language:
- ar
task_categories:
- automatic-speech-recognition
- text-to-speech
- text-to-audio
license: cc-by-4.0
version: 1
dataset_info:
- config_name: default
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
- config_name: ApprendreLeTunisienVCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 848053745.75
num_examples: 6146
download_size: 798703655
dataset_size: 848053745.75
- config_name: MASCNoiseLess
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 899534814
num_examples: 48
download_size: 779814839
dataset_size: 899534814
- config_name: MASC_NoiseLess_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 6296721494
num_examples: 336
download_size: 5217710107
dataset_size: 6296721494
- config_name: OneStoryVCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 1070456874
num_examples: 216
download_size: 1006929556
dataset_size: 1070456874
- config_name: TunSwitchCS_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 16206738130.134
num_examples: 37639
download_size: 18867420765
dataset_size: 16206738130.134
- config_name: TunSwitchTO_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 5925270364.08
num_examples: 15365
download_size: 5235538863
dataset_size: 5925270364.08
- config_name: Youtube_AbdelAzizErwi_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 39021114751
num_examples: 125
download_size: 30061308054
dataset_size: 39021114751
- config_name: Youtube_BayariBilionaireVCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 565584490
num_examples: 30
download_size: 555263280
dataset_size: 565584490
- config_name: Youtube_DiwanFM_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 12123804326
num_examples: 252
download_size: 11965432173
dataset_size: 12123804326
- config_name: Youtube_HkeyetTounsiaMensia_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 3883139384
num_examples: 35
download_size: 3802885881
dataset_size: 3883139384
- config_name: Youtube_LobnaMajjedi_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 2126325798
num_examples: 14
download_size: 2045365871
dataset_size: 2126325798
- config_name: Youtube_MohamedKhammessi_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 3849873729
num_examples: 14
download_size: 3802956958
dataset_size: 3849873729
- config_name: Youtube_Shorts_VCA
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 8399398140
num_examples: 945
download_size: 8278146449
dataset_size: 8399398140
- config_name: Youtube_TNScrappedNoiseLess_V1
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 465311776
num_examples: 52
download_size: 429334774
dataset_size: 465311776
- config_name: Youtube_TNScrapped_NoiseLess_VCA_V1
features:
- name: audio_id
dtype: string
- name: audio
dtype: audio
- name: segments
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: transcript
dtype: string
- name: transcript
dtype: string
splits:
- name: train
num_bytes: 8972747522
num_examples: 364
download_size: 7560689256
dataset_size: 8972747522
configs:
- config_name: default
default: true
data_files:
- split: train
path: data/*/train/train-*
- config_name: ApprendreLeTunisienVCA
data_files:
- split: train
path: data/ApprendreLeTunisien_VCA/train/train-*
- config_name: MASCNoiseLess
data_files:
- split: train
path: data/MASC_NoiseLess/train/train-*
- config_name: MASC_NoiseLess_VCA
data_files:
- split: train
path: data/MASC_NoiseLess_VCA/train/train-*
- config_name: OneStoryVCA
data_files:
- split: train
path: data/OneStory_VCA/train/train-*
- config_name: TunSwitchCS_VCA
data_files:
- split: train
path: data/TunSwitchCS_VCA/train/train-*
- config_name: TunSwitchTO_VCA
data_files:
- split: train
path: data/TunSwitchTO_VCA/train/train-*
- config_name: Youtube_AbdelAzizErwi_VCA
data_files:
- split: train
path: data/Youtube_AbdelAzizErwi_VCA/train/train-*
- config_name: Youtube_BayariBilionaireVCA
data_files:
- split: train
path: data/Youtube_BayariBilionaire_VCA/train/train-*
- config_name: Youtube_DiwanFM_VCA
data_files:
- split: train
path: data/Youtube_DiwanFM_VCA/train/train-*
- config_name: Youtube_HkeyetTounsiaMensia_VCA
data_files:
- split: train
path: data/Youtube_HkeyetTounsiaMensia_VCA/train/train-*
- config_name: Youtube_LobnaMajjedi_VCA
data_files:
- split: train
path: data/Youtube_LobnaMajjedi_VCA/train/train-*
- config_name: Youtube_MohamedKhammessi_VCA
data_files:
- split: train
path: data/Youtube_MohamedKhammessi_VCA/train/train-*
- config_name: Youtube_Shorts_VCA
data_files:
- split: train
path: data/Youtube_Shorts_VCA/train/train-*
- config_name: Youtube_TNScrappedNoiseLess_V1
data_files:
- split: train
path: data/Youtube_TNScrapped_V1_NoiseLess/train/train-*
- config_name: Youtube_TNScrapped_NoiseLess_VCA_V1
data_files:
- split: train
path: data/Youtube_TNScrapped_V1_NoiseLess_VCA/train/train-*
LinTO DataSet Audio for Arabic Tunisian Augmented v0.1
A collection of Tunisian dialect audio and its annotations for STT task
This is the augmented datasets used to train the Linto Tunisian dialect with code-switching STT linagora/linto-asr-ar-tn-0.1.
Dataset Summary
The LinTO DataSet Audio for Arabic Tunisian Augmented v0.1 is a dataset that builds on LinTO DataSet Audio for Arabic Tunisian v0.1, using a subset of the original audio data. Augmentation techniques, including noise reduction and SoftVC VITS Singing Voice Conversion (SVC), have been applied to enhance the dataset for improved performance in Arabic Tunisian Automatic Speech Recognition (ASR) tasks.
Dataset Composition:
The LinTO DataSet Audio for Arabic Tunisian Augmented v0.1 comprises a diverse range of augmented audio samples using different techniques. Below is a breakdown of the dataset’s composition:
Sources
subset | audio duration | labeled audio duration | # audios | # segments | # words | # characters |
---|---|---|---|---|---|---|
ApprendreLeTunisienVCA | 2h 40m 6s | 2h 40m 6s | 6146 | 6146 | 8078 | 36687 |
MASCNoiseLess | 2h 49m 56s | 1h 38m 17s | 48 | 1742 | 11909 | 59876 |
MASC_NoiseLess_VCA | 19h 49m 31s | 11h 27m 59s | 336 | 12194 | 83377 | 411999 |
OneStoryVCA | 9h 16m 51s | 9h 7m 32s | 216 | 2964 | 73962 | 341670 |
TunSwitchCS_VCA | 59h 39m 10s | 59h 39m 10s | 37639 | 37639 | 531727 | 2760268 |
TunSwitchTO_VCA | 18h 57m 34s | 18h 57m 34s | 15365 | 15365 | 129304 | 659295 |
Youtube_AbdelAzizErwi_VCA | 122h 51m 1s | 109h 32m 39s | 125 | 109700 | 657720 | 3117170 |
Youtube_BayariBilionaireVCA | 4h 54m 8s | 4h 35m 25s | 30 | 5400 | 39065 | 199155 |
Youtube_DiwanFM_VCA | 38h 10m 6s | 28h 18m 58s | 252 | 32690 | 212170 | 1066464 |
Youtube_HkeyetTounsiaMensia_VCA | 12h 13m 29s | 9h 53m 22s | 35 | 10626 | 73696 | 360990 |
Youtube_LobnaMajjedi_VCA | 6h 41m 38s | 6h 12m 31s | 14 | 6202 | 42938 | 211512 |
Youtube_MohamedKhammessi_VCA | 12h 7m 8s | 10h 58m 21s | 14 | 12775 | 92512 | 448987 |
Youtube_Shorts_VCA | 26h 26m 25s | 23h 45m 58s | 945 | 14154 | 201138 | 1021713 |
Youtube_TNScrappedNoiseLess_V1 | 4h 2m 9s | 2h 33m 30s | 52 | 2538 | 18777 | 92530 |
Youtube_TNScrapped_NoiseLess_VCA_V1 | 28h 15m 1s | 17h 54m 32s | 364 | 17766 | 132587 | 642292 |
TOTAL | 402h 47m 10s | 389h 43m 37s | 58129 | 276204 | 1311134 | 7405055 |
Data Proccessing:
- Noise Reduction: Applying techniques to minimize background noise and enhance audio clarity for better model performance. For this, we used Deezer Spleeter, a library with pretrained models, to separate vocals from music.
- Voice Conversion: Modifying speaker characteristics (e.g., pitch) through voice conversion techniques to simulate diverse speaker profiles and enrich the dataset. For this, we chose SoftVC VITS Singing Voice Conversion (SVC) to alter the original voices using 7 different pretrained models.
Content Types
- FootBall: Includes recordings of football news and reviews.
- Documentaries: Audio from documentaries about history and nature.
- Podcasts: Conversations and discussions from various podcast episodes.
- Authors: Audio recordings of authors reading or discussing different stories: horror, children's literature, life lessons, and others.
- Lessons: Learning resources for the Tunisian dialect.
- Others: Mixed recordings with various subjects.
Languages and Dialects
- Tunisian Arabic: The primary focus of the dataset, including Tunisian Arabic and some Modern Standard Arabic (MSA).
- French: Some instances of French code-switching.
- English: Some instances of English code-switching.
Characteristics
- Audio Duration: The dataset contains more than 317 hours of audio recordings.
- Segments Duration: This dataset contains segments, each with a duration of less than 30 seconds.
- Labeled Data: Includes annotations and transcriptions for a significant portion of the audio content.
Data Distribution
- Training Set: Includes a diverse range of augmented audio with 5 to 7 different voices, as well as noise reduction applied to two datasets.
Example use (python)
- Load the dataset in python:
from datasets import load_dataset
# dataset will be loaded as a DatasetDict of train and test
dataset = load_dataset("linagora/linto-dataset-audio-ar-tn-augmented-0.1")
Check the containt of dataset:
example = dataset['train'][0]
audio_array = example['audio']["array"]
segments = example['segments']
transcription = example['transcript']
print(f"Audio array: {audio_array}")
print(f"Segments: {segments}")
print(f"Transcription: {transcription}")
Example
Audio array: [0. 0. 0. ... 0. 0. 0.]
Transcription: أسبقية قبل أنا ما وصلت خممت فيه كيما باش نحكيو من بعد إلا ما أنا كإنطريبرنور كباعث مشروع صارولي برشا مشاكل فالجستين و صارولي مشاكل مع لعباد لي كانت موفرتلي اللوجسيل ولا اللوجسيل أوف لنيه ولا لوجسيل بيراتي
segments: [{'end': 14.113, 'start': 0.0, 'transcript': 'أسبقية قبل أنا ما وصلت خممت فيه كيما باش نحكيو من بعد إلا ما أنا كإنطريبرنور كباعث مشروع صارولي برشا مشاكل فالجستين و صارولي مشاكل مع لعباد لي كانت موفرتلي اللوجسيل ولا اللوجسيل أوف لنيه ولا لوجسيل بيراتي'}]
License
Given that some of the corpora used for training and evaluation are available only under CC-BY-4.0 licenses, we have chosen to license the entire dataset under CC-BY-4.0.
Citations
When using the LinTO DataSet Audio for Arabic Tunisian v0.1 corpus, please cite this page:
@misc{linagora2024Linto-tn,
author = {Hedi Naouara and Jérôme Louradour and Jean-Pierre Lorré and Sarah zribi and Wajdi Ghezaiel},
title = {LinTO DataSet Audio for Arabic Tunisian v0.1},
year = {2024},
publisher = {HuggingFace},
journal = {HuggingFace},
howpublished = {\url{https://huggingface.co/datasets/linagora/linto-dataset-audio-ar-tn-0.1}},
}
@misc{abdallah2023leveraging,
title={Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition},
author={Ahmed Amine Ben Abdallah and Ata Kabboudi and Amir Kanoun and Salah Zaiem},
year={2023},
eprint={2309.11327},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
@data{e1qb-jv46-21,
doi = {10.21227/e1qb-jv46},
url = {https://dx.doi.org/10.21227/e1qb-jv46},
author = {Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha},
publisher = {IEEE Dataport},
title = {MASC: Massive Arabic Speech Corpus},
year = {2021} }