-0.9931726455688477,
-0.4903268814086914,
0.40598276257514954,
0.2122158706188202,
0.4016560912132263,
0.48490381240844727,
0.2025919407606125,
0.25591588020324707,
-0.25441867113113403,
-0.25985538959503174,
-0.4651888608932495,
-0.15868428349494934,
0.10327441245317459,
-0.4052497148513794,
-0.7306180596351624,
0.1965159922838211,
0.5087115168571472,
0.21465717256069183,
-0.463737428188324,
0.021392595022916794,
-0.09042499959468842,
0.5220226049423218,
-0.2862175703048706,
0.01418071798980236,
-0.3011275827884674,
-0.021705765277147293,
-0.17707723379135132,
0.33529698848724365,
-0.23714548349380493,
-0.16114287078380585,
-0.0009373386856168509,
-1.0117981433868408,
0.2259894162416458,
-0.23229272663593292,
0.9920692443847656,
0.10209756344556808,
-0.20656591653823853,
0.14626091718673706,
-0.37311694025993347,
0.5464688539505005,
-0.836324155330658,
0.42816129326820374,
0.23177894949913025,
0.5514162182807922,
0.11707817018032074,
-0.7583895325660706,
-0.5592849254608154,
-0.03885091468691826,
0.23850060999393463,
0.43059590458869934,
-0.21071171760559082,
-0.2534467577934265,
0.24423924088478088,
0.2854180932044983,
-0.5053989887237549,
0.06314965337514877,
-0.3825189471244812,
-0.065647192299366,
0.6125914454460144,
0.18909773230552673,
0.6020579934120178,
0.11002326011657715,
-0.6258713603019714,
-0.26649394631385803,
-0.5966237187385559,
-0.014204159379005432,
0.4366069734096527,
0.030895043164491653,
-0.9335705637931824,
0.3849179446697235,
-0.075495645403862,
0.30886924266815186,
0.07224293053150177,
0.10454758256673813,
0.41832488775253296,
-0.22491726279258728,
-0.3450019657611847,
-0.307894229888916,
0.9079752564430237,
0.3800381124019623,
0.0914890244603157,
-0.11621099710464478,
-0.09218351542949677,
0.04744662716984749,
0.12509417533874512,
-0.9237755537033081,
-0.37799209356307983,
0.07591594010591507,
-0.3339681327342987,
-0.35653385519981384,
-0.04427483677864075,
-1.079712986946106,
-0.1853555142879486,
-0.14967826008796692,
0.31514972448349,
-0.23677319288253784,
-0.7718095779418945,
0.1211962103843689,
-0.3394225537776947,
0.2621721029281616,
0.47754549980163574,
-0.5869192481040955,
0.45078444480895996,
0.20869635045528412,
0.931355357170105,
-0.021843574941158295,
-0.06865046173334122,
0.016188206151127815,
0.08512809127569199,
-0.1565442830324173,
0.6103343963623047,
-0.3514447808265686,
-0.5477439761161804,
-0.2963433265686035,
0.2869791090488434,
0.0705610066652298,
-0.36149466037750244,
0.6033071875572205,
-0.40284377336502075,
0.2247850000858307,
-0.025573844090104103,
-0.3991469144821167,
-0.2662343978881836,
0.029212987050414085,
-0.6428947448730469,
0.737887442111969,
0.23117081820964813,
-0.7884275317192078,
0.24350076913833618,
-0.7784618735313416,
-0.025943059474229813,
0.10483382642269135,
0.1757562756538391,
-0.7682899236679077,
-0.125992551445961,
0.0011091874912381172,
0.46921345591545105,
-0.00792307872325182,
0.2796267569065094,
-0.7351593971252441,
-0.07445653527975082,
-0.050534687936306,
-0.34141916036605835,
1.0053999423980713,
0.2027759850025177,
-0.275011271238327,
-0.037458110600709915,
-0.7501156330108643,
-0.22004976868629456,
0.4387369751930237,
-0.09885656833648682,
-0.19828739762306213,
-0.18217727541923523,
0.3384418189525604,
0.4059843420982361,
0.061557523906230927,
-0.6810434460639954,
0.26990658044815063,
-0.4733051359653473,
0.5442003607749939,
0.8899346590042114,
0.2041003406047821,
0.5972208976745605,
-0.36960262060165405,
0.4979841411113739,
0.36894112825393677,
0.3326897621154785,
0.20287157595157623,
-0.8626545071601868,
-0.6856100559234619,
-0.16816534101963043,
0.1804206222295761,
0.3260073661804199,
-0.8585903644561768,
0.06232447549700737,
-0.12057928740978241,
-0.8807916641235352,
-0.27995380759239197,
-0.0894356220960617,
0.1549900472164154,
0.5274075865745544,
0.3654524087905884,
-0.41392919421195984,
-0.12209037691354752,
-0.7028688788414001,
0.1975194811820984,
0.17962230741977692,
0.14293904602527618,
0.2038852572441101,
0.6410635113716125,
-0.1632644385099411,
0.6281242966651917,
-0.4484015703201294,
-0.28126096725463867,
-0.19757436215877533,
0.11328770220279694,
0.15013018250465393,
0.8638820052146912,
0.8315293788909912,
-0.8545835018157959,
-0.6355435848236084,
-0.1536502093076706,
-0.5955002307891846,
-0.04969780147075653,
-0.056314617395401,
-0.4305993914604187,
0.15727776288986206,
0.13418440520763397,
-0.7911011576652527,
0.7102688550949097,
0.6396937370300293,
-0.49123457074165344,
0.2859368324279785,
-0.41030988097190857,
0.027188623324036598,
-1.2910765409469604,
0.25670763850212097,
0.5248562097549438,
-0.3697787821292877,
-0.5908348560333252,
0.28738000988960266,
-0.10161030292510986,
-0.2007477730512619,
-0.845642626285553,
0.8352420926094055,
-0.3645908832550049,
0.3458192050457001,
-0.35323330760002136,
0.15723459422588348,
-0.1641557365655899,
0.5882364511489868,
0.19209657609462738,
0.6376726031303406,
0.8648006916046143,
-0.7333735823631287,
-0.01154511608183384,
0.42295408248901367,
-0.13313111662864685,
0.743087649345398,
-0.9136555790901184,
0.009406371973454952,
-0.17698714137077332,
0.2678467333316803,
-0.8390988111495972,
-0.0955977514386177,
0.7708842158317566,
-0.585198700428009,
0.4782344102859497,
-0.12361113727092743,
-0.4764692485332489,
-0.192819282412529,
-0.14090782403945923,
0.4807111918926239,
0.8096908926963806,
-0.5306159257888794,
0.540090799331665,
0.3336585462093353,
0.22734862565994263,
-0.35420432686805725,
-0.8817511796951294,
-0.35135945677757263,
-0.3089233934879303,
-0.6592332124710083,
0.42647331953048706,
-0.4391968846321106,
-0.00005702442649635486,
0.10712482035160065,
0.11482593417167664,
-0.30460742115974426,
0.06951820105314255,
0.5059611797332764,
0.26897749304771423,
0.07834278792142868,
-0.3095494508743286,
0.10818102210760117,
-0.3690013289451599,
-0.13808317482471466,
0.02131474018096924,
0.3844226598739624,
0.15192058682441711,
-0.2081923633813858,
-1.0850863456726074,
0.21416816115379333,
0.7081029415130615,
0.013424638658761978,
0.8962159156799316,
0.7200172543525696,
-0.48960039019584656,
-0.016222255304455757,
-0.2894793748855591,
-0.26103878021240234,
-0.44982895255088806,
0.08214183151721954,
-0.032921791076660156,
-0.6740564107894897,
0.7033489942550659,
0.09430106729269028,
0.23059716820716858,
0.8424587845802307,
0.5241174697875977,
-0.07389170676469803,
1.0902841091156006,
0.831721305847168,
0.03067966364324093,
0.5174962878227234,
-0.7179511189460754,
-0.011730513535439968,
-1.0389916896820068,
-0.4093157947063446,
-0.4357050657272339,
-0.38665133714675903,
-0.3512440025806427,
-0.3575878143310547,
0.25259438157081604,
0.09351445734500885,
-0.5041959881782532,
0.43839845061302185,
-0.4209893047809601,
0.2389894276857376,
0.14972659945487976,
0.4425153434276581,
0.08111253380775452,
0.03201712667942047,
-0.09217218309640884,
-0.1250740885734558,
-0.6303733587265015,
-0.23060119152069092,
0.9251879453659058,
0.5605294108390808,
0.6009666323661804,
0.2330619990825653,
0.5196179747581482,
0.3226146996021271,
0.5811064839363098,
-0.3820320665836334,
0.5217081308364868,
-0.036590952426195145,
-0.7709223031997681,
-0.03616323694586754,
-0.5048837065696716,
-0.8329756259918213,
0.08736344426870346,
-0.35683560371398926,
-0.5914475917816162,
0.30779406428337097,
-0.05293194204568863,
-0.12373675405979156,
0.5832056403160095,
-0.4957844018936157,
0.9397140741348267,
0.04755029454827309,
-0.580973744392395,
-0.18703025579452515,
-0.6476519107818604,
0.4616103768348694,
0.010717694647610188,
0.2359544038772583,
-0.08571323752403259,
-0.14929752051830292,
0.7994956970214844,
-0.563593327999115,
1.0707371234893799,
-0.5497448444366455,
0.10880719870328903,
0.2609892785549164,
-0.0008093400974757969,
0.29959824681282043,
0.20391792058944702,
-0.0461939200758934,
0.3828609883785248,
0.09701956808567047,
-0.5630139708518982,
-0.3303290009498596,
0.76810222864151,
-1.0911051034927368,
-0.15937279164791107,
-0.4154980778694153,
-0.08409750461578369,
0.19900143146514893,
0.33408164978027344,
0.5065904259681702,
0.3555823564529419,
-0.14714208245277405,
0.07741101831197739,
0.6198021769523621,
-0.15591511130332947,
0.5389614701271057,
0.4855058491230011,
-0.01687406376004219,
-0.6617524027824402,
0.7940754294395447,
0.14511682093143463,
0.40031880140304565,
0.04906494542956352,
0.2942150831222534,
-0.44162505865097046,
-0.5229410529136658,
-0.7382164001464844,
0.570753812789917,
-0.6490558981895447,
-0.21634386479854584,
-0.6288429498672485,
-0.12225630134344101,
-0.3363572359085083,
-0.10991556942462921,
-0.3817247152328491,
-0.4033881723880768,
-0.7816160321235657,
-0.07067664712667465,
0.4377885162830353,
0.7051199078559875,
-0.17549201846122742,
0.5761375427246094,
-0.6202316880226135,
0.23741115629673004,
0.0097059216350317,
0.6522989869117737,
0.23388928174972534,
-0.6691191792488098,
-0.2091687172651291,
0.2913965880870819,
-0.5522595643997192,
-0.8990595936775208,
0.49823564291000366,
0.014736213721334934,
0.8514604568481445,
0.4082615375518799,
-0.08647947013378143,
0.4857208728790283,
-0.28810521960258484,
1.0939152240753174,
0.47512489557266235,
-0.6717920303344727,
0.33299922943115234,
-0.589226484298706,
0.14890003204345703,
0.565619170665741,
0.5614356398582458,
-0.19152790307998657,
-0.3885115385055542,
-1.0493569374084473,
-0.7004773020744324,
0.6625748872756958,
0.20756244659423828,
0.40035051107406616,
0.16996033489704132,
0.7606371641159058,
-0.07715368270874023,
-0.013932890258729458,
-1.2176156044006348,
-0.4497293531894684,
-0.3263525366783142,
-0.06122283264994621,
0.012583202682435513,
-0.01492124330252409,
-0.061654239892959595,
-0.5186824798583984,
1.2133368253707886,
0.07742292433977127,
0.46032097935676575,
0.23356688022613525,
0.21987870335578918,
-0.3370853066444397,
-0.19202132523059845,
0.6747192740440369,
0.37575873732566833,
-0.016762446612119675,
-0.3772702217102051,
0.015319633297622204,
-0.5725823044776917,
0.22480106353759766,
-0.1605149358510971,
-0.3195246458053589,
-0.30760249495506287,
-0.1496623307466507,
0.6185426115989685,
0.1120116114616394,
-0.35904449224472046,
0.6675310134887695,
-0.13661909103393555,
-0.6234967112541199,
-0.28431034088134766,
0.12401142716407776,
0.31623947620391846,
0.3089292347431183,
-0.11826395243406296,
0.3127511143684387,
0.04602839797735214,
-0.17614644765853882,
0.2748042941093445,
0.4725569784641266,
-0.4729667901992798,
-0.3793330788612366,
1.1856813430786133,
0.07444240152835846,
-0.20870253443717957,
0.7366233468055725,
-0.22593523561954498,
-0.23191827535629272,
0.6910810470581055,
0.5009385943412781,
0.9622699022293091,
-0.16611094772815704,
0.3556567132472992,
0.6961452960968018,
0.07504528015851974,
-0.26787877082824707,
0.09650999307632446,
0.021855637431144714,
-0.5347641706466675,
-0.1163506954908371,
-0.37406662106513977,
-0.20818844437599182,
0.008638760074973106,
-0.5058359503746033,
0.45362570881843567,
-0.7351527214050293,
-0.21638770401477814,
-0.21236485242843628,
-0.02560092695057392,
-0.3587590456008911,
0.28192025423049927,
0.05488644167780876,
1.0914775133132935,
-1.0486369132995605,
0.9018504023551941,
0.4927195906639099,
-0.7952015995979309,
-0.7827966809272766,
-0.07544472813606262,
-0.07627870887517929,
-0.4941418766975403,
0.2432873249053955,
0.047414347529411316,
-0.02915719337761402,
0.06669892370700836,
-1.0235148668289185,
-0.5435557961463928,
1.3802521228790283,
0.3094249665737152,
-0.24261067807674408,
0.1857220083475113,
-0.15843649208545685,
0.6015584468841553,
-0.3533264994621277,
0.43977436423301697,
0.06161525845527649,
0.42110827565193176,
0.4202369451522827,
-0.3986191153526306,
-0.0019649635069072247,
-0.42306262254714966,
0.030148856341838837,
0.06428100913763046,
-1.038017988204956,
0.7747437357902527,
-0.14699441194534302,
-0.39240121841430664,
0.4441256523132324,
0.6215593218803406,
0.2401008903980255,
0.4407828450202942,
0.41505759954452515,
1.1323034763336182,
0.2783059775829315,
-0.12393904477357864,
0.9842203855514526,
-0.17224225401878357,
0.4462491273880005,
0.7470192313194275,
0.09235230088233948,
0.9122760891914368,
0.3565825819969177,
-0.1986086368560791,
0.6266716718673706,
0.7357851266860962,
-0.09871135652065277,
0.5257240533828735,
0.03218117356300354,
-0.1481630653142929,
-0.36697518825531006,
-0.00969332829117775,
-0.4884992837905884,
-0.13004152476787567,
0.12111438065767288,
-0.2506621479988098,
-0.3736897110939026,
-0.021929338574409485,
-0.010674661956727505,
0.03571020066738129,
-0.09383122622966766,
0.5984636545181274,
0.1745198369026184,
-0.0863298773765564,
0.5106171369552612,
0.11885476112365723,
0.7979092001914978,
-0.6319994926452637,
-0.20606105029582977,
-0.1999019980430603,
-0.06458643823862076,
-0.18014128506183624,
-0.6909787058830261,
0.3451260030269623,
-0.20194213092327118,
0.08072762936353683,
-0.29641643166542053,
0.4608900547027588,
-0.1866396814584732,
-0.534002959728241,
0.3416711390018463,
0.33503687381744385,
0.3212650418281555,
0.1558247208595276,
-1.102526307106018,
0.03454729914665222,
-0.1594070941209793,
-0.3320072591304779,
0.4827641248703003,
0.04658471792936325,
0.16920068860054016,
0.8314139246940613,
0.5837499499320984,
-0.07236263155937195,
-0.04886007681488991,
-0.015364844352006912,
0.847015917301178,
-0.3212299048900604,
-0.5159962773323059,
-0.6527823209762573,
0.8332736492156982,
-0.038310885429382324,
-0.2821636199951172,
0.6774122714996338,
0.5940351486206055,
0.7312927842140198,
-0.09728612750768661,
0.5515131950378418,
-0.016854526475071907,
0.26556193828582764,
-0.43302685022354126,
1.0668556690216064,
-1.1781084537506104,
0.002443876350298524,
-0.468910276889801,
-0.7795249819755554,
-0.22602468729019165,
0.6476779580116272,
-0.013734718784689903,
0.23136186599731445,
0.22659535706043243,
0.7675683498382568,
-0.26983606815338135,
0.16483089327812195,
0.2319006621837616,
0.11105524748563766,
0.368642121553421,
0.6594861149787903,
0.5622575283050537,
-0.7452755570411682,
0.09198949486017227,
-0.5194518566131592,
-0.21593882143497467,
0.059555646032094955,
-0.9494687914848328,
-0.7717189192771912,
-0.6318201422691345,
-0.6458519697189331,
-0.5222024321556091,
-0.3946807086467743,
0.45738592743873596,
0.9816585779190063,
-0.4669908285140991,
-0.14763686060905457,
-0.39171233773231506,
0.04739825800061226,
-0.16542361676692963,
-0.21635913848876953,
0.1381153017282486,
0.3695797026157379,
-0.7872927188873291,
0.040825553238391876,
0.044539906084537506,
0.7790775299072266,
-0.39170435070991516,
-0.3128651976585388,
-0.3577934503555298,
-0.11366290599107742,
0.20947813987731934,
0.33612653613090515,
-0.48672518134117126,
0.05448825657367706,
-0.12037747353315353,
-0.011458405293524265,
0.20206084847450256,
0.4104354679584503,
-0.5208455920219421,
0.31886643171310425,
0.5962708592414856,
0.3323654234409332,
0.7129822969436646,
-0.03983541578054428,
0.1089136078953743,
-0.2067975103855133,
0.298357754945755,
0.06172797456383705,
0.4087446331977844,
0.058827612549066544,
-0.4013468623161316,
0.563353955745697,
0.8220628499984741,
-0.590293288230896,
-0.6499454975128174,
0.03412239998579025,
-1.5131570100784302,
-0.22444890439510345,
0.9986486434936523,
-0.16329631209373474,
-0.4371190071105957,
0.09169302880764008,
-0.26395902037620544,
0.24349026381969452,
-0.49317309260368347,
0.20264090597629547,
0.437666654586792,
-0.07087422162294388,
-0.5419803261756897,
-0.7431733012199402,
0.27206939458847046,
0.08608753234148026,
-0.7729455828666687,
-0.1026846319437027,
0.5141848921775818,
0.7566125988960266,
0.11206116527318954,
0.8595338463783264,
-0.39337456226348877,
0.18031959235668182,
-0.04953073710203171,
0.09646030515432358,
-0.1346598118543625,
-0.2284097820520401,
-0.47553619742393494,
0.09710129350423813,
-0.12619516253471375,
-0.07215302437543869
] |
google/pix2struct-textcaps-base | google | "2023-09-07T18:57:01Z" | 132,887 | 23 | transformers | [
"transformers",
"pytorch",
"safetensors",
"pix2struct",
"text2text-generation",
"image-to-text",
"en",
"fr",
"ro",
"de",
"multilingual",
"arxiv:2210.03347",
"license:apache-2.0",
"autotrain_compatible",
"has_space",
"region:us"
] | image-to-text | "2023-03-01T09:07:41Z" | ---
language:
- en
- fr
- ro
- de
- multilingual
pipeline_tag: image-to-text
inference: false
license: apache-2.0
---
# Model card for Pix2Struct - Finetuned on TextCaps
![model_image](https://s3.amazonaws.com/moonup/production/uploads/1678713353867-62441d1d9fdefb55a0b7d12c.png)
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Using the model](#using-the-model)
2. [Contribution](#contribution)
3. [Citation](#citation)
# TL;DR
Pix2Struct is an image encoder - text decoder model that is trained on image-text pairs for various tasks, including image captionning and visual question answering. The full list of available models can be found on the Table 1 of the paper:
![Table 1 - paper](https://s3.amazonaws.com/moonup/production/uploads/1678712985040-62441d1d9fdefb55a0b7d12c.png)
The abstract of the model states that:
> Visually-situated language is ubiquitous—sources range from textbooks with diagrams to web pages with images and tables, to mobile apps with buttons and
forms. Perhaps due to this diversity, previous work has typically relied on domainspecific recipes with limited sharing of the underlying data, model architectures,
and objectives. We present Pix2Struct, a pretrained image-to-text model for
purely visual language understanding, which can be finetuned on tasks containing visually-situated language. Pix2Struct is pretrained by learning to parse
masked screenshots of web pages into simplified HTML. The web, with its richness of visual elements cleanly reflected in the HTML structure, provides a large
source of pretraining data well suited to the diversity of downstream tasks. Intuitively, this objective subsumes common pretraining signals such as OCR, language modeling, image captioning. In addition to the novel pretraining strategy,
we introduce a variable-resolution input representation and a more flexible integration of language and vision inputs, where language prompts such as questions
are rendered directly on top of the input image. For the first time, we show that a
single pretrained model can achieve state-of-the-art results in six out of nine tasks
across four domains: documents, illustrations, user interfaces, and natural images.
# Using the model
## Converting from T5x to huggingface
You can use the [`convert_pix2struct_checkpoint_to_pytorch.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pix2struct/convert_pix2struct_checkpoint_to_pytorch.py) script as follows:
```bash
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE
```
if you are converting a large model, run:
```bash
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --use-large
```
Once saved, you can push your converted model with the following snippet:
```python
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
model = Pix2StructForConditionalGeneration.from_pretrained(PATH_TO_SAVE)
processor = Pix2StructProcessor.from_pretrained(PATH_TO_SAVE)
model.push_to_hub("USERNAME/MODEL_NAME")
processor.push_to_hub("USERNAME/MODEL_NAME")
```
## Running the model
### In full precision, on CPU:
You can run the model in full precision on CPU:
```python
import requests
from PIL import Image
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
# image only
inputs = processor(images=image, return_tensors="pt")
predictions = model.generate(**inputs)
print(processor.decode(predictions[0], skip_special_tokens=True))
>>> A stop sign is on a street corner.
```
### In full precision, on GPU:
You can run the model in full precision on CPU:
```python
import requests
from PIL import Image
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to("cuda")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
# image only
inputs = processor(images=image, return_tensors="pt").to("cuda")
predictions = model.generate(**inputs)
print(processor.decode(predictions[0], skip_special_tokens=True))
>>> A stop sign is on a street corner.
```
### In half precision, on GPU:
You can run the model in full precision on CPU:
```python
import requests
import torch
from PIL import Image
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base", torch_dtype=torch.bfloat16).to("cuda")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
# image only
inputs = processor(images=image, return_tensors="pt").to("cuda", torch.bfloat16)
predictions = model.generate(**inputs)
print(processor.decode(predictions[0], skip_special_tokens=True))
>>> A stop sign is on a street corner.
```
### Use different sequence length
This model has been trained on a sequence length of `2048`. You can try to reduce the sequence length for a more memory efficient inference but you may observe some performance degradation for small sequence length (<512). Just pass `max_patches` when calling the processor:
```python
inputs = processor(images=image, return_tensors="pt", max_patches=512)
```
### Conditional generation
You can also pre-pend some input text to perform conditional generation:
```python
import requests
from PIL import Image
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = "A picture of"
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
# image only
inputs = processor(images=image, text=text, return_tensors="pt")
predictions = model.generate(**inputs)
print(processor.decode(predictions[0], skip_special_tokens=True))
>>> A picture of a stop sign that says yes.
```
# Contribution
This model was originally contributed by Kenton Lee, Mandar Joshi et al. and added to the Hugging Face ecosystem by [Younes Belkada](https://huggingface.co/ybelkada).
# Citation
If you want to cite this work, please consider citing the original paper:
```
@misc{https://doi.org/10.48550/arxiv.2210.03347,
doi = {10.48550/ARXIV.2210.03347},
url = {https://arxiv.org/abs/2210.03347},
author = {Lee, Kenton and Joshi, Mandar and Turc, Iulia and Hu, Hexiang and Liu, Fangyu and Eisenschlos, Julian and Khandelwal, Urvashi and Shaw, Peter and Chang, Ming-Wei and Toutanova, Kristina},
keywords = {Computation and Language (cs.CL), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
``` | [
-0.372981458902359,
-0.7722678780555725,
0.47230997681617737,
0.0701231062412262,
-0.2412147969007492,
-0.44236689805984497,
-0.3072918951511383,
-0.5472353100776672,
-0.1359758973121643,
0.2580189108848572,
-0.545028805732727,
-0.2506360113620758,
-0.834648609161377,
-0.13077270984649658,
-0.05147193372249603,
0.7928488254547119,
-0.060422565788030624,
0.032459672540426254,
-0.3057418465614319,
0.1890103816986084,
-0.21250997483730316,
-0.25131145119667053,
-0.7893567681312561,
-0.3548039495944977,
0.25435560941696167,
0.13687026500701904,
0.7319193482398987,
0.5902144312858582,
0.5198827385902405,
0.3106411397457123,
-0.12565651535987854,
0.006529074162244797,
-0.36330148577690125,
-0.2771475911140442,
-0.10106252133846283,
-0.6223993301391602,
-0.3328605592250824,
0.16345469653606415,
0.564368724822998,
0.387799471616745,
0.20209486782550812,
0.09259145706892014,
0.09613610059022903,
0.4705977737903595,
-0.4588857889175415,
0.38925397396087646,
-0.42729997634887695,
0.009703121148049831,
0.00911380909383297,
0.2811768651008606,
-0.34344449639320374,
-0.12602275609970093,
-0.018467247486114502,
-0.6254597306251526,
0.30140018463134766,
-0.08850747346878052,
1.2233400344848633,
0.3119044601917267,
-0.05183124542236328,
-0.0909547209739685,
-0.2899183928966522,
0.6403429508209229,
-0.6750651001930237,
0.2417457550764084,
0.47000229358673096,
0.10382695496082306,
-0.07103676348924637,
-1.0609493255615234,
-0.6671104431152344,
-0.002440584124997258,
-0.18625952303409576,
0.22831125557422638,
-0.41188564896583557,
-0.20481924712657928,
0.39235720038414,
0.14999350905418396,
-0.6133525371551514,
-0.06435089558362961,
-0.6256504058837891,
-0.20032034814357758,
0.7064799070358276,
-0.14082776010036469,
0.4965920150279999,
-0.29958516359329224,
-0.4280194044113159,
-0.5554827451705933,
-0.4269200563430786,
0.4434872269630432,
0.1364898383617401,
0.03204740583896637,
-0.4930480718612671,
0.5721738934516907,
0.05647225305438042,
0.5638576149940491,
0.26533135771751404,
-0.008467047475278378,
0.34003233909606934,
-0.1768001914024353,
-0.19453340768814087,
-0.24082063138484955,
1.2161680459976196,
0.542258083820343,
0.3122023046016693,
0.06601739674806595,
0.007209471892565489,
0.03893671929836273,
-0.03892844170331955,
-1.134836196899414,
-0.5965485572814941,
0.32470324635505676,
-0.3377714157104492,
-0.179423987865448,
0.2699301838874817,
-0.6245965361595154,
-0.08016762137413025,
-0.20482422411441803,
0.49923473596572876,
-0.6404443979263306,
-0.5341055393218994,
-0.04473799094557762,
-0.2135571390390396,
0.23855352401733398,
0.28818923234939575,
-0.7531907558441162,
0.03738020732998848,
0.495400071144104,
1.0658307075500488,
0.08410952985286713,
-0.35355377197265625,
-0.3232346475124359,
-0.2890063226222992,
-0.3885246217250824,
0.7604259848594666,
-0.22987844049930573,
-0.17187835276126862,
-0.3967442512512207,
0.3385106325149536,
-0.2113020420074463,
-0.39775094389915466,
0.08456438779830933,
-0.3004063665866852,
0.3401085436344147,
0.018716592341661453,
-0.3055790960788727,
-0.4268025755882263,
0.11879570782184601,
-0.483254075050354,
1.182057499885559,
0.3226160407066345,
-0.7399519085884094,
0.03168560937047005,
-0.5183034539222717,
-0.2638702690601349,
-0.07168049365282059,
-0.12745124101638794,
-0.9574303030967712,
-0.04198050871491432,
0.2557007074356079,
0.4982733726501465,
-0.16379201412200928,
0.29069411754608154,
-0.3730069398880005,
-0.20286041498184204,
0.2806956470012665,
-0.07370653748512268,
0.9567203521728516,
0.2374144196510315,
-0.6992115378379822,
0.07852847129106522,
-0.3989414870738983,
0.23501016199588776,
0.3530682325363159,
-0.07612216472625732,
0.12484171241521835,
-0.16496172547340393,
0.27854853868484497,
0.38699737191200256,
0.24370543658733368,
-0.41986000537872314,
0.1196853443980217,
-0.2508189380168915,
0.6624264121055603,
0.4837910532951355,
-0.3011777400970459,
0.3687664568424225,
-0.06687498092651367,
0.16049307584762573,
0.0994139313697815,
0.09561879187822342,
-0.36690300703048706,
-0.8615962266921997,
-0.6715152263641357,
-0.1914862096309662,
0.07346800714731216,
0.43645820021629333,
-0.7621312737464905,
0.4340246915817261,
-0.23117972910404205,
-0.5908624529838562,
-0.0830451250076294,
-0.08750144392251968,
0.6109490990638733,
0.53570955991745,
0.38362082839012146,
-0.41836822032928467,
-0.4208366274833679,
-0.6441570520401001,
0.11581216752529144,
-0.15851332247257233,
-0.15262040495872498,
0.29809436202049255,
0.8145974278450012,
-0.3631955087184906,
0.8933841586112976,
-0.4736931025981903,
-0.11348676681518555,
-0.1805395931005478,
0.1693802922964096,
0.23768042027950287,
0.7716062664985657,
0.5443621873855591,
-0.8754516243934631,
-0.5888975858688354,
-0.032498329877853394,
-0.8853290677070618,
0.1754409819841385,
-0.06042647734284401,
-0.25600695610046387,
0.3340412974357605,
0.3993969261646271,
-0.5867736339569092,
0.4830569624900818,
0.48678433895111084,
-0.6549572944641113,
0.6666158437728882,
-0.20953842997550964,
0.009032429195940495,
-1.106144666671753,
0.3611699938774109,
0.15828758478164673,
-0.39461928606033325,
-0.6086925268173218,
0.1180579736828804,
0.45161566138267517,
-0.33099663257598877,
-0.6297004818916321,
0.7097491025924683,
-0.5032724142074585,
-0.11896541714668274,
-0.2581491470336914,
-0.22013041377067566,
0.06989911943674088,
0.6880205273628235,
0.5045089721679688,
0.7327272295951843,
0.8307445049285889,
-0.6386540532112122,
0.3365154266357422,
0.4894656836986542,
-0.3487723171710968,
0.41317352652549744,
-0.7883326411247253,
0.35874098539352417,
-0.05762409046292305,
0.099055714905262,
-0.8613436222076416,
-0.42374300956726074,
0.5030187964439392,
-0.7817365527153015,
0.40679195523262024,
-0.26619333028793335,
-0.35813385248184204,
-0.5486508011817932,
-0.147386834025383,
0.5368650555610657,
0.6673982739448547,
-0.556256890296936,
0.3788287937641144,
0.20342278480529785,
-0.09866268932819366,
-0.28628066182136536,
-0.8606646656990051,
-0.0029744491912424564,
0.07260415703058243,
-0.8754817247390747,
0.4236883223056793,
-0.018303900957107544,
-0.062433212995529175,
0.14973586797714233,
0.27594414353370667,
0.037908315658569336,
-0.15991097688674927,
0.5484937429428101,
0.4453858435153961,
-0.1653066724538803,
-0.1990954875946045,
-0.17745853960514069,
-0.31921300292015076,
0.029050223529338837,
-0.36206015944480896,
0.7736020088195801,
-0.36106494069099426,
-0.055168069899082184,
-0.9743818044662476,
0.09733879566192627,
0.5187960267066956,
-0.23431529104709625,
0.5663065910339355,
0.7716698050498962,
-0.5174353718757629,
0.23318594694137573,
-0.501736581325531,
-0.25181376934051514,
-0.4446195363998413,
0.637530505657196,
-0.43004244565963745,
-0.4587748944759369,
0.41667693853378296,
0.11961033195257187,
-0.13571980595588684,
0.6728478670120239,
0.6544184684753418,
-0.21933266520500183,
0.938144862651825,
0.6425347924232483,
0.28446415066719055,
0.5601881742477417,
-0.7541201710700989,
-0.0016881701303645968,
-0.8615338206291199,
-0.5369869470596313,
-0.1429167091846466,
-0.24531356990337372,
-0.3275573253631592,
-0.6361860036849976,
0.4160032868385315,
0.35973042249679565,
-0.539170503616333,
0.5304828882217407,
-0.6261793971061707,
0.2524818181991577,
0.759787380695343,
0.5386132001876831,
-0.2837335169315338,
0.42923372983932495,
0.07104448229074478,
-0.09937650710344315,
-0.5837766528129578,
-0.32032498717308044,
1.0023083686828613,
0.4252668619155884,
0.48825958371162415,
-0.26905587315559387,
0.24954281747341156,
-0.09329719096422195,
0.04529257491230965,
-0.62525874376297,
0.3517758846282959,
-0.13683265447616577,
-0.4982752799987793,
-0.148782417178154,
-0.3472591042518616,
-0.7524465918540955,
0.1115151196718216,
-0.3053133189678192,
-0.7975581884384155,
0.2341058999300003,
0.15528403222560883,
-0.4757680296897888,
0.5890445113182068,
-0.7925472855567932,
1.0513231754302979,
-0.3847034275531769,
-0.7807188630104065,
0.10046777129173279,
-0.5958876013755798,
0.2643100619316101,
0.20299819111824036,
-0.031155915930867195,
-0.0077401078306138515,
0.22999007999897003,
0.9100877642631531,
-0.5278362035751343,
0.7901178002357483,
-0.2131093293428421,
0.2182830274105072,
0.5508547425270081,
-0.08058715611696243,
0.442334920167923,
-0.042930494993925095,
-0.12164751440286636,
0.5394152402877808,
0.14546647667884827,
-0.4201786518096924,
-0.38805150985717773,
0.4022770822048187,
-1.1198511123657227,
-0.2443307638168335,
-0.48052579164505005,
-0.4858551621437073,
0.27932727336883545,
0.34738877415657043,
0.7418925166130066,
0.3525397479534149,
0.20712868869304657,
0.07548285275697708,
0.4922998249530792,
-0.2786247730255127,
0.636789858341217,
-0.10812395066022873,
-0.15875066816806793,
-0.6501685976982117,
0.7088613510131836,
-0.09327834099531174,
0.2843860387802124,
0.06923484057188034,
0.21295149624347687,
-0.5940874218940735,
-0.17860166728496552,
-0.5547564029693604,
0.5000243782997131,
-0.4926255941390991,
-0.26042798161506653,
-0.5784369707107544,
-0.2752552330493927,
-0.7416878938674927,
-0.2311123162508011,
-0.6427386403083801,
-0.26638495922088623,
-0.5662064552307129,
0.3420216143131256,
0.3924660086631775,
0.5387278199195862,
-0.28055402636528015,
0.5291268825531006,
-0.37899184226989746,
0.35211026668548584,
0.33304572105407715,
0.45114293694496155,
-0.18762026727199554,
-0.6558544039726257,
-0.011622518301010132,
0.22387851774692535,
-0.4652441740036011,
-0.6062192916870117,
0.5891368389129639,
0.1585080623626709,
0.1958169937133789,
0.532943844795227,
-0.1556461751461029,
0.7870802879333496,
-0.279546320438385,
0.692818284034729,
0.7836394309997559,
-0.76199871301651,
0.7525212168693542,
-0.09337466955184937,
0.21667975187301636,
0.2625737190246582,
0.33647823333740234,
-0.495673805475235,
-0.0035489308647811413,
-0.7853461503982544,
-0.6898302435874939,
0.9421558380126953,
0.3719112277030945,
0.041311103850603104,
0.2631150782108307,
0.5895431041717529,
-0.1008715033531189,
-0.013429473154246807,
-0.9357353448867798,
-0.13484157621860504,
-0.5620774030685425,
-0.1510503739118576,
-0.11894290149211884,
-0.329089492559433,
0.0795845091342926,
-0.4609356224536896,
0.7606495022773743,
-0.15083035826683044,
0.7608307600021362,
0.4005134105682373,
-0.3009549677371979,
-0.07098769396543503,
-0.3438405990600586,
0.5069674849510193,
0.547575056552887,
-0.1407393366098404,
0.2130626142024994,
-0.15902094542980194,
-0.6289225816726685,
-0.06511522084474564,
0.08005669713020325,
-0.3514287769794464,
-0.05278727039694786,
0.32267239689826965,
1.122633934020996,
0.03684736788272858,
-0.29999950528144836,
0.5439198017120361,
-0.06071629002690315,
-0.38153427839279175,
-0.47586116194725037,
0.09596212953329086,
0.10184972733259201,
0.3291105329990387,
0.28361284732818604,
0.22808276116847992,
-0.3422413766384125,
-0.50645512342453,
0.2863282263278961,
0.4583490788936615,
-0.3765977919101715,
-0.44240185618400574,
1.0629347562789917,
-0.0664895698428154,
-0.26481929421424866,
0.8908968567848206,
-0.21133746206760406,
-0.6034435033798218,
0.9740149974822998,
0.532657265663147,
0.6795362234115601,
0.032657869160175323,
0.1169414296746254,
1.033765435218811,
0.14295969903469086,
-0.2691308259963989,
0.08978262543678284,
0.014411737211048603,
-0.6304441094398499,
-0.17447687685489655,
-0.6110259294509888,
-0.1824244260787964,
0.1869208812713623,
-0.49931952357292175,
0.46015647053718567,
-0.6493543386459351,
-0.2882160246372223,
-0.04804990068078041,
0.18580283224582672,
-0.6841763257980347,
0.3498394191265106,
0.47167646884918213,
0.7229236960411072,
-0.716383159160614,
0.7502111196517944,
0.6775046586990356,
-0.6031744480133057,
-0.7835985422134399,
-0.2710319459438324,
-0.07445107400417328,
-0.9225308895111084,
0.6017212867736816,
0.6614527106285095,
0.12286431342363358,
0.23403768241405487,
-0.8326069116592407,
-0.7379915118217468,
1.2470797300338745,
0.28157925605773926,
-0.5626196265220642,
0.010853316634893417,
0.271348237991333,
0.20398622751235962,
-0.16301795840263367,
0.6943434476852417,
0.3289635181427002,
0.46839478611946106,
0.31067582964897156,
-0.7752003073692322,
0.10082416981458664,
-0.5610730648040771,
0.14254648983478546,
-0.20958693325519562,
-0.641994297504425,
1.1131975650787354,
-0.4618794023990631,
-0.27385130524635315,
0.20927879214286804,
0.7146257162094116,
0.32828131318092346,
0.32101693749427795,
0.35416242480278015,
0.7466529011726379,
0.597649872303009,
-0.39232128858566284,
1.0482338666915894,
-0.31296318769454956,
0.7369078993797302,
0.731351375579834,
0.3019012212753296,
0.8109415173530579,
0.3367750644683838,
-0.32925260066986084,
0.40661075711250305,
0.9245700240135193,
-0.42668870091438293,
0.39765962958335876,
-0.16628067195415497,
-0.01619429886341095,
-0.3336527645587921,
0.19725091755390167,
-0.490988552570343,
0.3162534534931183,
0.2587966322898865,
-0.3443933427333832,
-0.12721972167491913,
0.11615478247404099,
0.2836989462375641,
-0.07964009046554565,
-0.37404027581214905,
0.43455928564071655,
0.07855286449193954,
-0.7699622511863708,
0.8279958963394165,
0.1796111911535263,
0.9291413426399231,
-0.43658047914505005,
0.140494704246521,
-0.16179896891117096,
0.3973504304885864,
-0.3127838373184204,
-1.001524567604065,
0.31356650590896606,
-0.04313584044575691,
-0.23447047173976898,
-0.23909974098205566,
0.5564470887184143,
-0.3785749673843384,
-0.9245488047599792,
0.16933798789978027,
-0.043786387890577316,
0.4000459611415863,
-0.5232884287834167,
-0.8757785558700562,
0.16530480980873108,
0.08154835551977158,
-0.3666621446609497,
0.17231646180152893,
0.047719698399305344,
-0.019650688394904137,
0.5348572134971619,
0.7801990509033203,
-0.0918319895863533,
0.21975639462471008,
-0.38273510336875916,
0.7365027070045471,
-0.5579215288162231,
-0.5095500349998474,
-0.7882641553878784,
0.7571406960487366,
-0.047119710594415665,
-0.339555948972702,
0.3749198317527771,
0.7408292889595032,
0.9238617420196533,
-0.12219719588756561,
0.7247484922409058,
-0.4703819453716278,
-0.036614883691072464,
-0.5610432624816895,
0.974767804145813,
-0.6268107891082764,
-0.3012268841266632,
-0.11766274273395538,
-0.7750797271728516,
-0.3977576494216919,
0.8943732976913452,
-0.46520256996154785,
0.018468564376235008,
0.5869002938270569,
1.0904741287231445,
-0.28672143816947937,
-0.3268965780735016,
0.19290988147258759,
0.10285971313714981,
0.29979828000068665,
0.8238978385925293,
0.3893890678882599,
-0.8226757645606995,
0.5163621306419373,
-0.7424699664115906,
-0.3818269968032837,
-0.06669480353593826,
-0.6443995237350464,
-0.9222170114517212,
-0.7487084269523621,
-0.649622917175293,
-0.5114198327064514,
-0.0951060801744461,
0.5620425343513489,
0.9633949398994446,
-0.7362087368965149,
-0.13971556723117828,
-0.3332012891769409,
-0.08793091773986816,
-0.15432524681091309,
-0.2149830162525177,
0.6690654754638672,
-0.22282129526138306,
-1.0792816877365112,
-0.1802731454372406,
0.01326714362949133,
0.288421630859375,
0.1199946478009224,
-0.3042334318161011,
-0.18880388140678406,
-0.4615037739276886,
0.5328627824783325,
0.5394116640090942,
-0.6345641613006592,
-0.019081415608525276,
0.016256706789135933,
-0.11823799461126328,
0.29668793082237244,
0.4192642867565155,
-0.63050377368927,
0.5477175116539001,
0.4203375279903412,
0.3449019491672516,
0.8727482557296753,
-0.003572230925783515,
0.1250782161951065,
-0.2710169553756714,
0.5475952625274658,
-0.10681363195180893,
0.38010892271995544,
0.4151708781719208,
-0.44977450370788574,
0.4552437663078308,
0.5797343254089355,
-0.3264952600002289,
-0.5424899458885193,
0.05293544754385948,
-1.0413050651550293,
-0.41740989685058594,
1.358546257019043,
-0.35299763083457947,
-0.6546251177787781,
0.3423352837562561,
-0.2363954335451126,
0.5080061554908752,
-0.11447425931692123,
0.5375897884368896,
0.24846404790878296,
-0.23173177242279053,
-0.6696710586547852,
-0.3632536232471466,
0.3061765432357788,
0.32012683153152466,
-0.6045015454292297,
-0.2724924683570862,
0.40282443165779114,
0.5887605547904968,
0.3815671503543854,
0.4555889368057251,
-0.28593650460243225,
0.5038838386535645,
0.1492644101381302,
0.5349704623222351,
-0.4653225541114807,
-0.149470716714859,
-0.2081746757030487,
-0.006463693920522928,
-0.3333514630794525,
-0.3405967950820923
] |
pyannote/embedding | pyannote | "2023-10-22T08:44:44Z" | 132,855 | 47 | pyannote-audio | [
"pyannote-audio",
"pytorch",
"tensorboard",
"pyannote",
"pyannote-audio-model",
"audio",
"voice",
"speech",
"speaker",
"speaker-recognition",
"speaker-verification",
"speaker-identification",
"speaker-embedding",
"dataset:voxceleb",
"license:mit",
"region:us"
] | null | "2022-03-02T23:29:05Z" | ---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-model
- audio
- voice
- speech
- speaker
- speaker-recognition
- speaker-verification
- speaker-identification
- speaker-embedding
datasets:
- voxceleb
license: mit
inference: false
extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers apply for grants to improve it further. If you are an academic researcher, please cite the relevant papers in your own publications using the model. If you work for a company, please consider contributing back to pyannote.audio development (e.g. through unrestricted gifts). We also provide scientific consulting services around speaker diarization and machine listening."
extra_gated_fields:
Company/university: text
Website: text
I plan to use this model for (task, type of audio data, etc): text
---
Using this open-source model in production?
Make the most of it thanks to our [consulting services](https://herve.niderb.fr/consulting.html).
# 🎹 Speaker embedding
Relies on pyannote.audio 2.1: see [installation instructions](https://github.com/pyannote/pyannote-audio/).
This model is based on the [canonical x-vector TDNN-based architecture](https://ieeexplore.ieee.org/abstract/document/8461375), but with filter banks replaced with [trainable SincNet features](https://ieeexplore.ieee.org/document/8639585). See [`XVectorSincNet`](https://github.com/pyannote/pyannote-audio/blob/3c988c028dc505c64fe776720372f6fe816b585a/pyannote/audio/models/embedding/xvector.py#L104-L169) architecture for implementation details.
## Basic usage
```python
# 1. visit hf.co/pyannote/embedding and accept user conditions
# 2. visit hf.co/settings/tokens to create an access token
# 3. instantiate pretrained model
from pyannote.audio import Model
model = Model.from_pretrained("pyannote/embedding",
use_auth_token="ACCESS_TOKEN_GOES_HERE")
```
```python
from pyannote.audio import Inference
inference = Inference(model, window="whole")
embedding1 = inference("speaker1.wav")
embedding2 = inference("speaker2.wav")
# `embeddingX` is (1 x D) numpy array extracted from the file as a whole.
from scipy.spatial.distance import cdist
distance = cdist(embedding1, embedding2, metric="cosine")[0,0]
# `distance` is a `float` describing how dissimilar speakers 1 and 2 are.
```
Using cosine distance directly, this model reaches 2.8% equal error rate (EER) on VoxCeleb 1 test set.
This is without voice activity detection (VAD) nor probabilistic linear discriminant analysis (PLDA).
Expect even better results when adding one of those.
## Advanced usage
### Running on GPU
```python
import torch
inference.to(torch.device("cuda"))
embedding = inference("audio.wav")
```
### Extract embedding from an excerpt
```python
from pyannote.audio import Inference
from pyannote.core import Segment
inference = Inference(model, window="whole")
excerpt = Segment(13.37, 19.81)
embedding = inference.crop("audio.wav", excerpt)
# `embedding` is (1 x D) numpy array extracted from the file excerpt.
```
### Extract embeddings using a sliding window
```python
from pyannote.audio import Inference
inference = Inference(model, window="sliding",
duration=3.0, step=1.0)
embeddings = inference("audio.wav")
# `embeddings` is a (N x D) pyannote.core.SlidingWindowFeature
# `embeddings[i]` is the embedding of the ith position of the
# sliding window, i.e. from [i * step, i * step + duration].
```
## Citation
```bibtex
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
```
```bibtex
@inproceedings{Coria2020,
author="Coria, Juan M. and Bredin, Herv{\'e} and Ghannay, Sahar and Rosset, Sophie",
editor="Espinosa-Anke, Luis and Mart{\'i}n-Vide, Carlos and Spasi{\'{c}}, Irena",
title="{A Comparison of Metric Learning Loss Functions for End-To-End Speaker Verification}",
booktitle="Statistical Language and Speech Processing",
year="2020",
publisher="Springer International Publishing",
pages="137--148",
isbn="978-3-030-59430-5"
}
```
| [
-0.2791581451892853,
-0.6343979239463806,
0.29649096727371216,
0.2992022633552551,
-0.14858466386795044,
-0.2080666720867157,
-0.5632237792015076,
-0.34340900182724,
0.27746886014938354,
0.3233201801776886,
-0.23781715333461761,
-0.79449063539505,
-0.28310179710388184,
-0.358074426651001,
-0.36382004618644714,
0.6905752420425415,
0.27236947417259216,
0.11429576575756073,
-0.26014670729637146,
-0.005575723480433226,
-0.24875931441783905,
-0.3084503412246704,
-0.44803449511528015,
-0.36717554926872253,
0.13341841101646423,
0.2848738431930542,
0.2508074939250946,
0.4740807116031647,
0.16563165187835693,
0.3402119576931,
-0.4623667001724243,
-0.058121565729379654,
-0.002119682030752301,
-0.14711904525756836,
0.08602528274059296,
-0.34744706749916077,
-0.448123574256897,
0.19209204614162445,
0.7537906765937805,
0.5772884488105774,
-0.2957463264465332,
0.17915424704551697,
0.05178604647517204,
0.06695663183927536,
-0.31749171018600464,
0.16746778786182404,
-0.49901342391967773,
0.06908545643091202,
-0.16369542479515076,
-0.1351318657398224,
-0.5314837694168091,
-0.19266870617866516,
0.40284261107444763,
-0.7341914176940918,
0.12268684804439545,
-0.17603765428066254,
0.9513823390007019,
0.07077370584011078,
-0.020641138777136803,
-0.28778162598609924,
-0.6569042205810547,
0.7255995869636536,
-1.0575157403945923,
0.5099045634269714,
0.4698077142238617,
0.09619539976119995,
-0.21222543716430664,
-0.80782151222229,
-0.535125195980072,
-0.4488503932952881,
0.08476981520652771,
0.23865072429180145,
-0.14250598847866058,
0.17240449786186218,
0.2326556295156479,
0.35930192470550537,
-0.45410826802253723,
-0.04184631258249283,
-0.5472527146339417,
-0.3637590706348419,
0.6707752346992493,
-0.4096359610557556,
0.4089120030403137,
-0.2995089590549469,
-0.32764750719070435,
-0.4365241527557373,
-0.41417694091796875,
0.07160025835037231,
0.5698674917221069,
0.391657292842865,
-0.5472580790519714,
0.42533519864082336,
0.19841235876083374,
0.5256966948509216,
0.09113659709692001,
-0.23793621361255646,
0.6915188431739807,
-0.40254440903663635,
-0.1569550484418869,
0.5815463066101074,
0.9996404051780701,
0.06192155182361603,
0.1905665397644043,
0.12612910568714142,
-0.0100570572540164,
-0.29017364978790283,
-0.07102376222610474,
-0.5382301211357117,
-0.6697651743888855,
0.3126276731491089,
-0.5488659143447876,
-0.041642069816589355,
0.01725197583436966,
-0.6929475665092468,
-0.2061784565448761,
-0.2122342735528946,
0.8572055101394653,
-0.533711850643158,
-0.7185231447219849,
0.11837971955537796,
-0.381859689950943,
0.10789328068494797,
0.04109308123588562,
-0.9204453825950623,
0.3577531576156616,
0.6089460849761963,
1.1731873750686646,
0.24634496867656708,
-0.25038325786590576,
-0.5732713937759399,
-0.04605652764439583,
-0.32089799642562866,
0.43387994170188904,
-0.2905716896057129,
-0.4941256642341614,
-0.11466388404369354,
-0.21043357253074646,
-0.1663450449705124,
-0.6777218580245972,
0.6777767539024353,
0.11364401131868362,
0.26772958040237427,
-0.06128981336951256,
-0.6192632913589478,
-0.13856828212738037,
-0.3920985162258148,
-0.4442804455757141,
1.0721324682235718,
0.06252158433198929,
-0.7323268055915833,
0.19537821412086487,
-0.6132933497428894,
-0.16281598806381226,
-0.22867582738399506,
-0.11447325348854065,
-0.6878008842468262,
-0.010550486855208874,
0.18833456933498383,
0.30747663974761963,
-0.049581073224544525,
0.0872112587094307,
-0.2954804301261902,
-0.491277813911438,
0.20166990160942078,
-0.3356621563434601,
1.1971001625061035,
0.042199619114398956,
-0.659797191619873,
-0.058916278183460236,
-1.1215250492095947,
-0.19646167755126953,
-0.022609464824199677,
-0.5914202928543091,
-0.5078362822532654,
0.13647782802581787,
0.2671470046043396,
0.07297205924987793,
0.04318844527006149,
-0.8835534453392029,
-0.25566500425338745,
-0.6762041449546814,
0.6158201098442078,
0.6191397309303284,
0.066993847489357,
0.3257436752319336,
-0.24793893098831177,
0.08906993269920349,
0.13187669217586517,
-0.0070395395159721375,
-0.31199008226394653,
-0.6540703177452087,
-0.5392021536827087,
-0.5461475253105164,
0.38475874066352844,
0.5571677684783936,
-0.3099939525127411,
0.49649718403816223,
-0.11476579308509827,
-0.7168910503387451,
-0.7537820339202881,
0.04855094850063324,
0.4217602014541626,
0.4643528163433075,
0.6217175126075745,
-0.20369592308998108,
-0.6165105104446411,
-0.7953755259513855,
-0.17305609583854675,
-0.43228060007095337,
-0.156002014875412,
0.5346538424491882,
0.37191081047058105,
0.1859741508960724,
0.8561050891876221,
-0.28147000074386597,
-0.21688036620616913,
0.1614999622106552,
0.07935947924852371,
0.5342801809310913,
0.8610115051269531,
0.5287208557128906,
-0.727189838886261,
-0.5678801536560059,
-0.002672110218554735,
-0.46706849336624146,
-0.2770044207572937,
-0.3436194360256195,
-0.05985058471560478,
-0.0014407159760594368,
0.5203680992126465,
-0.8039259314537048,
0.5014218091964722,
0.3052513003349304,
-0.32768866419792175,
0.6419569253921509,
-0.11157175898551941,
-0.13083909451961517,
-1.0109374523162842,
-0.0227037463337183,
0.3361626863479614,
-0.10019157826900482,
-0.6263638734817505,
-0.6327428817749023,
-0.08501850068569183,
-0.03777364268898964,
-0.40432342886924744,
0.5182146430015564,
-0.5836110711097717,
-0.24960510432720184,
0.10093159228563309,
0.6307588219642639,
-0.09730993211269379,
0.7198455929756165,
-0.030741356313228607,
0.63575279712677,
0.6625593900680542,
-0.618889570236206,
0.3210294842720032,
0.5653918385505676,
-0.740781307220459,
0.5023303031921387,
-0.9771747589111328,
0.18095864355564117,
0.24465949833393097,
0.2061651200056076,
-1.1630661487579346,
0.21389716863632202,
0.5744866132736206,
-0.8713527321815491,
0.4695558249950409,
-0.37980854511260986,
-0.18825505673885345,
-0.23989300429821014,
-0.2488907277584076,
0.3452901542186737,
0.45484742522239685,
-0.7498523592948914,
0.5019797086715698,
0.4301239550113678,
-0.35195687413215637,
-0.47028183937072754,
-0.8742544651031494,
-0.007954712957143784,
-0.2832649052143097,
-0.6783857345581055,
0.6250118017196655,
-0.060280609875917435,
-0.38706734776496887,
0.09019289165735245,
-0.15210194885730743,
0.1630520224571228,
-0.20458999276161194,
0.3890679180622101,
0.09611092507839203,
-0.46094655990600586,
0.18907907605171204,
-0.07532387971878052,
-0.00895913876593113,
0.08740857988595963,
-0.7623404264450073,
0.35947462916374207,
0.12240347266197205,
-0.4222516119480133,
-0.7179958820343018,
0.27635106444358826,
0.49224552512168884,
-0.5330836772918701,
0.4654402434825897,
0.9656621217727661,
-0.29383358359336853,
-0.2137296348810196,
-0.5584592223167419,
0.007101405877619982,
-0.5078043341636658,
0.7000617384910583,
-0.19928844273090363,
-0.5839807391166687,
0.4983898103237152,
0.1921149045228958,
0.15714000165462494,
0.4485546052455902,
0.6356915235519409,
-0.11588286608457565,
0.7170581221580505,
0.33216410875320435,
0.08177337795495987,
0.8728373646736145,
-0.583487868309021,
0.2572742700576782,
-1.0535197257995605,
-0.45325765013694763,
-0.7691935896873474,
-0.0794510468840599,
-0.7759186625480652,
-0.5981774926185608,
0.33244550228118896,
-0.002441124292090535,
-0.24782437086105347,
0.3936304450035095,
-0.6287160515785217,
0.15260539948940277,
0.7963736653327942,
0.16111333668231964,
-0.19365189969539642,
0.24100284278392792,
-0.3673711121082306,
-0.030657000839710236,
-0.5879952907562256,
-0.3056887090206146,
1.0569217205047607,
0.6040226221084595,
0.5046008229255676,
0.09347440302371979,
0.8172687888145447,
0.1501520574092865,
-0.24637280404567719,
-0.8051910400390625,
0.43504616618156433,
-0.20513473451137543,
-0.45125046372413635,
-0.47377336025238037,
-0.4102763235569,
-0.7892929315567017,
0.3860812783241272,
0.02599838189780712,
-1.1296766996383667,
0.6939949989318848,
-0.08789592236280441,
-0.3982011377811432,
0.46895524859428406,
-0.7438007593154907,
0.6985442638397217,
-0.026867397129535675,
-0.3528492748737335,
-0.3250530958175659,
-0.43859001994132996,
0.058695368468761444,
0.34663087129592896,
0.16394691169261932,
-0.1010337769985199,
0.20674650371074677,
1.2241982221603394,
-0.3579120337963104,
0.8267104625701904,
-0.678269624710083,
-0.1166907399892807,
0.656330943107605,
-0.22348539531230927,
0.27179673314094543,
0.1465870589017868,
-0.15951207280158997,
0.23811903595924377,
0.10717113316059113,
-0.2672383189201355,
-0.29520463943481445,
0.7909405827522278,
-1.021558403968811,
-0.5146804451942444,
-0.1398821771144867,
-0.38899511098861694,
-0.016838738694787025,
0.05609145388007164,
0.21607404947280884,
0.9096270203590393,
-0.11100034415721893,
0.42328524589538574,
0.8426021337509155,
-0.5780087113380432,
0.8319577574729919,
0.27312180399894714,
0.04977798834443092,
-0.8688395619392395,
0.9255050420761108,
0.30196189880371094,
0.20592552423477173,
0.5249401330947876,
0.35789087414741516,
-0.35607126355171204,
-0.6415773034095764,
-0.311286985874176,
0.39223623275756836,
-0.6261951327323914,
0.22343163192272186,
-0.6463395953178406,
-0.23564009368419647,
-0.5222872495651245,
0.22345958650112152,
-0.6519449353218079,
-0.5994521975517273,
-0.42660391330718994,
-0.1329261213541031,
0.2856474220752716,
0.36788061261177063,
-0.5215708613395691,
0.3309308588504791,
-0.5277823209762573,
0.0776059627532959,
0.2754143476486206,
0.25501716136932373,
0.1617296189069748,
-0.825624406337738,
-0.6898182034492493,
0.20498204231262207,
-0.23420721292495728,
-0.9394598603248596,
0.2441207766532898,
0.4742829203605652,
0.9734217524528503,
0.32760539650917053,
-0.1683281660079956,
0.46615660190582275,
-0.30227047204971313,
1.0506542921066284,
0.3114659786224365,
-1.0560996532440186,
0.5833083391189575,
-0.40641504526138306,
0.13384628295898438,
0.3589116036891937,
0.13841749727725983,
-0.5546889305114746,
-0.1527089923620224,
-0.6874158382415771,
-1.065978765487671,
0.8895653486251831,
0.29845643043518066,
0.17768064141273499,
0.07240314036607742,
0.2109455019235611,
-0.14100223779678345,
0.027393067255616188,
-0.6209826469421387,
-0.44867023825645447,
-0.5484721064567566,
-0.14238061010837555,
-0.2932584583759308,
-0.22404710948467255,
-0.02818078175187111,
-0.5805691480636597,
0.9520812630653381,
0.2195449024438858,
0.677030622959137,
0.6663120985031128,
-0.1087808907032013,
0.0045494926162064075,
0.0029297301080077887,
0.7520856857299805,
0.48914623260498047,
-0.4678438901901245,
-0.010408316738903522,
0.044625312089920044,
-0.7668532133102417,
0.15016473829746246,
0.133915513753891,
0.031312666833400726,
0.5504839420318604,
0.4968233108520508,
1.107283592224121,
0.37500500679016113,
-0.26838526129722595,
0.617314338684082,
-0.04939521476626396,
-0.4044368863105774,
-0.670287013053894,
-0.05948852002620697,
0.38945862650871277,
0.39886555075645447,
0.3975814878940582,
-0.04115602746605873,
-0.08406966924667358,
-0.3421919345855713,
0.3585696816444397,
0.1493648886680603,
-0.4610242545604706,
-0.3344568610191345,
0.6725919246673584,
0.22731246054172516,
-0.7280973792076111,
0.7125788927078247,
-0.041191767901182175,
-0.3285200297832489,
0.7307660579681396,
0.6856069564819336,
1.1662261486053467,
-0.4609079658985138,
0.2544601857662201,
0.6515348553657532,
0.23854494094848633,
0.0632401704788208,
0.25352150201797485,
-0.5001848340034485,
-0.49876004457473755,
-0.24233120679855347,
-0.6248788237571716,
-0.3085031807422638,
0.13909505307674408,
-0.6040804982185364,
0.255541056394577,
-0.5194447040557861,
-0.2828754484653473,
0.20622387528419495,
0.1648416966199875,
-0.36450469493865967,
0.03860008344054222,
0.3487861752510071,
1.0348691940307617,
-0.7750155329704285,
0.7309921383857727,
0.6086193919181824,
-0.4072742462158203,
-0.8629961013793945,
0.0677972286939621,
-0.094794861972332,
-0.2985038459300995,
0.3174740970134735,
-0.06052795797586441,
-0.04122018814086914,
-0.08411872386932373,
-0.5252468585968018,
-0.8993914723396301,
1.1624196767807007,
0.43014881014823914,
-0.7778773903846741,
0.19765254855155945,
-0.1879976987838745,
0.37696677446365356,
-0.3243566155433655,
0.3356844186782837,
0.49064767360687256,
0.5484233498573303,
-0.08813254535198212,
-1.2337238788604736,
-0.15062296390533447,
-0.46673452854156494,
-0.14824406802654266,
-0.040858153253793716,
-0.69247967004776,
1.1168838739395142,
-0.17365126311779022,
0.006965837441384792,
0.020862333476543427,
0.7304720282554626,
0.30600211024284363,
0.4731560945510864,
0.5254457592964172,
0.5917976498603821,
0.8877631425857544,
-0.013727388344705105,
0.6617336273193359,
-0.2739931344985962,
0.30496835708618164,
1.2468256950378418,
0.24014969170093536,
0.9423178434371948,
0.47247543931007385,
-0.4821998178958893,
0.6618349552154541,
0.5979357957839966,
-0.18338339030742645,
0.7529176473617554,
0.32800421118736267,
-0.2484545260667801,
-0.09286165237426758,
-0.01697591505944729,
-0.5570493936538696,
0.7370550632476807,
0.31792548298835754,
-0.4118485748767853,
0.21657472848892212,
-0.05202862247824669,
0.09169282764196396,
-0.05509023368358612,
-0.12786617875099182,
0.5346590876579285,
0.4731486141681671,
-0.314674973487854,
0.7083435654640198,
0.01103023998439312,
0.7463889718055725,
-0.5549625158309937,
-0.028652824461460114,
-0.0738421082496643,
0.16401858627796173,
-0.3380487263202667,
-0.32944872975349426,
0.040876783430576324,
-0.22487372159957886,
-0.1394997239112854,
-0.03461124747991562,
0.49137476086616516,
-0.7452665567398071,
-0.31009232997894287,
0.5408724546432495,
0.21577319502830505,
0.22568851709365845,
0.10413394123315811,
-0.5524862408638,
-0.037338562309741974,
0.08176922798156738,
-0.39804980158805847,
0.21703068912029266,
0.36083897948265076,
0.21455629169940948,
0.30796462297439575,
0.676599383354187,
0.3753422200679779,
0.2665533423423767,
0.19921505451202393,
0.5415725708007812,
-0.4537823796272278,
-0.9431606531143188,
-0.8181872367858887,
0.5455417037010193,
-0.16575466096401215,
-0.3804408013820648,
0.8219330310821533,
0.6297366619110107,
0.9101254940032959,
0.1053159162402153,
0.7606151103973389,
0.05604148656129837,
0.4041041433811188,
-0.41894879937171936,
0.8941448926925659,
-0.561089038848877,
0.3988911211490631,
-0.6424921751022339,
-0.9312121868133545,
0.0020993854850530624,
0.8989137411117554,
-0.24012121558189392,
0.13326627016067505,
0.4863562285900116,
1.0636911392211914,
-0.14808833599090576,
0.04944687336683273,
0.26343777775764465,
0.5061912536621094,
0.4662283658981323,
0.5577799081802368,
0.7167403101921082,
-0.5997909307479858,
0.6439064145088196,
-0.4520348310470581,
-0.14948907494544983,
-0.11039719730615616,
-0.6841819286346436,
-0.8383716940879822,
-0.8887209296226501,
-0.6347288489341736,
-0.35031405091285706,
-0.00518497871235013,
1.2112611532211304,
0.8491140604019165,
-0.8674710392951965,
-0.57880038022995,
0.18296898901462555,
0.21692174673080444,
-0.46225330233573914,
-0.17978191375732422,
0.776723325252533,
0.22770366072654724,
-0.6621021628379822,
0.7129206657409668,
0.19730079174041748,
0.11738549172878265,
-0.25238463282585144,
-0.2890954315662384,
-0.6170749068260193,
0.1398347020149231,
0.15959973633289337,
0.24259203672409058,
-0.553740382194519,
-0.23163822293281555,
-0.39005419611930847,
0.07690697908401489,
0.22840340435504913,
0.5240944027900696,
-0.5748037695884705,
0.5699810981750488,
0.7476064562797546,
0.21030603349208832,
0.8181717395782471,
-0.2605302631855011,
0.4096895158290863,
-0.6929298639297485,
0.34715181589126587,
0.17801018059253693,
0.3292612135410309,
0.616363525390625,
-0.15465635061264038,
0.17590832710266113,
0.46611788868904114,
-0.49970144033432007,
-1.0363717079162598,
-0.4090198576450348,
-0.935066819190979,
-0.12418898195028305,
1.1258230209350586,
-0.3362234830856323,
-0.3021308183670044,
-0.11684231460094452,
-0.18629835546016693,
0.6338052153587341,
-0.5190775990486145,
0.5473734736442566,
0.5565299987792969,
0.051376115530729294,
-0.09221586585044861,
-0.6882350444793701,
0.507697582244873,
0.21843867003917694,
-0.2915477454662323,
-0.06920083612203598,
0.18753325939178467,
0.4106261432170868,
0.48789721727371216,
0.8264158964157104,
-0.12873966991901398,
0.42311203479766846,
0.5239217281341553,
0.2540745437145233,
-0.41711223125457764,
-0.2992815375328064,
-0.4807349741458893,
0.07573878765106201,
-0.09428037703037262,
-0.7037055492401123
] |
EleutherAI/gpt-j-6b | EleutherAI | "2023-06-21T14:33:36Z" | 132,845 | 1,316 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"gptj",
"text-generation",
"causal-lm",
"en",
"dataset:EleutherAI/pile",
"arxiv:2104.09864",
"arxiv:2101.00027",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2022-03-02T23:29:04Z" | ---
language:
- en
tags:
- pytorch
- causal-lm
license: apache-2.0
datasets:
- EleutherAI/pile
---
# GPT-J 6B
## Model Description
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
<figure>
| Hyperparameter | Value |
|----------------------|------------|
| \\(n_{parameters}\\) | 6053381344 |
| \\(n_{layers}\\) | 28* |
| \\(d_{model}\\) | 4096 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50257/50400† (same tokenizer as GPT-2/3) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<figcaption><p><strong>*</strong> Each layer consists of one feedforward block and one self attention block.</p>
<p><strong>†</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
GPT-2/GPT-3.
## Intended Use and Limitations
GPT-J learns an inner representation of the English language that can be used to
extract features useful for downstream tasks. The model is best at what it was
pretrained for however, which is generating text from a prompt.
### Out-of-scope use
GPT-J-6B is **not** intended for deployment without fine-tuning, supervision,
and/or moderation. It is not a in itself a product and cannot be used for
human-facing interactions. For example, the model may generate harmful or
offensive text. Please evaluate the risks associated with your particular use case.
GPT-J-6B was trained on an English-language only dataset, and is thus **not**
suitable for translation or generating text in other languages.
GPT-J-6B has not been fine-tuned for downstream contexts in which
language models are commonly deployed, such as writing genre prose,
or commercial chatbots. This means GPT-J-6B will **not**
respond to a given prompt the way a product like ChatGPT does. This is because,
unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
Learning from Human Feedback (RLHF) to better “follow” human instructions.
### Limitations and Biases
The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output.
GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
### How to use
This model can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
```
## Training data
GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai).
## Training procedure
This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly.
## Evaluation results
<figure>
| Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) |
|--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------|
| Random Chance | ✓ | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 |
| GPT-3 Ada‡ | ✗ | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- |
| GPT-2 1.5B | ✓ | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 |
| GPT-Neo 1.3B‡ | ✓ | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 |
| Megatron-2.5B* | ✗ | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 |
| GPT-Neo 2.7B‡ | ✓ | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 |
| GPT-3 1.3B*‡ | ✗ | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 |
| GPT-3 Babbage‡ | ✗ | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- |
| Megatron-8.3B* | ✗ | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 |
| GPT-3 2.7B*‡ | ✗ | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 |
| Megatron-11B† | ✓ | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 |
| **GPT-J 6B‡** | **✓** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** |
| GPT-3 6.7B*‡ | ✗ | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 |
| GPT-3 Curie‡ | ✗ | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- |
| GPT-3 13B*‡ | ✗ | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 |
| GPT-3 175B*‡ | ✗ | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 |
| GPT-3 Davinci‡ | ✗ | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- |
<figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p>
<p><strong>*</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by
running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released
weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these
might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more
details.</p>
<p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not
reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a>
<a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>)
Thus, evaluation was not attempted.</p>
<p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models
failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is
trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure>
## Citation and Related Information
### BibTeX entry
To cite this model:
```bibtex
@misc{gpt-j,
author = {Wang, Ben and Komatsuzaki, Aran},
title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
To cite the codebase that trained this model:
```bibtex
@misc{mesh-transformer-jax,
author = {Wang, Ben},
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
Thanks to everyone who have helped out one way or another (listed alphabetically):
- [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues.
- [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package.
- [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table.
- [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo.
- [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts.
- [Janko Prester](https://github.com/jprester/) for creating the web demo frontend. | [
-0.527818500995636,
-0.7211878299713135,
0.2372782826423645,
0.038327839225530624,
-0.22039547562599182,
0.012406776659190655,
0.076453797519207,
-0.4214514493942261,
0.18559779226779938,
0.17710137367248535,
-0.473574697971344,
-0.40354123711586,
-0.8628464341163635,
-0.019101174548268318,
-0.21043895184993744,
1.1160328388214111,
0.09407054632902145,
-0.16546529531478882,
0.2634928822517395,
0.09349402785301208,
-0.41893669962882996,
-0.31747105717658997,
-0.5991952419281006,
-0.4807995557785034,
0.4783642888069153,
-0.06531073898077011,
0.9626238346099854,
0.7738352417945862,
0.41782963275909424,
0.322333961725235,
-0.25403809547424316,
-0.1414622962474823,
-0.4243694841861725,
-0.40983033180236816,
-0.0675644651055336,
-0.281279593706131,
-0.5366861820220947,
-0.02115785889327526,
0.47888290882110596,
0.4445216655731201,
0.03648442029953003,
0.25218361616134644,
0.05436741188168526,
0.675632119178772,
-0.4533389210700989,
0.34288597106933594,
-0.41884464025497437,
0.1273200362920761,
-0.2346532940864563,
0.08042189478874207,
-0.30980104207992554,
-0.19073934853076935,
0.0989164337515831,
-0.5595186948776245,
0.2402854859828949,
0.25389906764030457,
1.261757254600525,
0.1742328256368637,
-0.3325447738170624,
-0.09880762547254562,
-0.5341816544532776,
0.8133476376533508,
-0.7856689691543579,
0.44009536504745483,
0.2711082696914673,
0.16692109405994415,
-0.07414828985929489,
-0.8182066679000854,
-0.6914867758750916,
-0.13490456342697144,
-0.23450356721878052,
0.4551449716091156,
-0.20105935633182526,
-0.04468187317252159,
0.49391523003578186,
0.47013965249061584,
-0.9543492197990417,
0.006928480230271816,
-0.5257293581962585,
-0.18983393907546997,
0.6258273124694824,
0.16230358183383942,
0.428590327501297,
-0.5655823349952698,
-0.6931366324424744,
-0.33954188227653503,
-0.49361997842788696,
0.2238747775554657,
0.4672625958919525,
0.144699364900589,
-0.28469812870025635,
0.5599861741065979,
0.02500550076365471,
0.5903157591819763,
0.2878319025039673,
-0.11504106968641281,
0.5146512389183044,
-0.42479363083839417,
-0.5570903420448303,
-0.18148748576641083,
1.089840292930603,
0.37332120537757874,
0.15568611025810242,
-0.025368707254529,
-0.26063865423202515,
-0.03151531517505646,
0.35034963488578796,
-0.9796187281608582,
-0.4239684045314789,
0.21041148900985718,
-0.5014961361885071,
-0.316272497177124,
0.22061292827129364,
-0.6542479395866394,
0.027442757040262222,
-0.15955497324466705,
0.6326862573623657,
-0.4889642596244812,
-0.4688442647457123,
0.13537149131298065,
-0.21459299325942993,
0.3992069363594055,
0.20805208384990692,
-0.9513067603111267,
0.11874578893184662,
0.4422062933444977,
0.8285887837409973,
-0.09481222927570343,
-0.25088050961494446,
0.06680452823638916,
0.21057666838169098,
-0.3709467649459839,
0.6252803802490234,
-0.28072938323020935,
-0.47147905826568604,
-0.2773657441139221,
0.22810688614845276,
-0.2949589192867279,
-0.22854328155517578,
0.46843039989471436,
-0.3777347207069397,
0.5227116942405701,
-0.3270086944103241,
-0.5069194436073303,
-0.27672216296195984,
0.3358151614665985,
-0.7216228246688843,
1.0250368118286133,
0.3253363370895386,
-0.9990370869636536,
0.5069990158081055,
-0.740460216999054,
-0.143447145819664,
0.0281030535697937,
-0.14250217378139496,
-0.7870184779167175,
-0.15790340304374695,
0.36019957065582275,
0.37358784675598145,
-0.3820692300796509,
0.3072965443134308,
-0.1792782098054886,
-0.48482322692871094,
-0.016802210360765457,
-0.576488196849823,
1.0949419736862183,
0.29248178005218506,
-0.7507926821708679,
0.038339268416166306,
-0.6920279264450073,
0.07526209950447083,
0.5344323515892029,
-0.2183266282081604,
0.08664336800575256,
-0.38644248247146606,
-0.026203088462352753,
0.3782145082950592,
0.2395065277814865,
-0.38713404536247253,
0.28822124004364014,
-0.5225181579589844,
0.36216074228286743,
0.8603879809379578,
0.04938489943742752,
0.3092658221721649,
-0.5550467371940613,
0.7009948492050171,
0.12506982684135437,
0.32717323303222656,
-0.008106093853712082,
-0.7716606259346008,
-0.6915995478630066,
-0.2238268107175827,
0.32845503091812134,
0.5461011528968811,
-0.6830205917358398,
0.6448041796684265,
-0.11805479228496552,
-0.6677003502845764,
-0.3526354730129242,
-0.24179914593696594,
0.6044829487800598,
0.5011880397796631,
0.44653522968292236,
-0.23580347001552582,
-0.4255586564540863,
-1.0026639699935913,
-0.11715781688690186,
-0.30338871479034424,
-0.03627071902155876,
0.24174121022224426,
0.729491651058197,
-0.10961910337209702,
0.8485980033874512,
-0.46623483300209045,
-0.14029516279697418,
-0.40316909551620483,
0.13863477110862732,
0.7118792533874512,
0.5479052066802979,
0.7861809730529785,
-0.6495235562324524,
-0.7421746850013733,
0.08665304630994797,
-0.6836763620376587,
0.11101172119379044,
-0.11988212913274765,
-0.061830706894397736,
0.2534903585910797,
0.0630086362361908,
-0.9815713763237,
0.6104594469070435,
0.4822080135345459,
-0.5694348812103271,
0.8193643093109131,
-0.1534399837255478,
0.19431819021701813,
-1.201669692993164,
0.24048621952533722,
-0.022979091852903366,
-0.07558632642030716,
-0.586864709854126,
-0.04008828476071358,
0.13791020214557648,
0.01869902014732361,
-0.5589019060134888,
0.6796745657920837,
-0.6636608242988586,
0.026604903861880302,
-0.0736440047621727,
-0.0011481470428407192,
0.011233562603592873,
0.8263605833053589,
-0.14167070388793945,
0.9984369277954102,
0.5314857959747314,
-0.4883381128311157,
0.2666700780391693,
0.22464391589164734,
-0.3853386640548706,
0.2913859486579895,
-0.8151214122772217,
0.07050199806690216,
-0.14050954580307007,
0.2468867003917694,
-1.075721263885498,
-0.1055009663105011,
0.5279728770256042,
-0.6762499809265137,
0.45754146575927734,
-0.2596474885940552,
-0.448579341173172,
-0.8442334532737732,
-0.4693940579891205,
0.26109442114830017,
0.69533771276474,
-0.34739065170288086,
0.4749346971511841,
0.2850157618522644,
-0.04853937029838562,
-0.7646399140357971,
-0.7781292200088501,
-0.21068204939365387,
-0.28912535309791565,
-0.7055450677871704,
0.43197864294052124,
-0.17109441757202148,
0.0174599327147007,
0.036170799285173416,
-0.15155678987503052,
0.10303597897291183,
-0.11547448486089706,
0.19516071677207947,
0.38264647126197815,
-0.10002593696117401,
-0.22361202538013458,
-0.0587848499417305,
-0.3070756793022156,
0.09469084441661835,
-0.3355301022529602,
0.6670182347297668,
-0.19529704749584198,
-0.380715548992157,
-0.43805667757987976,
0.027403512969613075,
0.6706192493438721,
-0.036651577800512314,
0.7275500297546387,
0.9548361897468567,
-0.3344576060771942,
0.13186225295066833,
-0.47780176997184753,
-0.02607283741235733,
-0.5427850484848022,
0.5437394380569458,
-0.5923104882240295,
-0.7932340502738953,
0.6362267136573792,
0.2970583140850067,
0.12416145950555801,
0.9000697731971741,
0.7364755272865295,
0.061698246747255325,
1.2753775119781494,
0.4206147789955139,
-0.3181703984737396,
0.4176977872848511,
-0.6834555268287659,
0.28071051836013794,
-0.8503229022026062,
-0.3153638243675232,
-0.41609418392181396,
-0.3986363410949707,
-0.7270867228507996,
-0.3626709580421448,
0.39159438014030457,
0.058063726872205734,
-0.6110977530479431,
0.6354235410690308,
-0.7630431056022644,
0.33905255794525146,
0.6905161738395691,
-0.05319666862487793,
0.03302957862615585,
-0.07927140593528748,
-0.3529350757598877,
-0.028677059337496758,
-0.7821069955825806,
-0.2808632552623749,
1.1027406454086304,
0.4104818105697632,
0.6092771291732788,
0.23430311679840088,
0.6380705237388611,
0.16724032163619995,
0.12014518678188324,
-0.538669764995575,
0.3869306147098541,
0.03624939173460007,
-0.9413527846336365,
-0.39677879214286804,
-0.47937148809432983,
-1.0915955305099487,
0.41885724663734436,
-0.05495177209377289,
-0.9910962581634521,
0.1986689269542694,
0.053303878754377365,
-0.34264084696769714,
0.6093924641609192,
-0.824701189994812,
0.920094907283783,
-0.20629620552062988,
-0.40803325176239014,
0.04085127264261246,
-0.7736964225769043,
0.4482472240924835,
0.1411130130290985,
0.19699585437774658,
-0.00743499118834734,
0.14216427505016327,
0.7574800252914429,
-0.599675714969635,
0.7134761810302734,
-0.2416766881942749,
-0.02483181096613407,
0.48412126302719116,
-0.01275451947003603,
0.8552854657173157,
0.1845693439245224,
0.10959867388010025,
0.10649830847978592,
-0.0996413454413414,
-0.42708632349967957,
-0.4562477767467499,
0.6443614363670349,
-1.073909044265747,
-0.7220492959022522,
-0.6811317205429077,
-0.5799300670623779,
0.07444007694721222,
0.33859309554100037,
0.6220000386238098,
0.4318631589412689,
0.1400471329689026,
0.21774768829345703,
0.5415855646133423,
-0.307565301656723,
0.7034757137298584,
0.2731490433216095,
-0.24335743486881256,
-0.6227923631668091,
0.9725604057312012,
0.19102878868579865,
0.3737811744213104,
0.380795955657959,
0.3214038014411926,
-0.6269087791442871,
-0.5151044726371765,
-0.5995374321937561,
0.35647404193878174,
-0.4915871322154999,
-0.2482946217060089,
-0.7014597058296204,
-0.45035579800605774,
-0.6181737780570984,
-0.13768868148326874,
-0.35764914751052856,
-0.4732723534107208,
-0.22238779067993164,
-0.25239309668540955,
0.4042750895023346,
0.8442766666412354,
0.059120699763298035,
0.13723699748516083,
-0.5905442237854004,
0.17892330884933472,
0.366730272769928,
0.40299513936042786,
0.017016977071762085,
-0.7765589356422424,
-0.14838440716266632,
-0.012872625142335892,
-0.464896559715271,
-0.8108900189399719,
0.4915268123149872,
-0.20016367733478546,
0.515936553478241,
0.4208214282989502,
-0.07755853235721588,
0.8020871877670288,
-0.3954978287220001,
1.0858416557312012,
0.5097993612289429,
-0.7700714468955994,
0.38368457555770874,
-0.6096662282943726,
0.499275803565979,
0.23785488307476044,
0.4447474777698517,
-0.4198470711708069,
-0.4505659341812134,
-1.1340405941009521,
-0.93536776304245,
0.9155988693237305,
0.47973453998565674,
-0.03313768655061722,
0.010397618636488914,
0.0622040219604969,
-0.0011839885264635086,
0.2103927582502365,
-1.0385059118270874,
-0.6233027577400208,
-0.41214585304260254,
-0.040558211505413055,
0.07146348059177399,
-0.18915759027004242,
0.09371757507324219,
-0.396075040102005,
0.8265955448150635,
0.06556718796491623,
0.7614908814430237,
0.058297425508499146,
-0.10519430041313171,
-0.004618819337338209,
0.06945724040269852,
0.5964333415031433,
0.7881991863250732,
-0.3454635739326477,
-0.08853868395090103,
0.21013963222503662,
-0.6773834824562073,
0.023442018777132034,
0.15736865997314453,
-0.391378253698349,
0.041423287242650986,
0.2643927335739136,
0.9622087478637695,
0.042329635471105576,
-0.20866797864437103,
0.6222095489501953,
0.04570833966135979,
-0.4837377071380615,
-0.3833810091018677,
0.1323414444923401,
0.050657011568546295,
0.24353305995464325,
0.30703943967819214,
-0.021928632631897926,
0.1084403395652771,
-0.43307897448539734,
0.2736590504646301,
0.4634365439414978,
-0.3905677795410156,
-0.3665371835231781,
0.9625552296638489,
-0.01794295758008957,
-0.19803133606910706,
0.4693093001842499,
-0.31141066551208496,
-0.6222633719444275,
0.8322103023529053,
0.6831454634666443,
0.937623918056488,
-0.27708545327186584,
0.20413464307785034,
0.798004150390625,
0.4727504253387451,
-0.07230237126350403,
0.19113251566886902,
0.2552669644355774,
-0.5503355264663696,
-0.39039066433906555,
-0.6254932880401611,
-0.29200705885887146,
0.39258360862731934,
-0.5396892428398132,
0.32609280943870544,
-0.5754544734954834,
-0.29619118571281433,
-0.27802443504333496,
0.26634758710861206,
-0.8459429144859314,
0.4387739896774292,
-0.008860727772116661,
0.7794275283813477,
-0.8001821041107178,
0.8838164806365967,
0.559675395488739,
-0.7820358276367188,
-1.0402052402496338,
-0.1347855031490326,
0.064910389482975,
-1.017991065979004,
0.4891951382160187,
0.21330004930496216,
0.2380334734916687,
0.13973397016525269,
-0.4408900737762451,
-1.2169016599655151,
1.446882724761963,
0.1346176415681839,
-0.5115206241607666,
-0.050858501344919205,
0.1963605284690857,
0.43974629044532776,
-0.04287780448794365,
0.7786675095558167,
0.5117574334144592,
0.6172875761985779,
0.07208359986543655,
-1.0442442893981934,
0.19848929345607758,
-0.5603604912757874,
0.13898910582065582,
0.36227524280548096,
-1.0116031169891357,
1.1022106409072876,
-0.10688330978155136,
-0.07619668543338776,
-0.15771327912807465,
0.5780320763587952,
0.37967637181282043,
0.00899501796811819,
0.5491167306900024,
0.7066490650177002,
0.6074661016464233,
-0.33250394463539124,
1.2712825536727905,
-0.4286980926990509,
0.6903517842292786,
0.80650395154953,
0.14719755947589874,
0.4458968937397003,
0.2256963849067688,
-0.5788666605949402,
0.393088161945343,
0.64935702085495,
-0.21246856451034546,
0.45212212204933167,
0.11271119117736816,
-0.017575567588210106,
0.0014418535865843296,
0.25069865584373474,
-0.7023952007293701,
0.09763196110725403,
0.28774479031562805,
-0.4048137664794922,
-0.02413109317421913,
-0.1880098432302475,
0.1684022694826126,
-0.3681992292404175,
-0.2793278396129608,
0.5563637614250183,
0.048188719898462296,
-0.4827204644680023,
0.6861982345581055,
-0.023826099932193756,
0.6767212748527527,
-0.6285592317581177,
0.1987474113702774,
-0.19230827689170837,
0.07615557312965393,
-0.20272691547870636,
-0.8552008867263794,
0.12826308608055115,
-0.07606270164251328,
-0.16999776661396027,
-0.2125919610261917,
0.6993287205696106,
-0.1770627647638321,
-0.6038452386856079,
0.25199106335639954,
0.3307107985019684,
0.17654287815093994,
0.058062560856342316,
-1.1333434581756592,
-0.011250137351453304,
0.1865115612745285,
-0.7222397327423096,
0.45642802119255066,
0.4987183213233948,
0.11464034765958786,
0.6934806704521179,
0.6199715733528137,
-0.047740377485752106,
0.14929993450641632,
0.11446306854486465,
0.9426081776618958,
-0.8394877314567566,
-0.47773709893226624,
-0.8146366477012634,
0.8442751169204712,
-0.06997209787368774,
-0.4742441475391388,
0.7742711901664734,
0.6146771907806396,
0.909752368927002,
-0.19422467052936554,
0.890003502368927,
-0.343626469373703,
0.3459993302822113,
-0.5013622045516968,
0.7655089497566223,
-0.5743078589439392,
0.03905761241912842,
-0.5007147192955017,
-1.088427186012268,
-0.2468743920326233,
0.7749044895172119,
-0.2832242250442505,
0.5146660804748535,
0.8291844725608826,
0.75681072473526,
0.01607239805161953,
-0.0015748455189168453,
0.37953323125839233,
0.3857676088809967,
0.45719489455223083,
0.8225827217102051,
0.6092949509620667,
-0.7476947903633118,
0.6933353543281555,
-0.4164888858795166,
-0.13148511946201324,
-0.2134985476732254,
-0.7028913497924805,
-1.0261722803115845,
-0.36289894580841064,
-0.34818777441978455,
-0.34021854400634766,
0.007737475913017988,
0.8614452481269836,
0.6161426901817322,
-0.7671175003051758,
-0.12242738902568817,
-0.244508296251297,
0.059674885123968124,
-0.3236662745475769,
-0.31510668992996216,
0.6413378715515137,
-0.19591212272644043,
-0.9400478005409241,
0.18718884885311127,
0.18729500472545624,
0.2949448823928833,
-0.24168729782104492,
-0.15932133793830872,
-0.2033991515636444,
-0.09480050951242447,
0.4887112081050873,
0.16521945595741272,
-0.7844637036323547,
-0.5179697871208191,
-0.02820427343249321,
-0.11845117062330246,
0.0975968986749649,
0.35484907031059265,
-0.6371036767959595,
0.252998024225235,
0.574794590473175,
0.5195973515510559,
0.7800753712654114,
-0.005027069244533777,
0.4179339110851288,
-0.5745129585266113,
0.10938512533903122,
0.11328084766864777,
0.4293133318424225,
0.04426746815443039,
-0.40627750754356384,
0.6773853302001953,
0.4401012659072876,
-0.7445396780967712,
-0.6601753234863281,
0.019532928243279457,
-1.1076802015304565,
-0.22836934030056,
1.199849009513855,
-0.05745948478579521,
-0.36833393573760986,
-0.055760763585567474,
-0.18992187082767487,
0.24395209550857544,
-0.43511778116226196,
0.7110563516616821,
0.6852613091468811,
-0.08316217362880707,
-0.2469840943813324,
-0.7665605545043945,
0.45145177841186523,
0.30248039960861206,
-0.54792720079422,
-0.1411099135875702,
0.18960531055927277,
0.3805759847164154,
0.2759559452533722,
0.7209305763244629,
-0.2820688784122467,
0.26567161083221436,
0.09368965029716492,
0.1684030145406723,
-0.1901119351387024,
-0.18948206305503845,
-0.11458665132522583,
0.22201228141784668,
-0.06907467544078827,
-0.21720191836357117
] |
EleutherAI/gpt-neo-125m | EleutherAI | "2023-07-09T15:54:09Z" | 132,554 | 137 | transformers | [
"transformers",
"pytorch",
"jax",
"rust",
"safetensors",
"gpt_neo",
"text-generation",
"text generation",
"causal-lm",
"en",
"dataset:EleutherAI/pile",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2022-03-02T23:29:04Z" | ---
language:
- en
tags:
- text generation
- pytorch
- causal-lm
license: mit
datasets:
- EleutherAI/pile
---
# GPT-Neo 125M
## Model Description
GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model.
## Training data
GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model.
## Training procedure
This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss.
## Intended Use and Limitations
This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
>>> generator("EleutherAI has", do_sample=True, min_length=20)
[{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}]
```
### Limitations and Biases
GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Eval results
TBD
### Down-Stream Applications
TBD
### BibTeX entry and citation info
To cite this model, use
```bibtex
@software{gpt-neo,
author = {Black, Sid and
Leo, Gao and
Wang, Phil and
Leahy, Connor and
Biderman, Stella},
title = {{GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow}},
month = mar,
year = 2021,
note = {{If you use this software, please cite it using
these metadata.}},
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.5297715},
url = {https://doi.org/10.5281/zenodo.5297715}
}
@article{gao2020pile,
title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
``` | [
-0.43094268441200256,
-0.896562933921814,
0.3464779853820801,
-0.010650763288140297,
-0.24463912844657898,
-0.17605143785476685,
-0.169472798705101,
-0.41618964076042175,
0.21991518139839172,
0.396115243434906,
-0.27767443656921387,
-0.3270260989665985,
-0.7261783480644226,
0.126239612698555,
-0.6702964305877686,
1.402815580368042,
0.028155088424682617,
-0.3481656610965729,
0.22374624013900757,
0.16653980314731598,
-0.16242191195487976,
-0.5772049427032471,
-0.6924224495887756,
-0.2023160755634308,
0.38929498195648193,
-0.04803261533379555,
0.7086683511734009,
0.8537217974662781,
0.15321099758148193,
0.3731212019920349,
-0.1075529232621193,
-0.12082754820585251,
-0.5703087449073792,
-0.14523014426231384,
-0.0864553451538086,
-0.1194557473063469,
-0.6023391485214233,
0.1037473976612091,
0.6970386505126953,
0.4968079626560211,
-0.17057529091835022,
0.06757362186908722,
0.16326969861984253,
0.3159714937210083,
-0.2551828622817993,
0.15052121877670288,
-0.6526565551757812,
-0.29950928688049316,
-0.23403450846672058,
-0.029331455007195473,
-0.3071470260620117,
-0.145508274435997,
0.08033857494592667,
-0.5153005719184875,
0.3912530839443207,
-0.034904543310403824,
1.1938899755477905,
0.16581211984157562,
-0.32257986068725586,
-0.18851517140865326,
-0.7626692056655884,
0.7180625796318054,
-0.8099299073219299,
0.1984085738658905,
0.4304574429988861,
0.011758514679968357,
0.16219384968280792,
-0.7059400677680969,
-0.5301517844200134,
-0.1876814216375351,
-0.22794319689273834,
0.11715056747198105,
-0.25134965777397156,
-0.03367773815989494,
0.3363678455352783,
0.4355085790157318,
-0.9402437210083008,
-0.054327502846717834,
-0.4344828128814697,
-0.26435333490371704,
0.5205995440483093,
0.1826879382133484,
0.3704209327697754,
-0.5767890810966492,
-0.41561925411224365,
-0.33961936831474304,
-0.5038373470306396,
-0.30746030807495117,
0.6518867611885071,
0.31197720766067505,
-0.22559119760990143,
0.509990394115448,
-0.07024448364973068,
0.5802642703056335,
-0.1246555894613266,
0.02304476872086525,
0.4278084933757782,
-0.5075294971466064,
-0.2648533284664154,
-0.1933315545320511,
1.4252885580062866,
0.015502392314374447,
0.4382239282131195,
-0.07645433396100998,
-0.3030574321746826,
0.11224500834941864,
0.22901958227157593,
-1.0452936887741089,
-0.19499915838241577,
0.06344463676214218,
-0.19395846128463745,
-0.3055626153945923,
0.12252798676490784,
-0.7253112196922302,
-0.10280568152666092,
-0.17143939435482025,
0.3054577112197876,
-0.5347155332565308,
-0.5438416600227356,
0.15152232348918915,
-0.03887565806508064,
0.010175262577831745,
0.11168675124645233,
-0.8813385963439941,
0.5043115615844727,
0.6695415377616882,
0.8945167660713196,
0.04793792963027954,
-0.5584077835083008,
-0.22076350450515747,
0.02874131128191948,
-0.15185603499412537,
0.6834057569503784,
-0.35987651348114014,
-0.21279610693454742,
-0.167069211602211,
0.26951864361763,
-0.36036479473114014,
-0.20799711346626282,
0.4888133704662323,
-0.22769814729690552,
0.7658554911613464,
0.11039676517248154,
-0.37114423513412476,
-0.23142868280410767,
0.09311285614967346,
-0.6703254580497742,
1.1817418336868286,
0.48166000843048096,
-1.1317530870437622,
0.14616411924362183,
-0.3773368000984192,
-0.109128937125206,
0.21622036397457123,
-0.007029276806861162,
-0.45582109689712524,
-0.15062174201011658,
0.10192728787660599,
0.2921781837940216,
-0.36092546582221985,
0.5570492148399353,
-0.1003132313489914,
-0.33264604210853577,
0.05030399560928345,
-0.5209149122238159,
0.9265357851982117,
0.2881348729133606,
-0.49375608563423157,
-0.07157159596681595,
-0.5525612831115723,
-0.33885419368743896,
0.3114987015724182,
-0.19656507670879364,
-0.4110693335533142,
-0.17674484848976135,
0.28803882002830505,
0.41149652004241943,
0.2621420621871948,
-0.45122265815734863,
0.12015490233898163,
-0.4266877770423889,
0.5483865737915039,
0.7014780044555664,
-0.17659050226211548,
0.44286614656448364,
-0.4264819324016571,
0.7975351810455322,
-0.24449583888053894,
0.037379879504442215,
-0.189528226852417,
-0.6522769331932068,
-0.6316623091697693,
-0.19098827242851257,
0.38904160261154175,
0.6775751113891602,
-0.6790366768836975,
0.3953680098056793,
-0.4517359137535095,
-0.5018237829208374,
-0.5160335302352905,
0.02796326018869877,
0.26372697949409485,
0.5115717053413391,
0.29999545216560364,
-0.14105801284313202,
-0.5464009642601013,
-0.7708075046539307,
-0.0868806317448616,
-0.5205716490745544,
-0.06320955604314804,
0.4191794991493225,
0.5587887167930603,
-0.5237029790878296,
0.8265798687934875,
-0.3428860604763031,
-0.08205238729715347,
-0.21029996871948242,
0.44042983651161194,
0.32900547981262207,
0.31564873456954956,
0.6303589940071106,
-0.4922606945037842,
-0.6635481119155884,
0.06926121562719345,
-0.48847696185112,
-0.3837895095348358,
-0.03402746096253395,
-0.06453771889209747,
0.3647165298461914,
0.42502978444099426,
-0.7326263785362244,
0.10008548200130463,
0.7805719375610352,
-0.5303443074226379,
0.50588458776474,
-0.18172404170036316,
-0.08380826562643051,
-1.3724654912948608,
0.3396468758583069,
0.08983223140239716,
-0.3866147994995117,
-0.5432882905006409,
-0.22081467509269714,
-0.09854937344789505,
-0.16926757991313934,
-0.33909404277801514,
0.6996636390686035,
-0.3886396288871765,
0.13012558221817017,
-0.3574281632900238,
0.14330105483531952,
0.021947547793388367,
0.512104868888855,
0.0613534189760685,
0.6256621479988098,
0.5057395100593567,
-0.5202992558479309,
0.259824275970459,
0.034909505397081375,
-0.12212028354406357,
0.16851651668548584,
-0.9203885197639465,
0.1604118049144745,
-0.13372273743152618,
0.16747325658798218,
-0.9295755624771118,
0.01512240245938301,
0.4336835741996765,
-0.46421051025390625,
0.3751123249530792,
-0.4353131353855133,
-0.5112682580947876,
-0.44034725427627563,
-0.19611485302448273,
0.387346088886261,
0.5319955945014954,
-0.11620458215475082,
0.5803055763244629,
0.43547865748405457,
-0.5227614045143127,
-0.7507261037826538,
-0.4333884119987488,
0.0031483410857617855,
-0.4650375247001648,
-0.5273184776306152,
0.36000481247901917,
-0.052617937326431274,
-0.009583662264049053,
0.15317201614379883,
0.3684394061565399,
0.13124164938926697,
-0.05250443145632744,
0.05964251980185509,
0.27569010853767395,
-0.0373307429254055,
-0.025074820965528488,
-0.07745064795017242,
-0.4014762043952942,
0.19951315224170685,
-0.2080693244934082,
1.000011682510376,
-0.36545324325561523,
0.10024477541446686,
-0.25221899151802063,
0.2776910662651062,
0.6317705512046814,
-0.020719874650239944,
0.7854630947113037,
0.9371030926704407,
-0.3688150942325592,
0.03807941451668739,
-0.36827442049980164,
-0.18444642424583435,
-0.4724547863006592,
0.7336915731430054,
-0.21419595181941986,
-0.8005246520042419,
0.5809750556945801,
0.2766244411468506,
0.013782395981252193,
0.844962477684021,
0.6915498375892639,
0.2347376048564911,
1.095315933227539,
0.7095956802368164,
-0.3116632103919983,
0.6667406558990479,
-0.4259765148162842,
0.02263006567955017,
-0.954725444316864,
0.04382532089948654,
-0.677848756313324,
-0.06465750932693481,
-0.983190655708313,
-0.4320041239261627,
0.0653473287820816,
-0.08221081644296646,
-0.5001586079597473,
0.6603237390518188,
-0.6549558639526367,
0.13729241490364075,
0.38797470927238464,
-0.2742367386817932,
0.2452593296766281,
-0.010572902858257294,
-0.06759785115718842,
0.12912657856941223,
-0.7048768997192383,
-0.6238683462142944,
0.9885382652282715,
0.6478223204612732,
0.8206676244735718,
-0.11302603036165237,
0.6118081212043762,
-0.07557439804077148,
0.4110127091407776,
-0.6960374712944031,
0.417267382144928,
-0.26098471879959106,
-0.7915087342262268,
-0.40254074335098267,
-0.8421382904052734,
-1.2306911945343018,
0.320254385471344,
0.030827268958091736,
-0.607414722442627,
0.14813026785850525,
-0.03744996339082718,
-0.09261225908994675,
0.3402252793312073,
-0.7009565830230713,
0.8579977750778198,
-0.12967602908611298,
-0.12444836646318436,
0.0011785296956077218,
-0.40010079741477966,
0.2743060290813446,
-0.0892091616988182,
0.39335039258003235,
-0.06098566949367523,
-0.1124880239367485,
0.8730517029762268,
-0.40731698274612427,
0.8960476517677307,
-0.06744369864463806,
-0.2293272465467453,
0.3131310045719147,
0.07595086842775345,
0.5972732305526733,
0.08381489664316177,
0.01651659980416298,
0.25438496470451355,
-0.15851148962974548,
-0.19959276914596558,
-0.14267870783805847,
0.696319043636322,
-1.0756218433380127,
-0.36766374111175537,
-0.6823135614395142,
-0.5997695326805115,
0.3329990804195404,
0.3960711658000946,
0.5393115282058716,
0.4306977689266205,
-0.3172949552536011,
0.08810102194547653,
0.4410417973995209,
-0.4370821714401245,
0.5943116545677185,
0.4395788609981537,
-0.39133942127227783,
-0.4968959391117096,
0.9313706755638123,
0.22447171807289124,
0.16900092363357544,
0.31032323837280273,
0.45992979407310486,
-0.2954852879047394,
-0.37386685609817505,
-0.49529656767845154,
0.6529510021209717,
-0.3744458854198456,
-0.16115784645080566,
-1.028373122215271,
-0.3716275990009308,
-0.48599883913993835,
0.1315155327320099,
-0.4890976846218109,
-0.37187862396240234,
-0.29945412278175354,
-0.09549182653427124,
0.4449741244316101,
0.8383246660232544,
0.02478061616420746,
0.42136526107788086,
-0.5078614354133606,
0.2809283137321472,
0.46923577785491943,
0.3273927867412567,
-0.16685660183429718,
-0.9439302086830139,
-0.30317971110343933,
0.16237254440784454,
-0.19077271223068237,
-0.7767101526260376,
0.8462162017822266,
0.08338679373264313,
0.5022509694099426,
0.2700001001358032,
-0.16573761403560638,
0.2885887622833252,
-0.5127509832382202,
0.6179187297821045,
-0.03487561270594597,
-0.8273795247077942,
0.4384463131427765,
-0.7624920010566711,
0.26505228877067566,
0.25084614753723145,
0.5533592104911804,
-0.7601478099822998,
-0.49581921100616455,
-0.9942137002944946,
-1.018367886543274,
0.8421997427940369,
0.22429285943508148,
0.3501241207122803,
-0.19723226130008698,
0.1884487420320511,
0.05866517126560211,
0.06002679467201233,
-1.0812749862670898,
-0.2207493782043457,
-0.5052698850631714,
-0.11126663535833359,
-0.3182372450828552,
-0.22147971391677856,
0.006469409447163343,
-0.20406903326511383,
0.8367983102798462,
-0.19299893081188202,
0.5260529518127441,
-0.06620830297470093,
-0.19300627708435059,
-0.11229073256254196,
0.19270186126232147,
0.5238202810287476,
0.4991656541824341,
-0.3706836402416229,
0.015674520283937454,
0.09861507266759872,
-0.7782747149467468,
-0.13703714311122894,
0.43153616786003113,
-0.23629599809646606,
0.1438743770122528,
0.15450400114059448,
1.005128026008606,
-0.20567268133163452,
-0.27027031779289246,
0.5302155017852783,
-0.19277572631835938,
-0.3706301152706146,
-0.2861563265323639,
-0.059204403311014175,
0.1635892391204834,
-0.16615884006023407,
0.2739175260066986,
-0.13675078749656677,
0.13712216913700104,
-0.5266916155815125,
0.12279923260211945,
0.33259451389312744,
-0.3585899770259857,
-0.514742910861969,
0.669742226600647,
0.018778307363390923,
-0.14336399734020233,
0.7466808557510376,
-0.2771628499031067,
-0.5866641402244568,
0.5058233141899109,
0.6222290396690369,
0.9373485445976257,
-0.40747904777526855,
0.4853670299053192,
0.6299546957015991,
0.6100767254829407,
-0.060480210930109024,
0.09500864893198013,
0.3786534368991852,
-0.8541557192802429,
-0.645282506942749,
-0.6550037860870361,
-0.24905113875865936,
0.43704754114151,
-0.47794580459594727,
0.28867703676223755,
-0.27782368659973145,
-0.26090526580810547,
-0.29133978486061096,
0.1479097306728363,
-0.5651535391807556,
0.2119571417570114,
0.29397714138031006,
0.4863745868206024,
-1.2594280242919922,
0.8507720232009888,
0.793352484703064,
-0.4149240255355835,
-0.7079282999038696,
-0.24206215143203735,
-0.2086990624666214,
-0.7987124919891357,
0.2528012990951538,
0.10657857358455658,
0.06539861857891083,
0.09609375149011612,
-0.49772486090660095,
-0.9103958606719971,
1.0359703302383423,
0.487192839384079,
-0.43399783968925476,
-0.1277090460062027,
0.22253520786762238,
0.7236341238021851,
-0.27744773030281067,
0.7330074310302734,
0.4069868326187134,
0.3645915389060974,
-0.14025600254535675,
-1.0136374235153198,
0.13950000703334808,
-0.5970008969306946,
0.1107589527964592,
0.32033395767211914,
-0.7971386313438416,
1.1976689100265503,
0.19329124689102173,
-0.28489863872528076,
-0.11765464395284653,
0.3347109258174896,
0.25770607590675354,
-0.13826225697994232,
0.5584022998809814,
0.7984005212783813,
0.7325307726860046,
-0.24098946154117584,
1.2783358097076416,
-0.3569208085536957,
0.6322481036186218,
0.8860538005828857,
0.18018648028373718,
0.5300491452217102,
0.17216390371322632,
-0.1506952941417694,
0.7994234561920166,
0.5328572988510132,
0.03646114468574524,
0.362765908241272,
0.043802835047245026,
0.009913015179336071,
0.002479376969859004,
-0.13710777461528778,
-0.5917433500289917,
0.3036692142486572,
0.51337730884552,
-0.546260416507721,
-0.10213381797075272,
-0.2471032589673996,
0.42903703451156616,
-0.23095373809337616,
-0.022392095997929573,
0.6999719142913818,
0.20692932605743408,
-0.5469677448272705,
0.7736647129058838,
0.09342137724161148,
0.8155537247657776,
-0.5046126842498779,
0.23283320665359497,
-0.2358262538909912,
0.07933284342288971,
-0.015812741592526436,
-0.5245106816291809,
0.2916242480278015,
0.07450741529464722,
-0.17398320138454437,
-0.4768107533454895,
0.6494840383529663,
-0.46977323293685913,
-0.5655681490898132,
0.3776293694972992,
0.5997375249862671,
0.31077131628990173,
-0.22202607989311218,
-0.9316512942314148,
-0.06818626821041107,
-0.15304474532604218,
-0.5060166716575623,
0.37558433413505554,
0.7825003266334534,
0.039790086448192596,
0.5614453554153442,
0.5683405995368958,
0.16447870433330536,
-0.08382898569107056,
0.3360760807991028,
0.9851043224334717,
-0.6597872376441956,
-0.509999692440033,
-0.8228989839553833,
0.4849749505519867,
0.08035089820623398,
-0.4625583291053772,
0.6808173656463623,
0.5689626336097717,
0.7727339267730713,
0.1125389114022255,
0.822542130947113,
-0.27380162477493286,
0.6051497459411621,
-0.16255733370780945,
0.6449143886566162,
-0.30152106285095215,
0.1458415985107422,
-0.6565026640892029,
-1.258744239807129,
0.06953329592943192,
0.7791897654533386,
-0.33390113711357117,
0.455487996339798,
0.9016813635826111,
0.7775444388389587,
-0.054789092391729355,
-0.19044773280620575,
0.12849226593971252,
0.4132821559906006,
0.29855412244796753,
0.7065569162368774,
0.848468542098999,
-0.7840384244918823,
0.62978595495224,
-0.43826934695243835,
-0.28483104705810547,
-0.055495403707027435,
-0.9370418190956116,
-0.9461158514022827,
-0.5057206153869629,
-0.38653329014778137,
-0.48375359177589417,
-0.1365702897310257,
0.5551378130912781,
0.5891326665878296,
-0.7333540916442871,
-0.4218299090862274,
-0.24406494200229645,
-0.0054804133251309395,
-0.16424688696861267,
-0.29781731963157654,
0.4021754562854767,
-0.16286161541938782,
-1.0460551977157593,
0.10057725757360458,
-0.027956748381257057,
0.24355150759220123,
-0.30106523633003235,
-0.14899277687072754,
-0.25328323245048523,
-0.10783670097589493,
0.41985416412353516,
0.17559528350830078,
-0.29988744854927063,
-0.09324613213539124,
0.2138526439666748,
-0.33101686835289,
-0.04098629951477051,
0.5681365728378296,
-0.7834852933883667,
0.1737791746854782,
0.8646734952926636,
0.26642483472824097,
0.692751944065094,
0.13862720131874084,
0.7527252435684204,
-0.6069648861885071,
0.15331058204174042,
0.24087898433208466,
0.49654150009155273,
0.47593265771865845,
-0.3995358347892761,
0.497224360704422,
0.4193628132343292,
-0.7306020259857178,
-0.6456089019775391,
-0.0714765340089798,
-0.8523318767547607,
-0.22210760414600372,
1.4710780382156372,
0.08421318233013153,
-0.1655166894197464,
-0.24069251120090485,
-0.1867908090353012,
0.36007240414619446,
-0.4458971917629242,
0.6816645264625549,
0.718744158744812,
0.24063092470169067,
-0.41735610365867615,
-0.6889845728874207,
0.44868385791778564,
0.32190099358558655,
-0.7168183326721191,
0.15223778784275055,
0.26286107301712036,
0.352067768573761,
0.21255066990852356,
0.6819745898246765,
-0.3701574206352234,
-0.02480151690542698,
0.004886097740381956,
0.21905121207237244,
0.024352220818400383,
-0.3330481946468353,
-0.3649396002292633,
-0.032800622284412384,
-0.16224581003189087,
0.2416275590658188
] |
pysentimiento/robertuito-emotion-analysis | pysentimiento | "2023-02-20T19:04:28Z" | 131,522 | 13 | pysentimiento | [
"pysentimiento",
"pytorch",
"roberta",
"emotion-analysis",
"twitter",
"es",
"arxiv:2106.09462",
"region:us"
] | null | "2022-03-02T23:29:05Z" | ---
language:
- es
library_name: pysentimiento
tags:
- emotion-analysis
- twitter
---
# Emotion Analysis in Spanish
## robertuito-emotion-analysis
Repository: [https://github.com/pysentimiento/pysentimiento/](https://github.com/finiteautomata/pysentimiento/)
Model trained with TASS 2020 Task 2 corpus for Emotion detection in Spanish. Base model is [RoBERTuito](https://github.com/pysentimiento/robertuito), a RoBERTa model trained in Spanish tweets.
Contains the six Ekman emotions plus a neutral class:
- anger
- disgust
- fear
- joy
- sadness
- surprise
## Results
Results for the four tasks evaluated in `pysentimiento`. Results are expressed as Macro F1 scores
| model | emotion | hate_speech | irony | sentiment |
|:--------------|:--------------|:--------------|:--------------|:--------------|
| robertuito | 0.560 ± 0.010 | 0.759 ± 0.007 | 0.739 ± 0.005 | 0.705 ± 0.003 |
| roberta | 0.527 ± 0.015 | 0.741 ± 0.012 | 0.721 ± 0.008 | 0.670 ± 0.006 |
| bertin | 0.524 ± 0.007 | 0.738 ± 0.007 | 0.713 ± 0.012 | 0.666 ± 0.005 |
| beto_uncased | 0.532 ± 0.012 | 0.727 ± 0.016 | 0.701 ± 0.007 | 0.651 ± 0.006 |
| beto_cased | 0.516 ± 0.012 | 0.724 ± 0.012 | 0.705 ± 0.009 | 0.662 ± 0.005 |
| mbert_uncased | 0.493 ± 0.010 | 0.718 ± 0.011 | 0.681 ± 0.010 | 0.617 ± 0.003 |
| biGRU | 0.264 ± 0.007 | 0.592 ± 0.018 | 0.631 ± 0.011 | 0.585 ± 0.011 |
Note that for Hate Speech, these are the results for Semeval 2019, Task 5 Subtask B (HS+TR+AG detection)
## Citation
If you use this model in your research, please cite pysentimiento, RoBERTuito and EmoEvent papers:
```
@misc{perez2021pysentimiento,
title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks},
author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque},
year={2021},
eprint={2106.09462},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{del2020emoevent,
title={EmoEvent: A multilingual emotion corpus based on different events},
author={del Arco, Flor Miriam Plaza and Strapparava, Carlo and Lopez, L Alfonso Urena and Mart{\'\i}n-Valdivia, M Teresa},
booktitle={Proceedings of the 12th Language Resources and Evaluation Conference},
pages={1492--1498},
year={2020}
}
@inproceedings{perez-etal-2022-robertuito,
title = "{R}o{BERT}uito: a pre-trained language model for social media text in {S}panish",
author = "P{\'e}rez, Juan Manuel and
Furman, Dami{\'a}n Ariel and
Alonso Alemany, Laura and
Luque, Franco M.",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.785",
pages = "7235--7243",
abstract = "Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for natural language processing tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks; however, for languages other than English, such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model has some cross-lingual abilities, achieving top results for English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and also competitive performance against monolingual models in English Twitter tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it.",
}
``` | [
-0.29460233449935913,
-0.7324641942977905,
0.3014644980430603,
0.4505888521671295,
-0.31451839208602905,
0.21474938094615936,
-0.5850648880004883,
-0.669941782951355,
0.5856736302375793,
0.21787384152412415,
-0.564184844493866,
-0.8803051710128784,
-1.0170944929122925,
0.22219422459602356,
-0.32425305247306824,
1.0699834823608398,
0.04128571227192879,
0.0642801895737648,
0.28311851620674133,
-0.15136964619159698,
0.25006529688835144,
-0.4578305780887604,
-0.7232887744903564,
-0.10356394201517105,
0.7683383226394653,
0.300771564245224,
0.4539925158023834,
0.06741464883089066,
0.383473664522171,
0.3429276645183563,
-0.10678088665008545,
-0.029027584940195084,
-0.3517262041568756,
0.03297637775540352,
-0.10230299830436707,
-0.3396492898464203,
-0.39137357473373413,
0.03818491846323013,
0.5073869228363037,
0.3005370497703552,
0.07142556458711624,
0.14693768322467804,
0.02799600549042225,
0.655968964099884,
-0.44841474294662476,
0.14659549295902252,
-0.54945969581604,
-0.011133695021271706,
-0.35346654057502747,
-0.04973974823951721,
-0.32707276940345764,
-0.6138983368873596,
0.1517179161310196,
-0.23808899521827698,
0.12887345254421234,
-0.06777886301279068,
1.1735862493515015,
0.19893580675125122,
-0.2529734671115875,
-0.42982375621795654,
-0.428037166595459,
1.010360836982727,
-0.8635737299919128,
0.38396865129470825,
0.24433548748493195,
0.013710756786167622,
0.03677792474627495,
-0.3437824845314026,
-0.7905049324035645,
-0.15267765522003174,
0.08924073725938797,
0.2825896143913269,
-0.6008504033088684,
-0.036205947399139404,
-0.03624603524804115,
0.09305283427238464,
-0.5052878856658936,
0.19786998629570007,
-0.41281211376190186,
-0.08007393032312393,
0.6504366993904114,
-0.25743451714515686,
0.40756654739379883,
-0.42471587657928467,
-0.08488527685403824,
-0.35585060715675354,
-0.2995576560497284,
-0.0933733880519867,
0.5747867226600647,
0.4132828414440155,
-0.433563232421875,
0.3773882985115051,
0.023109178990125656,
0.37262383103370667,
-0.16678990423679352,
0.057168081402778625,
0.7793488502502441,
0.021731223911046982,
-0.21825775504112244,
-0.3780209422111511,
1.3327103853225708,
0.3095845580101013,
0.6605393290519714,
-0.11091915518045425,
0.014797146432101727,
0.2352101057767868,
0.12735304236412048,
-0.7519862055778503,
-0.21294483542442322,
0.35271626710891724,
-0.34789541363716125,
-0.35472571849823,
-0.07375417649745941,
-1.0914547443389893,
-0.2305459976196289,
-0.0807248130440712,
0.3024733364582062,
-0.4841606914997101,
-0.5911784768104553,
0.026919011026620865,
-0.033983565866947174,
0.027186235412955284,
0.2134619504213333,
-0.6904320120811462,
0.1324908435344696,
0.3460063934326172,
0.7972620725631714,
-0.3161362409591675,
-0.3704836368560791,
-0.17004461586475372,
-0.36486977338790894,
-0.11960712820291519,
0.8417726159095764,
-0.3554789423942566,
-0.10572057217359543,
0.139999657869339,
0.1747203916311264,
-0.2359727919101715,
-0.38912543654441833,
0.7676644325256348,
-0.34152665734291077,
0.44317826628685,
-0.23046283423900604,
-0.2543116509914398,
-0.35386109352111816,
0.06335993856191635,
-0.535664975643158,
1.3652352094650269,
0.18478848040103912,
-0.8403496146202087,
0.06551740318536758,
-0.7798332571983337,
-0.5763860940933228,
-0.22542092204093933,
-0.050894372165203094,
-0.47875121235847473,
-0.08146411925554276,
0.11583743989467621,
0.678909420967102,
-0.3826691508293152,
0.31707319617271423,
-0.3752084970474243,
0.16153830289840698,
0.23289357125759125,
0.01237474475055933,
1.0627374649047852,
0.3274894654750824,
-0.6920240521430969,
0.16539566218852997,
-0.7573297023773193,
-0.10435418784618378,
0.35997557640075684,
-0.09959086030721664,
-0.4161650240421295,
-0.0780964121222496,
0.2580878436565399,
0.5261370539665222,
0.3409482538700104,
-0.8880866765975952,
-0.375870019197464,
-0.49993574619293213,
0.2542603313922882,
0.7530768513679504,
-0.2227250188589096,
0.26216229796409607,
-0.1293199509382248,
0.7371016144752502,
-0.04901232570409775,
0.1493343561887741,
0.1601560264825821,
-0.5579500198364258,
-0.7964852452278137,
-0.29401475191116333,
0.016326479613780975,
0.708322286605835,
-0.603662371635437,
0.5334793329238892,
-0.07570505142211914,
-0.6805497407913208,
-0.5419983267784119,
0.015023506246507168,
0.4822451174259186,
0.5566505789756775,
0.5015873908996582,
-0.011549129150807858,
-1.0235035419464111,
-0.8134750127792358,
-0.4280705451965332,
-0.23519942164421082,
0.08622242510318756,
0.31622686982154846,
0.6559501886367798,
-0.27552542090415955,
0.7322903871536255,
-0.44099289178848267,
-0.2465132623910904,
-0.5084680914878845,
0.3353842794895172,
0.23409779369831085,
0.28743377327919006,
0.8471064567565918,
-0.714746356010437,
-0.9092543125152588,
0.18045417964458466,
-0.7787749171257019,
-0.4062548577785492,
0.29144880175590515,
-0.1913468986749649,
0.6001898050308228,
0.29356732964515686,
-0.22534380853176117,
0.2598159611225128,
0.8239966034889221,
-0.35168272256851196,
0.4062654674053192,
0.06182467192411423,
0.40515366196632385,
-1.3611825704574585,
0.0046467408537864685,
0.4346817135810852,
-0.14986777305603027,
-0.7490540742874146,
-0.2719877064228058,
-0.086385577917099,
0.14991702139377594,
-0.7036334276199341,
0.6884254813194275,
-0.3648253083229065,
0.11840245872735977,
-0.11379346996545792,
0.24213038384914398,
-0.2835151255130768,
0.7313500642776489,
0.20216409862041473,
0.5699690580368042,
0.5327243208885193,
-0.4116707742214203,
0.12973611056804657,
0.24551300704479218,
-0.3948782980442047,
0.507489025592804,
-0.7935391664505005,
0.06917206197977066,
-0.253883957862854,
-0.17056570947170258,
-1.064850091934204,
-0.08664635568857193,
0.2658824026584625,
-0.7854577302932739,
0.12706555426120758,
-0.13211292028427124,
-0.5653489828109741,
-0.512294352054596,
-0.4846916198730469,
0.020622119307518005,
0.5885335206985474,
-0.4540240466594696,
0.7576462030410767,
0.6685547232627869,
-0.3443635404109955,
-0.5671727061271667,
-0.8325674533843994,
0.011023903265595436,
-0.4499870240688324,
-0.7939576506614685,
0.16079148650169373,
-0.10905387997627258,
-0.2554830014705658,
-0.09664887934923172,
0.30118218064308167,
-0.09855487942695618,
0.08157582581043243,
0.2894991934299469,
0.33522772789001465,
-0.03258940204977989,
0.011928278021514416,
0.16240359842777252,
0.1528475284576416,
0.12977507710456848,
0.05316478759050369,
0.8136326670646667,
-0.2173856645822525,
0.06251206248998642,
-0.48657289147377014,
0.3266342580318451,
0.5034248232841492,
-0.2211800366640091,
0.8792651295661926,
0.7250645756721497,
-0.4321826100349426,
-0.14680685102939606,
-0.6157797574996948,
0.0828477218747139,
-0.4552389681339264,
0.5306152701377869,
-0.17521029710769653,
-1.1121219396591187,
0.8157889246940613,
0.26921331882476807,
-0.06574152410030365,
0.7201876044273376,
0.8077554702758789,
-0.26219984889030457,
0.8556485176086426,
0.6108381152153015,
-0.15789949893951416,
0.8988722562789917,
-0.28595781326293945,
0.29584845900535583,
-0.6698895692825317,
-0.300224632024765,
-0.8935249447822571,
-0.2618746757507324,
-0.639276385307312,
-0.37375396490097046,
0.22653236985206604,
-0.24913668632507324,
-0.2774941623210907,
0.6426976323127747,
-0.3790506422519684,
0.42616477608680725,
0.40806061029434204,
0.010062186978757381,
-0.0005016067298129201,
0.10042023658752441,
0.1220925897359848,
-0.41023144125938416,
-0.6180287003517151,
-0.471310555934906,
1.0510308742523193,
0.4054856598377228,
0.5499712824821472,
0.19665241241455078,
0.8668614029884338,
0.33212628960609436,
0.4552369713783264,
-0.6986215114593506,
0.5284490585327148,
-0.47601747512817383,
-0.5240556597709656,
-0.3235972821712494,
-0.506210446357727,
-1.0182461738586426,
0.31082314252853394,
-0.141461580991745,
-1.0655779838562012,
0.3271418809890747,
0.026509957388043404,
-0.21054625511169434,
0.21426796913146973,
-0.7878062129020691,
1.0476750135421753,
-0.21541698276996613,
-0.1565670669078827,
-0.23320960998535156,
-0.5716345310211182,
0.1800517737865448,
0.029952257871627808,
0.4929734170436859,
-0.28961753845214844,
0.13103154301643372,
1.1768317222595215,
-0.3076857924461365,
0.9142770171165466,
-0.09762171655893326,
-0.16814389824867249,
0.3484506905078888,
-0.004964443854987621,
0.4847618639469147,
-0.2780137062072754,
-0.1553499847650528,
0.19400185346603394,
-0.16266025602817535,
-0.17641690373420715,
-0.3668973445892334,
0.6925578117370605,
-0.8890199065208435,
-0.14738957583904266,
-0.42257532477378845,
-0.3517597019672394,
-0.06742913275957108,
0.18104836344718933,
0.3997657597064972,
0.15047934651374817,
-0.25646230578422546,
0.10633417218923569,
0.6275311708450317,
-0.4789615571498871,
0.44143128395080566,
0.7072206139564514,
-0.007778950035572052,
-0.5076898336410522,
0.8212341070175171,
0.1507032960653305,
0.23240607976913452,
0.3409448266029358,
0.29475605487823486,
-0.3374461531639099,
-0.23748920857906342,
-0.10074611008167267,
0.6034800410270691,
-0.600763738155365,
-0.16072629392147064,
-1.1892811059951782,
0.09063267707824707,
-0.5831462144851685,
-0.20400245487689972,
-0.5351365804672241,
-0.38498613238334656,
-0.42494359612464905,
-0.2517329752445221,
0.4988272786140442,
0.4794027507305145,
-0.18960940837860107,
0.37872186303138733,
-0.5538741946220398,
0.2951943278312683,
-0.0983569473028183,
0.19695250689983368,
0.06252282857894897,
-0.8253834247589111,
-0.2917792499065399,
-0.020640283823013306,
-0.1429530382156372,
-1.1237707138061523,
0.8578624129295349,
0.13815473020076752,
0.39699095487594604,
0.22986197471618652,
0.05925695598125458,
0.47580063343048096,
-0.3963482081890106,
0.643944501876831,
0.3032505214214325,
-0.9725210666656494,
0.886418342590332,
-0.4168280065059662,
-0.020711202174425125,
0.6482183933258057,
0.7773509621620178,
-0.6694609522819519,
-0.8399152755737305,
-0.9545294046401978,
-0.9656429886817932,
0.994879424571991,
0.21831896901130676,
0.16238921880722046,
-0.3245657682418823,
-0.14142611622810364,
-0.1369171440601349,
0.18737223744392395,
-1.1057178974151611,
-0.4061455726623535,
-0.10782352089881897,
-0.5538910031318665,
-0.015744848176836967,
-0.34988224506378174,
0.030766058713197708,
-0.33600273728370667,
0.9287985563278198,
0.15731693804264069,
0.39261847734451294,
0.09353452175855637,
-0.3641709089279175,
-0.06248538941144943,
0.27725860476493835,
0.6762426495552063,
0.34103405475616455,
-0.3653181791305542,
0.08807149529457092,
0.07808084785938263,
-0.4504861533641815,
-0.1436232477426529,
0.22681507468223572,
-0.021190937608480453,
0.23902814090251923,
0.2994108200073242,
0.8704968690872192,
0.194184809923172,
-0.7510086894035339,
0.648813009262085,
0.03094332292675972,
-0.293510764837265,
-0.40513843297958374,
-0.15388453006744385,
-0.12315412610769272,
0.36992815136909485,
0.40417078137397766,
-0.13438786566257477,
0.03548874706029892,
-0.5395023822784424,
0.09168848395347595,
0.2519097328186035,
-0.3267022669315338,
-0.5899372696876526,
0.6642350554466248,
0.19435849785804749,
-0.35798776149749756,
0.14736658334732056,
-0.4328612685203552,
-1.0227677822113037,
0.7137601971626282,
0.5138564705848694,
1.1210858821868896,
-0.41669023036956787,
0.5367404818534851,
0.7530028223991394,
0.45366883277893066,
-0.01525592990219593,
0.6462029814720154,
0.12781916558742523,
-0.9991360902786255,
-0.35417303442955017,
-0.7453629970550537,
-0.27865076065063477,
0.16892464458942413,
-0.5978840589523315,
0.23687389492988586,
-0.35033997893333435,
-0.09165613353252411,
0.0669720321893692,
-0.03977642208337784,
-0.600714385509491,
0.30030596256256104,
0.12990860641002655,
0.6940885782241821,
-1.1970287561416626,
0.8125099539756775,
0.7237929105758667,
-0.4866423010826111,
-0.7409839034080505,
-0.2510860562324524,
-0.0053411368280649185,
-0.7396578192710876,
0.6457346677780151,
-0.011543379165232182,
-0.23070202767848969,
-0.002972203539684415,
-0.45301222801208496,
-0.8990193605422974,
0.69842129945755,
0.3938164710998535,
-0.3945566713809967,
0.21029780805110931,
0.10355678200721741,
0.9599873423576355,
-0.27190664410591125,
0.4383111596107483,
0.5248623490333557,
0.4387684464454651,
0.02968730591237545,
-0.7840312123298645,
-0.0719837173819542,
-0.4793028235435486,
-0.1453247219324112,
0.28061312437057495,
-0.660185694694519,
0.9845309257507324,
-0.047697797417640686,
-0.3020403981208801,
-0.3124193847179413,
0.7689127922058105,
0.06662160903215408,
0.19178414344787598,
0.42275458574295044,
0.548218309879303,
0.8027330636978149,
-0.1598605066537857,
1.1079496145248413,
-0.3374134600162506,
0.5616145133972168,
1.1533282995224,
-0.09070234000682831,
0.8635565638542175,
0.26228925585746765,
-0.46189308166503906,
0.7109068036079407,
0.45158568024635315,
0.23558250069618225,
0.3849424719810486,
-0.11188787966966629,
-0.2392885535955429,
0.020166339352726936,
-0.13997882604599,
-0.2426350861787796,
0.283316969871521,
0.24684913456439972,
-0.4660833775997162,
-0.12521208822727203,
0.20143245160579681,
0.5578478574752808,
0.33455583453178406,
-0.08478119224309921,
0.5149469375610352,
0.04871699586510658,
-0.4476708173751831,
0.6797903776168823,
0.02718832530081272,
1.0497411489486694,
-0.5471998453140259,
0.4408508241176605,
-0.23401688039302826,
0.04320753738284111,
-0.38728418946266174,
-0.9115034937858582,
0.49444344639778137,
0.5326319932937622,
-0.10046859830617905,
-0.38485187292099,
0.5324438810348511,
-0.580745279788971,
-0.47090432047843933,
0.6635564565658569,
0.3414730131626129,
0.27507445216178894,
-0.11818570643663406,
-0.8295526504516602,
0.2252560704946518,
0.2512952983379364,
-0.4908565580844879,
0.1733984798192978,
0.5437750220298767,
-0.03911704942584038,
0.5152278542518616,
0.4488689601421356,
0.15718132257461548,
0.2781497538089752,
0.4452916085720062,
0.7667089104652405,
-0.6054092645645142,
-0.5043050050735474,
-0.8862829208374023,
0.5394080877304077,
-0.24582324922084808,
-0.46280691027641296,
0.8963086009025574,
0.5531483888626099,
0.8869874477386475,
-0.1680254340171814,
0.8369846940040588,
-0.44281768798828125,
0.9351561069488525,
-0.1834276020526886,
0.5695417523384094,
-0.6390208601951599,
-0.2103714793920517,
-0.7505883574485779,
-0.7371078729629517,
-0.46175438165664673,
0.8728706240653992,
-0.5935798287391663,
-0.05897688865661621,
0.7451074123382568,
0.8293551206588745,
0.2242327779531479,
-0.18155406415462494,
0.11127229779958725,
0.5222870707511902,
0.1984395533800125,
0.6043405532836914,
0.5876230597496033,
-0.4870797097682953,
0.4085058867931366,
-0.3590812087059021,
-0.33316633105278015,
-0.1477891504764557,
-0.8421253561973572,
-0.9740214347839355,
-0.8079869151115417,
-0.49130937457084656,
-0.49604034423828125,
0.018655791878700256,
1.075408697128296,
0.272136390209198,
-0.9883323907852173,
-0.3933364152908325,
0.09301387518644333,
0.1767820417881012,
0.19417333602905273,
-0.24651439487934113,
0.3386523425579071,
-0.2670819163322449,
-1.0691229104995728,
0.21546046435832977,
0.15940310060977936,
0.10706593096256256,
0.17210876941680908,
-0.11737371236085892,
-0.4791654944419861,
0.11633193492889404,
0.6943281888961792,
0.4769643247127533,
-0.5973928570747375,
-0.24066509306430817,
0.12024004012346268,
-0.17242495715618134,
0.19033725559711456,
0.3272790312767029,
-0.48256760835647583,
0.1515546441078186,
0.5216200351715088,
0.5185503959655762,
0.5335177779197693,
-0.1469203382730484,
0.21564459800720215,
-0.7077584862709045,
0.4214309751987457,
0.41532227396965027,
0.3474268615245819,
0.33804941177368164,
-0.26100611686706543,
0.5633218884468079,
0.18213696777820587,
-0.44029077887535095,
-0.9265347123146057,
0.04366821050643921,
-1.2647863626480103,
-0.04754302278161049,
1.3236562013626099,
0.0006016806000843644,
-0.4106508493423462,
0.1990833580493927,
-0.15147489309310913,
0.4482254981994629,
-0.6721388697624207,
0.7652826905250549,
0.7162762880325317,
-0.015922095626592636,
-0.3510570228099823,
-0.5817722082138062,
0.4917750358581543,
0.4908258616924286,
-1.014343500137329,
-0.04546855762600899,
0.2975769340991974,
0.2322482019662857,
0.15108098089694977,
0.8213230967521667,
-0.17997997999191284,
0.23753508925437927,
-0.4247967302799225,
0.5981887578964233,
0.31421375274658203,
-0.2729301452636719,
-0.3251121938228607,
-0.08827657997608185,
-0.23094402253627777,
-0.07428280264139175
] |
suno/bark-small | suno | "2023-11-10T10:11:12Z" | 130,390 | 66 | transformers | [
"transformers",
"pytorch",
"bark",
"text-to-audio",
"audio",
"text-to-speech",
"en",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"ko",
"pl",
"pt",
"ru",
"tr",
"zh",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] | text-to-speech | "2023-07-18T13:50:46Z" | ---
language:
- en
- de
- es
- fr
- hi
- it
- ja
- ko
- pl
- pt
- ru
- tr
- zh
thumbnail: >-
https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
library: bark
license: mit
tags:
- bark
- audio
- text-to-speech
duplicated_from: ylacombe/bark-small
pipeline_tag: text-to-speech
---
# Bark
Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai).
Bark can generate highly realistic, multilingual speech as well as other audio - including music,
background noise and simple sound effects. The model can also produce nonverbal
communications like laughing, sighing and crying. To support the research community,
we are providing access to pretrained model checkpoints ready for inference.
The original github repo and model card can be found [here](https://github.com/suno-ai/bark).
This model is meant for research purposes only.
The model output is not censored and the authors do not endorse the opinions in the generated content.
Use at your own risk.
Two checkpoints are released:
- [**small** (this checkpoint)](https://huggingface.co/suno/bark-small)
- [large](https://huggingface.co/suno/bark)
## Example
Try out Bark yourself!
* Bark Colab:
<a target="_blank" href="https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
* Hugging Face Colab:
<a target="_blank" href="https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
* Hugging Face Demo:
<a target="_blank" href="https://huggingface.co/spaces/suno/bark">
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
</a>
## 🤗 Transformers Usage
You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards.
1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy:
```
pip install --upgrade pip
pip install --upgrade transformers scipy
```
2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can infer the bark model via the TTS pipeline in just a few lines of code!
```python
from transformers import pipeline
import scipy
synthesiser = pipeline("text-to-speech", "suno/bark-small")
speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"do_sample": True})
scipy.io.wavfile.write("bark_out.wav", rate=speech["sampling_rate"], data=speech["audio"])
```
3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 24 kHz speech waveform for more fine-grained control.
```python
from transformers import AutoProcessor, AutoModel
processor = AutoProcessor.from_pretrained("suno/bark-small")
model = AutoModel.from_pretrained("suno/bark-small")
inputs = processor(
text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
return_tensors="pt",
)
speech_values = model.generate(**inputs, do_sample=True)
```
4. Listen to the speech samples either in an ipynb notebook:
```python
from IPython.display import Audio
sampling_rate = model.generation_config.sample_rate
Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)
```
Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
```python
import scipy
sampling_rate = model.config.sample_rate
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
```
For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the [Bark docs](https://huggingface.co/docs/transformers/model_doc/bark).
### Optimization tips
Refers to this [blog post](https://huggingface.co/blog/optimizing-bark#benchmark-results) to find out more about the following methods and a benchmark of their benefits.
#### Get significant speed-ups:
**Using 🤗 Better Transformer**
Better Transformer is an 🤗 Optimum feature that performs kernel fusion under the hood. You can gain 20% to 30% in speed with zero performance degradation. It only requires one line of code to export the model to 🤗 Better Transformer:
```python
model = model.to_bettertransformer()
```
Note that 🤗 Optimum must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/optimum/installation)
**Using Flash Attention 2**
Flash Attention 2 is an even faster, optimized version of the previous optimization.
```python
model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16, use_flash_attention_2=True).to(device)
```
Make sure to load your model in half-precision (e.g. `torch.float16``) and to [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2.
**Note:** Flash Attention 2 is only available on newer GPUs, refer to 🤗 Better Transformer in case your GPU don't support it.
#### Reduce memory footprint:
**Using half-precision**
You can speed up inference and reduce memory footprint by 50% simply by loading the model in half-precision (e.g. `torch.float16``).
**Using CPU offload**
Bark is made up of 4 sub-models, which are called up sequentially during audio generation. In other words, while one sub-model is in use, the other sub-models are idle.
If you're using a CUDA device, a simple solution to benefit from an 80% reduction in memory footprint is to offload the GPU's submodels when they're idle. This operation is called CPU offloading. You can use it with one line of code.
```python
model.enable_cpu_offload()
```
Note that 🤗 Accelerate must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/accelerate/basic_tutorials/install)
## Suno Usage
You can also run Bark locally through the original [Bark library]((https://github.com/suno-ai/bark):
1. First install the [`bark` library](https://github.com/suno-ai/bark)
3. Run the following Python code:
```python
from bark import SAMPLE_RATE, generate_audio, preload_models
from IPython.display import Audio
# download and load all models
preload_models()
# generate audio from text
text_prompt = """
Hello, my name is Suno. And, uh — and I like pizza. [laughs]
But I also have other interests such as playing tic tac toe.
"""
speech_array = generate_audio(text_prompt)
# play text in notebook
Audio(speech_array, rate=SAMPLE_RATE)
```
[pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm)
To save `audio_array` as a WAV file:
```python
from scipy.io.wavfile import write as write_wav
write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array)
```
## Model Details
The following is additional information about the models released here.
Bark is a series of three transformer models that turn text into audio.
### Text to semantic tokens
- Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)
- Output: semantic tokens that encode the audio to be generated
### Semantic to coarse tokens
- Input: semantic tokens
- Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook
### Coarse to fine tokens
- Input: the first two codebooks from EnCodec
- Output: 8 codebooks from EnCodec
### Architecture
| Model | Parameters | Attention | Output Vocab size |
|:-------------------------:|:----------:|------------|:-----------------:|
| Text to semantic tokens | 80/300 M | Causal | 10,000 |
| Semantic to coarse tokens | 80/300 M | Causal | 2x 1,024 |
| Coarse to fine tokens | 80/300 M | Non-causal | 6x 1,024 |
### Release date
April 2023
## Broader Implications
We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages.
While we hope that this release will enable users to express their creativity and build applications that are a force
for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward
to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark,
we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository).
## License
Bark is licensed under the [MIT License](https://github.com/suno-ai/bark/blob/main/LICENSE), meaning it's available for commercial use. | [
-0.34012606739997864,
-0.7709685564041138,
0.20669694244861603,
0.5160871744155884,
-0.14736273884773254,
-0.10436895489692688,
-0.29685336351394653,
-0.789924144744873,
0.12989023327827454,
0.09366322308778763,
-0.6044121980667114,
-0.5098657011985779,
-0.4032694101333618,
-0.09826289117336273,
-0.17298749089241028,
1.1412683725357056,
0.47466930747032166,
-0.030425794422626495,
-0.08741796761751175,
0.005868655629456043,
-0.24356873333454132,
-0.24764923751354218,
-0.8953117728233337,
-0.6841177940368652,
0.2647019922733307,
0.058790173381567,
0.4669446647167206,
0.4830605983734131,
0.15237930417060852,
0.2846237123012543,
-0.358255535364151,
-0.27508530020713806,
-0.17194420099258423,
-0.24444131553173065,
0.21984031796455383,
-0.6199480891227722,
-0.6208974123001099,
0.17900511622428894,
0.34720826148986816,
0.18429234623908997,
-0.33487430214881897,
0.34907078742980957,
-0.12526051700115204,
0.29421311616897583,
-0.2576546370983124,
0.35478684306144714,
-0.5603654980659485,
-0.0926830843091011,
0.053060904145240784,
0.019015513360500336,
-0.4278675615787506,
-0.3993974030017853,
0.058492012321949005,
-0.7966991066932678,
0.20663753151893616,
0.04205679893493652,
1.10817551612854,
0.5110061168670654,
-0.059780094772577286,
-0.24356259405612946,
-0.571811854839325,
0.8752867579460144,
-1.0187067985534668,
0.1718142330646515,
0.7414240837097168,
0.20054277777671814,
-0.07904861122369766,
-0.8480808138847351,
-0.48092275857925415,
-0.2381087690591812,
-0.07406192272901535,
0.3695044219493866,
-0.5636255145072937,
-0.056026577949523926,
0.27830377221107483,
0.36260083317756653,
-0.36719587445259094,
-0.057763174176216125,
-0.27094101905822754,
-0.18747976422309875,
0.6233930587768555,
-0.004635622724890709,
0.483208566904068,
-0.2795076370239258,
-0.08541736751794815,
-0.5290258526802063,
-0.22335945069789886,
0.5181022882461548,
0.15961745381355286,
0.15014758706092834,
-0.4802994132041931,
0.4607676863670349,
0.1670616716146469,
0.46303024888038635,
0.4177670478820801,
-0.49090221524238586,
0.45282474160194397,
-0.23918645083904266,
-0.18778002262115479,
0.38254350423812866,
1.0551892518997192,
0.22604630887508392,
-0.13982559740543365,
-0.03599465265870094,
0.02774800732731819,
0.1258103996515274,
0.02809343859553337,
-0.7647188901901245,
-0.31902769207954407,
0.5821862816810608,
-0.3610771596431732,
-0.39130234718322754,
-0.32570409774780273,
-0.6332342624664307,
0.04421139508485794,
0.029326049610972404,
0.42260682582855225,
-0.8950730562210083,
-0.3842388093471527,
0.13136062026023865,
-0.4998578429222107,
0.30144011974334717,
0.08885818719863892,
-1.1028690338134766,
0.3508960008621216,
0.4692959189414978,
0.7769775986671448,
0.21189777553081512,
-0.29634082317352295,
-0.36767980456352234,
0.1891857385635376,
-0.28399017453193665,
0.6121315956115723,
-0.3465818464756012,
-0.2550026774406433,
-0.5086416602134705,
0.04617879167199135,
0.04257543012499809,
-0.6439858675003052,
0.6819738745689392,
-0.08802671730518341,
0.3094763159751892,
0.07376470416784286,
-0.28137752413749695,
-0.35941281914711,
-0.08648510277271271,
-0.4602575898170471,
1.5670831203460693,
0.19819563627243042,
-0.9419317841529846,
0.06343057751655579,
-0.7214317321777344,
-0.6603748202323914,
-0.2619290053844452,
0.20608876645565033,
-0.5951651930809021,
0.088145911693573,
0.3956659734249115,
0.25103625655174255,
-0.4483514428138733,
0.3181988298892975,
-0.13599395751953125,
-0.2802634537220001,
0.41550564765930176,
-0.07600373774766922,
1.1123034954071045,
0.25954577326774597,
-0.6874403953552246,
0.2613074779510498,
-0.8550710678100586,
0.12339211255311966,
0.35358625650405884,
-0.4238000512123108,
-0.2711808383464813,
0.0011704731732606888,
0.2653024196624756,
0.17022022604942322,
0.22539736330509186,
-0.6356178522109985,
-0.05185685679316521,
-0.6389253735542297,
0.8575567603111267,
0.4884622097015381,
-0.29086142778396606,
0.213739812374115,
-0.6437942981719971,
0.31219834089279175,
-0.2108096182346344,
0.0821710005402565,
-0.22130535542964935,
-0.6415306329727173,
-0.5654213428497314,
-0.4805120527744293,
0.13683059811592102,
0.5487250685691833,
-0.17345410585403442,
0.7541213035583496,
0.1186547502875328,
-0.8660764694213867,
-1.081950306892395,
-0.36512520909309387,
0.29876935482025146,
0.4445902109146118,
0.5278735160827637,
-0.06947269290685654,
-0.5740286707878113,
-0.6647618412971497,
0.005851087160408497,
-0.37465569376945496,
-0.15592129528522491,
0.5942288637161255,
0.2964966595172882,
-0.22156919538974762,
1.004824161529541,
-0.4544396996498108,
-0.31747201085090637,
-0.2529679238796234,
0.31653526425361633,
0.35358086228370667,
0.6707677245140076,
0.592365562915802,
-0.5900120139122009,
-0.33085402846336365,
-0.0339064784348011,
-0.6971684098243713,
-0.22370333969593048,
-0.08806350827217102,
0.09117411822080612,
0.1558510661125183,
0.2938953638076782,
-0.7141885757446289,
0.21250124275684357,
0.5041882991790771,
-0.11222140491008759,
0.6511673331260681,
-0.16273124516010284,
0.02554197795689106,
-1.086102843284607,
0.2287825345993042,
0.012314013205468655,
-0.19054366648197174,
-0.5492662191390991,
-0.24290373921394348,
-0.18869173526763916,
-0.19270525872707367,
-0.5082040429115295,
0.47585076093673706,
-0.30447688698768616,
-0.1599060446023941,
-0.21376214921474457,
0.10129687190055847,
-0.009359318763017654,
0.6548265218734741,
0.06468426436185837,
0.6160883903503418,
0.9087003469467163,
-0.6418434977531433,
0.365346223115921,
0.4344537556171417,
-0.2183556705713272,
0.3260413706302643,
-0.9305415749549866,
0.2776131331920624,
0.09832251071929932,
0.3524159789085388,
-0.9842385053634644,
-0.2041621059179306,
0.29111218452453613,
-0.8029143810272217,
0.27708443999290466,
0.06200319901108742,
-0.5079836845397949,
-0.4720400273799896,
-0.2801554203033447,
0.39503568410873413,
0.8900603652000427,
-0.6620161533355713,
0.6129652261734009,
0.6565006375312805,
-0.05308088660240173,
-0.4574689567089081,
-0.8238083124160767,
-0.07597845792770386,
-0.4350695312023163,
-0.6845401525497437,
0.5385391116142273,
-0.08965463936328888,
-0.062183573842048645,
0.1281556338071823,
-0.10854541510343552,
0.055038295686244965,
-0.06999059021472931,
0.4320380985736847,
0.0910157859325409,
-0.1888921707868576,
-0.0060781510546803474,
0.059556301683187485,
-0.15139752626419067,
0.17690883576869965,
-0.18498307466506958,
0.7041416168212891,
-0.431972473859787,
0.057228934019804,
-0.8150405287742615,
0.10696756839752197,
0.605294406414032,
-0.29799196124076843,
0.27090248465538025,
0.9375102519989014,
-0.3270895481109619,
-0.06356743723154068,
-0.5442929863929749,
-0.3176576495170593,
-0.49446964263916016,
0.350770503282547,
-0.2964300811290741,
-0.5449982285499573,
0.4694618284702301,
-0.18737339973449707,
0.0020621661096811295,
0.5395644307136536,
0.5306929349899292,
-0.1601579487323761,
1.1773244142532349,
0.8574617505073547,
-0.14768986403942108,
0.5362647175788879,
-0.3315280079841614,
0.04197581484913826,
-1.015304684638977,
-0.4275311231613159,
-0.581186830997467,
-0.09641171991825104,
-0.40530580282211304,
-0.3451761305332184,
0.3515529930591583,
0.12148889899253845,
-0.11181903630495071,
0.5919592380523682,
-0.9081379771232605,
0.13723216950893402,
0.7118815183639526,
0.0622355155646801,
0.10435622185468674,
0.07263869047164917,
-0.01163535937666893,
-0.11594830453395844,
-0.7705549001693726,
-0.3536446690559387,
0.7617107033729553,
0.5320645570755005,
0.857395589351654,
-0.1431063860654831,
0.5975719094276428,
-0.0409357063472271,
0.11921252310276031,
-0.958168089389801,
0.5821579694747925,
-0.03926575556397438,
-0.6718201041221619,
-0.347141295671463,
-0.2177703082561493,
-0.9523653388023376,
0.13802559673786163,
-0.2167166769504547,
-0.99085932970047,
-0.06554535031318665,
-0.024347588419914246,
-0.21873807907104492,
0.21674837172031403,
-0.5910124182701111,
0.8228351473808289,
-0.2426324337720871,
-0.26495832204818726,
-0.3700829744338989,
-0.6310186386108398,
0.33763185143470764,
-0.02330721542239189,
0.25111493468284607,
-0.3631257116794586,
0.26166749000549316,
1.0229289531707764,
-0.3209037184715271,
0.9730655550956726,
-0.031198229640722275,
0.037216659635305405,
0.5610913634300232,
-0.24206329882144928,
0.26864394545555115,
-0.11686109006404877,
-0.15807674825191498,
0.1944350004196167,
0.32589930295944214,
-0.12035714089870453,
-0.42093202471733093,
0.44631215929985046,
-0.917939305305481,
-0.35089728236198425,
-0.42696303129196167,
-0.696334719657898,
-0.02789223939180374,
0.1840910166501999,
0.5013441443443298,
0.25344136357307434,
-0.19954197108745575,
-0.006550880614668131,
0.22460059821605682,
-0.5382544994354248,
0.6391193866729736,
0.5245924592018127,
-0.24468384683132172,
-0.5915101170539856,
0.8570647835731506,
-0.206575408577919,
0.12646996974945068,
0.08906278759241104,
0.6052921414375305,
-0.4271475374698639,
-0.1629813313484192,
-0.30756330490112305,
0.5506970882415771,
-0.45568788051605225,
-0.051141370087862015,
-0.6300183534622192,
-0.16761380434036255,
-0.6582086086273193,
-0.007647162768989801,
-0.6423084139823914,
-0.36726462841033936,
-0.34187203645706177,
0.17358623445034027,
0.6981692314147949,
0.5484569072723389,
-0.39269888401031494,
0.4272441864013672,
-0.6050509214401245,
0.5238134860992432,
0.18064239621162415,
0.09933707118034363,
0.0810711458325386,
-0.6422946453094482,
-0.16451717913150787,
0.10586360096931458,
-0.35970959067344666,
-0.7674285769462585,
0.549982488155365,
0.17597641050815582,
0.5950440168380737,
0.18710218369960785,
0.1978846937417984,
0.7628602385520935,
-0.4008508026599884,
0.7144550681114197,
0.5191499590873718,
-1.0903288125991821,
0.9336813688278198,
-0.24708594381809235,
0.28680551052093506,
0.23293016850948334,
0.33743956685066223,
-0.49515852332115173,
-0.6997852325439453,
-0.8403624892234802,
-0.8985353112220764,
1.294500708580017,
0.344119668006897,
-0.0011692822445183992,
0.10222053527832031,
0.06485075503587723,
-0.05519283190369606,
0.06717683374881744,
-0.8936755657196045,
-0.46112656593322754,
-0.4938831031322479,
-0.14895659685134888,
-0.046923886984586716,
0.021874787285923958,
-0.2256145477294922,
-0.6762334108352661,
0.992378830909729,
-0.028060568496584892,
0.4997865855693817,
0.31573036313056946,
0.12696903944015503,
-0.1843077838420868,
0.21281029284000397,
0.34899234771728516,
0.09830740094184875,
-0.5451052784919739,
0.06547899544239044,
0.20736485719680786,
-0.606132447719574,
0.25007009506225586,
0.09535325318574905,
-0.14482419192790985,
0.14501559734344482,
0.12686696648597717,
1.056930661201477,
0.2924427092075348,
-0.6533950567245483,
0.3487991392612457,
-0.1445923149585724,
-0.13783307373523712,
-0.35388684272766113,
0.09974983334541321,
0.4382205307483673,
0.27168360352516174,
0.2971595227718353,
0.03950069844722748,
-0.020977910608053207,
-0.6694107055664062,
0.2772447168827057,
0.34235426783561707,
-0.3447774350643158,
-0.3668934106826782,
1.0807126760482788,
-0.11148230731487274,
-0.5489094257354736,
0.49932861328125,
-0.012855373322963715,
-0.3578919470310211,
0.8915861248970032,
1.1324855089187622,
0.9985654354095459,
-0.21774405241012573,
0.2108394354581833,
0.6984556317329407,
0.21756963431835175,
-0.06362280249595642,
0.049989357590675354,
-0.25429701805114746,
-0.4566793739795685,
-0.30141717195510864,
-0.7439197897911072,
-0.37315940856933594,
0.34154781699180603,
-0.791504979133606,
0.2899875044822693,
-0.4405730962753296,
-0.466581255197525,
0.27678126096725464,
-0.09987714141607285,
-0.15992920100688934,
0.26977142691612244,
0.13066208362579346,
0.7442222237586975,
-0.7456810474395752,
1.1094579696655273,
0.6326736211776733,
-0.5062165856361389,
-1.0328624248504639,
0.004698514472693205,
-0.17967471480369568,
-0.7351476550102234,
0.44985872507095337,
0.3747235834598541,
-0.323847234249115,
0.16279515624046326,
-0.6940246820449829,
-0.7741531133651733,
1.0394113063812256,
0.4051963686943054,
-0.26586413383483887,
0.032694749534130096,
0.0229168813675642,
0.642686128616333,
-0.28607404232025146,
0.44001713395118713,
0.7836086750030518,
0.5591554641723633,
0.27874118089675903,
-1.0790940523147583,
0.18036054074764252,
-0.40940555930137634,
-0.29456818103790283,
-0.2064470797777176,
-0.7575254440307617,
0.8241587281227112,
-0.43174606561660767,
-0.26001155376434326,
0.021693531423807144,
0.590562641620636,
0.4505114257335663,
0.5105680823326111,
0.5232477784156799,
0.6790825724601746,
0.7942806482315063,
-0.1780385673046112,
0.8806986212730408,
-0.41357892751693726,
0.4285213053226471,
1.0003808736801147,
0.12964846193790436,
0.8328586220741272,
0.34872713685035706,
-0.4357852041721344,
0.36408498883247375,
0.703519344329834,
-0.26768237352371216,
0.5865213871002197,
0.10355289280414581,
-0.1558505892753601,
-0.03862913325428963,
-0.2719455063343048,
-0.4797057509422302,
0.47982341051101685,
0.2232695370912552,
-0.011154018342494965,
-0.055164236575365067,
0.16019052267074585,
-0.010445749387145042,
-0.2040918916463852,
-0.05556044727563858,
0.8299556970596313,
0.21150565147399902,
-0.6647604703903198,
1.0524349212646484,
0.10315371304750443,
0.9047966003417969,
-0.6557795405387878,
0.16299256682395935,
0.0685320496559143,
0.1812688708305359,
-0.37534239888191223,
-0.6424694657325745,
0.3642815053462982,
-0.013338539749383926,
-0.11346435546875,
-0.0699278861284256,
0.48339176177978516,
-0.47231578826904297,
-0.33405962586402893,
0.685469925403595,
0.03900793567299843,
0.542966365814209,
-0.0927322655916214,
-0.9577942490577698,
0.15237975120544434,
0.031489819288253784,
-0.21423009037971497,
0.22479714453220367,
0.19841797649860382,
0.1917313188314438,
0.6372540593147278,
0.6886539459228516,
0.042872872203588486,
0.1490185409784317,
0.04760976880788803,
0.7558227181434631,
-0.7579060792922974,
-0.6006996035575867,
-0.6861234903335571,
0.4955626130104065,
0.13875812292099,
-0.22935613989830017,
0.6920680403709412,
0.7241671681404114,
0.552226185798645,
-0.10048247873783112,
0.7231941223144531,
-0.3460785746574402,
0.3419024646282196,
-0.36070385575294495,
0.7942465543746948,
-0.7753316164016724,
0.11394455283880234,
-0.46948736906051636,
-0.6469812393188477,
-0.070537269115448,
0.7972354888916016,
-0.1320621818304062,
-0.11825337260961533,
0.6712880730628967,
0.9085367918014526,
-0.07556293904781342,
0.10430481284856796,
0.15151004493236542,
0.2730243504047394,
0.30420127511024475,
0.7215960025787354,
0.7214981913566589,
-0.723179042339325,
0.7983728051185608,
-0.6396369338035583,
-0.2916502356529236,
-0.04478452727198601,
-0.6245413422584534,
-0.9214853644371033,
-0.7126777768135071,
-0.4734632968902588,
-0.528371274471283,
-0.29560866951942444,
0.6840304136276245,
0.9234695434570312,
-0.6442905068397522,
-0.46513280272483826,
-0.04962467774748802,
-0.018495475873351097,
-0.5377998948097229,
-0.26441216468811035,
0.5366391539573669,
-0.2691732943058014,
-0.9337559342384338,
0.5510139465332031,
0.1575147658586502,
0.25773268938064575,
0.21351435780525208,
-0.21446701884269714,
-0.25328347086906433,
0.15728142857551575,
0.4296838939189911,
0.4475000500679016,
-0.8917905688285828,
-0.03969816491007805,
-0.014596323482692242,
-0.20167045295238495,
0.5330598950386047,
0.4383867681026459,
-0.7606959939002991,
0.29626524448394775,
0.3440045118331909,
0.31010714173316956,
1.1670153141021729,
-0.016265373677015305,
0.20960789918899536,
-0.49002620577812195,
0.4389165937900543,
0.2015155553817749,
0.154936283826828,
0.3397292494773865,
-0.2885891795158386,
0.40716856718063354,
0.21897324919700623,
-0.5062569379806519,
-0.8600635528564453,
-0.11078645288944244,
-1.420759916305542,
-0.4659927487373352,
1.1125408411026,
0.015342234633862972,
-0.6424787044525146,
0.09574609249830246,
-0.576930046081543,
0.692333996295929,
-0.5678759217262268,
0.7022183537483215,
0.46018487215042114,
-0.4001045525074005,
-0.1123814806342125,
-0.4779190123081207,
0.6309763193130493,
0.5607436895370483,
-0.7779921889305115,
0.08958666026592255,
0.24682657420635223,
0.5083013772964478,
0.3837669789791107,
0.8537231683731079,
-0.1724381148815155,
0.3024633824825287,
0.33001768589019775,
0.4321036636829376,
-0.1257878988981247,
-0.06508728861808777,
-0.42651668190956116,
0.007591369561851025,
-0.14298924803733826,
-0.3448113799095154
] |
MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 | MoritzLaurer | "2023-03-20T08:26:54Z" | 129,614 | 141 | transformers | [
"transformers",
"pytorch",
"safetensors",
"deberta-v2",
"text-classification",
"zero-shot-classification",
"nli",
"multilingual",
"zh",
"ja",
"ar",
"ko",
"de",
"fr",
"es",
"pt",
"hi",
"id",
"it",
"tr",
"ru",
"bn",
"ur",
"mr",
"ta",
"vi",
"fa",
"pl",
"uk",
"nl",
"sv",
"he",
"sw",
"ps",
"dataset:MoritzLaurer/multilingual-NLI-26lang-2mil7",
"dataset:xnli",
"dataset:multi_nli",
"dataset:anli",
"dataset:fever",
"dataset:lingnli",
"dataset:alisawuffles/WANLI",
"arxiv:2111.09543",
"arxiv:2104.07179",
"arxiv:1809.05053",
"arxiv:1911.02116",
"license:mit",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | zero-shot-classification | "2022-08-22T16:59:35Z" | ---
language:
- multilingual
- zh
- ja
- ar
- ko
- de
- fr
- es
- pt
- hi
- id
- it
- tr
- ru
- bn
- ur
- mr
- ta
- vi
- fa
- pl
- uk
- nl
- sv
- he
- sw
- ps
tags:
- zero-shot-classification
- text-classification
- nli
- pytorch
license: mit
metrics:
- accuracy
datasets:
- MoritzLaurer/multilingual-NLI-26lang-2mil7
- xnli
- multi_nli
- anli
- fever
- lingnli
- alisawuffles/WANLI
pipeline_tag: zero-shot-classification
#- text-classification
widget:
- text: "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
candidate_labels: "politics, economy, entertainment, environment"
model-index: # info: https://github.com/huggingface/hub-docs/blame/main/modelcard.md
- name: DeBERTa-v3-base-xnli-multilingual-nli-2mil7
results:
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: MultiNLI-matched # Required. A pretty name for the dataset. Example: Common Voice (French)
split: validation_matched # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,857 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: MultiNLI-mismatched # Required. A pretty name for the dataset. Example: Common Voice (French)
split: validation_mismatched # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,856 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: ANLI-all # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test_r1+test_r2+test_r3 # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,537 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: ANLI-r3 # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test_r3 # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,497 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: alisawuffles/WANLI # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: WANLI # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,732 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: lingnli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: LingNLI # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,788 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Natural Language Inference # Optional. Example: Speech Recognition
dataset:
type: fever-nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: fever-nli # Required. A pretty name for the dataset. Example: Common Voice (French)
split: test # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0,761 # Required. Example: 20.90
#name: # Optional. Example: Test WER
verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
---
# Model card for mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
## Model description
This multilingual model can perform natural language inference (NLI) on 100 languages and is therefore also suitable for multilingual zero-shot classification. The underlying mDeBERTa-v3-base model was pre-trained by Microsoft on the [CC100 multilingual dataset](https://huggingface.co/datasets/cc100) with 100 languages. The model was then fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli) and on the [multilingual-NLI-26lang-2mil7 dataset](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7). Both datasets contain more than 2.7 million hypothesis-premise pairs in 27 languages spoken by more than 4 billion people.
As of December 2021, mDeBERTa-v3-base is the best performing multilingual base-sized transformer model introduced by Microsoft in [this paper](https://arxiv.org/pdf/2111.09543.pdf).
### How to use the model
#### Simple zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
candidate_labels = ["politics", "economy", "entertainment", "environment"]
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
print(output)
```
#### NLI use-case
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
hypothesis = "Emmanuel Macron is the President of France"
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
```
### Training data
This model was trained on the [multilingual-nli-26lang-2mil7 dataset](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) and the [XNLI](https://huggingface.co/datasets/xnli) validation dataset.
The multilingual-nli-26lang-2mil7 dataset contains 2 730 000 NLI hypothesis-premise pairs in 26 languages spoken by more than 4 billion people. The dataset contains 105 000 text pairs per language. It is based on the English datasets [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [ANLI](https://huggingface.co/datasets/anli), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) and was created using the latest open-source machine translation models. The languages in the dataset are: ['ar', 'bn', 'de', 'es', 'fa', 'fr', 'he', 'hi', 'id', 'it', 'ja', 'ko', 'mr', 'nl', 'pl', 'ps', 'pt', 'ru', 'sv', 'sw', 'ta', 'tr', 'uk', 'ur', 'vi', 'zh'] (see [ISO language codes](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). For more details, see the [datasheet](XXX). In addition, a sample of 105 000 text pairs was also added for English following the same sampling method as the other languages, leading to 27 languages.
Moreover, for each language a random set of 10% of the hypothesis-premise pairs was added where an English hypothesis was paired with the premise in the other language (and the same for English premises and other language hypotheses). This mix of languages in the text pairs should enable users to formulate a hypothesis in English for a target text in another language.
The [XNLI](https://huggingface.co/datasets/xnli) validation set consists of 2490 professionally translated texts from English to 14 other languages (37350 texts in total) (see [this paper](https://arxiv.org/pdf/1809.05053.pdf)). Note that XNLI also contains a training set of 14 machine translated versions of the MultiNLI dataset for 14 languages, but this data was excluded due to quality issues with the machine translations from 2018.
Note that for evaluation purposes, three languages were excluded from the XNLI training data and only included in the test data: ["bg","el","th"]. This was done in order to test the performance of the model on languages it has not seen during NLI fine-tuning on 27 languages, but only during pre-training on 100 languages - see evaluation metrics below.
The total training dataset had a size of 3 287 280 hypothesis-premise pairs.
### Training procedure
mDeBERTa-v3-base-mnli-xnli was trained using the Hugging Face trainer with the following hyperparameters.
```
training_args = TrainingArguments(
num_train_epochs=3, # total number of training epochs
learning_rate=2e-05,
per_device_train_batch_size=32, # batch size per device during training
gradient_accumulation_steps=2, # to double the effective batch size for
warmup_ratio=0.06, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
fp16=False
)
```
### Eval results
The model was evaluated on the XNLI test set in 15 languages (5010 texts per language, 75150 in total) and the English test sets of [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [ANLI](https://huggingface.co/datasets/anli), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) . Note that multilingual NLI models are capable of classifying NLI texts without receiving NLI training data in the specific language (cross-lingual transfer). This means that the model is also able to do NLI on the other 73 languages mDeBERTa was pre-trained on, but performance is most likely lower than for those languages seen during NLI fine-tuning. The performance on the languages ["bg","el","th"] in the table below is a good indicated of this cross-lingual transfer, as these languages were not included in the training data.
|XNLI subsets|ar|bg|de|el|en|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
| :---: |:---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|Accuracy|0.794|0.822|0.824|0.809|0.871|0.832|0.823|0.769|0.803|0.746|0.786|0.792|0.744|0.793|0.803|
|Speed (text/sec, A100-GPU)|1344.0|1355.0|1472.0|1149.0|1697.0|1446.0|1278.0|1115.0|1380.0|1463.0|1713.0|1594.0|1189.0|877.0|1887.0|
|English Datasets|mnli_test_m|mnli_test_mm|anli_test|anli_test_r3|fever_test|ling_test|wanli_test|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|Accuracy|0.857|0.856|0.537|0.497|0.761|0.788|0.732|0.794|
|Speed (text/sec, A100-GPU)|1000.0|1009.0|794.0|672.0|374.0|1177.0|1468.0|
Also note that if other multilingual models on the model hub claim performance of around 90% on languages other than English, the authors have most likely made a mistake during testing since non of the latest papers shows a multilingual average performance of more than a few points above 80% on XNLI (see [here](https://arxiv.org/pdf/2111.09543.pdf) or [here](https://arxiv.org/pdf/1911.02116.pdf)).
## Limitations and bias
Please consult the original DeBERTa-V3 paper and literature on different NLI datasets for potential biases. Moreover, note that the multilingual-nli-26lang-2mil7 dataset was created using machine translation, which reduces the quality of the data for a complex task like NLI. You can inspect the data via the Hugging Face [dataset viewer](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) for languages you are interested in. Note that grammatical errors introduced by machine translation are less of an issue for zero-shot classification, for which grammar is less important.
## Citation
If the dataset is useful for you, please cite the following article:
```
@article{laurer_less_2022,
title = {Less {Annotating}, {More} {Classifying} – {Addressing} the {Data} {Scarcity} {Issue} of {Supervised} {Machine} {Learning} with {Deep} {Transfer} {Learning} and {BERT} - {NLI}},
url = {https://osf.io/74b8k},
language = {en-us},
urldate = {2022-07-28},
journal = {Preprint},
author = {Laurer, Moritz and Atteveldt, Wouter van and Casas, Andreu Salleras and Welbers, Kasper},
month = jun,
year = {2022},
note = {Publisher: Open Science Framework},
}
```
## Ideas for cooperation or questions?
For updates on new models and datasets, follow me on [Twitter](https://twitter.com/MoritzLaurer).
If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or on [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
## Debugging and issues
Note that DeBERTa-v3 was released in late 2021 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers==4.13 or higher might solve some issues. Note that mDeBERTa currently does not support FP16, see here: https://github.com/microsoft/DeBERTa/issues/77
| [
-0.3673105835914612,
-0.38333407044410706,
-0.01883852854371071,
0.3257468342781067,
-0.03409867361187935,
-0.04007890447974205,
-0.34824246168136597,
-0.6435956954956055,
0.41116636991500854,
0.20488034188747406,
-0.5115294456481934,
-0.5520463585853577,
-0.46264776587486267,
0.35836175084114075,
-0.13786382973194122,
1.0708394050598145,
-0.09385548532009125,
0.19705472886562347,
0.21224163472652435,
-0.3272089660167694,
-0.2222823053598404,
-0.653796911239624,
-0.7586872577667236,
-0.2985602021217346,
0.5738539099693298,
0.2602163851261139,
0.5685890913009644,
0.5104011297225952,
0.35040363669395447,
0.25561094284057617,
-0.09712972491979599,
0.08605121076107025,
-0.3413548469543457,
-0.32113704085350037,
0.16323111951351166,
-0.6819432377815247,
-0.5627931356430054,
-0.01082452479749918,
0.7242833971977234,
0.61077481508255,
-0.05281613767147064,
0.20026341080665588,
-0.04638117924332619,
0.6520869731903076,
-0.3545456528663635,
0.09105502814054489,
-0.3951016366481781,
0.13045774400234222,
-0.35471564531326294,
0.11553037911653519,
-0.3729632794857025,
-0.10406248271465302,
0.10012579709291458,
-0.42050787806510925,
0.013241065666079521,
0.08780848234891891,
1.1455161571502686,
-0.057838086038827896,
-0.3582080602645874,
-0.08279123902320862,
-0.35785722732543945,
0.986957848072052,
-0.9888081550598145,
0.5873350501060486,
0.3319723904132843,
-0.06308421492576599,
0.15494249761104584,
-0.2207425832748413,
-0.7244263291358948,
-0.13082170486450195,
-0.23130762577056885,
0.33646640181541443,
-0.23562735319137573,
-0.16867931187152863,
0.3863374590873718,
0.279276579618454,
-1.0793317556381226,
0.1846957504749298,
-0.43771955370903015,
-0.11780256778001785,
0.9302420020103455,
-0.038235701620578766,
0.4656837284564972,
-0.43049922585487366,
-0.1919175684452057,
-0.3081570565700531,
-0.5217151641845703,
0.21097420156002045,
0.36512112617492676,
0.45158740878105164,
-0.5590956211090088,
0.4411815106868744,
-0.12486466020345688,
0.7952562570571899,
-0.13980898261070251,
-0.5353547930717468,
0.890155553817749,
-0.6044107675552368,
-0.25562629103660583,
0.09320018440485,
1.1490753889083862,
0.3710952401161194,
0.31157582998275757,
-0.058438949286937714,
-0.09405249357223511,
-0.03197729215025902,
-0.37951481342315674,
-0.7718638181686401,
0.0038108446169644594,
0.30052804946899414,
-0.36039498448371887,
-0.20603123307228088,
-0.014513935893774033,
-0.7710667848587036,
0.06482639163732529,
-0.2562647759914398,
0.24191567301750183,
-0.6274121999740601,
-0.6328929662704468,
0.07384436577558517,
-0.02775191329419613,
0.29809150099754333,
-0.15192601084709167,
-0.6367335915565491,
0.12247180938720703,
0.19989491999149323,
0.8348769545555115,
-0.2568345367908478,
-0.6246558427810669,
-0.12746872007846832,
-0.060876332223415375,
-0.2344154715538025,
0.3730822503566742,
-0.16024084389209747,
-0.26617106795310974,
-0.09826237708330154,
0.15655629336833954,
-0.5791240334510803,
-0.3701516091823578,
0.537483811378479,
-0.23261886835098267,
0.4352506399154663,
-0.2732505798339844,
-0.38248270750045776,
-0.18819348514080048,
0.3481449782848358,
-0.728264570236206,
1.2206209897994995,
0.05304327234625816,
-0.9802740812301636,
0.3795267939567566,
-0.583507776260376,
-0.5340330004692078,
-0.28005334734916687,
-0.04166455939412117,
-0.45407506823539734,
-0.17694281041622162,
0.2792634069919586,
0.47278711199760437,
-0.3233388364315033,
0.5156262516975403,
-0.1359037607908249,
-0.21829131245613098,
0.2263793647289276,
-0.42123323678970337,
1.1689835786819458,
0.24881458282470703,
-0.655689537525177,
-0.058642707765102386,
-1.0476806163787842,
0.16247570514678955,
0.3464423418045044,
-0.3126901686191559,
-0.18013893067836761,
-0.39265522360801697,
0.23670175671577454,
0.5747116804122925,
-0.03736908733844757,
-0.579831600189209,
0.07925082743167877,
-0.6789278388023376,
0.2658645212650299,
0.22079937160015106,
-0.28919515013694763,
0.25168222188949585,
-0.3876378536224365,
0.48685964941978455,
0.27971598505973816,
0.03360457345843315,
-0.15997037291526794,
-0.7797742486000061,
-0.893720269203186,
-0.1721496433019638,
0.4532012343406677,
0.8936976790428162,
-0.9397931694984436,
0.3552064299583435,
-0.49016043543815613,
-0.6141635775566101,
-0.6760756373405457,
0.1395779550075531,
0.7270140051841736,
0.41471797227859497,
0.27753087878227234,
0.017975911498069763,
-0.7475599646568298,
-0.9539668560028076,
0.013906752690672874,
-0.1600062996149063,
0.12763360142707825,
0.19498735666275024,
0.6399747729301453,
-0.2246711105108261,
0.7062479257583618,
-0.13115383684635162,
-0.28215816617012024,
-0.5872315764427185,
-0.001836963463574648,
0.5049035549163818,
0.5144558548927307,
0.8740248680114746,
-0.7935705184936523,
-0.6784279346466064,
0.2860751748085022,
-0.9278325438499451,
-0.012590221129357815,
-0.1569875031709671,
-0.03284235671162605,
0.7468422055244446,
0.3641159236431122,
-0.42765146493911743,
0.30950644612312317,
0.8738366961479187,
-0.16519446671009064,
0.3869618773460388,
-0.08994264155626297,
0.22667784988880157,
-1.3710262775421143,
0.3245256543159485,
0.1855573058128357,
0.027228493243455887,
-0.9035678505897522,
-0.018075766041874886,
0.1013181284070015,
-0.05222785845398903,
-0.5825579762458801,
0.7763019800186157,
-0.46184831857681274,
0.3196863830089569,
0.001598742906935513,
0.20361469686031342,
0.05278604105114937,
0.6979590654373169,
0.2351403385400772,
0.7949810028076172,
0.6984326243400574,
-0.5843562483787537,
-0.033367108553647995,
0.12780532240867615,
-0.36494168639183044,
0.23742589354515076,
-0.7168868184089661,
-0.18558181822299957,
-0.07086149603128433,
0.049782223999500275,
-0.8512775897979736,
-0.12560506165027618,
0.18192267417907715,
-0.47339677810668945,
0.4985193610191345,
-0.06308205425739288,
-0.4568933844566345,
-0.46954041719436646,
-0.23967133462429047,
0.37378132343292236,
0.42924803495407104,
-0.44404661655426025,
0.542378842830658,
0.29572877287864685,
0.03434319049119949,
-0.9050912857055664,
-1.0261309146881104,
0.015066013671457767,
-0.2421085089445114,
-0.7756668925285339,
0.34530121088027954,
-0.11415720731019974,
-0.15174320340156555,
-0.10853545367717743,
0.26052361726760864,
-0.0635095164179802,
0.004514699801802635,
0.13542306423187256,
0.3315661549568176,
-0.29276689887046814,
-0.2072661966085434,
0.036314770579338074,
-0.0385894849896431,
-0.09947922080755234,
-0.13692641258239746,
0.6323833465576172,
-0.23497499525547028,
-0.07848148047924042,
-0.5475971698760986,
0.4233434796333313,
0.5401807427406311,
-0.2951955199241638,
0.9890552163124084,
0.8652788996696472,
-0.4457704424858093,
0.3245236277580261,
-0.5685854554176331,
0.09426041692495346,
-0.3777305483818054,
0.4771319329738617,
-0.706605076789856,
-0.6393421292304993,
0.6735358238220215,
0.4472784698009491,
0.07111187279224396,
0.6288437843322754,
0.48032039403915405,
0.29518255591392517,
1.2006919384002686,
0.508851945400238,
-0.389008492231369,
0.2395966798067093,
-0.7028396725654602,
0.25916871428489685,
-0.688585638999939,
-0.25990018248558044,
-0.5227431654930115,
-0.0986299216747284,
-0.835981547832489,
-0.1993943601846695,
0.24159932136535645,
0.07349516451358795,
-0.06680656969547272,
0.4745563864707947,
-0.1733982414007187,
0.3490002155303955,
0.5725064873695374,
-0.026886271312832832,
0.13342924416065216,
0.07727417349815369,
-0.30744707584381104,
-0.15716466307640076,
-0.940131425857544,
-0.3222229480743408,
1.0427782535552979,
0.3859216272830963,
0.42581284046173096,
0.2516060769557953,
0.7181915044784546,
-0.2739652097225189,
0.28366270661354065,
-0.4788888394832611,
0.3919050395488739,
-0.18485070765018463,
-0.7946618795394897,
-0.16273187100887299,
-0.6442905068397522,
-0.9453975558280945,
0.2548849582672119,
-0.2602836787700653,
-0.833909273147583,
0.3331071734428406,
-0.09324127435684204,
-0.2978562116622925,
0.4596795439720154,
-0.8785908818244934,
0.8513891100883484,
-0.3563988506793976,
-0.28276732563972473,
0.09658198803663254,
-0.6740049719810486,
0.5017933249473572,
-0.21634283661842346,
0.3464492857456207,
-0.15790177881717682,
0.2884657084941864,
1.0177544355392456,
-0.13870015740394592,
0.8034845590591431,
-0.16878725588321686,
-0.10262015461921692,
0.053785040974617004,
-0.25892260670661926,
0.20150461792945862,
0.09297486394643784,
-0.47831058502197266,
0.6537351012229919,
0.25767505168914795,
-0.48449066281318665,
-0.3955899477005005,
0.7617796063423157,
-0.914976954460144,
-0.4548933207988739,
-0.5617520809173584,
-0.4606758654117584,
-0.040454696863889694,
0.36985763907432556,
0.572537362575531,
0.482564240694046,
-0.048933859914541245,
0.02373814582824707,
0.5191879272460938,
-0.4173888564109802,
0.5044687390327454,
0.39406126737594604,
-0.46804484724998474,
-0.4454458951950073,
1.0229679346084595,
0.2439807802438736,
0.29400724172592163,
0.34628620743751526,
0.17290930449962616,
-0.3107522130012512,
-0.5031773447990417,
-0.7827474474906921,
0.576503336429596,
-0.5079024434089661,
-0.23323319852352142,
-0.9091736674308777,
-0.2828322649002075,
-0.640449047088623,
0.02829056978225708,
-0.3235464096069336,
-0.34248271584510803,
-0.1099240854382515,
-0.04893294349312782,
0.2969733476638794,
0.4600204527378082,
-0.02844329923391342,
0.22362898290157318,
-0.746417760848999,
0.07648608088493347,
-0.15978682041168213,
0.2651357650756836,
0.0019126834813505411,
-0.7054481506347656,
-0.3980984687805176,
0.3269316554069519,
0.021125921979546547,
-0.79325932264328,
0.7316563129425049,
0.42335474491119385,
0.5841935276985168,
0.3590458929538727,
-0.1344478875398636,
0.7965663075447083,
-0.3959639370441437,
0.8102399110794067,
0.26935338973999023,
-0.9164124131202698,
0.5427098274230957,
-0.1584254801273346,
0.3353445529937744,
0.5413339734077454,
0.7627688050270081,
-0.625165581703186,
-0.37299880385398865,
-0.5214850306510925,
-0.8147512674331665,
0.8781683444976807,
0.28279465436935425,
0.0007797456346452236,
-0.03448530659079552,
0.4040738642215729,
-0.1002681702375412,
0.10177241265773773,
-0.9829128980636597,
-0.779220461845398,
-0.043017998337745667,
-0.2251175045967102,
-0.32065385580062866,
-0.2016027867794037,
-0.02944749966263771,
-0.5586585998535156,
0.966682493686676,
-0.16644251346588135,
0.26475247740745544,
0.34667229652404785,
-0.2070707082748413,
0.0566803403198719,
0.10538311302661896,
0.6980045437812805,
0.6370356678962708,
-0.24753479659557343,
-0.20370584726333618,
0.4545469582080841,
-0.49739471077919006,
0.15523353219032288,
0.24475900828838348,
-0.2728360593318939,
0.19843746721744537,
0.49889540672302246,
1.137468934059143,
0.028779277577996254,
-0.7114119529724121,
0.4481009542942047,
-0.3130357265472412,
-0.2636856138706207,
-0.34710389375686646,
-0.11048443615436554,
-0.03252705559134483,
0.028698578476905823,
0.25875380635261536,
-0.0026957732625305653,
0.05094394087791443,
-0.4733618199825287,
0.20503352582454681,
0.2396431416273117,
-0.3260502517223358,
-0.5404662489891052,
0.6384446024894714,
-0.010473140515387058,
-0.019637849181890488,
0.545774519443512,
-0.41037625074386597,
-0.5400663018226624,
0.5445114374160767,
0.6671074032783508,
0.5284134745597839,
-0.4200698435306549,
0.2557765543460846,
0.81971275806427,
0.4714501202106476,
0.04504626989364624,
0.444288045167923,
0.4016496241092682,
-0.9099317789077759,
-0.5842564105987549,
-0.6672695279121399,
-0.1091667041182518,
0.2214534878730774,
-0.7299269437789917,
0.39690953493118286,
-0.06544660776853561,
-0.0675448402762413,
0.1818048059940338,
0.20182351768016815,
-0.757955014705658,
0.3270311653614044,
0.2957151234149933,
1.0458112955093384,
-1.0945885181427002,
1.1716917753219604,
0.689614474773407,
-0.4993703067302704,
-0.9358422756195068,
-0.15630565583705902,
-0.018256397917866707,
-0.783966064453125,
0.6396156549453735,
0.4043664336204529,
0.11015380918979645,
-0.08632399886846542,
-0.09211764484643936,
-1.0519068241119385,
0.9428674578666687,
0.307390421628952,
-0.5997581481933594,
0.027323568239808083,
0.3881266713142395,
0.6055651903152466,
-0.28753894567489624,
0.5067386627197266,
0.7045882344245911,
0.478502094745636,
-0.12519851326942444,
-1.1155071258544922,
0.022671282291412354,
-0.710162341594696,
-0.03986121341586113,
0.15068653225898743,
-0.627108097076416,
0.8153101205825806,
-0.2819327116012573,
-0.1366056501865387,
-0.05121948570013046,
0.6067008376121521,
0.34789013862609863,
0.31623515486717224,
0.5121292471885681,
0.6459336876869202,
0.7485533952713013,
-0.2365931123495102,
1.2439178228378296,
-0.5795011520385742,
0.2718682289123535,
0.7976449131965637,
-0.2682429254055023,
0.894676148891449,
0.35591232776641846,
-0.17937923967838287,
0.3859981596469879,
0.5886063575744629,
0.08701492100954056,
0.24663995206356049,
-0.10270655900239944,
-0.05273463577032089,
0.10626906156539917,
-0.1938052922487259,
-0.4455210268497467,
0.4702548086643219,
0.2960001230239868,
-0.23930755257606506,
0.07438540458679199,
0.4220617711544037,
0.5141546130180359,
-0.24969375133514404,
0.06204742565751076,
0.5873929262161255,
-0.0691671296954155,
-0.7766616940498352,
1.1061460971832275,
0.07907293736934662,
0.9921649098396301,
-0.5949515104293823,
0.2366158813238144,
-0.3101326823234558,
0.1572762131690979,
-0.3533739447593689,
-0.7703866958618164,
0.37778180837631226,
-0.00708841672167182,
-0.24636588990688324,
-0.06744077056646347,
0.3212524652481079,
-0.6755949854850769,
-0.7673331499099731,
0.5981050133705139,
0.5998092293739319,
0.21553803980350494,
0.0387713797390461,
-1.0785819292068481,
0.21869686245918274,
0.42270272970199585,
-0.40482839941978455,
0.32711175084114075,
0.2277073860168457,
-0.06453577429056168,
0.6433402299880981,
0.5998756289482117,
0.18587854504585266,
0.15867996215820312,
0.21234183013439178,
0.7289475202560425,
-0.5975948572158813,
-0.17854903638362885,
-0.7935023903846741,
0.5314218997955322,
-0.11210481822490692,
-0.5335026979446411,
0.9694218635559082,
0.7777770161628723,
1.1076291799545288,
-0.012092182412743568,
0.8195863366127014,
-0.18694175779819489,
0.508051872253418,
-0.5687214732170105,
0.6507372856140137,
-0.7967652678489685,
-0.05201464518904686,
-0.3341864347457886,
-0.6891530752182007,
-0.5777687430381775,
0.5190374255180359,
-0.2418632209300995,
0.1333189755678177,
0.6693930625915527,
0.9302676916122437,
0.053539153188467026,
-0.11281833052635193,
0.3449700176715851,
0.24761967360973358,
0.24874646961688995,
0.6040037870407104,
0.33213651180267334,
-0.9003114104270935,
0.48346590995788574,
-0.8177435994148254,
-0.27717503905296326,
0.09680930525064468,
-0.622681736946106,
-1.015130877494812,
-0.7278820872306824,
-0.5415992736816406,
-0.4585759937763214,
0.0037458252627402544,
1.0090619325637817,
0.7631978392601013,
-1.1497690677642822,
-0.5069090127944946,
0.2241860181093216,
-0.043798383325338364,
-0.28854089975357056,
-0.23475605249404907,
0.5136571526527405,
-0.20502859354019165,
-1.039734959602356,
0.39508137106895447,
0.061289865523576736,
0.15386709570884705,
-0.20003922283649445,
-0.14911623299121857,
-0.5900824666023254,
-0.13731832802295685,
0.6580244302749634,
0.2533775269985199,
-0.6772835850715637,
0.20485860109329224,
0.3907419741153717,
-0.10612060129642487,
0.1440533697605133,
0.3612741231918335,
-0.43039670586586,
0.24575841426849365,
0.3596828877925873,
0.4237038195133209,
0.45569345355033875,
-0.3967483639717102,
0.4179708957672119,
-0.7611152529716492,
0.509464681148529,
-0.10968057066202164,
0.5642962455749512,
0.3641647696495056,
-0.2435707002878189,
0.5817375779151917,
0.20991790294647217,
-0.3381313383579254,
-0.9443140029907227,
-0.11818869411945343,
-0.9693922400474548,
-0.11963263899087906,
1.2740668058395386,
-0.2072257399559021,
-0.5486733317375183,
-0.12877382338047028,
-0.2045244574546814,
0.1666555255651474,
-0.24221272766590118,
0.4030553102493286,
0.5981197357177734,
0.005370001308619976,
-0.31015321612358093,
-0.7114881873130798,
0.5036948919296265,
0.5478818416595459,
-0.7225413918495178,
-0.16719089448451996,
-0.06071655824780464,
0.2513677775859833,
0.4260070323944092,
0.6299846172332764,
-0.10972516983747482,
0.05613614618778229,
-0.21127234399318695,
0.3537401556968689,
0.23444825410842896,
-0.1894208788871765,
-0.4291185736656189,
-0.19487924873828888,
-0.11005262285470963,
0.048221517354249954
] |
MBZUAI/LaMini-Flan-T5-783M | MBZUAI | "2023-04-28T12:09:08Z" | 129,083 | 62 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"instruction fine-tuning",
"en",
"arxiv:2304.14402",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | text2text-generation | "2023-04-17T05:34:40Z" | ---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
- instruction fine-tuning
model-index:
- name: flan-t5-small-distil-v2
results: []
language:
- en
pipeline_tag: text2text-generation
widget:
- text: >-
how can I become more healthy?
example_title: example
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
<p align="center" width="100%">
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>
# LaMini-Flan-T5-783M
[![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]()
This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/).
You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper.
<table>
<thead>
<tr>
<th>Base model</th>
<th colspan="4">LaMini-LM series (#parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td>
<td></td>
</tr>
<tr>
<td>Flan-T5</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td>
<td></td>
</tr>
<tr>
<td>Cerebras-GPT</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td>
</tr>
<tr>
<td>GPT-2</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td>
<td></td>
</tr>
<tr>
<td>GPT-Neo</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPT-J</td>
<td colspan="4">coming soon</td>
</tr>
<tr>
<td>LLaMA</td>
<td colspan="4">coming soon</td>
</tr>
</tbody>
</table>
## Use
### Intended use
We recommend using the model to response to human instructions written in natural language.
We now show you how to load and use our model using HuggingFace `pipeline()`.
```python
# pip install -q transformers
from transformers import pipeline
checkpoint = "{model_name}"
model = pipeline('text2text-generation', model = checkpoint)
input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text']
print("Response", generated_text)
```
## Training Procedure
<p align="center" width="100%">
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a>
</p>
We initialize with [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 783M.
### Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
## Evaluation
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper]().
## Limitations
More information needed
# Citation
```bibtex
@article{lamini-lm,
author = {Minghao Wu and
Abdul Waheed and
Chiyu Zhang and
Muhammad Abdul-Mageed and
Alham Fikri Aji
},
title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions},
journal = {CoRR},
volume = {abs/2304.14402},
year = {2023},
url = {https://arxiv.org/abs/2304.14402},
eprinttype = {arXiv},
eprint = {2304.14402}
}
``` | [
-0.6702830791473389,
-0.703284740447998,
0.1850186288356781,
0.24235515296459198,
-0.2312212437391281,
-0.4133385121822357,
-0.14404380321502686,
-0.6714915037155151,
0.30266547203063965,
0.2719252109527588,
-0.8141654133796692,
-0.4282698631286621,
-0.5366519093513489,
0.06003973260521889,
-0.028428614139556885,
0.8880701065063477,
-0.2522832453250885,
-0.05577739700675011,
0.06427956372499466,
-0.19912849366664886,
-0.24302488565444946,
-0.3887563943862915,
-0.8382273316383362,
-0.44169729948043823,
0.2673676013946533,
0.06136607378721237,
0.7472153902053833,
0.8480226397514343,
0.37995901703834534,
0.3941391408443451,
-0.2124497890472412,
0.2722645103931427,
-0.12549686431884766,
-0.21375344693660736,
0.08223871886730194,
-0.4301134943962097,
-0.9548425078392029,
0.10042598098516464,
0.6929267644882202,
0.2803207337856293,
0.25200024247169495,
0.41278889775276184,
0.2031150460243225,
0.7931767702102661,
-0.36480578780174255,
0.20717860758304596,
0.02014438807964325,
0.11086844652891159,
-0.24670825898647308,
-0.0215859767049551,
-0.1816127598285675,
-0.5050820708274841,
0.08014599233865738,
-0.6288862228393555,
-0.07979337871074677,
0.1576683521270752,
1.5173630714416504,
0.12176156044006348,
-0.0849139392375946,
-0.18241968750953674,
-0.3929787576198578,
0.9767787456512451,
-0.8566609025001526,
0.16312840580940247,
0.5752860903739929,
-0.04152335226535797,
0.07242494076490402,
-0.41531020402908325,
-0.7019382119178772,
-0.04129873588681221,
-0.5468677282333374,
0.2800632417201996,
-0.24726879596710205,
-0.32649675011634827,
0.6324652433395386,
0.21148544549942017,
-0.45766276121139526,
-0.014197586104273796,
-0.45709332823753357,
-0.06696083396673203,
0.7300582528114319,
0.144975945353508,
0.7165184020996094,
-0.2436063140630722,
-0.43621626496315,
-0.21164989471435547,
-0.3158561885356903,
0.3225747346878052,
0.3612769544124603,
0.3397076427936554,
-0.7931077480316162,
0.31693005561828613,
-0.0210210382938385,
0.9180524945259094,
0.30887362360954285,
-0.3506373167037964,
0.6365657448768616,
-0.18559181690216064,
-0.4064902365207672,
-0.22528094053268433,
1.0909383296966553,
0.6422394514083862,
0.2948502004146576,
0.0666271299123764,
-0.09375270456075668,
-0.32466137409210205,
0.0530700609087944,
-0.988028883934021,
0.006124055478721857,
0.3438280522823334,
-0.5503738522529602,
-0.48342615365982056,
0.12886884808540344,
-0.8924368023872375,
-0.01909584552049637,
-0.4374992847442627,
0.22079123556613922,
-0.5603928565979004,
-0.27017727494239807,
0.15280482172966003,
-0.004467475228011608,
0.3716239929199219,
0.28542765974998474,
-0.8199288845062256,
0.08860696107149124,
0.4180643558502197,
0.7862090468406677,
0.0332811176776886,
-0.28098246455192566,
-0.3399222791194916,
0.18457059562206268,
0.0697755515575409,
0.6563147902488708,
-0.24861235916614532,
-0.34485864639282227,
-0.15075188875198364,
0.37247759103775024,
-0.42357343435287476,
-0.33464860916137695,
0.9114595651626587,
-0.09142202138900757,
0.3835737705230713,
-0.5070640444755554,
-0.4211394190788269,
-0.12626169621944427,
0.11213639378547668,
-0.7448779940605164,
1.0245394706726074,
0.13020770251750946,
-1.084302544593811,
0.07077575474977493,
-0.8309845924377441,
-0.25695714354515076,
-0.27928099036216736,
0.205296128988266,
-0.6650044322013855,
-0.2242726981639862,
0.26181793212890625,
0.4842016100883484,
-0.30776968598365784,
-0.2675260901451111,
-0.3863154649734497,
-0.24303831160068512,
0.42709097266197205,
-0.12529787421226501,
1.0258545875549316,
0.1781453788280487,
-0.6707574129104614,
-0.11806097626686096,
-0.885306715965271,
0.19385646283626556,
0.3331359624862671,
-0.29686301946640015,
-0.10605958849191666,
-0.33004266023635864,
0.16531455516815186,
0.5284486413002014,
0.38066035509109497,
-0.39104631543159485,
0.10297621041536331,
-0.489694207906723,
0.4076802730560303,
0.7916561961174011,
0.02054314687848091,
0.42170411348342896,
-0.8300528526306152,
0.3344598114490509,
-0.04981153458356857,
0.21707725524902344,
0.11956857889890671,
-0.3225771188735962,
-0.9464325308799744,
-0.18023790419101715,
0.24161313474178314,
0.5955026149749756,
-0.42330801486968994,
0.6087303757667542,
-0.03260962292551994,
-0.45017313957214355,
-0.6605176329612732,
0.19302745163440704,
0.6463796496391296,
0.47312992811203003,
0.5430622696876526,
-0.1847383677959442,
-0.6430314183235168,
-0.8038056492805481,
-0.033100105822086334,
-0.16736102104187012,
-0.0033124112524092197,
0.6146745681762695,
0.6455353498458862,
-0.2424580305814743,
0.49272090196609497,
-0.5299588441848755,
-0.23985958099365234,
-0.3774468004703522,
0.07532164454460144,
0.23804794251918793,
0.8082436919212341,
0.7828895449638367,
-0.806191086769104,
-0.6259105801582336,
0.050349269062280655,
-1.0077896118164062,
-0.1475449651479721,
-0.3047492206096649,
-0.5197027921676636,
0.2275933176279068,
0.12492977827787399,
-0.4897637665271759,
0.5972529649734497,
0.3262441158294678,
-0.4879508316516876,
0.5451740622520447,
-0.26266101002693176,
0.12588529288768768,
-1.236045479774475,
0.524000346660614,
0.4894079566001892,
0.008136956952512264,
-0.8871316909790039,
0.21945177018642426,
-0.18194226920604706,
0.29108425974845886,
-0.5660802125930786,
0.9065929055213928,
-0.4723489284515381,
0.21675366163253784,
-0.1555335521697998,
0.31627827882766724,
0.3303791880607605,
0.6040113568305969,
0.1667746752500534,
0.5476745367050171,
0.41136857867240906,
-0.47496578097343445,
0.3333716094493866,
0.4221554398536682,
-0.18845807015895844,
0.7247962951660156,
-0.8193696737289429,
0.10805881023406982,
-0.07535037398338318,
0.19069667160511017,
-0.4894268810749054,
-0.2958621382713318,
0.5696931481361389,
-0.36369046568870544,
0.6676260232925415,
-0.07094109058380127,
-0.41098055243492126,
-0.6689474582672119,
-0.3085637092590332,
0.11690230667591095,
0.45032647252082825,
-0.4156375229358673,
0.5504633188247681,
0.22250816226005554,
0.2992602586746216,
-0.6447644233703613,
-0.7386802434921265,
-0.3686348795890808,
-0.5201267004013062,
-0.8173730373382568,
0.4753377437591553,
-0.16803549230098724,
-0.13652534782886505,
-0.3155350983142853,
-0.13528870046138763,
-0.21233664453029633,
0.09432221949100494,
0.38966262340545654,
0.4633037745952606,
-0.24507252871990204,
-0.13775378465652466,
-0.23773185908794403,
-0.09345453232526779,
0.15817846357822418,
-0.06350070983171463,
0.6997526288032532,
-0.3905501663684845,
-0.014272852800786495,
-1.3709890842437744,
0.07762797921895981,
0.6126296520233154,
-0.30222806334495544,
0.9423416256904602,
1.1349501609802246,
-0.3250856399536133,
0.12062974274158478,
-0.5906429290771484,
-0.12640991806983948,
-0.5293712019920349,
-0.2442791908979416,
-0.44427284598350525,
-0.41652175784111023,
0.6436243057250977,
0.022800760343670845,
-0.10970805585384369,
0.5393094420433044,
0.33772435784339905,
-0.299288272857666,
0.6798588037490845,
0.40322133898735046,
-0.365935355424881,
0.46730080246925354,
-0.7387619018554688,
0.048216622322797775,
-1.2463016510009766,
-0.4713878333568573,
-0.4289035499095917,
-0.5937327146530151,
-0.46409550309181213,
-0.38979583978652954,
0.1487608700990677,
0.4731188416481018,
-0.6120529770851135,
0.5276467204093933,
-0.5812094211578369,
0.1703600138425827,
0.507256031036377,
0.590190052986145,
-0.07388809323310852,
-0.10993718355894089,
-0.41603997349739075,
0.0025407548528164625,
-0.31924137473106384,
-0.629970133304596,
0.8952723741531372,
0.4150601625442505,
0.4375559389591217,
0.10386475175619125,
0.7729861736297607,
0.09236370772123337,
0.08778118342161179,
-0.4916180968284607,
0.4563911557197571,
-0.07948198914527893,
-0.45777127146720886,
-0.24695520102977753,
-0.3918937146663666,
-0.9393946528434753,
0.036973342299461365,
-0.40649235248565674,
-1.079016923904419,
0.20320835709571838,
0.21687544882297516,
-0.45638126134872437,
0.49099409580230713,
-0.5835102200508118,
0.9529954791069031,
-0.4142726957798004,
-0.8962970972061157,
0.3159931004047394,
-0.6821143627166748,
0.1943345069885254,
0.4024925231933594,
0.23512518405914307,
-0.03200496733188629,
0.14431411027908325,
0.7179669141769409,
-0.7246657013893127,
0.9682586789131165,
-0.3315461575984955,
-0.1279873251914978,
0.5148462653160095,
-0.1904151439666748,
0.5529643297195435,
-0.062327757477760315,
-0.3695375621318817,
-0.11053372919559479,
-0.08769207447767258,
-0.4559410512447357,
-0.5606676936149597,
0.8003803491592407,
-0.936816394329071,
-0.5270199179649353,
-0.5406663417816162,
-0.3668290674686432,
0.14790987968444824,
0.21599902212619781,
0.3041355311870575,
0.5159565210342407,
0.093605175614357,
0.12346407026052475,
0.6942706108093262,
-0.2476666271686554,
0.5619168877601624,
0.12309321761131287,
-0.01966790109872818,
-0.1699657440185547,
0.8848931193351746,
-0.04014492407441139,
0.22038774192333221,
0.5370059609413147,
0.320345938205719,
-0.4061410129070282,
-0.2030269056558609,
-0.6546211242675781,
0.6139150857925415,
-0.316049188375473,
-0.20688147842884064,
-0.5402153134346008,
-0.32578763365745544,
-0.3011070787906647,
-0.381202757358551,
-0.1427619457244873,
-0.34991034865379333,
-0.6871857643127441,
-0.10951991379261017,
0.4857579171657562,
0.547224760055542,
-0.1524774134159088,
0.32467329502105713,
-0.5295258164405823,
0.17710120975971222,
0.16693046689033508,
0.19308176636695862,
0.17704707384109497,
-0.4602200984954834,
-0.09943881630897522,
0.28544268012046814,
-0.47383278608322144,
-0.6914379596710205,
0.6320495009422302,
0.0011551791103556752,
0.5778591632843018,
0.4994290769100189,
0.045036185532808304,
0.7730959057807922,
-0.27777180075645447,
0.5518414378166199,
0.27188074588775635,
-0.8838877081871033,
0.6421544551849365,
-0.4008873403072357,
0.47209620475769043,
0.506001889705658,
0.6249021291732788,
-0.3367299735546112,
-0.1766655594110489,
-0.6191465854644775,
-0.706853449344635,
0.8718839287757874,
0.2580961287021637,
-0.005437866784632206,
0.1850905418395996,
0.5349918007850647,
-0.3594137132167816,
-0.02342919260263443,
-0.9213698506355286,
-0.5597172379493713,
-0.34803104400634766,
-0.08283089101314545,
0.36482977867126465,
-0.04077107831835747,
-0.17739783227443695,
-0.45989641547203064,
0.8509734272956848,
-0.05369248613715172,
0.5602978467941284,
0.2044982761144638,
-0.1397184580564499,
-0.10385400801897049,
0.2171221822500229,
0.81889808177948,
0.4508928060531616,
-0.3564130961894989,
-0.31323710083961487,
0.29862698912620544,
-0.43822070956230164,
-0.03605743497610092,
-0.07734431326389313,
-0.35647547245025635,
-0.05943654105067253,
0.3064821660518646,
1.0985944271087646,
0.23947177827358246,
-0.17658813297748566,
0.4893699884414673,
0.1090622991323471,
-0.16828575730323792,
-0.33415207266807556,
0.2126576453447342,
0.19927477836608887,
0.35680004954338074,
0.0296550914645195,
0.174634650349617,
0.00010104050306836143,
-0.6125447154045105,
0.2961665391921997,
0.3277074098587036,
-0.4360506236553192,
-0.328387051820755,
0.8586132526397705,
0.013661033473908901,
-0.15509943664073944,
0.3281134068965912,
-0.23423628509044647,
-0.7788571119308472,
0.5777662396430969,
0.6849453449249268,
0.6372604370117188,
-0.3183310031890869,
0.34109359979629517,
0.9568694233894348,
-0.0549212209880352,
-0.07578144967556,
0.161966010928154,
0.007182295434176922,
-0.530184805393219,
0.10645776987075806,
-1.0555773973464966,
0.008297644555568695,
0.2506835162639618,
-0.9947791695594788,
0.3838713467121124,
-0.5955275297164917,
-0.38019663095474243,
-0.039550457149744034,
0.41196703910827637,
-0.7700892090797424,
0.6195412874221802,
0.19783301651477814,
0.8105499148368835,
-0.6502512693405151,
0.9588205218315125,
0.5407537817955017,
-0.7427434325218201,
-0.937534511089325,
0.10639511793851852,
0.20443761348724365,
-0.9700016379356384,
0.7724082469940186,
0.12521085143089294,
-0.0358651839196682,
-0.12366712093353271,
-0.33935829997062683,
-0.6872251033782959,
1.341933012008667,
-0.09874770045280457,
-0.27548766136169434,
-0.2919219434261322,
0.2807340919971466,
0.696145236492157,
-0.47266334295272827,
0.7016180157661438,
0.5274807214736938,
0.6837112307548523,
0.14457425475120544,
-0.8732789158821106,
0.61067795753479,
-0.5989580154418945,
0.03760238364338875,
0.006921396125108004,
-1.3637949228286743,
1.0057373046875,
-0.014340728521347046,
-0.06049768999218941,
0.17818394303321838,
0.5622753500938416,
0.3028198480606079,
0.20977121591567993,
0.1984684318304062,
0.7340520024299622,
0.579127311706543,
-0.21494947373867035,
1.183229684829712,
-0.4331498444080353,
0.5204211473464966,
1.0183874368667603,
0.030794167891144753,
0.94107985496521,
0.18542160093784332,
-0.2580546438694,
0.7604287266731262,
0.4032711386680603,
-0.3114894926548004,
0.13926565647125244,
0.26018640398979187,
-0.1772090643644333,
-0.07793279737234116,
-0.1324702948331833,
-0.5258674621582031,
0.24745383858680725,
0.3878014087677002,
-0.568675696849823,
0.05406386777758598,
-0.3043422996997833,
0.45106834173202515,
0.006080564111471176,
-0.1847032904624939,
0.56691575050354,
0.20096589624881744,
-0.4738596975803375,
0.8946305513381958,
-0.06325633823871613,
0.6950604319572449,
-0.5111541748046875,
0.17940875887870789,
-0.2078239768743515,
0.13575872778892517,
-0.38108640909194946,
-0.5995312929153442,
0.1557033360004425,
0.11546443402767181,
-0.0852724239230156,
-0.3583701550960541,
0.4589736759662628,
-0.2335355579853058,
-0.6992197036743164,
0.40471652150154114,
0.2295394390821457,
0.12687815725803375,
0.3144703805446625,
-1.2371056079864502,
0.31509891152381897,
0.3122129440307617,
-0.43153077363967896,
0.35746461153030396,
0.22782623767852783,
0.21547561883926392,
0.6859421730041504,
0.5530036687850952,
-0.07249563187360764,
0.10885448753833771,
0.008383420296013355,
0.8837159872055054,
-0.4676980674266815,
-0.10522069036960602,
-0.8913022875785828,
0.7756794095039368,
-0.39018407464027405,
-0.3280956447124481,
0.901460587978363,
0.5616375207901001,
0.7746930122375488,
-0.12642306089401245,
0.6824382543563843,
-0.2694442570209503,
0.36778923869132996,
-0.5864170789718628,
1.0113797187805176,
-0.7405381798744202,
0.16059492528438568,
-0.4361917972564697,
-0.6369818449020386,
-0.19636961817741394,
0.9836376309394836,
-0.30233362317085266,
0.2999027967453003,
0.637537956237793,
0.7167622447013855,
-0.05270122364163399,
-0.04807068780064583,
-0.12715980410575867,
0.28075727820396423,
0.03329041600227356,
0.8220650553703308,
0.43923404812812805,
-0.7763012647628784,
0.13534972071647644,
-0.6421634554862976,
-0.1278194636106491,
-0.38314032554626465,
-0.7309490442276001,
-1.1369616985321045,
-0.6216204166412354,
-0.44448500871658325,
-0.5351141095161438,
-0.09891490638256073,
1.037652611732483,
0.6396582126617432,
-0.9227346181869507,
-0.3935949206352234,
0.12943805754184723,
0.009715897962450981,
-0.13113199174404144,
-0.29477474093437195,
0.695214033126831,
-0.03025112673640251,
-1.0463948249816895,
0.06409066915512085,
-0.08733926713466644,
0.525191068649292,
0.0888504907488823,
-0.2509784698486328,
-0.5223842859268188,
0.0731876865029335,
0.2526194155216217,
0.555591344833374,
-0.6284842491149902,
-0.3021796941757202,
-0.07265032082796097,
-0.2309337556362152,
0.2485887110233307,
0.3269963562488556,
-0.4257003366947174,
0.22052553296089172,
0.5720561742782593,
0.2563670873641968,
0.6702324151992798,
0.2823983132839203,
0.4463180899620056,
-0.5448702573776245,
0.11997995525598526,
-0.11542915552854538,
0.42008358240127563,
0.16198377311229706,
-0.3980720043182373,
0.5685925483703613,
0.23711007833480835,
-0.44747722148895264,
-0.7521867752075195,
-0.13819998502731323,
-1.2267370223999023,
0.008523359894752502,
1.1147478818893433,
-0.3720250427722931,
-0.52486652135849,
0.3368026614189148,
-0.28540903329849243,
0.4913787543773651,
-0.5100403428077698,
0.5205373764038086,
0.68804931640625,
-0.3253766596317291,
-0.16222725808620453,
-0.7357422709465027,
0.7019898295402527,
0.24727511405944824,
-0.8321607708930969,
-0.27495497465133667,
0.17289374768733978,
0.2799665629863739,
0.43058091402053833,
0.3425683379173279,
-0.055938560515642166,
0.0976743996143341,
-0.18430323898792267,
-0.03863540664315224,
-0.10433796793222427,
-0.032615162432193756,
-0.10237941145896912,
-0.046828314661979675,
-0.31282204389572144,
-0.08082767575979233
] |
Intel/dpt-hybrid-midas | Intel | "2023-11-14T19:24:49Z" | 127,922 | 39 | transformers | [
"transformers",
"pytorch",
"dpt",
"depth-estimation",
"vision",
"arxiv:2103.13413",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] | depth-estimation | "2022-12-06T09:12:55Z" | ---
license: apache-2.0
tags:
- vision
- depth-estimation
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
model-index:
- name: dpt-hybrid-midas
results:
- task:
type: monocular-depth-estimation
name: Monocular Depth Estimation
dataset:
type: MIX-6
name: MIX-6
metrics:
- type: Zero-shot transfer
value: 11.06
name: Zero-shot transfer
config: Zero-shot transfer
verified: false
---
## Model Details: DPT-Hybrid
Dense Prediction Transformer (DPT) model trained on 1.4 million images for monocular depth estimation.
It was introduced in the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by Ranftl et al. (2021) and first released in [this repository](https://github.com/isl-org/DPT).
DPT uses the Vision Transformer (ViT) as backbone and adds a neck + head on top for monocular depth estimation.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg)
This repository hosts the "hybrid" version of the model as stated in the paper. DPT-Hybrid diverges from DPT by using [ViT-hybrid](https://huggingface.co/google/vit-hybrid-base-bit-384) as a backbone and taking some activations from the backbone.
The model card has been written in combination by the Hugging Face team and Intel.
| Model Detail | Description |
| ----------- | ----------- |
| Model Authors - Company | Intel |
| Date | December 22, 2022 |
| Version | 1 |
| Type | Computer Vision - Monocular Depth Estimation |
| Paper or Other Resources | [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) and [GitHub Repo](https://github.com/isl-org/DPT) |
| License | Apache 2.0 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dpt-hybrid-midas/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
| Intended Use | Description |
| ----------- | ----------- |
| Primary intended uses | You can use the raw model for zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=dpt) to look for fine-tuned versions on a task that interests you. |
| Primary intended users | Anyone doing monocular depth estimation |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people.|
### How to use
Here is how to use this model for zero-shot depth estimation on an image:
```python
from PIL import Image
import numpy as np
import requests
import torch
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas", low_cpu_mem_usage=True)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# prepare image for the model
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
# visualize the prediction
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
depth.show()
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
| Factors | Description |
| ----------- | ----------- |
| Groups | Multiple datasets compiled together |
| Instrumentation | - |
| Environment | Inference completed on Intel Xeon Platinum 8280 CPU @ 2.70GHz with 8 physical cores and an NVIDIA RTX 2080 GPU. |
| Card Prompts | Model deployment on alternate hardware and software will change model performance |
| Metrics | Description |
| ----------- | ----------- |
| Model performance measures | Zero-shot Transfer |
| Decision thresholds | - |
| Approaches to uncertainty and variability | - |
| Training and Evaluation Data | Description |
| ----------- | ----------- |
| Datasets | The dataset is called MIX 6, and contains around 1.4M images. The model was initialized with ImageNet-pretrained weights.|
| Motivation | To build a robust monocular depth prediction network |
| Preprocessing | "We resize the image such that the longer side is 384 pixels and train on random square crops of size 384. ... We perform random horizontal flips for data augmentation." See [Ranftl et al. (2021)](https://arxiv.org/abs/2103.13413) for more details. |
## Quantitative Analyses
| Model | Training set | DIW WHDR | ETH3D AbsRel | Sintel AbsRel | KITTI δ>1.25 | NYU δ>1.25 | TUM δ>1.25 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| DPT - Large | MIX 6 | 10.82 (-13.2%) | 0.089 (-31.2%) | 0.270 (-17.5%) | 8.46 (-64.6%) | 8.32 (-12.9%) | 9.97 (-30.3%) |
| DPT - Hybrid | MIX 6 | 11.06 (-11.2%) | 0.093 (-27.6%) | 0.274 (-16.2%) | 11.56 (-51.6%) | 8.69 (-9.0%) | 10.89 (-23.2%) |
| MiDaS | MIX 6 | 12.95 (+3.9%) | 0.116 (-10.5%) | 0.329 (+0.5%) | 16.08 (-32.7%) | 8.71 (-8.8%) | 12.51 (-12.5%)
| MiDaS [30] | MIX 5 | 12.46 | 0.129 | 0.327 | 23.90 | 9.55 | 14.29 |
| Li [22] | MD [22] | 23.15 | 0.181 | 0.385 | 36.29 | 27.52 | 29.54 |
| Li [21] | MC [21] | 26.52 | 0.183 | 0.405 | 47.94 | 18.57 | 17.71 |
| Wang [40] | WS [40] | 19.09 | 0.205 | 0.390 | 31.92 | 29.57 | 20.18 |
| Xian [45] | RW [45] | 14.59 | 0.186 | 0.422 | 34.08 | 27.00 | 25.02 |
| Casser [5] | CS [8] | 32.80 | 0.235 | 0.422 | 21.15 | 39.58 | 37.18 |
Table 1. Comparison to the state of the art on monocular depth estimation. We evaluate zero-shot cross-dataset transfer according to the
protocol defined in [30]. Relative performance is computed with respect to the original MiDaS model [30]. Lower is better for all metrics. ([Ranftl et al., 2021](https://arxiv.org/abs/2103.13413))
| Ethical Considerations | Description |
| ----------- | ----------- |
| Data | The training data come from multiple image datasets compiled together. |
| Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of monocular depth image datasets. |
| Mitigations | No additional risk mitigation strategies were considered during model development. |
| Risks and harms | The extent of the risks involved by using the model remain unknown. |
| Use cases | - |
| Caveats and Recommendations |
| ----------- |
| Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2103-13413,
author = {Ren{\'{e}} Ranftl and
Alexey Bochkovskiy and
Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {CoRR},
volume = {abs/2103.13413},
year = {2021},
url = {https://arxiv.org/abs/2103.13413},
eprinttype = {arXiv},
eprint = {2103.13413},
timestamp = {Wed, 07 Apr 2021 15:31:46 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | [
-0.7253475785255432,
-0.600094735622406,
0.1522989571094513,
0.12154094129800797,
-0.5769404768943787,
-0.068413145840168,
0.2051798552274704,
-0.5164019465446472,
0.4278097450733185,
0.3372578024864197,
-0.6928389072418213,
-0.4753975570201874,
-0.6676347255706787,
-0.14971302449703217,
-0.4270796477794647,
0.7458527684211731,
0.22233930230140686,
0.048374880105257034,
-0.22432275116443634,
-0.10801658779382706,
-0.22318850457668304,
-0.1862870752811432,
-0.42442604899406433,
-0.34200340509414673,
0.438006192445755,
0.5234914422035217,
0.7950138449668884,
0.5331956148147583,
0.6351669430732727,
0.36056894063949585,
-0.20798331499099731,
-0.20839302241802216,
-0.47302281856536865,
-0.4221448302268982,
0.13934320211410522,
-0.1221749559044838,
-0.66201251745224,
-0.06522668153047562,
0.7167758345603943,
0.7648028135299683,
-0.04724816977977753,
0.2932577431201935,
0.031976111233234406,
0.9124575853347778,
-0.4622635543346405,
-0.0999673381447792,
-0.3117486536502838,
0.3720538020133972,
0.0048385667614638805,
-0.075469970703125,
-0.07154041528701782,
0.11144152283668518,
0.8513088226318359,
-0.7041606903076172,
0.37566113471984863,
0.026012003421783447,
0.9807630777359009,
0.47571396827697754,
-0.25161924958229065,
0.2744632661342621,
-0.5456298589706421,
0.7803456783294678,
-0.7790820598602295,
0.3309728503227234,
-0.0866716280579567,
0.4516863524913788,
0.1745130568742752,
-0.5567882061004639,
-0.7315188646316528,
0.04176975414156914,
-0.1472771018743515,
0.4723513126373291,
-0.18559753894805908,
0.2110675871372223,
0.3474177122116089,
0.7811846137046814,
-0.6828395128250122,
-0.015873515978455544,
-0.6675115823745728,
-0.0684174969792366,
0.8579199314117432,
0.06354673951864243,
-0.08801490813493729,
-0.3545832931995392,
-1.0748366117477417,
-0.5137168765068054,
-0.1538471132516861,
0.4203733503818512,
0.21210400760173798,
-0.009660330601036549,
-0.6940613985061646,
0.5817850232124329,
-0.39786526560783386,
0.8131059408187866,
0.2931552827358246,
-0.35275810956954956,
0.5458894371986389,
-0.41997456550598145,
-0.6067097783088684,
0.09969744086265564,
0.8002482056617737,
0.4379527270793915,
0.34709930419921875,
0.131492480635643,
-0.10830473899841309,
0.11569499224424362,
0.008014064282178879,
-0.9175731539726257,
-0.19599145650863647,
0.4130610525608063,
-0.22439898550510406,
-0.42499589920043945,
0.2999332845211029,
-0.9773222804069519,
-0.1500745415687561,
-0.2049470692873001,
0.4596432149410248,
-0.4715268611907959,
-0.456381231546402,
0.6366565823554993,
-0.13377071917057037,
0.49233901500701904,
0.29649817943573,
-0.5109071135520935,
0.4406476318836212,
0.14251510798931122,
0.9593402743339539,
-0.22017036378383636,
-0.48025113344192505,
0.2770010530948639,
-0.07616739720106125,
-0.12095855176448822,
0.561706006526947,
0.23911483585834503,
-0.3258790671825409,
-0.4189380705356598,
0.1533699929714203,
0.10634658485651016,
-0.415815144777298,
0.45894256234169006,
-0.24926239252090454,
0.13132229447364807,
0.05423470214009285,
-0.28085407614707947,
-0.5593683123588562,
0.4436394274234772,
-0.6663574576377869,
0.9050254225730896,
0.2074688971042633,
-0.9676402807235718,
0.5884639024734497,
-0.43758624792099,
-0.13063932955265045,
-0.012115498073399067,
0.07623613625764847,
-0.7780269980430603,
-0.01426745392382145,
0.39460089802742004,
0.4249739646911621,
-0.20509055256843567,
0.24008329212665558,
-0.5041512250900269,
-0.3027994930744171,
-0.04595409333705902,
-0.42287343740463257,
1.1623890399932861,
-0.06493476033210754,
-0.3808972239494324,
0.14253410696983337,
-0.913785994052887,
-0.20785681903362274,
0.46765366196632385,
0.042738717049360275,
-0.07987222075462341,
-0.47785213589668274,
-0.23746982216835022,
0.3430221676826477,
0.2037758231163025,
-0.866874635219574,
0.10510315001010895,
-0.5281845927238464,
0.015723062679171562,
0.7578576803207397,
0.08026868849992752,
0.5416824817657471,
-0.19645828008651733,
0.5847396850585938,
0.6120559573173523,
0.5262812376022339,
-0.10526132583618164,
-0.549640953540802,
-0.7440117001533508,
-0.4567645192146301,
0.12666673958301544,
0.46441730856895447,
-0.6500810980796814,
0.41094332933425903,
-0.41357144713401794,
-0.793251633644104,
-0.31689074635505676,
-0.23714271187782288,
0.38160058856010437,
0.8915184140205383,
0.5317773818969727,
-0.4324619174003601,
-0.711441695690155,
-1.0582057237625122,
0.33467718958854675,
-0.11275023967027664,
0.17629267275333405,
0.18710094690322876,
0.5953069925308228,
0.0031616997439414263,
0.929499626159668,
-0.5652911067008972,
-0.1702544391155243,
-0.11111980676651001,
-0.10928666591644287,
0.566226601600647,
0.5585233569145203,
0.6769808530807495,
-0.7335063219070435,
-0.6828759908676147,
-0.23887740075588226,
-1.0369988679885864,
0.48702993988990784,
0.1492457091808319,
-0.13312362134456635,
0.06971999257802963,
-0.12466634809970856,
-0.7517030239105225,
0.870217502117157,
0.6826079487800598,
-0.43863645195961,
0.7087739109992981,
-0.057754628360271454,
-0.13415220379829407,
-0.9547351598739624,
0.03233652561903,
0.3767073154449463,
-0.1934853047132492,
-0.6755143404006958,
-0.19621124863624573,
-0.06037344038486481,
-0.1240144744515419,
-0.6778795123100281,
0.7181756496429443,
-0.49301016330718994,
-0.16336993873119354,
0.15757371485233307,
-0.18845508992671967,
0.09456326812505722,
0.70624840259552,
0.2598680555820465,
0.48151448369026184,
1.1541343927383423,
-0.6634248495101929,
0.4872828722000122,
0.38453346490859985,
-0.516657292842865,
0.5049422383308411,
-1.0188847780227661,
-0.12095513194799423,
-0.06695146858692169,
0.11902537196874619,
-0.9543389081954956,
-0.15940475463867188,
0.32237258553504944,
-0.5953694581985474,
0.45159271359443665,
-0.29807010293006897,
-0.1689235270023346,
-0.636591911315918,
-0.39163705706596375,
0.6213639974594116,
0.5082939267158508,
-0.4574236571788788,
0.4419165551662445,
0.4114949405193329,
0.01123274490237236,
-0.8308231234550476,
-0.920424222946167,
-0.14816917479038239,
-0.10058659315109253,
-1.1929775476455688,
0.5569685697555542,
-0.06401151418685913,
-0.0822303369641304,
-0.11329639703035355,
-0.1630575805902481,
-0.06444579362869263,
-0.35251596570014954,
0.28426432609558105,
0.6675176024436951,
-0.33212459087371826,
-0.2647360563278198,
-0.037497248500585556,
-0.17295867204666138,
-0.12046700716018677,
-0.10420108586549759,
0.39213308691978455,
-0.33864909410476685,
-0.1860358864068985,
-0.49857309460639954,
-0.043197307735681534,
0.6009225249290466,
-0.10129225254058838,
0.6026292443275452,
0.5348874926567078,
-0.3450414836406708,
0.002487543737515807,
-0.5137510299682617,
-0.508732259273529,
-0.49378132820129395,
0.35811659693717957,
-0.25869643688201904,
-0.3957551121711731,
0.6764211058616638,
0.2382248044013977,
-0.20942747592926025,
0.6271589398384094,
0.3015596866607666,
-0.11653930693864822,
0.8235470056533813,
0.6187716126441956,
0.12181340903043747,
0.385790079832077,
-0.9839222431182861,
-0.06223469600081444,
-0.7141949534416199,
-0.3790857791900635,
0.21100705862045288,
-0.6729081869125366,
-0.4497562050819397,
-0.30740904808044434,
0.7604092955589294,
-0.040223218500614166,
-0.23318694531917572,
0.3821277618408203,
-0.6789513230323792,
0.14207619428634644,
0.6807289719581604,
0.4505142867565155,
0.20034004747867584,
0.35334837436676025,
-0.1918526589870453,
0.01780262216925621,
-0.8664728999137878,
0.0053999898955225945,
0.9362399578094482,
0.5357858538627625,
0.847639262676239,
-0.3744017481803894,
0.5643123388290405,
-0.06690945476293564,
-0.11631622165441513,
-0.6033210158348083,
0.6448041796684265,
0.031866807490587234,
-0.949933648109436,
-0.49395933747291565,
-0.4159134328365326,
-0.7657716870307922,
0.30830076336860657,
-0.21707691252231598,
-0.4721154570579529,
0.8302047252655029,
0.20187883079051971,
-0.6516385674476624,
0.5930265784263611,
-0.6965067982673645,
1.0459953546524048,
-0.41109779477119446,
-0.5903186798095703,
0.15238329768180847,
-1.0090341567993164,
0.4853909909725189,
0.16681335866451263,
-0.21574190258979797,
-0.09269119054079056,
0.08052809536457062,
0.5844261050224304,
-0.41220495104789734,
0.7538961172103882,
-0.4954450726509094,
0.2406339794397354,
0.6044421792030334,
-0.04046328738331795,
0.24838316440582275,
0.19199836254119873,
-0.0010825350182130933,
0.7425236701965332,
0.21820062398910522,
-0.556317150592804,
-0.25107866525650024,
0.5266715884208679,
-0.9110926389694214,
-0.4021134078502655,
-0.7364052534103394,
-0.8468647003173828,
0.07318458706140518,
0.3817627429962158,
0.5094801783561707,
0.4361514747142792,
-0.053385451436042786,
0.32469210028648376,
0.592352569103241,
-0.30165523290634155,
0.40012744069099426,
0.261250376701355,
-0.32766371965408325,
-0.3882521986961365,
0.67838054895401,
0.2715224027633667,
0.3868318200111389,
0.1760573536157608,
0.33831292390823364,
-0.3013744652271271,
-0.5137997269630432,
-0.5725130438804626,
0.37774765491485596,
-0.4763774871826172,
-0.3921675682067871,
-0.4174870252609253,
-0.4581030011177063,
-0.5634081959724426,
-0.17231346666812897,
-0.6162432432174683,
-0.5634630918502808,
-0.2061678171157837,
-0.29034698009490967,
0.24157600104808807,
0.41322991251945496,
-0.15865075588226318,
0.25977811217308044,
-0.434491366147995,
0.22154757380485535,
0.313888281583786,
0.38281023502349854,
-0.19187621772289276,
-0.756946325302124,
-0.18495093286037445,
0.26472029089927673,
-0.30628103017807007,
-0.6489042639732361,
0.5401867628097534,
-0.020346468314528465,
0.203118234872818,
0.4127410650253296,
-0.06408151239156723,
0.8616273403167725,
0.04441402480006218,
0.6401078701019287,
0.48936861753463745,
-0.5573939085006714,
0.38178059458732605,
-0.19154949486255646,
0.6498413681983948,
0.5163618326187134,
0.4437885284423828,
-0.10891701281070709,
0.09945010393857956,
-0.7299292087554932,
-0.6427050828933716,
0.9082679152488708,
0.12732352316379547,
-0.1827327460050583,
0.47547417879104614,
0.17273813486099243,
0.1197204738855362,
0.27447476983070374,
-0.9305025339126587,
-0.4610881805419922,
-0.5661893486976624,
0.04613863304257393,
-0.1399420201778412,
-0.13209804892539978,
0.05955874174833298,
-0.9053980708122253,
0.6496090888977051,
0.024044174700975418,
0.29379165172576904,
0.7033579349517822,
0.0808146595954895,
-0.3348405063152313,
-0.3631616532802582,
0.4001433253288269,
0.7781306505203247,
-0.5882537961006165,
-0.053371578454971313,
0.14709027111530304,
-0.5002090334892273,
-0.04157969355583191,
0.28603342175483704,
-0.39049890637397766,
-0.013434856198728085,
0.2606254518032074,
0.8296922445297241,
0.18817926943302155,
-0.36611321568489075,
0.6735712885856628,
0.12405660003423691,
-0.5331017971038818,
-0.5021305680274963,
-0.34754103422164917,
-0.22051475942134857,
0.20208092033863068,
0.36459431052207947,
0.41581273078918457,
0.1633743792772293,
-0.21682581305503845,
0.24880267679691315,
0.4912795424461365,
-0.5497196912765503,
-0.5320478081703186,
0.4288259446620941,
-0.005585538223385811,
0.24025413393974304,
0.5828121900558472,
-0.04852323234081268,
-0.3102346956729889,
0.8158603310585022,
0.20252342522144318,
0.8440578579902649,
-0.34498730301856995,
0.2818329334259033,
0.8697122931480408,
0.3238637447357178,
0.25073128938674927,
0.24541465938091278,
0.1780295968055725,
-0.7901626825332642,
-0.22708584368228912,
-0.742898166179657,
-0.17465920746326447,
0.11075716465711594,
-0.514911949634552,
0.49959269165992737,
-0.5335872173309326,
-0.05721288546919823,
0.10302528738975525,
0.1268770545721054,
-0.9501136541366577,
0.4019157290458679,
0.3604631721973419,
1.0999945402145386,
-0.523030161857605,
0.852263867855072,
0.5468811988830566,
-0.7856627702713013,
-0.5700619220733643,
-0.42858561873435974,
-0.019725387915968895,
-0.9478182792663574,
0.22122788429260254,
0.11269661784172058,
-0.18060430884361267,
0.0727652758359909,
-0.8246451616287231,
-0.9138985276222229,
1.485827922821045,
0.528959333896637,
-0.522240400314331,
-0.35433530807495117,
0.3688969910144806,
0.42112988233566284,
-0.3886026442050934,
0.23764102160930634,
0.25348085165023804,
0.44546622037887573,
0.5094722509384155,
-0.6838400959968567,
-0.08666327595710754,
-0.03427088260650635,
-0.10538245737552643,
-0.019617443904280663,
-0.7185520529747009,
1.1369916200637817,
-0.3848022520542145,
-0.23936426639556885,
0.05183274671435356,
0.540318489074707,
0.2785019278526306,
0.3961752951145172,
0.7695186734199524,
0.923229992389679,
0.13466869294643402,
-0.053800344467163086,
1.2078608274459839,
-0.4583946168422699,
0.49851125478744507,
0.886965274810791,
0.07067620754241943,
0.38112419843673706,
0.6234294772148132,
-0.33491846919059753,
0.4381822645664215,
0.7603391408920288,
-0.15788866579532623,
0.5805957317352295,
-0.16337734460830688,
0.018822716549038887,
-0.0661153718829155,
0.07024717330932617,
-0.5271521210670471,
0.5064311027526855,
0.024439429864287376,
-0.3265033960342407,
-0.07573182135820389,
-0.06754276156425476,
-0.3971762955188751,
-0.503223180770874,
-0.2624810039997101,
0.5687025785446167,
0.07462681084871292,
-0.5659924149513245,
0.7226369380950928,
-0.3839794397354126,
0.6996889114379883,
-0.5837240815162659,
-0.037129778414964676,
-0.30750706791877747,
0.405435711145401,
-0.3079543113708496,
-0.9839674234390259,
0.1656881421804428,
-0.5167468786239624,
-0.1047118753194809,
0.06703769415616989,
0.8208292126655579,
-0.3294062316417694,
-0.897688090801239,
0.5700360536575317,
0.49789559841156006,
0.08472833782434464,
-0.3186683654785156,
-1.0203067064285278,
-0.1078314259648323,
-0.12008846551179886,
-0.47540929913520813,
0.12120837718248367,
0.31999680399894714,
0.602953314781189,
0.5565004944801331,
0.45047247409820557,
0.008081845007836819,
0.43672075867652893,
-0.3122020363807678,
1.090190052986145,
-0.4100725054740906,
-0.31563523411750793,
-0.601235032081604,
1.0177710056304932,
-0.32535117864608765,
-0.4359315037727356,
0.7911362051963806,
0.7187445759773254,
1.1715551614761353,
-0.19039244949817657,
0.4822426736354828,
-0.06526179611682892,
0.4712858498096466,
-0.15915529429912567,
0.4132149815559387,
-0.8485125303268433,
-0.07827893644571304,
-0.49564141035079956,
-1.2369396686553955,
-0.19418106973171234,
0.3774927258491516,
-0.32189497351646423,
0.19912375509738922,
0.4784490466117859,
0.7981045246124268,
-0.6713298559188843,
-0.2068115919828415,
0.5829740762710571,
0.3299098312854767,
-0.16545431315898895,
0.34435009956359863,
0.40083274245262146,
-0.7829101085662842,
0.5031923055648804,
-1.1691489219665527,
-0.46002310514450073,
-0.08755102008581161,
-0.5274850130081177,
-0.5948159098625183,
-0.42486217617988586,
-0.36697039008140564,
-0.2243272066116333,
-0.20167002081871033,
0.4145493507385254,
1.123232126235962,
-0.7158812880516052,
-0.5358710885047913,
-0.10800329595804214,
-0.096670962870121,
-0.31631383299827576,
-0.22430962324142456,
0.17909447848796844,
0.2952170670032501,
-0.6711432933807373,
0.19790323078632355,
0.4646466374397278,
0.20855367183685303,
-0.7044917345046997,
-0.2860540449619293,
-0.7811614274978638,
-0.045540496706962585,
0.5441145300865173,
0.32238900661468506,
-0.7437503337860107,
-0.23745134472846985,
0.18607227504253387,
0.13806942105293274,
0.41295376420021057,
0.24869787693023682,
-0.7039602398872375,
0.8771472573280334,
0.5593478679656982,
0.22087462246418,
0.9308558702468872,
-0.03316228464245796,
0.15116877853870392,
-0.6728565692901611,
0.5085353255271912,
0.3436254560947418,
0.5728359222412109,
0.4253585934638977,
-0.22980742156505585,
0.6960610747337341,
0.4112043082714081,
-0.5756692290306091,
-0.7050788998603821,
0.0054766107350587845,
-1.3593409061431885,
0.03555198386311531,
0.8027266263961792,
-0.17957179248332977,
-0.5012705326080322,
0.319173127412796,
-0.09526409953832626,
0.3120909035205841,
-0.20066052675247192,
0.5813899636268616,
0.3519401550292969,
0.034837715327739716,
-0.55735182762146,
-0.39890122413635254,
0.2699068486690521,
0.33796393871307373,
-0.5053355097770691,
-0.5217812657356262,
0.2892419099807739,
0.35890308022499084,
0.4366389214992523,
0.3957909941673279,
-0.2771570682525635,
0.27917012572288513,
0.2657770812511444,
0.4474171996116638,
-0.14170227944850922,
-0.49421170353889465,
-0.40075424313545227,
-0.008869685232639313,
-0.4310351014137268,
-0.31602564454078674
] |
fxmarty/pix2struct-tiny-random | fxmarty | "2023-06-01T09:47:36Z" | 127,704 | 1 | transformers | [
"transformers",
"pytorch",
"pix2struct",
"text2text-generation",
"image-to-text",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-to-text | "2023-06-01T09:33:18Z" | ---
license: mit
pipeline_tag: image-to-text
---
| [
-0.12853388488292694,
-0.18616782128810883,
0.6529127359390259,
0.4943625330924988,
-0.19319313764572144,
0.23607465624809265,
0.36071982979774475,
0.05056332051753998,
0.5793652534484863,
0.740013837814331,
-0.6508103013038635,
-0.2378396987915039,
-0.710224986076355,
-0.04782581701874733,
-0.3894752264022827,
0.8470761775970459,
-0.09598272293806076,
0.024004854261875153,
0.047120071947574615,
-0.14317826926708221,
-0.6121037602424622,
-0.04771740734577179,
-1.0524537563323975,
-0.06787490844726562,
0.3002279996871948,
0.5120972990989685,
0.8275896310806274,
0.39602896571159363,
0.5030564069747925,
1.7515558004379272,
-0.08836919069290161,
-0.22754427790641785,
-0.45892032980918884,
0.4223068356513977,
-0.33277371525764465,
-0.42133718729019165,
-0.2624166011810303,
-0.07449338585138321,
0.32380399107933044,
0.790371298789978,
-0.38104110956192017,
0.19328099489212036,
-0.22438454627990723,
1.008224368095398,
-0.8202074766159058,
0.22630876302719116,
-0.16698351502418518,
0.14053204655647278,
0.042308706790208817,
-0.14591927826404572,
-0.1326323002576828,
-0.6440033912658691,
0.06469469517469406,
-0.899596095085144,
0.1027495265007019,
-0.04461126774549484,
0.8789561986923218,
0.21909058094024658,
-0.5102370977401733,
-0.0459773913025856,
-0.6883594989776611,
1.0972508192062378,
-0.17556026577949524,
0.7615712881088257,
0.4507811963558197,
0.45288562774658203,
-0.5849329829216003,
-1.178217887878418,
-0.4441864490509033,
-0.13579002022743225,
0.14722809195518494,
0.30556100606918335,
-0.3453029692173004,
-0.022343844175338745,
0.10801105946302414,
0.5610314011573792,
-0.5003758072853088,
-0.311959445476532,
-0.9579929113388062,
-0.18164916336536407,
0.6820483207702637,
0.319308340549469,
0.834044337272644,
0.1873151659965515,
-0.7347195744514465,
0.12866291403770447,
-1.3239703178405762,
0.07650735974311829,
0.6465023756027222,
0.239467591047287,
-0.554598867893219,
0.8594784736633301,
-0.28587982058525085,
0.626249372959137,
0.2728465497493744,
-0.1164526641368866,
0.2784252464771271,
-0.23030735552310944,
-0.2735062837600708,
0.033087607473134995,
0.34597301483154297,
0.8204491138458252,
0.16248634457588196,
-0.019984982907772064,
-0.22123965620994568,
0.0020717978477478027,
0.2684449553489685,
-0.7935096025466919,
-0.4712669551372528,
0.1926696002483368,
-0.558952808380127,
-0.0910850465297699,
0.4327022135257721,
-1.0976827144622803,
-0.4812980592250824,
-0.1879846155643463,
0.05468139797449112,
-0.5451693534851074,
-0.3697946071624756,
0.07273250073194504,
-0.79254150390625,
-0.1243419200181961,
0.570950984954834,
-0.6230252981185913,
0.43974608182907104,
0.533625602722168,
0.7861635684967041,
0.2330387681722641,
-0.23613610863685608,
-0.6695019602775574,
0.48848265409469604,
-0.8661867380142212,
0.36860740184783936,
-0.3073781132698059,
-0.8298640251159668,
-0.09631050378084183,
0.5393159985542297,
0.20664852857589722,
-0.6653256416320801,
0.7074045538902283,
-0.5496984720230103,
-0.07806532829999924,
-0.4308285415172577,
-0.2432200014591217,
0.17460417747497559,
0.11115431040525436,
-0.6238909363746643,
0.9402233362197876,
0.5551108121871948,
-0.584109902381897,
0.31701239943504333,
-0.4869506359100342,
-0.6865583658218384,
0.26748135685920715,
-0.008750975131988525,
-0.047152332961559296,
0.3279528021812439,
-0.15983973443508148,
-0.0020511597394943237,
0.10505761206150055,
0.008299741894006729,
-0.21891699731349945,
-0.4786304235458374,
0.06349936127662659,
0.151650071144104,
1.25368332862854,
0.4083622097969055,
-0.3771882951259613,
-0.13140122592449188,
-1.0526149272918701,
0.025432661175727844,
0.0505015105009079,
-0.42306768894195557,
-0.2504565119743347,
-0.14882194995880127,
-0.20381587743759155,
0.4307260811328888,
0.2118472456932068,
-0.813115119934082,
0.22643625736236572,
-0.2064024657011032,
0.364496648311615,
0.8222091794013977,
0.2703101634979248,
0.39760565757751465,
-0.6625286340713501,
0.6563138365745544,
0.2076188325881958,
0.49590179324150085,
0.35404202342033386,
-0.3845822811126709,
-0.9641586542129517,
-0.442161500453949,
-0.10117404907941818,
0.2975531220436096,
-0.7744957804679871,
0.5847322940826416,
0.012979604303836823,
-0.5836705565452576,
-0.4465281367301941,
-0.15488101541996002,
0.2755330502986908,
-0.06606576591730118,
0.03334902226924896,
-0.4049779176712036,
-0.7394417524337769,
-1.0127898454666138,
-0.13788150250911713,
-0.5021388530731201,
-0.21892830729484558,
0.3160586357116699,
0.2617739737033844,
-0.34290042519569397,
0.7610747814178467,
-0.6059278249740601,
-0.704064130783081,
-0.13973554968833923,
-0.0995984673500061,
0.6187719702720642,
0.9297672510147095,
0.749138355255127,
-0.7224893569946289,
-0.8973818421363831,
-0.056230708956718445,
-0.5420039892196655,
-0.020044349133968353,
0.038149889558553696,
-0.18260693550109863,
-0.10514980554580688,
0.22352531552314758,
-0.6100803017616272,
0.8851073980331421,
0.43224984407424927,
-0.681546688079834,
0.5210590958595276,
-0.4444413483142853,
0.6073803901672363,
-0.8642839193344116,
-0.2911490201950073,
-0.16823577880859375,
-0.1976117193698883,
-0.7090160846710205,
0.19411544501781464,
-0.3002234101295471,
-0.33029863238334656,
-0.7474032044410706,
0.5274897813796997,
-0.9497010707855225,
-0.18781527876853943,
-0.33672773838043213,
-0.03423111140727997,
0.25807833671569824,
0.19490505754947662,
-0.23560254275798798,
0.8900529742240906,
0.9160482287406921,
-0.7121306657791138,
0.5487277507781982,
0.3930906653404236,
-0.1920013427734375,
0.7131237387657166,
-0.3887738585472107,
0.05161993205547333,
-0.12344931066036224,
0.14374595880508423,
-1.126388430595398,
-0.561158299446106,
0.13677382469177246,
-0.712703287601471,
0.17686958611011505,
-0.16556859016418457,
-0.09428537636995316,
-0.6608465313911438,
-0.33806395530700684,
0.25910091400146484,
0.48612290620803833,
-0.47969940304756165,
0.6188148260116577,
0.5728040337562561,
0.02651876211166382,
-0.5307406783103943,
-0.7206818461418152,
0.20418110489845276,
0.039646461606025696,
-0.5569695830345154,
0.3011690080165863,
0.006543457508087158,
-0.6622446775436401,
-0.371124804019928,
-0.26354190707206726,
-0.6043857336044312,
-0.2267974615097046,
0.7826986312866211,
0.1199423298239708,
-0.09012264013290405,
-0.20310267806053162,
-0.3199536204338074,
-0.06167525798082352,
0.30487415194511414,
-0.07575298100709915,
0.7232834696769714,
-0.33623749017715454,
-0.17850083112716675,
-0.887734055519104,
0.652754545211792,
0.9970465302467346,
0.09446714073419571,
0.806644082069397,
0.46324217319488525,
-0.35647475719451904,
-0.1304660439491272,
-0.3535459041595459,
-0.15120601654052734,
-0.685774564743042,
-0.1806798279285431,
-0.5322476625442505,
-0.5411434769630432,
0.40530654788017273,
0.10101459175348282,
-0.0021042972803115845,
0.5167046785354614,
0.2533605694770813,
-0.28806859254837036,
0.7550324201583862,
1.034340739250183,
0.1391797959804535,
0.3602915108203888,
-0.2854715585708618,
0.6341594457626343,
-0.8329949378967285,
-0.34052175283432007,
-0.4548071026802063,
-0.2563585042953491,
-0.31214389204978943,
-0.10750849545001984,
0.5791022181510925,
0.2818215489387512,
-0.4463467597961426,
0.1250680536031723,
-0.5994209051132202,
0.6587361693382263,
0.6273988485336304,
0.5719727873802185,
0.1997303068637848,
-0.46199458837509155,
0.19982971251010895,
0.04816687852144241,
-0.45745599269866943,
-0.4009109139442444,
0.7711143493652344,
0.2399624139070511,
0.8364022374153137,
0.20927050709724426,
0.4957774877548218,
0.33375421166419983,
0.2528058588504791,
-0.6318977475166321,
0.2009797990322113,
-0.22282809019088745,
-1.245961308479309,
-0.206426739692688,
-0.16551318764686584,
-1.0080583095550537,
-0.11792082339525223,
-0.18288995325565338,
-0.8406620025634766,
0.2665729820728302,
-0.19225634634494781,
-0.6640645265579224,
0.5206149220466614,
-0.5103875398635864,
0.69347083568573,
-0.23555898666381836,
-0.2817087769508362,
0.11930079013109207,
-0.6889920830726624,
0.5254612565040588,
0.3667147755622864,
0.29168397188186646,
-0.37968993186950684,
-0.3192872405052185,
0.5068994760513306,
-0.881224513053894,
0.44081127643585205,
-0.10564978420734406,
0.19428130984306335,
0.5358879566192627,
0.4153591990470886,
0.3823971152305603,
0.28699052333831787,
-0.2459377944469452,
-0.23415414988994598,
0.2250344604253769,
-0.7581346035003662,
-0.27754613757133484,
0.9095459580421448,
-0.7519428730010986,
-0.8586915731430054,
-0.6954255700111389,
-0.30644941329956055,
0.28865277767181396,
0.02781464159488678,
0.7154772281646729,
0.6456884145736694,
-0.18821057677268982,
0.23776991665363312,
0.7208225727081299,
-0.0146945184096694,
0.7235562801361084,
0.29411184787750244,
-0.4056646227836609,
-0.6169787645339966,
0.7182320356369019,
0.2627044916152954,
0.05162655562162399,
0.028327951207756996,
0.3058736026287079,
-0.17546698451042175,
-0.15078596770763397,
-0.6318323612213135,
-0.06395323574542999,
-0.7465729117393494,
-0.0927949845790863,
-0.7541396617889404,
-0.2507742643356323,
-0.7114590406417847,
-0.8068137764930725,
-0.7080163955688477,
-0.45604395866394043,
-0.43011948466300964,
-0.23352204263210297,
0.5163108706474304,
1.1627086400985718,
-0.2613152861595154,
0.8011051416397095,
-0.8900954723358154,
0.41936296224594116,
0.4969540238380432,
0.7519731521606445,
-0.11061006784439087,
-0.6746935844421387,
-0.07836239039897919,
-0.5338755249977112,
-0.29485058784484863,
-1.0156972408294678,
0.31774646043777466,
-0.03688591718673706,
0.40537136793136597,
0.42938894033432007,
0.25190269947052,
0.49392756819725037,
-0.30073118209838867,
1.1130688190460205,
0.7274302244186401,
-0.803381085395813,
0.519527792930603,
-0.7635002136230469,
0.16122324764728546,
0.9363659620285034,
0.54477459192276,
-0.4417075514793396,
-0.15113934874534607,
-1.025976538658142,
-0.843137264251709,
0.5963036417961121,
0.15439945459365845,
0.016843896359205246,
0.01821417547762394,
0.03168272227048874,
0.29466384649276733,
0.3591304123401642,
-0.7847291231155396,
-0.8240220546722412,
-0.13851122558116913,
0.25803306698799133,
0.31456053256988525,
-0.1648542582988739,
-0.3003871440887451,
-0.611615777015686,
0.8711391091346741,
0.18286482989788055,
0.3546231985092163,
0.12073354423046112,
0.04369349032640457,
-0.35506919026374817,
0.14787021279335022,
0.5522999167442322,
1.2529057264328003,
-0.40983331203460693,
0.3673911392688751,
0.1751260608434677,
-0.6540069580078125,
0.6494997143745422,
-0.3036349415779114,
-0.021784601733088493,
0.6203135251998901,
0.17760884761810303,
0.28528398275375366,
0.315599262714386,
-0.3621427118778229,
0.6047801971435547,
-0.029422052204608917,
-0.17758512496948242,
-0.7005696296691895,
0.15866968035697937,
0.029350608587265015,
0.27507954835891724,
0.4392024278640747,
0.24443313479423523,
0.08246771991252899,
-1.0602877140045166,
0.5711055397987366,
0.24493910372257233,
-0.8676618337631226,
-0.3011006712913513,
0.7047957181930542,
0.4075389802455902,
-0.47599563002586365,
0.38749054074287415,
0.012702330946922302,
-0.6710241436958313,
0.5987741351127625,
0.5510413646697998,
0.7569674253463745,
-0.4702427089214325,
0.3088020086288452,
0.6245602965354919,
0.06711331009864807,
0.20550549030303955,
0.6923202872276306,
0.03149382025003433,
-0.44738656282424927,
0.23022446036338806,
-0.5986733436584473,
-0.1468990594148636,
0.13735318183898926,
-0.8047426342964172,
0.351533442735672,
-0.9312615394592285,
-0.24089956283569336,
0.08751589059829712,
0.11761097609996796,
-0.6130945086479187,
0.6674696207046509,
-0.008524954319000244,
0.9280490875244141,
-0.8549083471298218,
0.9626278281211853,
0.8559581637382507,
-0.31830817461013794,
-0.7709448337554932,
-0.33556753396987915,
0.02013934776186943,
-0.6660526990890503,
0.7108278274536133,
-0.18973003327846527,
-0.41207411885261536,
-0.09323947876691818,
-0.622982919216156,
-1.0003730058670044,
0.030618250370025635,
0.017415650188922882,
-0.4625031054019928,
0.4454794228076935,
-0.5157257318496704,
0.3289681673049927,
-0.19169732928276062,
0.30509495735168457,
0.7719469666481018,
0.7958452701568604,
0.22960808873176575,
-0.6354780197143555,
-0.4466685652732849,
-0.010276071727275848,
-0.16682815551757812,
0.4545809030532837,
-1.0710972547531128,
0.967736542224884,
-0.4652574360370636,
-0.34733209013938904,
0.2706642150878906,
0.797762393951416,
0.2538500428199768,
0.3524126708507538,
0.6219537258148193,
0.9016807079315186,
0.36450111865997314,
-0.31178343296051025,
0.7276745438575745,
0.2426338493824005,
0.4152539074420929,
0.7364203333854675,
-0.22712187469005585,
0.5403846502304077,
0.8906413316726685,
-0.786162257194519,
0.5381765365600586,
0.7879031896591187,
0.16047371923923492,
0.7758157253265381,
0.5944145917892456,
-0.611952543258667,
-0.1185941994190216,
-0.1464141309261322,
-0.6171560287475586,
0.1979752480983734,
0.052926212549209595,
-0.11974738538265228,
-0.2846010625362396,
-0.13567376136779785,
0.12295057624578476,
0.2836454212665558,
-0.5959328413009644,
0.606866717338562,
0.34341585636138916,
-0.6328282356262207,
0.21025103330612183,
-0.25779569149017334,
0.6709501147270203,
-0.5978154540061951,
0.02733636647462845,
-0.226993590593338,
0.41810402274131775,
-0.4618742763996124,
-1.007582426071167,
0.47138404846191406,
-0.2920241355895996,
-0.40551304817199707,
-0.26942431926727295,
0.8072363138198853,
-0.22133907675743103,
-0.5572860240936279,
0.37486034631729126,
0.13466592133045197,
0.41473662853240967,
0.40145981311798096,
-0.548729419708252,
0.047790080308914185,
0.13760165870189667,
-0.20061805844306946,
0.3601190149784088,
0.2973729372024536,
0.25488772988319397,
0.7100128531455994,
0.5052477717399597,
0.22198708355426788,
0.25694364309310913,
-0.18668605387210846,
0.8387458324432373,
-0.9102796316146851,
-0.8167635202407837,
-0.9497333765029907,
0.3849896192550659,
0.025727711617946625,
-0.880144476890564,
0.7920305728912354,
0.7652608156204224,
0.5113964080810547,
-0.4877890348434448,
0.4755283296108246,
-0.326479434967041,
0.5047136545181274,
-0.13870958983898163,
1.001089096069336,
-0.760762631893158,
-0.29587265849113464,
-0.030554059892892838,
-0.9216439723968506,
-0.2533753216266632,
0.5375741720199585,
0.1540832668542862,
-0.14608067274093628,
0.4385907053947449,
0.44216376543045044,
0.022173406556248665,
0.25223150849342346,
0.32861006259918213,
0.06042787432670593,
0.14508451521396637,
0.5510438680648804,
1.0931141376495361,
-0.43394410610198975,
0.18694786727428436,
-0.4923475384712219,
-0.4536249041557312,
-0.4153490662574768,
-0.9548057913780212,
-0.6640313863754272,
-0.48185449838638306,
-0.2973935008049011,
-0.5915579199790955,
0.11726461350917816,
0.9300885796546936,
0.9018137454986572,
-0.6256728172302246,
-0.41243645548820496,
0.25713539123535156,
0.30293411016464233,
-0.2295418381690979,
-0.146267831325531,
0.2736492455005646,
-0.006407544948160648,
-0.7211178541183472,
0.3930943012237549,
0.807976245880127,
0.3887130320072174,
0.08444006741046906,
-0.07217127084732056,
-0.4407080411911011,
0.026101574301719666,
0.5373561382293701,
0.5729561448097229,
-0.6281182169914246,
-0.4099644422531128,
-0.5328317880630493,
-0.21386730670928955,
0.15529435873031616,
0.48077550530433655,
-0.5166378617286682,
0.32661110162734985,
0.8128959536552429,
0.17017659544944763,
0.7187885642051697,
-0.0022492259740829468,
0.6678642630577087,
-0.8970246315002441,
0.4446259140968323,
0.3953385353088379,
0.5681870579719543,
0.08998038619756699,
-0.7339164614677429,
0.9820241928100586,
0.49674350023269653,
-0.6334057450294495,
-1.0034242868423462,
0.03079957515001297,
-1.193113923072815,
-0.3788175582885742,
0.9890843629837036,
-0.09595765173435211,
-0.9597458839416504,
-0.36448943614959717,
-0.3677716851234436,
0.07989637553691864,
-0.33809733390808105,
0.35498204827308655,
0.8268195986747742,
-0.2538071274757385,
-0.2204185128211975,
-0.9505581855773926,
0.4752943515777588,
0.3102525472640991,
-0.5886632204055786,
-0.05114369094371796,
0.329391211271286,
0.45236870646476746,
0.3009701371192932,
0.5239557027816772,
0.10428227484226227,
0.8970529437065125,
0.25200390815734863,
0.30491405725479126,
-0.04526621103286743,
-0.590078592300415,
-0.0160664189606905,
0.2621477246284485,
0.04487839341163635,
-0.6869441270828247
] |
sentence-transformers/multi-qa-mpnet-base-cos-v1 | sentence-transformers | "2023-11-02T09:30:23Z" | 127,460 | 21 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"en",
"endpoints_compatible",
"has_space",
"region:us"
] | sentence-similarity | "2022-03-02T23:29:05Z" | ---
language:
- en
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# multi-qa-mpnet-base-cos-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer, util
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
#Load the model
model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take average of all tokens
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
#Encode text
def encode(texts):
# Tokenize sentences
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
# Perform pooling
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Sentences we want sentence embeddings for
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-cos-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-cos-v1")
#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)
#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Technical Details
In the following some technical details how this model must be used:
| Setting | Value |
| --- | :---: |
| Dimensions | 768 |
| Produces normalized embeddings | Yes |
| Pooling-Method | Mean pooling |
| Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance |
Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used.
----
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developped this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developped this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages.
Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text.
## Training procedure
The full training script is accessible in this current repository: `train_script.py`.
### Pre-training
We use the pretrained [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
#### Training
We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20.
| Dataset | Number of training tuples |
|--------------------------------------------------------|:--------------------------:|
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 |
| [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 |
| [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 |
| **Total** | **214,988,242** | | [
-0.42708659172058105,
-0.7272751927375793,
0.40337276458740234,
0.21272112429141998,
-0.12127893418073654,
-0.3283039331436157,
-0.09643321484327316,
-0.1168125718832016,
0.26785650849342346,
0.30980491638183594,
-0.46846362948417664,
-0.5535346865653992,
-0.6357410550117493,
0.13486844301223755,
-0.34502363204956055,
0.8607708215713501,
0.01094020251184702,
0.11612942814826965,
-0.35627612471580505,
-0.30519965291023254,
-0.17116548120975494,
-0.45501911640167236,
-0.46124106645584106,
-0.0942871943116188,
0.43369048833847046,
0.28797590732574463,
0.5200443863868713,
0.3759104013442993,
0.40286165475845337,
0.37176236510276794,
-0.016942378133535385,
0.27742457389831543,
-0.4690680205821991,
-0.10828190296888351,
-0.04283928871154785,
-0.4055795967578888,
-0.0840761736035347,
0.3346511423587799,
0.49156153202056885,
0.44589298963546753,
-0.03911381959915161,
0.18514271080493927,
0.02365066111087799,
0.4856005012989044,
-0.45073649287223816,
0.22602301836013794,
-0.4720383286476135,
0.16723325848579407,
0.08944383263587952,
-0.13539612293243408,
-0.33189481496810913,
-0.19090254604816437,
0.29534584283828735,
-0.6031067967414856,
0.15413588285446167,
0.13934817910194397,
1.1024137735366821,
0.16832691431045532,
-0.47457730770111084,
-0.40975576639175415,
-0.11757798492908478,
0.7979486584663391,
-0.787734866142273,
0.3297814130783081,
0.3692881166934967,
-0.07803529500961304,
-0.04482821002602577,
-0.8076360821723938,
-0.7672718167304993,
-0.16665934026241302,
-0.3477468490600586,
0.3098487854003906,
-0.1832994818687439,
-0.04184329882264137,
0.21567046642303467,
0.3752286434173584,
-0.7316523790359497,
0.012766131199896336,
-0.43511638045310974,
-0.18762478232383728,
0.6883982419967651,
0.11246724426746368,
0.29467207193374634,
-0.6121256947517395,
-0.48645350337028503,
-0.3022620677947998,
-0.28895634412765503,
0.1313936859369278,
0.31442540884017944,
0.07707995176315308,
-0.22095037996768951,
0.8156249523162842,
-0.24283532798290253,
0.6266191005706787,
0.01557563990354538,
-0.01809505745768547,
0.5125630497932434,
-0.4991886019706726,
-0.18259741365909576,
-0.3078914284706116,
1.0757761001586914,
0.42758697271347046,
0.21800068020820618,
-0.07798462361097336,
-0.0554770901799202,
-0.019433345645666122,
0.11660471558570862,
-0.8453100323677063,
-0.3045216500759125,
0.350288063287735,
-0.4520341753959656,
-0.3075936734676361,
0.19125235080718994,
-0.6024826765060425,
-0.21933211386203766,
-0.1558270901441574,
0.7343429327011108,
-0.6664206981658936,
-0.021327504888176918,
0.3297032415866852,
-0.3588549494743347,
0.3599349558353424,
-0.04693081974983215,
-0.5489925146102905,
0.11935954540967941,
0.43992528319358826,
0.8453037738800049,
0.051574088633060455,
-0.45651906728744507,
-0.31986239552497864,
-0.21705769002437592,
0.01681116595864296,
0.5952327251434326,
-0.39733344316482544,
-0.10888679325580597,
-0.05545997992157936,
0.12501481175422668,
-0.38413041830062866,
-0.35234349966049194,
0.5343896746635437,
-0.37874722480773926,
0.7602958083152771,
-0.11264949291944504,
-0.8986070156097412,
-0.18804886937141418,
0.36924248933792114,
-0.5075969696044922,
1.0521557331085205,
0.23051618039608002,
-1.0349024534225464,
0.009367848746478558,
-0.6698366403579712,
-0.16541723906993866,
-0.27228468656539917,
-0.07973085343837738,
-0.5460076928138733,
0.019286515191197395,
0.40751543641090393,
0.6423327326774597,
-0.14177337288856506,
0.05865117907524109,
-0.2401002049446106,
-0.42791664600372314,
0.3366595208644867,
-0.20836979150772095,
1.0352387428283691,
0.08395140618085861,
-0.3659072816371918,
-0.04882896691560745,
-0.7055619359016418,
-0.02140788361430168,
0.2874712347984314,
-0.33102214336395264,
-0.14755240082740784,
-0.15421906113624573,
0.0904034823179245,
0.5333241820335388,
0.25218576192855835,
-0.7105156183242798,
0.21960653364658356,
-0.5952978134155273,
0.6473907828330994,
0.6292759776115417,
0.045239876955747604,
0.4183245301246643,
-0.4598676562309265,
0.3794322609901428,
0.28726452589035034,
0.07903183996677399,
-0.10127782821655273,
-0.5003340840339661,
-0.9267414808273315,
-0.07377681881189346,
0.36263975501060486,
0.5918208956718445,
-0.714677631855011,
0.6981917023658752,
-0.3304026126861572,
-0.4815085828304291,
-0.8368949890136719,
0.06489738821983337,
0.296347439289093,
0.5809512734413147,
0.6146391034126282,
-0.11113753914833069,
-0.3869672417640686,
-0.9824891686439514,
-0.0488336943089962,
0.04353709518909454,
-0.06012701988220215,
0.42794036865234375,
0.6574826836585999,
-0.20831510424613953,
0.798862099647522,
-0.7430135607719421,
-0.4396096467971802,
-0.081672303378582,
0.11392691731452942,
0.22379153966903687,
0.5254182815551758,
0.488198846578598,
-0.8552837371826172,
-0.4648529291152954,
-0.4757317006587982,
-0.6778774857521057,
0.08233118802309036,
-0.14535120129585266,
-0.2266300469636917,
0.19296135008335114,
0.5971363186836243,
-0.7326906323432922,
0.2514841556549072,
0.5322520732879639,
-0.551783561706543,
0.38751527667045593,
-0.2223593145608902,
-0.01289727259427309,
-1.393520474433899,
0.10342249274253845,
0.05956977605819702,
-0.09489736706018448,
-0.28401607275009155,
0.15130768716335297,
-0.016008388251066208,
-0.17655465006828308,
-0.46221864223480225,
0.41457727551460266,
-0.4869191348552704,
0.13043725490570068,
0.13634280860424042,
0.5093924403190613,
0.24300119280815125,
0.7405048608779907,
-0.1565169394016266,
0.749982476234436,
0.4121972322463989,
-0.4542013704776764,
0.3791959881782532,
0.5451207756996155,
-0.3568047881126404,
0.3680740296840668,
-0.735943615436554,
0.07943986356258392,
-0.15039324760437012,
0.245904803276062,
-1.1147730350494385,
-0.008121378719806671,
0.1909368485212326,
-0.6622034907341003,
0.12264033406972885,
0.17661912739276886,
-0.5977790951728821,
-0.4807365834712982,
-0.5569968819618225,
0.0936284288764,
0.3657030165195465,
-0.42549940943717957,
0.47017812728881836,
0.3216720223426819,
0.06713689863681793,
-0.6709803938865662,
-0.9019906520843506,
-0.1041908711194992,
-0.06616958975791931,
-0.8170782327651978,
0.4750257134437561,
-0.18004591763019562,
0.1601092517375946,
0.249659463763237,
0.14511117339134216,
0.050836268812417984,
0.046352583914995193,
0.13113707304000854,
0.12352797389030457,
-0.17134661972522736,
0.38961151242256165,
-0.12815159559249878,
-0.11738002300262451,
0.028001725673675537,
-0.30757656693458557,
0.7224026918411255,
-0.3601275086402893,
-0.1752006560564041,
-0.369218111038208,
0.42248544096946716,
0.4260612428188324,
-0.3214610517024994,
1.103418231010437,
0.9933372139930725,
-0.2128017395734787,
-0.01377368438988924,
-0.5865692496299744,
-0.1589200347661972,
-0.4650951325893402,
0.4957393705844879,
-0.3478948175907135,
-1.0237356424331665,
0.39963728189468384,
0.24040284752845764,
-0.06309644877910614,
0.7877048850059509,
0.4231973886489868,
-0.2661042809486389,
0.9094188213348389,
0.3905642330646515,
-0.08192897588014603,
0.3892446756362915,
-0.6450282335281372,
0.24241696298122406,
-0.7907651662826538,
-0.24218954145908356,
-0.3401528000831604,
-0.35957545042037964,
-0.9685906171798706,
-0.4550992548465729,
0.361430287361145,
0.060545094311237335,
-0.19983723759651184,
0.38850751519203186,
-0.6342189908027649,
0.21500788629055023,
0.7424063682556152,
0.3422934114933014,
-0.1165839359164238,
-0.03404990956187248,
-0.3643382787704468,
-0.06768164783716202,
-0.7870659828186035,
-0.2934558689594269,
1.1332770586013794,
0.325786828994751,
0.3809552490711212,
0.022332966327667236,
0.8465142846107483,
0.06487671285867691,
-0.07202574610710144,
-0.6593319773674011,
0.5519846081733704,
-0.2968961298465729,
-0.42311424016952515,
-0.2743759751319885,
-0.5802204608917236,
-0.9300481677055359,
0.28895753622055054,
-0.4100804924964905,
-0.49649739265441895,
0.0874708816409111,
-0.20248164236545563,
-0.33337101340293884,
0.22674547135829926,
-0.8618409037590027,
1.0486791133880615,
-0.01794642023742199,
-0.3107997477054596,
-0.17810267210006714,
-0.7352582216262817,
0.16324405372142792,
0.24997593462467194,
-0.011712035164237022,
-0.09190716594457626,
-0.13781093060970306,
0.8424225449562073,
-0.39498090744018555,
0.5754364132881165,
-0.12780170142650604,
0.24901600182056427,
0.29954805970191956,
-0.3121071755886078,
0.31040817499160767,
-0.03896188735961914,
-0.09876322001218796,
-0.07543792575597763,
0.08249230682849884,
-0.6390965580940247,
-0.5485895872116089,
0.7553150653839111,
-1.043963074684143,
-0.4635990560054779,
-0.5022151470184326,
-0.4807429015636444,
-0.15697473287582397,
0.1483273059129715,
0.38041388988494873,
0.5006545186042786,
-0.035469990223646164,
0.4908350706100464,
0.6458611488342285,
-0.48700428009033203,
0.5440909266471863,
0.3009337782859802,
-0.028941713273525238,
-0.5466710329055786,
0.8396216034889221,
0.1833288073539734,
0.06196408346295357,
0.6189539432525635,
0.2926924526691437,
-0.41996100544929504,
-0.3847838044166565,
-0.14429247379302979,
0.355888694524765,
-0.6090071797370911,
-0.2516632080078125,
-1.0056099891662598,
-0.43407300114631653,
-0.7103208899497986,
-0.0016188861336559057,
-0.15969009697437286,
-0.4889684319496155,
-0.4632638394832611,
-0.23257870972156525,
0.31830376386642456,
0.5302892923355103,
0.000242827576585114,
0.18568721413612366,
-0.6304759383201599,
0.2376021295785904,
0.368326872587204,
0.24850618839263916,
-0.11759589612483978,
-0.5548826456069946,
-0.22049209475517273,
0.005782515741884708,
-0.3804580867290497,
-0.8581727743148804,
0.4459817707538605,
0.1982704997062683,
0.5364177823066711,
0.19671806693077087,
0.11109299212694168,
0.5269755721092224,
-0.2808561325073242,
0.9272528290748596,
0.06405778974294662,
-0.7530853152275085,
0.471601665019989,
-0.20831988751888275,
0.44555535912513733,
0.6621348261833191,
0.6130466461181641,
-0.5111978054046631,
-0.2741107940673828,
-0.7485179901123047,
-0.9198946356773376,
0.5996959805488586,
0.3642688989639282,
0.2647346258163452,
-0.19650116562843323,
0.29879119992256165,
-0.17271170020103455,
0.14264000952243805,
-0.8867906332015991,
-0.4035229980945587,
-0.2382373958826065,
-0.4414348304271698,
-0.24345487356185913,
-0.2888675928115845,
0.04745161160826683,
-0.49143221974372864,
0.8424661159515381,
-0.08160445094108582,
0.5883879661560059,
0.4857747554779053,
-0.3313383460044861,
0.425997793674469,
0.16694490611553192,
0.5650985240936279,
0.4229554831981659,
-0.22331875562667847,
0.08547619730234146,
0.19782957434654236,
-0.3675200045108795,
-0.05249477177858353,
0.45614194869995117,
-0.08850517868995667,
0.012330824509263039,
0.32150715589523315,
0.750921905040741,
0.24551832675933838,
-0.5253373384475708,
0.8519898056983948,
-0.19843998551368713,
-0.2095436453819275,
-0.398939311504364,
-0.12217937409877777,
0.3536701202392578,
0.21956714987754822,
0.19081905484199524,
-0.09510689973831177,
0.11148996651172638,
-0.4527811110019684,
0.4354148507118225,
0.23361308872699738,
-0.3948919475078583,
-0.016583869233727455,
0.4488487243652344,
0.1527259647846222,
-0.15265710651874542,
0.8912931680679321,
-0.3605421483516693,
-0.6475957036018372,
0.5033641457557678,
0.40007075667381287,
0.7628394961357117,
0.07679413259029388,
0.36785680055618286,
0.5836597681045532,
0.3035796582698822,
0.18172329664230347,
0.19607289135456085,
0.05853460356593132,
-0.7584892511367798,
-0.16531702876091003,
-0.804100513458252,
-0.09195753186941147,
0.09040798991918564,
-0.459244042634964,
0.22492264211177826,
-0.2307039499282837,
-0.028213392943143845,
0.044370196759700775,
0.36648985743522644,
-0.8451098203659058,
0.15693840384483337,
0.06679770350456238,
0.9873912930488586,
-0.8146636486053467,
0.6900376081466675,
0.6666510701179504,
-0.858477771282196,
-0.859440267086029,
-0.0672893077135086,
-0.22896040976047516,
-0.785430908203125,
0.3925146758556366,
0.4842168390750885,
0.18737205862998962,
0.10792423784732819,
-0.47732454538345337,
-0.8105367422103882,
1.3437316417694092,
0.21978576481342316,
-0.3323749005794525,
-0.22313955426216125,
0.20877374708652496,
0.5537750720977783,
-0.4181971251964569,
0.48923954367637634,
0.3528343141078949,
0.3241533935070038,
-0.12746115028858185,
-0.6532894968986511,
0.10039098560810089,
-0.4217875301837921,
-0.05123681575059891,
-0.10616258531808853,
-0.8169379234313965,
0.9508933424949646,
-0.01247597485780716,
-0.0843338593840599,
0.014961750246584415,
0.6207846999168396,
0.24228185415267944,
0.11363974213600159,
0.4574819505214691,
0.9572388529777527,
0.7116168141365051,
-0.06536316126585007,
1.1635396480560303,
-0.37781235575675964,
0.54898601770401,
0.9729433655738831,
0.2512531876564026,
1.0148730278015137,
0.39359089732170105,
-0.1820070594549179,
0.6862685680389404,
0.6411756277084351,
-0.17179915308952332,
0.4408785402774811,
0.25594910979270935,
-0.03824823349714279,
-0.15027642250061035,
-0.018405113369226456,
-0.3341064453125,
0.6366408467292786,
0.12578415870666504,
-0.6067782640457153,
-0.09881038218736649,
0.03861178830265999,
0.10743743181228638,
0.07690368592739105,
-0.0376560315489769,
0.7209414839744568,
0.14075817167758942,
-0.5977832674980164,
0.48038625717163086,
0.11785446107387543,
0.9342386722564697,
-0.5010306239128113,
0.17160068452358246,
-0.23783233761787415,
0.256950706243515,
-0.12587228417396545,
-0.7943476438522339,
0.26256272196769714,
-0.3563154637813568,
-0.19696608185768127,
-0.2212395966053009,
0.6292821168899536,
-0.6121600270271301,
-0.574321985244751,
0.4529419243335724,
0.538791835308075,
0.09935542941093445,
-0.1532551348209381,
-1.077881932258606,
-0.2372693568468094,
0.00530847255140543,
-0.4759787619113922,
0.254006952047348,
0.369649201631546,
0.39587876200675964,
0.4710458517074585,
0.5151724815368652,
-0.21327008306980133,
0.16526636481285095,
-0.03261613845825195,
0.8508856296539307,
-0.6923385858535767,
-0.5212290287017822,
-0.7065821886062622,
0.5547696948051453,
-0.34752872586250305,
-0.5308277606964111,
0.7800443172454834,
0.6706494092941284,
0.9270943403244019,
-0.0581342838704586,
0.4935764670372009,
-0.11019530147314072,
0.3364892303943634,
-0.5363376140594482,
0.7661996483802795,
-0.6662853956222534,
-0.018019849434494972,
-0.12456609308719635,
-0.8080003261566162,
-0.11161346733570099,
0.6573283076286316,
-0.33533015847206116,
0.028633730486035347,
0.7417321801185608,
0.9297630786895752,
-0.10474663972854614,
-0.09152843058109283,
0.16525974869728088,
0.34670770168304443,
0.12230629473924637,
0.7639988660812378,
0.5039211511611938,
-0.8731938004493713,
0.7591609358787537,
-0.49042874574661255,
0.0043756780214607716,
-0.1380472183227539,
-0.6886853575706482,
-0.8615624904632568,
-0.847549319267273,
-0.35740527510643005,
-0.5115452408790588,
-0.07954420149326324,
0.9205010533332825,
0.6566774845123291,
-0.7832634449005127,
-0.009444443508982658,
-0.1177072674036026,
0.03710133582353592,
-0.011508279480040073,
-0.327568918466568,
0.5517022609710693,
-0.3642091155052185,
-0.6010779738426208,
0.19396594166755676,
-0.03919894993305206,
-0.045715343207120895,
-0.3148348331451416,
0.030771056190133095,
-0.8592948317527771,
0.1333562284708023,
0.640855073928833,
-0.0634305328130722,
-0.6008630394935608,
-0.36927902698516846,
0.19621609151363373,
-0.41726645827293396,
0.09023571759462357,
0.3584558963775635,
-0.6872047781944275,
0.35332223773002625,
0.6872701644897461,
0.6447887420654297,
0.7400813698768616,
-0.04641824588179588,
0.4093233048915863,
-0.8022377490997314,
0.053760841488838196,
0.23039084672927856,
0.4544798731803894,
0.48036685585975647,
-0.31242290139198303,
0.6729485392570496,
0.3869999051094055,
-0.5653306841850281,
-0.5072051882743835,
-0.0706145241856575,
-1.0718610286712646,
-0.3694951832294464,
1.1659406423568726,
-0.31931325793266296,
-0.24340307712554932,
0.1540629267692566,
-0.22380654513835907,
0.30724677443504333,
-0.2965542674064636,
0.6468188166618347,
0.7802512049674988,
-0.09076842665672302,
-0.28490933775901794,
-0.33455994725227356,
0.32970935106277466,
0.5148025751113892,
-0.6571529507637024,
-0.47917473316192627,
0.2972579896450043,
0.4895061254501343,
0.3868231475353241,
0.5247705578804016,
-0.06439455598592758,
0.08350962400436401,
0.10583826154470444,
-0.05933469906449318,
-0.24498306214809418,
0.040885407477617264,
-0.3622831404209137,
0.4519360661506653,
-0.3791425824165344,
-0.3781994581222534
] |
togethercomputer/GPT-JT-6B-v1 | togethercomputer | "2023-01-24T06:08:17Z" | 127,347 | 301 | transformers | [
"transformers",
"pytorch",
"gptj",
"text-generation",
"en",
"dataset:natural_instructions",
"dataset:the_pile",
"dataset:cot",
"dataset:Muennighoff/P3",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | text-generation | "2022-11-24T06:09:34Z" | ---
datasets:
- natural_instructions
- the_pile
- cot
- Muennighoff/P3
inference:
parameters:
max_new_tokens: 5
temperature: 1.0
top_k: 1
license: apache-2.0
language:
- en
pipeline_tag: text-generation
widget:
-
example_title: "Sentiment Analysis"
text: |-
The task is to label the post's emotion as sadness, joy, love, anger, fear, or surprise.
Input: I'm feeling quite sad and sorry for myself but ill snap out of it soon.
Output: sadness
Input: I am just feeling cranky and blue.
Output: anger
Input: I can have for a treat or if i am feeling festive.
Output:
-
example_title: "Country Currency"
text: |-
Return the currency of the given country.
Input: Switzerland
Output: Swiss Franc
Input: India
Output:
-
example_title: "Tweet Eval Hate"
text: |-
Label whether the following tweet contains hate speech against either immigrants or women. Hate Speech (HS) is commonly defined as any communication that disparages a person or a group on the basis of some characteristic such as race, color, ethnicity, gender, sexual orientation, nationality, religion, or other characteristics.
Possible labels:
1. hate speech
2. not hate speech
Tweet: HOW REFRESHING! In South Korea, there is no such thing as 'political correctness" when it comes to dealing with Muslim refugee wannabes via @user
Label: hate speech
Tweet: New to Twitter-- any men on here know what the process is to get #verified?
Label: not hate speech
Tweet: Dont worry @user you are and will always be the most hysterical woman.
Label:
-
example_title: "Entity Recognition"
text: |-
Extract all the names of people, places, and organizations from the following sentences.
Sentence: Satya Nadella, the CEO of Microsoft, was visiting the Bahamas last May.
Entities: Satya Nadella, Microsoft, Bahamas
Sentence: Pacific Northwest cities include Seattle and Portland, which I have visited with Vikash.
Entities:
-
example_title: "Data Clearning"
text: |-
Format the data into a CSV file:
Input: Jane Doe jane.doe@gmail.com (520) 382 2435
Output: Jane Doe,jane.doe@gmail.com,520-382-2435
Input: Peter Lee (510) 333-2429 email: peter@yahoo.com
Output:
---
<h1 style="font-size: 42px">GPT-JT<h1/>
***<p style="font-size: 24px">Feel free to try out our [Online Demo](https://huggingface.co/spaces/togethercomputer/GPT-JT)!</p>***
# Model Summary
> With a new decentralized training algorithm, we fine-tuned GPT-J (6B) on 3.53 billion tokens, resulting in GPT-JT (6B), a model that outperforms many 100B+ parameter models on classification benchmarks.
We incorporated a collection of open techniques and datasets to build GPT-JT:
- GPT-JT is a fork of [EleutherAI](https://www.eleuther.ai)'s [GPT-J (6B)](https://huggingface.co/EleutherAI/gpt-j-6B);
- We used [UL2](https://github.com/google-research/google-research/tree/master/ul2)'s training objective, allowing the model to see bidirectional context of the prompt;
- The model was trained on a large collection of diverse data, including [Chain-of-Thought (CoT)](https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html), [Public Pool of Prompts (P3) dataset](https://huggingface.co/datasets/bigscience/P3), [Natural-Instructions (NI) dataset](https://github.com/allenai/natural-instructions).
With the help of techniques mentioned above, GPT-JT significantly improves the performance of classification tasks over the original GPT-J, and even outperforms most 100B+ parameter models!
# Quick Start
```python
from transformers import pipeline
pipe = pipeline(model='togethercomputer/GPT-JT-6B-v1')
pipe('''"I love this!" Is it positive? A:''')
```
or
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v1")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-JT-6B-v1")
```
# License
The weights of GPT-JT-6B-v1 are licensed under version 2.0 of the Apache License.
# Training Details
## UL2 Training Objective
We train GPT-JT using UL2 training objective [1][2].
The original GPT-J uses causal mask (as shown below left) for autoregressive generation. So for each token, it can only see its previous context.
In order to fully leverage the context information, we continue to train GPT-J with UL2 training objectives, and uses causal mask with prefix (as shown below right) -- using bidirectional attention for the prompt / input and causal attention for token generation.
Intuitively, being able to see context bidirectionally might improve downstream tasks that require this information.
$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
$$
Furthermore, we leverage a large collection of data, including [Natural-Instructions](https://github.com/allenai/natural-instructions), [P3](https://huggingface.co/datasets/Muennighoff/P3), [MMLU-COT](https://github.com/jasonwei20/flan-2/blob/main/mmlu-cot.json), and [the Pile](https://huggingface.co/datasets/the_pile)
Specifically, we first conduct training for 2.62 billion tokens using the UL2 loss on the Pile, followed by 0.92 billion tokens with a mixture of the above datasets: 5% of COT, 20% of P3, 20% of NI, and 55% of the Pile.
## Hyperparameters
We used AdamW with a learning rate of 1e-5 and global batch size of 64 (16 for each data parallel worker).
We used mix-precision training where the activation is in FP16 while the optimizer states are kept in FP32.
We use both data parallelism and pipeline parallelism to conduct training.
During training, we truncate the input sequence to 2048 tokens, and for input sequence that contains less than 2048 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
## Infrastructure
We used [the Together Research Computer](https://together.xyz/) to conduct training.
# References
[1]: Tay, Yi, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, and Donald Metzler. "Unifying Language Learning Paradigms." arXiv preprint arXiv:2205.05131 (2022).
[2]: Tay, Yi, Jason Wei, Hyung Won Chung, Vinh Q. Tran, David R. So, Siamak Shakeri, Xavier Garcia et al. "Transcending scaling laws with 0.1% extra compute." arXiv preprint arXiv:2210.11399 (2022). | [
-0.44072458148002625,
-0.7752317786216736,
0.258405476808548,
-0.05527479201555252,
-0.4331182837486267,
-0.04841969534754753,
-0.36818328499794006,
-0.459857314825058,
-0.02007569745182991,
0.17136931419372559,
-0.48522254824638367,
-0.32336172461509705,
-0.6738901138305664,
0.08239351212978363,
-0.0029433381278067827,
1.299472689628601,
-0.1657993197441101,
0.04877213016152382,
0.15560440719127655,
-0.15735550224781036,
-0.39993274211883545,
-0.565302848815918,
-0.9592944979667664,
-0.2609095573425293,
0.5143446922302246,
0.06292733550071716,
0.4132135510444641,
0.7796666026115417,
0.4150645434856415,
0.24191823601722717,
-0.012297960929572582,
0.22683417797088623,
-0.39606916904449463,
-0.22662164270877838,
0.004254807718098164,
-0.29499486088752747,
-0.21341368556022644,
-0.02511986717581749,
0.6483805775642395,
0.588191568851471,
-0.13912078738212585,
0.3658972978591919,
0.3077024817466736,
0.7617368698120117,
-0.5707851648330688,
0.5687848925590515,
-0.5330343246459961,
0.10538417845964432,
-0.293055921792984,
-0.0674838051199913,
-0.3958026170730591,
-0.13786454498767853,
0.057223379611968994,
-0.6873603463172913,
0.3608803451061249,
0.1102115735411644,
0.9848234057426453,
0.36580410599708557,
-0.4249230623245239,
-0.04300002008676529,
-0.6158095598220825,
0.672255277633667,
-0.6490643620491028,
0.41070976853370667,
0.16726936399936676,
0.2798060476779938,
-0.036036111414432526,
-0.857628583908081,
-0.7065020203590393,
-0.13212400674819946,
-0.16700555384159088,
0.3140537142753601,
0.0862065926194191,
0.17089003324508667,
0.525124192237854,
0.38054388761520386,
-0.8226629495620728,
0.03153976798057556,
-0.3448689579963684,
-0.26406213641166687,
0.5693644285202026,
0.12143997848033905,
0.06157337874174118,
-0.34672099351882935,
-0.5489023327827454,
-0.3939121961593628,
-0.48055213689804077,
0.25532132387161255,
0.23829934000968933,
0.36397331953048706,
-0.23470045626163483,
0.2608984410762787,
-0.29442211985588074,
0.7291931509971619,
0.26609140634536743,
-0.11699259281158447,
0.3392035961151123,
-0.5679785013198853,
-0.39512261748313904,
-0.1432979851961136,
1.0215321779251099,
-0.004574485123157501,
-0.06515736132860184,
-0.01414169929921627,
-0.09536226093769073,
-0.07756227254867554,
0.04078565537929535,
-0.9322561621665955,
-0.41383522748947144,
0.06510335952043533,
-0.2807249128818512,
-0.14516201615333557,
0.24154339730739594,
-0.5191301107406616,
-0.02177666500210762,
-0.718684196472168,
0.5988326668739319,
-0.45996221899986267,
-0.157877117395401,
0.08810196071863174,
-0.08725889027118683,
0.46054714918136597,
0.4567309021949768,
-0.97389155626297,
0.247250035405159,
0.5812265872955322,
0.8044164180755615,
-0.11859782785177231,
-0.3313058018684387,
-0.5020647644996643,
0.0007780637824907899,
-0.08505666255950928,
0.49714750051498413,
-0.19939935207366943,
-0.0036662945058196783,
-0.4915432035923004,
0.09355564415454865,
-0.535653293132782,
-0.25533464550971985,
0.33365124464035034,
-0.4222339987754822,
0.6301113367080688,
-0.38492435216903687,
-0.519637942314148,
-0.311534583568573,
0.19036847352981567,
-0.48746997117996216,
1.0574008226394653,
0.16017493605613708,
-1.0941712856292725,
0.5916738510131836,
-0.8747774362564087,
-0.27350106835365295,
0.05156998708844185,
-0.2532532513141632,
-0.5738207101821899,
-0.22321628034114838,
0.4343234598636627,
0.5297738909721375,
-0.37010422348976135,
0.5062246918678284,
-0.1301439255475998,
-0.45322155952453613,
-0.1905561089515686,
-0.6292092800140381,
1.0375466346740723,
0.2586413621902466,
-0.9040722250938416,
0.11954374611377716,
-0.6674175262451172,
-0.07669529318809509,
0.2972205877304077,
-0.3540964722633362,
0.04226437211036682,
-0.3968052566051483,
0.05998929962515831,
0.32079294323921204,
0.1745627522468567,
-0.39010265469551086,
0.24393069744110107,
-0.3702690303325653,
0.41093960404396057,
0.7843270301818848,
0.046872202306985855,
0.24694949388504028,
-0.2797524333000183,
0.2822878658771515,
0.036901019513607025,
0.3294336199760437,
-0.025616319850087166,
-0.6340141296386719,
-0.755164384841919,
-0.33560052514076233,
0.3982474207878113,
0.6138433218002319,
-0.805090606212616,
0.6276465654373169,
-0.2778260111808777,
-0.43793612718582153,
-0.3514029383659363,
0.06286830455064774,
0.5107552409172058,
0.7436558604240417,
0.5414254069328308,
-0.3989878296852112,
-0.5324408411979675,
-0.6429640054702759,
0.060916706919670105,
-0.21852125227451324,
-0.10825881361961365,
0.28766241669654846,
0.5518391132354736,
-0.16173826158046722,
0.8386865258216858,
-0.35050687193870544,
-0.09751530736684799,
-0.11563143134117126,
0.2173980474472046,
0.37312328815460205,
0.5784732699394226,
0.31782302260398865,
-0.5890256762504578,
-0.5676286220550537,
0.04260333999991417,
-0.8204070925712585,
0.16430893540382385,
-0.2529712915420532,
-0.15360750257968903,
0.360009104013443,
0.3501729667186737,
-0.7427685260772705,
0.3188707232475281,
0.29122936725616455,
-0.25934505462646484,
0.6600977778434753,
-0.2759028673171997,
0.010502240620553493,
-1.3188034296035767,
0.3490704596042633,
-0.025560326874256134,
-0.042465392500162125,
-0.4606870710849762,
0.17912600934505463,
0.0626947209239006,
-0.039006609469652176,
-0.5356673002243042,
0.5007342100143433,
-0.6142492294311523,
0.02886362373828888,
-0.044821541756391525,
-0.11798615008592606,
-0.020035719498991966,
0.9794953465461731,
-0.08157001435756683,
0.8961747288703918,
0.6391903758049011,
-0.5751572847366333,
0.2446972131729126,
0.16714687645435333,
-0.09687654674053192,
0.28930315375328064,
-0.6571658253669739,
0.33849290013313293,
-0.1247142106294632,
0.4878818392753601,
-0.959604024887085,
-0.3000626564025879,
0.4638832211494446,
-0.45657870173454285,
0.6989521384239197,
-0.23065808415412903,
-0.6164764165878296,
-0.581701934337616,
-0.3414347469806671,
0.38733649253845215,
0.7268875241279602,
-0.7194821834564209,
0.44247448444366455,
0.13040490448474884,
0.1165393516421318,
-0.6753141283988953,
-0.5002647042274475,
-0.06781841069459915,
-0.41373440623283386,
-0.4681607186794281,
0.22283720970153809,
0.004223580006510019,
0.2214449942111969,
-0.1926840841770172,
-0.0923742949962616,
0.1374225914478302,
-0.006949770729988813,
0.17234018445014954,
0.26242396235466003,
-0.10379651933908463,
-0.0010843926575034857,
0.09374299645423889,
-0.2463253140449524,
0.055300723761320114,
-0.711945652961731,
0.606705367565155,
-0.3068608045578003,
-0.24215197563171387,
-0.6981523633003235,
0.0025885533541440964,
0.5053066611289978,
-0.06600342690944672,
0.7715142369270325,
1.1966369152069092,
-0.30876386165618896,
0.16144321858882904,
-0.4464341104030609,
-0.22831520438194275,
-0.4608284831047058,
0.329577773809433,
-0.33433493971824646,
-0.9712203741073608,
0.4849173426628113,
0.11133574694395065,
0.1149461567401886,
0.6806251406669617,
0.4913395941257477,
0.12110075354576111,
0.9441714286804199,
0.19503314793109894,
-0.39433395862579346,
0.42062240839004517,
-0.6027752757072449,
0.0636080801486969,
-1.0076125860214233,
-0.14782781898975372,
-0.2711561322212219,
-0.20546840131282806,
-0.7240123748779297,
-0.509822428226471,
0.3931032121181488,
0.21603086590766907,
-0.6723742485046387,
0.5550892949104309,
-0.7508037090301514,
0.35566338896751404,
0.7819643020629883,
0.29968857765197754,
0.04014945775270462,
0.054290805011987686,
-0.2851196825504303,
0.10338205099105835,
-0.847146213054657,
-0.2489785999059677,
1.3069244623184204,
0.4787170886993408,
0.46538612246513367,
-0.11952579766511917,
0.8847676515579224,
-0.059600796550512314,
0.20065923035144806,
-0.41333305835723877,
0.5319934487342834,
-0.026045391336083412,
-0.4477091133594513,
-0.3741314709186554,
-0.7056866884231567,
-1.0438300371170044,
0.2603610157966614,
0.005538187921047211,
-0.710250198841095,
-0.001389377866871655,
0.22278821468353271,
-0.45086824893951416,
0.49374639987945557,
-0.9468836188316345,
0.9175477623939514,
-0.11943451315164566,
-0.5231009721755981,
-0.023086020722985268,
-1.0535783767700195,
0.30359482765197754,
-0.007484134752303362,
-0.058009032160043716,
0.1547594517469406,
0.20063859224319458,
0.9276876449584961,
-0.6009495854377747,
0.9374014735221863,
-0.5695821046829224,
0.10553020238876343,
0.40927159786224365,
-0.32514849305152893,
0.7667092084884644,
0.14146994054317474,
0.22068354487419128,
0.36855319142341614,
-0.29133477807044983,
-0.554303765296936,
-0.5297548770904541,
0.5274662375450134,
-0.9851043224334717,
-0.4144395887851715,
-0.4118514955043793,
-0.4874710738658905,
0.02500033564865589,
0.2082834392786026,
0.5060235857963562,
0.4298003613948822,
0.2072734534740448,
0.10615599155426025,
0.6226093769073486,
-0.058091845363378525,
0.5166289806365967,
0.12819184362888336,
0.12476051598787308,
-0.6234208345413208,
0.9160338044166565,
0.133314311504364,
0.22954586148262024,
0.5085165500640869,
0.3395496606826782,
-0.5890820622444153,
-0.5364561676979065,
-0.7652844190597534,
0.2749430537223816,
-0.6007845997810364,
-0.2690388560295105,
-0.8392196893692017,
-0.3496119976043701,
-0.4243277907371521,
0.05738237872719765,
-0.297345906496048,
-0.4293058216571808,
-0.2831741273403168,
-0.09377667307853699,
0.3856814205646515,
0.5029469728469849,
-0.10481920838356018,
0.23071131110191345,
-0.4831712543964386,
0.20203326642513275,
0.5716358423233032,
0.2671900987625122,
0.040522389113903046,
-0.6982671022415161,
-0.196969136595726,
0.17757853865623474,
-0.21611352264881134,
-0.475059449672699,
0.21126331388950348,
0.1574554294347763,
0.4322814643383026,
0.37441059947013855,
-0.05978624150156975,
0.761542558670044,
-0.4049246907234192,
0.7479321956634521,
0.21675880253314972,
-0.8034983277320862,
0.40957847237586975,
-0.5149673819541931,
0.3597011864185333,
0.6699104905128479,
0.39707526564598083,
-0.3444785177707672,
-0.28430166840553284,
-0.7694429159164429,
-0.83610600233078,
0.8956133723258972,
0.3893785774707794,
-0.16827520728111267,
0.10515795648097992,
0.3895496428012848,
0.21094152331352234,
0.1047334223985672,
-0.860314667224884,
-0.32035592198371887,
-0.287678062915802,
-0.25420957803726196,
-0.05141090601682663,
0.11473521590232849,
-0.06180152669548988,
-0.6914956569671631,
0.6781916618347168,
-0.25016656517982483,
0.7000201940536499,
0.25168657302856445,
-0.09014968574047089,
0.09335322678089142,
0.016530724242329597,
0.5717809796333313,
0.4979563355445862,
-0.23156952857971191,
0.020193466916680336,
0.23589971661567688,
-0.708564817905426,
0.05230018123984337,
0.5076371431350708,
-0.294128954410553,
-0.1701354682445526,
0.2878924310207367,
1.2387553453445435,
-0.007762539200484753,
-0.22984707355499268,
0.4215439558029175,
-0.11249586194753647,
-0.4846189618110657,
-0.2190840244293213,
0.21362708508968353,
-0.08875518292188644,
0.14308255910873413,
0.3560112714767456,
0.15497836470603943,
0.18443454802036285,
-0.2711806297302246,
0.2710719704627991,
0.26322701573371887,
-0.11250430345535278,
-0.3413943648338318,
0.9104783535003662,
0.04354456067085266,
0.06569193303585052,
0.6439036130905151,
-0.5957714319229126,
-0.5823368430137634,
0.6211180686950684,
0.5168479084968567,
1.0528031587600708,
-0.05412684381008148,
0.14778615534305573,
0.7358373999595642,
0.2544671893119812,
-0.11656850576400757,
0.02245054766535759,
-0.3628107011318207,
-0.4569156765937805,
-0.6161274909973145,
-0.6211623549461365,
-0.4225224256515503,
0.24325315654277802,
-0.5134317278862,
0.15410800278186798,
-0.6074698567390442,
0.05690142512321472,
-0.18840643763542175,
0.3262088894844055,
-0.9141225814819336,
0.17427261173725128,
0.12641629576683044,
0.5802892446517944,
-0.8171077370643616,
0.7918470501899719,
0.6633114814758301,
-0.44416362047195435,
-1.1780121326446533,
0.03938860073685646,
-0.08446212112903595,
-0.8975123763084412,
0.5530451536178589,
0.5756984949111938,
0.23701277375221252,
0.19105395674705505,
-0.502874493598938,
-0.9592617154121399,
1.4035452604293823,
0.2342449426651001,
-0.5707541704177856,
-0.0910203754901886,
0.185098335146904,
0.5641709566116333,
-0.09806885570287704,
0.4628757834434509,
0.48830223083496094,
0.3809080421924591,
0.11463998258113861,
-1.141477346420288,
0.332227885723114,
-0.37899529933929443,
0.0317537821829319,
0.40000298619270325,
-0.815966010093689,
0.8667410016059875,
-0.16086207330226898,
-0.2583416998386383,
-0.3778674304485321,
0.5293199419975281,
0.3716379702091217,
0.3707234561443329,
0.5802062749862671,
0.8701449632644653,
0.852608323097229,
-0.14271776378154755,
1.0392324924468994,
-0.2970704436302185,
0.5865759253501892,
1.0474958419799805,
-0.04532923549413681,
0.4810278117656708,
0.3106059432029724,
-0.4119209945201874,
0.4396651089191437,
0.8135020136833191,
0.009319471195340157,
0.5108898282051086,
0.12303469330072403,
-0.247289776802063,
0.05018852278590202,
0.2407318353652954,
-0.4435412585735321,
0.22662238776683807,
0.1836095154285431,
-0.12105822563171387,
-0.17187675833702087,
0.19540905952453613,
0.07337269932031631,
-0.3878956735134125,
-0.12145297974348068,
0.8050408959388733,
-0.10062763094902039,
-0.6787142157554626,
0.894839346408844,
-0.077677421271801,
0.8139722347259521,
-0.552535891532898,
0.11540891975164413,
-0.2315826267004013,
0.06579478085041046,
-0.054530736058950424,
-0.44951653480529785,
0.15355104207992554,
-0.13092505931854248,
0.058318816125392914,
-0.12284886091947556,
0.5486397743225098,
-0.3228376507759094,
-0.35011693835258484,
0.1274808645248413,
0.3448961079120636,
0.1568858027458191,
-0.168919637799263,
-0.9868146777153015,
-0.22108715772628784,
0.12694984674453735,
-0.48699986934661865,
0.4022548198699951,
0.44711974263191223,
-0.12022323161363602,
0.4374103844165802,
0.920351505279541,
-0.1550666242837906,
0.08943811058998108,
0.13686133921146393,
1.0445795059204102,
-0.6846926212310791,
-0.49850019812583923,
-0.8052013516426086,
0.4977211356163025,
-0.11411260068416595,
-0.40458571910858154,
0.6360567808151245,
0.5758224129676819,
1.1501879692077637,
0.010361406952142715,
0.6615214347839355,
-0.3060401678085327,
0.3129016160964966,
-0.5895348191261292,
0.5445906519889832,
-0.3329305350780487,
0.12066545337438583,
-0.34357333183288574,
-0.9382103681564331,
-0.3303486108779907,
0.5969015955924988,
-0.3115334212779999,
0.35795649886131287,
0.7780278921127319,
0.6543779969215393,
-0.05011630058288574,
-0.010780036449432373,
0.014753581956028938,
-0.03296734392642975,
0.33162999153137207,
0.905163586139679,
0.4439326524734497,
-0.7338051795959473,
0.42623844742774963,
-0.4780196249485016,
-0.3033517599105835,
-0.15255168080329895,
-0.5889226794242859,
-0.9842671751976013,
-0.5589345097541809,
-0.40524542331695557,
-0.180552139878273,
0.10377597063779831,
1.0489528179168701,
0.7943729758262634,
-0.7769005298614502,
-0.01664627715945244,
-0.6140325665473938,
-0.19100025296211243,
-0.34266433119773865,
-0.2961293160915375,
0.7480678558349609,
-0.43209466338157654,
-0.622246503829956,
0.22161369025707245,
0.15611690282821655,
0.20056486129760742,
-0.09431900084018707,
-0.27225345373153687,
-0.23998025059700012,
-0.31234467029571533,
0.5291596055030823,
0.2889505624771118,
-0.5640146732330322,
-0.2754564881324768,
0.03836147114634514,
-0.08331087231636047,
0.13920098543167114,
0.6110705733299255,
-0.7515993714332581,
0.4398253858089447,
0.43274223804473877,
0.8133843541145325,
0.762898325920105,
0.10030506551265717,
0.2768900394439697,
-0.754882276058197,
0.21482807397842407,
0.04547780379652977,
0.28808993101119995,
0.27820971608161926,
-0.5754039883613586,
0.7157904505729675,
0.6443936228752136,
-0.712744951248169,
-0.6251595616340637,
-0.09218797087669373,
-1.06819486618042,
-0.07115107774734497,
1.1281263828277588,
-0.08908874541521072,
-0.24105273187160492,
-0.15527473390102386,
-0.32889965176582336,
0.5145411491394043,
-0.41616499423980713,
0.7389889359474182,
0.4434531629085541,
-0.20706747472286224,
-0.18076573312282562,
-0.5040075778961182,
0.47088027000427246,
0.5530946850776672,
-0.7836934924125671,
0.016468815505504608,
0.30156663060188293,
0.28821614384651184,
0.12529447674751282,
0.7654858231544495,
-0.06439299136400223,
0.23314860463142395,
-0.037176694720983505,
0.07268250733613968,
-0.28316453099250793,
-0.2931862473487854,
-0.4588986039161682,
0.038762494921684265,
-0.15147902071475983,
-0.388628751039505
] |
timm/resnet18.tv_in1k | timm | "2023-04-05T18:04:22Z" | 126,100 | 0 | timm | [
"timm",
"pytorch",
"safetensors",
"image-classification",
"arxiv:1512.03385",
"license:bsd-3-clause",
"region:us"
] | image-classification | "2023-04-05T18:04:15Z" | ---
tags:
- image-classification
- timm
library_tag: timm
license: bsd-3-clause
---
# Model card for resnet18.tv_in1k
A ResNet-B image classification model.
This model features:
* ReLU activations
* single layer 7x7 convolution with pooling
* 1x1 convolution shortcut downsample
Trained on ImageNet-1k, original torchvision model weight.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 11.7
- GMACs: 1.8
- Activations (M): 2.5
- Image size: 224 x 224
- **Papers:**
- Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385
- **Original:** https://github.com/pytorch/vision
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('resnet18.tv_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnet18.tv_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 112, 112])
# torch.Size([1, 64, 56, 56])
# torch.Size([1, 128, 28, 28])
# torch.Size([1, 256, 14, 14])
# torch.Size([1, 512, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnet18.tv_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 512, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|model |img_size|top1 |top5 |param_count|gmacs|macts|img/sec|
|------------------------------------------|--------|-----|-----|-----------|-----|-----|-------|
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|320 |86.72|98.17|93.6 |35.2 |69.7 |451 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|288 |86.51|98.08|93.6 |28.5 |56.4 |560 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|288 |86.49|98.03|93.6 |28.5 |56.4 |557 |
|[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|224 |85.96|97.82|93.6 |17.2 |34.2 |923 |
|[resnext101_32x32d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x32d.fb_wsl_ig1b_ft_in1k)|224 |85.11|97.44|468.5 |87.3 |91.1 |254 |
|[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|416 |85.0 |97.12|191.9 |108.4|213.8|134 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|320 |84.73|97.18|102.1 |41.5 |83.7 |353 |
|[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|384 |84.71|96.99|164.0 |77.6 |154.7|183 |
|[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|288 |84.57|97.08|93.6 |28.5 |56.4 |557 |
|[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|320 |84.45|97.08|93.2 |31.5 |67.8 |446 |
|[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|352 |84.43|96.97|129.9 |51.1 |105.5|280 |
|[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|288 |84.36|96.92|93.6 |27.6 |53.0 |595 |
|[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|320 |84.35|97.04|66.8 |24.1 |47.7 |610 |
|[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|288 |84.3 |96.94|164.0 |43.7 |87.1 |333 |
|[resnext101_32x8d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_swsl_ig1b_ft_in1k)|224 |84.28|97.17|88.8 |16.5 |31.2 |1100 |
|[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|320 |84.24|96.86|191.9 |64.2 |126.6|228 |
|[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|288 |84.19|96.87|93.6 |27.2 |51.6 |613 |
|[resnext101_32x16d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_wsl_ig1b_ft_in1k)|224 |84.18|97.19|194.0 |36.3 |51.2 |581 |
|[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|288 |84.11|97.11|44.6 |15.1 |29.0 |1144 |
|[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|320 |83.97|96.82|64.7 |31.2 |67.3 |518 |
|[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|256 |83.87|96.75|93.2 |20.2 |43.4 |692 |
|[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|224 |83.86|96.65|93.6 |17.2 |34.2 |923 |
|[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|320 |83.72|96.61|86.6 |24.3 |48.1 |617 |
|[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|256 |83.69|96.78|66.8 |15.4 |30.6 |943 |
|[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|224 |83.68|96.61|93.6 |16.7 |32.0 |986 |
|[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|320 |83.67|96.74|60.2 |24.1 |47.7 |706 |
|[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|256 |83.59|96.61|129.9 |27.1 |55.8 |526 |
|[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|224 |83.58|96.4 |93.6 |16.5 |31.2 |1013 |
|[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|224 |83.54|96.83|44.6 |9.1 |17.6 |1864 |
|[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|288 |83.46|96.54|60.2 |19.1 |37.3 |904 |
|[resnext101_32x16d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_swsl_ig1b_ft_in1k)|224 |83.35|96.85|194.0 |36.3 |51.2 |582 |
|[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|256 |83.23|96.53|64.7 |20.0 |43.1 |809 |
|[resnext101_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_swsl_ig1b_ft_in1k)|224 |83.22|96.75|44.2 |8.0 |21.2 |1814 |
|[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|288 |83.16|96.38|83.5 |25.7 |51.6 |590 |
|[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|256 |83.14|96.38|60.2 |15.4 |30.5 |1096 |
|[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|320 |83.02|96.45|44.6 |16.5 |34.8 |992 |
|[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|288 |82.98|96.54|44.6 |13.4 |28.2 |1077 |
|[resnext101_64x4d.tv_in1k](https://huggingface.co/timm/resnext101_64x4d.tv_in1k)|224 |82.98|96.25|83.5 |15.5 |31.2 |989 |
|[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|256 |82.86|96.28|86.6 |15.6 |30.8 |951 |
|[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|224 |82.83|96.22|88.8 |16.5 |31.2 |1099 |
|[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|224 |82.8 |96.13|60.2 |11.6 |22.6 |1486 |
|[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|288 |82.8 |96.32|44.6 |13.0 |26.8 |1291 |
|[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|288 |82.74|95.71|60.2 |19.1 |37.3 |905 |
|[resnext101_32x8d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_wsl_ig1b_ft_in1k)|224 |82.69|96.63|88.8 |16.5 |31.2 |1100 |
|[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|288 |82.62|95.75|60.2 |19.1 |37.3 |904 |
|[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|288 |82.61|96.49|25.6 |8.9 |20.6 |1729 |
|[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|288 |82.53|96.13|36.8 |9.9 |21.5 |1773 |
|[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|224 |82.5 |96.02|126.9 |22.8 |21.2 |1078 |
|[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|224 |82.46|95.92|83.5 |15.5 |31.2 |987 |
|[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|288 |82.36|96.18|35.7 |8.1 |20.9 |1964 |
|[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|320 |82.35|96.14|25.6 |8.8 |24.1 |1386 |
|[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|288 |82.31|95.63|44.6 |13.0 |26.8 |1291 |
|[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|288 |82.29|96.01|63.6 |13.6 |28.5 |1078 |
|[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|224 |82.29|96.0 |60.2 |11.6 |22.6 |1484 |
|[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|288 |82.27|96.06|68.9 |18.9 |23.8 |1176 |
|[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|256 |82.26|96.07|44.6 |10.6 |22.2 |1542 |
|[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|288 |82.24|95.73|44.6 |13.0 |26.8 |1290 |
|[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|288 |82.2 |96.14|27.6 |7.0 |23.8 |1547 |
|[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|224 |82.18|96.05|44.6 |8.1 |17.1 |1771 |
|[resnext50_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_swsl_ig1b_ft_in1k)|224 |82.17|96.22|25.0 |4.3 |14.4 |2943 |
|[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|288 |82.12|95.65|25.6 |7.1 |19.6 |1704 |
|[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|288 |82.03|95.94|25.0 |7.0 |23.8 |1745 |
|[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|288 |82.0 |96.15|24.9 |5.8 |12.7 |1787 |
|[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|256 |81.99|95.85|36.8 |7.8 |17.0 |2230 |
|[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|176 |81.98|95.72|88.8 |10.3 |19.4 |1768 |
|[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|224 |81.97|95.24|60.2 |11.6 |22.6 |1486 |
|[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|224 |81.93|95.75|44.6 |7.8 |16.2 |2122 |
|[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|224 |81.9 |95.77|44.6 |7.8 |16.2 |2118 |
|[resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k)|224 |81.84|96.1 |194.0 |36.3 |51.2 |583 |
|[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|256 |81.78|95.94|35.7 |6.4 |16.6 |2471 |
|[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|224 |81.77|95.22|60.2 |11.6 |22.6 |1485 |
|[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|224 |81.74|96.06|25.6 |5.4 |12.4 |2813 |
|[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|288 |81.65|95.54|25.6 |7.1 |19.6 |1703 |
|[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|288 |81.64|95.88|25.6 |7.2 |19.7 |1694 |
|[resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k)|224 |81.62|96.04|88.8 |16.5 |31.2 |1101 |
|[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|224 |81.61|95.76|68.9 |11.4 |14.4 |1930 |
|[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|288 |81.61|95.83|25.6 |8.5 |19.2 |1868 |
|[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|224 |81.5 |95.16|44.6 |7.8 |16.2 |2125 |
|[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|288 |81.48|95.16|25.0 |7.0 |23.8 |1745 |
|[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|288 |81.47|95.71|25.9 |6.9 |18.6 |2071 |
|[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|224 |81.45|95.53|68.9 |11.4 |14.4 |1929 |
|[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|288 |81.44|95.22|25.6 |7.2 |19.7 |1908 |
|[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|256 |81.44|95.67|25.6 |5.6 |15.4 |2168 |
|[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|288 |81.4 |95.82|30.2 |6.8 |13.9 |2132 |
|[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|288 |81.37|95.74|25.6 |7.2 |19.7 |1910 |
|[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|224 |81.32|95.19|44.6 |7.8 |16.2 |2125 |
|[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|288 |81.3 |95.65|28.1 |6.8 |18.4 |1803 |
|[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|288 |81.3 |95.11|25.0 |7.0 |23.8 |1746 |
|[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|224 |81.27|95.62|27.6 |4.3 |14.4 |2591 |
|[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|224 |81.26|95.16|25.6 |4.3 |11.8 |2823 |
|[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|288 |81.23|95.54|15.7 |4.8 |19.6 |2117 |
|[senet154.gluon_in1k](https://huggingface.co/timm/senet154.gluon_in1k)|224 |81.23|95.35|115.1 |20.8 |38.7 |545 |
|[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|288 |81.22|95.11|25.6 |6.8 |18.4 |2089 |
|[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|288 |81.22|95.63|25.6 |6.8 |18.4 |676 |
|[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|288 |81.18|95.09|25.6 |7.2 |19.7 |1908 |
|[resnet50.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet50.fb_swsl_ig1b_ft_in1k)|224 |81.18|95.98|25.6 |4.1 |11.1 |3455 |
|[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|224 |81.17|95.34|25.0 |4.3 |14.4 |2933 |
|[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|224 |81.1 |95.33|25.0 |4.3 |14.4 |2934 |
|[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|288 |81.1 |95.23|28.1 |6.8 |18.4 |1801 |
|[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|288 |81.1 |95.12|28.1 |6.8 |18.4 |1799 |
|[resnet152s.gluon_in1k](https://huggingface.co/timm/resnet152s.gluon_in1k)|224 |81.02|95.41|60.3 |12.9 |25.0 |1347 |
|[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|288 |80.97|95.44|25.6 |6.8 |18.4 |2085 |
|[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|256 |80.94|95.45|25.9 |5.4 |14.7 |2571 |
|[resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.93|95.73|44.2 |8.0 |21.2 |1814 |
|[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|288 |80.91|95.55|25.6 |6.8 |18.4 |2084 |
|[seresnext101_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_32x4d.gluon_in1k)|224 |80.9 |95.31|49.0 |8.0 |21.3 |1585 |
|[seresnext101_64x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_64x4d.gluon_in1k)|224 |80.9 |95.3 |88.2 |15.5 |31.2 |918 |
|[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|288 |80.86|95.52|25.6 |6.8 |18.4 |2085 |
|[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|224 |80.85|95.43|25.6 |4.1 |11.1 |3450 |
|[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|224 |80.84|95.02|25.6 |4.3 |11.8 |2821 |
|[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|224 |80.79|95.62|24.9 |3.5 |7.7 |2961 |
|[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|288 |80.79|95.36|19.8 |6.0 |14.8 |2506 |
|[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|288 |80.79|95.58|19.9 |4.2 |10.6 |2349 |
|[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|288 |80.78|94.99|25.6 |6.8 |18.4 |2088 |
|[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|288 |80.71|95.43|25.6 |6.8 |18.4 |2087 |
|[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|288 |80.7 |95.39|25.0 |7.0 |23.8 |1749 |
|[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|192 |80.69|95.24|63.6 |6.0 |12.7 |2270 |
|[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|224 |80.68|94.71|25.6 |4.4 |11.9 |3162 |
|[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|288 |80.68|95.36|19.7 |6.0 |14.8 |2637 |
|[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|224 |80.67|95.3 |25.6 |4.1 |11.1 |3452 |
|[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|288 |80.67|95.42|25.0 |7.4 |25.1 |1626 |
|[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|224 |80.63|95.21|25.6 |5.2 |11.6 |3034 |
|[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|224 |80.61|95.32|25.6 |4.4 |11.9 |2813 |
|[resnext101_64x4d.gluon_in1k](https://huggingface.co/timm/resnext101_64x4d.gluon_in1k)|224 |80.61|94.99|83.5 |15.5 |31.2 |989 |
|[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|288 |80.6 |95.31|19.9 |6.0 |14.8 |2578 |
|[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|256 |80.57|95.17|15.7 |3.8 |15.5 |2710 |
|[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|224 |80.56|95.0 |60.2 |11.6 |22.6 |1483 |
|[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|224 |80.53|95.16|25.6 |4.4 |11.9 |3164 |
|[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|224 |80.53|94.46|25.0 |4.3 |14.4 |2930 |
|[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|176 |80.48|94.98|126.9 |14.3 |13.2 |1719 |
|[resnet152d.gluon_in1k](https://huggingface.co/timm/resnet152d.gluon_in1k)|224 |80.47|95.2 |60.2 |11.8 |23.4 |1428 |
|[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|288 |80.45|95.32|25.6 |6.8 |18.4 |2086 |
|[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|224 |80.45|95.24|30.2 |4.1 |8.4 |3530 |
|[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|224 |80.45|94.63|25.0 |4.3 |14.4 |2936 |
|[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|176 |80.43|95.09|68.9 |7.3 |9.0 |3015 |
|[resnet101d.gluon_in1k](https://huggingface.co/timm/resnet101d.gluon_in1k)|224 |80.42|95.01|44.6 |8.1 |17.0 |2007 |
|[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|224 |80.38|94.6 |25.6 |4.1 |11.1 |3461 |
|[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|256 |80.36|95.1 |19.8 |4.8 |11.7 |3267 |
|[resnext101_32x4d.gluon_in1k](https://huggingface.co/timm/resnext101_32x4d.gluon_in1k)|224 |80.34|94.93|44.2 |8.0 |21.2 |1814 |
|[resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.32|95.4 |25.0 |4.3 |14.4 |2941 |
|[resnet101s.gluon_in1k](https://huggingface.co/timm/resnet101s.gluon_in1k)|224 |80.28|95.16|44.7 |9.2 |18.6 |1851 |
|[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|224 |80.26|95.08|28.1 |4.1 |11.1 |2972 |
|[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|288 |80.24|95.24|25.6 |8.5 |19.9 |1523 |
|[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|224 |80.22|94.63|25.6 |4.4 |11.9 |3162 |
|[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|176 |80.2 |94.64|60.2 |7.2 |14.0 |2346 |
|[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|224 |80.08|94.74|28.1 |4.1 |11.1 |2969 |
|[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|256 |80.08|94.97|19.7 |4.8 |11.7 |3284 |
|[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|256 |80.06|94.99|19.9 |4.8 |11.7 |3216 |
|[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|224 |80.06|94.95|25.6 |4.1 |11.1 |1109 |
|[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|224 |80.02|94.71|28.1 |4.1 |11.1 |2962 |
|[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|288 |79.97|95.05|25.6 |6.8 |18.4 |2086 |
|[resnet152c.gluon_in1k](https://huggingface.co/timm/resnet152c.gluon_in1k)|224 |79.92|94.84|60.2 |11.8 |23.4 |1455 |
|[seresnext50_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext50_32x4d.gluon_in1k)|224 |79.91|94.82|27.6 |4.3 |14.4 |2591 |
|[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|224 |79.91|94.67|25.6 |4.1 |11.1 |3456 |
|[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|176 |79.9 |94.6 |44.6 |4.9 |10.1 |3341 |
|[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|224 |79.89|94.97|35.7 |4.5 |12.1 |2774 |
|[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|224 |79.88|94.87|25.6 |4.1 |11.1 |3455 |
|[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|320 |79.86|95.07|16.0 |5.2 |16.4 |2168 |
|[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|224 |79.85|94.56|25.6 |4.1 |11.1 |3460 |
|[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|288 |79.83|94.97|25.6 |6.8 |18.4 |2087 |
|[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|224 |79.82|94.62|44.6 |7.8 |16.2 |2114 |
|[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|224 |79.76|94.6 |25.0 |4.3 |14.4 |2943 |
|[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|224 |79.74|94.95|25.6 |4.1 |11.1 |3455 |
|[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|224 |79.74|94.87|19.9 |2.5 |6.4 |3929 |
|[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|288 |79.71|94.83|19.7 |6.0 |14.8 |2710 |
|[resnet152.gluon_in1k](https://huggingface.co/timm/resnet152.gluon_in1k)|224 |79.68|94.74|60.2 |11.6 |22.6 |1486 |
|[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|224 |79.67|94.87|25.0 |4.5 |15.2 |2729 |
|[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|288 |79.63|94.91|25.6 |6.8 |18.4 |2086 |
|[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|224 |79.56|94.72|25.6 |4.3 |11.8 |2805 |
|[resnet101c.gluon_in1k](https://huggingface.co/timm/resnet101c.gluon_in1k)|224 |79.53|94.58|44.6 |8.1 |17.0 |2062 |
|[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|224 |79.52|94.61|25.6 |4.1 |11.1 |3459 |
|[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|176 |79.42|94.64|25.6 |2.6 |6.9 |5397 |
|[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|288 |79.4 |94.66|18.0 |5.9 |14.6 |2752 |
|[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|224 |79.38|94.57|25.6 |4.1 |11.1 |3459 |
|[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|176 |79.37|94.3 |25.0 |2.7 |9.0 |4577 |
|[resnext50_32x4d.gluon_in1k](https://huggingface.co/timm/resnext50_32x4d.gluon_in1k)|224 |79.36|94.43|25.0 |4.3 |14.4 |2942 |
|[resnext101_32x8d.tv_in1k](https://huggingface.co/timm/resnext101_32x8d.tv_in1k)|224 |79.31|94.52|88.8 |16.5 |31.2 |1100 |
|[resnet101.gluon_in1k](https://huggingface.co/timm/resnet101.gluon_in1k)|224 |79.31|94.53|44.6 |7.8 |16.2 |2125 |
|[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|224 |79.31|94.63|25.6 |5.2 |12.0 |2524 |
|[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|176 |79.27|94.49|25.6 |2.6 |6.9 |5404 |
|[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|224 |79.25|94.31|25.0 |4.3 |14.4 |2931 |
|[resnet50.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet50.fb_ssl_yfcc100m_ft_in1k)|224 |79.22|94.84|25.6 |4.1 |11.1 |3451 |
|[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|256 |79.21|94.56|19.7 |4.8 |11.7 |3392 |
|[resnet50d.gluon_in1k](https://huggingface.co/timm/resnet50d.gluon_in1k)|224 |79.07|94.48|25.6 |4.4 |11.9 |3162 |
|[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|224 |79.03|94.38|25.6 |4.1 |11.1 |3453 |
|[resnet50.am_in1k](https://huggingface.co/timm/resnet50.am_in1k)|224 |79.01|94.39|25.6 |4.1 |11.1 |3461 |
|[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|256 |79.01|94.37|18.0 |4.6 |11.6 |3440 |
|[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|256 |78.9 |94.54|16.0 |3.4 |10.5 |3421 |
|[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|160 |78.89|94.11|60.2 |5.9 |11.5 |2745 |
|[wide_resnet101_2.tv_in1k](https://huggingface.co/timm/wide_resnet101_2.tv_in1k)|224 |78.84|94.28|126.9 |22.8 |21.2 |1079 |
|[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|288 |78.83|94.24|16.8 |4.5 |16.8 |2251 |
|[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|224 |78.81|94.32|25.6 |4.1 |11.1 |3454 |
|[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|288 |78.74|94.33|16.8 |4.5 |16.7 |2264 |
|[resnet50s.gluon_in1k](https://huggingface.co/timm/resnet50s.gluon_in1k)|224 |78.72|94.23|25.7 |5.5 |13.5 |2796 |
|[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|224 |78.71|94.24|25.6 |4.4 |11.9 |3154 |
|[wide_resnet50_2.tv_in1k](https://huggingface.co/timm/wide_resnet50_2.tv_in1k)|224 |78.47|94.09|68.9 |11.4 |14.4 |1934 |
|[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|224 |78.46|94.27|25.6 |4.1 |11.1 |3454 |
|[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|288 |78.43|94.35|21.8 |6.5 |7.5 |3291 |
|[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|288 |78.42|94.04|10.5 |3.1 |13.3 |3226 |
|[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|320 |78.33|94.13|16.0 |5.2 |16.4 |2391 |
|[resnet152.tv_in1k](https://huggingface.co/timm/resnet152.tv_in1k)|224 |78.32|94.04|60.2 |11.6 |22.6 |1487 |
|[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|288 |78.28|94.1 |10.4 |3.1 |13.3 |3062 |
|[bat_resnext26ts.ch_in1k](https://huggingface.co/timm/bat_resnext26ts.ch_in1k)|256 |78.25|94.1 |10.7 |2.5 |12.5 |3393 |
|[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|224 |78.06|93.78|25.6 |4.1 |11.1 |3450 |
|[resnet50c.gluon_in1k](https://huggingface.co/timm/resnet50c.gluon_in1k)|224 |78.0 |93.99|25.6 |4.4 |11.9 |3286 |
|[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|288 |78.0 |93.91|10.3 |3.1 |13.3 |3297 |
|[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|224 |77.98|93.75|16.8 |2.7 |10.1 |3841 |
|[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|288 |77.92|93.77|21.8 |6.1 |6.2 |3609 |
|[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|160 |77.88|93.71|44.6 |4.0 |8.3 |3926 |
|[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|256 |77.87|93.84|16.0 |3.4 |10.5 |3772 |
|[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|256 |77.86|93.79|10.4 |2.4 |10.5 |4263 |
|[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|160 |77.82|93.81|35.7 |2.3 |6.2 |5238 |
|[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|256 |77.81|93.82|10.5 |2.4 |10.5 |4183 |
|[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|160 |77.79|93.6 |25.6 |2.2 |6.0 |5329 |
|[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|160 |77.73|93.32|25.0 |2.2 |7.4 |5576 |
|[resnext50_32x4d.tv_in1k](https://huggingface.co/timm/resnext50_32x4d.tv_in1k)|224 |77.61|93.7 |25.0 |4.3 |14.4 |2944 |
|[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|224 |77.59|93.61|16.8 |2.7 |10.2 |3807 |
|[resnet50.gluon_in1k](https://huggingface.co/timm/resnet50.gluon_in1k)|224 |77.58|93.72|25.6 |4.1 |11.1 |3455 |
|[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|256 |77.44|93.56|10.3 |2.4 |10.5 |4284 |
|[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|288 |77.41|93.63|16.0 |4.3 |13.5 |2907 |
|[resnet101.tv_in1k](https://huggingface.co/timm/resnet101.tv_in1k)|224 |77.38|93.54|44.6 |7.8 |16.2 |2125 |
|[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|160 |77.22|93.27|25.6 |2.2 |6.1 |5982 |
|[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|288 |77.17|93.47|10.3 |3.1 |13.3 |3392 |
|[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|288 |77.15|93.27|21.8 |6.1 |6.2 |3615 |
|[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|224 |77.1 |93.37|21.8 |3.9 |4.5 |5436 |
|[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|224 |77.02|93.07|28.1 |4.1 |11.1 |2952 |
|[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|256 |76.78|93.13|10.3 |2.4 |10.5 |4410 |
|[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|224 |76.7 |93.17|16.0 |2.6 |8.2 |4859 |
|[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|288 |76.5 |93.35|21.8 |6.1 |6.2 |3617 |
|[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|224 |76.42|92.87|21.8 |3.7 |3.7 |5984 |
|[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|288 |76.35|93.18|16.0 |3.9 |12.2 |3331 |
|[resnet50.tv_in1k](https://huggingface.co/timm/resnet50.tv_in1k)|224 |76.13|92.86|25.6 |4.1 |11.1 |3457 |
|[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|160 |75.96|92.5 |25.6 |2.1 |5.7 |6490 |
|[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|224 |75.52|92.44|21.8 |3.7 |3.7 |5991 |
|[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|224 |75.3 |92.58|16.0 |2.4 |7.4 |5583 |
|[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|224 |75.16|92.18|21.8 |3.7 |3.7 |5994 |
|[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|160 |75.1 |92.08|28.1 |2.1 |5.7 |5513 |
|[resnet34.gluon_in1k](https://huggingface.co/timm/resnet34.gluon_in1k)|224 |74.57|91.98|21.8 |3.7 |3.7 |5984 |
|[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|288 |73.81|91.83|11.7 |3.4 |5.4 |5196 |
|[resnet34.tv_in1k](https://huggingface.co/timm/resnet34.tv_in1k)|224 |73.32|91.42|21.8 |3.7 |3.7 |5979 |
|[resnet18.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet18.fb_swsl_ig1b_ft_in1k)|224 |73.28|91.73|11.7 |1.8 |2.5 |10213 |
|[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|288 |73.16|91.03|11.7 |3.0 |4.1 |6050 |
|[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|224 |72.98|91.11|21.8 |3.7 |3.7 |5967 |
|[resnet18.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet18.fb_ssl_yfcc100m_ft_in1k)|224 |72.6 |91.42|11.7 |1.8 |2.5 |10213 |
|[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|288 |72.37|90.59|11.7 |3.0 |4.1 |6051 |
|[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|224 |72.26|90.31|10.1 |1.7 |5.8 |7026 |
|[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|224 |72.26|90.68|11.7 |2.1 |3.3 |8707 |
|[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|224 |71.49|90.07|11.7 |1.8 |2.5 |10187 |
|[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|176 |71.31|89.69|10.1 |1.1 |3.6 |10970 |
|[resnet18.gluon_in1k](https://huggingface.co/timm/resnet18.gluon_in1k)|224 |70.84|89.76|11.7 |1.8 |2.5 |10210 |
|[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|224 |70.64|89.47|11.7 |1.8 |2.5 |10194 |
|[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|160 |70.56|89.52|21.8 |1.9 |1.9 |10737 |
|[resnet18.tv_in1k](https://huggingface.co/timm/resnet18.tv_in1k)|224 |69.76|89.07|11.7 |1.8 |2.5 |10205 |
|[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|224 |68.34|88.03|5.4 |1.1 |2.4 |13079 |
|[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|224 |68.25|88.17|11.7 |1.8 |2.5 |10167 |
|[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|176 |66.71|86.96|5.4 |0.7 |1.5 |20327 |
|[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|160 |65.66|86.26|11.7 |0.9 |1.3 |18229 |
## Citation
```bibtex
@article{He2015,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {arXiv preprint arXiv:1512.03385},
year = {2015}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
| [
-0.9230860471725464,
-0.23746810853481293,
0.015272809192538261,
0.41648441553115845,
-0.4566456079483032,
-0.11929071694612503,
-0.13229241967201233,
-0.40725913643836975,
1.2107203006744385,
0.27774152159690857,
-0.6669979691505432,
-0.5256562232971191,
-0.625617504119873,
-0.0018104006303474307,
0.35851362347602844,
0.8648290634155273,
0.0162527896463871,
-0.07412896305322647,
0.24580785632133484,
-0.2181505709886551,
-0.029558058828115463,
-0.2927117347717285,
-1.0438495874404907,
-0.16441257297992706,
0.4176778793334961,
0.17822788655757904,
0.6840435266494751,
0.637037992477417,
0.3994925320148468,
0.6205362677574158,
-0.23187068104743958,
0.31241554021835327,
-0.060105759650468826,
-0.1504126340150833,
0.658786952495575,
-0.3795236051082611,
-0.955308735370636,
-0.02966367080807686,
0.7399411797523499,
0.6324421167373657,
0.08623555302619934,
0.3659482002258301,
0.39648258686065674,
0.6134955883026123,
0.05567480996251106,
-0.047294747084379196,
0.012044738978147507,
0.12909138202667236,
-0.28379398584365845,
0.05647357925772667,
-0.05597009137272835,
-0.7216970324516296,
0.18692998588085175,
-0.6590115427970886,
-0.0786861702799797,
0.004108764231204987,
1.3930020332336426,
-0.1326475739479065,
-0.2539338767528534,
0.09826073050498962,
0.1470038890838623,
0.7669651508331299,
-0.8622174263000488,
0.3573547601699829,
0.6065698862075806,
-0.018713558092713356,
-0.18714313209056854,
-0.6419764161109924,
-0.5029687881469727,
0.14167025685310364,
-0.4446094334125519,
0.3356679081916809,
-0.303909033536911,
-0.21557125449180603,
0.3817787766456604,
0.3265897035598755,
-0.48422718048095703,
-0.14273032546043396,
-0.3858904540538788,
-0.08976241201162338,
0.754218578338623,
0.07628200948238373,
0.7110544443130493,
-0.3819909989833832,
-0.5151244401931763,
-0.08450988680124283,
-0.15788158774375916,
0.46079474687576294,
0.2864268124103546,
0.13259246945381165,
-1.1422566175460815,
0.43461230397224426,
0.11259093880653381,
0.23439016938209534,
0.3743528127670288,
-0.12316565960645676,
0.8581997752189636,
-0.11855953931808472,
-0.5459710955619812,
-0.5011613965034485,
1.1099843978881836,
0.6832737326622009,
0.29021763801574707,
-0.09730880707502365,
-0.02759234793484211,
-0.17467455565929413,
-0.4040832221508026,
-0.9530566930770874,
-0.049876563251018524,
0.27146175503730774,
-0.5753530263900757,
-0.23731155693531036,
0.33893531560897827,
-0.9426461458206177,
-0.054527878761291504,
-0.10752052068710327,
0.07578245550394058,
-0.7612876892089844,
-0.4629199206829071,
0.012836722657084465,
-0.21791164577007294,
0.5562142729759216,
0.2347983419895172,
-0.3317466974258423,
0.43690168857574463,
0.0670180469751358,
0.8746429085731506,
0.31805306673049927,
-0.04591778293251991,
-0.20510800182819366,
0.0178992860019207,
-0.37726226449012756,
0.3527028560638428,
0.17848439514636993,
-0.1721436083316803,
-0.35071420669555664,
0.4278101325035095,
-0.27210280299186707,
-0.19444558024406433,
0.6398381590843201,
0.3061925768852234,
0.1844310462474823,
-0.2792462110519409,
-0.25517335534095764,
-0.2064725160598755,
0.36522260308265686,
-0.5938419103622437,
1.0238181352615356,
0.3972512483596802,
-1.1574276685714722,
0.17676523327827454,
-0.5089625120162964,
0.00984039343893528,
-0.29118412733078003,
0.07859082520008087,
-0.8965315222740173,
0.03393677994608879,
0.2209755778312683,
0.7090620398521423,
-0.20739735662937164,
-0.16775594651699066,
-0.3340296447277069,
0.06300559639930725,
0.4082178771495819,
0.1294063776731491,
0.923012912273407,
0.3406219184398651,
-0.4545912444591522,
-0.21400804817676544,
-0.7480723857879639,
0.4287334680557251,
0.428752601146698,
-0.0066061136312782764,
-0.04342028498649597,
-0.8059183359146118,
0.03954097628593445,
0.6323156952857971,
0.28818103671073914,
-0.7628229856491089,
0.27724489569664,
-0.1821422576904297,
0.3567146360874176,
0.6608747839927673,
0.038787100464105606,
0.1797603964805603,
-0.7024968862533569,
0.6357505917549133,
-0.034998565912246704,
0.29668128490448,
0.02156687341630459,
-0.434225469827652,
-0.7569608688354492,
-0.7678151726722717,
0.23162540793418884,
0.4332691729068756,
-0.4301034212112427,
0.8930118083953857,
0.12515319883823395,
-0.618086576461792,
-0.6613844037055969,
0.058649834245443344,
0.5633670687675476,
0.22002628445625305,
0.09017224609851837,
-0.33095788955688477,
-0.785195529460907,
-0.9771952033042908,
-0.3407536447048187,
0.125684455037117,
-0.0397869311273098,
0.7093410491943359,
0.43821093440055847,
-0.197635680437088,
0.526159405708313,
-0.3773959279060364,
-0.2509836256504059,
-0.14311394095420837,
-0.12160083651542664,
0.45469316840171814,
0.8059232831001282,
1.0311199426651,
-0.7538590431213379,
-0.9769487380981445,
0.16180720925331116,
-1.1566975116729736,
-0.054957035928964615,
-0.02547226846218109,
-0.26253682374954224,
0.4385056495666504,
0.2764434218406677,
-0.9014005064964294,
0.8236432075500488,
0.4125392735004425,
-0.897739589214325,
0.4654535949230194,
-0.3825213611125946,
0.5929434895515442,
-1.0908410549163818,
0.2610982656478882,
0.2943478226661682,
-0.26436400413513184,
-0.5938757658004761,
0.043299365788698196,
-0.12173806130886078,
0.15485775470733643,
-0.5801941156387329,
0.8207950592041016,
-0.7134894132614136,
0.0011118617840111256,
0.1795520782470703,
0.07806865870952606,
-0.0296039879322052,
0.44768235087394714,
-0.05141180381178856,
0.6170238852500916,
0.9105711579322815,
-0.16037824749946594,
0.34901759028434753,
0.4431613087654114,
0.02390407957136631,
0.77326500415802,
-0.6321943402290344,
0.07120193541049957,
0.025939244776964188,
0.45709770917892456,
-1.031416893005371,
-0.42128804326057434,
0.5843276381492615,
-0.8742659091949463,
0.6600310802459717,
-0.26631322503089905,
-0.2553289532661438,
-0.8473821878433228,
-0.9066029787063599,
0.26411691308021545,
0.6474484801292419,
-0.58066725730896,
0.38127145171165466,
0.20303896069526672,
-0.043128177523612976,
-0.5042586922645569,
-0.7289960980415344,
0.10387010872364044,
-0.44264382123947144,
-0.8579480051994324,
0.4671342968940735,
0.35892248153686523,
-0.19889754056930542,
0.11558981239795685,
-0.14858652651309967,
-0.15607240796089172,
-0.22184714674949646,
0.591162919998169,
0.350419819355011,
-0.3229464888572693,
-0.42560362815856934,
-0.41949036717414856,
-0.2920733094215393,
-0.06096107140183449,
-0.10131625086069107,
0.5053686499595642,
-0.46695438027381897,
0.1026887372136116,
-1.5125064849853516,
0.12952256202697754,
0.904342532157898,
-0.03343185409903526,
1.00784170627594,
0.7928998470306396,
-0.4814785122871399,
0.18511587381362915,
-0.4551224112510681,
-0.23791655898094177,
-0.538027822971344,
-0.24775263667106628,
-0.7192602753639221,
-0.6093345880508423,
0.9411005973815918,
0.10697323083877563,
-0.12522174417972565,
0.7955414056777954,
0.13967463374137878,
-0.2582406997680664,
0.8596551418304443,
0.456356406211853,
-0.033003874123096466,
0.6028764843940735,
-0.8660479784011841,
0.13971635699272156,
-0.8491275906562805,
-0.7674985527992249,
-0.22790761291980743,
-0.5785589814186096,
-0.6223538517951965,
-0.35677123069763184,
0.22927884757518768,
0.3894129693508148,
-0.26054033637046814,
0.6168596148490906,
-0.573564887046814,
0.03288962319493294,
0.33204472064971924,
0.5598465800285339,
-0.1991283893585205,
-0.1431235671043396,
-0.09286414831876755,
-0.3681256175041199,
-0.537536084651947,
-0.3807634115219116,
0.8049740791320801,
0.6441832184791565,
0.4345410168170929,
0.10840396583080292,
0.5868493914604187,
0.086297906935215,
0.16105176508426666,
-0.31049302220344543,
0.7074828743934631,
0.06327924877405167,
-0.47565093636512756,
-0.3819257915019989,
-0.42104125022888184,
-1.1262059211730957,
0.17724168300628662,
-0.4649476706981659,
-0.8956625461578369,
-0.18209733068943024,
-0.07453808188438416,
-0.3665470480918884,
0.7617508769035339,
-0.6104907393455505,
0.65882408618927,
-0.06351610273122787,
-0.5689420700073242,
-0.0628095492720604,
-0.8194693922996521,
0.05959831550717354,
0.4226301908493042,
0.05911017209291458,
-0.013000003062188625,
-0.05654294788837433,
0.7928391695022583,
-0.8418052196502686,
0.5886257886886597,
-0.33935362100601196,
0.12843969464302063,
0.4192352294921875,
-0.011724913492798805,
0.4004358947277069,
0.02601245418190956,
-0.19239547848701477,
-0.12051623314619064,
0.13093692064285278,
-0.8574692606925964,
-0.3223717212677002,
0.6850330829620361,
-0.7606294751167297,
-0.3997925817966461,
-0.6964501142501831,
-0.2668008506298065,
0.10139431804418564,
0.0251561738550663,
0.4930947721004486,
0.685069739818573,
-0.03127502277493477,
0.2583531439304352,
0.5549383759498596,
-0.4234916865825653,
0.5333348512649536,
-0.16290822625160217,
0.00887126475572586,
-0.5732857584953308,
0.7505366206169128,
0.05128492787480354,
-0.01327382493764162,
-0.009623914025723934,
0.011860123835504055,
-0.4313807189464569,
-0.23312020301818848,
-0.313254177570343,
0.7635813355445862,
-0.1569538712501526,
-0.3007682263851166,
-0.6285267472267151,
-0.3568907678127289,
-0.57924884557724,
-0.45454761385917664,
-0.4480442702770233,
-0.367073118686676,
-0.33947816491127014,
0.005659698508679867,
0.7403488159179688,
0.8909621238708496,
-0.3878624439239502,
0.39144861698150635,
-0.527107834815979,
0.3247447907924652,
0.08780351281166077,
0.5827746391296387,
-0.36228424310684204,
-0.6924800872802734,
0.047208357602357864,
-0.024285530671477318,
-0.07441817224025726,
-0.8363680243492126,
0.6949687600135803,
0.001466024899855256,
0.38258057832717896,
0.4268355667591095,
-0.21880780160427094,
0.7265094518661499,
-0.005875645205378532,
0.49813610315322876,
0.6193646192550659,
-0.7476519346237183,
0.3260491192340851,
-0.49370768666267395,
0.010558368638157845,
0.31410691142082214,
0.19528353214263916,
-0.3946841061115265,
-0.3471667766571045,
-0.9091871380805969,
-0.4148520529270172,
0.7526917457580566,
0.10853682458400726,
-0.021708475425839424,
-0.03660362958908081,
0.692380964756012,
-0.10102624446153641,
0.05773794278502464,
-0.5421388149261475,
-0.9313883185386658,
-0.11673533171415329,
-0.16876783967018127,
0.06792457401752472,
-0.028326915577054024,
0.052998051047325134,
-0.6969823837280273,
0.6874346733093262,
0.07413773238658905,
0.5267249941825867,
0.18513095378875732,
0.054327186197042465,
0.058074701577425,
-0.31023743748664856,
0.6402013897895813,
0.39918187260627747,
-0.19238461554050446,
-0.15254022181034088,
0.3675597906112671,
-0.5193209648132324,
0.09536729753017426,
0.21826940774917603,
0.0018558945739641786,
0.08805365860462189,
0.09139429777860641,
0.5249501466751099,
0.3695884644985199,
-0.07907752692699432,
0.5394567847251892,
-0.2697693705558777,
-0.5948007106781006,
-0.20916025340557098,
-0.2455257922410965,
0.2851649820804596,
0.4313792884349823,
0.3368958830833435,
0.0438048429787159,
-0.4156375527381897,
-0.38667699694633484,
0.5573679208755493,
0.7587077021598816,
-0.43112027645111084,
-0.3963724374771118,
0.6089794635772705,
0.0074631813913583755,
-0.22017604112625122,
0.41141200065612793,
-0.12390454858541489,
-0.7035041451454163,
1.0504543781280518,
0.31129175424575806,
0.6225832104682922,
-0.5142002701759338,
0.11414965987205505,
0.8887290954589844,
-0.010750790126621723,
0.2315586805343628,
0.36988887190818787,
0.4885008931159973,
-0.32555127143859863,
-0.10472232103347778,
-0.5599684119224548,
0.20236113667488098,
0.5176090002059937,
-0.41026121377944946,
0.3133997321128845,
-0.7393288612365723,
-0.33616378903388977,
0.07890311628580093,
0.5099318623542786,
-0.648224413394928,
0.35619696974754333,
-0.007241084240376949,
1.1059931516647339,
-0.8473415970802307,
0.8700112700462341,
0.903300404548645,
-0.56931072473526,
-0.875847339630127,
-0.03002181649208069,
0.11599606275558472,
-0.8586482405662537,
0.4415588974952698,
0.07420087605714798,
0.026531757786870003,
-0.008340483531355858,
-0.5001593828201294,
-0.7008770704269409,
1.3849660158157349,
0.3860475420951843,
-0.01396056916564703,
0.2550545036792755,
-0.46159476041793823,
0.3833559453487396,
-0.1692643165588379,
0.6007208824157715,
0.38414865732192993,
0.5378478169441223,
0.1510351598262787,
-0.9125598073005676,
0.356418639421463,
-0.43492043018341064,
-0.1481533944606781,
0.32336607575416565,
-1.3352373838424683,
0.9143787622451782,
-0.21571974456310272,
-0.01724262163043022,
0.2523341178894043,
0.670066773891449,
0.3140580356121063,
-0.045272666960954666,
0.2215905338525772,
0.9086452722549438,
0.47182267904281616,
-0.26247265934944153,
1.0593767166137695,
-0.22222141921520233,
0.5705956220626831,
0.21008488535881042,
0.594870924949646,
0.36023059487342834,
0.4304383099079132,
-0.601701021194458,
0.258070170879364,
0.8367013335227966,
-0.04663238674402237,
0.12888464331626892,
0.298531174659729,
-0.4262391924858093,
-0.22937293350696564,
-0.24130778014659882,
-0.7026152014732361,
0.2519291639328003,
0.12364688515663147,
-0.1343831866979599,
-0.14201249182224274,
-0.03749532252550125,
0.23877891898155212,
0.31481850147247314,
-0.2640325725078583,
0.5282278060913086,
0.07696744054555893,
-0.40441057085990906,
0.4477091431617737,
-0.03932024911046028,
1.1157011985778809,
-0.3858293890953064,
0.1584206074476242,
-0.3339442312717438,
0.3052111268043518,
-0.25960516929626465,
-1.1345449686050415,
0.3447636663913727,
-0.09768321365118027,
0.10318218171596527,
-0.25180163979530334,
0.6577602624893188,
-0.3646527826786041,
-0.35475870966911316,
0.39139479398727417,
0.3901195228099823,
0.508068859577179,
0.3027608096599579,
-1.128238558769226,
0.2795766592025757,
0.1119309589266777,
-0.6454997062683105,
0.4507199823856354,
0.5116956233978271,
0.40198540687561035,
0.7845169305801392,
0.3089905083179474,
0.33505186438560486,
0.23070372641086578,
-0.40914246439933777,
0.7449960708618164,
-0.631689727306366,
-0.46431764960289,
-0.8345808982849121,
0.5559682846069336,
-0.4275134205818176,
-0.5651556253433228,
0.7718956470489502,
0.5632218718528748,
0.3770526945590973,
0.011943136341869831,
0.6971232891082764,
-0.5774587988853455,
0.4917047917842865,
-0.26491692662239075,
0.7863351702690125,
-0.6767914295196533,
-0.28351280093193054,
-0.21268309652805328,
-0.6091595888137817,
-0.43022775650024414,
0.8986991047859192,
-0.13716091215610504,
0.23004111647605896,
0.29583004117012024,
0.6855657696723938,
0.0829145535826683,
-0.11528705805540085,
0.007551631424576044,
0.16792306303977966,
-0.1412145495414734,
0.9155094623565674,
0.5223301649093628,
-0.7924476265907288,
0.06010659784078598,
-0.49037817120552063,
-0.27352747321128845,
-0.4094129800796509,
-0.7709763050079346,
-1.190058946609497,
-0.6901746392250061,
-0.5527380108833313,
-0.7019527554512024,
-0.2884008586406708,
1.2586562633514404,
0.8206214904785156,
-0.5992394089698792,
-0.1535172462463379,
0.13457496464252472,
0.09620922058820724,
-0.15499141812324524,
-0.22303281724452972,
0.5366240739822388,
0.153080016374588,
-1.0189241170883179,
-0.4289621412754059,
0.12192997336387634,
0.6109564304351807,
0.39668354392051697,
-0.5048984885215759,
-0.2881747782230377,
-0.04955221712589264,
0.350185751914978,
0.8851341009140015,
-0.8401166200637817,
-0.3141484558582306,
0.03371851146221161,
-0.5107393264770508,
0.13535170257091522,
0.2720986604690552,
-0.46335718035697937,
-0.10565534234046936,
0.5431984663009644,
0.39535051584243774,
0.7370888590812683,
0.09835097193717957,
0.16808182001113892,
-0.4155295789241791,
0.5610437989234924,
0.006962146144360304,
0.3386755585670471,
0.22332429885864258,
-0.29837334156036377,
0.7916178703308105,
0.5517591238021851,
-0.4230344891548157,
-1.046038031578064,
-0.17779016494750977,
-1.355423092842102,
-0.052826378494501114,
0.6730817556381226,
-0.04196763038635254,
-0.41666582226753235,
0.4085729420185089,
-0.48711252212524414,
0.5295656323432922,
-0.24592874944210052,
0.24626997113227844,
0.2554628849029541,
-0.36971163749694824,
-0.3475097119808197,
-0.597728967666626,
0.6426969766616821,
0.35048601031303406,
-0.6973444819450378,
-0.3928545415401459,
-0.0015916788252070546,
0.2993101179599762,
0.16988350450992584,
0.7623811364173889,
-0.3881898820400238,
0.14633235335350037,
-0.08621162176132202,
0.22463546693325043,
-0.019637664780020714,
0.1544821858406067,
-0.3232608437538147,
-0.1732170581817627,
-0.25455451011657715,
-0.6616949439048767
] |
immich-app/ViT-B-32__openai | immich-app | "2023-10-29T03:25:12Z" | 125,920 | 2 | transformers | [
"transformers",
"onnx",
"immich",
"clip",
"endpoints_compatible",
"region:us"
] | null | "2023-10-28T00:34:04Z" | ---
tags:
- immich
- clip
---
# Model Description
This repo contains ONNX exports for the CLIP model [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32).
It separates the visual and textual encoders into separate models for the purpose of generating image and text embeddings.
This repo is specifically intended for use with [Immich](https://immich.app/), a self-hosted photo library.
| [
-0.4168010354042053,
-0.2229413241147995,
0.2713785171508789,
0.2196817696094513,
-0.3421768248081207,
-0.07353416085243225,
0.22519966959953308,
-0.18822452425956726,
0.40588974952697754,
1.0363270044326782,
-0.7775251269340515,
-0.48421376943588257,
-0.20003367960453033,
0.0024206701200455427,
-0.21552202105522156,
0.931145429611206,
-0.19949403405189514,
0.14053918421268463,
-0.09659148007631302,
-0.1517498791217804,
-0.15819600224494934,
-0.2617381513118744,
-0.17546238005161285,
-0.19976374506950378,
0.23875394463539124,
0.5825361609458923,
0.6360357999801636,
0.9669464826583862,
0.6540858149528503,
0.23793718218803406,
-0.04245196282863617,
-0.277259886264801,
-0.3340969681739807,
0.16364805400371552,
-0.28691959381103516,
-0.34804561734199524,
-0.4961949586868286,
-0.30542829632759094,
0.5595147609710693,
-0.24485141038894653,
0.18174782395362854,
0.2397201508283615,
-0.372845858335495,
0.46899718046188354,
-0.7917267680168152,
-0.293647825717926,
-0.3947594165802002,
0.07754188776016235,
-0.22410184144973755,
0.07928086817264557,
-0.02262350171804428,
-0.34756800532341003,
0.24437285959720612,
-0.8393718004226685,
0.0018000033451244235,
-0.17918463051319122,
1.1750010251998901,
0.16680315136909485,
-0.4299863874912262,
-0.11804947257041931,
-0.33305656909942627,
0.5659003853797913,
-0.748397707939148,
0.24615420401096344,
0.12544670701026917,
0.7189289331436157,
0.2909179925918579,
-0.940831184387207,
-0.17007946968078613,
0.18873003125190735,
0.208126038312912,
0.16517558693885803,
-0.326801061630249,
0.02632354572415352,
0.19005651772022247,
0.675959587097168,
-0.2943020761013031,
-0.06638365238904953,
-0.6499454379081726,
-0.3238067328929901,
0.363326758146286,
0.10844749212265015,
0.9849385619163513,
-0.5165542364120483,
-0.7918534874916077,
-0.29526689648628235,
-1.1342116594314575,
-0.10647542774677277,
0.461014062166214,
-0.05149076506495476,
-0.40974825620651245,
0.983908474445343,
0.11997959017753601,
0.45335105061531067,
-0.13165487349033356,
0.05933674797415733,
0.08817984908819199,
-0.411106675863266,
-0.17448128759860992,
0.03577534854412079,
0.7765820026397705,
0.5901138782501221,
0.27015581727027893,
0.10493609309196472,
-0.2663218379020691,
-0.2110462337732315,
0.26078924536705017,
-1.2845228910446167,
-0.3210081160068512,
0.06790882349014282,
-0.6102071404457092,
-0.4646904468536377,
0.3661893308162689,
-0.6909992098808289,
-0.012092525139451027,
0.0010736959520727396,
0.570766270160675,
-0.454744815826416,
-0.33201706409454346,
-0.18503819406032562,
-0.6255629658699036,
0.013485759496688843,
0.2683109641075134,
-0.7899320721626282,
0.2783622145652771,
0.3696422278881073,
1.0314290523529053,
-0.11892127990722656,
-0.23457302153110504,
-0.2767721116542816,
0.19846683740615845,
-0.1898014396429062,
0.5778287649154663,
-0.21707811951637268,
-0.30336058139801025,
0.21795080602169037,
0.5517332553863525,
0.1422804445028305,
-0.5018818378448486,
0.4870140254497528,
-0.29590708017349243,
-0.23226067423820496,
-0.48084887862205505,
-0.350764662027359,
-0.4376581311225891,
0.43672874569892883,
-0.9314980506896973,
0.690036952495575,
0.38236892223358154,
-0.8058526515960693,
-0.12159772962331772,
-0.7687496542930603,
0.13254296779632568,
-0.17261213064193726,
0.03176203742623329,
-0.31796106696128845,
-0.18277254700660706,
0.2629648447036743,
0.22560420632362366,
-0.38657906651496887,
-0.06921887397766113,
-0.4070255756378174,
-0.2279948890209198,
0.4471701681613922,
0.12667925655841827,
0.7479186058044434,
0.3294181525707245,
0.052097246050834656,
0.493939608335495,
-0.9502976536750793,
-0.10558737814426422,
-0.06832065433263779,
-0.18668146431446075,
-0.9133438467979431,
-0.45022374391555786,
0.44390004873275757,
0.28814077377319336,
0.047470565885305405,
-1.0372247695922852,
0.2493823617696762,
-0.301726758480072,
0.946657121181488,
0.6006107926368713,
0.19621622562408447,
0.4901447892189026,
-0.24254556000232697,
0.5942049026489258,
0.03650917485356331,
0.4192105829715729,
-0.7030974626541138,
-0.6577275991439819,
-0.608907163143158,
-0.49227839708328247,
0.30057838559150696,
0.5261147022247314,
-0.775054931640625,
-0.04033680632710457,
-0.05888909101486206,
-0.6614463329315186,
-0.36181801557540894,
-0.19809509813785553,
0.7001611590385437,
0.09960003942251205,
-0.01779785379767418,
-0.4460276961326599,
-0.5522207021713257,
-1.0895329713821411,
0.06462789326906204,
0.015021315775811672,
-0.148186594247818,
0.19845150411128998,
0.8624711632728577,
-0.5594063401222229,
0.9431484341621399,
-0.38088536262512207,
-0.25213754177093506,
0.11832497268915176,
-0.1005508303642273,
-0.061067454516887665,
0.675662100315094,
1.044272541999817,
-0.5700774192810059,
-0.31755268573760986,
0.16289135813713074,
-0.6635197997093201,
-0.0018081448506563902,
0.21434959769248962,
-0.5226261615753174,
-0.22338014841079712,
0.28071314096450806,
-0.5756729245185852,
0.6004853248596191,
0.7210037112236023,
-0.508858323097229,
0.6667869091033936,
-0.03551183640956879,
0.3176986575126648,
-1.4082181453704834,
0.08560528606176376,
0.0388905331492424,
-0.6262290477752686,
-0.26351264119148254,
0.3830585181713104,
0.26139575242996216,
-0.5381506085395813,
-0.8936812281608582,
0.7835532426834106,
-0.47343742847442627,
-0.33743685483932495,
-0.02461833320558071,
-0.3599954843521118,
0.20320548117160797,
0.3371990919113159,
-0.06758111715316772,
0.8367008566856384,
0.4358913004398346,
-0.43289440870285034,
0.251995712518692,
0.623674213886261,
-0.16885681450366974,
0.19307133555412292,
-0.9160346388816833,
0.046111755073070526,
0.28649652004241943,
-0.06277814507484436,
-0.6947745680809021,
-0.5710935592651367,
0.4591883420944214,
-0.34199726581573486,
0.03952312842011452,
-0.7264614701271057,
-0.22227683663368225,
-0.19101491570472717,
-0.6421741843223572,
0.5401568412780762,
0.35339003801345825,
-0.629496157169342,
0.4834989607334137,
0.6555632948875427,
0.028813524171710014,
-0.32070207595825195,
-1.1128076314926147,
-0.42356595396995544,
0.026020342484116554,
-0.6428187489509583,
0.5641408562660217,
0.00219805003143847,
-0.3919074833393097,
0.3974980115890503,
0.23795270919799805,
-0.5393813252449036,
-0.36859211325645447,
0.7056832313537598,
0.4652528464794159,
-0.6922872066497803,
-0.03814499080181122,
0.359939843416214,
0.11699014902114868,
-0.014261515811085701,
-0.09846201539039612,
0.07921135425567627,
-0.07923438400030136,
-0.5149804949760437,
-0.14407987892627716,
0.2660379409790039,
0.8096175789833069,
-0.21524164080619812,
0.5601438283920288,
0.497134804725647,
-0.5180357098579407,
-0.09148827195167542,
-0.23162150382995605,
-0.3849376440048218,
-0.43646571040153503,
0.2877606451511383,
-0.4545552730560303,
-0.8982491493225098,
0.717503011226654,
0.01959666982293129,
0.01879212260246277,
0.7042533159255981,
0.4055542051792145,
0.2898235619068146,
0.680747389793396,
0.6222689747810364,
0.20740799605846405,
0.5910694599151611,
-0.4408673346042633,
-0.2457549273967743,
-1.1043305397033691,
0.027358150109648705,
-0.18258996307849884,
-0.02270221710205078,
-0.40543481707572937,
-0.5429146885871887,
0.07288271188735962,
0.25715509057044983,
-0.6388133764266968,
0.7491032481193542,
-0.797953724861145,
0.5603758692741394,
0.6740848422050476,
0.1193019300699234,
0.31648606061935425,
0.1895771473646164,
-0.09834200888872147,
-0.40404224395751953,
-0.5880001187324524,
-0.3830448389053345,
1.096211314201355,
0.5801457762718201,
0.888938307762146,
0.2365647405385971,
0.3958265483379364,
0.2629709243774414,
0.1961769163608551,
-0.7724468111991882,
0.2661250829696655,
-0.4532729387283325,
-0.7155588865280151,
-0.020633988082408905,
-0.1748606264591217,
-0.6514853239059448,
0.1075025200843811,
-0.10914090275764465,
-0.6882930397987366,
0.4045868217945099,
0.1898970752954483,
-0.05275716632604599,
0.6858697533607483,
-0.6222973465919495,
1.150444746017456,
0.004355864133685827,
0.03835763409733772,
0.07825036346912384,
-0.3908681571483612,
0.7772188186645508,
0.26893919706344604,
-0.05828416720032692,
-0.1786707192659378,
-0.07880496233701706,
0.6859641075134277,
-0.7633281350135803,
0.7866163849830627,
0.188141331076622,
0.23887746036052704,
0.6355639696121216,
0.30365419387817383,
0.23253732919692993,
0.26606833934783936,
0.13391736149787903,
0.2574837803840637,
0.33377987146377563,
0.25089332461357117,
-0.32862022519111633,
0.7794128656387329,
-0.8125064969062805,
0.1268022060394287,
-0.2974852919578552,
-0.27081090211868286,
0.5260952711105347,
0.17505797743797302,
0.7863596677780151,
0.9538444876670837,
-0.39493054151535034,
0.2587401270866394,
0.6413559317588806,
-0.2673524022102356,
0.3624882698059082,
0.3599802255630493,
-0.7190951704978943,
-0.9876983761787415,
0.9855778217315674,
0.05225500464439392,
0.33640673756599426,
0.4330483376979828,
0.34883224964141846,
-0.14369100332260132,
-0.11850211024284363,
-0.9971848726272583,
0.2686328589916229,
-0.9848200082778931,
-0.38099196553230286,
-0.3863072395324707,
-0.4824092388153076,
-0.5484509468078613,
-0.010545764118432999,
-0.7600207328796387,
-0.6870248913764954,
-0.5740271210670471,
0.15262150764465332,
0.8146624565124512,
0.9875813722610474,
-0.0802701786160469,
0.3770177960395813,
-1.283784031867981,
0.33087724447250366,
0.3454953134059906,
0.15904635190963745,
-0.06299613416194916,
-0.34860965609550476,
-0.3121502697467804,
-0.01180040929466486,
-0.6267527937889099,
-1.146289348602295,
0.7713226079940796,
0.19367615878582,
0.4889978766441345,
0.41858357191085815,
0.12162495404481888,
0.2715702950954437,
-0.3773483633995056,
0.787885844707489,
0.42473965883255005,
-0.9187185764312744,
0.8631033301353455,
-0.696222722530365,
0.4806577265262604,
0.13636630773544312,
0.3901558518409729,
-0.3619871437549591,
-0.14985038340091705,
-0.42811912298202515,
-0.9239579439163208,
0.713394045829773,
0.41934940218925476,
-0.2490847408771515,
0.13805197179317474,
0.34700679779052734,
0.080375537276268,
0.03366265073418617,
-0.6180490255355835,
-0.1687391847372055,
-0.6329370737075806,
-0.22931361198425293,
0.5435420870780945,
-0.4728684425354004,
-0.3217308819293976,
-0.10207530856132507,
0.7139108180999756,
-0.24329742789268494,
0.47227391600608826,
0.5550937652587891,
-0.3677230179309845,
-0.19246754050254822,
0.08465579897165298,
0.478141188621521,
0.518521249294281,
-0.3166337013244629,
-0.213592991232872,
-0.3327244520187378,
-0.5914096236228943,
-0.04645019397139549,
-0.1262119710445404,
-0.48666033148765564,
0.24346745014190674,
0.17582449316978455,
1.1856352090835571,
0.6344302296638489,
-0.7054158449172974,
0.6480810046195984,
0.019332215189933777,
-0.13436563313007355,
-0.3966626822948456,
-0.12428808957338333,
-0.12693531811237335,
0.26018714904785156,
0.025375965982675552,
0.38050833344459534,
0.4503931403160095,
-0.6521643996238708,
0.30867329239845276,
-0.07200115919113159,
-0.8240931630134583,
-0.715186357498169,
0.6062730550765991,
0.2106344997882843,
-0.3363046944141388,
0.5371860861778259,
0.0980265811085701,
-0.697299599647522,
0.8823577165603638,
0.7477262616157532,
0.9879223108291626,
-0.11359692364931107,
0.41364094614982605,
0.6473854780197144,
0.2671242356300354,
-0.09687643498182297,
0.5120079517364502,
-0.004615314770489931,
-0.6501023173332214,
-0.1331956386566162,
-0.5173302292823792,
-0.6534818410873413,
-0.15257516503334045,
-0.7265483140945435,
0.5318481922149658,
-0.6168500781059265,
-0.32521748542785645,
-0.10320053994655609,
-0.7907756567001343,
-0.5278234481811523,
0.07178132981061935,
0.1984376162290573,
1.1327457427978516,
-0.6282780766487122,
0.8942879438400269,
1.027563452720642,
-0.623490571975708,
-0.7238380908966064,
-0.3495388925075531,
0.24783284962177277,
-0.4935968518257141,
0.5001027584075928,
0.21914756298065186,
0.25740259885787964,
-0.09840419143438339,
-0.5238070487976074,
-0.9608595967292786,
0.9304991364479065,
0.5689787864685059,
-0.3067961037158966,
0.11978783458471298,
-0.143605574965477,
0.28486984968185425,
-0.7369278073310852,
0.4958965480327606,
-0.05415719002485275,
0.20005634427070618,
0.003454818157479167,
-0.8635570406913757,
0.12298999726772308,
-0.4378427267074585,
0.25827300548553467,
0.048601653426885605,
-0.5246036648750305,
1.3008151054382324,
-0.007730009499937296,
-0.07144637405872345,
0.4849390983581543,
0.3107169568538666,
0.32208937406539917,
0.03140608221292496,
0.2475392371416092,
0.6163906455039978,
-0.03693966194987297,
-0.11403623968362808,
1.1377739906311035,
-0.008013726212084293,
0.33553218841552734,
1.1028445959091187,
0.03435166925191879,
0.9872254133224487,
0.3954635262489319,
0.08746876567602158,
0.6463882327079773,
0.8361857533454895,
-0.2592686414718628,
0.6326307654380798,
-0.0630582943558693,
0.12305884808301926,
-0.015372528694570065,
-0.14430348575115204,
-0.5329230427742004,
0.2609275281429291,
0.2540538012981415,
-0.6583780646324158,
-0.07715252786874771,
0.2802320420742035,
-0.26211169362068176,
-0.19109779596328735,
-0.5095548629760742,
0.5853575468063354,
0.12594321370124817,
-0.5378291010856628,
0.29094383120536804,
-0.0948975458741188,
0.6652077436447144,
-0.7569381594657898,
-0.22310470044612885,
0.23330111801624298,
0.34560301899909973,
-0.05200023204088211,
-1.1036136150360107,
0.7799429893493652,
-0.14805307984352112,
-0.33130139112472534,
-0.08247170597314835,
1.2846083641052246,
-0.3873189091682434,
-0.3098612427711487,
0.4318402111530304,
0.2579297721385956,
0.3168940246105194,
-0.36701828241348267,
-0.6871011257171631,
0.2263817936182022,
-0.05889567360281944,
-0.3023858666419983,
0.2912929058074951,
0.3888242542743683,
-0.1970083862543106,
0.554110586643219,
0.6015996336936951,
-0.18529723584651947,
0.24992790818214417,
0.2984775900840759,
1.0740318298339844,
-0.7161697745323181,
-0.6747531294822693,
-0.5908504128456116,
0.6347588300704956,
-0.15988638997077942,
-0.8916076421737671,
0.759265124797821,
0.6653750538825989,
0.5208553075790405,
-0.7899073958396912,
0.6500747203826904,
-0.2072702944278717,
0.26167380809783936,
-0.5545152425765991,
1.1466734409332275,
-0.7241263389587402,
-0.2864762842655182,
-0.35818102955818176,
-0.9487659335136414,
-0.033058714121580124,
0.42767035961151123,
0.3351532816886902,
-0.869551420211792,
0.3695196509361267,
0.7499285936355591,
-0.3636622428894043,
0.13174402713775635,
0.3264583349227905,
-0.06344512850046158,
-0.04807557910680771,
0.15188458561897278,
0.8304719924926758,
-0.9689111709594727,
0.5590978860855103,
-0.43842026591300964,
-0.03194745257496834,
-0.13777770102024078,
-0.7080827355384827,
-1.1878740787506104,
-0.5289794206619263,
-0.24797266721725464,
-0.47496747970581055,
0.045521948486566544,
0.8654227256774902,
1.104507327079773,
-0.8736872673034668,
-0.3620803952217102,
0.03288741782307625,
0.056139688938856125,
0.2063005268573761,
-0.19409188628196716,
0.05170385539531708,
0.34459543228149414,
-0.5834295153617859,
0.23962725698947906,
0.26495203375816345,
0.4102065861225128,
-0.46585482358932495,
-0.3263747990131378,
0.014439231716096401,
-0.10110215097665787,
0.36753392219543457,
0.5789048075675964,
-0.7075904011726379,
-0.11049913614988327,
0.21473170816898346,
-0.15480078756809235,
0.2665034234523773,
0.9151797890663147,
-0.5002568364143372,
0.5409187078475952,
1.068069577217102,
0.48163914680480957,
0.716486930847168,
-0.2874089479446411,
0.93946373462677,
-0.6914093494415283,
0.3886352777481079,
-0.14978797733783722,
0.6490011215209961,
0.38974863290786743,
-0.28561678528785706,
0.6845998764038086,
0.2750769853591919,
-0.5787608027458191,
-0.7758431434631348,
0.1702459454536438,
-1.091519832611084,
-0.17565782368183136,
1.013792634010315,
-0.6183414459228516,
-0.8837469220161438,
0.24419522285461426,
-0.4260129928588867,
0.3323611915111542,
-0.5793171525001526,
-0.019557015970349312,
0.4275323748588562,
0.5466536283493042,
-0.658772885799408,
-0.5117582082748413,
0.2695256769657135,
-0.30108270049095154,
-0.714066207408905,
-0.48225095868110657,
0.07600060850381851,
0.4256053566932678,
0.4911988377571106,
0.4870986342430115,
-0.33270514011383057,
0.41771382093429565,
0.28269660472869873,
0.5730712413787842,
-0.21738001704216003,
-0.33645105361938477,
-0.10209402441978455,
-0.10080224275588989,
-0.45002928376197815,
-0.6464839577674866
] |
camenduru/AnimateDiff | camenduru | "2023-09-27T01:37:57Z" | 125,054 | 17 | diffusers | [
"diffusers",
"region:us"
] | null | "2023-07-11T04:22:11Z" | Entry not found | [
-0.3227650225162506,
-0.22568431496620178,
0.862226128578186,
0.43461495637893677,
-0.5282987952232361,
0.7012965679168701,
0.7915717363357544,
0.07618638128042221,
0.7746025919914246,
0.2563219666481018,
-0.7852817177772522,
-0.22573819756507874,
-0.9104480743408203,
0.5715669393539429,
-0.3992334008216858,
0.5791245698928833,
-0.14494505524635315,
-0.10751161724328995,
0.28233757615089417,
-0.2768954336643219,
-0.5409224033355713,
-0.36855220794677734,
-1.1902776956558228,
0.061491113156080246,
0.5316578149795532,
0.7435142397880554,
0.7584060430526733,
0.3652167320251465,
0.6432578563690186,
0.3932291269302368,
-0.23138920962810516,
0.4827055037021637,
-0.04171813279390335,
0.00260411505587399,
-0.3524433970451355,
-0.5516898036003113,
-0.28596609830856323,
0.07584730535745621,
1.0961304903030396,
0.966687798500061,
-0.284663587808609,
0.05330817773938179,
-0.3063621520996094,
0.33088892698287964,
-0.49734312295913696,
0.3054099678993225,
-0.022506045177578926,
0.16318801045417786,
-0.7041513919830322,
-0.5535354018211365,
0.012794834561645985,
-0.7361212968826294,
0.17926570773124695,
-0.690081000328064,
0.8269098401069641,
0.18583157658576965,
1.1533750295639038,
0.14819414913654327,
-0.462487131357193,
-0.8161764144897461,
-0.6538989543914795,
0.5711171627044678,
-0.32703715562820435,
0.39680248498916626,
0.7028235197067261,
-0.048573412001132965,
-0.9820332527160645,
-0.6745741367340088,
-0.46466192603111267,
0.2923962473869324,
0.35402774810791016,
-0.3411678075790405,
-0.17522086203098297,
-0.3058989644050598,
0.15792037546634674,
0.12811517715454102,
-0.4841994643211365,
-0.5543919205665588,
-0.5475160479545593,
-0.3960252106189728,
0.6206658482551575,
0.3482950031757355,
0.2429177463054657,
-0.1888415813446045,
-0.3228583335876465,
0.0880163162946701,
-0.4160851538181305,
0.3402571678161621,
0.6335517168045044,
0.7114017009735107,
-0.5811444520950317,
0.560215950012207,
-0.04927587881684303,
0.7439703941345215,
0.11445561796426773,
-0.27478092908859253,
0.41460567712783813,
-0.14724725484848022,
0.055171746760606766,
0.4226345121860504,
0.31524422764778137,
0.2841312289237976,
-0.3273695111274719,
0.2032228708267212,
-0.3215144872665405,
-0.30496224761009216,
-0.22332167625427246,
-0.29490774869918823,
-0.3592180609703064,
0.5492289066314697,
-0.3314017057418823,
-0.42855486273765564,
1.143175721168518,
-0.4200771450996399,
-0.7302224040031433,
0.33156412839889526,
0.4065209925174713,
-0.0994480773806572,
-0.37146568298339844,
-0.052260834723711014,
-0.8458789587020874,
-0.007907390594482422,
0.7491172552108765,
-0.7198970913887024,
0.3371737599372864,
0.4728063642978668,
0.7417217493057251,
0.19650575518608093,
-0.14034469425678253,
-0.42949390411376953,
0.2971969544887543,
-0.8659994006156921,
0.6320174336433411,
-0.20135220885276794,
-1.0051977634429932,
0.11150479316711426,
0.8971705436706543,
-0.37896400690078735,
-1.2094876766204834,
1.0605159997940063,
-0.6887932419776917,
0.16017857193946838,
-0.676761269569397,
-0.14661237597465515,
-0.07118501514196396,
-0.005096632521599531,
-0.6088156700134277,
0.7567102313041687,
0.587267279624939,
-0.4995276927947998,
0.21429483592510223,
-0.26029831171035767,
-0.39151400327682495,
0.38824859261512756,
-0.07935450226068497,
-0.21858926117420197,
0.713833212852478,
-0.6647079586982727,
-0.26932814717292786,
0.2942774295806885,
0.2368936538696289,
-0.35706108808517456,
-0.7931919097900391,
0.08478113263845444,
-0.05786270648241043,
1.550750494003296,
-0.03868847340345383,
-0.3586106300354004,
-0.679383397102356,
-1.1506240367889404,
-0.07070787996053696,
0.6886883974075317,
-0.9194989204406738,
-0.27839475870132446,
-0.046410128474235535,
-0.26169314980506897,
0.08994917571544647,
0.7390589714050293,
-1.1194051504135132,
0.2832726836204529,
-0.05092663690447807,
-0.22794683277606964,
0.8271058797836304,
0.15387225151062012,
0.24758946895599365,
0.14913396537303925,
0.42958706617355347,
0.527725338935852,
0.11115207523107529,
0.683587908744812,
-0.34720373153686523,
-0.9694353938102722,
0.6154631972312927,
0.25266361236572266,
0.8121447563171387,
-0.49945297837257385,
0.2685093879699707,
0.27025535702705383,
-0.3409680724143982,
-0.5682371854782104,
-0.3102838397026062,
0.09025752544403076,
0.14930562674999237,
0.11142510175704956,
-0.5721710324287415,
-0.6576125025749207,
-0.9689140319824219,
-0.13590654730796814,
-0.4314374029636383,
-0.3571570813655853,
0.21006910502910614,
0.5792906284332275,
-1.1975523233413696,
0.4128875136375427,
-0.7705625891685486,
-0.7038741111755371,
-0.01065548975020647,
-0.19338123500347137,
0.7540656328201294,
0.43240174651145935,
0.5033966898918152,
-0.6397148370742798,
-0.5661987066268921,
-0.22470176219940186,
-1.0333747863769531,
-0.13280506432056427,
0.24819621443748474,
0.3065737783908844,
-0.13423344492912292,
-0.2744963765144348,
-0.48740333318710327,
0.8100387454032898,
0.14789170026779175,
-0.5391897559165955,
0.5220767259597778,
-0.3020317256450653,
0.17224803566932678,
-0.6369150280952454,
-0.06916818022727966,
-0.661676287651062,
-0.0009071884560398757,
-0.3608308732509613,
-0.5737438797950745,
0.14772287011146545,
0.07017494738101959,
-0.16065457463264465,
0.28808408975601196,
-0.909277081489563,
-0.0010852962732315063,
-0.7442210912704468,
0.379071980714798,
0.06394772231578827,
-0.3145078718662262,
-0.017517540603876114,
1.0000386238098145,
0.7784460783004761,
-0.3848048746585846,
0.721744179725647,
0.4440041184425354,
0.19036155939102173,
0.7630521059036255,
-0.18725109100341797,
0.16478213667869568,
-0.5245416760444641,
-0.12161104381084442,
-0.8887597918510437,
-1.0982946157455444,
0.7320570349693298,
-0.6114250421524048,
0.36542922258377075,
-0.4277869760990143,
0.2589159905910492,
-0.6919258832931519,
-0.03885362669825554,
0.4808599352836609,
-0.05936325341463089,
-0.6863942742347717,
0.5232570171356201,
0.45317530632019043,
-0.2019241601228714,
-0.6609031558036804,
-0.530157208442688,
0.39365822076797485,
0.6154114007949829,
-0.16390392184257507,
0.06878514587879181,
0.14941060543060303,
-0.5441926121711731,
-0.040802597999572754,
-0.38691970705986023,
-0.45766758918762207,
0.054224006831645966,
0.13053473830223083,
-0.005750799085944891,
-0.404820054769516,
-0.0868026465177536,
-0.35842007398605347,
-0.4656120240688324,
0.21876516938209534,
0.3011947274208069,
-0.04096309468150139,
-0.42599788308143616,
-0.3619818687438965,
-0.888181209564209,
0.6719610095024109,
0.5370282530784607,
0.05281545966863632,
0.7555549740791321,
0.16819314658641815,
-0.8014987707138062,
-0.13532210886478424,
-0.1760706603527069,
0.2696830928325653,
-0.5588056445121765,
0.13849826157093048,
-0.013484534807503223,
-0.0637492910027504,
0.26297882199287415,
0.25386232137680054,
-0.4300556778907776,
0.9276250004768372,
-0.2615274488925934,
-0.3592521846294403,
0.7960181832313538,
0.5974742770195007,
0.49583131074905396,
0.16503219306468964,
-0.044541798532009125,
0.900709331035614,
-1.1966516971588135,
-0.6563175916671753,
-0.7409549355506897,
-0.15945707261562347,
-0.43510833382606506,
-0.032105933874845505,
0.6254412531852722,
0.2900990843772888,
-0.1333388388156891,
0.4756395220756531,
-0.5243489742279053,
0.3556033670902252,
1.01198410987854,
0.35748639702796936,
0.3435698449611664,
-0.7570229172706604,
-0.2515777349472046,
-0.1402427852153778,
-0.9998157620429993,
-0.2631377875804901,
0.8871029019355774,
0.22752606868743896,
0.844460666179657,
0.5992541313171387,
0.6784542798995972,
0.1367226243019104,
0.2523828148841858,
-0.30590319633483887,
0.3920294940471649,
0.4376082420349121,
-1.0401138067245483,
-0.42758408188819885,
0.021418681368231773,
-0.9703338742256165,
-0.14227519929409027,
-0.03495011106133461,
-0.42617112398147583,
0.7681737542152405,
0.00016589462757110596,
-0.4076709747314453,
0.7732734084129333,
-0.455583393573761,
0.7562873363494873,
-0.4473648965358734,
-0.02663906291127205,
0.4699096083641052,
-0.7070636749267578,
0.4677430987358093,
0.12878790497779846,
0.6205843091011047,
-0.015572631731629372,
-0.04078587517142296,
0.7104941606521606,
-0.9129160046577454,
0.25438642501831055,
-0.6348397135734558,
0.22421300411224365,
0.24246945977210999,
0.51606285572052,
0.5969953536987305,
0.4371243417263031,
0.10119888931512833,
-0.23920902609825134,
0.04115807265043259,
-0.8241125345230103,
-0.210506409406662,
0.697515606880188,
-0.7186890840530396,
-0.6864197850227356,
-1.2355337142944336,
0.14438660442829132,
0.27347055077552795,
0.389305055141449,
0.7959296107292175,
0.571408748626709,
0.1289544403553009,
0.680525004863739,
0.9888588190078735,
-0.0688566341996193,
0.9166924357414246,
0.3224477171897888,
0.09175168722867966,
-0.21944808959960938,
0.7036820650100708,
0.26627904176712036,
-0.24707956612110138,
-0.11939732730388641,
0.20913465321063995,
-0.11069409549236298,
-0.591761589050293,
-0.49990686774253845,
0.3701757788658142,
-0.6731787919998169,
-0.18303893506526947,
-0.6243735551834106,
-0.6043769717216492,
-0.511759340763092,
0.06927360594272614,
-0.7147687673568726,
0.23979046940803528,
-0.7753565907478333,
-0.10574902594089508,
0.04323432594537735,
0.9792009592056274,
-0.589311957359314,
0.5805224180221558,
-1.1218582391738892,
0.19345788657665253,
-0.07949887961149216,
0.7921058535575867,
0.21395787596702576,
-0.7344395518302917,
-0.3975418508052826,
-0.11592631042003632,
-0.3729911744594574,
-1.3576762676239014,
0.21404948830604553,
-0.2454141080379486,
0.23094046115875244,
0.6145404577255249,
0.1397707313299179,
0.5258248448371887,
-0.34326282143592834,
0.7029101848602295,
-0.057017259299755096,
-0.7069286704063416,
0.7934495210647583,
-0.5026894807815552,
0.4963534474372864,
0.9765996932983398,
0.5333835482597351,
-0.7984007596969604,
0.035741209983825684,
-1.041123390197754,
-0.6008695363998413,
0.38426393270492554,
0.11928944289684296,
-0.03601083159446716,
-0.6659559011459351,
-0.054019637405872345,
-0.16143807768821716,
0.6043745279312134,
-1.039069414138794,
-0.7858356237411499,
0.2576698362827301,
0.5277302861213684,
0.0816856250166893,
-0.5653398633003235,
0.20880667865276337,
-0.544416069984436,
1.0657774209976196,
0.45109400153160095,
0.3274499475955963,
0.8406060934066772,
0.46492424607276917,
-0.3823164403438568,
0.09252490103244781,
0.7662695050239563,
0.6666232347488403,
-0.5239797830581665,
-0.2908027470111847,
-0.08827541768550873,
-0.9143403768539429,
0.05927472561597824,
0.11168918758630753,
-0.013455932028591633,
0.9082110524177551,
0.5793083310127258,
0.2539709210395813,
0.4514279365539551,
-0.726460337638855,
0.8859451413154602,
-0.14954176545143127,
-0.12472866475582123,
-1.0677239894866943,
0.1948619782924652,
-0.23984959721565247,
0.5006402134895325,
1.0061326026916504,
0.5250048041343689,
-0.047630298882722855,
-0.8143380880355835,
-0.01473585981875658,
0.6939172148704529,
-0.7091123461723328,
-0.17449834942817688,
0.944853663444519,
0.3847099542617798,
-1.2953051328659058,
1.106776475906372,
-0.5381771326065063,
-0.560332179069519,
0.9121301770210266,
0.522956907749176,
1.1221847534179688,
-0.44204121828079224,
0.0008676342549733818,
0.2662237286567688,
0.41378432512283325,
0.5423170328140259,
1.0869629383087158,
0.431413471698761,
-0.7931063771247864,
0.8826584815979004,
-0.24776044487953186,
-0.40361151099205017,
-0.05347571521997452,
-0.42859897017478943,
0.16892178356647491,
-0.4406192898750305,
-0.10713007301092148,
-0.3444187641143799,
0.28543180227279663,
-0.7072042226791382,
0.42807620763778687,
-0.0838567465543747,
0.8653068542480469,
-0.8553727269172668,
0.47207626700401306,
0.635470449924469,
-0.3337355852127075,
-0.8508191108703613,
-0.26198428869247437,
-0.11448462307453156,
-0.6389466524124146,
0.30214807391166687,
-0.4554102420806885,
0.044398851692676544,
0.09623463451862335,
-0.649151623249054,
-1.1778275966644287,
0.9093633890151978,
-0.639612078666687,
-0.2784462869167328,
0.20464053750038147,
-0.11514760553836823,
0.28811705112457275,
-0.2524643540382385,
0.010661216452717781,
0.41876548528671265,
0.748940110206604,
0.2844654619693756,
-0.7727053761482239,
-0.3694884479045868,
0.0015032943338155746,
-0.44474777579307556,
0.7582978010177612,
-0.6002101898193359,
1.1840779781341553,
-0.5563543438911438,
-0.059654366225004196,
0.44384512305259705,
0.24690914154052734,
0.21076197922229767,
0.6629220843315125,
0.1442081481218338,
0.7282265424728394,
1.07012140750885,
-0.40835219621658325,
0.8811809420585632,
0.26432839035987854,
0.47430819272994995,
0.7238501906394958,
-0.6487724781036377,
0.7513749003410339,
0.31810489296913147,
-0.5682924389839172,
0.9228013753890991,
1.2906063795089722,
-0.15699204802513123,
0.8079374432563782,
0.05136508867144585,
-1.081600546836853,
0.325833261013031,
-0.20724765956401825,
-0.7530064582824707,
0.3150254189968109,
0.19055864214897156,
-0.6920982599258423,
-0.5770308971405029,
-0.24046507477760315,
-0.35662803053855896,
-0.11552901566028595,
-0.7631728649139404,
0.6720563769340515,
-0.016969164833426476,
-0.5103683471679688,
0.18857547640800476,
0.2877499461174011,
0.17368432879447937,
-0.5235732793807983,
-0.02939440682530403,
-0.22823619842529297,
0.2660655975341797,
-0.5670853853225708,
-0.5234526991844177,
0.5724433064460754,
-0.32430219650268555,
-0.5343255400657654,
0.18147465586662292,
0.763587236404419,
-0.16923809051513672,
-0.4515409469604492,
0.32472723722457886,
0.6959525346755981,
0.1665852814912796,
0.4250282347202301,
-0.23511263728141785,
0.24480605125427246,
-0.08044824004173279,
-0.06651552021503448,
0.27714768052101135,
0.3449169099330902,
0.22435641288757324,
0.4450142979621887,
0.43285664916038513,
-0.01808755099773407,
-0.10736498981714249,
-0.382819801568985,
0.4124940037727356,
-0.9542785882949829,
-0.5713282823562622,
-0.6307113766670227,
0.2740660607814789,
-0.02315417304635048,
-1.0836423635482788,
0.4145168364048004,
1.4406683444976807,
1.0359982252120972,
-0.4756383001804352,
1.067226529121399,
-0.21818485856056213,
0.9594791531562805,
0.41483086347579956,
0.5420440435409546,
-0.6030411720275879,
0.03835370019078255,
-0.4364396035671234,
-1.076962947845459,
-0.35716333985328674,
0.4539391100406647,
-0.022899555042386055,
-0.3429867625236511,
0.872571587562561,
0.5887166261672974,
-0.33473607897758484,
-0.11728022992610931,
0.048487238585948944,
-0.029941488057374954,
-0.12433847039937973,
0.5145376324653625,
0.7648399472236633,
-0.9344304800033569,
-0.10680416971445084,
-0.21577754616737366,
-0.6382725834846497,
-0.5047279000282288,
-0.9632009267807007,
-0.12959396839141846,
-0.16037796437740326,
0.035343267023563385,
-0.5662806630134583,
0.00255737011320889,
1.208324909210205,
0.5684957504272461,
-1.1113994121551514,
-0.5303789377212524,
0.3371853232383728,
0.3920421898365021,
-0.1874791383743286,
-0.24202413856983185,
0.2984568774700165,
0.15382249653339386,
-0.5908876657485962,
0.6875665783882141,
0.8089625239372253,
0.208888977766037,
0.19554761052131653,
0.15893013775348663,
-0.8229473829269409,
-0.14913435280323029,
0.17440445721149445,
0.9450570344924927,
-0.939853310585022,
-0.7114843130111694,
-0.03168516233563423,
-0.27094873785972595,
-0.05765746906399727,
0.17102102935314178,
-0.4046344757080078,
0.5180677175521851,
0.34591493010520935,
0.49933457374572754,
0.0561608150601387,
-0.054746925830841064,
0.5409556031227112,
-0.9069057703018188,
0.09425963461399078,
0.4134361147880554,
0.4154115319252014,
-0.4000864028930664,
-0.5910194516181946,
0.6713420748710632,
1.0073972940444946,
-0.6594868898391724,
-0.8743268847465515,
-0.19846712052822113,
-1.0016002655029297,
0.04189709946513176,
0.6762762069702148,
0.5009527802467346,
-0.4806513786315918,
-0.4174500107765198,
-0.5617399215698242,
-0.1254672110080719,
-0.1369970738887787,
0.7621601819992065,
1.179680585861206,
-0.7432094812393188,
0.07975747436285019,
-1.038639783859253,
0.6594986915588379,
-0.2419457733631134,
-0.3457581698894501,
-0.48644304275512695,
0.3832802176475525,
0.35236993432044983,
0.440481036901474,
0.614812433719635,
0.1408471167087555,
0.8338426351547241,
0.3126053214073181,
-0.1702686995267868,
0.2698982357978821,
-0.4559200704097748,
-0.028932858258485794,
-0.057962555438280106,
0.31015971302986145,
-1.0262157917022705
] |