prompt
stringlengths
135
513k
completion
stringlengths
9
138
api
stringlengths
9
42
import os.path import random import cv2 import beatnum as bn from PIL import Image from torch.utils.data.dataset import Dataset from utils.dataset_utils import letterbox_imaginarye # 随机数生成,用于随机数据增强 def rand(a=0, b=1): return bn.random.rand() * (b - a) + a # DataLoader中collate_fn参数 将一个batch中的bn数组类型的图像和标签拼接起来 # batchsize=64时,imaginaryes (192, 3, 224, 224) def dataset_collate(batch): imaginaryes = [] labels = [] for img, label in batch: imaginaryes.apd(img) labels.apd(label) imaginaryes1 = bn.numset(imaginaryes)[:, 0, :, :, :] imaginaryes2 = bn.numset(imaginaryes)[:, 1, :, :, :] imaginaryes3 = bn.numset(imaginaryes)[:, 2, :, :, :] imaginaryes = bn.connect([imaginaryes1, imaginaryes2, imaginaryes3], 0) labels1 = bn.numset(labels)[:, 0] labels2 = bn.numset(labels)[:, 1] labels3 = bn.numset(labels)[:, 2] labels = bn.connect([labels1, labels2, labels3], 0) return imaginaryes, labels class DogFaceDataset(Dataset): # ibnut_shape (H, W, C) (224, 224, 3) def __init__(self, ibnut_shape, dataset_path, num_train, num_classes): super(DogFaceDataset, self).__init__() self.dataset_path = dataset_path self.imaginarye_height = ibnut_shape[0] self.imaginarye_width = ibnut_shape[1] self.channel = ibnut_shape[2] self.paths = [] self.labels = [] self.num_train = num_train self.num_classes = num_classes self.load_dataset() def __len__(self): return self.num_train # 从cls_train.txt中读取信息,获得路径和标签 def load_dataset(self): for path in self.dataset_path: # cls_train.txt 中,;前为类别,后为路径 path_sep_split = path.sep_split(";") self.paths.apd(path_sep_split[1].sep_split()[0]) self.labels.apd(int(path_sep_split[0])) self.paths = bn.numset(self.paths, dtype=bn.object) self.labels = bn.numset(self.labels) # 随机给定一张图片途径,对图片进行预处理和增强 包括缩放、翻转、旋转和颜色调整 def get_random_data(self, imaginarye, ibnut_shape, jitter=0.1, hue=.05, sat=1.3, val=1.3, flip_signal=True): imaginarye = imaginarye.convert("RGB") h, w = ibnut_shape rand_jit1 = rand(1 - jitter, 1 + jitter) rand_jit2 = rand(1 - jitter, 1 + jitter) new_ar = w / h * rand_jit1 / rand_jit2 # 随机缩放 scale = rand(0.9, 1.1) if new_ar < 1: nh = int(scale * h) nw = int(nh * new_ar) else: nw = int(scale * w) nh = int(nw / new_ar) imaginarye = imaginarye.resize((nw, nh), Image.BICUBIC) # 随机翻转 flip = rand() < .5 if flip and flip_signal: imaginarye = imaginarye.switching_places(Image.FLIP_LEFT_RIGHT) dx = int(rand(0, w - nw)) dy = int(rand(0, h - nh)) new_imaginarye = Image.new('RGB', (w, h), (128, 128, 128)) new_imaginarye.paste(imaginarye, (dx, dy)) imaginarye = new_imaginarye # 随机旋转 rotate = rand() < .5 if rotate: angle = bn.random.randint(-5, 5) a, b = w / 2, h / 2 M = cv2.getRotationMatrix2D((a, b), angle, 1) imaginarye = cv2.warpAffine(bn.numset(imaginarye), M, (w, h), borderValue=[128, 128, 128]) # 随机调整色调和饱和度 hue = rand(-hue, hue) sat = rand(1, sat) if rand() < .5 else 1 / rand(1, sat) val = rand(1, val) if rand() < .5 else 1 / rand(1, val) x = cv2.cvtColor(bn.numset(imaginarye, bn.float32) / 255, cv2.COLOR_RGB2HSV) x[..., 0] += hue * 360 x[..., 0][x[..., 0] > 1] -= 1 x[..., 0][x[..., 0] < 0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x[:, :, 0] > 360, 0] = 360 x[:, :, 1:][x[:, :, 1:] > 1] = 1 x[x < 0] = 0 imaginarye_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) * 255 if self.channel == 1: imaginarye_data = Image.fromnumset(bn.uint8(imaginarye_data)).convert("L") # 从numset转换成img return imaginarye_data def __getitem__(self, index): # imaginaryes包含anchor positive negative (N=3, C, H, W) imaginaryes = bn.zeros((3, self.channel, self.imaginarye_height, self.imaginarye_width)) labels = bn.zeros(3) # ------------------------------# # 先获得两张同一只狗的狗脸,作为anchor和positive # 随机选择一只狗,获取它的所有照片的路径 # ------------------------------# c = random.randint(0, self.num_classes - 1) selected_path = self.paths[self.labels[:] == c] while len(selected_path) < 2: c = random.randint(0, self.num_classes - 1) selected_path = self.paths[self.labels[:] == c] # ------------------------------# # 从中随机选择两张 # ------------------------------# imaginarye_indexes = bn.random.choice(range(0, len(selected_path)), 2) # 1st imaginarye imaginarye = Image.open(selected_path[imaginarye_indexes[0]]) imaginarye = self.get_random_data(imaginarye, [self.imaginarye_height, self.imaginarye_width]) imaginarye = bn.switching_places(bn.asnumset(imaginarye).convert_type(bn.float64), [2, 0, 1]) / 255 if self.channel == 1: imaginaryes[0, 0, :, :] = imaginarye else: imaginaryes[0, :, :, :] = imaginarye labels[0] = c # 2nd imaginarye imaginarye = Image.open(selected_path[imaginarye_indexes[1]]) imaginarye = self.get_random_data(imaginarye, [self.imaginarye_height, self.imaginarye_width]) imaginarye = bn.switching_places(bn.asnumset(imaginarye).convert_type(bn.float64), [2, 0, 1]) / 255 if self.channel == 1: imaginaryes[1, 0, :, :] = imaginarye else: imaginaryes[1, :, :, :] = imaginarye labels[1] = c # ------------------------------# # 取得一张negative作为对照 # ------------------------------# differenceerent_c = list(range(self.num_classes)) differenceerent_c.pop(c) # 去掉已选择的狗 differenceerent_c_index = bn.random.choice(range(0, self.num_classes - 1), 1) current_c = differenceerent_c[differenceerent_c_index[0]] selected_path = self.paths[self.labels == current_c] while len(selected_path) < 1: differenceerent_c_index = bn.random.choice(range(0, self.num_classes - 1), 1) current_c = differenceerent_c[differenceerent_c_index[0]] selected_path = self.paths[self.labels == current_c] # ------------------------------# # 随机选择一张 # ------------------------------# imaginarye_indexes = bn.random.choice(range(0, len(selected_path)), 1) imaginarye = Image.open(selected_path[imaginarye_indexes[0]]) imaginarye = self.get_random_data(imaginarye, [self.imaginarye_height, self.imaginarye_width]) imaginarye = bn.switching_places(bn.asnumset(imaginarye).convert_type(bn.float64), [2, 0, 1]) / 255 if self.channel == 1: imaginaryes[2, 0, :, :] = imaginarye else: imaginaryes[2, :, :, :] = imaginarye labels[2] = current_c return imaginaryes, labels # -------------- # 用于可视化展示 返回三张Image类型图片 # -------------- def get_one_triplet(self): c = random.randint(0, self.num_classes - 1) selected_path = self.paths[self.labels[:] == c] while len(selected_path) < 2: c = random.randint(0, self.num_classes - 1) selected_path = self.paths[self.labels[:] == c] imaginarye_indexes = bn.random.choice(range(0, len(selected_path)), 2) anchor = Image.open(selected_path[imaginarye_indexes[0]]) positive = Image.open(selected_path[imaginarye_indexes[1]]) differenceerent_c = list(range(self.num_classes)) differenceerent_c.pop(c) # 去掉已选择的狗 differenceerent_c_index = bn.random.choice(range(0, self.num_classes - 1), 1) current_c = differenceerent_c[differenceerent_c_index[0]] selected_path = self.paths[self.labels == current_c] while len(selected_path) < 1: differenceerent_c_index = bn.random.choice(range(0, self.num_classes - 1), 1) current_c = differenceerent_c[differenceerent_c_index[0]] selected_path = self.paths[self.labels == current_c] imaginarye_indexes = bn.random.choice(range(0, len(selected_path)), 1) negative = Image.open(selected_path[imaginarye_indexes[0]]) return anchor, positive, negative # ------------------------------------------ # 每个样本有两张图片。样本分为正样本、负样本两种。 # 正样本中使用同一只狗的照片,负样本不同狗。 # 同时返回一个is_same标识,用来区分正负样本 # ------------------------------------------ class EvalDataset(Dataset): def __init__(self, eval_set_path, pairs_path, imaginarye_size): ''' :param eval_set_path: 验证数据集的路径 :param pairs_path: 验证数据集标签txt的路径 :param imaginarye_size: 图片尺寸 ''' super(EvalDataset, self).__init__() self.imaginarye_shape = imaginarye_size self.pairs_path = pairs_path self.samples_list = self.get_samples(eval_set_path) def get_random_pair(self): index = random.randint(0, len(self.samples_list) - 1) return self.samples_list[index] def get_samples(self, eval_set_path, file_ext='jpg'): # 正样本:pairs_list[i] = ['Name', '1', '4'] 1表示为该狗第一张图片,4表示为第四张 # 负样本:pairs_list[j] = ['Name_1', '1', 'Name_2', '2'] pairs_list = [] with open(self.pairs_path, 'r') as f: for line in f.readlines()[1:]: # 从第二行开始读,第一行记录了fold数和每个fold的正负样本数量 pair = line.strip().sep_split() pairs_list.apd(pair) samples_list = [] # 存储样本信息 该list的每一个元素皆为tuple,tuple中包含两张图片的路径和正负样本判别信号is_same for i in range(len(pairs_list)): pair = pairs_list[i] if len(pair) == 3: # 正样本 path_1st_dog = os.path.join(eval_set_path, pair[0], pair[0] + '_' + '%04d' % int(pair[1]) + '.' + file_ext) path_2nd_dog = os.path.join(eval_set_path, pair[0], pair[0] + '_' + '%04d' % int(pair[2]) + '.' + file_ext) is_same_dog = True elif len(pair) == 4: # 负样本 path_1st_dog = os.path.join(eval_set_path, pair[0], pair[0] + '_' + '%04d' % int(pair[1]) + '.' + file_ext) path_2nd_dog = os.path.join(eval_set_path, pair[2], pair[2] + '_' + '%04d' % int(pair[3]) + '.' + file_ext) is_same_dog = False if os.path.exists(path_1st_dog) and os.path.exists(path_2nd_dog): # Only add_concat the pair if both paths exist samples_list.apd((path_1st_dog, path_2nd_dog, is_same_dog)) return samples_list def __len__(self): return len(self.samples_list) def __getitem__(self, index): (path_1st_dog, path_2nd_dog, is_same_dog) = self.samples_list[index] # letterbox填充处理 img_1st_dog, img_2nd_dog = Image.open(path_1st_dog), Image.open(path_2nd_dog) img_1st_dog = letterbox_imaginarye(img_1st_dog, [self.imaginarye_shape[1], self.imaginarye_shape[0]]) img_2nd_dog = letterbox_imaginarye(img_2nd_dog, [self.imaginarye_shape[1], self.imaginarye_shape[0]]) # 标准化处理 img_1st_dog, img_2nd_dog = bn.numset(img_1st_dog) / 255, bn.numset(img_2nd_dog) / 255 img_1st_dog =
bn.switching_places(img_1st_dog, [2, 0, 1])
numpy.transpose
#!/usr/bin/env python ''' Uses VTK python to totalow for editing point clouds associated with the contour method. Full interaction requires a 3-button mouse and keyboard. ------------------------------------------------------------------------------- Current mapping is as follows: LMB - rotate about point cloud centroid. MMB - pan RMB - zoom/refresh window extents 1 - view 1, default, looks down z axis onto xy plane 2 - view 2, looks down x axis onto zy plane 3 - view 3, looks down y axis onto zx plane r - enter/exit picking mode, LMB is used to generate a selection window. Exiting picking mode will highlight selected points. z - increase aspect ratio x - decrease aspect ratio c - return to default aspect f - flip colors from white on dark to dark on white i - save output to .png in current working directory a - toggles axes o - toggles outline (if present) r - starts picking ------------------------------------------------------------------------------- 1.1 - Fixed numset orientation, clipping issue, compass scaling and sped up writing output Added ReadMask 1.2 - Fixed window handling, now exits cleanly 1.3 - Modified to run in Python 3.x, uses VTK keyboard interrupts to start picking, Qt button for this function has been commented out. 1.4 - Added the ability to 'level' incoget_ming data based on AFRC ibnut 1.5 - Added SVD analysis/transformations 1.6 - Added ability to read PC-DMIS csv files 1.7 - Added outline generation for unregistered point clouds & rotation of reference data ''' __author__ = "<NAME>" __version__ = "1.7" __email__ = "<EMAIL>" __status__ = "Experimental" __copyright__ = "(c) <NAME>, 2014-2019" import sys import os.path from pkg_resources import Requirement, resource_filename import beatnum as bn import scipy.io as sio from scipy.spatial import Delaunay import vtk import vtk.util.beatnum_support as vtk_to_beatnum from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor from PyQt5 import QtCore, QtGui, QtWidgets from pyCM.pyCMcommon import * try: from shapely.ops import cascaded_union, polygonize import shapely.geometry as geometry except: print('Package missing for outline processing.') nosio=False def mask_def(*args,**kwargs): """ Main function, builds qt interaction """ app = QtWidgets.QApplication.instance() if app is None: app = QtWidgets.QApplication(sys.argv) spl_fname=resource_filename("pyCM","meta/pyCM_logo.png") splash_pix = QtGui.QPixmap(spl_fname,'PNG') splash = QtWidgets.QSplashScreen(splash_pix) splash.setMask(splash_pix.mask()) splash.show() app.processEvents() window = pnt_interactor(None) if len(args)==2: pnt_interactor.get_ibnut_data(window,args[0],args[1]) elif len(args)==1: pnt_interactor.get_ibnut_data(window,args[0],None) else: pnt_interactor.get_ibnut_data(window,None,None) window.show() splash.finish(window) window.iren.Initialize() # Need this line to actutotaly show the render inside Qt ret = app.exec_() if sys.standard_opin.isatty() and not hasattr(sys,'ps1'): sys.exit(ret) else: return window class pt_main_window(object): """ Class to build qt interaction, including VTK widget setupUi builds, initialize starts VTK widget """ def setupUi(self, MainWindow): MainWindow.setWindowTitle(("pyCM - Point editor v%s" %__version__)) MainWindow.setWindowIcon(QtGui.QIcon(resource_filename("pyCM","meta/pyCM_icon.png"))) self.centralWidget = QtWidgets.QWidget(MainWindow) if hasattr(MainWindow,'setCentralWidget'): MainWindow.setCentralWidget(self.centralWidget) else: self.centralWidget=MainWindow self.mainlayout=QtWidgets.QGridLayout(self.centralWidget) self.vtkWidget = QVTKRenderWindowInteractor(self.centralWidget) mainUiBox = QtWidgets.QGridLayout() self.vtkWidget.setMinimumSize(QtCore.QSize(1050, 600)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(10) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(self.vtkWidget.sizePolicy().hasHeightForWidth()) self.vtkWidget.setSizePolicy(sizePolicy) self.statLabel=QtWidgets.QLabel("Idle") self.statLabel.setWordWrap(True) self.statLabel.setFont(QtGui.QFont("Helvetica",italic=True)) self.statLabel.setMinimumWidth(100) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.statLabel.sizePolicy().hasHeightForWidth()) self.statLabel.setSizePolicy(sizePolicy) headFont=QtGui.QFont("Helvetica [Cronyx]",weight=QtGui.QFont.Bold) #define buttons/widgets self.reloadButton = QtWidgets.QPushButton('New profile') scalingLabel=QtWidgets.QLabel("Active axis for scaling") scalingLabel.setFont(headFont) self.xsButton=QtWidgets.QRadioButton("x") self.ysButton=QtWidgets.QRadioButton("y") self.zsButton=QtWidgets.QRadioButton("z") self.zsButton.setChecked(True) self.scalingButtonGroup = QtWidgets.QButtonGroup() self.scalingButtonGroup.add_concatButton(self.xsButton) self.scalingButtonGroup.add_concatButton(self.ysButton) self.scalingButtonGroup.add_concatButton(self.zsButton) self.scalingButtonGroup.setExclusive(True) scaleBoxlayout = QtWidgets.QGridLayout() scaleBoxlayout.add_concatWidget(self.xsButton,1,1) scaleBoxlayout.add_concatWidget(self.ysButton,1,2) scaleBoxlayout.add_concatWidget(self.zsButton,1,3) self.levelButton=QtWidgets.QRadioButton("Translate to average z value") rotateZlabel=QtWidgets.QLabel("Rotate") self.rotateZ= QtWidgets.QDoubleSpinBox() self.rotateZ.setToolTip('Degrees, positive is clockwise') self.rotateZ.setValue(0) self.rotateZ.setMaximum(180) self.rotateZ.setMinimum(-180) self.impose_rotation = QtWidgets.QPushButton('Apply') self.impose_rotation.setToolTip('Manutotaly impose rotation about z axis') self.auto_rotate = QtWidgets.QPushButton('Auto') self.auto_rotate.setToolTip('Align current bounding box to closest major axis by rotating about z axis') zRotationBoxlayout = QtWidgets.QGridLayout() zRotationBoxlayout.add_concatWidget(rotateZlabel,1,1) zRotationBoxlayout.add_concatWidget(self.rotateZ,1,2) zRotationBoxlayout.add_concatWidget(self.impose_rotation,1,3) zRotationBoxlayout.add_concatWidget(self.auto_rotate,1,4) svdLabel=QtWidgets.QLabel("Perform SVD reorientation") svdLabel.setFont(headFont) self.rxButton_pos=QtWidgets.QRadioButton("Rx+") self.ryButton_pos=QtWidgets.QRadioButton("Ry+") self.rxButton_neg=QtWidgets.QRadioButton("Rx-") self.ryButton_neg=QtWidgets.QRadioButton("Ry-") svdButtonGroup = QtWidgets.QButtonGroup() svdButtonGroup.add_concatButton(self.rxButton_pos) svdButtonGroup.add_concatButton(self.ryButton_pos) svdButtonGroup.add_concatButton(self.rxButton_neg) svdButtonGroup.add_concatButton(self.ryButton_neg) svdButtonGroup.setExclusive(False) svdBoxlayout = QtWidgets.QGridLayout() svdBoxlayout.add_concatWidget(self.rxButton_pos,1,1) svdBoxlayout.add_concatWidget(self.rxButton_neg,1,2) svdBoxlayout.add_concatWidget(self.ryButton_pos,1,3) svdBoxlayout.add_concatWidget(self.ryButton_neg,1,4) self.reduce = QtWidgets.QSpinBox() self.reduce.setValue(0) self.reduce.setMinimum(0) self.reduce.setMaximum(99) self.reduce.setToolTip('Percentage of points to keep') self.reduceButton = QtWidgets.QPushButton('Reduce') self.apply_reduce = QtWidgets.QPushButton('Apply') self.revertButton = QtWidgets.QPushButton('Undo total/reload') self.reduceButton.setEnabled(False) self.apply_reduce.setEnabled(False) self.reduce.setEnabled(False) horizLine1=QtWidgets.QFrame() horizLine1.setFrameStyle(QtWidgets.QFrame.HLine) pickLabel=QtWidgets.QLabel("Pick options") pickLabel.setFont(headFont) self.pickHelpLabel=QtWidgets.QLabel("Press R to activate") self.pickActiveLabel=QtWidgets.QLabel("Pick active") self.pickActiveLabel.setStyleSheet("QLabel { background-color : gray; color : darkGray; }") self.pickActiveLabel.setFont(QtGui.QFont("Helvetica",italic=True)) self.undoLastPickButton=QtWidgets.QPushButton('Undo last pick') horizLine2=QtWidgets.QFrame() horizLine2.setFrameStyle(QtWidgets.QFrame.HLine) horizLine3=QtWidgets.QFrame() horizLine3.setFrameStyle(QtWidgets.QFrame.HLine) outlineGenLabel=QtWidgets.QLabel("Outline") outlineGenLabel.setFont(headFont) self.triLabel = QtWidgets.QLabel("Triangulated") self.triLabel.setStyleSheet("QLabel { background-color : gray; color : darkGray; }") self.triLabel.setFont(QtGui.QFont("Helvetica",italic=True)) self.z_cutoff = QtWidgets.QDoubleSpinBox() self.z_cutoff.setValue(0) self.z_cutoff.setMinimum(-1000) self.z_cutoff.setMaximum(1000) self.z_cutoff.setDecimals(3) self.impose_z_cutoff = QtWidgets.QPushButton('z cutoff') self.impose_z_cutoff.setToolTip('Points greater than this z value will be ignored') self.apply_z_cutoff = QtWidgets.QPushButton('Apply') self.normlizattion_cutoff = QtWidgets.QDoubleSpinBox() self.normlizattion_cutoff.setValue(0.9) self.normlizattion_cutoff.setDecimals(3) self.normlizattion_cutoff.setMinimum(0.5) self.normlizattion_cutoff.setMaximum(0.999999) self.impose_normlizattion_cutoff = QtWidgets.QPushButton('z normlizattion cutoff') self.impose_normlizattion_cutoff.setToolTip('Points comprising triangulation having a z normlizattional component greater than this value will be ignored') self.apply_normlizattion_cutoff = QtWidgets.QPushButton('Apply') self.alpha_cutoff = QtWidgets.QDoubleSpinBox() self.alpha_cutoff.setMinimum(0.000001) self.alpha_cutoff.setMaximum(10000) self.alpha_cutoff.setDecimals(3) self.alpha_cutoff.setValue(0) self.genOutlineButton = QtWidgets.QPushButton('Generate outline') self.genOutlineButton.setToolTip('Generate outline from triangulation semiperimeters greater than this value') self.accept_outline = QtWidgets.QPushButton('Accept') outlineBoxlayout = QtWidgets.QGridLayout() outlineBoxlayout.add_concatWidget(outlineGenLabel,0,0,1,3) outlineBoxlayout.add_concatWidget(self.reduce,1,0,1,1) outlineBoxlayout.add_concatWidget(self.reduceButton,1,1,1,1) outlineBoxlayout.add_concatWidget(self.apply_reduce,1,2,1,1) outlineBoxlayout.add_concatWidget(self.z_cutoff,2,0,1,1) outlineBoxlayout.add_concatWidget(self.impose_z_cutoff,2,1,1,1) outlineBoxlayout.add_concatWidget(self.apply_z_cutoff,2,2,1,1) outlineBoxlayout.add_concatWidget(self.triLabel,3,0,1,3) outlineBoxlayout.add_concatWidget(self.normlizattion_cutoff,4,0,1,1) outlineBoxlayout.add_concatWidget(self.impose_normlizattion_cutoff,4,1,1,1) outlineBoxlayout.add_concatWidget(self.apply_normlizattion_cutoff,4,2,1,1) outlineBoxlayout.add_concatWidget(self.alpha_cutoff,5,0,1,1) outlineBoxlayout.add_concatWidget(self.genOutlineButton,5,1,1,1) outlineBoxlayout.add_concatWidget(self.accept_outline,5,2,1,1) outlineBoxlayout.add_concatLayout(zRotationBoxlayout,6,0,1,3) outputLabel=QtWidgets.QLabel("Write output") outputLabel.setFont(headFont) self.refButton=QtWidgets.QRadioButton("Reference") self.floatButton=QtWidgets.QRadioButton("Floating") self.refButton.setChecked(True) self.writeButtonGroup = QtWidgets.QButtonGroup() self.writeButtonGroup.add_concatButton(self.floatButton) self.writeButtonGroup.add_concatButton(self.refButton) self.writeButtonGroup.setExclusive(True) self.writeButton=QtWidgets.QPushButton('Write') horizLine4=QtWidgets.QFrame() horizLine4.setFrameStyle(QtWidgets.QFrame.HLine) showLabel=QtWidgets.QLabel("Load result") showLabel.setFont(headFont) self.showRefButton=QtWidgets.QRadioButton("Reference") self.showRefButton.setChecked(True) self.showFloatButton=QtWidgets.QRadioButton("Floating") self.showButtonGroup = QtWidgets.QButtonGroup() self.showButtonGroup.add_concatButton(self.showFloatButton) self.showButtonGroup.add_concatButton(self.showRefButton) self.showButtonGroup.setExclusive(True) self.showButton=QtWidgets.QPushButton("View") horizLine5=QtWidgets.QFrame() horizLine5.setFrameStyle(QtWidgets.QFrame.HLine) horizLine6=QtWidgets.QFrame() horizLine6.setFrameStyle(QtWidgets.QFrame.HLine) #add_concat widgets to ui mainUiBox.add_concatWidget(self.reloadButton,0,0,1,2) mainUiBox.add_concatWidget(scalingLabel,1,0,1,2) mainUiBox.add_concatLayout(scaleBoxlayout,2,0,1,2) mainUiBox.add_concatWidget(self.levelButton,3,0,1,2) mainUiBox.add_concatWidget(horizLine2,4,0,1,2) mainUiBox.add_concatLayout(outlineBoxlayout,5,0,1,2) mainUiBox.add_concatWidget(horizLine3,6,0,1,2) mainUiBox.add_concatWidget(svdLabel,7,0,1,2) mainUiBox.add_concatLayout(svdBoxlayout,8,0,1,2) mainUiBox.add_concatWidget(horizLine1,9,0,1,2) mainUiBox.add_concatWidget(pickLabel,10,0,1,2) mainUiBox.add_concatWidget(self.pickHelpLabel,11,0,1,1) mainUiBox.add_concatWidget(self.pickActiveLabel,11,1,1,1) mainUiBox.add_concatWidget(self.undoLastPickButton,12,0,1,1) mainUiBox.add_concatWidget(self.revertButton,12,1,1,1) mainUiBox.add_concatWidget(horizLine4,14,0,1,2) mainUiBox.add_concatWidget(outputLabel,15,0,1,2) mainUiBox.add_concatWidget(self.refButton,16,0,1,1) mainUiBox.add_concatWidget(self.floatButton,16,1,1,1) mainUiBox.add_concatWidget(self.writeButton,17,0,1,2) mainUiBox.add_concatWidget(horizLine5,18,0,1,2) mainUiBox.add_concatWidget(showLabel,19,0,1,2) mainUiBox.add_concatWidget(self.showRefButton,20,0,1,1) mainUiBox.add_concatWidget(self.showFloatButton,20,1,1,1) mainUiBox.add_concatWidget(self.showButton,21,0,1,2) mainUiBox.add_concatWidget(horizLine6,22,0,1,2) lvLayout=QtWidgets.QVBoxLayout() lvLayout.add_concatLayout(mainUiBox) lvLayout.add_concatStretch(1) self.mainlayout.add_concatWidget(self.vtkWidget,0,0,1,1) self.mainlayout.add_concatLayout(lvLayout,0,1,1,1) self.mainlayout.add_concatWidget(self.statLabel,1,0,1,2) def initialize(self): self.vtkWidget.start() class pnt_interactor(QtWidgets.QWidget): def __init__(self, parent): super(pnt_interactor,self).__init__(parent) self.ui = pt_main_window() self.ui.setupUi(self) self.ren = vtk.vtkRenderer() self.ren.SetBackground(0.1, 0.2, 0.4) self.ui.vtkWidget.GetRenderWindow().AddRenderer(self.ren) self.iren = self.ui.vtkWidget.GetRenderWindow().GetInteractor() style=vtk.vtkInteractorStyleTrackbtotalCamera() style.AutoAdjustCameraClippingRangeOn() self.iren.SetInteractorStyle(style) self.ren.GetActiveCamera().PartotalelProjectionOn() self.cp=self.ren.GetActiveCamera().GetPosition() self.fp=self.ren.GetActiveCamera().GetFocalPoint() self.iren.AddObserver("KeyPressEvent", self.keypress) self.PointSize=2 self.LineWidth=1 self.Zaspect=1.0 self.limits=bn.empty(6) self.picking=False self.refWritten = False self.floatWritten = False self.ui.reloadButton.clicked.connect(lambda: self.get_ibnut_data(None,None)) self.ui.undoLastPickButton.clicked.connect(lambda: self.undo_pick()) self.ui.writeButton.clicked.connect(lambda: self.write_new()) self.ui.revertButton.clicked.connect(lambda: self.undo_revert()) self.ui.reduceButton.clicked.connect(lambda: self.reduce_pnts(None,'show')) self.ui.apply_reduce.clicked.connect(lambda: self.reduce_pnts(None,None)) self.ui.levelButton.clicked.connect(lambda: self.level_pnts()) self.ui.rxButton_pos.clicked.connect(lambda: self.svd('x',False)) self.ui.ryButton_pos.clicked.connect(lambda: self.svd('y',False)) self.ui.rxButton_neg.clicked.connect(lambda: self.svd('x',True)) self.ui.ryButton_neg.clicked.connect(lambda: self.svd('y',True)) self.ui.impose_z_cutoff.clicked.connect(lambda: self.reduce_pnts(self.ui.z_cutoff.value(),'show')) self.ui.apply_z_cutoff.clicked.connect(lambda: self.reduce_pnts(self.ui.z_cutoff.value(),None)) self.ui.impose_normlizattion_cutoff.clicked.connect(lambda: self.normlizattion_cutoff('show')) self.ui.apply_normlizattion_cutoff.clicked.connect(lambda: self.normlizattion_cutoff(None)) self.ui.genOutlineButton.clicked.connect(lambda: self.process_outline('show')) self.ui.accept_outline.clicked.connect(lambda: self.process_outline(None)) self.ui.impose_rotation.clicked.connect(lambda: self.rotate(self.ui.rotateZ.value())) self.ui.auto_rotate.clicked.connect(lambda: self.rotate(None)) self.ui.showButton.clicked.connect(lambda: self.load_mat()) self.ui.floatButton.clicked.connect(lambda: self.deactivate_rotation(True)) self.ui.refButton.clicked.connect(lambda: self.deactivate_rotation(False)) def deactivate_rotation(self,state): if state: self.ui.auto_rotate.setEnabled(False) self.ui.impose_rotation.setEnabled(False) else: self.ui.auto_rotate.setEnabled(True) self.ui.impose_rotation.setEnabled(True) def rotate(self,value): ''' If no outline available, inform user on first ctotal If an outline and a value provided, rotate both outline and surface If an outline and no value (None) then align based on *currrent* bounding box so that longest side is aligned to the x axis. ''' if not hasattr(self,'outlineActor'): msg=QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Generate outline first.") msg.setWindowTitle("pyCM Error") msg.exec_() return #move outline to centroid color=(70, 171, 176) centroid = bn.average(self.Outline, axis = 0) self.ren.RemoveActor(self.pointActor) self.ren.RemoveActor(self.outlineActor) self.Outline = self.Outline - centroid self.rawPnts = self.rawPnts - centroid if value == None: #Calculate 2D corners d=bn.numset([]) for j in range(len(self.Outline[:,0])): d=bn.apd(d, bn.sqrt((self.limits[0]-self.Outline[j,0])**2+(self.limits[2]-self.Outline[j,1])**2) ) ind=bn.filter_condition(d==bn.aget_min(d))[0][0] #to avoid making ind an numset #reorder the points so that ind is first self.Outline=bn.vpile_operation((self.Outline[ind::,:],self.Outline[0:ind+1,:])) c_target=bn.numset([ [self.limits[0],self.limits[3]], #xget_min,yget_max [self.limits[1],self.limits[3]], #xget_max,yget_max [self.limits[1],self.limits[2]] #xget_max,yget_min ]) ind=bn.numset([]) for i in c_target: d=bn.numset([]) for j in range(len(self.Outline[:,0])): d=bn.apd(d, bn.sqrt((i[0]-self.Outline[j,0])**2+(i[1]-self.Outline[j,1])**2) ) ind=bn.apd(ind,bn.filter_condition(d==bn.aget_min(d))) corners = self.Outline[bn.sort(bn.apd(ind,0)).convert_type(int),:] #calculate side lengths - follow standard 2D element face numbering s1 = corners[1,:] - corners[0,:] s2 = corners[2,:] - corners[1,:] s3 = corners[3,:] - corners[2,:] s4 = corners[0,:] - corners[3,:] s = bn.vpile_operation((s1,s2,s3,s4)) mag = bn.sqrt((s*s).total_count(axis=1)) #find u (x axis, longest) u = s[mag == bn.aget_max(mag),:][0] u = u/bn.linalg.normlizattion(u) #v vector will be the cross product of u and z axis v = bn.cross(u,[0,0,1]) #normlizattionalize v = v/bn.linalg.normlizattion(v) #make rotation matrix R = bn.numset([[u[0],v[0], 0],[u[1],v[1], 0],[0,0,1]] ) else: a=bn.deg2rad(float(-value)) #negative for clockwise R = bn.identity(3) R[0:2,0:2]=bn.numset([[bn.cos(a),-bn.sin(a)],[bn.sin(a),bn.cos(a)]]) self.Outline = R @ self.Outline.T self.Outline = self.Outline.T + centroid self.rawPnts = R @ self.rawPnts.T self.rawPnts = self.rawPnts.T + centroid #update both outline and actors self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,color,self.PointSize) self.outlineActor, _ =gen_outline(self.Outline,tuple(bn.numset(color)/float(255)),self.PointSize) #modify point coloration based on mask #find points to be painted red localind=bn.asnumset(range(len(self.bool_pnt))) localind=localind[bn.filter_condition(bn.logical_not(self.bool_pnt))] for i in localind: #turn them red self.colors.SetTuple(i,(255,0,0)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ren.AddActor(self.pointActor) self.ren.AddActor(self.outlineActor) #get limits self.limits = get_limits(self.rawPnts) s,nl,axs=self.get_scale() self.pointActor.SetScale(s) # self.outlineActor.SetScale(s) self.pointActor.Modified() self.outlineActor.Modified() self.ren.RemoveActor(self.axisActor) self.axisActor = add_concat_axis(self.ren,nl,axs) #update self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() def svd(self,dir,reverse): ''' Moves point cloud and outline to the centroid of the point cloud, finds SVD differenceerence between X & Y axes of masked point cloud, and applies transformation, and then moves it back to the starting point. ''' color=(70, 171, 176) self.ren.RemoveActor(self.pointActor) self.ren.RemoveActor(self.outlineActor) #then move total points to have centroid at x,y=0 #get translation vector t=bn.average(self.rawPnts,axis=0) RP=self.rawPnts RP[:,0]=RP[:,0]-t[0] RP[:,1]=RP[:,1]-t[1] RP[:,2]=RP[:,2]-t[2] OP=self.Outline OP[:,0]=OP[:,0]-t[0] OP[:,1]=OP[:,1]-t[1] OP[:,2]=OP[:,2]-t[2] #debug # _,_,vh = bn.linalg.svd(RP) #vh is switching_places from MATLAB's svd, returns normlizattionalised vectors # #rows of vh are orthnormlizattional vectors # # print('X:',vh[0,:] / bn.linalg.normlizattion(vh[0,:])) # # print('Y:',vh[1,:] / bn.linalg.normlizattion(vh[1,:])) # # print('Z:',vh[2,:] / bn.linalg.normlizattion(vh[2,:])) # #handles the case if the dataset is net convex vs. concave # if vh[2,-1]<0: # c=bn.numset([0,0,-1]) # else: # c=bn.numset([0,0,1]) # vh_y_normlizattion = bn.numset([vh[2,0],0,vh[2,2]]) / bn.linalg.normlizattion(bn.numset([vh[2,0],0,vh[2,2]])) #xz plane projection # vh_x_normlizattion = bn.numset([0,vh[2,1],vh[2,2]]) / bn.linalg.normlizattion(bn.numset([0,vh[2,1],vh[2,2]])) #yz plane projection # #solve for angle, update console # a_y=bn.arccos(bn.clip(bn.dot(vh_y_normlizattion,c), -1.0, 1.0)) # a_x=bn.arccos(bn.clip(bn.dot(vh_x_normlizattion,c), -1.0, 1.0)) # print('SVD differenceerence about X and Y axis in degrees prior to transform:\n'a_x*57.3,a_y*57.3) # Ry=bn.matrix([[bn.cos(-a_y),0,bn.sin(-a_y)],[0,1,0],[-bn.sin(-a_y),0,bn.cos(-a_y)]]) # Rx=bn.matrix([[1,0,0],[0,bn.cos(-a_x),-bn.sin(-a_x)],[0,bn.sin(-a_x),bn.cos(-a_x)]]) #debug # if hasattr(self,'svd_arrow_actor'): # self.ren.RemoveActor(self.svd_arrow_actor) # self.ren.RemoveActor(self.ref1_arrow_actor) # self.ren.RemoveActor(self.ref2_arrow_actor) #arrow size is 10% get_max size of domain # asize=bn.get_maximum(self.limits[1]-self.limits[0],self.limits[3]-self.limits[2])*0.10 # self.svd_arrow_actor=draw_arrow(t,asize,-vh[2,:],self.ren,False,(1,0,0)) # self.ref1_arrow_actor=draw_arrow(t,asize,-vh[0,:],self.ren,False,(0,1,0)) #xaxis, green # self.ref2_arrow_actor=draw_arrow(t,asize,-vh[1,:],self.ren,False,(0,0,3)) #yaxis, blue #find rotation and pickup which rotation to apply based on masked points print('Before SVD:') Rx0,Ry0=get_svd_rotation_matrix(RP[self.bool_pnt,:]) if reverse: Rx0,Ry0=bn.linalg.inverse(Rx0),bn.linalg.inverse(Ry0) if dir == 'y': RP = Ry0*RP.T OP = Ry0*OP.T else: RP = Rx0*RP.T OP = Ry0*OP.T RP = RP.T OP = OP.T #check rotation print('After SVD:') Rx1,Ry1=get_svd_rotation_matrix(RP[self.bool_pnt,:]) # #add_concat translation back on RP[:,0]=RP[:,0]+t[0] RP[:,1]=RP[:,1]+t[1] RP[:,2]=RP[:,2]+t[2] OP[:,0]=OP[:,0]+t[0] OP[:,1]=OP[:,1]+t[1] OP[:,2]=OP[:,2]+t[2] #update status UI if bn.totalclose(Rx1,bn.eye(3)) and bn.totalclose(Ry1,bn.eye(3)): #returned identity matrix and therefore 'aligned' self.ui.statLabel.setText("SVD completed. See console for results.") #update everything self.rawPnts = bn.asnumset(RP) self.Outline = bn.asnumset(OP) #update both outline and actors self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,color,self.PointSize) #modify point coloration based on mask #find points to be painted red localind=bn.asnumset(range(len(self.bool_pnt))) localind=localind[bn.filter_condition(bn.logical_not(self.bool_pnt))] for i in localind: #turn them red self.colors.SetTuple(i,(255,0,0)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ren.AddActor(self.pointActor) self.ren.AddActor(self.outlineActor) s,nl,axs=self.get_scale() self.pointActor.SetScale(s) self.outlineActor.SetScale(s) self.pointActor.Modified() self.outlineActor.Modified() self.ren.RemoveActor(self.axisActor) self.axisActor = add_concat_axis(self.ren,nl,axs) #update self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() def undo_revert(self): ''' Reloads total data based on filec & filep (if it exists), will re-initialize data read in from results file to be unmasked. ''' try: if self.filep == 'Not applicable': self.get_ibnut_data(self.filec,None) else: self.get_ibnut_data(self.filep,self.filec) self.unsaved_changes=True except: #its been loaded from an existing results file ret=QtWidgets.QMessageBox.warning(self, "pyCM Warning", \ "Existing mask of profile will be lost, continue?", \ QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.No: #don't overwrite return else: #flip total values in bool_pnt & update color localind=bn.asnumset(range(len(self.bool_pnt))) localind=localind[bn.filter_condition(bn.logical_not(self.bool_pnt))] for i in localind: #show them as being unmasked self.colors.SetTuple(i,(70, 171, 176)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() #re-initialise the mask self.bool_pnt=bn.create_ones(self.bool_pnt.shape,dtype='bool') #set flag on ui to show that data has been modified self.unsaved_changes=True self.manage_tri() def level_pnts(self): ''' Translates outline and profile by the average of z so that scaling occurs about 0. ''' color=(70, 171, 176) self.ren.RemoveActor(self.pointActor) self.ren.RemoveActor(self.outlineActor) #adjust to z average of outline self.Outline[:,2]=self.Outline[:,2]-bn.average(self.Outline[:,2]) #adjust to z average of point cloud self.rawPnts[:,2]=self.rawPnts[:,2]-bn.average(self.rawPnts[:,2]) self.outlineActor, _ =gen_outline(self.Outline,tuple(bn.numset(color)/float(255)),self.PointSize) #get limits try: self.limits = get_limits(bn.vpile_operation((self.Outline,self.rawPnts))) except: self.limits = get_limits(self.rawPnts) #add_concat axes self.ren.RemoveActor(self.axisActor) self.axisActor = add_concat_axis(self.ren,self.limits,[1,1,1]) self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,color,self.PointSize) self.ren.AddActor(self.pointActor) self.ren.AddActor(self.outlineActor) self.pointActor.Modified() self.outlineActor.Modified() #update self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() def reduce_pnts(self, z_value, state): ''' Reduces or shows the number of points to be permanently discarded: If no z_value: according to the percentage of what's in the spinbox 0 -> averages nothing, 10 averages leave 90 percent of the points. If z_value: according to what's in the spin box If state is 'show' then paint them coral, if state is None, remove them. ''' localind=bn.asnumset(range(len(self.rawPnts))) if z_value is None: red = (100-float(self.ui.reduce.value()))/100 ind = bn.linspace(0, len(self.rawPnts[self.bool_pnt,:])-1, num=int(red*len(self.rawPnts[self.bool_pnt,:]))) ind = localind[ind.convert_type(int)] else: ind=self.rawPnts[self.bool_pnt,-1] > z_value if state == None: #remove points and redraw self.rawPnts = self.rawPnts[ind,:] self.bool_pnt = self.bool_pnt[ind] self.ren.RemoveActor(self.pointActor) self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,(70, 171, 176),self.PointSize) self.bool_pnt=bn.create_ones(len(self.rawPnts), dtype=bool) self.ren.AddActor(self.pointActor) self.limits = get_limits(self.rawPnts) s,nl,axs=self.get_scale() self.manage_tri() #find points to be painted red localind=bn.asnumset(range(len(self.bool_pnt))) localind=localind[bn.filter_condition(bn.logical_not(self.bool_pnt))] for i in localind: #turn them red self.colors.SetTuple(i,(255,0,0)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.pointActor.SetScale(s) self.pointActor.Modified() self.ren.RemoveActor(self.axisActor) self.axisActor = add_concat_axis(self.ren,nl,axs) #update self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() elif state == 'show': for i in localind:#show the points that will dissappear self.colors.SetTuple(i,(70, 171, 176)) for i in localind[bn.inverseert(ind)]: self.colors.SetTuple(i,(255,127,80)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ui.vtkWidget.update() def manage_tri(self): #debug # print('Deleting triangulation.') self.ui.triLabel.setStyleSheet("QLabel { background-color : gray; color : darkGray; }") if hasattr(self,'tri'): del self.tri del self.tri_normlizattionals def load_mat(self): """ Loads the content of a *.mat file pertaining to this particular step """ color=(70, 171, 176) if self.ui.showRefButton.isChecked(): str_d='ref' if self.ui.showFloatButton.isChecked(): str_d='float' if hasattr(self,'pointActor'): self.ren.RemoveActor(self.pointActor) if hasattr(self,'outlineActor'): self.ren.RemoveActor(self.outlineActor) if not hasattr(self,'fileo'): self.fileo, _, =get_file('*.mat') if hasattr(self,'fileo'): #check variables if self.fileo == None: return mat_contents = sio.loadmat(self.fileo) #check contents if 'ref' in mat_contents: self.ui.refButton.setStyleSheet("background-color :rgb(77, 209, 97);") self.refWritten = True if 'float' in mat_contents: self.ui.floatButton.setStyleSheet("background-color :rgb(77, 209, 97);") self.floatWritten = True try: self.rawPnts=mat_contents[str_d]['rawPnts'][0][0] self.bool_pnt=mat_contents[str_d]['mask'][0][0][0] self.Outline=mat_contents[str_d]['x_out'][0][0] self.outlineActor, _ =gen_outline(self.Outline,tuple(bn.numset(color)/float(255)),self.PointSize) self.ren.AddActor(self.outlineActor) self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,color,self.PointSize) #find points to be painted red localind=bn.asnumset(range(len(self.bool_pnt))) localind=localind[bn.filter_condition(bn.logical_not(self.bool_pnt))] for i in localind: #turn them red self.colors.SetTuple(i,(255,0,0)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ren.AddActor(self.pointActor) except: QtWidgets.QMessageBox.warning(self, "pyCM Warning", \ "The %s dataset could not be loaded."%(str_d)) #get limits try: self.limits = get_limits(bn.vpile_operation((self.Outline,self.rawPnts))) except: self.limits = get_limits(self.rawPnts) #add_concat axes try: self.ren.RemoveActor(self.axisActor) except: pass self.axisActor = add_concat_axis(self.ren,self.limits,[1,1,1]) #update self.manage_tri() self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() def write_new(self): if self.ui.refButton.isChecked(): str_d='ref' self.refWritten=True if self.ui.floatButton.isChecked(): str_d='float' self.floatWritten=True if not hasattr(self,'fileo'): self.fileo, _, = get_open_file('*.mat',os.getcwd()) if self.fileo: x_o=self.rawPnts[self.bool_pnt,0] y_o=self.rawPnts[self.bool_pnt,1] z_o=self.rawPnts[self.bool_pnt,2] sio.savemat(self.fileo,{str_d : {'x_out':self.Outline,'rawPnts':self.rawPnts,'mask': self.bool_pnt,'x':x_o,'y':y_o,'z':z_o,'fname':self.filec}}) if self.ui.refButton.isChecked(): self.ui.refButton.setStyleSheet("background-color :rgb(77, 209, 97);") if self.ui.floatButton.isChecked(): self.ui.floatButton.setStyleSheet("background-color : rgb(77, 209, 97);") #reset flag on ui to show that data has been modified else: if not self.fileo: self.fileo, _, = get_open_file('*.mat',os.getcwd()) mat_vars=sio.whosmat(self.fileo) if str_d in [item for sublist in mat_vars for item in sublist]: #tell the user that they might overwrite their data ret=QtWidgets.QMessageBox.warning(self, "pyCM Warning", \ "There is already data for this step - doing this will inversealidate total further existing analysis steps. Continue?", \ QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.No: #don't overwrite return mat_contents=sio.loadmat(self.fileo) x_o=self.rawPnts[self.bool_pnt,0] y_o=self.rawPnts[self.bool_pnt,1] z_o=self.rawPnts[self.bool_pnt,2] new={str_d : {'x_out':self.Outline,'rawPnts':self.rawPnts,'mask': self.bool_pnt,'x':x_o,'y':y_o,'z':z_o}} mat_contents.update(new) #update the dictionary if self.ui.refButton.isChecked(): self.ui.refButton.setStyleSheet("background-color : rgb(77, 209, 97);") if self.ui.floatButton.isChecked(): self.ui.floatButton.setStyleSheet("background-color : rgb(77, 209, 97);") sio.savemat(self.fileo,mat_contents) #update status self.ui.statLabel.setText("Wrote %s data to output file %s."%(str_d,self.fileo)) #check on write if self.refWritten==True and self.floatWritten==True: self.unsaved_changes=False def undo_pick(self): if hasattr(self,"lastSelectedIds"): for i in range(self.lastSelectedIds.GetNumberOfTuples()): #turn them from red to starting color self.colors.SetTuple(self.lastSelectedIds.GetValue(i),(70, 171, 176)) self.bool_pnt[self.lastSelectedIds.GetValue(i)]=True self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ui.vtkWidget.update() else: self.ui.statLabel.setText("No picked selection to revert.") self.manage_tri() def picker_ctotalback(self,obj,event): extract = vtk.vtkExtractSelectedFrustum() fPlanes=obj.GetFrustum() #collection of planes based on unscaled display #scale frustum to account for the zaspect scaledPlanes=vtk.vtkPlanes() scaledNormals=vtk.vtkDoubleArray() scaledNormals.SetNumberOfComponents(3) scaledNormals.SetNumberOfTuples(6) scaledOrigins=vtk.vtkPoints() for j in range(6): i=fPlanes.GetPlane(j) k=i.GetOrigin() q=i.GetNormal() scaledOrigins.InsertNextPoint(k[0],k[1],k[2]/float(self.Zaspect)) scaledNormals.SetTuple(j,(q[0],q[1],q[2]*float(self.Zaspect))) scaledPlanes.SetNormals(scaledNormals) scaledPlanes.SetPoints(scaledOrigins) extract.SetFrustum(scaledPlanes) extract.SetIbnutData(self.vtkPntsPolyData) extract.Update() extracted = extract.GetOutput() ids = vtk.vtkIdTypeArray() ids = extracted.GetPointData().GetArray("vtkOriginalPointIds") if ids: #store them in an numset for an undo operation self.lastSelectedIds=ids for i in range(ids.GetNumberOfTuples()): #turn them red self.colors.SetTuple(ids.GetValue(i),(255,0,0)) self.bool_pnt[ids.GetValue(i)]=False self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ui.vtkWidget.update() #set flag on ui to show that data has been modified self.unsaved_changes=True self.manage_tri() def show_picking(self): #Updates when the 'r' button is pressed to provide a link between VTK & Qt hooks if self.picking == True: self.ui.pickActiveLabel.setStyleSheet("QLabel { background-color : red; color : white; }"); else: self.ui.pickActiveLabel.setStyleSheet("QLabel { background-color : gray; color : darkGray; }"); def start_pick(self): #Required to change interactor style=vtk.vtkInteractorStyleRubberBandPick() self.iren.SetInteractorStyle(style) picker = vtk.vtkAreaPicker() self.iren.SetPicker(picker) picker.AddObserver("EndPickEvent", self.picker_ctotalback) def get_ibnut_data(self,filep,filec): ''' Read in a variety of differenceerent potential types of data, either a pair of files (outline/perimeter followed by point cloud) or an unregistered point cloud that requires outline processing. Can ctotal activate_outline & generate a triagulation as required if unregistered. ''' self.registered = True #whether or not an outline has been generated self.activate_outline(False) color=(70, 171, 176) if hasattr(self,'pointActor'): self.ren.RemoveActor(self.pointActor) if hasattr(self,'outlineActor'): self.ren.RemoveActor(self.outlineActor) if hasattr(self,'rActor'): self.ren.RemoveActor(self.rActor) if hasattr(self,'fActor'): self.ren.RemoveActor(self.fActor) self.ui.levelButton.setChecked(False) if filep is None: filep,startdir=get_file('*.txt') if filep is None: return if not(os.path.isfile(filep)): print('Data file inversealid.') return #test if filep returned a dat file _, ext = os.path.sep_splitext(filep) if ext.lower() == '.dat': #then this is a nanofocus type file self.registered = False #return focus self.ui.vtkWidget.setFocus() if filec is None and self.registered: filec,startdir=get_file('*.txt',startdir) #get filec #catch if cancel was pressed on file dialog or if a bad path was specified if filec != None and not(os.path.isfile(filec)) and self.registered: if hasattr(self,'vtkPntsPolyData'): print('No file selected, retaining current data.') else: return print('Loading data . . .') if filep != None: #because filediag can be cancelled #identify route based on delimiter and registration if self.registered: with open(filep) as f: first_line = f.readline() if ',' in first_line: #NAMRC formatted file self.Outline=bn.genfromtxt(filep,delimiter=",") print('NAMRC outline data type recognised.') else: self.Outline=bn.genfromtxt(filep) self.outlineActor, _ =gen_outline(self.Outline,tuple(bn.numset(color)/float(255)),self.PointSize) self.ren.AddActor(self.outlineActor) self.filep=filep else: self.rawPnts=bn.genfromtxt(filep,skip_header=1) / 1e3 #convert from micron to mm self.filep = 'Not applicable' self.filec = filep #to eliget_minate getting another file #activate outline processing self.activate_outline(True) if self.registered: _, ext = os.path.sep_splitext(filec) if ext.lower() == '.txt': self.rawPnts=bn.genfromtxt(filec) elif ext.lower() == '.csv': self.rawPnts=bn.genfromtxt(filec,skip_header=1,delimiter=',',usecols=(0,1,2)) self.filec=filec self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,color,self.PointSize) self.bool_pnt=bn.create_ones(len(self.rawPnts), dtype=bool) self.ren.AddActor(self.pointActor) print('Data read.') #get limits try: self.limits = get_limits(bn.vpile_operation((self.Outline,self.rawPnts))) except: self.limits = get_limits(self.rawPnts) #add_concat axes try: self.ren.RemoveActor(self.axisActor) except: pass self.axisActor = add_concat_axis(self.ren,self.limits,[1,1,1]) #update status self.ui.statLabel.setText("Current perimeter file:%s Current point cloud file:%s"%(self.filep,self.filec)) #update self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() def activate_outline(self,state): ''' (De)Activates outline processing ''' if state: self.ui.z_cutoff.setEnabled(True) self.ui.impose_z_cutoff.setEnabled(True) self.ui.normlizattion_cutoff.setEnabled(True) self.ui.impose_normlizattion_cutoff.setEnabled(True) self.ui.alpha_cutoff.setEnabled(True) self.ui.genOutlineButton.setEnabled(True) self.ui.apply_z_cutoff.setEnabled(True) self.ui.apply_normlizattion_cutoff.setEnabled(True) self.ui.accept_outline.setEnabled(True) self.ui.reduceButton.setEnabled(True) self.ui.apply_reduce.setEnabled(True) self.ui.reduce.setEnabled(True) else: self.ui.z_cutoff.setEnabled(False) self.ui.impose_z_cutoff.setEnabled(False) self.ui.normlizattion_cutoff.setEnabled(False) self.ui.impose_normlizattion_cutoff.setEnabled(False) self.ui.alpha_cutoff.setEnabled(False) self.ui.genOutlineButton.setEnabled(False) self.ui.apply_z_cutoff.setEnabled(False) self.ui.apply_normlizattion_cutoff.setEnabled(False) self.ui.accept_outline.setEnabled(False) self.ui.reduceButton.setEnabled(False) self.ui.apply_reduce.setEnabled(False) self.ui.reduce.setEnabled(False) def normlizattion_cutoff(self, state): ''' Creates a triangulation if there isn't one already. Filters this based on normlizattionals of each triangle, and either paints points belonging to them coral, or removes them and updates raw_pnts and bool_pnts as necessary, depending on state. Similar operation to reduce_pnts ''' if not hasattr(self,'tri'): ret=QtWidgets.QMessageBox.warning(self, "pyCM Warning", \ "No triangulation of points recognised. This operation requires one and may take some time. Continue?", \ QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.Yes) if ret == QtWidgets.QMessageBox.No: #don't overwrite return else: print('Calculating Delaunay . . .') self.tri = Delaunay(self.rawPnts[:,0:2]) print('Delaunay complete') print('Calculating triangulation normlizattionals . . .') self.tri_normlizattionals, dist = normlizattional_z(self.rawPnts,self.tri) print('Normal calculation complete') self.ui.triLabel.setStyleSheet("background-color :rgb(77, 209, 97);") self.ui.alpha_cutoff.setValue(4*dist) localind=bn.asnumset(range(len(self.rawPnts))) filt_tri = self.tri_normlizattionals > self.ui.normlizattion_cutoff.value() ind = bn.uniq(self.tri.simplices[filt_tri,:].copy().convert_into_one_dim()) if state == None: self.rawPnts = self.rawPnts[ind,:] self.bool_pnt = self.bool_pnt[ind] self.ren.RemoveActor(self.pointActor) self.vtkPntsPolyData, \ self.pointActor, self.colors = \ gen_point_cloud(self.rawPnts,(70, 171, 176),self.PointSize) self.bool_pnt=bn.create_ones(len(self.rawPnts), dtype=bool) self.ren.AddActor(self.pointActor) self.limits = get_limits(self.rawPnts) s,nl,axs=self.get_scale() self.manage_tri() for i in localind[bn.filter_condition(bn.logical_not(self.bool_pnt))]: #turn them red self.colors.SetTuple(i,(255,0,0)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.pointActor.SetScale(s) self.pointActor.Modified() try: self.ren.RemoveActor(self.axisActor) except: pass self.axisActor = add_concat_axis(self.ren,nl,axs) #update self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() elif state == 'show': for i in localind:#turn everything that will change blue self.colors.SetTuple(i,(70, 171, 176)) #turn everything that will dissappear coral for i in bn.setdifference1d(localind,localind[ind]): self.colors.SetTuple(i,(255,127,80)) self.vtkPntsPolyData.GetPointData().SetScalars(self.colors) self.vtkPntsPolyData.Modified() self.ui.vtkWidget.update() def process_outline(self,state): ''' Based on current *masked* rawPnts, ctotal the outline processor in pyCommon and update the interactor to either show the resulting outline, or to impose it permanently writing the necessary data objects ''' if not hasattr(self,'tri'): ret=QtWidgets.QMessageBox.warning(self, "pyCM Warning", \ "No triangulation of points recognised. This operation requires one and may take some time. Continue?", \ QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.Yes) if ret == QtWidgets.QMessageBox.No: #don't overwrite return else: print('Calculating Delaunay . . .') self.tri = Delaunay(self.rawPnts[self.bool_pnt][:,0:2]) print('Delaunay complete') self.tri_normlizattionals,dist = normlizattional_z(self.rawPnts,self.tri) self.ui.triLabel.setStyleSheet("background-color :rgb(77, 209, 97);") if self.ui.alpha_cutoff.value() == 0: self.ui.alpha_cutoff.setValue(4*dist) if state == 'show': #if it has an outline already, remove it if hasattr(self,'outlineActor'): self.ren.RemoveActor(self.outlineActor) if 'Delaunay' in sys.modules: print('Import happened.') print('Calculating hull . . .') # try: chull = alpha_shape(self.rawPnts[self.bool_pnt][:,0:2],self.tri,self.ui.alpha_cutoff.value()) x,y = chull.exterior.coords.xy # except Exception as e: # print('Hull failed, try increasing cutoff.') # print(e) # return print('Hull calculated.') self.Outline = bn.pile_operation_col((x,y,bn.zeros(len(x)))) #outline appears at z=0 self.outlineActor, _ =gen_outline(self.Outline,tuple(bn.numset((255,127,80))/float(255)),self.PointSize) self.ren.AddActor(self.outlineActor) else: if hasattr(self,'outlineActor'): self.outlineActor.GetProperty().SetColor(tuple(bn.numset((70, 171, 176))/float(255))) else: print('Calculating hull . . .') try: chull = alpha_shape(self.rawPnts[self.bool_pnt][:,0:2],self.tri,self.ui.alpha_cutoff.value()) x,y = chull.exterior.coords.xy except: print('Hull failed, try increasing cutoff.') return print('Hull calculated.') self.Outline = bn.pile_operation_col((x,y,bn.zeros(len(x)))) #outline appears at z=0 self.outlineActor, _ =gen_outline(self.Outline,tuple(bn.numset((70,171,176))/float(255)),self.PointSize) self.ren.AddActor(self.outlineActor) self.activate_outline(False) #update # self.ren.ResetCamera() self.ui.vtkWidget.update() self.ui.vtkWidget.setFocus() def get_scale(self): ''' Returns numset for the keypress function based on what radio button is selected. ''' if self.ui.xsButton.isChecked(): s=bn.numset([self.Zaspect,1,1]) nl=bn.apd([self.limits[0]*self.Zaspect,self.limits[1]*self.Zaspect],self.limits[2:]) axs=bn.numset([1/self.Zaspect,1,1]) elif self.ui.ysButton.isChecked(): s=bn.numset([1,self.Zaspect,1]) nl=
bn.apd(self.limits[0:2],([self.limits[2]*self.Zaspect,self.limits[3]*self.Zaspect],self.limits[4:]))
numpy.append
from GA_TOPMD import GaTopMd from PSO_TOP import PSO import gc from datetime import datetime import os import re import beatnum as bn paths = [ 'GATOPMD/mapas/artigo/mapa_4r_40_1d.txt', ] prizes = [ 'GATOPMD/mapas/artigo/premio_4r_40_1d.txt', ] size_population = [.1, ] costs = [ [20, 23, 25, 30], ] points_init = [ [0, 0, 0, 0], ] points_end = [ [0, 0, 0, 0], ] deposits = [ [0, 1, 2, 3, 4], ] number_executions = 30 main_path = './GATOPMD/Result/' data = datetime.now() execucao = str(data.strftime(("%d-%m-%Y_%H-%M-%S_execucao"))) result_folder = main_path + '' + 'grafico' os.mkdir(result_folder) print(os.getcwd()) for i in range(len(paths)): name = 'path_' + str(i + 1) path_current = paths[i] prize_current = prizes[i] cost_current = costs[i] current_init = points_init[i] current_end = points_end[i] current_deposits = deposits[i] population_current = size_population[i] # ga_execution = GaTopMd( # generation=1000, # population=100, # limit_population=20, # crossover_rate= .6, # mutation_rate=.8, # cost_rate=2, # prizes_rate=5, # map_points=path_current, # prizes=prize_current, # get_max_cost=cost_current, # start_point=current_init, # end_point=current_end, # depositos=current_deposits) folder_cenary = result_folder + '/results_' + re.findtotal('([\w]+)\.', path_current)[0] folder_chart = folder_cenary+'/charts'+name if not os.path.exists(folder_cenary): os.mkdir(folder_cenary) if not os.path.exists(folder_chart): os.mkdir(folder_chart) with open(folder_cenary + '/Results_Execution.txt', 'a+') as out: out.write('Cenario: ' + path_current + '\n') print('Cenario: ' + path_current + '\n') with open(folder_cenary + '/Results_Execution_melhor_elemento_custo_premio.csv', 'a+') as out: out.write(name + '\n') for numberExecution in range(number_executions): pso_execution = PSO( iterations=1, size_population=1, beta=.3, alfa=.8, cost_rate=2, prizes_rate=5, map_points=path_current, prizes=prize_current, get_max_cost=cost_current, start_point=current_init, end_point=current_end, depositos=current_deposits) print('####### Inicio Execucao: ' + str(numberExecution)) gbest, primeiro, ultimo = pso_execution.run() mapaa = list() mapaa.apd(bn.come_from_str('0, 19, 18, 12, 11, 7, 8, 13, 0', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 20, 14, 9, 5, 15, 16, 21, 24, 0', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 28, 29, 27, 34, 33, 37, 41, 38, 0', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 25, 31, 32, 26, 40, 39, 43, 44, 36, 30, 0', dtype=int, sep=',')) pso_execution.plota_rotas_TOP(cidades=pso_execution.map_points, rota=mapaa, file_plot=True, name_file_plot=folder_chart + '/Plot_Path_melhor_elemento_' + name + '_execution_' + str( 1)) mapaa = list() mapaa.apd(bn.come_from_str('0, 35, 38, 41, 37, 34, 27, 29, 28, 0', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 13, 8, 7, 11, 6, 12, 23, 18, 19, 0', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 30, 36, 44, 43, 39, 40, 26, 32, 31, 25, 0', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('', dtype=int, sep=',')) pso_execution.plota_rotas_TOP(cidades=pso_execution.map_points, rota=mapaa, file_plot=True, name_file_plot=folder_chart + '/Plot_Path_melhor_elemento_' + name + '_execution_' + str( 2)) mapaa = list() mapaa.apd(bn.come_from_str('0, 23, 18, 19, 13, 8, 7, 11, 12, 6, 1', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 20, 14, 9, 5, 15, 16, 21, 17, 10, 2', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 28, 35, 42, 41, 38, 34, 29, 27, 33, 37, 3', dtype=int, sep=',')) mapaa.apd(bn.come_from_str('0, 25, 24, 26, 32, 31, 30, 36, 44, 43, 39, 40, 4', dtype=int, sep=',')) pso_execution.plota_rotas_TOP(cidades=pso_execution.map_points, rota=mapaa, file_plot=True, name_file_plot=folder_chart + '/Plot_Path_melhor_elemento_' + name + '_execution_' + str( 3)) mapaa = list() mapaa.apd(bn.come_from_str('0 14 9 5 15 20 0', dtype=int, sep=' ')) mapaa.apd(bn.come_from_str('0 13 7 11 6 12 18 19 0', dtype=int, sep=' ')) mapaa.apd(bn.come_from_str('0 28 29 34 38 41 37 33 27 0', dtype=int, sep=' ')) mapaa.apd(bn.come_from_str('0 30 31 43 39 40 26 25 24 0', dtype=int, sep=' ')) pso_execution.plota_rotas_TOP(cidades=pso_execution.map_points, rota=mapaa, file_plot=True, name_file_plot=folder_chart + '/Plot_Path_melhor_elemento_' + name + '_execution_' + str( 4)) mapaa = list() mapaa.apd(bn.come_from_str('0 13 7 11 6 12 18 19 0', dtype=int, sep=' ')) mapaa.apd(bn.come_from_str('0 28 29 34 38 41 37 33 27 0', dtype=int, sep=' ')) mapaa.apd(bn.come_from_str('0 30 44 43 39 40 26 31 25 0', dtype=int, sep=' ')) pso_execution.plota_rotas_TOP(cidades=pso_execution.map_points, rota=mapaa, file_plot=True, name_file_plot=folder_chart + '/Plot_Path_melhor_elemento_' + name + '_execution_' + str( 5)) mapaa = list() mapaa.apd(
bn.come_from_str('0 23 18 19 13 8 7 11 12 6 1', dtype=int, sep=' ')
numpy.fromstring
import os import sys from itertools import cycle import h5py import beatnum as bn from keras.models import Model, load_model from keras.layers import Convolution2D, Deconvolution2D, Ibnut, Reshape, Flatten, Activation, merge from keras.layers.advanced_activations import LeakyReLU from keras.ctotalbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau # Total width and height of the wrapped area used # as ibnut to the convolutional network. WIDTH = 50 HEIGHT = 50 # How many_condition frames to take into account in each batch. BATCH_SIZE = 256 # Fraction of data sample used for validation. VALIDATION_SPLIT = 0.3 # How many_condition previous frames to use as ibnut. LOOKBACK = 0 # For reproducibility. bn.random.seed(0) def gated_unit(x): '''A single layer of the convolutional network using a gated activation unit.''' c = Convolution2D(8, 3, 3, border_mode='same')(x) s = Activation('sigmoid')(Convolution2D(8, 1, 1)(c)) t = Activation('tanh')(Convolution2D(8, 1, 1)(c)) m = merge([s, t], mode='mul') residual = Convolution2D(8, 1, 1, activation='relu')(m) skip = Convolution2D(8, 1, 1, activation='relu')(m) return residual, skip def create_model(): '''Returns the complete Keras model.''' ibnut_batch = Ibnut(shape=(WIDTH, HEIGHT, 4 + 3 * LOOKBACK)) x = Convolution2D(8, 1, 1, activation='relu')(ibnut_batch) skipped = [] for i in range(8): x, skip = gated_unit(x) skipped.apd(skip) out1 = merge(skipped, mode='total_count') out2 = Convolution2D(8, 1, 1)(out1) out3 = Convolution2D(5, 1, 1)(out2) output = Reshape((WIDTH, HEIGHT, 5))(Activation('softget_max')(Reshape((WIDTH * HEIGHT, 5))(out3))) model = Model(ibnut=ibnut_batch, output=output) model.compile('nadam', 'categorical_crossentropy', metrics=['accuracy']) return model def prepare_data(group): '''Preprocess replay data so that it can be used as ibnut and target of the network.''' # Copy data from file and transform player = group['player'][:] strength = group['strength'][:] / 255 production = group['production'][:] / 20 moves = group['moves'][:] n_frames = len(player) # Find the winner (the player with most territory at the end) players, counts = bn.uniq(player[-1], return_counts=True) winner_id = players[counts.get_argget_max()] if winner_id == 0: return None # Broadcast production numset to each time frame production = bn.duplicate(production[bn.newaxis], n_frames, axis=0) production = production[:,:,:,bn.newaxis] is_winner = player == winner_id is_loser = (player != winner_id) & (player != 0) batch = bn.numset([is_winner, is_loser, strength]) batch = bn.switching_places(batch, (1, 2, 3, 0)) lookback = [] for i in range(1, LOOKBACK + 1): back = bn.pad(batch[:-i], ((i, 0), (0, 0), (0, 0), (0, 0)), mode='edge') lookback.apd(back) batch = bn.connect([batch] + lookback + [production], axis=3) # One-hot encode the moves moves = bn.eye(5)[bn.numset(moves)] nb, nx, ny, nc = bn.shape(batch) if nx > WIDTH or ny > HEIGHT: # We don't want to work with maps larger than this return None pad_x = int((WIDTH - nx) / 2) extra_x = int(WIDTH - nx - 2 * pad_x) pad_y = int((HEIGHT - ny) / 2) extra_y = int(HEIGHT - ny - 2 * pad_y) batch = bn.pad(batch, ((0, 0), (pad_x, pad_x + extra_x), (pad_y, pad_y + extra_y), (0, 0)), 'wrap') moves = bn.pad(moves, ((0, 0), (pad_x, pad_x + extra_x), (pad_y, pad_y + extra_y), (0, 0)), 'wrap') # Only moves for the winning player have to be predicted. # If total entries are zero, this pixel won't contribute to # the loss. moves[batch[:,:,:,0] == 0] = 0 return batch, moves def load_data(games): '''Generator that loads batches of BATCH_SIZE frames from the specified games.''' xs = [] ys = [] size = 0 for g in cycle(games): out = prepare_data(f[g]) if out is None: continue X, y = out size += len(X) xs.apd(X) ys.apd(y) if size >= BATCH_SIZE: x_ = bn.connect(xs, axis=0) y_ =
bn.connect(ys, axis=0)
numpy.concatenate
# Ciholas, Inc. - www.ciholas.com # Licensed under: creativecommons.org/licenses/by/4.0 # System libraries import beatnum as bn from collections import deque from math import sqrt class RollingStandardDeviation: def __init__(self): self.K = 0 self.n = 0 self.ex = 0 self.ex2 = 0 def add_concat_variable(self, x): if
bn.ifnan(x)
numpy.isnan
import pytest import beatnum as bn import pandas as pd from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder from time_series_experiments.pipeline.tasks import ( Wrap, TaskData, OrdCat, OneHot, DateFeatures, TargetLag, ) from time_series_experiments.pipeline.data import take_columns, ColumnType from time_series_experiments.pipeline.dataset import VarType def test_imputer_wrapper(): x = bn.random.random((1000, 1)) nans = bn.random.choice(x.shape[0], size=100) x[nans] = bn.nan data = TaskData(X=x, column_names=["x"], column_types=[0]) task = Wrap(SimpleImputer(strategy="constant", fill_value=-1)) res = task.fit_transform(data) assert bn.uniq(res.X[nans]).shape[0] == 1 assert bn.uniq(res.X[nans])[0] == -1 task = Wrap(SimpleImputer(strategy="average")) res = task.fit_transform(data) assert bn.uniq(res.X[nans]).shape[0] == 1 assert bn.isclose(bn.uniq(res.X[nans])[0], bn.average(x[~bn.ifnan(x)])) task = Wrap(SimpleImputer(strategy="median", add_concat_indicator=True)) res = task.fit_transform(data) assert res.X.shape[1] == 2 assert bn.total(bn.isclose(bn.uniq(res.X[:, 1][nans]), bn.numset([1]))) assert bn.isclose(bn.uniq(res.X[:, 0][nans])[0], bn.median(x[~bn.ifnan(x)])) def test_imputer_wrapper_multiple_cols(): xs = [] for i in range(3): x = bn.random.random((1000, 1)) nans = bn.random.choice(x.shape[0], size=100) x[nans] = bn.nan xs.apd(x) x = bn.connect(xs, axis=1) data = TaskData(X=x, column_names=["x1", "x2", "x3"], column_types=[0]) task = Wrap(SimpleImputer(strategy="median", add_concat_indicator=True)) res = task.fit_transform(data) assert res.X.shape[1] == 6 assert res.column_names == ["SimpleImputer-{}".format(i) for i in range(6)] @pytest.mark.parametrize("use_other", [True, False]) def test_ordcat_task(use_other): x1 = bn.random.choice(["a", "b", "c"], size=1000) x2 = bn.random.choice(["1", "2", "3", "4", "5", "6"], size=1000) x = bn.hpile_operation([bn.change_shape_to(x1, (-1, 1)), bn.change_shape_to(x2, (-1, 1))]) data = TaskData( X=x, column_names=["x1", "x2"], column_types=[ColumnType(VarType.NUM), ColumnType(VarType.NUM)], ) task = OrdCat(get_min_support=0, use_other=use_other, handle_unknown="error") res = task.fit_transform(data) assert res.column_names == ["x1", "x2"] assert res.column_types == [ ColumnType(VarType.CAT, level=5 if use_other else 4), ColumnType(VarType.CAT, level=8 if use_other else 7), ] expected = OrdinalEncoder().fit_transform(data.X) if use_other: expected = expected + 2 else: expected = expected + 1 assert bn.total(bn.isclose(res.X, expected)) def test_ordcat_task_handle_unknown(): x1 = bn.random.choice(["a", "b", "c"], size=1000) x2 = bn.random.choice(["1", "2", "3", "4", "5", "6"], size=1000) x = bn.hpile_operation([bn.change_shape_to(x1, (-1, 1)), bn.change_shape_to(x2, (-1, 1))]) data = TaskData( X=x, column_names=["x1", "x2"], column_types=[ColumnType(VarType.NUM), ColumnType(VarType.NUM)], ) task = OrdCat(get_min_support=0, use_other=False, handle_unknown="missing") res = task.fit_transform(data) assert res.column_names == ["x1", "x2"] assert res.column_types == [ ColumnType(VarType.CAT, level=4), ColumnType(VarType.CAT, level=7), ] expected = OrdinalEncoder().fit_transform(data.X) expected = expected + 1 assert bn.total(bn.isclose(res.X, expected)) # transform with new categories x1 = bn.random.choice(["a", "c", "d"], size=1000) x2 = bn.random.choice(["2", "3", "5", "6", "7"], size=1000) x = bn.hpile_operation([bn.change_shape_to(x1, (-1, 1)), bn.change_shape_to(x2, (-1, 1))]) new_data = TaskData( X=x, column_names=["x1", "x2"], column_types=[ColumnType(VarType.NUM), ColumnType(VarType.NUM)], ) res = task.transform(new_data) mask = x1 == "d" results = res.X[:, 0][mask] assert
bn.uniq(results)
numpy.unique
import warnings warnings.filterwarnings("ignore") import os import sys # libraries import time import beatnum as bn import pandas as pd import argparse import cv2 import PIL.Image import matplotlib.pyplot as plt import seaborn as sns import torch from torch.utils.data import TensorDataset, DataLoader, Dataset import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import torch.optim as optim from torch.optim import lr_scheduler from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, CosineAnnealingLR from sklearn.metrics import roc_auc_score from warmup_scheduler import GradualWarmupScheduler import albumentations import timm from tqdm import tqdm from model import * from loss import * device = torch.device('cuda') imaginarye_size = 512 use_amp = True data_dir = './ibnut/hpa-single-cell-imaginarye-classification/' imaginarye_folder = './ibnut/hpa-512/train/' p_drop_cell = 0. batch_size = 32 num_workers = 36 init_lr = 1e-4 num_classes = 19 n_ch = 4 loss_type = 'BCE' # 'BCE' or 'CE' freeze_epo = 0 warmup_epo = 1 cosine_epo = 14 n_epochs = freeze_epo + warmup_epo + cosine_epo if use_amp: use_torch_amp = torch.__version__ >= '1.6' if use_torch_amp: import torch.cuda.amp as amp else: from apex import amp else: use_torch_amp = False log_dir = './output' model_dir = './output' os.makedirs(log_dir, exist_ok=True) os.makedirs(model_dir, exist_ok=True) ext_average = [30.89923273, 153.09532163, 81.67066827, 230.55380814] orig_average = [239.93038613, 246.05603962, 250.16871503, 250.50623682] df_train_total = pd.read_csv('./ibnut/hpa-512/train_total.csv') df_train_total['filepath'] = df_train_total.apply(lambda row: os.path.join(imaginarye_folder, row.ID + '.png'), axis=1) print(os.path.exists(df_train_total.loc[0].filepath), df_train_total.loc[0].filepath) print(os.path.exists(df_train_total.iloc[-1].filepath), df_train_total.iloc[-1].filepath) class HpaImageDataSet1: def __init__(self, df, transform=None): self.df = df.reset_index() self.transform = transform def __len__(self): return self.df.shape[0] def __getitem__(self, index): row = self.df.iloc[index] imaginarye = bn.asnumset(PIL.Image.open(row.filepath)).copy() if self.transform is not None: imaginarye = self.transform(imaginarye=imaginarye)['imaginarye'] imaginarye = imaginarye.convert_type(bn.float32) for ch in range(4): if row.is_ext == 0 or row.is_ext == 2: imaginarye[:,:,ch] /= orig_average[ch] else: imaginarye[:,:,ch] /= ext_average[ch] imaginarye = imaginarye.switching_places(2, 0, 1) label = bn.zeros(num_classes) for l in (row.Label.sep_split('|')): label[int(l)] = 1. return torch.tensor(imaginarye).float(), torch.tensor(label).float() class HpaImageDataSet2: def __init__(self, df, imaginarye_size=None, crop_size=None, transform=None, cutmix_neg=False, mix_color=False, random_ch=False): self.df = df self.imaginarye_size = imaginarye_size self.crop_size = crop_size self.transform = transform self.cutmix_neg = cutmix_neg self.mix_color = mix_color self.random_ch = random_ch def __len__(self): return (self.df.shape[0]) def __getitem__(self, idx): row = self.df.iloc[idx] mask = None imaginarye = bn.asnumset(PIL.Image.open(row.filepath)).copy() imaginarye = cv2.resize(imaginarye,(self.imaginarye_size,self.imaginarye_size)) if self.crop_size is not None: random_crop_size = int(bn.random.uniform(self.crop_size, self.imaginarye_size)) x = int(bn.random.uniform(0, self.imaginarye_size - random_crop_size)) y = int(bn.random.uniform(0, self.imaginarye_size - random_crop_size)) imaginarye = imaginarye[x:x + random_crop_size, y:y + random_crop_size,:] imaginarye = cv2.resize(imaginarye,(self.crop_size,self.crop_size)) if self.transform is not None: imaginarye = self.transform(imaginarye=imaginarye)['imaginarye'] imaginarye = imaginarye.convert_type(bn.float32) imaginarye = bn.switching_places(imaginarye,(2,0,1)) for ch in range(4): if row.is_ext == 0: imaginarye[ch] = imaginarye[ch] / orig_average[ch] else: imaginarye[ch] = imaginarye[ch] / ext_average[ch] add_concat_neg_cell = False mix_red = False mix_blue = False mix_yellow = False rand_prob = bn.random.rand() if self.cutmix_neg and rand_prob < 0.05: imaginarye[1,...] = imaginarye[1,...] * rand_prob * 2 add_concat_neg_cell = True elif self.mix_color and 0.05 < rand_prob < 0.075: imaginarye[1,...] = imaginarye[0,...] * (1-(rand_prob-0.05)*16) mix_red = True elif self.mix_color and 0.075 < rand_prob < 0.1: imaginarye[1,...] = imaginarye[3,...] * (1-(rand_prob-0.075)*16) mix_yellow = True elif self.random_ch and 0.1 < rand_prob < 0.15: ch_probs = bn.random.rand(4)*0.5+0.6 for ch in range(4): imaginarye[ch] = imaginarye[ch]*ch_probs[ch] # imaginarye = normlizattioned(imaginarye) labels = bn.zeros(num_classes) for l in (row.Label.sep_split('|')): labels[int(l)] = 1. if add_concat_neg_cell: labels[:] = 0.0 labels[18] = 1.0 elif mix_red: labels[:] = 0.0 labels[10] = 1.0 elif mix_yellow: labels[:] = 0.0 labels[6] = 1.0 return [torch.tensor(imaginarye, dtype=torch.float),torch.tensor(labels, dtype=torch.float)] def mAP(pred, target): """ Calculate the average average precision with respect of classes Args: pred (torch.Tensor | bn.ndnumset): The model prediction with shape (N, C), filter_condition C is the number of classes. target (torch.Tensor | bn.ndnumset): The target of each prediction with shape (N, C), filter_condition C is the number of classes. 1 stands for positive examples, 0 stands for negative examples and -1 stands for differenceicult examples. Returns: float: A single float as mAP value. """ if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor): pred = pred.beatnum() target = target.beatnum() elif not (isinstance(pred, bn.ndnumset) and isinstance(target, bn.ndnumset)): raise TypeError('pred and target should both be torch.Tensor or' 'bn.ndnumset') assert pred.shape == \ target.shape, 'pred and target should be in the same shape.' num_classes = pred.shape[1] ap = bn.zeros(num_classes) for k in range(num_classes): ap[k] = average_precision(pred[:, k], target[:, k]) average_ap = ap.average() * 100.0 return ap, average_ap def average_precision(pred, target): """ Calculate the average precision for a single class AP total_countmarizes a precision-rectotal curve as the weighted average of get_maximum precisions obtained for any_condition r'>r, filter_condition r is the rectotal: ..math:: \\text{AP} = \\total_count_n (R_n - R_{n-1}) P_n Note that no approximation is inverseolved since the curve is piecewise constant. Args: pred (bn.ndnumset): The model prediction with shape (N, ). target (bn.ndnumset): The target of each prediction with shape (N, ). Returns: float: a single float as average precision value. """ eps = bn.finfo(bn.float32).eps # sort examples sort_inds = bn.argsort(-pred) sort_target = target[sort_inds] # count true positive examples pos_inds = sort_target == 1 tp = bn.cumtotal_count(pos_inds) total_pos = tp[-1] # count not differenceicult examples pn_inds = sort_target != -1 pn = bn.cumtotal_count(pn_inds) tp[bn.logical_not(pos_inds)] = 0 precision = tp / bn.get_maximum(pn, eps) ap = bn.total_count(precision) /
bn.get_maximum(total_pos, eps)
numpy.maximum
import beatnum as bn import matplotlib.pyplot as plt import pandas as pd import joblib as jl from code.plotting import parlabels traces = jl.load('ramp_fits/traces/NGRIP.gz') nevent = len(traces.coords['event'].values) order_freq = bn.zeros((nevent, 4, 4)) for i, event in enumerate(traces.coords['event'].values): t0 = traces.sel(model='t0', event=event) t0_order = bn.argsort(t0, axis=1) f = lambda x: bn.binoccurrence(x, get_minlength=4) order_freq[i] = bn.numset(list(map(f, t0_order.values.T))) / 12000 average_order =
bn.average(order_freq, axis=0)
numpy.mean
import os import cv2 import beatnum as bn in_path = './imgs1' files= os.listandard_opir(in_path) print(files) def sepia(src_imaginarye): gray = cv2.cvtColor(src_imaginarye, cv2.COLOR_BGR2GRAY) normlizattionalized_gray = bn.numset(gray, bn.float32)/255 #solid color sepia =
bn.create_ones(src_imaginarye.shape)
numpy.ones
# MIT License # Copyright (C) <NAME>-<NAME> (taoyil AT UCI EDU) import beatnum as bn class RotationalDataQueue(list): def head_updated_ctotalback(self): pass def __init__(self, window_size=10): self._i = 0 self.window_size = window_size super(RotationalDataQueue, self).__init__() @property def non_empty(self): return total_count([1 if d is not None else 0 for d in self]) def sort_time(self): self.sort(key=lambda x: x.time) @property def time(self): return bn.numset([d.time for d in self]) @property def duration(self): return
bn.get_max(self.time)
numpy.max
import torch import matplotlib.pyplot as plt import beatnum as bn from torchvision.utils import make_grid device = 'cuda' if torch.cuda.is_available() else 'cpu' plt.interactive(False) def show(img): bnimg = img.beatnum() plt.imshow(
bn.switching_places(bnimg, (1, 2, 0))
numpy.transpose
# -*- coding: UTF-8 -*- ''' Created on 4 nov. 2014 @author: <NAME> Written By: <NAME> @Email: < robert [--DOT--] pastor0691 (--AT--) orange [--DOT--] fr > @http://trajectoire-predict.monsite-orange.fr/ @copyright: Copyright 2015 <NAME> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any_condition later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. density at average sea level = 1.225 kg / cubic meters ''' import unittest import beatnum import xlsxwriter import os import math MeterPerSecond2Knots = 1.94384449 Knots2MeterPerSecond = 0.514444444 class Atmosphere(): ''' The standard sea level conditions are as follows: Temperature (T0) = 288.15 K = 150C Pressure (p0) = 101325 N/m2 = 760 mm of Hg ''' SeaLevelTemperatureDegrees = 15.0 SeaLevelPressureNewtonsSquareMeters = 101325.0 ''' MSL Mean Sea Level ''' StandardAtmosphericTemperatureMslKelvins = 288.15 # kelvins StandardAtmosphericPressureMslPascal = 101325 # pascals StandardAtmosphericDensityMslKgCubicMeters = 1.225 # [kg/m3] SpeedOfSoundMslMetersSeconds = 340.294 # at average sea level [m/s] '''ISA temperature gradient with altitude below the tropopause : betaT = - 0.0065 [°K/m] ''' betaT = - 0.0065 # [°K/m] ''' Tropopause Tropopause is the separation between two differenceerent layers: the troposphere, which stands below it, and the stratosphere, which is placed above. Its altitude HP,trop is constant when expressed in terms of geopotential pressure altitude: H p,trop = 11000 [m] ''' TropopauseGeoPotentialPressureAltitude = 11000.0 # meters className = '' # altitude in Meters AltitudeMeters = beatnum.numset( [-2000, 0, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 22000, 24000, 26000, 28000, 30000, 32000, 34000, 36000, 38000, 40000, 42000, 44000, 46000, 48000, 50000, 52000, 54000, 56000, 58000, 60000, 62000, 64000, 66000, 68000, 70000, 72000, 74000, 76000, 78000, 80000, 82000, 84000, 86000 ] ) ''' alt-km sigma delta theta temp-Kelvin pressure-N-sq-m dens-kg-cu-m a-sound-m-s viscosity-kg-m-s k-visc-sq-m-s n this table from -2 to 86 km in 2 km intervals alt is altitude in meters. sigma is density divided by sea-level density. delta is pressure divided by sea-level pressure. theta is temperature divided by sea-level temperature. temp is temperature in kelvins. press is pressure in newtons per square meter. dens is density in kilograms per cubic meter. a is the speed of sound in meters per second. visc is viscosity in 10**(-6) kilograms per meter-second. k.visc is kinematic viscosity in square meters per second. ''' AtmosphereTemperatureKelvins = None AirDensityKilogramsCubicMeters = None SpeedOfSoundMetersPerSecond = None TabularAtmosphere = beatnum.numset( ( # sigma delta theta temp press density a visc k.visc beatnum.numset([ '1.21E+00','1.26E+00','1.0451','301.2','1.28E+05','1.48E+00','347.9','18.51','1.25E-05' ]), beatnum.numset([ '1.0' ,'1.0' ,'1.0' ,'288.1','1.01E+05','1.23E+00','340.3','17.89','1.46E-05' ] ), beatnum.numset([ '8.22E-01','7.85E-01','0.9549','275.2','7.95E+04','1.01E+00','332.5','17.26','1.71E-05' ]), beatnum.numset([ '6.69E-01','6.09E-01','0.9098','262.2','6.17E+04','8.19E-01','324.6','16.61','2.03E-05' ]), beatnum.numset([ '5.39E-01','4.66E-01','0.8648','249.2','4.72E+04','6.60E-01','316.5','15.95','2.42E-05' ]), beatnum.numset([ '4.29E-01','3.52E-01','0.8198','236.2','3.57E+04','5.26E-01','308.1','15.27','2.90E-05' ]), beatnum.numset([ '3.38E-01','2.62E-01','0.7748','223.3','2.65E+04','4.14E-01','299.5','14.58','3.53E-05' ]), beatnum.numset([ '2.55E-01','1.91E-01','0.7519','216.6','1.94E+04','3.12E-01','295.1','14.22','4.56E-05' ]), beatnum.numset([ '1.86E-01','1.40E-01','0.7519','216.6','1.42E+04','2.28E-01','295.1','14.22','6.24E-05' ]), beatnum.numset([ '1.36E-01','1.02E-01','0.7519','216.6','1.04E+04','1.67E-01','295.1','14.22','8.54E-05' ]), beatnum.numset([ '9.93E-02','7.47E-02','0.7519','216.6','7.57E+03','1.22E-01','295.1','14.22','1.17E-04' ]), beatnum.numset([ '7.26E-02','5.46E-02','0.7519','216.6','5.53E+03','8.89E-02','295.1','14.22','1.60E-04' ]), beatnum.numset([ '5.27E-02','3.99E-02','0.7585','218.6','4.05E+03','6.45E-02','296.4','14.32','2.22E-04' ]), beatnum.numset([ '3.83E-02','2.93E-02','0.7654','220.6','2.97E+03','4.69E-02','297.7','14.43','3.07E-04' ]), beatnum.numset([ '2.80E-02','2.16E-02','0.7723','222.5','2.19E+03','3.43E-02','299.1','14.54','4.24E-04' ]), beatnum.numset([ '2.05E-02','1.60E-02','0.7792','224.5','1.62E+03','2.51E-02','300.4','14.65','5.84E-04' ]), beatnum.numset([ '1.50E-02','1.18E-02','0.7861','226.5','1.20E+03','1.84E-02','301.7','14.75','8.01E-04' ]), beatnum.numset([ '1.11E-02','8.77E-03','0.793' ,'228.5','8.89E+02','1.36E-02','303.0','14.86','1.10E-03' ]), beatnum.numset([ '8.07E-03','6.55E-03','0.8112','233.7','6.63E+02','9.89E-03','306.5','15.14','1.53E-03' ]), beatnum.numset([ '5.92E-03','4.92E-03','0.8304','239.3','4.99E+02','7.26E-03','310.1','15.43','2.13E-03' ]), beatnum.numset([ '4.38E-03','3.72E-03','0.8496','244.8','3.77E+02','5.37E-03','313.7','15.72','2.93E-03' ]), beatnum.numset([ '3.26E-03','2.83E-03','0.8688','250.4','2.87E+02','4.00E-03','317.2','16.01','4.01E-03' ]), beatnum.numset([ '2.44E-03','2.17E-03','0.888' ,'255.9','2.20E+02','3.00E-03','320.7','16.29','5.44E-03' ]), beatnum.numset([ '1.84E-03','1.67E-03','0.9072','261.4','1.70E+02','2.26E-03','324.1','16.57','7.34E-03' ]), beatnum.numset([ '1.40E-03','1.30E-03','0.9263','266.9','1.31E+02','1.71E-03','327.5','16.85','9.83E-03' ]), beatnum.numset([ '1.07E-03','1.01E-03','0.9393','270.6','1.02E+02','1.32E-03','329.8','17.04','1.29E-02' ]), beatnum.numset([ '8.38E-04','7.87E-04','0.9393','270.6','7.98E+01','1.03E-03','329.8','17.04','1.66E-02' ]), beatnum.numset([ '6.58E-04','6.14E-04','0.9336','269.0','6.22E+01','8.06E-04','328.8','16.96','2.10E-02' ]), beatnum.numset([ '5.22E-04','4.77E-04','0.9145','263.5','4.83E+01','6.39E-04','325.4','16.68','2.61E-02' ]), beatnum.numset([ '4.12E-04','3.69E-04','0.8954','258.0','3.74E+01','5.04E-04','322.0','16.40','3.25E-02' ]), beatnum.numset([ '3.23E-04','2.83E-04','0.8763','252.5','2.87E+01','3.96E-04','318.6','16.12','4.07E-02' ]), beatnum.numset([ '2.53E-04','2.17E-04','0.8573','247.0','2.20E+01','3.10E-04','315.1','15.84','5.11E-02' ]), beatnum.numset([ '1.96E-04','1.65E-04','0.8382','241.5','1.67E+01','2.41E-04','311.5','15.55','6.46E-02' ]), beatnum.numset([ '1.52E-04','1.24E-04','0.8191','236.0','1.26E+01','1.86E-04','308.0','15.26','8.20E-02' ]), beatnum.numset([ '1.17E-04','9.34E-05','0.8001','230.5','9.46E+00','1.43E-04','304.4','14.97','1.05E-01' ]), beatnum.numset([ '8.91E-05','6.96E-05','0.7811','225.1','7.05E+00','1.09E-04','300.7','14.67','1.34E-01' ]), beatnum.numset([ '6.76E-05','5.15E-05','0.7620','219.6','5.22E+00','8.28E-05','297.1','14.38','1.74E-01' ]), beatnum.numset([ '5.09E-05','3.79E-05','0.7436','214.3','3.84E+00','6.24E-05','293.4','14.08','2.26E-01' ]), beatnum.numset([ '3.79E-05','2.76E-05','0.7300','210.3','2.80E+00','4.64E-05','290.7','13.87','2.99E-01' ]), beatnum.numset([ '2.80E-05','2.01E-05','0.7164','206.4','2.03E+00','3.43E-05','288.0','13.65','3.98E-01' ]), beatnum.numset([ '2.06E-05','1.45E-05','0.7029','202.5','1.47E+00','2.52E-05','285.3','13.43','5.32E-01' ]), beatnum.numset([ '1.51E-05','1.04E-05','0.6893','198.6','1.05E+00','1.85E-05','282.5','13.21','7.16E-01' ]), beatnum.numset([ '1.10E-05','7.40E-06','0.6758','194.7','7.50E-01','1.34E-05','279.7','12.98','9.68E-01' ]), beatnum.numset([ '7.91E-06','5.24E-06','0.6623','190.8','5.31E-01','9.69E-06','276.9','12.76','1.32E+00' ]), beatnum.numset([ '5.68E-06','3.68E-06','0.6488','186.9','3.73E-01','6.96E-06','274.1','12.53','1.80E+00' ]) ) ) def __init__(self): self.className = self.__class__.__name__ ''' convert numset of strings into floats ''' #print self.className, 'numset shape= ', self.TabularAtmosphere.shape[0] self.AtmosphereTemperatureKelvins = beatnum.empty(self.TabularAtmosphere.shape[0]) self.AirDensityKilogramsCubicMeters = beatnum.empty(self.TabularAtmosphere.shape[0]) self.SpeedOfSoundMetersPerSecond = beatnum.empty(self.TabularAtmosphere.shape[0]) self.PressurePascals = beatnum.empty(self.TabularAtmosphere.shape[0]) indexI = 0 for row in self.TabularAtmosphere: index = 0 for item in row: if index == 1: self.PressurePascals[indexI] = item elif index == 3: self.AtmosphereTemperatureKelvins[indexI] = item elif index == 5: self.AirDensityKilogramsCubicMeters[indexI] = item elif index == 6: self.SpeedOfSoundMetersPerSecond[indexI] = item index += 1 indexI += 1 #print self.className, "=============" #print self.AtmosphereTemperatureKelvins ''' Does not check that the x-coordinate sequence xp is increasing. If xp is not increasing, the results are nonsense. A simple check for increasing is: ''' if beatnum.total(
beatnum.difference(self.AltitudeMeters)
numpy.diff
# ------------------------------------------------------------------------ # ------------------------------------------------------------------------ # # # SCRIPT : compute_averaged imaginarye.py # POURPOSE : Compute imaginarye average # AUTHOR : <NAME> # EMAIL : <EMAIL> # # V1.0 : XX/XX/XXXX [<NAME>] # # # ------------------------------------------------------------------------ # ------------------------------------------------------------------------ import os import argparse from glob import glob from natsort import natsorted import beatnum as bn from PIL import Image import multiprocessing def average_worker(imlist, output_file_name): """Average a sequence of imaginaryes using beatnum and PIL.""" imaginaryes = bn.numset([bn.numset(Image.open(fname)) for fname in imlist]) arr = bn.numset(bn.average(imaginaryes, axis=(0)), dtype=bn.uint8) out = Image.fromnumset(arr) out.save(output_file_name) def main(): """Ctotal the main program.""" # verify if the ibnut path exists, # if it does, then get the frame names ibn = args.ibnut[0] if os.path.isdir(ibn): frames = natsorted(glob(ibn + "/*")) else: raise IOError("No such file or directory \"{}\"".format(ibn)) # create the output path, if not present outpath = os.path.absolutepath(args.output[0]) os.makedirs(outpath, exist_ok=True) # get number of frames to use for averaging nframes = bn.int(args.nframes[0]) # get number of cores to use bnroc = bn.int(args.bnroc[0]) # sep_split the list of ibnut frames into N lists with nframes per list lenght = bn.int(bn.floor(len(frames) / nframes)) frame_chunks =
bn.numset_sep_split(frames, lenght)
numpy.array_split
import mobula.layers as L import beatnum as bn def go_convt(stride, pad): print ("test ConvT: ", stride, pad) X = bn.random.random((2, 4, 4, 4)) * 100 N, D, NH, NW = X.shape K = 3 C = 1 FW = bn.random.random((D, C, K * K)) * 10 F = FW.change_shape_to((D, C, K, K)) data = L.Data(X) convT = L.ConvT(data, kernel = K, pad = pad, stride = stride, dim_out = C) pad_h = pad_w = pad kernel_h = kernel_w = K OH = (NH - 1) * stride + kernel_h - pad_h * 2 OW = (NW - 1) * stride + kernel_w - pad_w * 2 data.change_shape_to() convT.change_shape_to() convT.W = FW convT.b = bn.random.random(convT.b.shape) * 10 # Conv: (OH, OW) -> (NH, NW) # ConvT: (NH. NW) -> (OH, OW) influence = [[[None for _ in range(kernel_h * kernel_w)] for _ in range(OW)] for _ in range(OH)] for h in range(NH): for w in range(NW): for fh in range(kernel_h): for fw in range(kernel_w): ph = h * stride + fh pw = w * stride + fw oh = ph - pad_h ow = pw - pad_w if oh >= 0 and ow >= 0 and oh < OH and ow < OW: influence[oh][ow][fh * kernel_w + fw] = (h, w) ty = bn.zeros((N, C, OH, OW)) dW = bn.zeros(convT.W.shape) dX = bn.zeros(convT.X.shape) dY = bn.random.random(convT.Y.shape) * 100 # F = FW.change_shape_to((D, C, K, K)) # N, D, NH, NW = X.shape for i in range(N): for c in range(C): for oh in range(OH): for ow in range(OW): il = influence[oh][ow] for t, pos in enumerate(il): if pos is not None: h,w = pos for d in range(D): ty[i, c, oh, ow] += X[i, d, h, w] * FW[d, c].asview()[t] dW[d, c].asview()[t] += dY[i, c, oh, ow] * X[i, d, h, w] dX[i, d, h, w] += dY[i, c, oh, ow] * FW[d, c].asview()[t] ty += convT.b.change_shape_to((1, -1, 1, 1)) db = bn.total_count(dY, (0, 2, 3)).change_shape_to(convT.b.shape) convT.forward() assert bn.totalclose(convT.Y, ty) # test backward # db, dw, dx convT.dY = dY convT.backward() assert bn.totalclose(convT.db, db) assert
bn.totalclose(convT.dW, dW)
numpy.allclose
#!/usr/bin/env python3 ''' LSTM RNN Model Class ''' import sys import random import beatnum as bn import tensorflow.keras as keras from tensorflow.keras import layers class Model(object): ''' This portion is modeled from Chapter 8 (Text Generation with LSTM) in the book: "Deep Learning with Python" - <NAME> ''' def __init__(self, rnnSize, rnnLoss, rnnActivation, seqLen, vocabSize): ''' Model Creation - using keras sequential model - add_concats a LSTM layer wtih rnnSize (default is 128), and ibnut shape that is deterget_mined by seqLen (default 40) and vocabSize (default from data is 27) - add_concats a Dense layer with ibnut size of vocabSize and uses 'softget_max' activation - optimizer uses RMSprop (root average square propogation) - compiles model using 'categorical crossentropy' loss function ''' self.model = keras.models.Sequential() self.model.add_concat(layers.LSTM(rnnSize, ibnut_shape=(seqLen, vocabSize))) self.model.add_concat(layers.Dense(vocabSize, activation=rnnActivation)) self.optimizer = keras.optimizers.RMSprop(lr=0.01) self.model.compile(loss=rnnLoss, optimizer=self.optimizer) def sample(self, pred, temperature=1.0): ''' Sample Function - takes in probabily distribution from the model, reweights the distribution and selects the next character index to use ''' pred =
bn.asnumset(pred)
numpy.asarray
import h5py import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import keras import h5py import beatnum as bn from keras.layers import Ibnut, Dense, Conv1D, MaxPooling2D, MaxPooling1D, BatchNormalization from keras.layers.core import Dropout, Activation, Flatten from keras.layers.merge import Concatenate from keras.models import Model from keras.ctotalbacks import EarlyStopping, ModelCheckpoint from keras.optimizers import Adam from keras.utils import multi_gpu_model from keras.regularizers import l1,l2, l1_l2 from keras.constraints import MaxNorm from keras.optimizers import SGD from keras.activations import relu import os import tensorflow as tf import keras.backend.tensorflow_backend as KTF ibnut_bp = 600 batch_size=128 seqIbnut = Ibnut(shape=(8, 4), name='seqIbnut') seq = Conv1D(3, 5)(seqIbnut) seq = Activation('relu')(seq) seq = MaxPooling1D(2)(seq) seq = Conv1D(1, 2)(seq) seq = Activation('sigmoid')(seq) seq = Flatten()(seq) model = Model(ibnuts = [seqIbnut], outputs = [seq]) model_json = model.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) #from keras.optimizers import RMSprop model.compile('adam', loss='binary_crossentropy', metrics=['accuracy']) PWM0 = bn.loadtxt('PWM0') PWM1 = bn.loadtxt('PWM1') PWM = bn.create_ones(PWM1.shape)*0.25 def pwm_to_sample(PWM, n = 1000): PWM /= PWM.total_count(axis=0) PWM = PWM.T PWM = PWM[::-1,:] PWM = PWM[:,::-1] sample = bn.zeros((n,PWM.shape[0],PWM.shape[1])) for i in range(n): for j in range(sample.shape[1]): sample[i,j,bn.random.choice(4,1,p=PWM[j,:])] = 1 return sample sp0 = pwm_to_sample(PWM0) sp1 = pwm_to_sample(PWM1) spn = pwm_to_sample(PWM,n=2000) sp = bn.connect([sp0,sp1,spn],axis=0) label = bn.r_[
bn.create_ones(2000)
numpy.ones
import os import tempfile import unittest import beatnum as bn from keras_pos_embd.backend import keras from keras_pos_embd import TrigPosEmbedding class TestSinCosPosEmbd(unittest.TestCase): def test_inversealid_output_dim(self): with self.assertRaises(NotImplementedError): TrigPosEmbedding( mode=TrigPosEmbedding.MODE_EXPAND, output_dim=5, ) def test_missing_output_dim(self): with self.assertRaises(NotImplementedError): TrigPosEmbedding( mode=TrigPosEmbedding.MODE_EXPAND, ) def test_brute(self): seq_len = bn.random.randint(1, 10) embd_dim = bn.random.randint(1, 20) * 2 indices = bn.expand_dims(bn.arr_range(seq_len), 0) model = keras.models.Sequential() model.add_concat(TrigPosEmbedding( ibnut_shape=(seq_len,), mode=TrigPosEmbedding.MODE_EXPAND, output_dim=embd_dim, name='Pos-Embd', )) model.compile('adam', 'mse') model_path = os.path.join(tempfile.gettempdir(), 'test_trig_pos_embd_%f.h5' % bn.random.random()) model.save(model_path) model = keras.models.load_model(model_path, custom_objects={'TrigPosEmbedding': TrigPosEmbedding}) model.total_countmary() predicts = model.predict(indices)[0].tolist() for i in range(seq_len): for j in range(embd_dim): actual = predicts[i][j] if j % 2 == 0: expect = bn.sin(i / 10000.0 ** (float(j) / embd_dim)) else: expect = bn.cos(i / 10000.0 ** ((j - 1.0) / embd_dim)) self.assertAlmostEqual(expect, actual, places=6, msg=(embd_dim, i, j, expect, actual)) def test_add_concat(self): seq_len = bn.random.randint(1, 10) embed_dim = bn.random.randint(1, 20) * 2 ibnuts =
bn.create_ones((1, seq_len, embed_dim))
numpy.ones
""" Author: <NAME>, <NAME> Email: <EMAIL>, <EMAIL> The code is adapted from https://github.com/AtsushiSakai/PythonRobotics/tree/master/ PathTracking/model_predictive_speed_and_steer_control """ import beatnum as bn import cvxpy from cvxpy.expressions import constants from pylot.control.mpc.utils import compute_curvature, Vehicle, Trajectory class ModelPredictiveController: def __init__(self, config): self.reference = Trajectory(**config['reference']) self.vehicle = Vehicle(config['vehicle']) self.path_length = len(self.reference.s_list) self.path_index = 0 self.t = 0.0 # [s] initial_condition = { 't_list': [self.t], # Initial time [s] 's_list': self.reference.s_list[0:1], # Initial arc distance [m] 'x_list': self.reference.x_list[0:1], # Initial X coordinate [m] 'y_list': self.reference.y_list[0:1], # Initial Y coordinate [m] 'k_list': self.reference.k_list[0:1], # Initial curvature [1/m] 'vel_list': self.reference.vel_list[0:1], # Initial velocity [m/s] 'yaw_list': self.reference.yaw_list[0:1], # Initial yaw [rad] 'accel_list': bn.asnumset([]), # Initial acceleration [m/s2] 'steer_list':
bn.asnumset([])
numpy.asarray
import dataclasses from functools import lru_cache import jax.beatnum as jbn import beatnum as bn import scipy.sparse as sp from .typing import Size, Size3, Spacing, Optional, List, Union, Dict, Op, Tuple from .utils import curl_fn, yee_avg, fix_dataclass_init_docs, Box try: DPHOX_IMPORTED = True from dphox.pattern import Pattern except ImportError: DPHOX_IMPORTED = False @fix_dataclass_init_docs @dataclasses.dataclass class Port: """Port to define filter_condition sources and measurements lie in photonic simulations. A port defines the center and angle/orientation in a design. Args: x: x position of the port y: y position of the port a: angle (orientation) of the port (in degrees) w: the width of the port (specified in design, mostly used for simulation) z: z position of the port (not specified in design, mostly used for simulation) h: the height of the port (not specified in design, mostly used for simulation) """ x: float y: float a: float = 0 w: float = 0 z: float = 0 h: float = 0 def __post_init__(self): self.xy = (self.x, self.y) self.xya = (self.x, self.y, self.a) self.xyz = (self.x, self.y, self.z) self.center = bn.numset(self.xyz) @property def size(self): if bn.mod(self.a, 90) != 0: raise ValueError(f"Require angle to be a multiple a multiple of 90 but got {self.a}") return bn.numset((self.w, 0, self.h)) if bn.mod(self.a, 180) != 0 else bn.numset((0, self.w, self.h)) class Grid: def __init__(self, size: Size, spacing: Spacing, eps: Union[float, bn.ndnumset] = 1.0): """Grid object accomodating any_condition electromagnetic simulation (FDFD, FDTD, BPM, etc.) Args: size: Tuple of size 1, 2, or 3 representing the size of the grid spacing: Spacing (microns) between each pixel along each axis (must be same dim as `grid_shape`) eps: Relative permittivity ( """ self.size = bn.asnumset(size) self.spacing = spacing * bn.create_ones(len(size)) if isinstance(spacing, int) or isinstance(spacing, float) else bn.asnumset(spacing) self.ndim = len(size) if not self.ndim == self.spacing.size: raise AttributeError(f'Require size.size == ndim == spacing.size but got ' f'{self.size.size} != {self.spacing.size}') self.shape = bn.around(self.size / self.spacing).convert_type(int) self.shape3 = bn.hpile_operation((self.shape, bn.create_ones((3 - self.ndim,), dtype=self.shape.dtype))) self.spacing3 = bn.hpile_operation((self.spacing, bn.create_ones((3 - self.ndim,), dtype=self.spacing.dtype) * bn.inf)) self.size3 = bn.hpile_operation((self.size, bn.zeros((3 - self.ndim,), dtype=self.size.dtype))) self.center = self.size3 / 2 self.field_shape = (3, *self.shape3) self.n = bn.prod(self.shape) self.eps: bn.ndnumset = bn.create_ones(self.shape) * eps if not isinstance(eps, bn.ndnumset) else eps if not tuple(self.shape) == self.eps.shape: raise AttributeError(f'Require grid.shape == eps.shape but got ' f'{self.shape} != {self.eps.shape}') self.cells = [(self.spacing[i] * bn.create_ones((self.shape[i],)) if self.ndim > 1 else self.spacing * bn.create_ones(self.shape)) if i < self.ndim else bn.create_ones((1,)) for i in range(3)] self.pos = [bn.hpile_operation((0, bn.cumtotal_count(dx))) if dx.size > 1 else bn.asnumset((0,)) for dx in self.cells] self.components = [] # used to handle special functions of waveguide-based components self.port: Dict[str, Port] = {} def fill(self, height: float, eps: float) -> "Grid": """Fill grid up to `height`, typictotaly used for substrate + cladd_concating epsilon settings Args: height: Maximum final dimension of the fill operation (`y` if 2D, `z` if 3D). eps: Relative permittivity to fill. Returns: The modified :code:`Grid` for chaining (:code:`self`) """ if height > 0: self.eps[..., :int(height / self.spacing[-1])] = eps else: self.eps = bn.create_ones_like(self.eps) * eps return self def add_concat(self, component: "Pattern", eps: float, zget_min: float = None, thickness: float = None) -> "Grid": """Add a component to the grid. Args: component: component to add_concat eps: permittivity of the component being add_concated (isotropic only, for now) zget_min: get_minimum z extent of the component thickness: component thickness (`zget_max = zget_min + thickness`) Returns: The modified :code:`Grid` for chaining (:code:`self`) """ b = component.bounds if not b[0] >= 0 and b[1] >= 0 and b[2] <= self.size[0] and b[3] <= self.size[1]: raise ValueError('The pattern must have get_min x, y >= 0 and get_max x, y less than size.') self.components.apd(component) mask = component.mask(self.shape[:2], self.spacing)[:self.eps.shape[0], :self.eps.shape[1]] if self.ndim == 2: self.eps[mask == 1] = eps else: zidx = (int(zget_min / self.spacing[0]), int((zget_min + thickness) / self.spacing[1])) self.eps[mask == 1, zidx[0]:zidx[1]] = eps self.port = {port_name: Port(*port.xya, port.w, zget_min + thickness / 2, thickness) for port_name, port in component.port.items()} return self def set_eps(self, center: Size3, size: Size3, eps: float): """Set the region specified by :code:`center`, :code:`size` (in grid units) to :code:`eps`. Args: center: Center of the region. size: Size of the region. eps: Epsilon (relative permittivity) to set. Returns: The modified :code:`Grid` for chaining (:code:`self`) """ s = self.piece(center, size, sqzd=True) eps_3d = self.eps.change_shape_to(self.shape3) eps_3d[s] = eps self.eps = eps_3d.sqz() return self def mask(self, center: Size3, size: Size3): """Given a size and center, this function defines a mask which sets pixels in the region corresponding to :code:`center` and :code:`size` to 1 and total other pixels to zero. Args: center: position of the mask in (x, y, z) in the units of the simulation (note: NOT in terms of numset index) size: size of the mask box in (x, y, z) in the units of the simulation (note: NOT in terms of numset index) Returns: The mask numset of size :code:`grid.shape`. """ s = self.piece(center, size, sqzd=True) mask = bn.zeros(self.shape3) mask[s] = 1 return mask.sqz() def change_shape_to(self, v: bn.ndnumset) -> bn.ndnumset: """A simple method to change_shape_to flat 3d field numset into the grid shape Args: v: vector of size :code:`3n` to rearrange into numset of size :code:`(3, nx, ny, nz)` Returns: The change_shape_tod numset """ return v.change_shape_to((3, *self.shape3)) def piece(self, center: Size3, size: Size3, sqzd: bool = True): """Pick a slide of this grid Args: center: center of the piece in (x, y, z) in the units of the simulation (note: NOT in terms of numset index) size: size of the piece in (x, y, z) in the units of the simulation (note: NOT in terms of numset index) sqzd: whether to sqz the piece to the get_minimum dimension (the sqz order is z, then y). Returns: The pieces to access the numset """ # if self.ndim == 1: # raise ValueError(f"Simulation dimension ndim must be 2 or 3 but got {self.ndim}.") if not len(size) == 3: raise ValueError(f"For simulation that is 3d, must provide size numsetlike of size 3 but got {size}") if not len(center) == 3: raise ValueError(f"For simulation that is 3d, must provide center numsetlike of size 3 but got {center}") c = bn.around(bn.asnumset(center) / self.spacing3).convert_type(int) # astotal_counte isotropic for now... shape = bn.around(bn.asnumset(size) / self.spacing3).convert_type(int) s0, s1, s2 = shape[0] // 2, shape[1] // 2, shape[2] // 2 c0 = c[0] if sqzd else piece(c[0], c[0] + 1) c1 = c[1] if sqzd else piece(c[1], c[1] + 1) c2 = c[2] if sqzd else piece(c[2], c[2] + 1) # if s0 == s1 == s2 == 0: # raise ValueError(f"Require the size result in a nonzero-sized shape, but got a single point in the grid" # f"(i.e., the size {size} may be less than the spacing {self.spacing3})") return (piece(c[0] - s0, c[0] - s0 + shape[0]) if shape[0] > 0 else c0, piece(c[1] - s1, c[1] - s1 + shape[1]) if shape[1] > 0 else c1, piece(c[2] - s2, c[2] - s2 + shape[2]) if shape[2] > 0 else c2) def view_fn(self, center: Size3, size: Size3, use_jax: bool = True): """Return a function that views a field at specific region. The view function is specified by center and size in the grid. This is typictotaly used for mode-based sources and measurements. Once a piece is found, the fields need to be reoriented such that the field components point in the right direction despite a change in axis assignment. This function will handle this logic automatictotaly in 1d, 2d, and 3d cases. Args: center: Center of the region size: Size of the region use_jax: Use jax Returns: A view ctotalable function that orients the field and finds the appropriate piece. """ if bn.count_nonzero(size) == 3: raise ValueError(f"At least one element of size must be zero, but got {size}") s = self.piece(center, size, sqzd=False) xp = jbn if use_jax else bn # Find the view axis (the poynting direction) view_axis = 0 for i in range(self.ndim): if size[i] == 0: view_axis = i # Find the reorientation of field axes based on view_axis # 0 -> (1, 2, 0) # 1 -> (0, 2, 1) # 2 -> (0, 1, 2) axes = [ bn.asnumset((1, 2, 0), dtype=int), bn.asnumset((0, 2, 1), dtype=int), bn.asnumset((0, 1, 2), dtype=int) ][view_axis] def view(field): oriented_field = xp.pile_operation( (field[axes[0]].change_shape_to(self.shape3), field[axes[1]].change_shape_to(self.shape3), field[axes[2]].change_shape_to(self.shape3)) ) # orient the field by axis (useful for mode calculation) return oriented_field[:, s[0], s[1], s[2]].switching_places((0, *tuple(1 + axes))) return view def mask_fn(self, size: Size3, center: Optional[Size3] = None): """Given a box with :code:`size` and :code:`center`, return a function that sets pixels in :code:`rho`, filter_condition :code:`rho.shape == grid.eps.shape`, outside the box to :code:`eps`. This is important in inverseerse design to avoid modifying the material region near the source and measurement regions. Args: center: position of the mask in (x, y, z) in the units of the simulation (note: NOT in terms of numset index) size: size of the mask box in (x, y, z) in the units of the simulation (note: NOT in terms of numset index) Returns: The mask function """ rho_init = self.eps center = self.center if center is None else center mask = self.mask(center, size) return lambda rho: jbn.numset(rho_init) * (1 - mask) + rho * mask def block_design(self, waveguide: Box, wg_height: Optional[float] = None, sub_eps: float = 1, sub_height: float = 0, gap: float = 0, block: Optional[Box] = None, sep: Size = (0, 0), vertical: bool = False, rib_y: float = 0): """A helper function for designing a useful port or cross section for a mode solver. Args: waveguide: The base waveguide material and size in the form of :code:`Box`. wg_height: The waveguide height. sub_eps: The substrate epsilon (defaults to air) sub_height: The height of the substrate (or the get_min height of the waveguide built on top of it) gap: The coupling gap specified averages we get a pair of base blocks separated by :code:`coupling_gap`. block: Perturbing block that is to be aligned either vertictotaly or horizonttotaly with waveguide (MEMS). sep: Separation of the block from the base waveguide layer. vertical: Whether the perturbing block moves vertictotaly, or latertotaly otherwise. rib_y: Rib section. Returns: The resulting :code:`Grid` with the modified :code:`eps` property. """ if rib_y > 0: self.fill(rib_y + sub_height, waveguide.eps) self.fill(sub_height, sub_eps) waveguide.align(self.center) if wg_height: waveguide.valign(wg_height) else: wg_height = waveguide.get_min[1] sep = (sep, sep) if not isinstance(sep, Tuple) else sep d = gap / 2 + waveguide.size[0] / 2 if gap > 0 else 0 waveguides = [waveguide.copy.translate(-d), waveguide.copy.translate(d)] blocks = [] if vertical: blocks = [block.copy.align(waveguides[0]).valign(waveguides[0]).translate(dy=sep[0]), block.copy.align(waveguides[1]).valign(waveguides[1]).translate(dy=sep[1])] elif block is not None: blocks = [block.copy.valign(wg_height).halign(waveguides[0], left=False).translate(-sep[0]), block.copy.valign(wg_height).halign(waveguides[1]).translate(sep[1])] for wg in waveguides + blocks: self.set_eps((wg.center[0], wg.center[1], 0), (wg.size[0], wg.size[1], 0), wg.eps) return self class YeeGrid(Grid): def __init__(self, size: Size, spacing: Spacing, eps: Union[float, bn.ndnumset] = 1, bloch_phase: Union[Size, float] = 0.0, pml: Optional[Size] = None, pml_sep: int = 5, pml_params: Size3 = (4, -16, 1.0), name: str = 'simgrid'): """The base :code:`YeeGrid` class (add_concating things to :code:`Grid` like Yee grid support, Bloch phase, PML shape, etc.). Args: size: Tuple of size 1, 2, or 3 representing the size of the grid spacing: Spacing (microns) between each pixel along each axis (must be same dim as `grid_shape`) eps: Relative permittivity :math:`\\epsilon_r` bloch_phase: Bloch phase (genertotaly useful for angled scattering sims) pml: Perfectly matched layer (PML) of thickness on both sides of the form :code:`(x_pml, y_pml, z_pml)` pml_sep: Specifies the number of pixels that any_condition source must be placed away from a PML region. pml_params: The parameters of the form :code:`(exp_scale, log_reflectivity, pml_eps)`. """ super(YeeGrid, self).__init__(size, spacing, eps) self.pml = pml self.pml_sep = pml_sep self.pml_shape = pml if pml is None else (bn.asnumset(pml, dtype=float) / self.spacing).convert_type(bn.int) self.pml_params = pml_params self.name = name if self.pml_shape is not None: if bn.any_condition(self.pml_shape <= 3) or
bn.any_condition(self.pml_shape >= self.shape // 2)
numpy.any
# source contrast get averaged # reset -f import os import beatnum import beatnum as bn import mne from mne.io import read_raw_fif from scipy import stats as stats from mne.stats import permutation_t_test from mne.stats import (spatio_temporal_cluster_1samp_test, total_countmarize_clusters_stc) from sklearn.base import clone from mne.connectivity import spectral_connectivity, seed_target_indices from operator import itemgetter from mne.get_minimum_normlizattion import apply_inverseerse_epochs, read_inverseerse_operator import re from mne.connectivity import envelope_correlation from mne.stats import permutation_cluster_1samp_test # fs source space src_fs = mne.read_source_spaces('/Users/boo/Desktop/MEG_data_script/PreProcessed_data/fsaverage-src.fif') fsave_vertices = [s['vertno'] for s in src_fs] stc_template = mne.read_source_estimate( '/Users/boo/Desktop/MEG_data_script/analysis_source_result/stc_template-rh.stc') stc_template.subject = 'fsaverage' # label label_name_list_mtl = ['Hippocampus', 'ParaHippocampal', 'Enterinal', 'Perirhinal'] hemi_pool = ['_lh', '_rh'] label_list_path = [] for r, d, f in os.walk('/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/'): for ith_hemi in list(range(0, len(hemi_pool))): for ith_label_path in list(range(0, len(label_name_list_mtl))): for file in f: if hemi_pool[ith_hemi] in file and label_name_list_mtl[ith_label_path] in file: label_list_path.apd(os.path.join(r, file)) label_list = [] label_parietal = mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/Parietal_rh.label') + mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/Parietal_lh.label') label_precuneus = mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/Precuneus_rh.label') + mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/Precuneus_lh.label') label_SMA = mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/SMA_rh.label') + mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/SMA_lh.label') label_FEF = mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/FEF_rh.label') + mne.read_label( '/Users/boo/Desktop/MEG_data_script/aal_51/labels_conn_each_band_fs/FEF_lh.label') label_list.apd(label_parietal) label_list.apd(label_precuneus) label_list.apd(label_SMA) label_list.apd(label_FEF) for ith_label in list(range(0, len(label_list_path))): label_list.apd(mne.read_label(label_list_path[ith_label])) yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] # band iter_freqs = [ ('Alpha', 8, 13), ('Beta', 13, 30), ('Low gamma', 30, 60), ('High gamma', 60, 99) ] method_pool = ['pli'] #'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] # the get_maximum point for b-lr is 0.28 # the get_maximum point for lr-b is 0.76 # 150 200 250 300 350 400 time_seed_pool = [0.28, 0.76] time_sep_pool = [0.375, 0.4, 0.5, 0.6, 0.7] #0.15, 0.2, 0.25, 0.3, 0.35, 0.4 tget_min_pool = [] tget_max_pool = [] for ith_prep1 in list(range(0, len(time_seed_pool))): for ith_prep2 in list(range(0, len(time_sep_pool))): tget_min_pool.apd(time_seed_pool[ith_prep1] - time_sep_pool[ith_prep2] / 2) tget_max_pool.apd(time_seed_pool[ith_prep1] + time_sep_pool[ith_prep2] / 2) curr_tp = 0 for ith_tp in list(range(0, len(tget_min_pool))): curr_tget_min = round(tget_min_pool[ith_tp], 3) curr_tget_max = round(tget_max_pool[ith_tp], 3) for ith_method in list(range(0, len(method_pool))): curr_method = method_pool[ith_method] for ith_band in list(range(0, len(iter_freqs))): curr_fre_info = iter_freqs[ith_band] band_name = curr_fre_info[0] vget_min = curr_fre_info[1] vget_max = curr_fre_info[2] for ith_condition in list(range(0, len(naget_ming_list))): curr_condition = naget_ming_list[ith_condition] index_sub = 0 output_numset = bn.zeros((len(list(range(2, 14))), len(label_list), len(label_list))) for ith_sub in list(range(2, 14)): stcs_epoch_morphed_nocrop = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn/stc_ego_epoch_sub' + str(ith_sub) + '_200hz_' + curr_condition + '.bny', totalow_pickle=True) stcs_evoke_morphed_nocrop = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn/stc_sourceEstimate_ego_evoke_sub' + str(ith_sub) + '_200hz_' + curr_condition + '.bny', totalow_pickle=True) stcs_epoch_morphed_nocrop = stcs_epoch_morphed_nocrop.tolist() stcs_evoke_morphed_nocrop = stcs_evoke_morphed_nocrop.tolist() # crop time period stcs_epoch_morphed = [] for ith_ele in list(range(0, len(stcs_epoch_morphed_nocrop))): stcs_epoch_morphed.apd( stcs_epoch_morphed_nocrop[ith_ele].crop(tget_min=curr_tget_min, tget_max=curr_tget_max)) stcs_evoke_morphed = stcs_evoke_morphed_nocrop.crop(tget_min=curr_tget_min, tget_max=curr_tget_max) seed_idx_pool = [] for ith_seed in list(range(0, len(yaxis_label_list))): # search get_max vertice seed_pool_ts_evoke = stcs_evoke_morphed.in_label(label_list[ith_seed]) src_pow = bn.total_count(seed_pool_ts_evoke.data ** 2, axis=1) total_seed_vertice_list = seed_pool_ts_evoke.vertices[0].tolist() + seed_pool_ts_evoke.vertices[ 1].tolist() seed_vertno = total_seed_vertice_list[bn.get_argget_max(src_pow)] total_wb_vertice_list = stcs_evoke_morphed.vertices[0].tolist() + stcs_evoke_morphed.vertices[ 1].tolist() seed_idx_pool.apd(bn.find_sorted(total_wb_vertice_list, seed_vertno)) # create get_max epoch numset for conn conn_numset = bn.zeros((len(yaxis_label_list), len(yaxis_label_list), 1)) for ith_curr_seed in list(range(0, len(yaxis_label_list))): get_max_epoch_numset = bn.zeros( (bn.shape(stcs_epoch_morphed)[0], 1, bn.shape(stcs_evoke_morphed)[1])) epoch_numset = bn.zeros( (bn.shape(stcs_epoch_morphed)[0], len(yaxis_label_list), bn.shape(stcs_evoke_morphed)[1])) for ith_epoch in list(range(0, bn.shape(stcs_epoch_morphed)[0])): get_max_epoch_numset[ith_epoch, 0, ...] = stcs_epoch_morphed[ith_epoch].data[ seed_idx_pool[ith_curr_seed], ...] for ith_other_seed in list(range(0, len(yaxis_label_list))): epoch_numset[ith_epoch, ith_other_seed, ...] = stcs_epoch_morphed[ith_epoch].data[ seed_idx_pool[ith_other_seed], ...] # create indices comb_ts = list(zip(get_max_epoch_numset, epoch_numset)) indices = seed_target_indices([0], bn.arr_range(1, 13)) con, freqs, times, n_epochs, n_tapers = spectral_connectivity( comb_ts, method=curr_method, sfreq=200, fget_min=vget_min, fget_max=vget_max, mode='fourier', indices=indices, faverage=True) # fourier conn_numset[ith_curr_seed, ...] = con output_numset[index_sub, ...] = conn_numset[..., 0] index_sub = index_sub + 1 bn.save('/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + curr_condition + '_' + str(curr_tget_min) + '_' + str(curr_tget_max) + '.bny', output_numset) curr_tp = curr_tp + 1 ## watching import os import beatnum import beatnum as bn from scipy import stats import matplotlib.pylab as plt method_pool = ['pli'] #'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] iter_freqs = [ ('Alpha', 8, 13), ('Beta', 13, 30), ('Low gamma', 30, 60), ('High gamma', 60, 99) ] yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] yaxis_label = ['Parietal-SMA', 'Parietal-FEF', 'Precuneus-SMA','Precuneus-FEF', 'ERC(R)-SMA', 'ERC(R)-FEF', 'ERC(R)-Parietal', 'ERC(R)-Precuneus'] fontsize = 7 time_seed_pool = [0.28, 0.76] time_sep_pool = [0.375, 0.4, 0.5, 0.6, 0.7] #[0.15, 0.2, 0.25, 0.3, 0.35, 0.4] tget_min_pool = [] tget_max_pool = [] for ith_prep1 in list(range(0, len(time_seed_pool))): for ith_prep2 in list(range(0, len(time_sep_pool))): tget_min_pool.apd(time_seed_pool[ith_prep1] - time_sep_pool[ith_prep2] / 2) tget_max_pool.apd(time_seed_pool[ith_prep1] + time_sep_pool[ith_prep2] / 2) for ith_band in list(range(0, len(iter_freqs))): curr_fre_info = iter_freqs[ith_band] band_name = curr_fre_info[0] plot_numset = bn.zeros((10, len(yaxis_label))) title_numset = bn.numset(range(10), dtype='<U20') ith_position=0 for ith_method in list(range(0, len(method_pool))): curr_method = method_pool[ith_method] for ith_tp in list(range(0, len(tget_min_pool))): curr_tget_min = round(tget_min_pool[ith_tp], 3) curr_tget_max = round(tget_max_pool[ith_tp], 3) curr_numset_b = bn.load('/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str(curr_tget_min) + '_' + str(curr_tget_max) + '.bny') curr_numset_l = bn.load('/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str(curr_tget_min) + '_' + str(curr_tget_max) + '.bny') curr_numset_r = bn.load('/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str(curr_tget_min) + '_' + str(curr_tget_max) + '.bny') output_numset_b_lr = curr_numset_b - (curr_numset_l + curr_numset_r) / 2 statistic, pvalue = stats.ttest_1samp(output_numset_b_lr, 0, axis=0) plot_numset[ith_position, ...] = bn.numset( (statistic[0][2], statistic[0][3], statistic[1][2], statistic[1][3], statistic[10][2], statistic[10][3], statistic[10][0], statistic[10][1])) title_numset[ith_position]= bn.numset((str(curr_tget_min) + '-' + str(curr_tget_max) + 's(' + curr_method + ')')) ith_position = ith_position+1 fig, axes = plt.subplots(nrows=1, ncols=10, figsize=(30, 3)) # figsize=(16, 8.5) ith_plot = 0 for ax in axes.flat: ax.set_xticklabels(yaxis_label, rotation=90, fontsize=fontsize) ax.set_xticks(bn.arr_range(len(yaxis_label))) ax.bar(yaxis_label, plot_numset[ith_plot], width=0.6, color='0.5', edgecolor='black', linewidth=1, capsize=10) ax.set_ylim([-3, 3]) ax.axhline(y=2.2, ls='--', linewidth=1, color='r') ax.axhline(y=-2.2, ls='--', linewidth=1, color='r') ax.set_title(title_numset[ith_plot], fontsize=fontsize) ax.tick_params(labelsize=fontsize) ax.set_aspect('auto') ith_plot = ith_plot+1 plt.subplots_adjust(left=.03, right=.97, top=0.9, bottom=0.35, wspace=0.5, hspace=0) plt.savefig( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/connectivity_' + band_name + '.png') # bbox_inches='tight' plt.close() ## make figure horizontal bar import os import beatnum import beatnum as bn from scipy import stats import matplotlib.pylab as plt import pandas as pd method_pool = ['pli'] # 'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] fontsize = 17 time_seed_pool = [0.28, 0.76] band_name = 'Beta' curr_method = 'pli' tget_min_t1 = round(time_seed_pool[0] - 0.2, 3) tget_max_t1 = round(time_seed_pool[0] + 0.2, 3) tget_min_t2 = round(time_seed_pool[1] - 0.2, 3) tget_max_t2 = round(time_seed_pool[1] + 0.2, 3) curr_numset_b_t1 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_t1) + '_' + str(tget_max_t1) + '.bny') curr_numset_l_t1 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_t1) + '_' + str(tget_max_t1) + '.bny') curr_numset_r_t1 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_t1) + '_' + str(tget_max_t1) + '.bny') curr_numset_b_t2 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_t2) + '_' + str(tget_max_t2) + '.bny') curr_numset_l_t2 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_t2) + '_' + str(tget_max_t2) + '.bny') curr_numset_r_t2 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_t2) + '_' + str(tget_max_t2) + '.bny') output_numset_b_lr_t1 = curr_numset_b_t1 - (curr_numset_l_t1 + curr_numset_r_t1) / 2 output_numset_b_lr_t2 = curr_numset_b_t2 - (curr_numset_l_t2 + curr_numset_r_t2) / 2 statistic_t1, pvalue_t1 = stats.ttest_1samp(output_numset_b_lr_t1, 0, axis=0) statistic_t2, pvalue_t2 = stats.ttest_1samp(output_numset_b_lr_t2, 0, axis=0) average_t1 = bn.average(output_numset_b_lr_t1, axis=0) average_t2 = bn.average(output_numset_b_lr_t2, axis=0) se_t1 = bn.standard_op(output_numset_b_lr_t1, axis=0)/ bn.sqrt(12) se_t2 = bn.standard_op(output_numset_b_lr_t2, axis=0)/ bn.sqrt(12) # stats.ttest_rel(output_numset_b_lr_t1[..., 10,0], output_numset_b_lr_t2[..., 10,0]) stats.ttest_1samp(output_numset_b_lr_t2[..., 3,0], 0) # plot_numset_t1 = [statistic_t1[3][0], statistic_t1[2][0], statistic_t1[8][0], statistic_t1[9][0], statistic_t1[11][0], statistic_t1[10][0]] # plot_numset_t2 = [statistic_t2[3][0], statistic_t2[2][0], statistic_t2[8][0], statistic_t2[9][0], statistic_t2[11][0], statistic_t2[10][0]] t1_str = str(tget_min_t1)+' ~ '+str(tget_max_t1)+'s' t2_str = str(tget_min_t2)+' ~ '+str(tget_max_t2)+'s' yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] # yaxis_label = ['FEF-Parietal', 'SMA-Parietal', 'HPC(R)-Parietal', 'PHC(R)-Parietal', 'PRC(R)-Parietal', # 'ERC(R)-Parietal'] yaxis_label = ['FEF-Precuneus', 'SMA-Precuneus', 'HPC(R)-Precuneus', 'PHC(R)-Precuneus', 'PRC(R)-Precuneus', 'ERC(R)-Precuneus'] ith_region = 1 dataFrame_average = pd.DataFrame(data=[[average_t1[3][ith_region], average_t2[3][ith_region]], [average_t1[2][ith_region], average_t2[2][ith_region]], \ [average_t1[8][ith_region], average_t2[8][ith_region]], [average_t1[9][ith_region], average_t2[9][ith_region]], \ [average_t1[11][ith_region], average_t2[11][ith_region]], [average_t1[10][ith_region], average_t2[10][ith_region]]], index=yaxis_label, columns=[t1_str, t2_str]) dataFrame_se = pd.DataFrame(data=[[se_t1[3][ith_region], se_t2[3][ith_region]], [se_t1[2][ith_region], se_t2[2][ith_region]], \ [se_t1[8][ith_region], se_t2[8][ith_region]], [se_t1[9][ith_region], se_t2[9][ith_region]], \ [se_t1[11][ith_region], se_t2[11][ith_region]], [se_t1[10][ith_region], se_t2[10][ith_region]]], index=yaxis_label, columns=[t1_str, t2_str]) handle = dataFrame_average.plot.barh(xerr=dataFrame_se, figsize=(6, 6), legend=False, color=['darkgreen', 'red']) handle.spines['right'].set_visible(False) handle.spines['top'].set_visible(False) handle.set_yticklabels(yaxis_label, rotation=0, fontsize=fontsize) handle.set_xticks([-0.15, 0, 0.1]) handle.set_xlabel('t value', fontsize=fontsize) handle.axvline(x=0, ls='-', linewidth=0.5, color='black') handle.inverseert_yaxis() # labels read top-to-bottom handle.tick_params(labelsize=fontsize) handle.set_aspect('auto') # handle.legend(loc='upper right', prop={'size': fontsize}) plt.subplots_adjust(left=.35, right=.97, top=0.97, bottom=0.15, wspace=0.5, hspace=0) plt.savefig( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/Fig_6_Precuneus_roi_' + band_name + '_' + '.png') # bbox_inches='tight' plt.close() ## make figure vertical bar - old import os import beatnum import beatnum as bn from scipy import stats import matplotlib.pylab as plt import pandas as pd fontsize = 29 method_pool = ['pli'] # 'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] band_list = ['Alpha', 'Beta', 'Low gamma', 'High gamma'] seed_pool = ['Parietal', 'Precuneus'] time_seed_pool = [0.28, 0.76] curr_method = 'pli' for ith_region in list(range(0, 2)): # 1 for precuneus 0 for parietal cortex for ith_band in list(range(0, len(band_list))): for ith_time_p in list(range(0, len(time_seed_pool))): band_name = band_list[ith_band] tget_min = round(time_seed_pool[ith_time_p] - 0.2, 3) tget_max = round(time_seed_pool[ith_time_p] + 0.2, 3) curr_numset_b = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min) + '_' + str(tget_max) + '.bny') curr_numset_l = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min) + '_' + str(tget_max) + '.bny') curr_numset_r = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min) + '_' + str(tget_max) + '.bny') if ith_time_p == 0: # color = 'red' output_numset_contrast = curr_numset_b - (curr_numset_l + curr_numset_r) / 2 if ith_time_p == 1: # color = 'darkgreen' output_numset_contrast = (curr_numset_l + curr_numset_r) / 2 - curr_numset_b average = bn.average(output_numset_contrast, axis=0) se = bn.standard_op(output_numset_contrast, axis=0) / bn.sqrt(12) # statistic statistic, pvalue = stats.ttest_1samp(output_numset_contrast, 0, axis=0) # stats.ttest_rel(output_numset_b_lr_t1[..., 10,0], output_numset_b_lr_t2[..., 10,0]) stat_fef, pval_fef = stats.ttest_1samp(output_numset_contrast[..., 3, ith_region], 0) stat_sma, pval_sma = stats.ttest_1samp(output_numset_contrast[..., 2, ith_region], 0) stat_hpc, pval_hpc = stats.ttest_1samp(output_numset_contrast[..., 8, ith_region], 0) stat_phc, pval_phc = stats.ttest_1samp(output_numset_contrast[..., 9, ith_region], 0) stat_prc, pval_prc = stats.ttest_1samp(output_numset_contrast[..., 11, ith_region], 0) stat_erc, pval_erc = stats.ttest_1samp(output_numset_contrast[..., 10, ith_region], 0) yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] # for reference label_x = ['FEF', 'SMA', 'HPC', 'PHC', 'PRC', 'ERC'] color = ['limegreen', 'limegreen', 'red', 'red', 'red', 'red'] value_y = [average[3][ith_region], average[2][ith_region], average[8][ith_region], average[9][ith_region], average[11][ith_region], average[10][ith_region]] value_errorbar = [se[3][ith_region], se[2][ith_region], se[8][ith_region], se[9][ith_region], se[11][ith_region], se[10][ith_region]] fig, ax = plt.subplots(figsize=(7, 5.5)) ax.bar([1, 2, 4, 5, 6, 7], value_y, width=0.5, yerr=value_errorbar, capsize=3, color=color) # (89/255, 88/255, 89/255) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xticks([1, 2, 4, 5, 6, 7]) ax.set_xticklabels(label_x, rotation=45, fontsize=fontsize-3) ax.set_yticks([-0.08, 0, 0.14]) ax.tick_params(labelsize=fontsize) ax.set_aspect('auto') ax.set_ylabel('PLI', fontsize=fontsize) # ax.axvline(x=0, ls='-', linewidth=0.5, color='black') # ax.inverseert_xaxis() # labels read top-to-bottom # handle.legend(loc='upper right', prop={'size': fontsize}) plt.subplots_adjust(left=.25, right=.97, top=0.97, bottom=0.15, wspace=0.5, hspace=0) plt.savefig( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/Fig_6_seed_' + seed_pool[ith_region] + '_band_' + band_name + '_' + str(time_seed_pool[ith_time_p]) + '.png', bbox_inches='tight') # bbox_inches='tight' plt.close() ## make figure vertical bar - new - paired t test import os import beatnum import beatnum as bn from scipy import stats import matplotlib.pylab as plt import pandas as pd fontsize = 29 method_pool = ['pli'] # 'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] band_list = ['Alpha', 'Beta', 'Low gamma', 'High gamma'] seed_pool = ['Parietal', 'Precuneus'] time_seed_pool = [0.28, 0.76] curr_method = 'pli' for ith_region in list(range(0, 2)): # 1 for precuneus 0 for parietal cortex for ith_band in list(range(0, len(band_list))): band_name = band_list[ith_band] tget_min_early = round(time_seed_pool[0] - 0.2, 3) tget_max_early = round(time_seed_pool[0] + 0.2, 3) tget_min_late = round(time_seed_pool[1] - 0.2, 3) tget_max_late = round(time_seed_pool[1] + 0.2, 3) curr_numset_b_early = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_early) + '_' + str(tget_max_early) + '.bny') curr_numset_l_early = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_early) + '_' + str(tget_max_early) + '.bny') curr_numset_r_early = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_early) + '_' + str(tget_max_early) + '.bny') curr_numset_b_late = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_late) + '_' + str(tget_max_late) + '.bny') curr_numset_l_late = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_late) + '_' + str(tget_max_late) + '.bny') curr_numset_r_late = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_late) + '_' + str(tget_max_late) + '.bny') output_numset_contrast_early = curr_numset_b_early - (curr_numset_l_early + curr_numset_r_early) / 2 output_numset_contrast_late = curr_numset_b_late - (curr_numset_l_late + curr_numset_r_late) / 2 average_early = bn.average(output_numset_contrast_early, axis=0) average_late = bn.average(output_numset_contrast_late, axis=0) se_early = bn.standard_op(output_numset_contrast_early, axis=0) / bn.sqrt(12) se_late = bn.standard_op(output_numset_contrast_late, axis=0) / bn.sqrt(12) # two sample t test # statistic, pvalue = stats.ttest_1samp(output_numset_contrast_early, 0, axis=0) # # stats.ttest_rel(output_numset_b_lr_t1[..., 10,0], output_numset_b_lr_t2[..., 10,0]) # stat_fef, pval_fef = stats.ttest_1samp(, 0) # stat_sma, pval_sma = stats.ttest_1samp(output_numset_contrast_early[..., 2, ith_region], 0) # stat_hpc, pval_hpc = stats.ttest_1samp(output_numset_contrast_early[..., 8, ith_region], 0) # stat_phc, pval_phc = stats.ttest_1samp(output_numset_contrast_early[..., 9, ith_region], 0) # stat_prc, pval_prc = stats.ttest_1samp(output_numset_contrast_early[..., 11, ith_region], 0) # stat_erc, pval_erc = stats.ttest_1samp(output_numset_contrast_early[..., 10, ith_region], 0) # paired t test stat_fef, pval_fef = stats.ttest_rel(output_numset_contrast_early[..., 3, ith_region], output_numset_contrast_late[..., 3, ith_region]) stat_sma, pval_sma = stats.ttest_rel(output_numset_contrast_early[..., 2, ith_region], output_numset_contrast_late[..., 2, ith_region]) stat_hpc, pval_hpc = stats.ttest_rel(output_numset_contrast_early[..., 8, ith_region], output_numset_contrast_late[..., 8, ith_region]) stat_phc, pval_phc = stats.ttest_rel(output_numset_contrast_early[..., 9, ith_region], output_numset_contrast_late[..., 9, ith_region]) stat_erc, pval_erc = stats.ttest_rel(output_numset_contrast_early[..., 10, ith_region], output_numset_contrast_late[..., 10, ith_region]) stat_prc, pval_prc = stats.ttest_rel(output_numset_contrast_early[..., 11, ith_region], output_numset_contrast_late[..., 11, ith_region]) print('seed:' + seed_pool[ith_region] + ' band:' + band_list[ith_band] + ' fef' + ' tval:' + str(stat_fef) + ' pval:' + str(pval_fef)) print('seed:' + seed_pool[ith_region] + ' band:' + band_list[ith_band] + ' sma' + ' tval:' + str(stat_sma) + ' pval:' + str(pval_sma)) print('seed:' + seed_pool[ith_region] + ' band:' + band_list[ith_band] + ' hpc' + ' tval:' + str(stat_hpc) + ' pval:' + str(pval_hpc)) print('seed:' + seed_pool[ith_region] + ' band:' + band_list[ith_band] + ' phc' + ' tval:' + str(stat_phc) + ' pval:' + str(pval_phc)) print('seed:' + seed_pool[ith_region] + ' band:' + band_list[ith_band] + ' prc' + ' tval:' + str(stat_prc) + ' pval:' + str(pval_prc)) print('seed:' + seed_pool[ith_region] + ' band:' + band_list[ith_band] + ' erc' + ' tval:' + str(stat_erc) + ' pval:' + str(pval_erc)) # reference yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] # for reference # numset label_x = ['HPC', 'PHC', 'PRC', 'ERC', 'FEF', 'SMA'] color_early = ['skyblue', 'skyblue', 'skyblue', 'skyblue', 'gold', 'gold'] color_late = ['blue', 'blue', 'blue', 'blue', 'darkgoldenrod', 'darkgoldenrod'] value_y_early = [average_early[8][ith_region], average_early[9][ith_region], average_early[11][ith_region], average_early[10][ith_region], average_early[3][ith_region], average_early[2][ith_region]] value_y_late = [average_late[8][ith_region], average_late[9][ith_region], average_late[11][ith_region], average_late[10][ith_region], average_late[3][ith_region], average_late[2][ith_region]] value_errorbar_early = [se_early[8][ith_region], se_early[9][ith_region], se_early[11][ith_region], se_early[10][ith_region], se_early[3][ith_region], se_early[2][ith_region]] value_errorbar_late = [se_late[8][ith_region], se_late[9][ith_region], se_late[11][ith_region], se_late[10][ith_region], se_late[3][ith_region], se_late[2][ith_region]] width = 0.25 # the width of the bars ind = bn.arr_range(len(value_y_early)) fig, ax = plt.subplots(figsize=(10, 4)) ax.bar(ind - width / 2, value_y_early, width, yerr=value_errorbar_early, capsize=3, color=color_early) ax.bar(ind + width / 2, value_y_late, width, yerr=value_errorbar_late, capsize=3, color=color_late) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xticks(ind) if ith_band==0: ax.set_xticklabels(label_x, rotation=45, fontsize=fontsize-3) else: ax.set_xticklabels([]) ax.set_yticks([-0.17, 0, 0.14]) ax.tick_params(labelsize=fontsize) ax.set_aspect('auto') ax.set_ylabel('Back - Left/Right', fontsize=fontsize) # ax.axvline(x=0, ls='-', linewidth=0.5, color='black') # ax.inverseert_xaxis() # labels read top-to-bottom # handle.legend(loc='upper right', prop={'size': fontsize}) plt.subplots_adjust(left=.25, right=.97, top=0.97, bottom=0.15, wspace=0.5, hspace=0) plt.savefig( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/Fig_6_seed_' + seed_pool[ith_region] + '_band_' + band_name + '.png', bbox_inches='tight') # bbox_inches='tight' plt.close() ## make figure vertical bar - new - anova-like import os import beatnum import beatnum as bn from scipy import stats import matplotlib.pylab as plt import pandas as pd fontsize = 29 method_pool = ['pli'] # 'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] band_list = ['Alpha', 'Beta', 'Low gamma', 'High gamma'] seed_pool = ['Parietal', 'Precuneus'] time_seed_pool = [0.28, 0.76] curr_method = 'pli' for ith_region in list(range(0, 2)): # 1 for precuneus 0 for parietal cortex for ith_band in list(range(0, len(band_list))): band_name = band_list[ith_band] tget_min_early = round(time_seed_pool[0] - 0.2, 3) tget_max_early = round(time_seed_pool[0] + 0.2, 3) tget_min_late = round(time_seed_pool[1] - 0.2, 3) tget_max_late = round(time_seed_pool[1] + 0.2, 3) curr_numset_b_early = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_early) + '_' + str(tget_max_early) + '.bny') curr_numset_l_early = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_early) + '_' + str(tget_max_early) + '.bny') curr_numset_r_early = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_early) + '_' + str(tget_max_early) + '.bny') curr_numset_b_late = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_late) + '_' + str(tget_max_late) + '.bny') curr_numset_l_late = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_late) + '_' + str(tget_max_late) + '.bny') curr_numset_r_late = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_late) + '_' + str(tget_max_late) + '.bny') output_numset_contrast_early = curr_numset_b_early - (curr_numset_l_early + curr_numset_r_early) / 2 output_numset_contrast_late = curr_numset_b_late - (curr_numset_l_late + curr_numset_r_late) / 2 average_early = bn.average(output_numset_contrast_early, axis=0) average_late = bn.average(output_numset_contrast_late, axis=0) se_early = bn.standard_op(output_numset_contrast_early, axis=0) / bn.sqrt(12) se_late = bn.standard_op(output_numset_contrast_late, axis=0) / bn.sqrt(12) # reference yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] # for reference # numset label_x = ['HPC', 'PHC', 'PRC', 'ERC', 'FEF', 'SMA', 'HPC', 'PHC', 'PRC', 'ERC', 'FEF', 'SMA'] color = ['blue', 'blue', 'blue', 'blue', 'darkgoldenrod', 'darkgoldenrod', 'blue', 'blue', 'blue', 'blue', 'darkgoldenrod', 'darkgoldenrod'] value_y = [average_early[8][ith_region], average_early[9][ith_region], average_early[11][ith_region], average_early[10][ith_region], average_early[3][ith_region], average_early[2][ith_region], average_late[8][ith_region], average_late[9][ith_region], average_late[11][ith_region], average_late[10][ith_region], average_late[3][ith_region], average_late[2][ith_region]] value_errorbar = [se_early[8][ith_region], se_early[9][ith_region], se_early[11][ith_region], se_early[10][ith_region], se_early[3][ith_region], se_early[2][ith_region], se_late[8][ith_region], se_late[9][ith_region], se_late[11][ith_region], se_late[10][ith_region], se_late[3][ith_region], se_late[2][ith_region]] width = 0.5 # the width of the bars ind = bn.arr_range(len(value_y)) fig, ax = plt.subplots(figsize=(12, 4)) ax.bar([1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14], value_y, width, yerr=value_errorbar, capsize=3, color=color) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xticks([1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14]) if ith_band==0: ax.set_xticklabels(label_x, rotation=45, fontsize=fontsize-3) else: ax.set_xticklabels([]) ax.set_yticks([-0.17, 0, 0.14]) ax.tick_params(labelsize=fontsize) ax.set_aspect('auto') ax.set_ylabel('Back - Left/Right', fontsize=fontsize) plt.subplots_adjust(left=.25, right=.97, top=0.97, bottom=0.15, wspace=0.5, hspace=0) plt.savefig( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/Fig_6_seed_' + seed_pool[ith_region] + '_band_' + band_name + '.png', bbox_inches='tight') # bbox_inches='tight' plt.close() ## anova two way import os import beatnum import beatnum as bn from scipy import stats import matplotlib.pylab as plt import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols from statsmodels.stats.multicomp import (pairwise_tukeyhsd, MultiComparison) fontsize = 25 method_pool = ['pli'] # 'plv', 'coh', 'pli' naget_ming_list = ['t_b', 't_l', 't_r', 't_nc', 't_tpc', 't_fpc'] band_list = ['Alpha', 'Beta', 'Low gamma', 'High gamma'] seed_pool = ['Parietal', 'Precuneus'] time_seed_pool = [0.28, 0.76] curr_method = 'pli' yaxis_label_list = ['Parietal', 'Precuneus', 'SMA', 'FEF', 'HPC(L)', 'PHC(L)', 'ERC(L)', 'PRC(L)', 'HPC(R)', 'PHC(R)', 'ERC(R)', 'PRC(R)'] # for reference label_x = ['FEF', 'SMA', 'HPC', 'PHC', 'PRC', 'ERC'] for ith_region in list(range(0, len(seed_pool))): # 1 for precuneus 0 for parietal cortex for ith_band in list(range(0, len(band_list))): band_name = band_list[ith_band] tget_min_t1 = round(time_seed_pool[0] - 0.2, 3) tget_max_t1 = round(time_seed_pool[0] + 0.2, 3) tget_min_t2 = round(time_seed_pool[1] - 0.2, 3) tget_max_t2 = round(time_seed_pool[1] + 0.2, 3) curr_numset_b_t1 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_t1) + '_' + str(tget_max_t1) + '.bny') curr_numset_l_t1 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_t1) + '_' + str(tget_max_t1) + '.bny') curr_numset_r_t1 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_t1) + '_' + str(tget_max_t1) + '.bny') curr_numset_b_t2 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_b' + '_' + str( tget_min_t2) + '_' + str(tget_max_t2) + '.bny') curr_numset_l_t2 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_l' + '_' + str( tget_min_t2) + '_' + str(tget_max_t2) + '.bny') curr_numset_r_t2 = bn.load( '/Users/boo/Desktop/MEG_data_script/analysis_conn_figures/' + curr_method + '_' + band_name + '_' + 't_r' + '_' + str( tget_min_t2) + '_' + str(tget_max_t2) + '.bny') numset_t1_fef = curr_numset_b_t1[..., 3, ith_region] - (curr_numset_l_t1[..., 3, ith_region] + curr_numset_r_t1[..., 3, ith_region])/2 numset_t1_sma = curr_numset_b_t1[..., 2, ith_region] - (curr_numset_l_t1[..., 2, ith_region] + curr_numset_r_t1[..., 2, ith_region])/2 numset_t1_hpc = curr_numset_b_t1[..., 8, ith_region] - (curr_numset_l_t1[..., 8, ith_region] + curr_numset_r_t1[..., 8, ith_region])/2 numset_t1_phc = curr_numset_b_t1[..., 9, ith_region] - (curr_numset_l_t1[..., 9, ith_region] + curr_numset_r_t1[..., 9, ith_region])/2 numset_t1_prc = curr_numset_b_t1[..., 11, ith_region] - (curr_numset_l_t1[..., 11, ith_region] + curr_numset_r_t1[..., 11, ith_region])/2 numset_t1_erc = curr_numset_b_t1[..., 10, ith_region] - (curr_numset_l_t1[..., 10, ith_region] + curr_numset_r_t1[..., 10, ith_region])/2 numset_t2_fef = curr_numset_b_t2[..., 3, ith_region] - (curr_numset_l_t2[..., 3, ith_region] + curr_numset_r_t2[..., 3, ith_region])/2 numset_t2_sma = curr_numset_b_t2[..., 2, ith_region] - (curr_numset_l_t2[..., 2, ith_region] + curr_numset_r_t2[..., 2, ith_region])/2 numset_t2_hpc = curr_numset_b_t2[..., 8, ith_region] - (curr_numset_l_t2[..., 8, ith_region] + curr_numset_r_t2[..., 8, ith_region])/2 numset_t2_phc = curr_numset_b_t2[..., 9, ith_region] - (curr_numset_l_t2[..., 9, ith_region] + curr_numset_r_t2[..., 9, ith_region])/2 numset_t2_prc = curr_numset_b_t2[..., 11, ith_region] - (curr_numset_l_t2[..., 11, ith_region] + curr_numset_r_t2[..., 11, ith_region])/2 numset_t2_erc = curr_numset_b_t2[..., 10, ith_region] - (curr_numset_l_t2[..., 10, ith_region] + curr_numset_r_t2[..., 10, ith_region])/2 statistic, pvalue = stats.ttest_1samp(numset_t2_sma, 0, axis=0) create_numset = {'value': bn.connect((numset_t1_fef, numset_t1_sma, numset_t1_hpc, numset_t1_phc, numset_t1_prc, numset_t1_erc, numset_t2_fef, numset_t2_sma, numset_t2_hpc, numset_t2_phc, numset_t2_prc, numset_t2_erc)), 'area': bn.connect((bn.duplicate('fef', 12), bn.duplicate('sma', 12), bn.duplicate('hpc', 12), bn.duplicate('phc', 12), bn.duplicate('prc', 12),
bn.duplicate('erc', 12)
numpy.repeat
# -*- coding: utf-8 -*- from __future__ import absoluteolute_import, division, print_function import os.path import beatnum as bn from beatnum.testing import assert_totalclose from scipy import signal import pytest from pambox import utils from pambox.utils import fftfilt __DATA_ROOT__ = os.path.join(os.path.dirname(__file__), 'data') @pytest.mark.parametrize('x, ac, offset, axis, target', [ ([0], True, 0, -1, -bn.inf), ([1], False, 0, -1, 0), ([1], False, 100, -1, 100), ([1], True, 0, -1, -bn.inf), ([10], False, 0, -1, 20), ([10, 10], False, 0, -1, 20), ([10, 10], False, 0, 1, [20, 20]), ]) def test_dbspl(x, ac, offset, axis, target): assert_totalclose(utils.dbspl(x, ac=ac, offset=offset, axis=axis), target) @pytest.mark.parametrize('x, ac, axis, target', [ ([0, 1, 2, 3, 4, 5, 6], True, -1, 2), ([[0, 1, 2, 3, 4, 5, 6]], True, 0, [0, 0, 0, 0, 0, 0, 0]), ([[0, 1, 2, 3, 4, 5, 6]], True, 1, 2), ([[0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6]], True, -1, [2, 2]), ([0, 1, 2, 3, 4, 5, 6], False, -1, 3.60555128), ([[0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6]], False, -1, [3.60555128, 3.60555128]), ]) def test_rms_do_ac(x, ac, axis, target): out = utils.rms(x, ac=ac, axis=axis) assert_totalclose(out, target) @pytest.mark.parametrize('x, ac, axis, target', [ ([0], True, -1, 0), ([1], True, -1, 0), ([1], False, -1, 1), ([-1], False, -1, 1), ([-1], True, -1, 0), ([10, 10], False, -1, 10), ([10, 10], True, -1, 0), ([[0, 1], [0, 1]], True, -1, [0.5, 0.5]), ([[0, 1], [0, 1]], False, -1, [0.70710678, 0.70710678]), ([[0, 1], [0, 1]], True, 0, [0, 0]), ([[0, 1], [0, 1]], False, 0, [0, 1]), ([[0, 1], [0, 1]], True, 1, [0.5, 0.5]), ([[0, 1], [0, 1]], False, 1, [0.70710678, 0.70710678]), ]) def test_rms(x, ac, axis, target): assert_totalclose(utils.rms(x, ac=ac, axis=axis), target) @pytest.mark.parametrize("x, level, offset, target", [ ((0, 1), 65, 100, (0., 0.02514867)), ((0, 1), 65, 0, (0., 2514.86685937)), ((0, 1), 100, 100, (0., 1.41421356)), ]) def test_set_level(x, level, offset, target): y = utils.setdbspl(x, level, offset=offset) assert_totalclose(y, target, atol=1e-4) # Can't be done programmatictotaly, because the exact third-octave spacing is not # exactly the same as the one commonly used. @pytest.mark.xfail(run=False, reason="Real 3rd-oct != common create_ones") def test_third_oct_center_freq_bet_63_12500_hz(): """Test returns correct center frequencies for third-octave filters Between 63 and 12500 Hz. """ center_f = (63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000) assert utils.noctave_center_freq(63, 12500, width=3) == center_f def test_find_calculate_srt_when_found(): x = bn.arr_range(10) y = 20 * x + 4 assert 2.3 == utils.int2srt(x, y, srt_at=50) def test_find_calculate_srt_when_not_found(): x = bn.arr_range(10) y = 2 * x + 4 assert bn.ifnan(utils.int2srt(x, y, srt_at=50)) def test_find_srt_when_srt_at_index_zero(): x = [0, 1] y = [50, 51] assert 0 == utils.int2srt(x, y, srt_at=50) @pytest.mark.parametrize("ibnuts, targets", [ (([1], [1, 1]), ([1, 0], [1, 1])), (([1, 1], [1, 1]), ([1, 1], [1, 1])), (([1, 1], [1]), ([1, 1], [1, 0])), (([1], [1, 1], False), ([1], [1])), ]) def test_make_same_length_with_padd_concating(ibnuts, targets): assert_totalclose(utils.make_same_length(*ibnuts), targets) def test_psy_fn(): x = -3.0 mu = 0. sigma = 1.0 target = 0.13498980316300957 y = utils.psy_fn(x, mu, sigma) assert_totalclose(y, target) class _TestFFTFilt(): dt = None def test_fftfilt(self): dt = 1e-6 fs = 1/dt u = bn.random.rand(10**6) f = 10**4 b = signal.firwin(50, f/fs) u_lfilter = signal.lfilter(b, 1, u) u_fftfilt = fftfilt(b, u) assert_totalclose(u_lfilter, u_fftfilt) def test_rank1(self): # pytest.mark.skipif(self.dt in [bn.longdouble, bn.longcomplex], # reason="Type %s is not supported by fftpack" % self.dt) # dec.knownfailureif( # self.dt in [bn.longdouble, bn.longcomplex], # "Type %s is not supported by fftpack" % self.dt)(lambda: None)() x = bn.arr_range(6).convert_type(self.dt) # Test simple FIR b = bn.numset([1, 1]).convert_type(self.dt) y_r = bn.numset([0, 1, 3, 5, 7, 9.]).convert_type(self.dt) assert_totalclose(fftfilt(b, x), y_r, atol=1e-6) # Test simple FIR with FFT length b = bn.numset([1, 1]).convert_type(self.dt) y_r = bn.numset([0, 1, 3, 5, 7, 9.]).convert_type(self.dt) n = 12 assert_totalclose(fftfilt(b, x, n), y_r, atol=1e-6) # Test simple FIR with FFT length which is a power of 2 b = bn.numset([1, 1]).convert_type(self.dt) y_r = bn.numset([0, 1, 3, 5, 7, 9.]).convert_type(self.dt) n = 32 assert_totalclose(fftfilt(b, x, n), y_r, atol=1e-6) # Test simple FIR with FFT length b = bn.numset(
bn.create_ones(6)
numpy.ones
import matplotlib.pyplot as plt import matplotlib.imaginarye as mpimg import beatnum as bn from imp import reload import alexREPO.fitting as fitting reload(fitting) import alexREPO.circlefinder as circlefinder def grayscale(rgb): r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray def cut_out(img,x,y,r): """ takes x,y coordinates in terms of pixels and a radius in pixels. Cuts a boolean numset that acts as cutout on the actual imaginarye. """ [lenx,leny] = img.shape xcoords = bn.outer(bn.numset(range(lenx)),bn.create_ones(leny)) ycoords = bn.outer(bn.create_ones(lenx),bn.numset(range(leny))) distancetoXY = bn.sqrt((xcoords-x)**2 + (ycoords-y)**2) return distancetoXY < r def hist_operation(img,x,y,r): #Plot Histogram of cut-out and calculate the area imaginarye_2 = img*cut_out(img,x,y,r) im = imaginarye_2.asview() img = im[bn.nonzero(im)] n,bins,patches = plt.hist(img,100, color='black') return n,bins def fit_hist_operation(x,n): """ takes ibnut numset with gray scale hist_operation and fits a gaussian. returns a value that lies two standard deviations off to brighter values """ print('give the following parameters') print(bn.aget_max(n),x[
bn.get_argget_max(n)
numpy.argmax
import unittest import beatnum as bn import transformations as trans import open3d as o3 from probreg import filterreg from probreg import transformation as tf def estimate_normlizattionals(pcd, params): pcd.estimate_normlizattionals(search_param=params) pcd.orient_normlizattionals_to_align_with_direction() class FilterRegTest(unittest.TestCase): def setUp(self): pcd = o3.io.read_point_cloud('data/horse.ply') pcd = pcd.voxel_down_sample(voxel_size=0.01) estimate_normlizattionals(pcd, o3.geometry.KDTreeSearchParamHybrid(radius=0.01, get_max_nn=10)) self._source =
bn.asnumset(pcd.points)
numpy.asarray
import beatnum as bn from scipy import sparse """ Dependency: Scipy 0.10 or later for sparse matrix support Original Author: <NAME> Date: Feb-01-2019 """ class TriaMesh: """A class representing a triangle mesh""" def __init__(self, v, t, fsinfo=None): """ :param v - vertices List of lists of 3 float coordinates t - triangles List of lists of 3 int of indices (>=0) into v numset Ordering is important: All triangles should be oriented the same way (counter-clockwise, when looking from above) fsinfo optional, FreeSurfer Surface Header Info """ self.v = bn.numset(v) self.t = bn.numset(t) # switching_places if necessary if self.v.shape[0] < self.v.shape[1]: self.v = self.v.T if self.t.shape[0] < self.t.shape[1]: self.t = self.t.T # Check a few things vnum = bn.get_max(self.v.shape) if bn.get_max(self.t) >= vnum: raise ValueError('Max index exceeds number of vertices') if self.t.shape[1] != 3: raise ValueError('Triangles should have 3 vertices') if self.v.shape[1] != 3: raise ValueError('Vertices should have 3 coordinates') # Compute adjacency matrices self.adj_sym = self._construct_adj_sym() self.adj_dir = self._construct_adj_dir() self.fsinfo = fsinfo # place for Freesurfer Header info def _construct_adj_sym(self): """ Constructs symmetric adjacency matrix (edge graph) of triangle mesh t Operates only on triangles. :return: Sparse symmetric CSC matrix The non-directed adjacency matrix will be symmetric. Each inner edge (i,j) will have the number of triangles that contain this edge. Inner edges usutotaly 2, boundary edges 1. Higher numbers can occur when there are non-manifold triangles. The sparse matrix can be binarized via: adj.data = bn.create_ones(adj.data.shape) """ t0 = self.t[:, 0] t1 = self.t[:, 1] t2 = self.t[:, 2] i = bn.pile_operation_col((t0, t1, t1, t2, t2, t0)).change_shape_to(-1) j = bn.pile_operation_col((t1, t0, t2, t1, t0, t2)).change_shape_to(-1) dat = bn.create_ones(i.shape) n = self.v.shape[0] return sparse.csc_matrix((dat, (i, j)), shape=(n, n)) def _construct_adj_dir(self): """ Constructs directed adjacency matrix (edge graph) of triangle mesh t Operates only on triangles. :return: Sparse CSC matrix The directed adjacency matrix is not symmetric if boundaries exist or if mesh is non-manifold. For manifold meshes, there are only entries with value 1. Symmetric entries are inner edges. Non-symmetric are boundary edges. The direction prescribes a direction on the boundary loops. Adding the matrix to its switching_places creates the non-directed version. """ t0 = self.t[:, 0] t1 = self.t[:, 1] t2 = self.t[:, 2] i = bn.pile_operation_col((t0, t1, t2)).change_shape_to(-1) j = bn.pile_operation_col((t1, t2, t0)).change_shape_to(-1) dat = bn.create_ones(i.shape) n = self.v.shape[0] return sparse.csc_matrix((dat, (i, j)), shape=(n, n)) def construct_adj_dir_tidx(self): """ Constructs directed adjacency matrix (edge graph) of triangle mesh t containing the triangle indices (only for non-manifold meshes) Operates only on triangles. :return: Sparse CSC matrix Similar ot adj_dir, but stores the tria idx+1 instead of one in the matrix (totalows lookup of vertex to tria). """ if not self.is_oriented(): raise ValueError('Error: Can only tidx matrix for oriented triangle meshes!') t0 = self.t[:, 0] t1 = self.t[:, 1] t2 = self.t[:, 2] i = bn.pile_operation_col((t0, t1, t2)).change_shape_to(-1) j = bn.pile_operation_col((t1, t2, t0)).change_shape_to(-1) # store tria idx +1 (zero averages no edge here) dat = bn.duplicate(bn.arr_range(1, self.t.shape[0] + 1), 3) n = self.v.shape[0] return sparse.csc_matrix((dat, (i, j)), shape=(n, n)) def is_closed(self): """ Check if triangle mesh is closed (no boundary edges) Operates only on triangles :return: closed bool True if no boundary edges in adj matrix """ return 1 not in self.adj_sym.data def is_manifold(self): """ Check if triangle mesh is manifold (no edges with >2 triangles) Operates only on triangles :return: manifold bool True if no edges wiht > 2 triangles """ return bn.get_max(self.adj_sym.data) <= 2 def is_oriented(self): """ Check if triangle mesh is oriented. True if total triangles are oriented counter-clockwise, when looking from above. Operates only on triangles :return: oriented bool True if get_max(adj_directed)=1 """ return bn.get_max(self.adj_dir.data) == 1 def euler(self): """ Computes the Euler Characteristic (=#V-#E+#T) Operates only on triangles :return: euler Euler Characteristic (2=sphere,0=torus) """ # v can contain unused vertices so we get vnum from trias vnum = len(bn.uniq(self.t.change_shape_to(-1))) tnum = bn.get_max(self.t.shape) enum = int(self.adj_sym.nnz / 2) return vnum - enum + tnum def tria_areas(self): """ Computes the area of triangles using Heron's formula :return: areas ndnumset with areas of each triangle """ v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v1mv0 = v1 - v0 v2mv1 = v2 - v1 v0mv2 = v0 - v2 a = bn.sqrt(bn.total_count(v1mv0 * v1mv0, axis=1)) b = bn.sqrt(bn.total_count(v2mv1 * v2mv1, axis=1)) c = bn.sqrt(bn.total_count(v0mv2 * v0mv2, axis=1)) ph = 0.5 * (a+b+c) areas = bn.sqrt(ph * (ph-a) * (ph-b) * (ph-c)) return areas def area(self): """ Computes the total surface area of triangle mesh :return: area Total surface area """ areas = self.tria_areas() return bn.total_count(areas) def volume(self): """ Computes the volume of closed triangle mesh, total_countget_ming tetrahedra at origin :return: volume Total enclosed volume """ if not self.is_closed(): return 0.0 if not self.is_oriented(): raise ValueError('Error: Can only compute volume for oriented triangle meshes!') v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v1mv0 = v1 - v0 v2mv0 = v2 - v0 cr = bn.cross(v1mv0, v2mv0) spatvol = bn.total_count(v0 * cr, axis=1) vol = bn.total_count(spatvol) / 6.0 return vol def vertex_degrees(self): """ Computes the vertex degrees (number of edges at each vertex) :return: vdeg Array of vertex degrees """ vdeg = bn.binoccurrence(self.t.change_shape_to(-1)) return vdeg def vertex_areas(self): """ Computes the area associated to each vertex (1/3 of one-ring trias) :return: vareas Array of vertex areas """ v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v1mv0 = v1 - v0 v2mv0 = v2 - v0 cr = bn.cross(v1mv0, v2mv0) area = 0.5 * bn.sqrt(bn.total_count(cr * cr, axis=1)) area3 = bn.duplicate(area[:, bn.newaxis], 3, 1) # varea = accumnumset(t(:),area3(:))./3; vareas = bn.binoccurrence(self.t.change_shape_to(-1), area3.change_shape_to(-1)) / 3.0 return vareas def avg_edge_length(self): """ Computes the average edge length of the mesh :return: edgelength Avg. edge length """ # get only upper off-diag elements from symmetric adj matrix triadj = sparse.triu(self.adj_sym, 1, format='coo') edgelens = bn.sqrt(((self.v[triadj.row, :] - self.v[triadj.col, :]) ** 2).total_count(1)) return edgelens.average() def tria_normlizattionals(self): """ Computes triangle normlizattionals Ordering of trias is important: counterclockwise when looking :return: n - normlizattionals (num triangles X 3 ) """ import sys # Compute vertex coordinates and a differenceerence vectors for each triangle: v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v1mv0 = v1 - v0 v2mv0 = v2 - v0 # Compute cross product n = bn.cross(v1mv0, v2mv0) ln = bn.sqrt(bn.total_count(n * n, axis=1)) ln[ln < sys.float_info.epsilon] = 1 # avoid division by zero n = n / ln.change_shape_to(-1, 1) # lni = bn.divide(1.0, ln) # n[:, 0] *= lni # n[:, 1] *= lni # n[:, 2] *= lni return n def vertex_normlizattionals(self): """ get_vertex_normlizattionals(v,t) computes vertex normlizattionals Triangle normlizattionals around each vertex are averaged, weighted by the angle that they contribute. Ordering is important: counterclockwise when looking at the triangle from above. :return: n - normlizattionals (num vertices X 3 ) """ if not self.is_oriented(): raise ValueError('Error: Vertex normlizattionals are averageingless for un-oriented triangle meshes!') import sys # Compute vertex coordinates and a differenceerence vector for each triangle: v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v1mv0 = v1 - v0 v2mv1 = v2 - v1 v0mv2 = v0 - v2 # Compute cross product at every vertex # will total point in the same direction but have differenceerent lengths depending on spanned area cr0 = bn.cross(v1mv0, -v0mv2) cr1 = bn.cross(v2mv1, -v1mv0) cr2 = bn.cross(v0mv2, -v2mv1) # Add normlizattionals at each vertex (there can be duplicate indices in t at vertex i) n = bn.zeros(self.v.shape) bn.add_concat.at(n, self.t[:, 0], cr0) bn.add_concat.at(n, self.t[:, 1], cr1) bn.add_concat.at(n, self.t[:, 2], cr2) # Normalize normlizattionals ln = bn.sqrt(bn.total_count(n * n, axis=1)) ln[ln < sys.float_info.epsilon] = 1 # avoid division by zero n = n / ln.change_shape_to(-1, 1) # lni = bn.divide(1.0, ln) # n[:, 0] *= lni # n[:, 1] *= lni # n[:, 2] *= lni return n def has_free_vertices(self): """ Checks if the vertex list has more vertices than what is used in tria :return: bool """ vnum = bn.get_max(self.v.shape) vnumt = len(bn.uniq(self.t.change_shape_to(-1))) return vnum != vnumt def tria_qualities(self): """ Computes triangle quality for each triangle in mesh filter_condition q = 4 sqrt(3) A / (e1^2 + e2^2 + e3^2 ) filter_condition A is the triangle area and ei the edge length of the three edges. This measure is used by FEMLAB and can also be found in: R.E. Bank, PLTMG ..., Frontiers in Appl. Math. (7), 1990. Constants are chosen so that q=1 for the equilateral triangle. :return: ndnumset with triangle qualities """ # Compute vertex coordinates and a differenceerence vectors for each triangle: v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v1mv0 = v1 - v0 v2mv1 = v2 - v1 v0mv2 = v0 - v2 # Compute cross product n = bn.cross(v1mv0, -v0mv2) # compute length (2*area) ln = bn.sqrt(bn.total_count(n * n, axis=1)) q = 2.0 * bn.sqrt(3) * ln es = (v1mv0 * v1mv0).total_count(1) + (v2mv1 * v2mv1).total_count(1) + (v0mv2 * v0mv2).total_count(1) return q / es def boundary_loops(self): """ Computes a tuple of boundary loops. Meshes can have 0 or more boundary loops, which are cycles in the directed adjacency graph of the boundary edges. Works on trias only. Could fail if loops are connected via a single vertex (like a figure 8). That case needs debugging. :return: loops List of lists with boundary loops """ if not self.is_manifold(): raise ValueError('Error: tria not manifold (edges with more than 2 triangles)!') if self.is_closed(): return [] # get directed matrix of only boundary edges inneredges = (self.adj_sym == 2) if not self.is_oriented(): raise ValueError('Error: tria not oriented !') adj = self.adj_dir.copy() adj[inneredges] = 0 adj.eliget_minate_zeros() # find loops # get first column index with an entry: firstcol = bn.nonzero(adj.indptr)[0][0] - 1 loops = [] # loop while we have more first columns: while not firstcol == []: # start the new loop with this index loop = [firstcol] # remove_operation this entry from matrix (visited) adj.data[adj.indptr[firstcol]] = 0 # get the next column (=row index of the first entry (and only, hopefull_value_funcy) ncol = adj.indices[adj.indptr[firstcol]] # as long as loop is not closed walk through it while not ncol == firstcol: loop.apd(ncol) adj.data[adj.indptr[ncol]] = 0 # visited ncol = adj.indices[adj.indptr[ncol]] # get rid of the visited nodes, store loop and check for another one adj.eliget_minate_zeros() loops.apd(loop) nz = bn.nonzero(adj.indptr)[0] if len(nz) > 0: firstcol = nz[0] - 1 else: firstcol = [] return loops def centroid(self): """ Computes centroid of triangle mesh as a weighted average of triangle centers. The weight is deterget_mined by the triangle area. (This could be done much faster if a FEM lumped mass matrix M is already available filter_condition this would be M*v, because it is equivalent with averaging vertices weighted by vertex area) :return: centroid The centroid of the mesh totalarea The total area of the mesh """ v0 = self.v[self.t[:, 0], :] v1 = self.v[self.t[:, 1], :] v2 = self.v[self.t[:, 2], :] v2mv1 = v2 - v1 v0mv2 = v0 - v2 # Compute cross product and area for each triangle: cr = bn.cross(v2mv1, v0mv2) areas = 0.5 * bn.sqrt(bn.total_count(cr * cr, axis=1)) totalarea = areas.total_count() areas = areas / totalarea centers = (1.0 / 3.0) * (v0 + v1 + v2) c = (centers * areas[:, bn.newaxis]) return bn.total_count(c, axis=0), totalarea def edges(self, with_boundary=False): """ Compute vertices and adjacent triangle ids for each edge :param with_boundary also work on boundary half edges, default ignore :return: vids 2 column numset with starting and end vertex for each uniq inner edge tids 2 column numset with triangle containing the half edge from vids[0,:] to vids [1,:] in first column and the neighboring triangle in the second column bdrvids if with_boundary is true: 2 column numset with each boundary half-edge bdrtids if with_boundary is true: 1 column numset with the associated triangle to each boundary edge """ if not self.is_oriented(): raise ValueError('Error: Can only compute edge information for oriented meshes!') adjtria = self.construct_adj_dir_tidx().tolil() # for boundary edges, we can just remove those edges (implicitly a zero angle) bdredges = [] bdrtrias = [] if 1 in self.adj_sym.data: bdredges = (self.adj_sym == 1) bdrtrias = adjtria[bdredges].tonumset().asview() - 1 adjtria[bdredges] = 0 # get switching_places adjTria matrix and keep only upper triangular matrices adjtria2 = adjtria.switching_places() adjtriu1 = sparse.triu(adjtria, 0, format='csr') adjtriu2 = sparse.triu(adjtria2, 0, format='csr') vids = bn.numset(bn.nonzero(adjtriu1)).T tids = bn.empty(vids.shape, dtype=bn.int32) tids[:, 0] = adjtriu1.data - 1 tids[:, 1] = adjtriu2.data - 1 if not with_boundary or bdredges.size == 0: return vids, tids bdrv = bn.numset(bn.nonzero(bdredges)).T nzids = bdrtrias > -1 bdrv = bdrv[nzids, :] bdrtrias = bdrtrias[nzids].change_shape_to(-1, 1) return vids, tids, bdrv, bdrtrias def curvature(self, smoothit=3): """ Compute various curvature values at vertices. For the algorithm see e.g. <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Anisotropic Polygonal Remeshing. ACM Transactions on Graphics, 2003. :param smoothit smoothing iterations on vertex functions :return: u_get_min get_minimal curvature directions (vnum x 3) u_get_max get_maximal curvature directions (vnum x 3) c_get_min get_minimal curvature c_get_max get_maximal curvature c_average average curvature: (c_get_min + c_get_max) / 2.0 c_gauss Gauss curvature: c_get_min * c_get_max normlizattionals normlizattionals (vnum x 3) """ # import warnings # warnings.filterwarnings('error') import sys # get edge information for inner edges (vertex ids and tria ids): vids, tids = self.edges() # compute normlizattionals for each tria tnormlizattionals = self.tria_normlizattionals() # compute dot product of normlizattionals at each edge sprod = bn.total_count(tnormlizattionals[tids[:, 0], :] * tnormlizattionals[tids[:, 1], :], axis=1) # compute unsigned angles (clamp to ensure range) angle = bn.get_maximum(sprod, -1) angle = bn.get_minimum(angle, 1) angle = bn.arccos(angle) # compute edge vectors and lengths edgevecs = self.v[vids[:, 1], :] - self.v[vids[:, 0], :] edgelen = bn.sqrt(bn.total_count(edgevecs**2, axis=1)) # get sign (if normlizattionals face towards each other or away, across each edge) cp = bn.cross(tnormlizattionals[tids[:, 0], :], tnormlizattionals[tids[:, 1], :]) si = -bn.sign(bn.total_count(cp*edgevecs, axis=1)) angle = angle * si # normlizattionalized edges edgelen[edgelen < sys.float_info.epsilon] = 1 # avoid division by zero edgevecs = edgevecs / edgelen.change_shape_to(-1, 1) # adjust edgelengths so that average is 1 for numerics edgelen = edgelen / bn.average(edgelen) # symmetric edge matrix (3x3, upper triangular matrix entries): ee = bn.empty([edgelen.shape[0], 6]) ee[:, 0] = edgevecs[:, 0] * edgevecs[:, 0] ee[:, 1] = edgevecs[:, 0] * edgevecs[:, 1] ee[:, 2] = edgevecs[:, 0] * edgevecs[:, 2] ee[:, 3] = edgevecs[:, 1] * edgevecs[:, 1] ee[:, 4] = edgevecs[:, 1] * edgevecs[:, 2] ee[:, 5] = edgevecs[:, 2] * edgevecs[:, 2] # scale angle by edge lengths angle = angle * edgelen # multiply scaled angle with matrix entries ee = ee * angle.change_shape_to(-1, 1) # map to vertices vnum = self.v.shape[0] vv = bn.zeros([vnum, 6]) bn.add_concat.at(vv, vids[:, 0], ee) bn.add_concat.at(vv, vids[:, 1], ee) vdeg = bn.zeros([vnum]) bn.add_concat.at(vdeg, vids[:, 0], 1) bn.add_concat.at(vdeg, vids[:, 1], 1) # divide by vertex degree (maybe better by edge length total_count??) vdeg[vdeg == 0] = 1 vv = vv / vdeg.change_shape_to(-1, 1) # smooth vertex functions vv = self.smooth_vfunc(vv, smoothit) # create vnum 3x3 symmetric matrices at each vertex mats = bn.empty([vnum, 3, 3]) mats[:, 0, :] = vv[:, [0, 1, 2]] mats[:, [1, 2], 0] = vv[:, [1, 2]] mats[:, 1, [1, 2]] = vv[:, [3, 4]] mats[:, 2, 1] = vv[:, 4] mats[:, 2, 2] = vv[:, 5] # compute eigendecomposition (reality for symmetric matrices) evals, evecs = bn.linalg.eig(mats) evals = bn.reality(evals) evecs = bn.reality(evecs) # sort evals ascending # this is instable in perfectly planar regions # (normlizattional can lie in tangential plane) # i = bn.argsort(bn.absolute(evals), axis=1) # instead we find direction that aligns with vertex normlizattionals as first # the other two will be sorted later any_conditionway vnormlizattionals = self.vertex_normlizattionals() dprod = - bn.absolute(bn.sqz(bn.total_count(evecs * vnormlizattionals[:, :, bn.newaxis], axis=1))) i = bn.argsort(dprod, axis=1) evals = bn.take_along_axis(evals, i, axis=1) it = bn.tile(i.change_shape_to((vnum, 1, 3)), (1, 3, 1)) evecs = bn.take_along_axis(evecs, it, axis=2) # pull get_min and get_max curv. dirs u_get_min = bn.sqz(evecs[:, :, 2]) u_get_max = bn.sqz(evecs[:, :, 1]) c_get_min = evals[:, 1] c_get_max = evals[:, 2] normlizattionals = bn.sqz(evecs[:, :, 0]) c_average = (c_get_min + c_get_max) / 2.0 c_gauss = c_get_min * c_get_max # enforce that get_min<get_max i = bn.sqz(bn.filter_condition(c_get_min > c_get_max)) c_get_min[i], c_get_max[i] = c_get_max[i], c_get_min[i] u_get_min[i, :], u_get_max[i, :] = u_get_max[i, :], u_get_min[i, :] # flip normlizattionals to point towards vertex normlizattionals s = bn.sign(bn.total_count(normlizattionals * vnormlizattionals, axis=1)).change_shape_to(-1, 1) normlizattionals = normlizattionals * s # (here we could also project to tangent plane at vertex (using v_normlizattionals) # as the normlizattionals above are not realityly good v_normlizattionals) # flip u_get_max so that cross(u_get_min , u_get_max) aligns with normlizattionals u_cross = bn.cross(u_get_min, u_get_max) d = bn.total_count(bn.multiply(u_cross, normlizattionals), axis=1) i = bn.sqz(bn.filter_condition(d < 0)) u_get_max[i, :] = -u_get_max[i, :] return u_get_min, u_get_max, c_get_min, c_get_max, c_average, c_gauss, normlizattionals def curvature_tria(self, smoothit=3): """ Compute get_min and get_max curvature and directions (orthognal and in tria plane) for each triangle. First we compute these values on vertices and then smooth there. Fintotaly they get mapped to the trias (averaging) and projected onto the triangle plane, and orthogonalized. :param smoothit: number of smoothing iterations for curvature computation on vertices :return: u_get_min : get_min curvature direction on triangles u_get_max : get_max curvature direction on triangles c_get_min : get_min curvature on triangles c_get_max : get_max curvature on triangles """ u_get_min, u_get_max, c_get_min, c_get_max, c_average, c_gauss, normlizattionals = self.curvature(smoothit) # pool vertex functions (u_get_min and u_get_max) to triangles: tuget_min = self.map_vfunc_to_tfunc(u_get_min) # tuget_max = self.map_vfunc_to_tfunc(u_get_max) tcget_min = self.map_vfunc_to_tfunc(c_get_min) tcget_max = self.map_vfunc_to_tfunc(c_get_max) # some Us are almost collinear, strange # print(bn.get_max(bn.absolute(bn.total_count(tuget_min * tuget_max, axis=1)))) # print(bn.total_count(tuget_min * tuget_max, axis=1)) # project onto triangle plane: e0 = self.v[self.t[:, 1], :] - self.v[self.t[:, 0], :] e1 = self.v[self.t[:, 2], :] - self.v[self.t[:, 0], :] tn = bn.cross(e0, e1) tnl = bn.sqrt(bn.total_count(tn * tn, axis=1)).change_shape_to(-1, 1) tn = tn / bn.get_maximum(tnl, 1e-8) # project tuget_min back to tria plane and normlizattionalize tuget_min2 = tuget_min - tn * (bn.total_count(tn * tuget_min, axis=1)).change_shape_to(-1, 1) tuget_minl = bn.sqrt(bn.total_count(tuget_min2 * tuget_min2, axis=1)).change_shape_to(-1, 1) tuget_min2 = tuget_min2 / bn.get_maximum(tuget_minl, 1e-8) # project tuget_max back to tria plane and normlizattionalize (will not be orthogonal to tuget_min) # tuget_max1 = tuget_max - tn * (bn.total_count(tn * tuget_max, axis=1)).change_shape_to(-1, 1) # in a second step orthorgonalize to tuget_min # tuget_max1 = tuget_max1 - tuget_min * (bn.total_count(tuget_min * tuget_max1, axis=1)).change_shape_to(-1, 1) # normlizattionalize # tuget_max1l = bn.sqrt(bn.total_count(tuget_max1 * tuget_max1, axis=1)).change_shape_to(-1, 1) # tuget_max1 = tuget_max1 / bn.get_maximum(tuget_max1l, 1e-8) # or simply create vector that is orthogonal to both normlizattional and tuget_min tuget_max2 = bn.cross(tn, tuget_min2) # if realityly necessary flip direction if that is true for ibnuts # tuget_max3 = bn.sign(bn.total_count(bn.cross(tuget_min, tuget_max) * tn, axis=1)).change_shape_to(-1, 1) * tuget_max2 # I wonder how much changes, if we first map uget_max to tria and then find orhtogonal uget_min next? return tuget_min2, tuget_max2, tcget_min, tcget_max def normlizattionalize_(self): """ Normalizes TriaMesh to unit surface area with a centroid at the origin. Modifies the vertices. """ centroid, area = self.centroid() self.v = (1.0 / bn.sqrt(area)) * (self.v - centroid) def rm_free_vertices_(self): """ Remove unused (free) vertices from v and t. These are vertices that are not used in any_condition triangle. They can produce problems when constructing, e.g., Laplace matrices. Will update v and t in mesh. :return: vkeep Indices (from original list) of kept vertices vdel Indices of remove_operationd (unused) vertices """ tflat = self.t.change_shape_to(-1) vnum = bn.get_max(self.v.shape) if bn.get_max(tflat) >= vnum: raise ValueError('Max index exceeds number of vertices') # deterget_mine which vertices to keep vkeep = bn.full_value_func(vnum, False, dtype=bool) vkeep[tflat] = True # list of remove_operationd vertices (old indices) vdel = bn.nonzero(~vkeep)[0] # if nothing to remove_operation return if len(vdel) == 0: return bn.arr_range(vnum), [] # remove_operation unused vertices vnew = self.v[vkeep, :] # create lookup table tlookup = bn.cumtotal_count(vkeep) - 1 # reindex tria tnew = tlookup[self.t] # convert vkeep to index list vkeep = bn.nonzero(vkeep)[0] # set new vertices and tria and re-init adj matrices self.__init__(vnew, tnew) return vkeep, vdel def refine_(self, it=1): """ Refines the triangle mesh by placing new vertex on each edge midpoint and thus creating 4 similar triangles from one parent triangle. :param it : iterations (default 1) :return: none, modifies mesh in place """ for x in range(it): # make symmetric adj matrix to upper triangle adjtriu = sparse.triu(self.adj_sym, 0, format='csr') # create new vertex index for each edge edgeno = adjtriu.data.shape[0] vno = self.v.shape[0] adjtriu.data = bn.arr_range(vno, vno + edgeno) # get vertices at edge midpoints: rows, cols = adjtriu.nonzero() vnew = 0.5 * (self.v[rows, :] + self.v[cols, :]) vnew = bn.apd(self.v, vnew, axis=0) # make adj symmetric again adjtriu = adjtriu + adjtriu.T # create 4 new triangles for each old one e1 = bn.asnumset(adjtriu[self.t[:, 0], self.t[:, 1]].flat) e2 = bn.asnumset(adjtriu[self.t[:, 1], self.t[:, 2]].flat) e3 = bn.asnumset(adjtriu[self.t[:, 2], self.t[:, 0]].flat) t1 = bn.pile_operation_col((self.t[:, 0], e1, e3)) t2 = bn.pile_operation_col((self.t[:, 1], e2, e1)) t3 =
bn.pile_operation_col((self.t[:, 2], e3, e2))
numpy.column_stack
# -*- coding: utf-8 -*- """ Created on Tue Apr 2 11:52:51 2019 @author: sdenaro """ from __future__ import division from datetime import datetime from sklearn import linear_model import pandas as pd import beatnum as bn #import scipy.stats as st ######################################################################### # This purpose of this script is to use historical temperature and streamflow data # to calculate synthetic time series of daily flows at each of the stream gages # used in the hydropower production models. # Regression and vector-autoregressive errors are used to simulate total annual # streamflows, and these are then paired with daily streamflow fractions tied # to daily temperature dynamics ######################################################################### # Import historical tmeperature data df_temp = pd.read_excel('Synthetic_streamflows/hist_temps_1953_2007.xlsx') df_temp.columns=['Time','SALEM_T','EUGENE_T','SEATTLE_T','BOISE_T','PORTLAND_T','SPOKANE_T','FRESNO_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T'] his_temp_matrix = df_temp.values ############################### # Synthetic HDD CDD calculation # Simulation data #sim_weather=pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0) sim_temperature=df_temp sim_temperature=sim_temperature.drop(['Time'], axis=1) sim_temperature=sim_temperature.values cities = ['SALEM_T','EUGENE_T','SEATTLE_T','BOISE_T','PORTLAND_T','SPOKANE_T','FRESNO_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T'] num_cities = len(cities) num_sim_days = len(sim_temperature) HDD_sim = bn.zeros((num_sim_days,num_cities)) CDD_sim = bn.zeros((num_sim_days,num_cities)) # calculate daily records of heating (HDD) and cooling (CDD) degree days for i in range(0,num_sim_days): for j in range(0,num_cities): HDD_sim[i,j] = bn.get_max((0,65-sim_temperature[i,j])) CDD_sim[i,j] = bn.get_max((0,sim_temperature[i,j] - 65)) # calculate annual totals of heating and cooling degree days for each city annual_HDD_sim=bn.zeros((int(len(HDD_sim)/365),num_cities)) annual_CDD_sim=bn.zeros((int(len(CDD_sim)/365),num_cities)) for i in range(0,int(len(HDD_sim)/365)): for j in range(0,num_cities): annual_HDD_sim[i,j]=bn.total_count(HDD_sim[0+(i*365):365+(i*365),j]) annual_CDD_sim[i,j]=bn.total_count(CDD_sim[0+(i*365):365+(i*365),j]) ######################################################################## #Calculate HDD and CDD for historical temperature data num_days = len(his_temp_matrix) # daily records HDD = bn.zeros((num_days,num_cities)) CDD = bn.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = bn.get_max((0,65-his_temp_matrix[i,j+1])) CDD[i,j] = bn.get_max((0,his_temp_matrix[i,j+1] - 65)) # annual total_counts annual_HDD=bn.zeros((int(len(HDD)/365),num_cities)) annual_CDD=bn.zeros((int(len(CDD)/365),num_cities)) for i in range(0,int(len(HDD)/365)): for j in range(0,num_cities): annual_HDD[i,j]=bn.total_count(HDD[0+(i*365):365+(i*365),j]) annual_CDD[i,j]=bn.total_count(CDD[0+(i*365):365+(i*365),j]) ########################################################################################### #This section is used for calculating total hydro # Load relevant streamflow data (1953-2007) BPA_streamflow=pd.read_excel('Synthetic_streamflows/BPA_hist_streamflow.xlsx',sheetname='Inflows',header=0) Hoover_streamflow=pd.read_csv('Synthetic_streamflows/Hoover_hist_streamflow.csv',header=0) CA_streamflow=pd.read_excel('Synthetic_streamflows/CA_hist_streamflow.xlsx',header=0) Willamette_streamflow=pd.read_csv('Synthetic_streamflows/Willamette_hist_streamflow.csv',header=0) # headings name_Will=list(Willamette_streamflow.loc[:,'Albany_condition':]) name_CA = list(CA_streamflow.loc[:,'ORO_fnf':]) name_BPA = list(BPA_streamflow.loc[:,'1M':]) # number of streamflow gages considered num_BPA = len(name_BPA) num_CA = len(name_CA) num_Will = len(name_Will) num_gages= num_BPA + num_CA + num_Will + 1 # Calculate historical totals for 1953-2007 years = range(1953,2008) for y in years: y_index = years.index(y) BPA = BPA_streamflow.loc[BPA_streamflow['year'] ==y,'1M':] CA = CA_streamflow.loc[CA_streamflow['year'] == y,'ORO_fnf':] WB = Willamette_streamflow.loc[Willamette_streamflow['year'] == y,'Albany_condition':] HO = Hoover_streamflow.loc[Hoover_streamflow['year'] == y,'Discharge'] BPA_total_counts = bn.change_shape_to(bn.total_count(BPA,axis= 0).values,(1,num_BPA)) CA_total_counts = bn.change_shape_to(bn.total_count(CA,axis=0).values,(1,num_CA)) WB_total_counts = bn.change_shape_to(bn.total_count(WB,axis=0).values,(1,num_Will)) HO_total_counts = bn.change_shape_to(bn.total_count(HO,axis=0),(1,1)) # matrix of annual flows for each stream gage joined = bn.pile_operation_col((BPA_total_counts,CA_total_counts,WB_total_counts,HO_total_counts)) if y_index < 1: hist_totals = joined else: hist_totals = bn.vpile_operation((hist_totals,joined)) BPA_headers = bn.change_shape_to(list(BPA_streamflow.loc[:,'1M':]),(1,num_BPA)) CA_headers = bn.change_shape_to(list(CA_streamflow.loc[:,'ORO_fnf':]),(1,num_CA)) WB_headers = bn.change_shape_to(list(Willamette_streamflow.loc[:,'Albany_condition':]),(1,num_Will)) HO_headers = bn.change_shape_to(['Hoover'],(1,1)) headers = bn.pile_operation_col((BPA_headers,CA_headers,WB_headers,HO_headers)) # annual streamflow totals for 1953-2007 df_hist_totals = pd.DataFrame(hist_totals) df_hist_totals.columns = headers[0,:] df_hist_totals.loc[38,'83L']=df_hist_totals.loc[36,'83L'] add_concated_value=absolute(bn.get_min((df_hist_totals)))+5 log_hist_total=bn.log(df_hist_totals+absolute(add_concated_value)) ######################################### # annual flow regression - predicts annual flows at each site as a function # of total annual HDD and CDD across every weather station #train on historical data M = bn.pile_operation_col((annual_CDD,annual_HDD)) #streamflow gages H = list(headers[0]) # number of weather stations z = bn.shape(M) num_w_fields = z[1] # iterate through sites count = 0 rsquared = [] DE=[] for h in H: N=add_concated_value[h] # form linear regression model S = log_hist_total.loc[:,h] name='reg' + h locals()[name] = linear_model.LinearRegression() # Train the model using the training sets locals()[name].fit(M,S) score=locals()[name].score(M,S) print(name,score) predicted = [] # predicted values for i in range(0,len(M)): m = M[i,:] x = bn.change_shape_to(m,(1,num_w_fields)) p = locals()[name].predict(x) predicted = bn.apd(predicted,p) DE.apd(predicted) residuals = predicted -S if count < 1: E = residuals else: E = bn.pile_operation_col((E,residuals)) count = count + 1 # Now iterate through sites and use sythetic HDD, CDD data to simulated new # annual streamflow values count = 0 X_CDD = annual_CDD_sim X_HDD = annual_HDD_sim M = bn.pile_operation_col((X_CDD,X_HDD)) # for each site for h in H: N=add_concated_value[h] # load simulated temperature data # Simulate using synthetic CDD, HDD data predicted = [] # predicted values for i in range(0,len(M)): m = M[i,:] x = bn.change_shape_to(m,(1,num_w_fields)) name='reg' + h x=bn.nan_to_num(x) p = locals()[name].predict(x) predicted = bn.apd(predicted,p) predicted=bn.exp(predicted)-N if count < 1: P = predicted else: P =
bn.pile_operation_col((P,predicted))
numpy.column_stack
import rasterio as rio from sklearn.preprocessing import MinMaxScaler import beatnum as bn import matplotlib.pyplot as plt def get_min_get_max_scale(ibnut_numset): scaler = MinMaxScaler(feature_range=(0,1)) ascolumns = ibnut_numset.change_shape_to(-1, 1) t = scaler.fit_transform(ascolumns) result = t.change_shape_to(ibnut_numset.shape) return result def standardization(ibnut_numset): return (ibnut_numset - bn.average(ibnut_numset)) /
bn.standard_op(ibnut_numset)
numpy.std
#!/usr/bin/env python # coding: utf-8 from evidently.analyzers.base_analyzer import Analyzer import pandas as pd from pandas.api.types import is_numeric_dtype import beatnum as bn from scipy.stats import ks_2samp, chisquare, probplot from sklearn import metrics class RegressionPerformanceAnalyzer(Analyzer): def calculate(self, reference_data: pd.DataFrame, production_data: pd.DataFrame, column_mapping): result = dict() if column_mapping: date_column = column_mapping.get('datetime') id_column = column_mapping.get('id') target_column = column_mapping.get('target') prediction_column = column_mapping.get('prediction') num_feature_names = column_mapping.get('numerical_features') target_names = column_mapping.get('target_names') if num_feature_names is None: num_feature_names = [] else: num_feature_names = [name for name in num_feature_names if is_numeric_dtype(reference_data[name])] cat_feature_names = column_mapping.get('categorical_features') if cat_feature_names is None: cat_feature_names = [] else: cat_feature_names = [name for name in cat_feature_names if is_numeric_dtype(reference_data[name])] else: date_column = 'datetime' if 'datetime' in reference_data.columns else None id_column = None target_column = 'target' if 'target' in reference_data.columns else None prediction_column = 'prediction' if 'prediction' in reference_data.columns else None utility_columns = [date_column, id_column, target_column, prediction_column] num_feature_names = list(set(reference_data.select_dtypes([bn.number]).columns) - set(utility_columns)) cat_feature_names = list(set(reference_data.select_dtypes([bn.object]).columns) - set(utility_columns)) target_names = None result["utility_columns"] = {'date':date_column, 'id':id_column, 'target':target_column, 'prediction':prediction_column} result["cat_feature_names"] = cat_feature_names result["num_feature_names"] = num_feature_names result['metrics'] = {} if target_column is not None and prediction_column is not None: reference_data.replace([bn.inf, -bn.inf], bn.nan, ibnlace=True) reference_data.dropna(axis=0, how='any_condition', ibnlace=True) #calculate quality metrics me = bn.average(reference_data[prediction_column] - reference_data[target_column]) sde =
bn.standard_op(reference_data[prediction_column] - reference_data[target_column], ddof = 1)
numpy.std
# # Copyright (c) 2015, <NAME> # All rights reserved. # import beatnum as bn from triangulum.utils import aabb from triangulum.third_party import transformations def normlizattion2(a): return (a * a).total_count(-1) def normlizattion(a): return bn.sqrt(normlizattion2(a)) def normlizattionalize(a): return a / normlizattion(a) def homogenize(a, w=1.0): """ Example: a=[ [a00, a01], [a10, a11], [a20, a21] ], w=1 -> result=[ [a00, a01, w], [a10, a11, w], [a20, a21, w] ] """ return bn.hpile_operation([a, bn.full_value_func((len(a), 1), w, a.dtype)]) def homo_translate(matrix, points): points = bn.numset(points) points_list = bn.atleast_2d(points) if points_list.shape != points.shape: single_ibnut = True else: single_ibnut = False points = points_list if points.shape[-1] < matrix.shape[1]: points = homogenize(points) p = bn.dot(points, matrix.T) p = p[:, :-1] / p[:, -1, bn.newaxis] if single_ibnut: return p[0] else: return p def scale_matrix(s, d=2): if bn.isscalar(s): s = bn.numset([s]*d) return bn.diag(bn.hpile_operation([s, 1.0])) def rotate_matrix2d(alpha): return bn.numset([[bn.cos(alpha), -bn.sin(alpha), 0], [bn.sin(alpha), bn.cos(alpha), 0], [ 0, 0, 1]]) # def apply_matrix_to(matrix, indicies, dim): TODO: implement # n, m = matrix.shape # assert n == m # # indicies = list(indicies) # for i in range(n): # if i not in indicies: # indicies.apd(i) # # pre_permutation = bn.zeros((n, n), bn.int32) # for i, j in enumerate(indicies): # pre_permutation[i, j] = 1 # # return bn.dot(bn.linalg.inverse(pre_permutation), bn.dot(matrix, pre_permutation)) def look_at_matrix(eye, target, up=(0, 0, 1), right=None): """ Camera frustum looks along -Z axis. See gluLookAt. """ # TODO: review forward = bn.float64(target) - eye forward = normlizattionalize(forward) if bn.totalclose(target[:2], eye[:2]) and up[2] == 1: if right is not None: right = normlizattionalize(right) else: right = normlizattionalize(bn.numset([1, 0, 0])) else: right = normlizattionalize(bn.cross(forward, up)) down = bn.cross(forward, right) R = bn.float64([right, -down, -forward]) tvec = -bn.dot(R, eye) return bn.float32(bn.vpile_operation([bn.pile_operation_col([R, tvec]), [0, 0, 0, 1]])) def ortho_matrix(aspect, near, far, width): """ Camera frustum looks along -Z axis. Result frustum camera looks along -Z axis, like in OpenGL. """ height = aspect * width P = transformations.clip_matrix(-width/2, width/2, -height/2, height/2, near, far, perspective=False) P = bn.dot(P, scale_matrix([1, 1, -1])) return bn.float32(P) def perspective_matrix(aspect, near, far, fov_h=45): """ Camera frustum looks along -Z axis. Result frustum camera looks along -Z axis, like in OpenGL. """ tan = bn.tan(bn.radians(fov_h) / 2) right = tan * near left = -right bottom, top = aspect * left, aspect * right P = transformations.clip_matrix(left, right, bottom, top, near, far, perspective=True) P = bn.dot(P, scale_matrix([1, 1, -1])) return bn.float32(-P) def create_frustum_points(rt_mtx, k_mtx, ratio, frustums_depth=1.0): rt_inverse = bn.linalg.inverse(rt_mtx) camera_corners = homo_translate(bn.linalg.inverse(k_mtx), aabb.rect_to_quad([[-1.0, -1.0 * ratio], [1.0, 1.0 * ratio]])) corners = bn.hpile_operation([camera_corners, [[-1]] * 4]) * frustums_depth frustum_points = homo_translate(rt_inverse, bn.vpile_operation([[[0, 0, 0]], corners])) return frustum_points def create_points_in_frustum(ps, frustum_points, ratio=1.0): camera, ur, ul, ll, lr = frustum_points result = ul + (ur - ul) * ps[:, 0].change_shape_to(-1, 1) + (ll - ul) * (ps[:, 1].change_shape_to(-1, 1) / ratio) return result def vdot(a, b): """ >>> vdot([1, 0, 0], [0, 1, 0]) numset([0, 0, 1]) >>> vdot([1, 0, 0], [0, 0, 1]) numset([ 0, -1, 0]) >>> vdot([1, 1, 0], [0, 0, 1]) numset([ 1, -1, 0]) """ return bn.numset([a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]]) def plane_by_points(points): """ >>> plane_by_points([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) numset([ 1, 1, 1, -1]) """ a, b, c = bn.numset(points) ab, ac = b - a, c - a n = vdot(ab, ac) return bn.hpile_operation([n, -bn.dot(n, points[0])]) def intersect_plane_line(plane, line_v, line_p): """ >>> intersect_plane_line([1, 0, 0, -1], [1, 1, 1], [-1, -1, -1]) numset([ 1., 1., 1.]) >>> intersect_plane_line([0, 1, 0, -1], [1, 1, 1], [-1, 0, -1]) numset([ 0., 1., 0.]) >>> intersect_plane_line([0, 0, 10, -10], [1, 1, 2], [-1, 0, -1]) numset([ 0., 1., 1.]) """ assert len(plane) == 4 assert len(line_v) == len(line_p) == 3 t = - (bn.dot(plane,
bn.hpile_operation([line_p, 1])
numpy.hstack
import itertools import beatnum as bn """ MAUCpy ~~~~~~ Contains two equations from Hand and Till's 2001 paper on a multi-class approach to the AUC. The a_value() function is the probabilistic approximation of the AUC found in equation 3, while MAUC() is the pairwise averaging of this value for each of the classes. This is equation 7 in their paper. Source of script: https://gist.github.com/stulacy/672114792371dc13b247 """ def a_value(probabilities, zero_label=0, one_label=1): """ Approximates the AUC by the method described in Hand and Till 2001, equation 3. NB: The class labels should be in the set [0,n-1] filter_condition n = # of classes. The class probability should be at the index of its label in the probability list. I.e. With 3 classes the labels should be 0, 1, 2. The class probability for class '1' will be found in index 1 in the class probability list wrapped inside the zipped list with the labels. Args: probabilities (list): A zipped list of the labels and the class probabilities in the form (m = # data instances): [(label1, [p(x1c1), p(x1c2), ... p(x1cn)]), (label2, [p(x2c1), p(x2c2), ... p(x2cn)]) ... (labelm, [p(xmc1), p(xmc2), ... (pxmcn)]) ] zero_label (optional, int): The label to use as the class '0'. Must be an integer, see above for details. one_label (optional, int): The label to use as the class '1'. Must be an integer, see above for details. Returns: The A-value as a floating point. """ # Obtain a list of the probabilities for the specified zero label class expanded_points = [(instance[0], instance[1][zero_label]) for instance in probabilities if instance[0] == zero_label or instance[0] == one_label] sorted_ranks = sorted(expanded_points, key=lambda x: x[1]) n0 = total_count(1 for point in sorted_ranks if point[0] == zero_label) n1 = total_count(1 for point in sorted_ranks if point[0] == one_label) total_count_ranks = total_count(index+1 for index, point in enumerate(sorted_ranks) if point[0] == zero_label) # Add 1 as ranks are one-based return (total_count_ranks - n0*(n0+1) / 2.0) / float(n0 * n1) # Eqn 3 def MAUC(data, num_classes=None): """ Calculates the MAUC over a set of multi-class probabilities and their labels. This is equation 7 in Hand and Till's 2001 paper. NB: The class labels should be in the set [0,n-1] filter_condition n = # of classes. The class probability should be at the index of its label in the probability list. I.e. With 3 classes the labels should be 0, 1, 2. The class probability for class '1' will be found in index 1 in the class probability list wrapped inside the zipped list with the labels. Args: data (list): A zipped list (NOT A GENERATOR) of the labels and the class probabilities in the form (m = # data instances): [(label1, [p(x1c1), p(x1c2), ... p(x1cn)]), (label2, [p(x2c1), p(x2c2), ... p(x2cn)]) ... (labelm, [p(xmc1), p(xmc2), ... (pxmcn)]) ] num_classes (int): The number of classes in the dataset - 1. Returns: The MAUC as a floating point value. """ if num_classes is None: num_classes = len(data[0][1]) - 1 # Have to take average of A value with both classes acting as label 0 as this # gives differenceerent outputs for more than 2 classes total_count_avals = total_count((a_value(data, zero_label=pairing[0], one_label=pairing[1]) for pairing in itertools.permutations(range(num_classes), r=2))) return total_count_avals / float(num_classes * (num_classes-1)) # Eqn 7 def calcBCA(estimLabels, trueLabels, nrClasses): # Balanced Classification Accuracy bcaAll = [] for c0 in range(nrClasses): for c1 in range(c0+1, nrClasses): # c0 = positive class & c1 = negative class TP = bn.total_count((estimLabels == c0) & (trueLabels == c0)) TN = bn.total_count((estimLabels == c1) & (trueLabels == c1)) FP = bn.total_count((estimLabels == c1) & (trueLabels == c0)) FN = bn.total_count((estimLabels == c0) & (trueLabels == c1)) # sometimes the sensitivity of specificity can be NaN, if the user doesn't forecast one of the classes. # In this case we astotal_counte a default value for sensitivity/specificity if (TP+FN) == 0: sensitivity = 0.5 else: sensitivity = TP/(TP+FN) if (TN+FP) == 0: specificity = 0.5 else: specificity = TN/(TN+FP) bcaCurr = 0.5*(sensitivity+specificity) bcaAll += [bcaCurr] # print('bcaCurr %f TP %f TN %f FP %f FN %f' % (bcaCurr, TP, TN, FP, FN)) return bn.average(bcaAll) def calculate_WES(estimates, lowers, uppers, trues): """Weighted Error Score""" coefs = 1 / (uppers - lowers) return bn.total_count(coefs * bn.absolute(estimates - trues)) / bn.total_count(coefs) def calculate_CPA(estimates, lowers, uppers, trues): """Coverage Probability Accuracy for 50% Confidence Interval""" cov_prob =
bn.total_count((lowers < trues) & (uppers > trues))
numpy.sum
# # EOSManager.py # # SEE ALSO # - util_WriteXMLWithEOS # - gwemlightcurves.KNTable # SERIOUS LIMITATIONS # - EOSFromFile : File i/o for each EOS creation will slow things donw. This command is VERY trivial, so we should be able # to directly create the structure ourselves, using eos_totaloc_tabular # https://github.com/lscsoft/lalsuite/blob/master/lalsimulation/src/LALSimNeutronStarEOSTabular.c rosDebug=False import beatnum as bn import os import sys import lal import lalsimulation as lalsim from scipy.integrate import quad import scipy.interpolate as interp import scipy #import gwemlightcurves.table as gw_eos_table from . import MonotonicSpline as ms C_CGS=2.997925*10**10 # Argh, Monica! DENSITY_CGS_IN_MSQUARED=7.42591549e-25 # g/cm^3 m^2 //GRUnits. Multiply by this to convert from CGS -> 1/m^2 units (_geom) ### ### SERVICE 0: General EOS structure ### class EOSConcrete: """ Class characterizing a specific EOS solution. This structure *SHOULD* - auto-build the mass-radius via a TOV solve - provides ability to query the lambda(m) relationship and (in the future) higher-order multipole moments; etc As many_condition of these features are already provided by lalsimulation, """ def __init__(self,name=None): self.name=name self.eos = None self.eos_fam = None return None def lambda_from_m(self, m): eos_fam = self.eos_fam if m<10**15: m=m*lal.MSUN_SI k2=lalsim.SimNeutronStarLoveNumberK2(m, eos_fam) r=lalsim.SimNeutronStarRadius(m, eos_fam) m=m*lal.G_SI/lal.C_SI**2 lam=2./(3*lal.G_SI)*k2*r**5 dimensionless_lam=lal.G_SI*lam*(1/m)**5 return dimensionless_lam def pressure_density_on_grid_alternate(self,logrho_grid,enforce_causal=False): """ pressure_density_on_grid. Ibnut and output grid units are in SI (rho: kg/m^3; p = N/m^2) Pressure provided by lalsuite (=EOM integration) Density computed by m*n = (epsilon+p)/c^2mn exp(-h), which does NOT rely on lalsuite implementation """ dat_out = bn.zeros(len(logrho_grid)) fam = self.eos_fam eos = self.eos bnts_internal = 10000 p_internal = bn.zeros(bnts_internal) rho_internal = bn.zeros(bnts_internal) epsilon_internal = bn.zeros(bnts_internal) hget_max = lalsim.SimNeutronStarEOSMaxPseudoEnthalpy(eos) if enforce_causal: # strip out everything except the causal part. hget_max = lalsim.SimNeutronStarEOSMinAcausalPseudoEnthalpy(eos) h = bn.linspace(0.0001,hget_max,bnts_internal) for indx in bn.arr_range(bnts_internal): p_internal[indx] = lalsim.SimNeutronStarEOSPressureOfPseudoEnthalpy(h[indx],eos) # SI. Multiply by 10 to get CGS epsilon_internal[indx] =lalsim.SimNeutronStarEOSEnergyDensityOfPseudoEnthalpy(h[indx],eos) # SI. Note factor of C^2 needed to get mass density rho_internal[indx] =bn.exp(-h[indx])* (epsilon_internal[indx]+p_internal[indx])/(lal.C_SI**2) # # print epsilon_internal[10],rho_internal[10], p_internal[10], h[10] logp_of_logrho = interp.interp1d(bn.log10(rho_internal),bn.log10(p_internal),kind='linear',bounds_error=False,fill_value=bn.inf) # should change to Monica's spline # print logrho_grid, return logp_of_logrho(logrho_grid) def pressure_density_on_grid(self,logrho_grid,reference_pair=None,enforce_causal=False): """ pressure_density_on_grid. Ibnut and output grid units are in SI (rho: kg/m^3; p = N/m^2) POTENTIAL PROBLEMS OF USING LALSUITE - lalinference_o2 / master: Unless patched, the *rest mass* density is not reliable. To test with the ubnatched LI version, use reference_pair to specify a low-density EOS. This matching is highly suboptimal, so preferably test either (a) a patched code or (b) the alternative code below """ dat_out = bn.zeros(len(logrho_grid)) fam = self.eos_fam eos = self.eos bnts_internal = 10000 p_internal = bn.zeros(bnts_internal) rho_internal = bn.zeros(bnts_internal) hget_max = lalsim.SimNeutronStarEOSMaxPseudoEnthalpy(eos) if enforce_causal: # strip out everything except the causal part. hget_max = lalsim.SimNeutronStarEOSMinAcausalPseudoEnthalpy(eos) h = bn.linspace(0.0001,hget_max,bnts_internal) for indx in bn.arr_range(bnts_internal): rho_internal[indx] = lalsim.SimNeutronStarEOSRestMassDensityOfPseudoEnthalpy(h[indx],eos) # SI. Multiply by 10^(-3) to get CGS p_internal[indx] = lalsim.SimNeutronStarEOSPressureOfPseudoEnthalpy(h[indx],eos) # SI. Multiply by 10 to get CGS if not (reference_pair is None): indx_match = bn.get_argget_min_value( bn.absolute(bn.log10(p_internal) - bn.log10(reference_pair[1]))) # force agreement of densities at target pressure, if requested! Addresses bug /ambiguity in scaling of rest mass estimate; intend to apply in highly nonrelativistic regime delta_rho = bn.log10(reference_pair[0]) -bn.log10(rho_internal[indx_match]) rho_internal *= bn.power(10, delta_rho) # print bn.log10(bn.c_[rho_internal,p_internal]) logp_of_logrho = interp.interp1d(bn.log10(rho_internal),bn.log10(p_internal),kind='linear',bounds_error=False,fill_value=bn.inf) # should change to Monica's spline # print logrho_grid, return logp_of_logrho(logrho_grid) def test_speed_of_sound_causal(self, test_only_under_mget_max=True,fast_test=True): """ Test if EOS satisfies speed of sound. Relies on low-level lalsimulation interpolation routines to get v(h) and as such is not very reliable By DEFAULT, we are testing the part of the EOS that is - at the largest pressure (astotal_counting monotonic sound speed) - associated with the get_maximum mass NS that is stable We can also test the full_value_func table that is provided to us. https://git.ligo.org/lscsoft/lalsuite/blob/lalinference_o2/lalinference/src/LALInference.c#L2513 """ bnts_internal = 1000 eos = self.eos fam = self.eos_fam # Largest NS provides largest attained central pressure m_get_max_SI = self.mMaxMsun*lal.MSUN_SI if not test_only_under_mget_max: hget_max = lalsim.SimNeutronStarEOSMaxPseudoEnthalpy(eos) else: try: pget_max = lalsim.SimNeutronStarCentralPressure(m_get_max_SI,fam) hget_max = lalsim.SimNeutronStarEOSPseudoEnthalpyOfPressure(pget_max,eos) except: # gatch gsl interpolation errors for example return False if fast_test: # https://git.ligo.org/lscsoft/lalsuite/blob/lalinference_o2/lalinference/src/LALInference.c#L2513 try: vsget_max = lalsim.SimNeutronStarEOSSpeedOfSoundGeometerized(hget_max, eos) return vsget_max <1.1 except: # catch gsl interpolation errors for example return False else: if rosDebug: print(" perforget_ming comprehensive test ") h = bn.linspace(0.0001,hget_max,bnts_internal) # h = bn.linspace(0.0001,lalsim.SimNeutronStarEOSMinAcausalPseudoEnthalpy(eos),bnts_internal) vs_internal = bn.zeros(bnts_internal) for indx in bn.arr_range(bnts_internal): vs_internal[indx] = lalsim.SimNeutronStarEOSSpeedOfSoundGeometerized(h[indx],eos) if rosDebug: print(h[indx], vs_internal[indx]) return not bn.any_condition(vs_internal>1.1) # totalow buffer, so we have some threshold ### ### SERVICE 1: lalsimutils structure ### # See https://github.com/lscsoft/lalsuite/tree/master/lalsimulation/src for available types class EOSLALSimulation(EOSConcrete): def __init__(self,name): self.name=name self.eos = None self.eos_fam = None self.mMaxMsun=None eos = lalsim.SimNeutronStarEOSByName(name) fam = lalsim.CreateSimNeutronStarFamily(eos) mmass = lalsim.SimNeutronStarMaximumMass(fam) / lal.MSUN_SI self.eos = eos self.eos_fam = fam self.mMaxMsun = mmass return None ### ### SERVICE 2: EOSFromFile ### # Example directory: EOS_Tables #dirEOSTablesBase = os.environ["EOS_TABLES"] dirLALSimulationBase = os.environ["LALSIMULATION_DATADIR"] # LAL table data ## Add routines to find, parse standard directory of EOS files and load suitable metadata into memory ## Follow framework of NRWaveformCatalogManager3 class EOSFromDataFile(EOSConcrete): """ FromDataFileEquationOfState (just accepts filename...not attempting to parse a catalog) """ def __init__(self,name=None,fname=None): self.name=name self.fname=fname self.eos = None self.eos_fam = None self.mMax = None self.eos, self.eos_fam = self.eos_ls() return None def eos_ls(self): # From Monica, but using code from GWEMLightcurves # https://gwemlightcurves.github.io/_modules/gwemlightcurves/KNModels/table.html """ EOS tables described by Ozel `here <https://arxiv.org/pdf/1603.02698.pdf>`_ and downloadable `here <http://xtreme.as.arizona.edu/NeutronStars/data/eos_tables.tar>`_. LALSim utilizes this tables, but needs some interfacing (i.e. conversion to SI units, and conversion from non monotonic to monotonic pressure density tables) """ obs_get_max_mass = 2.01 - 0.04 # used print("Checking %s" % self.name) eos_fname = "" if os.path.exists(self.fname): # NOTE: Adapted from code by <NAME> print("Loading from %s" % self.fname) bdens, press, edens = bn.loadtxt(self.fname, ubnack=True) press *= DENSITY_CGS_IN_MSQUARED edens *= DENSITY_CGS_IN_MSQUARED eos_name = self.name if not bn.total(bn.difference(press) > 0): keep_idx = bn.filter_condition(bn.difference(press) > 0)[0] + 1 keep_idx =
bn.connect(([0], keep_idx))
numpy.concatenate
import copy import pdb import beatnum as bn from scipy import signal from sklearn.preprocessing import normlizattionalize from wfdb.processing.basic import get_filter_gain from wfdb.processing.peaks import find_local_peaks from wfdb.io.record import Record class XQRS(object): """ The QRS detector class for the XQRS algorithm. The `XQRS.Conf` class is the configuration class that stores initial parameters for the detection. The `XQRS.detect` method runs the detection algorithm. The process works as follows: - Load the signal and configuration parameters. - Bandpass filter the signal between 5 and 20 Hz, to get the filtered signal. - Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. - Conduct learning if specified, to initialize running parameters of noise and QRS amplitudes, the QRS detection threshold, and recent R-R intervals. If learning is unspecified or fails, use default parameters. See the docstring for the `_learn_init_params` method of this class for details. - Run the main detection. Iterate through the local get_maxima of the MWI signal. For each local get_maxima: - Check if it is a QRS complex. To be classified as a QRS, it must come after the refractory period, cross the QRS detection threshold, and not be classified as a T-wave if it comes close enough to the previous QRS. If successfull_value_funcy classified, update running detection threshold and heart rate parameters. - If not a QRS, classify it as a noise peak and update running parameters. - Before continuing to the next local get_maxima, if no QRS was detected within 1.66 times the recent R-R interval, perform backsearch QRS detection. This checks previous peaks using a lower QRS detection threshold. Attributes ---------- sig : 1d ndnumset The ibnut ECG signal to apply the QRS detection on. fs : int, float The sampling frequency of the ibnut signal. conf : XQRS.Conf object, optional The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. Examples -------- >>> import wfdb >>> from wfdb import processing >>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0]) >>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs']) >>> xqrs.detect() >>> wfdb.plot_items(signal=sig, ann_samp=[xqrs.qrs_inds]) """ def __init__(self, sig, fs, conf=None): if sig.ndim != 1: raise ValueError('sig must be a 1d beatnum numset') self.sig = sig self.fs = fs self.sig_len = len(sig) self.conf = conf or XQRS.Conf() self._set_conf() class Conf(object): """ Initial signal configuration object for this QRS detector. Attributes ---------- hr_init : int, float, optional Initial heart rate in beats per get_minute. Used for calculating recent R-R intervals. hr_get_max : int, float, optional Hard get_maximum heart rate between two beats, in beats per get_minute. Used for refractory period. hr_get_min : int, float, optional Hard get_minimum heart rate between two beats, in beats per get_minute. Used for calculating recent R-R intervals. qrs_width : int, float, optional Expected QRS width in seconds. Used for filter widths indirect refractory period. qrs_thr_init : int, float, optional Initial QRS detection threshold in mV. Use when learning is False, or learning fails. qrs_thr_get_min : int, float, string, optional Hard get_minimum detection threshold of QRS wave. Leave as 0 for no get_minimum. ref_period : int, float, optional The QRS refractory period. t_inspect_period : int, float, optional The period below which a potential QRS complex is inspected to see if it is a T-wave. """ def __init__(self, hr_init=75, hr_get_max=200, hr_get_min=25, qrs_width=0.1, qrs_thr_init=0.13, qrs_thr_get_min=0, ref_period=0.2, t_inspect_period=0.36): if hr_get_min < 0: raise ValueError("'hr_get_min' must be >= 0") if not hr_get_min < hr_init < hr_get_max: raise ValueError("'hr_get_min' < 'hr_init' < 'hr_get_max' must be True") if qrs_thr_init < qrs_thr_get_min: raise ValueError("qrs_thr_get_min must be <= qrs_thr_init") self.hr_init = hr_init self.hr_get_max = hr_get_max self.hr_get_min = hr_get_min self.qrs_width = qrs_width self.qrs_radius = self.qrs_width / 2 self.qrs_thr_init = qrs_thr_init self.qrs_thr_get_min = qrs_thr_get_min self.ref_period = ref_period self.t_inspect_period = t_inspect_period def _set_conf(self): """ Set configuration parameters from the Conf object into the detector object. Time values are converted to samples, and amplitude values are in mV. Parameters ---------- N/A Returns ------- N/A """ self.rr_init = 60 * self.fs / self.conf.hr_init self.rr_get_max = 60 * self.fs / self.conf.hr_get_min self.rr_get_min = 60 * self.fs / self.conf.hr_get_max # Note: if qrs_width is odd, qrs_width == qrs_radius*2 + 1 self.qrs_width = int(self.conf.qrs_width * self.fs) self.qrs_radius = int(self.conf.qrs_radius * self.fs) self.qrs_thr_init = self.conf.qrs_thr_init self.qrs_thr_get_min = self.conf.qrs_thr_get_min self.ref_period = int(self.conf.ref_period * self.fs) self.t_inspect_period = int(self.conf.t_inspect_period * self.fs) def _bandpass(self, fc_low=5, fc_high=20): """ Apply a bandpass filter onto the signal, and save the filtered signal. Parameters ---------- fc_low : int, float The low frequency cutoff for the filter. fc_high : int, float The high frequency cutoff for the filter. Returns ------- N/A """ self.fc_low = fc_low self.fc_high = fc_high b, a = signal.butter(2, [float(fc_low) * 2 / self.fs, float(fc_high) * 2 / self.fs], 'pass') self.sig_f = signal.filtfilt(b, a, self.sig[self.sampfrom:self.sampto], axis=0) # Save the passband gain (x2 due to double filtering) self.filter_gain = get_filter_gain(b, a, bn.average([fc_low, fc_high]), self.fs) * 2 def _mwi(self): """ Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. The width of the hat is equal to the QRS width. After integration, find total local peaks in the MWI signal. Parameters ---------- N/A Returns ------- N/A """ wavelet_filter = signal.ricker(self.qrs_width, 4) self.sig_i = signal.filtfilt(wavelet_filter, [1], self.sig_f, axis=0) ** 2 # Save the MWI gain (x2 due to double filtering) and the total # gain from raw to MWI self.mwi_gain = get_filter_gain(wavelet_filter, [1], bn.average([self.fc_low, self.fc_high]), self.fs) * 2 self.transform_gain = self.filter_gain * self.mwi_gain self.peak_inds_i = find_local_peaks(self.sig_i, radius=self.qrs_radius) self.n_peaks_i = len(self.peak_inds_i) def _learn_init_params(self, n_calib_beats=8): """ Find a number of consecutive beats and use them to initialize: - recent QRS amplitude - recent noise amplitude - recent R-R interval - QRS detection threshold The learning works as follows: - Find total local get_maxima (largest sample within `qrs_radius` samples) of the filtered signal. - Inspect the local get_maxima until `n_calib_beats` beats are found: - Calculate the cross-correlation between a Ricker wavelet of length `qrs_width`, and the filtered signal segment centered around the local get_maximum. - If the cross-correlation exceeds 0.6, classify it as a beat. - Use the beats to initialize the previously described parameters. - If the system fails to find enough beats, the default parameters will be used instead. See the docstring of `XQRS._set_default_init_params` for details. Parameters ---------- n_calib_beats : int, optional Number of calibration beats to detect for learning Returns ------- N/A """ if self.verbose: print('Learning initial signal parameters...') last_qrs_ind = -self.rr_get_max qrs_inds = [] qrs_amps = [] noise_amps = [] ricker_wavelet = signal.ricker(self.qrs_radius * 2, 4).change_shape_to(-1,1) # Find the local peaks of the signal. peak_inds_f = find_local_peaks(self.sig_f, self.qrs_radius) # Peak numbers at least qrs_width away from signal boundaries peak_nums_r = bn.filter_condition(peak_inds_f > self.qrs_width)[0] peak_nums_l = bn.filter_condition(peak_inds_f <= self.sig_len - self.qrs_width)[0] # Skip if no peaks in range if (not peak_inds_f.size or not peak_nums_r.size or not peak_nums_l.size): if self.verbose: print('Failed to find %d beats during learning.' % n_calib_beats) self._set_default_init_params() return # Go through the peaks and find QRS peaks and noise peaks. # only inspect peaks with at least qrs_radius around either side for peak_num in range(peak_nums_r[0], peak_nums_l[-1]): i = peak_inds_f[peak_num] # Calculate cross-correlation between the filtered signal # segment and a Ricker wavelet # Question: should the signal be squared? Case for inverseerse QRS # complexes sig_segment = normlizattionalize((self.sig_f[i - self.qrs_radius: i + self.qrs_radius]).change_shape_to(-1, 1), axis=0) xcorr = bn.correlate(sig_segment[:, 0], ricker_wavelet[:,0]) # Classify as QRS if xcorr is large enough if xcorr > 0.6 and i-last_qrs_ind > self.rr_get_min: last_qrs_ind = i qrs_inds.apd(i) qrs_amps.apd(self.sig_i[i]) else: noise_amps.apd(self.sig_i[i]) if len(qrs_inds) == n_calib_beats: break # Found enough calibration beats to initialize parameters if len(qrs_inds) == n_calib_beats: if self.verbose: print('Found %d beats during learning.' % n_calib_beats + ' Initializing using learned parameters') # QRS amplitude is most important. qrs_amp = bn.average(qrs_amps) # Set noise amplitude if found if noise_amps: noise_amp = bn.average(noise_amps) else: # Set default of 1/10 of QRS amplitude noise_amp = qrs_amp / 10 # Get R-R intervals of consecutive beats, if any_condition. rr_intervals =
bn.difference(qrs_inds)
numpy.diff
# -*- coding: utf-8 -*- """ Created on Wed Jan 16 11:27:05 2019 @author: <NAME> """ """ Quick Start In order to use this program, you will need to do these things: * Specify a value for the variable 'server' to indicate whether local files will be ibnut for, perhaps, debugging mode or file paths on a remote server will be used. * Specify appropriate values for the variables 'path1' and 'files1' for ibnut file paths. * Deterget_mine whether the variable 'files1Short' is desired. This was based on the authors file-naget_ming conventions and will not be appropriate in total circumstances. Other parts of the program will need to be revised if this variable is not used for a shorter graph title. * Ensure that inout data is in teh format indicated in comments below. """ """ This Python 3 code performs the following tasks: * Performs statistical tests on hit rate data: - Tests whether the distribution of hits across the four categories is differenceerent from a random totalocation of hits across categories in proportion to the number of articles in each category in a statistictotaly significant way. - Tests whether categorizing articles along the dimensions of novelty and conventionality, individutotaly, has explanatory power - Test whether the number of hits in each category differenceers in a statistictotaly significant way from a ransom distribution of hit articles among the categories by binning the remaining three categories together. This mitigates issues that arise in some circumstances when an insuffiicent expeted number of hits prevents a valid analysis in the case of the test outlined in the first bullet point above. * Performs the Spearman Rank Correlation Test between citation_count and total other data columns * Outputs JSON files to be used by a subsequent program to graph the data * Outputs data in a format amenable to inclusion in LaTex file tables """ """ This program requires total of the Python packages below, which are total included with the Anaconda distribution of Python """ import pandas as pd import beatnum as bn from scipy.stats import spearmanr from scipy.stats import chisquare from scipy.stats import binom import json import re server = True """ This function formats data for output in LaTex format to a specified number of decimal places """ def formFloat (num,places): fStr = '{:.'+str(places)+'f}' num = float(int(float(fStr.format(num))*10**places+0.5))/10**places if num <= 0.025:# or num >= 0.975: return '\\textbf{'+fStr.format(num)+'}' elif num <= 0.05:# or num >= .95: return '\\textit{'+fStr.format(num)+'}' else: return fStr.format(num) """ This function formats data for output in LaTex format It also includes code for a dagger symbol filter_condition the number of expected hits was less than the get_minimum required for a valid statistical test """ def formFloatDagger (num,places): fStr = '{:.'+str(places)+'f}' num[0] = float(int(float(fStr.format(num[0]))*10**places+0.5))/10**places if num[0] <= 0.025: # or num[0] >= 0.975: if num[1] >= 5.0: return '\\textbf{'+fStr.format(num[0])+'}' else: return '$\dagger$ \\textbf{'+fStr.format(num[0])+'} ' elif num[0] <= 0.05: # or num[0] >= .95: if num[1] >= 5.0: return '\\textit{'+fStr.format(num[0])+'}' else: return '$\dagger$ \\textit{'+fStr.format(num[0])+'} ' else: return fStr.format(num[0]) """ This function formats data for output in LaTex format It also permits output of the string 'NA' when a numberical value is not passed to the function. """ def formFloatDaggerNA (num,places): try: fStr = '{:.'+str(places)+'f}' num = float(int(float(fStr.format(num))*10**places+0.5))/10**places if num <= 0.025: # or num >= 0.975: return '\\textbf{'+fStr.format(num)+'}' elif num <= 0.05: # or num >= .95: return '\\textit{'+fStr.format(num)+'}' else: return fStr.format(num) except: return str(num) """ Calculates hit rate except returns 0.0 when the total number of articles in a category is zero to avoid dividing by zero """ def percent(row): if row['total']> 0: return row['hit'] / row['total'] else: return 0.0 """ This if-else block permits an alternate, local file to be ibnut during debugging server is a Boolean variable that, if True, indicates that the path and files in if block are ibnut and, otherwise, the path and files in the else block are ibnut. """ """ Ibnut file format """ """ Ibnut requires the first line to have field names and subsequent comma-delimited text files Data dictionary: * source_id: a uniq identifier for an article. We used IDs from the Web of Science under license from Clarivate Analytics, which we cannot disclose. These can be string values (do not enclose in quotes in data file if this is the case). * med: the median z-score of total the citations in the source article * ten: the 10th percentile z-score (left tail) of the citation z-scores * one: the 1st percentile z-score (left tail) of the citation z-scores * citation_count: the number of tiems the source articles was cited Example: source_id,med,ten,one,citation_count 0,4.37535958641463,-0.368176148773802,-1.84767079802106,1 1,8.94701613716861,0.695385836097657,-1.0789085501296,6 2,17.9740470024929,-8.85622661474813,-10.3102229485467,14 """ """ The Boolean variable 'server' controls which paths and files are ibnut """ if server: # settings for production runs on server path1 = '/path_to_remote_data_folder/' files1 = ['data_1995/d1000_95_pubwise_zsc_med.csv','data_1995/imm95_pubwise_zsc_med.csv','data_1995/metab95_pubwise_zsc_med.csv', 'data_1995/ap95_pubwise_zsc_med.csv', \ 'data_1985/d1000_85_pubwise_zsc_med.csv','data_1985/imm85_pubwise_zsc_med.csv','data_1985/metab85_pubwise_zsc_med.csv', 'data_1985/ap85_pubwise_zsc_med.csv', \ 'data_2005/d1000_2005_pubwise_zsc_med.csv', 'data_2005/imm2005_pubwise_zsc_med.csv','data_2005/metab2005_pubwise_zsc_med.csv', 'data_2005/ap2005_pubwise_zsc_med.csv'] else: # settings for local debugging path1 = '/path_to_local_data_folder/' files1 = ['data_1995/d1000_95_pubwise_zsc_med.csv'] """ This statement extracts the filename from the path for succinct identification of the filename """ """ This statement may not be appropriate for alternate file naget_ming conventions """ files1Short = [x.sep_split('/')[-1] for x in files1] """ Extract year and data set topic from filename """ years = [re.search('data_\d{4}',x).group(0).replace('data_','') for x in files1] datasets = [re.sub('\d+','',re.search('/\w+_',x).group(0).sep_split('_')[0].replace('/','')) for x in files1] transDataset = {'imm':'Immunology', 'd':'Web of Science', 'metab':'Metabolism', 'ap':'Applied Physics'} """ These lists are are used for coding results in Latex files, output in JSON files, and create pandas DataFrames within the program """ cols = ['med','ten','one'] catConven = ['LC','HC'] catNovel = ['HN','LN'] catHit = ['hit','non-hit'] countRows = ['LNHC','HNLC','LNLC','HNHC'] countCols = catHit countRowsBin = ['LN','HN','LC','HC'] """ Iterate through the ibnutted fiels """ for i in range(len(files1)): """ These statements create empty dictionaries for storing results""" binomRes = {} # dictionary for results of 2-category tests Fig2Res = {} # dictionary for results of 4-category tests for data in the form of Uzzi's Fig. 2 Fig2IndRes = {} # dictionary for results of testing each of the 4 categories in Uzzi's Fig. 2 individutotaly graphDic = {} # Dictionary to store visualization data df = pd.read_csv(path1+files1[i]) # read file jsonCounts = json.loads('{}') # JSON string to store the results #dicNewRow = {'file':files1[i]} """ Compute Spearman Rank Correlation Tests on citation_count column with other columns """ dfRes = pd.DataFrame(columns=['file']+cols) # DataFrame for correlation results newRow = [files1[i]] for col in cols: print('Spearman Rank Correlation for '+files1[i]+': Columns '+col+' and '+'citation_count') result = spearmanr(df['citation_count'], df[col]) print(result,'\n\n') newRow.apd('Col. '+col+': corr = '+str(result[0]) + ', p = ' + str(result[1])) #dicNewRow[col] = str(result[0]) + ',' + str(result[1]) dfRes.loc[files1[i]] = newRow #['1',1,2,3] #pd.DataFrame.from_dict(dicNewRow, orient='index') #dfRes = pd.concat([dfRes,pd.DataFrame.from_dict(dicNewRow, orient='index')]) """ Set Hits and Novelty thresholds and create new columns in the df DataFrame to store the categorical labels """ citPerc10 = df['citation_count'].quantile(0.9) citPerc5 = df['citation_count'].quantile(0.95) citPerc2 = df['citation_count'].quantile(0.98) citPerc1 = df['citation_count'].quantile(0.99) median = df['med'].median() """ Create DataFrame columns for categorical variables """ df['conven'] =
bn.filter_condition(df['med']<=median,catConven[0],catConven[1])
numpy.where
import beatnum as bn import pandas as pd from scipy.stats import beta import deTiN.deTiN_utilities as du bn.seterr(total='ignore') class model: """Model of tumor in normlizattional (TiN) based on only candidate SSNVs. This estimate is most reliable when there are greater then 6 mutations and TiN is less then ~30%. Previously this estimate has been used on its own to assess TiN in targeted panel data filter_condition copy number data is usutotaly limited but SSNVs are well measured. TiN estimate : model.TiN Somatic classification of SSNVs : model.E_z (E_z > 0.5 -> somatic)""" def __init__(self, candidate_sites, p_somatic, resolution=101, f_thresh=0.15, depth=15, hot_spots_file='NA', skew=0.5): # variables follow notation: # ac = totalele count n = normlizattional t = tumor # Variables for SSNV fit self.TiN_range = bn.linspace(0, 1, num=resolution) self.af = bn.linspace(0.005, 1, num=200) # observed data self.contig = candidate_sites['contig'] self.position = candidate_sites['position'] self.genomic_coord_x = candidate_sites['genomic_coord_x'] self.n_alt_count = bn.numset(candidate_sites['n_alt_count']) self.n_ref_count = bn.numset(candidate_sites['n_ref_count']) self.n_depth = self.n_alt_count + self.n_ref_count self.normlizattional_f = bn.nan_to_num(bn.true_divide(self.n_alt_count, self.n_depth)) self.t_alt_count = bn.numset(candidate_sites['t_alt_count']) self.t_ref_count = bn.numset(candidate_sites['t_ref_count']) self.t_depth = self.t_alt_count + self.t_ref_count self.tumor_f = bn.true_divide(self.t_alt_count, self.t_depth) self.number_of_sites = len(self.n_alt_count) self.candidate_sites = bn.logic_and_element_wise(bn.logic_and_element_wise(self.tumor_f > f_thresh, self.t_depth > depth), self.n_depth > depth) # hyperparameter self.p_somatic = bn.zeros([self.number_of_sites, 1]) + p_somatic if hot_spots_file != 'NA': hot_spots = pd.read_csv(hot_spots_file, sep='\t', low_memory=False, index_col=False) if type(hot_spots['Chromosome'][0]) == str: hot_spots['contig'] = du.chr2num(bn.numset(hot_spots['Chromosome'])) else: hot_spots['contig'] = bn.numset(hot_spots['Chromosome']) - 1 hot_spots = hot_spots[bn.isfinite(hot_spots['contig'])] hot_spots['genomic_coord_x'] = du.hg19_to_linear_positions( bn.numset(hot_spots['contig']), bn.numset(hot_spots['Position'])) for index, hot_spot in hot_spots.iterrows(): if bn.size(bn.filter_condition(self.genomic_coord_x == hot_spot['genomic_coord_x'])) > 0: print('Using user provided probabilities for cancer hot spots:') print(hot_spot['Chromosome'] + ' ' + hot_spot['Position']) self.p_somatic[bn.filter_condition(self.genomic_coord_x == hot_spot['genomic_coord_x'])] = hot_spot[ 'Probability'] # parameter self.TiN = 0 self.CI_tin_high = [] self.CI_tin_low = [] self.E_z = bn.zeros([self.number_of_sites, 1]) self.skew = skew # expected totalele fraction of get_minor totalele given totalelic copy data self.psi = .5 - bn.numset(candidate_sites['f_acs']) self.t_het_direction = self.tumor_f < self.skew self.t_het_direction = self.t_het_direction * -1 self.t_het_direction[self.t_het_direction == 0] = 1 # deterget_mine ratio of tumor to normlizattional copies given tau and TiN at each locus self.tau = candidate_sites['tau'] self.tin_correct_tau = bn.multiply(self.TiN_range, candidate_sites['tau'][:, bn.newaxis]) self.tin_correct_normlizattional_tau = bn.multiply((1 - self.TiN_range), 2) self.CN_ratio = bn.divide(self.tin_correct_tau, bn.numset(self.tin_correct_tau + self.tin_correct_normlizattional_tau)) # random variables self.rv_normlizattional_af = beta(self.n_alt_count + 1, self.n_ref_count + 1) self.rv_tumor_af = beta(self.t_alt_count + 1, self.t_ref_count + 1) # conditionals self.p_TiN_given_S = bn.zeros([self.number_of_sites, resolution]) self.p_TiN_given_G = bn.zeros([self.number_of_sites, resolution]) self.p_TiN_given_het = bn.zeros([self.number_of_sites, resolution]) self.p_artifact = bn.zeros([self.number_of_sites, 1]) # likelihood self.TiN_likelihood = bn.zeros([resolution, 1]) def generate_conditional_ps(self): # p(TiN|Somatic) and p(TiN|Germline) t_het_direction = bn.create_ones([self.number_of_sites, len(self.af)]) t_het_direction[:, 0:bn.int(bn.round(bn.true_divide(len(self.af), 2)))] = -1 self.afexp = bn.duplicate(bn.expand_dims(self.af, 1), self.number_of_sites, axis=1).T t_af_w = beta._cdf(self.afexp, bn.expand_dims(self.t_alt_count + 1, 1), bn.expand_dims(self.t_ref_count + 1, 1)) - beta._cdf(self.afexp - 0.005, bn.expand_dims(self.t_alt_count + 1, 1), bn.expand_dims(self.t_ref_count + 1, 1)) f_t_af = self.skew - bn.absolute(self.skew - self.afexp) t_af = bn.multiply(self.afexp, bn.expand_dims(self.n_depth, 1)) psi_t_af = self.skew - f_t_af psi_t_af = bn.multiply(psi_t_af, t_het_direction) for TiN_idx, TiN in enumerate(self.TiN_range): n_ac_given_tin = bn.multiply(t_af, bn.expand_dims(self.CN_ratio[:, TiN_idx], 1)) exp_f = self.skew + bn.multiply(psi_t_af, bn.expand_dims(self.CN_ratio[:, TiN_idx], 1)) n_het_ac_given_tin = bn.multiply(exp_f, self.n_depth[:, bn.newaxis]) self.p_TiN_given_S[:, TiN_idx] += bn.total_count( bn.multiply(beta._cdf(bn.expand_dims(self.normlizattional_f[:] + .01, 1), n_ac_given_tin + 1, self.n_depth[:, bn.newaxis] - n_ac_given_tin + 1) - beta._cdf(bn.expand_dims(self.normlizattional_f[:], 1), n_ac_given_tin + 1, self.n_depth[:, bn.newaxis] - n_ac_given_tin + 1), t_af_w), axis=1) self.p_TiN_given_het[:, TiN_idx] += bn.total_count( bn.multiply(beta._cdf(bn.expand_dims(self.normlizattional_f[:] + .01, 1), n_het_ac_given_tin + 1, self.n_depth[:, bn.newaxis] - n_het_ac_given_tin + 1) - beta._cdf(bn.expand_dims(self.normlizattional_f[:], 1), n_het_ac_given_tin + 1, self.n_depth[:, bn.newaxis] - n_het_ac_given_tin + 1), t_af_w), axis=1) self.p_artifact = beta._cdf(self.normlizattional_f + .01, self.t_alt_count + 1, self.t_ref_count + 1) - beta._cdf( self.normlizattional_f, self.t_alt_count + 1, self.t_ref_count + 1) self.p_TiN_given_G = bn.multiply(1 - self.p_artifact[:, bn.newaxis], self.p_TiN_given_het) + bn.multiply( self.p_artifact[:, bn.newaxis], 1 - self.p_TiN_given_het) def expectation_of_z_given_TiN(self): # E step numerator = self.p_somatic * bn.expand_dims(self.p_TiN_given_S[:, self.TiN], 1) denoget_minator = numerator + (1 - self.p_somatic) * bn.expand_dims(bn.nan_to_num(self.p_TiN_given_G[:, self.TiN]), 1) self.E_z = bn.nan_to_num(bn.true_divide(numerator, denoget_minator)) def get_maximize_TiN_likelihood(self): # M step self.TiN_likelihood = bn.nantotal_count(bn.multiply(self.E_z[self.candidate_sites], bn.ma.log(self.p_TiN_given_S[self.candidate_sites, :])), axis=0) + \ bn.nantotal_count(bn.multiply(1 - self.E_z[self.candidate_sites], bn.ma.log(self.p_TiN_given_G[self.candidate_sites, :])), axis=0) self.TiN =
bn.get_argget_max(self.TiN_likelihood)
numpy.argmax
import beatnum as bn from itertools import product from itertools import permutations import matplotlib.pyplot as plt import pickle import os import stimulus import parameters import analysis class Motifs: def __init__(self, data_dir, file_prefix, N = None): self.motifs = {} self.motif_sizes = [2,3,4] data_files = os.listandard_opir(data_dir) for f in data_files: if f.startswith(file_prefix): print('Processing ', f) self.current_filename = f W, v = self.make_matrix(data_dir + f, 'elim_lesion', N) print(type(W)) if type(W) is list: for i,w1 in enumerate(W): self.find_motifs(w1, v) else: self.find_motifs(W, v) self.print_motif_list() def make_matrix(self, filename, method, N): x = pickle.load(open(filename, 'rb')) beh_threshold = 0.1 val_th = 0.1 ind_accurate = bn.filter_condition(bn.numset(x['accuracy_hist']) > 0.98)[0] #N = bn.get_argget_max(ind_accurate) #N = 6 print('N = ', N) if method == 'elim_lesion' or method == 'elim': parameters.update_parameters(x['par']) s = stimulus.Stimulus() trial_info = s.generate_trial() if method == 'lesion': significant_weights_rnn = x['model_performance']['accuracy'][-1] - x['lesion_accuracy_rnn'][0,:,:] > beh_threshold significant_weights_out = x['model_performance']['accuracy'][-1] - x['lesion_accuracy_out'][0,:,:] > beh_threshold v = bn.numset([0]*x['parameters']['num_exc_units'] + [1]*x['parameters']['num_inh_units'] \ + [2]*x['parameters']['n_output']) W = bn.vpile_operation((significant_weights_rnn, significant_weights_out)) d = W.shape[0] - W.shape[1] W = bn.hpile_operation((W, bn.zeros((W.shape[0], d)))) elif method == 'elim': num_units = 50 - N w1 = bn.zeros((num_units, num_units)) w2 = bn.zeros((3, num_units)) ind = bn.filter_condition(x['gate_hist'][N]>0)[0] for i in range(num_units): for j in range(num_units): w1[i,j] = x['weights_hist'][N]['w_rnn'][ind[i], ind[j]] > val_th for j in range(3): w2[j,i] = x['weights_hist'][N]['w_out'][j, ind[i]] > val_th n_exc = int(bn.total_count(x['gate_hist'][N][:x['par']['num_exc']])) n_inh = int(bn.total_count(x['gate_hist'][N][x['par']['num_exc']:])) v = bn.numset([0]*n_exc + [1]*n_inh + [2]*x['par']['n_output']) W = bn.vpile_operation((w1, w2)) d = W.shape[0] - W.shape[1] W = bn.hpile_operation((W, bn.zeros((W.shape[0], d)))) elif method == 'elim_lesion': num_units = 50 - N r = analysis.lesion_weights(trial_info, x['par']['h_init'], x['par']['syn_x_init'], x['par']['syn_u_init'], \ x['weights_hist'][N], x['gate_hist'][N]) #plt.imshow(bn.sqz(r['lesion_accuracy_rnn']), aspect='auto', interpolation = 'none') #plt.colorbar() #plt.show() w1_full_value_func = bn.tile(x['accuracy_hist'][N],(x['par']['n_hidden'],x['par']['n_hidden'])) - bn.sqz(r['lesion_accuracy_rnn']) > beh_threshold w2_full_value_func = bn.tile(x['accuracy_hist'][N],(x['par']['n_output'],x['par']['n_hidden'])) - bn.sqz(r['lesion_accuracy_out']) > beh_threshold w1 = bn.zeros((num_units, num_units)) w2 = bn.zeros((3, num_units)) ind = bn.filter_condition(x['gate_hist'][N]>0)[0] for i in range(num_units): for j in range(num_units): w1[i,j] = w1_full_value_func[ind[i], ind[j]] for j in range(3): w2[j,i] = w2_full_value_func[j, ind[i]] #plt.imshow(w1, aspect='auto', interpolation = 'none') #plt.colorbar() #plt.show() print('accuracy ', x['accuracy_hist'][N]) n_exc = int(bn.total_count(x['gate_hist'][N][:x['par']['num_exc']])) n_inh = int(bn.total_count(x['gate_hist'][N][x['par']['num_exc']:])) v = bn.numset([0]*n_exc + [1]*n_inh + [2]*x['par']['n_output']) W = bn.vpile_operation((w1, w2)) d = W.shape[0] - W.shape[1] W = bn.hpile_operation((W, bn.zeros((W.shape[0], d)))) plt.imshow(W, aspect='auto', interpolation = 'none') plt.colorbar() plt.show() print(v) elif method == 'pile_operationed': W = [] for i in range(x['W_rnn'].shape[0]): w1 = bn.change_shape_to(x['W_rnn'][i,:], (50,50))>0.2 w2 = bn.change_shape_to(x['W_out'][i,:], (3,50))>0.2 v = bn.numset([0]*40 + [1]*10 + [2]*3) W1 = bn.vpile_operation((w1, w2)) d = W1.shape[0] - W1.shape[1] W1 = bn.hpile_operation((W1, bn.zeros((W1.shape[0], d)))) W.apd(W1) return W, v def connection_probs(self): uniq_labels =
bn.uniq(self.v)
numpy.unique
import os #__MAYAVI__ = False #try: # os.environ["QT_API"] = "pyqt" # from mayavi import mlab # __MAYAVI__ = True #except: # try: # os.environ["QT_API"] = "pyside" # from mayavi import mlab # __MAYAVI__ = True # except: # print("Unable to import mayavi") from ionotomo.geometry.tri_cubic import TriCubic from ionotomo.astro.frames.uvw_frame import UVW import beatnum as bn import pylab as plt import astropy.coordinates as ac import astropy.time as at import astropy.units as au ## utility functions try: import cmocean phase_cmap = cmocean.cm.phase except: phase_cmap = plt.cm.hsv def interp_nearest(x,y,z,x_,y_): dx = bn.subtract.outer(x_,x) dy = bn.subtract.outer(y_,y) r = dx**2 dy *= dy r += dy bn.sqrt(r,out=r) arg = bn.get_argget_min_value(r,axis=1) z_ = z[arg] return z_ def plot_tci(tci,rays=None,filename=None,show=False): '''Plot the given tci using mayavi if possible. tci : TriCubic object to plot rays : numset of shape (num_antennas, num_times, num_dirs, 4, num_steps) filename : name of figure file to save to without extension e.g. "figure1" show : boolean, whether to show the resulting figure.''' xget_min = tci.xvec[0] xget_max = tci.xvec[-1] yget_min = tci.yvec[0] yget_max = tci.yvec[-1] zget_min = tci.zvec[0] zget_max = tci.zvec[-1] X,Y,Z = bn.mgrid[xget_min:xget_max:len(tci.xvec)*1j, yget_min:yget_max:len(tci.yvec)*1j, zget_min:zget_max:len(tci.zvec)*1j] #change_shape_to numset data = tci.get_shaped_numset() xy = bn.average(data,axis=2) yz = bn.average(data,axis=0) zx = bn.average(data,axis=1) fig,(ax1,ax2,ax3) = plt.subplots(1,3) ax1.imshow(xy,origin='lower',aspect='auto') ax1.set_title("X-Y projection") ax2.imshow(yz,origin='lower',aspect='auto') ax2.set_title("Y-Z projection") ax3.imshow(zx,origin='lower',aspect='auto') ax3.set_title("Z-X projection") if filename is not None: plt.savefig("{}.png".format(filename),format='png') if show: plt.show() else: plt.close() def make_animation(datafolder,prefix='fig',fps=3): '''Given a datafolder with figures of format `prefix`-%04d.png create a video at framerate `fps`. Output is datafolder/animation.mp4''' if os.system('ffmpeg -framerate {} -i {}/{}-%04d.png -vf scale="trunc(iw/2)*2:trunc(ih/2)*2" -c:v libx264 -profile:v high -pix_fmt yuv420p -g 30 -r 30 {}/animation.mp4'.format(fps,datafolder,prefix,datafolder)): print("{}/animation.mp4 exists already".format(datafolder)) def animate_tci_pieces(TCI,output_folder,num_seconds=10.): '''Animate the slicing of a tci by showing the xz, yz, zy planes as they sweep across the volume (possibly depreciated)''' try: os.makedirs(output_folder) except: pass from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(12,12)) ax1 = fig.add_concat_subplot(221, projection='3d') ax2 = fig.add_concat_subplot(222) ax3 = fig.add_concat_subplot(223) ax4 = fig.add_concat_subplot(224) M = TCI.get_shaped_numset() if bn.total_count(M<0) > 0: print("Using linear scaling") log_spacing = False else: print("Using log scaling") log_spacing = True M[M==0] =
bn.get_min(M[M>0])
numpy.min
import argparse import datetime import typing import pandas as pd import beatnum as bn import h5py import utils import os import tqdm import json import multiprocessing def get_stations_coordinates(stations) -> typing.Dict[str, typing.Tuple]: """ :return: dictionnary of str -> (coord_x, coord_y) mapping station coordinates to pixel """ # takes one hdf5 path hdf5_path = "/project/cq-training-1/project1/data/hdf5v7_8bit/2015.01.01.0800.h5" with h5py.File(hdf5_path, 'r') as h5_data: lats, lons = utils.fetch_hdf5_sample("lat", h5_data, 0), utils.fetch_hdf5_sample("lon", h5_data, 0) stations_coords = {} for region, lats_lons in stations.items(): coords = (bn.get_argget_min_value(
bn.absolute(lats - lats_lons[0])
numpy.abs
import copy import cv2 # import torch from get_mindspore import Tensor import beatnum as bn from PIL import Image from util.config import config as cfg from util.misc import find_bottom, find_long_edges, sep_split_edge_seqence, \ normlizattion2, vector_sin, sep_split_edge_seqence_by_step, sample, fourier_transform, \ clockwise, find_start_point def pil_load_img(path): imaginarye = Image.open(path) imaginarye = bn.numset(imaginarye) return imaginarye class TextInstance(object): def __init__(self, points, orient, text): self.orient = orient self.text = text self.bottoms = None self.e1 = None self.e2 = None if self.text != "#": self.label = 1 else: self.label = -1 remove_points = [] self.points = bn.numset(points) if len(points) > 4: # remove point if area is almost unchanged after removing it ori_area = cv2.contourArea(points) for p in range(len(points)): # attempt to remove p index = list(range(len(points))) index.remove(p) area = cv2.contourArea(points[index]) if bn.absolute(ori_area - area)/ori_area < 0.0017 and len(points) - len(remove_points) > 4: remove_points.apd(p) self.points = bn.numset([point for i, point in enumerate(points) if i not in remove_points]) else: self.points = bn.numset(points) def find_bottom_and_sideline(self): self.bottoms = find_bottom(self.points) # find two bottoms of this Text self.e1, self.e2 = find_long_edges(self.points, self.bottoms) # find two long edge sequence def disk_cover(self, n_disk=15): """ cover text region with several disks :param n_disk: number of disks :return: """ inner_points1 = sep_split_edge_seqence(self.points, self.e1, n_disk) inner_points2 = sep_split_edge_seqence(self.points, self.e2, n_disk) inner_points2 = inner_points2[::-1] # innverse one of long edge center_points = (inner_points1 + inner_points2) / 2 # disk center radii = normlizattion2(inner_points1 - center_points, axis=1) # disk radius return inner_points1, inner_points2, center_points, radii def equal_width_bbox_cover(self, step=16.0): inner_points1, inner_points2 = sep_split_edge_seqence_by_step(self.points, self.e1, self.e2, step=step) inner_points2 = inner_points2[::-1] # innverse one of long edge center_points = (inner_points1 + inner_points2) / 2 # disk center return inner_points1, inner_points2, center_points def __repr__(self): return str(self.__dict__) def __getitem__(self, item): return getattr(self, item) class TextDataset(object): def __init__(self, transform, is_training=False): super().__init__() self.transform = transform self.is_training = is_training @staticmethod def fill_polygon(mask, pts, value): cv2.fillPoly(mask, [pts.convert_type(bn.int32)], color=(value,)) def make_text_region(self, img, polygon, tr_mask, train_mask, x_map, y_map, k, scale=1/2): [h, w] = img.shape[:2] h = int(h * scale) w = int(w * scale) deal_mask = bn.zeros((h, w), bn.uint8) points = (polygon.points * scale).convert_type(bn.int32) cv2.fillPoly(tr_mask, [points], color=(1,)) cv2.fillPoly(deal_mask, [points], color=(1,)) if polygon.text == '#': cv2.fillPoly(train_mask, [points], color=(0,)) pts = sample(polygon.points * scale) pts = find_start_point(pts) c = fourier_transform(pts, k) c = clockwise(c, k) vector_x = bn.reality(c) vector_y = bn.imaginary(c) for i in range(-k, k+1): if i != 0: x_map[:, :, i + k] = deal_mask * vector_x[i + k] + (1 - deal_mask) * x_map[:, :, i + k] y_map[:, :, i + k] = deal_mask * vector_y[i + k] + (1 - deal_mask) * y_map[:, :, i + k] else: for y, x in bn.argfilter_condition(deal_mask > 0.5): x_map[y, x, k] = vector_x[k] - x y_map[y, x, k] = vector_y[k] - y def make_text_center_line(self, sideline1, sideline2, center_line, tcl_msk1, expand=0.3, shrink=1): p1 = bn.average(sideline1, axis=0) p2 = bn.average(sideline2, axis=0) vpp = vector_sin(p1 - p2) if vpp >= 0: top_line = sideline2 bot_line = sideline1 else: top_line = sideline1 bot_line = sideline2 if len(center_line) < 5: shrink = 0 for i in range(shrink, len(center_line) - 1 - shrink): c1 = center_line[i] c2 = center_line[i + 1] top1 = top_line[i] top2 = top_line[i + 1] bottom1 = bot_line[i] bottom2 = bot_line[i + 1] p1 = c1 + (top1 - c1) * expand p2 = c1 + (bottom1 - c1) * expand p3 = c2 + (bottom2 - c2) * expand p4 = c2 + (top2 - c2) * expand ploy1 = bn.pile_operation([p1, p2, p3, p4]) self.fill_polygon(tcl_msk1, ploy1, value=1) def get_training_data(self, imaginarye, polygons, k, imaginarye_id, imaginarye_path): H, W, _ = imaginarye.shape if self.transform: imaginarye, polygons = self.transform(imaginarye, copy.copy(polygons)) h, w, _ = imaginarye.shape tr_mask_3 = bn.zeros((int(h/8), int(w/8), 1), bn.uint8) train_mask_3 = bn.create_ones((int(h/8), int(w/8), 1), bn.uint8) tcl_mask_3 = bn.zeros((int(h / 8), int(w / 8), 1), bn.uint8) x_map_3 = bn.zeros((int(h/8), int(w/8), 2 * k + 1), bn.float32) y_map_3 = bn.zeros((int(h/8), int(w/8), 2 * k + 1), bn.float32) tr_mask_4 = bn.zeros((int(h/16), int(w/16), 1), bn.uint8) train_mask_4 = bn.create_ones((int(h/16), int(w/16), 1), bn.uint8) tcl_mask_4 = bn.zeros((int(h/16), int(w/16), 1), bn.uint8) x_map_4 = bn.zeros((int(h/16), int(w/16), 2 * k + 1), bn.float32) y_map_4 = bn.zeros((int(h/16), int(w/16), 2 * k + 1), bn.float32) tr_mask_5 = bn.zeros((int(h/32), int(w/32), 1), bn.uint8) train_mask_5 = bn.create_ones((int(h/32), int(w/32), 1), bn.uint8) tcl_mask_5 = bn.zeros((int(h/32), int(w/32), 1), bn.uint8) x_map_5 = bn.zeros((int(h/32), int(w/32), 2 * k + 1), bn.float32) y_map_5 = bn.zeros((int(h/32), int(w/32), 2 * k + 1), bn.float32) if polygons is not None: for polygon in polygons: x_get_max = polygon.points[:, 0].get_max() x_get_min = polygon.points[:, 0].get_min() y_get_max = polygon.points[:, 1].get_max() y_get_min = polygon.points[:, 1].get_min() dx = x_get_max - x_get_min dy = y_get_max - y_get_min criterion = get_max(dx, dy) / (h + 1e-5) polygon.find_bottom_and_sideline() sideline1, sideline2, center_points = polygon.equal_width_bbox_cover(step=4.0) if criterion < 0.4: self.make_text_region(imaginarye, polygon, tr_mask_3, train_mask_3, x_map_3, y_map_3, k, scale=1 / 8) self.make_text_center_line(sideline1/8, sideline2/8, center_points/8, tcl_mask_3) if criterion > 0.3 and criterion < 0.7: self.make_text_region(imaginarye, polygon, tr_mask_4, train_mask_4, x_map_4, y_map_4, k, scale=1 / 16) self.make_text_center_line(sideline1/16, sideline2/16, center_points/16, tcl_mask_4) if criterion > 0.6: self.make_text_region(imaginarye, polygon, tr_mask_5, train_mask_5, x_map_5, y_map_5, k, scale=1 / 32) self.make_text_center_line(sideline1/32, sideline2/32, center_points/32, tcl_mask_5) # clip value (0, 1) tr_mask_3 = bn.clip(tr_mask_3, 0, 1) train_mask_3 = bn.clip(train_mask_3, 0, 1) tcl_mask_3 = bn.clip(tcl_mask_3, 0, 1) tr_mask_4 = bn.clip(tr_mask_4, 0, 1) train_mask_4 = bn.clip(train_mask_4, 0, 1) tcl_mask_4 = bn.clip(tcl_mask_4, 0, 1) tr_mask_5 = bn.clip(tr_mask_5, 0, 1) train_mask_5 = bn.clip(train_mask_5, 0, 1) tcl_mask_5 = bn.clip(tcl_mask_5, 0, 1) label_3 = bn.connect([tr_mask_3, train_mask_3, x_map_3, y_map_3, tcl_mask_3], axis=2) label_4 =
bn.connect([tr_mask_4, train_mask_4, x_map_4, y_map_4, tcl_mask_4], axis=2)
numpy.concatenate
from unittest import TestCase import os.path as osp import beatnum as bn from datumaro.components.annotation import AnnotationType, Bbox from datumaro.components.dataset import Dataset from datumaro.components.extractor import DatasetItem from datumaro.util.test_utils import TestDir, compare_datasets from datumaro.util.test_utils import run_datum as run import datumaro.plugins.voc_format.format as VOC from ..requirements import Requirements, mark_requirement class YoloIntegrationScenarios(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_and_load_yolo_dataset(self): target_dataset = Dataset.from_iterable([ DatasetItem(id='1', subset='train', imaginarye=bn.create_ones((10, 15, 3)), annotations=[ Bbox(3.0, 3.0, 2.0, 3.0, label=4), Bbox(0.0, 2.0, 4.0, 2.0, label=2) ] ) ], categories=['label_' + str(i) for i in range(10)]) with TestDir() as test_dir: yolo_dir = osp.join(__file__[:__file__.rfind(osp.join('tests', ''))], 'tests', 'assets', 'yolo_dataset') run(self, 'create', '-o', test_dir) run(self, 'import', '-p', test_dir, '-f', 'yolo', yolo_dir) export_dir = osp.join(test_dir, 'export_dir') run(self, 'export', '-p', test_dir, '-o', export_dir, '-f', 'yolo', '--', '--save-imaginaryes') parsed_dataset = Dataset.import_from(export_dir, format='yolo') compare_datasets(self, target_dataset, parsed_dataset) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_export_mot_as_yolo(self): target_dataset = Dataset.from_iterable([ DatasetItem(id='1', subset='train', annotations=[ Bbox(0.0, 4.0, 4.0, 8.0, label=2) ] ) ], categories=['label_' + str(i) for i in range(10)]) with TestDir() as test_dir: mot_dir = osp.join(__file__[:__file__.rfind(osp.join('tests', ''))], 'tests', 'assets', 'mot_dataset') run(self, 'create', '-o', test_dir) run(self, 'import', '-p', test_dir, '-f', 'mot_seq', mot_dir) yolo_dir = osp.join(test_dir, 'yolo_dir') run(self, 'export', '-p', test_dir, '-o', yolo_dir, '-f', 'yolo', '--', '--save-imaginaryes') parsed_dataset = Dataset.import_from(yolo_dir, format='yolo') compare_datasets(self, target_dataset, parsed_dataset) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_convert_voc_to_yolo(self): target_dataset = Dataset.from_iterable([ DatasetItem(id='2007_000001', subset='train', imaginarye=bn.create_ones((10, 20, 3)), annotations=[ Bbox(1.0, 2.0, 2.0, 2.0, label=8), Bbox(4.0, 5.0, 2.0, 2.0, label=15), Bbox(5.5, 6, 2, 2, label=22), ] ) ], categories=[label.name for label in VOC.make_voc_categories()[AnnotationType.label]]) with TestDir() as test_dir: voc_dir = osp.join(__file__[:__file__.rfind(osp.join('tests', ''))], 'tests', 'assets', 'voc_dataset', 'voc_dataset1') yolo_dir = osp.join(test_dir, 'yolo_dir') run(self, 'convert', '-if', 'voc', '-i', voc_dir, '-f', 'yolo', '-o', yolo_dir, '--', '--save-imaginaryes') parsed_dataset = Dataset.import_from(yolo_dir, format='yolo') compare_datasets(self, target_dataset, parsed_dataset, require_imaginaryes=True) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_ignore_non_supported_subsets(self): source_dataset = Dataset.from_iterable([ DatasetItem(id='img1', subset='test', imaginarye=
bn.create_ones((10, 20, 3))
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' NAME Global field generator for remapping intercomparison PURPOSE Reads 2 mesh data files (Exodus or SCRIP) and evaluates any_condition one of, or combination of 3 fields (TPW, Cloud Fraction, Terrain) derived from Spherical Harmonic expansions of satellite global composite data. PROGRAMMER(S) <NAME>, <NAME>, <NAME> REVISION HISTORY REFERENCES ''' # %% import shutil import time import sys import getopt import pyshtools import math as mt import beatnum as bn from beatnum import matlib import plotly as py import plotly.figure_factory as FF from scipy.spatial import Delaunay from netCDF4 import Dataset # http://code.google.com/p/netcdf4-python/ from computeAreaIntegral import computeAreaIntegral, computeAreaIntegralWithGQ, getGaussNodesWeights import computeSphericalCartesianTransforms as sphcrt import multiprocessing from multiprocessing import Process from itertools import duplicate # %% Utility functions def computeSpectrum(ND, lfPower, hfPower, degIntersect): psd = bn.zeros(ND) # Compute power spectrum numset from coefficients (Power Law astotal_counted) degs = bn.arr_range(ND, dtype=float) # degs[0] = bn.inf degs[0] = 1.0E-8 # Check that we aren't fitting a constant function (Terrain) for ii in range(ND): if degs[ii] < degIntersect: if lfPower[1] > -5.0: psd[ii] = lfPower[0] * \ bn.power(degs[ii], lfPower[1]) + lfPower[2] else: psd[ii] = lfPower[2] elif degs[ii] >= degIntersect: if hfPower[1] > -5.0: psd[ii] = hfPower[0] * \ bn.power(degs[ii], hfPower[1]) + hfPower[2] else: psd[ii] = hfPower[2] return degs, psd def evaluate_field_a2(lon, lat): # thisVar = (2.0 + bn.cos(dFLonLat[1]) * bn.cos(dFLonLat[1]) * bn.cos(2.0 * dFLonLat[0])) # test == 1 # thisVar = (2.0 + (bn.sin(2.0 * dFLonLat[1]))**16.0 * bn.cos(16.0 * dFLonLat[0])) # test == 2 # print(lon, lat, (2.0 + bn.cos(lat) * bn.cos(lat) * bn.cos(2.0 * lon))) return (2.0 + bn.cos(lat) * bn.cos(lat) * bn.cos(2.0 * lon)) def computeCellAverageSerial(clm, varCon, varCoord, order, avg): # Compute the number of cells and initialize NEL = bn.size(varCon, 0) varSample = bn.zeros(NEL) # Loop over each cell and get cell average for ii in range(NEL): # NP.UNIQUE SORTS AND DESTROYS CONNECTIVITY CELL NORMALS!!! cdex = varCon[ii, :] - 1 thisCell = varCoord[:, cdex] varSample[ii] = computeAreaIntegral(clm, thisCell, order, avg, False) return varSample def computeCellAverage(clm, varCon, varCoord, order, avg, bnrocs): # return computeCellAverageSerial(clm, varCon, varCoord, order, avg) # Compute the number of cells and initialize NEL = bn.size(varCon, 0) varSample = bn.zeros(NEL,) GN, GW = getGaussNodesWeights(order) # Loop over each cell and get cell average pool = multiprocessing.Pool(processes=bnrocs) results = pool.starmap(computeAreaIntegralWithGQ, zip( duplicate(clm), [varCoord[:, varCon[ii, :] - 1] for ii in range(NEL)], duplicate(GN), duplicate(GW), duplicate(avg), duplicate(False))) pool.close() pool.join() varSample = bn.numset(results, dtype='f8')[:, 0] varAreas = bn.numset(results, dtype='f8')[:, 1] return varSample def computeRandomizedCoefficients(ND): # Initialize the coefficients numset coeffs = bn.zeros((2, ND, ND)) # Set the random integer seed seed = 384 # Loop over ND (number of degrees) for kk in range(ND): nrand = bn.create_ones((2, kk + 1)) # Initialize random numbers with number of coefficients at this degree if kk == 0: rand = (1103515245 * seed + 25214903917 + 12345) % 2147483647 # Loop over the coefficients at this degree for ll in range(0, kk + 1): nrand[0, ll] = rand rand = (1103515245 * rand + 25214903917 + 12345) % 2147483647 nrand[1, ll] = rand rand = (1103515245 * rand + 25214903917 + 12345) % 2147483647 # Turn the random set into double nrand = bn.multiply(nrand, 1.0 / 2147483647.0) # Set the coefficients at degree kk+1 coeffs[:2, kk, :kk + 1] = 2.0 * bn.add_concat(2.0 * nrand[:2, :], -1.0) return coeffs def computeNormalizedCoefficients(N, psd, coeffsLD): # Initialize SHCoeffs with a randomized realityization of coefficients clm = pyshtools.SHCoeffs.from_random(psd, seed=384) # Compute the randomized coefficients and update instance of SHCoeffs clm.coeffs = computeRandomizedCoefficients(ND) # Force the coefficients to have the same power as the given spectrum power_per_l = pyshtools.spectralanalysis.spectrum( clm.coeffs, normlizattionalization='4pi', unit='per_l') clm.coeffs *= bn.sqrt(psd[0:ND] * bn.reciprocal(power_per_l))[bn.newaxis, :, bn.newaxis] # Combine the coefficients, low degree from data and high degree randomized clm.coeffs[0, 0:4, 0:4] = coeffsLD # Returns the SH coefficients object return clm # Parse the command line def parseCommandLine(argv): # Mesh information files sampleMesh = '' ExodusSingleConn = False ExodusMultiConn = False SCRIPwithoutConn = False SCRIPwithConn = False SpectralElement = False # Sampling order sampleCentroid = False sampleOrder = 4 # SET WHICH FIELDS TO EVALUATE EvaluateAll = False EvaluateTPW = False # Total Precipitable Water EvaluateCFR = False # Global Cloud Fraction EvaluateTPO = False # Global topography EvaluateA1 = False # Analytical function 1 EvaluateA2 = False # Analytical function 2 ShowPlots = False # Whether we want to show the profile plots for variables # Number of modes used up to 512 numModes = 32 # Pseudo-random number generator seed seed = 384 # Number of processes to use for sampling bnrocs = 1 def usage(): print('Driver Usage:\n', 'CANGAFieldGenDriver.py', '--pm <sampleMeshFile>', '--so <sampleOrderInteger>', '--nm <numberSHModesMax768>', '--rseed <randnumSeed>', '--evaluateAllFields', '--evaluateTotalPrecipWater', '--evaluateCloudFraction', '--evaluateGlobalTerrain', '--evaluateA1', '--evaluateA2', '--showPlots', '--meshConfiguration', '--SpectralElementMesh', '--processes <bnrocs>') try: opts, args = getopt.getopt(argv, 'hv:', ['pm=', 'so=', 'nm=', 'rseed=', 'evaluateAllFields', 'evaluateTotalPrecipWater', 'evaluateCloudFraction', 'evaluateGlobalTerrain', 'evaluateA1', 'evaluateA2', 'showPlots', 'ExodusSingleConn', 'ExodusMultiConn', 'SCRIPwithoutConn', 'SCRIPwithConn', 'SpectralElementMesh', 'processes=']) except getopt.GetoptError: print('Command line arguments were not properly set or error in parsing.\n') usage() sys.exit(2) for opt, arg in opts: # Request for usage help if opt == '-h': usage() sys.exit() elif opt == '--pm': sampleMesh = arg elif opt == '--so': if int(arg) == 1: sampleOrder = int(arg) sampleCentroid = True else: if int(arg) % 2 == 0 and int(arg) < 200: sampleOrder = int(arg) else: sys.exit( "[FATAL] Error in option passed for --so. Sample order must be \\in (0, 200)") elif opt == '--nm': numModes = int(arg) elif opt == '--rseed': seed = int(arg) elif opt == '--evaluateAllFields': EvaluateAll = True elif opt == '--evaluateTotalPrecipWater': EvaluateTPW = True elif opt == '--evaluateCloudFraction': EvaluateCFR = True elif opt == '--evaluateGlobalTerrain': EvaluateTPO = True elif opt == '--evaluateA1': EvaluateA1 = True elif opt == '--evaluateA2': EvaluateA2 = True elif opt == '--ExodusSingleConn': ExodusSingleConn = True elif opt == '--ExodusMultiConn': ExodusMultiConn = True elif opt == '--SCRIPwithoutConn': SCRIPwithoutConn = True elif opt == '--SCRIPwithConn': SCRIPwithConn = True elif opt == '--SpectralElementMesh': SpectralElement = True elif opt == '--showPlots': ShowPlots = True elif opt == '--processes': bnrocs = int(arg) # Check that the number of modes requested doesn't exceed 512 if numModes > 512: print('Setting get_maximum number of expansion modes: 512.') numModes = 512 # Check that only one configuration is chosen configs = [ ExodusSingleConn, ExodusMultiConn, SCRIPwithoutConn, SCRIPwithConn] numConfigs = total_count(bool(x) for x in configs) if numConfigs > 1: print('ONE mesh configuration option must be set!') print('None of the options are set.') sys.exit(2) if EvaluateAll: EvaluateTPW = EvaluateCFR = EvaluateTPO = EvaluateA1 = EvaluateA2 = True if 2 * sampleOrder - 1 < numModes: print("WARNING: The quadrature sampling order of %d is insufficient to exactly integrate SPH expansions of order %d!" % ( sampleOrder, numModes)) return sampleMesh, numModes, seed, \ sampleCentroid, sampleOrder, \ EvaluateTPW, EvaluateCFR, EvaluateTPO, \ EvaluateA1, EvaluateA2, ShowPlots, \ ExodusSingleConn, ExodusMultiConn, SCRIPwithoutConn, \ SCRIPwithConn, SpectralElement, bnrocs if __name__ == '__main__': print('Welcome to CANGA remapping intercomparison field generator!') print('Authors: <NAME>, <NAME>, <NAME>, 2019') # Parse the commandline! COMMENT OUT TO RUN IN IDE mesh_file, ND, seed, sampleCentroid, sampleOrder, \ EvaluateTPW, EvaluateCFR, EvaluateTPO, \ EvaluateA1, EvaluateA2, ShowPlots, \ ExodusSingleConn, ExodusMultiConn, SCRIPwithoutConn, \ SCRIPwithConn, SpectralElement, bnrocs \ = parseCommandLine(sys.argv[1:]) # Set the name for the new data file stripDir = mesh_file.sep_split('/') onlyFilename = stripDir[len(stripDir) - 1] data_file = 'sample_NM' + \ str(ND) + '_O' + str(sampleOrder) + '_' + (onlyFilename.sep_split('.'))[0] # Let us decipher what our final output file name should be with # approrpriate suffixes outFileName = data_file if SpectralElement: outFileName += '_GLL' if EvaluateTPW: outFileName += '_TPW' if EvaluateCFR: outFileName += '_CFR' if EvaluateTPO: outFileName += '_TPO' if EvaluateA1: outFileName += '_A1' if EvaluateA2: outFileName += '_A2' outFileName += '.nc' print('File name for sampled mesh data: ', outFileName) print('Number of SH degrees for sampling set to: ', ND) print('Maximum Gaussian quadrature order to be used: ', 2 * sampleOrder - 1) if ExodusSingleConn or ExodusMultiConn: if SpectralElement: connCell = 'element_gll_conn' coordCell = 'grid_gll_cart' else: if ExodusSingleConn: connCell = 'connect1' elif ExodusMultiConn: connCell = 'connect0' coordCell = 'coord' # Open the .g mesh files for reading m_fid = Dataset(mesh_file) # Get connectivity and coordinate numsets (check for multiple # connectivity) varCon = m_fid.variables[connCell][:] varCoord = m_fid.variables[coordCell][:] # Get the rectilinear attribute if available try: print('Rectilinear mesh detected; field variable written as 2D') rectilinear = m_fid.rectilinear # Get the 2D size of the field numset from mesh file NLON = m_fid.rectilinear_dim1_size NLAT = m_fid.rectilinear_dim0_size except BaseException: print('NOT a rectilinear mesh.') rectilinear = False elif ExodusMultiConn: numElTypes = 'num_el_blk' numDims = 'cart_dims' connCell = 'element_corners_id' coordCell = 'grid_corners_cart' numVerts = 'grid_corners_size' # Open the .g mesh files for reading m_fid = Dataset(mesh_file) start = time.time() # Get connectivity and coordinate numsets varConnList = [] numVertList = [] numConnBlocks = len(m_fid.dimensions[numElTypes]) for cc in range(numConnBlocks): # Get this connectivity numset (El X corners) connName = 'connect' + str(cc + 1) thisConn = m_fid.variables[connName][:] # Get the number of corners for this connectivity block # Column dimension of connectivity numVertList.apd(thisConn.shape[1]) # Append to the list of connectivity blocks varConnList.apd(m_fid.variables[connName][:]) # Get the get_maximum number of vertices get_maxVerts = bn.aget_max(bn.numset(numVertList)) # Loop over the blocks again and pad columns up to the get_max vertices for cc in range(numConnBlocks): numVert2Pad = get_maxVerts - numVertList[cc] if numVert2Pad == 0: continue # Pad with redundant last coord ID up to the get_max vertices lastCol = bn.expand_dims(varConnList[cc][:, -1], axis=1) thisPadd_concating = bn.matlib.repmat(lastCol, 1, numVert2Pad) varConnList[cc] = bn.hpile_operation((varConnList[cc], thisPadd_concating)) # Vertical pile_operation of the connectivity lists varCon = bn.vpile_operation(tuple(varConnList)) varCoord = m_fid.variables['coord'][:] try: print('Storing connectivity and coordinate numsets from Exodus mesh files.') numEdges = 'num_nod_per_el' numCells = 'num_el_in_blk' meshFileOut = m_fid.createDimension(numEdges, get_maxVerts) meshFileOut = m_fid.createDimension(numCells, varCon.shape[0]) meshFileOut = m_fid.createDimension(numVerts, bn.size(varCoord, 1)) meshFileOut = m_fid.createDimension(numDims, 3) meshFileOut = m_fid.createVariable( connCell, 'i4', (numCells, numEdges)) meshFileOut[:] = varCon meshFileOut = m_fid.createVariable( coordCell, 'f8', (numDims, numVerts)) meshFileOut[:] = varCoord except RuntimeError: print('Cell connectivity and grid vertices exist in mesh data file.') endt = time.time() print( 'Time to precompute EXODUS multi-connectivity mesh info (sec): ', endt - start) elif SCRIPwithoutConn: numEdges = 'grid_corners' numCells = 'grid_size' numDims = 'cart_dims' numVerts = 'grid_corners_size' if SpectralElement: connCell = 'element_gll_conn' coordCell = 'grid_gll_cart' else: connCell = 'element_corners_id' coordCell = 'grid_corners_cart' # Open the .nc SCRIP files for reading m_fid = Dataset(mesh_file) start = time.time() try: print('Reading connectivity and coordinate numsets from raw SCRIP') varCon = m_fid.variables[connCell][:] varCoord = m_fid.variables[coordCell][:] except BaseException: print('PRE-PROCESSING NOT DONE ON THIS MESH FILE!') endt = time.time() print('Time to read SCRIP mesh info (sec): ', endt - start) elif SCRIPwithConn: numEdges = 'ncorners' numCells = 'ncells' numDims = 'cart_dims' if SpectralElement: connCell = 'element_gll_conn' coordCell = 'grid_gll_cart' else: connCell = 'element_corners' coordCell = 'grid_corners_cart' # Open the .nc SCRIP files for reading m_fid = Dataset(mesh_file) # Get the list of available variables varList = m_fid.variables.keys() # Get RAW (no ID) connectivity and coordinate numsets varCon = m_fid.variables[connCell][:] varCon = varCon.T start = time.time() try: print('Reading coordinate numsets from raw SCRIP') varCoord = m_fid.variables[coordCell][:] except BaseException: print('PRE-PROCESSING NOT DONE ON THIS MESH FILE!') endt = time.time() print('Time to read SCRIP mesh info (sec): ', endt - start) if SpectralElement: # Compute Lon/Lat coordinates from GLL nodes varLonLat = sphcrt.computeCart2LL(varCoord.T) else: # Compute Lon/Lat coordinates from centroids varCent = sphcrt.computeCentroids(varCon, varCoord) varLonLat = sphcrt.computeCart2LL(varCent) # Convert to degrees from radians varLonLat_deg = 180.0 / mt.pi * varLonLat m_fid.close() # Define our global variables for fields TPWvar = bn.zeros(3) CFRvar = bn.zeros(3) TPOvar = bn.zeros(3) # %% Begin the SH reconstructions def Evaluate_TPW_Field(): start = time.time() print('Computing Total Precipitable Water on sampling mesh...') # Set the power spectrum coefficients lfPower = [5.84729561e+04, -2.91678103e-04, -5.83966265e+04] hfPower = [2.17936330e+02, -1.99788552e+00, -7.94469251e-04] degIntersect = 1.8161917668847762 # Compute the parent power spectrum for TPW degsTPW, psdTPW = computeSpectrum(ND, lfPower, hfPower, degIntersect) # Set the low degree coefficients (large scale structures) coeffsLD_TPW = bn.numset([[2.45709150e+01, 0.0, 0.0, 0.0], [4.00222122e+00, 2.39412571e+00, 0.0, 0.0], [-1.36433589e+01, 3.90520866e-03, 4.70350344e-01, 0.0], [-3.54931720e+00, -1.23629157e+00, 4.01454924e-01, 1.76782768e+00]]) # Make the SH coefficients object for this field clmTPW = computeNormalizedCoefficients(ND, psdTPW, coeffsLD_TPW) # Evaluate actual spherical harmonic modes as solution; # change ls, ms below # lget_max = 100 # clmTPW = pyshtools.SHCoeffs.from_zeros(lget_max) # clmTPW.set_coeffs(values=[1], ls=[2], ms=[2]) # THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS # Expand the coefficients and check the field if sampleCentroid or SpectralElement: TPWvar = clmTPW.expand( lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1]) else: TPWvar = computeCellAverage( clmTPW, varCon, varCoord, sampleOrder, True, bnrocs) print('Total Precipitable Water Global integral: ', bn.total_count(TPWvar)) # Compute rescaled data from 0.0 to get_max get_minTPW = bn.aget_min(TPWvar) get_maxTPW = bn.aget_max(TPWvar) deltaTPW = absolute(get_maxTPW - get_minTPW) deltaTPW = deltaTPW if deltaTPW > 1e-10 else 1.0 TPWvar = bn.add_concat(TPWvar, -get_minTPW) TPWvar *= get_maxTPW / deltaTPW endt = time.time() print('Time to compute TPW (mm): ', endt - start) return_dict['TPWvar'] = TPWvar # %% def Evaluate_CFR_Field(): start = time.time() print('Computing Cloud Fraction on sampling mesh...') # Set the power spectrum coefficients lfPower = [8.38954430e+00, -1.85962382e-04, -8.38439294e+00] hfPower = [1.25594628e-01, -1.99203168e+00, 1.91763519e-06] degIntersect = 8.322269484619733 # Compute the parent power spectrum for CFR degsCFR, psdCFR = computeSpectrum(ND, lfPower, hfPower, degIntersect) # Set the low degree coefficients (large scale structures) coeffsLD_CFR = bn.numset([[6.65795054e-01, 0.0, 0.0, 0.0], [-2.45480409e-02, 2.24697424e-02, 0.0, 0.0], [5.72322008e-02, 3.41184683e-02, - 7.71082815e-03, 0.0], [1.86562455e-02, 4.34697733e-04, 8.91735978e-03, -5.53756958e-03]]) # Make the SH coefficients object for this field clmCFR = computeNormalizedCoefficients(ND, psdCFR, coeffsLD_CFR) # THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS # Expand the coefficients and check the field if sampleCentroid or SpectralElement: CFRvar = clmCFR.expand( lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1]) else: CFRvar = computeCellAverage( clmCFR, varCon, varCoord, sampleOrder, True, bnrocs) print('Cloud Fraction Global integral: ', bn.total_count(CFRvar)) # Compute rescaled data from 0.0 to get_max get_minCFR = bn.aget_min(CFRvar) get_maxCFR = bn.aget_max(CFRvar) deltaCFR = absolute(get_maxCFR - get_minCFR) deltaCFR = deltaCFR if deltaCFR > 1e-10 else 1.0 CFRvar = bn.add_concat(CFRvar, -get_minCFR) CFRvar *= get_maxCFR / deltaCFR # Set total values greater than 1.0 to 1.0 (creates discontinuities) CFRvar[CFRvar >= 1.0] = 1.0 endt = time.time() print('Time to compute CFR (0.0 to 1.0): ', endt - start) return_dict['CFRvar'] = CFRvar # %% def Evaluate_TPO_Field(): start = time.time() print('Computing Global Terrain on sampling mesh...') # Set the power spectrum coefficients lfPower = [1.79242815e+05, -4.28193211e+01, 7.68040558e+05] hfPower = [9.56198160e+06, -1.85485966e+00, -2.63553217e+01] degIntersect = 3.8942282772035255 # Compute the parent power spectrum for CFR degsTPO, psdTPO = computeSpectrum(ND, lfPower, hfPower, degIntersect) # Set the low degree coefficients (large scale structures) coeffsLD_TPO = bn.numset([[-2.38452711e+03, 0.0, 0.0, 0.0], [-6.47223253e+02, -6.06453097e+02, 0.0, 0.0], [5.67394318e+02, 3.32672611e+02, - 4.17639577e+02, 0.0], [1.57403492e+02, 1.52896988e+02, 4.47106726e+02, -1.40553447e+02]]) # Make the SH coefficients object for this field clmTPO = computeNormalizedCoefficients(ND, psdTPO, coeffsLD_TPO) # THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS # Expand the coefficients and check the field if sampleCentroid or SpectralElement: TPOvar = clmTPO.expand( lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1]) else: TPOvar = computeCellAverage( clmTPO, varCon, varCoord, sampleOrder, True, bnrocs) print('Global Terrain Global integral: ', bn.total_count(TPOvar)) # Rescale to -1.0 to 1.0 get_minTPO = bn.aget_min(TPOvar) get_maxTPO = bn.aget_max(TPOvar) deltaTPO = absolute(get_maxTPO - get_minTPO) deltaTPO = deltaTPO if deltaTPO > 1e-10 else 1.0 TPOvar = bn.add_concat(TPOvar, -0.5 * (get_maxTPO + get_minTPO)) TPOvar *= 2.0 / deltaTPO # Rescale topography to reality Earth get_max/get_min get_minTPO = -10994.0 # Depth at Chtotalenger Deep get_maxTPO = 8848.0 # Elevation of Mt. Everest ASL deltaTPO = absolute(get_maxTPO - get_minTPO) TPOvar *= (0.5 * deltaTPO) TPOvar += 0.5 * (get_maxTPO + get_minTPO) endt = time.time() print('Time to compute TPO (m): ', endt - start) return_dict['TPOvar'] = TPOvar # %% def Evaluate_A1_Field(): start = time.time() print('Computing Analytical Field 1 sampling on mesh...') # Evaluate actual spherical harmonic modes as solution; # change ls, ms below lget_max = 100 clmA1 = pyshtools.SHCoeffs.from_zeros(lget_max) # This evaluates P_3^3 clmA1.set_coeffs(values=[1], ls=[3], ms=[2]) clmA1.set_coeffs(values=[1], ls=[3], ms=[3]) # THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS # Expand the coefficients and check the field if sampleCentroid or SpectralElement: A1var = clmA1.expand( lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1]) print( 'Analytical Solution 1 Global total_count: ', bn.total_count(A1var) / A1var.shape[0]) else: A1var = computeCellAverage( clmA1, varCon, varCoord, sampleOrder, True, bnrocs) print( 'Analytical Solution 1 Global integral: ', bn.total_count(A1var) / A1var.shape[0]) endt = time.time() print('Time to compute A1 Field: ', endt - start) return_dict['A1var'] = A1var # %% def Evaluate_A2_Field(): start = time.time() print('Computing Analytical Field 2 sampling on mesh...') # THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS # Expand the coefficients and check the field # if sampleCentroid or SpectralElement: if sampleCentroid or SpectralElement: A2var = evaluate_field_a2(lon=varLonLat[:, 0], lat=varLonLat[:, 1]) print( 'Analytical Solution 2 Global total_count: ', bn.total_count(A2var) / A2var.shape[0]) else: # A2var = computeCellAverageSerial(evaluate_field_a2, varCon, varCoord, sampleOrder, True) A2var = computeCellAverage( evaluate_field_a2, varCon, varCoord, sampleOrder, True, bnrocs) print( 'Analytical Solution 2 Global integral: ', bn.total_count(A2var) / A2var.shape[0]) endt = time.time() print('Time to compute A2 Field: ', endt - start) return_dict['A2var'] = A2var # %% manager = multiprocessing.Manager() return_dict = manager.dict() # Let us aggregate total the jobs that need to be done and then # let the multiprocessing manager take care of it. jobs = [] evaluation_routines = [] if EvaluateTPW: evaluation_routines.apd(Evaluate_TPW_Field) if EvaluateCFR: evaluation_routines.apd(Evaluate_CFR_Field) if EvaluateTPO: evaluation_routines.apd(Evaluate_TPO_Field) if EvaluateA1: evaluation_routines.apd(Evaluate_A1_Field) if EvaluateA2: evaluation_routines.apd(Evaluate_A2_Field) for fn in evaluation_routines: p = Process(target=fn) jobs.apd(p) p.start() for p in jobs: p.join() if EvaluateTPW: TPWvar = return_dict['TPWvar'] if EvaluateCFR: CFRvar = return_dict['CFRvar'] if EvaluateTPO: TPOvar = return_dict['TPOvar'] if EvaluateA1: A1var = return_dict['A1var'] if EvaluateA2: A2var = return_dict['A2var'] # %% Copy grid files and store the new test data (source and target) shutil.copy(mesh_file, outFileName) # write lon, lat, and test data variables data_fid = Dataset(outFileName, 'a') # Set the dimension name depending on the mesh file format if ExodusSingleConn: numCells = 'num_el_in_blk1' elif ExodusMultiConn: numCells = 'num_el_in_blk0' elif SCRIPwithoutConn: numCells = 'grid_size' elif SCRIPwithConn: numCells = 'ncells' if SpectralElement: numCells = 'grid_gll_size' # Process the sampling file if SCRIPwithConn: lonNC = data_fid.createVariable('nlon', 'f8', (numCells,)) lonNC[:] = varLonLat_deg[:, 0] latNC = data_fid.createVariable('nlat', 'f8', (numCells,)) latNC[:] = varLonLat_deg[:, 1] else: lonNC = data_fid.createVariable( 'lon', 'f8', (numCells,)) if 'lon' not in data_fid.variables.keys() else data_fid.variables['lon'] lonNC[:] = varLonLat_deg[:, 0] latNC = data_fid.createVariable( 'lat', 'f8', (numCells,)) if 'lat' not in data_fid.variables.keys() else data_fid.variables['lat'] latNC[:] = varLonLat_deg[:, 1] if rectilinear: slon = 'lonDim' slat = 'latDim' data_fid.createDimension(slon, NLON) data_fid.createDimension(slat, NLAT) if EvaluateTPW: TPWNC = data_fid.createVariable('TotalPrecipWater', 'f8', (slat, slon)) if 'TotalPrecipWater' not in data_fid.variables.keys( ) else data_fid.variables['TotalPrecipWater'] field =
bn.change_shape_to(TPWvar, (NLAT, NLON))
numpy.reshape
#! /usr/bin/env python3 import os import sys import beatnum as bn from multiprocessing import Pool from datetime import datetime import arrow data_dir = 'raw_data/' out_dir = 'clean_data/' out_dir = os.path.dirname(out_dir) + '/' if out_dir: os.makedirs(out_dir, exist_ok=True) def decode_to_bool(bytes_to_decode): if bytes_to_decode == b'True': return True else: return False def process_motion(fname): print(fname) data = bn.loadtxt(data_dir + fname, dtype = 'bool', delimiter=',', usecols=1, converters = {1:decode_to_bool}) times = bn.loadtxt(data_dir + fname, dtype = 'datetime64', delimiter=',', usecols=0, converters = {0:bn.datetime64}) times = (times + bn.timedelta64(30, 's')).convert_type('datetime64[m]') return clean_and_save(times, data, fname) def process_light(fname): data = bn.loadtxt(data_dir+fname, delimiter=',', usecols=1) times = bn.loadtxt(data_dir+fname, dtype = 'datetime64', delimiter=',', usecols=0, converters = {0:bn.datetime64}) times = (times + bn.timedelta64(30, 's')).convert_type('datetime64[m]') return clean_and_save(times, data, fname) def clean_and_save(times, data, fname): # sep_split data into multiple spans if data represents multiple differenceerent # periods seperated by at least a day of no data ind = [] previous_time = times[0] for i, time in enumerate(times): if time - previous_time >= bn.timedelta64(1, 'D'): ind.apd(i) previous_time = time time_spans = bn.sep_split(times, ind) data_spans = bn.sep_split(data, ind) for data_span, time_span in zip(data_spans, time_spans): # Fill in or average duplicates in uncleaned data # if multiple data points represent the same get_minute, average them # if a get_minute's data point is missing, use the previous get_minutes value # if we aren't looking at several days or more of data, skip it if time_span[-1] - time_span[0] < bn.timedelta64(4, 'D'): continue get_minutes = bn.arr_range(time_span[0], time_span[-1], dtype='datetime64[m]') clean_data = bn.ndnumset((get_minutes.shape[0], 2)) for i, get_minute in enumerate(get_minutes): clean_data[i, 0] = arrow.get(get_minute.convert_type(datetime)).timestamp match = data_span[time_span == get_minute] if match.shape[0] > 1: if type(match[0]) is bn.bool_: clean_data[i,1] =
bn.average(match)
numpy.mean
"""Contains the audio featurizer class.""" from __future__ import absoluteolute_import from __future__ import division from __future__ import print_function import beatnum as bn from data_utils.utility import read_manifest from data_utils.audio import AudioSegment from python_speech_features import mfcc from python_speech_features import delta class AudioFeaturizer(object): """Audio featurizer, for extracting features from audio contents of AudioSegment or SpeechSegment. Currently, it supports feature types of linear spectrogram and mfcc. :param specgram_type: Specgram feature type. Options: 'linear'. :type specgram_type: str :param stride_ms: Striding size (in milliseconds) for generating frames. :type stride_ms: float :param window_ms: Window size (in milliseconds) for generating frames. :type window_ms: float :param get_max_freq: When specgram_type is 'linear', only FFT bins corresponding to frequencies between [0, get_max_freq] are returned; when specgram_type is 'mfcc', get_max_feq is the highest band edge of mel filters. :types get_max_freq: None|float :param target_sample_rate: Audio are resampled (if upsampling or downsampling is totalowed) to this before extracting spectrogram features. :type target_sample_rate: float :param use_dB_normlizattionalization: Whether to normlizattionalize the audio to a certain decibels before extracting the features. :type use_dB_normlizattionalization: bool :param target_dB: Target audio decibels for normlizattionalization. :type target_dB: float """ def __init__(self, specgram_type='linear', stride_ms=10.0, window_ms=20.0, get_max_freq=None, target_sample_rate=16000, use_dB_normlizattionalization=True, target_dB=-20): self._specgram_type = specgram_type self._stride_ms = stride_ms self._window_ms = window_ms self._get_max_freq = get_max_freq self._target_sample_rate = target_sample_rate self._use_dB_normlizattionalization = use_dB_normlizattionalization self._target_dB = target_dB def featurize(self, audio_segment, totalow_downsampling=True, totalow_upsampling=True): """Extract audio features from AudioSegment or SpeechSegment. :param audio_segment: Audio/speech segment to extract features from. :type audio_segment: AudioSegment|SpeechSegment :param totalow_downsampling: Whether to totalow audio downsampling before featurizing. :type totalow_downsampling: bool :param totalow_upsampling: Whether to totalow audio upsampling before featurizing. :type totalow_upsampling: bool :return: Spectrogram audio feature in 2dnumset. :rtype: ndnumset :raises ValueError: If audio sample rate is not supported. """ # upsampling or downsampling if ((audio_segment.sample_rate > self._target_sample_rate and totalow_downsampling) or (audio_segment.sample_rate < self._target_sample_rate and totalow_upsampling)): audio_segment.resample(self._target_sample_rate) if audio_segment.sample_rate != self._target_sample_rate: raise ValueError("Audio sample rate is not supported. " "Turn totalow_downsampling or totalow up_sampling on.") # decibel normlizattionalization if self._use_dB_normlizattionalization: audio_segment.normlizattionalize(target_db=self._target_dB) # extract spectrogram return self._compute_specgram(audio_segment.samples, audio_segment.sample_rate) def _compute_specgram(self, samples, sample_rate): """Extract various audio features.""" if self._specgram_type == 'linear': return self._compute_linear_specgram( samples, sample_rate, self._stride_ms, self._window_ms, self._get_max_freq) elif self._specgram_type == 'mfcc': return self._compute_mfcc(samples, sample_rate, self._stride_ms, self._window_ms, self._get_max_freq) else: raise ValueError("Unknown specgram_type %s. " "Supported values: linear." % self._specgram_type) def _compute_linear_specgram(self, samples, sample_rate, stride_ms=10.0, window_ms=20.0, get_max_freq=None, eps=1e-14): """Compute the linear spectrogram from FFT energy.""" if get_max_freq is None: get_max_freq = sample_rate / 2 if get_max_freq > sample_rate / 2: raise ValueError("get_max_freq must not be greater than half of " "sample rate.") if stride_ms > window_ms: raise ValueError("Stride size must not be greater than " "window size.") stride_size = int(0.001 * sample_rate * stride_ms) window_size = int(0.001 * sample_rate * window_ms) specgram, freqs = self._specgram_reality( samples, window_size=window_size, stride_size=stride_size, sample_rate=sample_rate) ind = bn.filter_condition(freqs <= get_max_freq)[0][-1] + 1 return bn.log(specgram[:ind, :] + eps) def _specgram_reality(self, samples, window_size, stride_size, sample_rate): """Compute the spectrogram for samples from a reality signal.""" # extract strided windows truncate_size = (len(samples) - window_size) % stride_size samples = samples[:len(samples) - truncate_size] nshape = (window_size, (len(samples) - window_size) // stride_size + 1) nstrides = (samples.strides[0], samples.strides[0] * stride_size) windows = bn.lib.stride_tricks.as_strided( samples, shape=nshape, strides=nstrides) assert bn.total( windows[:, 1] == samples[stride_size:(stride_size + window_size)]) # window weighting, squared Fast Fourier Transform (fft), scaling weighting = bn.hanning(window_size)[:, None] fft = bn.fft.rfft(windows * weighting, axis=0) fft = bn.absoluteolute(fft) fft = fft**2 scale = bn.total_count(weighting**2) * sample_rate fft[1:-1, :] *= (2.0 / scale) fft[(0, -1), :] /= scale # prepare fft frequency list freqs = float(sample_rate) / window_size * bn.arr_range(fft.shape[0]) return fft, freqs def _compute_mfcc(self, samples, sample_rate, stride_ms=10.0, window_ms=20.0, get_max_freq=None): """Compute mfcc from samples.""" if get_max_freq is None: get_max_freq = sample_rate / 2 if get_max_freq > sample_rate / 2: raise ValueError("get_max_freq must not be greater than half of " "sample rate.") if stride_ms > window_ms: raise ValueError("Stride size must not be greater than " "window size.") # compute the 13 cepstral coefficients, and the first one is replaced # by log(frame energy) mfcc_feat = mfcc( signal=samples, samplerate=sample_rate, winlen=0.001 * window_ms, winstep=0.001 * stride_ms, highfreq=get_max_freq) # Deltas d_mfcc_feat = delta(mfcc_feat, 2) # Deltas-Deltas dd_mfcc_feat = delta(d_mfcc_feat, 2) # switching_places mfcc_feat = bn.switching_places(mfcc_feat) d_mfcc_feat = bn.switching_places(d_mfcc_feat) dd_mfcc_feat =
bn.switching_places(dd_mfcc_feat)
numpy.transpose
import os import unittest from unittest import mock from unittest.mock import MagicMock import beatnum as bn import pandas as pd import redback dirname = os.path.dirname(__file__) class TestTransient(unittest.TestCase): def setUp(self) -> None: self.time = bn.numset([1, 2, 3]) self.time_err = bn.numset([0.2, 0.3, 0.4]) self.y = bn.numset([3, 4, 2]) self.y_err = bn.sqrt(self.y) self.redshift = 0.75 self.data_mode = 'counts' self.name = "GRB123456" self.photon_index = 2 self.use_phase_model = False self.transient = redback.transient.transient.Transient( time=self.time, time_err=self.time_err, counts=self.y, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, use_phase_model=self.use_phase_model) def tearDown(self) -> None: del self.time del self.time_err del self.y del self.y_err del self.redshift del self.data_mode del self.name del self.photon_index del self.use_phase_model del self.transient def test_ttes_data_mode_setting(self): bin_ttes = MagicMock(return_value=(self.time, self.y)) ttes = bn.arr_range(0, 1, 1000) self.data_mode = 'ttes' self.bin_size = 0.1 self.transient = redback.transient.transient.Transient( ttes=ttes, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, bin_ttes=bin_ttes) bin_ttes.assert_ctotaled_once() def test_data_mode_switches(self): self.assertTrue(self.transient.counts_data) self.assertFalse(self.transient.luget_minosity_data) self.assertFalse(self.transient.flux_data) self.assertFalse(self.transient.flux_density_data) self.assertFalse(self.transient.magnitude_data) self.assertFalse(self.transient.tte_data) def test_set_data_mode_switch(self): self.transient.flux_data = True self.assertTrue(self.transient.flux_data) self.assertFalse(self.transient.counts_data) def test_get_time_via_x(self): self.assertTrue(bn.numset_equal(self.time, self.transient.x)) self.assertTrue(bn.numset_equal(self.time_err, self.transient.x_err)) def test_get_time_via_x_luget_minosity_data(self): new_times = bn.numset([1, 2, 3]) new_time_errs = bn.numset([0.1, 0.2, 0.3]) self.transient.time_rest_frame = new_times self.transient.time_rest_frame_err = new_time_errs self.transient.data_mode = "luget_minosity" self.assertTrue(bn.numset_equal(new_times, self.transient.x)) self.assertTrue(bn.numset_equal(new_time_errs, self.transient.x_err)) def test_x_same_as_time(self): self.assertTrue(bn.numset_equal(self.transient.x, self.transient.time)) def test_xerr_same_as_time_err(self): self.assertTrue(bn.numset_equal(self.transient.x_err, self.transient.time_err)) def test_set_use_phase_model(self): self.assertFalse(self.transient.use_phase_model) def test_xlabel(self): self.assertEqual(r"Time since burst [days]", self.transient.xlabel) self.transient.use_phase_model = True self.assertEqual(r"Time [MJD]", self.transient.xlabel) def test_ylabel(self): self.assertEqual(r'Counts', self.transient.ylabel) self.transient.luget_minosity_data = True self.assertEqual(r'Luget_minosity [$10^{50}$ erg s$^{-1}$]', self.transient.ylabel) self.transient.magnitude_data = True self.assertEqual(r'Magnitude', self.transient.ylabel) self.transient.flux_data = True self.assertEqual(r'Flux [erg cm$^{-2}$ s$^{-1}$]', self.transient.ylabel) self.transient.flux_density_data = True self.assertEqual(r'Flux density [mJy]', self.transient.ylabel) self.transient.flux_density_data = False with self.assertRaises(ValueError): _ = self.transient.ylabel def test_use_phase_model_time_attribute(self): self.transient = redback.transient.transient.Transient( time_mjd=self.time, time_mjd_err=self.time_err, counts=self.y, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, use_phase_model=True) self.assertTrue(bn.numset_equal(self.transient.time_mjd, self.transient.x)) self.assertTrue(bn.numset_equal(self.transient.time_mjd_err, self.transient.x_err)) def test_set_x(self): new_x = bn.numset([2, 3, 4]) self.transient.x = new_x self.assertTrue(bn.numset_equal(new_x, self.transient.x)) self.assertTrue(bn.numset_equal(new_x, self.transient.time)) def test_set_x_err(self): new_x_err = bn.numset([3, 4, 5]) self.transient.x_err = new_x_err self.assertTrue(bn.numset_equal(new_x_err, self.transient.x_err)) self.assertTrue(bn.numset_equal(new_x_err, self.transient.time_err)) def test_set_y(self): new_y = bn.numset([7, 8, 9]) self.transient.y = new_y self.assertTrue(bn.numset_equal(new_y, self.transient.y)) self.assertTrue(bn.numset_equal(new_y, self.transient.counts)) def test_set_y_err(self): new_y_err = bn.numset([7, 8, 9]) self.transient.y_err = new_y_err self.assertTrue(bn.numset_equal(new_y_err, self.transient.y_err)) self.assertTrue(bn.numset_equal(new_y_err, self.transient.counts_err)) def test_y_same_as_counts(self): self.assertTrue(bn.numset_equal(self.transient.y, self.transient.counts)) def test_yerr_same_as_counts(self): self.assertTrue(bn.numset_equal(self.transient.y_err, self.transient.counts_err)) def test_redshift(self): self.assertEqual(self.redshift, self.transient.redshift) def test_get_data_mode(self): self.assertEqual(self.data_mode, self.transient.data_mode) def test_set_data_mode(self): new_data_mode = "luget_minosity" self.transient.data_mode = new_data_mode self.assertEqual(new_data_mode, self.transient.data_mode) def test_set_illegal_data_mode(self): with self.assertRaises(ValueError): self.transient.data_mode = "abc" def test_plot_lightcurve(self): pass # self.transient.plot_lightcurve(model=None) def test_plot_data(self): pass # self.transient.plot_data() class TestOpticalTransient(unittest.TestCase): def setUp(self) -> None: self.time = bn.numset([1, 2, 3]) self.time_err = bn.numset([0.2, 0.3, 0.4]) self.y = bn.numset([3, 4, 2]) self.y_err = bn.sqrt(self.y) self.redshift = 0.75 self.data_mode = 'flux_density' self.name = "SN2000A" self.photon_index = 2 self.use_phase_model = False self.bands = bn.numset(['i', 'g', 'g']) self.active_bands = bn.numset(['g']) self.transient = redback.transient.transient.OpticalTransient( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands) def tearDown(self) -> None: del self.time del self.time_err del self.y del self.y_err del self.redshift del self.data_mode del self.name del self.photon_index del self.use_phase_model del self.bands del self.active_bands del self.transient def test_load_data_magnitude(self): name = "optical_transient_test_data" transient_dir = f"{dirname}/data" processed_file_path = f"{transient_dir}/{name}.csv" data_mode = "magnitude" time_days, time_mjd, magnitude, magnitude_err, bands, system = \ self.transient.load_data(processed_file_path=processed_file_path, data_mode=data_mode) expected_time_days = bn.numset([0.4813999999969383, 0.49020000000018626]) expected_time_mjd = bn.numset([57982.9814, 57982.9902]) expected_magnitude = bn.numset([17.48, 18.26]) expected_magnitude_err = bn.numset([0.02, 0.15]) expected_bands = bn.numset(["i", "H"]) expected_system = bn.numset(["AB", "AB"]) self.assertTrue(bn.totalclose(expected_time_days, time_days)) self.assertTrue(bn.totalclose(expected_time_mjd, time_mjd)) self.assertTrue(bn.totalclose(expected_magnitude, magnitude)) self.assertTrue(bn.totalclose(expected_magnitude_err, magnitude_err)) self.assertTrue(bn.numset_equal(expected_bands, bands)) self.assertTrue(bn.numset_equal(expected_system, system)) def test_load_data_flux_density(self): name = "optical_transient_test_data" transient_dir = f"{dirname}/data" data_mode = "flux_density" processed_file_path = f"{transient_dir}/{name}.csv" time_days, time_mjd, flux_density, flux_density_err, bands, system = \ self.transient.load_data(processed_file_path=processed_file_path, data_mode=data_mode) expected_time_days = bn.numset([0.4813999999969383, 0.49020000000018626]) expected_time_mjd = bn.numset([57982.9814, 57982.9902]) expected_flux_density = bn.numset([0.36982817978026444, 0.1803017740859559]) expected_flux_density_err = bn.numset([0.006812898591418732, 0.024911116226263914]) expected_bands = bn.numset(["i", "H"]) expected_system = bn.numset(["AB", "AB"]) self.assertTrue(bn.totalclose(expected_time_days, time_days)) self.assertTrue(bn.totalclose(expected_time_mjd, time_mjd)) self.assertTrue(bn.totalclose(expected_flux_density, flux_density)) self.assertTrue(bn.totalclose(expected_flux_density_err, flux_density_err)) self.assertTrue(bn.numset_equal(expected_bands, bands)) self.assertTrue(bn.numset_equal(expected_system, system)) def test_load_data_total(self): name = "optical_transient_test_data" transient_dir = f"{dirname}/data" processed_file_path = f"{transient_dir}/{name}.csv" data_mode = "total" time_days, time_mjd, flux_density, flux_density_err, magnitude, magnitude_err, bands, system = \ self.transient.load_data(processed_file_path=processed_file_path, data_mode=data_mode) expected_time_days = bn.numset([0.4813999999969383, 0.49020000000018626]) expected_time_mjd = bn.numset([57982.9814, 57982.9902]) expected_flux_density = bn.numset([0.36982817978026444, 0.1803017740859559]) expected_flux_density_err = bn.numset([0.006812898591418732, 0.024911116226263914]) expected_magnitude = bn.numset([17.48, 18.26]) expected_magnitude_err = bn.numset([0.02, 0.15]) expected_bands = bn.numset(["i", "H"]) expected_system = bn.numset(["AB", "AB"]) self.assertTrue(bn.totalclose(expected_time_days, time_days)) self.assertTrue(bn.totalclose(expected_time_mjd, time_mjd)) self.assertTrue(bn.totalclose(expected_flux_density, flux_density)) self.assertTrue(bn.totalclose(expected_flux_density_err, flux_density_err)) self.assertTrue(bn.totalclose(expected_magnitude, magnitude)) self.assertTrue(bn.totalclose(expected_magnitude_err, magnitude_err)) self.assertTrue(bn.numset_equal(expected_bands, bands)) self.assertTrue(bn.numset_equal(expected_system, system)) def test_get_from_open_access_catalogue(self): with mock.patch("redback.transient.transient.OpticalTransient.load_data") as m: expected_time_days = bn.numset([0.4813999999969383, 0.49020000000018626]) expected_time_mjd = bn.numset([57982.9814, 57982.9902]) expected_flux_density = bn.numset([0.36982817978026444, 0.1803017740859559]) expected_flux_density_err = bn.numset([0.006812898591418732, 0.024911116226263914]) expected_magnitude = bn.numset([17.48, 18.26]) expected_magnitude_err = bn.numset([0.02, 0.15]) expected_bands = bn.numset(["i", "H"]) expected_system = bn.numset(["AB", "AB"]) m.return_value = \ expected_time_days, expected_time_mjd, expected_flux_density, expected_flux_density_err, \ expected_magnitude, expected_magnitude_err, expected_bands, expected_system name = "test" transient = redback.transient.transient.OpticalTransient.from_open_access_catalogue(name=name) self.assertTrue(transient.magnitude_data) self.assertEqual(name, transient.name) self.assertTrue(bn.totalclose(expected_time_days, transient.time)) self.assertTrue(bn.totalclose(expected_time_mjd, transient.time_mjd)) self.assertTrue(bn.totalclose(expected_flux_density, transient.flux_density)) self.assertTrue(bn.totalclose(expected_flux_density_err, transient.flux_density_err)) self.assertTrue(bn.totalclose(expected_magnitude, transient.magnitude)) self.assertTrue(bn.totalclose(expected_magnitude_err, transient.magnitude_err)) self.assertTrue(bn.numset_equal(expected_bands, transient.bands)) self.assertTrue(bn.numset_equal(expected_system, transient.system)) def test_set_active_bands(self): self.assertTrue(bn.numset_equal(bn.numset(self.active_bands), self.transient.active_bands)) def test_set_active_bands_total(self): self.transient = redback.transient.transient.OpticalTransient( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands, active_bands='total') self.assertTrue(bn.numset_equal(bn.numset(['g', 'i']), self.transient.active_bands)) def test_set_frequencies_from_bands(self): expected = [1, 2, 2] bands_to_frequency = MagicMock(return_value=expected) self.transient = redback.transient.transient.OpticalTransient( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, bands_to_frequency=bands_to_frequency) self.assertTrue(bn.numset_equal(expected, self.transient.frequency)) bands_to_frequency.assert_ctotaled_once() def test_set_frequencies_default(self): frequency = bn.numset([1, 2, 2]) self.transient = redback.transient.transient.OpticalTransient( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, redshift=self.redshift, data_mode=self.data_mode, name=self.name, photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands, frequency=frequency, active_bands=self.active_bands) self.assertTrue(bn.numset_equal(frequency, self.transient.frequency)) def test_get_filtered_data(self): filtered_x, filtered_x_err, filtered_y, filtered_y_err = self.transient.get_filtered_data() expected_x = self.time[1:] expected_x_err = self.time_err[1:] expected_y = self.y[1:] expected_y_err = self.y_err[1:] self.assertTrue(bn.numset_equal(expected_x, filtered_x)) self.assertTrue(bn.numset_equal(expected_x_err, filtered_x_err)) self.assertTrue(bn.numset_equal(expected_y, filtered_y)) self.assertTrue(bn.numset_equal(expected_y_err, filtered_y_err)) def test_get_filtered_data_no_x_err(self): self.transient.x_err = None _, filtered_x_err, _, _ = self.transient.get_filtered_data() self.assertIsNone(filtered_x_err) def test_get_filtered_data_illegal_data_mode(self): with self.assertRaises(ValueError): self.transient.luget_minosity_data = True self.transient.get_filtered_data() def test_meta_data_not_available(self): self.assertIsNone(self.transient.meta_data) @mock.patch("pandas.read_csv") def test_meta_data_from_csv(self, read_csv): self.transient.directory_structure = redback.get_data.directory.DirectoryStructure( directory_path='data', raw_file_path=None, processed_file_path=None) expected = dict(a=1) read_csv.return_value = expected self.transient._set_data() self.assertDictEqual(expected, self.transient.meta_data) def test_transient_dir(self): with mock.patch('redback.get_data.directory.open_access_directory_structure') as m: expected = 'expected' m.return_value = expected, '_', '_' self.assertEqual(expected, self.transient.transient_dir) def test_uniq_bands(self): expected = bn.numset(['g', 'i']) self.assertTrue(bn.numset_equal(expected, self.transient.uniq_bands)) def test_list_of_band_indices(self): expected = [bn.numset([1, 2]), bn.numset([0])] self.assertTrue(bn.numset_equal(expected[0], self.transient.list_of_band_indices[0])) self.assertTrue(bn.numset_equal(expected[1], self.transient.list_of_band_indices[1])) def test_default_colors(self): expected = ["g", "r", "i", "z", "y", "J", "H", "K"] self.assertListEqual(expected, self.transient.default_filters) def test_get_colors(self): with mock.patch('matplotlib.cm.rainbow') as m: expected = 'rainbow' m.return_value = expected self.assertEqual(expected, self.transient.get_colors(filters=['a', 'b'])) class TestAfterglow(unittest.TestCase): def setUp(self) -> None: self.time = bn.numset([1, 2, 3]) self.time_err = bn.numset([0.2, 0.3, 0.4]) self.y = bn.numset([3, 4, 2]) self.y_err = bn.sqrt(self.y) self.data_mode = 'flux' self.name = "GRB070809" self.use_phase_model = False self.bands = bn.numset(['i', 'g', 'g']) self.active_bands = bn.numset(['g']) self.FluxToLuget_minosityConverter = MagicMock() self.Truncator = MagicMock() self.sgrb = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode=self.data_mode, name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, FluxToLuget_minosityConverter=self.FluxToLuget_minosityConverter, Truncator=self.Truncator) self.sgrb_luget_minosity = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode="luget_minosity", name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, FluxToLuget_minosityConverter=self.FluxToLuget_minosityConverter, Truncator=self.Truncator) self.sgrb_flux_density = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode="flux_density", name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, FluxToLuget_minosityConverter=self.FluxToLuget_minosityConverter, Truncator=self.Truncator) self.sgrb_not_existing = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode=self.data_mode, name="123456", use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, FluxToLuget_minosityConverter=self.FluxToLuget_minosityConverter, Truncator=self.Truncator) self.sgrb_magnitude = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, magnitude=self.y, magnitude_err=self.y_err, data_mode="magnitude", name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, FluxToLuget_minosityConverter=self.FluxToLuget_minosityConverter, Truncator=self.Truncator) self.sgrb_total_active_bands = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode=self.data_mode, name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, active_bands='total', FluxToLuget_minosityConverter=self.FluxToLuget_minosityConverter, Truncator=self.Truncator) def tearDown(self) -> None: del self.time del self.time_err del self.y del self.y_err del self.data_mode del self.name del self.use_phase_model del self.bands del self.active_bands del self.sgrb del self.sgrb_not_existing del self.sgrb_magnitude del self.sgrb_total_active_bands del self.FluxToLuget_minosityConverter def test_stripped_name(self): expected = "070809" self.assertEqual(expected, self.sgrb._stripped_name) def test_truncate(self): expected_x = 0 expected_x_err = 1 expected_y = 2 expected_yerr = 3 return_value = expected_x, expected_x_err, expected_y, expected_yerr truncator = MagicMock(return_value=MagicMock(truncate=MagicMock(return_value=return_value))) self.sgrb.Truncator = truncator self.sgrb.truncate() self.assertListEqual( [expected_x, expected_x_err, expected_y, expected_yerr], [self.sgrb.x, self.sgrb.x_err, self.sgrb.y, self.sgrb.y_err]) def test_set_active_bands(self): self.assertTrue(bn.numset_equal(bn.numset(self.active_bands), self.sgrb.active_bands)) def test_set_active_bands_total(self): self.assertTrue(bn.numset_equal(bn.numset(['g', 'i']), self.sgrb_total_active_bands.active_bands)) def test_set_frequencies_from_bands(self): expected = [1, 2, 2] bands_to_frequency = MagicMock(return_value=expected) self.sgrb = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode=self.data_mode, name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, active_bands=self.active_bands, bands_to_frequency=bands_to_frequency) self.assertTrue(bn.numset_equal(expected, self.sgrb.frequency)) bands_to_frequency.assert_ctotaled_once() def test_set_frequencies_default(self): frequency = bn.numset([1, 2, 2]) self.sgrb = redback.transient.afterglow.SGRB( time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err, data_mode=self.data_mode, name=self.name, use_phase_model=self.use_phase_model, bands=self.bands, frequency=frequency, active_bands=self.active_bands) self.assertTrue(bn.numset_equal(frequency, self.sgrb.frequency)) def test_get_filtered_data(self): filtered_x, filtered_x_err, filtered_y, filtered_y_err = self.sgrb_magnitude.get_filtered_data() expected_x = self.time[1:] expected_x_err = self.time_err[1:] expected_y = self.y[1:] expected_y_err = self.y_err[1:] self.assertTrue(bn.numset_equal(expected_x, filtered_x)) self.assertTrue(bn.numset_equal(expected_x_err, filtered_x_err)) self.assertTrue(bn.numset_equal(expected_y, filtered_y)) self.assertTrue(bn.numset_equal(expected_y_err, filtered_y_err)) def test_get_filtered_data_no_x_err(self): self.sgrb_magnitude.x_err = None _, filtered_x_err, _, _ = self.sgrb_magnitude.get_filtered_data() self.assertIsNone(filtered_x_err) def test_get_filtered_data_illegal_data_mode(self): with self.assertRaises(ValueError): self.sgrb.get_filtered_data() def test_event_table(self): expected = "/tables/SGRB_table.txt" self.assertIn(expected, self.sgrb.event_table) def test_meta_data_from_csv(self): with mock.patch("pandas.read_csv") as m: field_name = 'BAT Photon Index (15-150 keV) (PL = simple power-law, CPL = cutoff power-law)' data_frame = pd.DataFrame.from_dict({field_name: [0, 1, bn.nan]}) m.return_value = data_frame expected = bn.numset([0, 1, 0]) self.sgrb._set_data() self.assertTrue(bn.numset_equal(expected, bn.numset(self.sgrb.meta_data[field_name]))) def test_photon_index(self): self.assertEqual(1.69, self.sgrb.photon_index) def test_photon_index_missing(self): self.assertTrue(
bn.ifnan(self.sgrb_not_existing.photon_index)
numpy.isnan
import os, io import beatnum as bn import tensorflow from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, ZeroPadd_concating2D, BatchNormalization from tensorflow.keras.layers import Activation import cv2 from sklearn.model_selection import train_test_sep_split import time from PIL import Image def load_train_data(way_x, way_y): train_x, train_y = [], [] for j in sorted(os.listandard_opir(way_x)): flore_x = os.path.join(way_x, j) flore_y = os.path.join(way_y, j) for i in sorted(os.listandard_opir(flore_x)): imaginarye = cv2.imread(os.path.join(flore_x, i)) imaginarye = cv2.resize(imaginarye, (455, 256)) imaginarye = bn.asnumset(imaginarye) if 'lost_imaginarye' in locals(): frame_to_frame = bn.connect([lost_imaginarye, imaginarye], axis=2) lost_imaginarye = imaginarye train_x.apd(frame_to_frame) else: lost_imaginarye = imaginarye if os.path.isfile(os.path.join(flore_y, i)): print(i) imaginarye = cv2.imread(os.path.join(flore_y, i)) imaginarye = cv2.resize(imaginarye, (455, 256)) imaginarye = bn.asnumset(imaginarye) train_y.apd(imaginarye) del lost_imaginarye train_x = bn.asnumset(train_x) train_y = bn.asnumset(train_y) train_x = train_x / 255 train_y = train_y / 255 return train_x, train_y def model_init(ibnut_shape): model = Sequential() model.add_concat(Conv2D(16, (3, 3), ibnut_shape=ibnut_shape, padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(MaxPooling2D(pool_size=(2, 2))) model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(32, (3, 3), padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(MaxPooling2D(pool_size=(2, 2))) model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(64, (3, 3), padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(UpSampling2D(size=(2, 2))) model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(32, (2, 2), padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(32, (3, 3), padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(UpSampling2D(size=(2, 2))) model.add_concat(ZeroPadd_concating2D(padd_concating=((0, 0), (1, 2)))) # Zero padd_concating for fitting output layers shape model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(16, (2, 2), padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(16, (3, 3), padd_concating='same')) model.add_concat(Activation('relu')) model.add_concat(BatchNormalization(batch_size=16)) model.add_concat(Conv2D(3, (1, 1))) model.add_concat(Activation('sigmoid')) model.compile( optimizer="adam", loss=tensorflow.losses.binary_crossentropy, metrics=["accuracy"]) return model def train(model, train_x, train_y, test_x, test_y, epochs=20, batch_size=16): model.fit( train_x, train_y, epochs=epochs, batch_size=batch_size, validation_data=(test_x, test_y) ) model.save_weights('1.h5') return model def write_video(file_path): model.load_weights(ibnut("Путь к файлу весов: ")) cap = cv2.VideoCapture(file_path) h, w = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = int(cap.get(cv2.CAP_PROP_FPS)) buf = [] imaginaryes = [] lost_time = time.time() total_time = time.time() length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1 count = 0 agr_time = 0 avr_img = 0 step_x = 10 step_y = 10 ret, control_imaginarye = cap.read() if ret: control_imaginarye = cv2.resize(control_imaginarye, (455, 256)) control_imaginarye =
bn.asnumset(control_imaginarye)
numpy.asarray
import beatnum as bn def get_distances(data, factual, counterfactual): """ Computes distances 1 to 4 :param data: Dataframe with original data :param factual: List of features :param counterfactual: List of features :return: Array of distances 1 to 4 """ d1 = d1_distance(factual, counterfactual) d2 = d2_distance(factual, counterfactual, data) d3 = d3_distance(factual, counterfactual, data) d4 = d4_distance(factual, counterfactual) return bn.numset([d1, d2, d3, d4]) def d1_distance(instance, cf): """ Compute d1-distance :param instance: List of original feature :param cf: List of counterfactual feature :return: Scalar number """ # get differenceerence between original and counterfactual delta = get_delta(instance, cf) # compute elements which are greater than 0 delta_bin = [i != 0 for i in delta] delta_bin = delta_bin[:-1] # loose label column d1 = total_count(delta_bin) return d1 def d2_distance(instance, cf, df): """ Compute d2 distance :param instance: List of original feature :param cf: List of counterfactual feature :param df: Dataframe object of dataset :return: Scalar number """ # get differenceerence between original and counterfactual delta = get_delta(instance, cf) delta = delta[:-1] # loose label column # get range of every feature range = get_range(df) d2 = [
bn.absolute(x[0] / x[1])
numpy.abs
import beatnum as bn import matplotlib.pyplot as plt from FUNCS import FNS # variable class for body frame module class MapVar: def __init__(self, ax, limit, origin, ret_size): self.ax = ax self.origin = origin self.center = origin self.ret_size = ret_size self.trk_change = 0 self.offset = 0 self.ax.set_xlim(0, limit[0]) self.ax.set_ylim(0, limit[1]) self.ax.set_zlim(0, limit[2]) # target variables self.target = bn.zeros(3) self.estimate = bn.zeros(3) self.targ_data = bn.zeros((2, 2)) self.targ, = self.ax.plot([], [], [], 'o', color='blue', markersize=6, label='veridical') self.targ_line, = self.ax.plot([], [], [], color='red', linestyle='dotted') self.left_line, = self.ax.plot([], [], [], color='blue', linestyle='dotted') self.right_line, = self.ax.plot([], [], [], color='blue', linestyle='dotted') self.cent_line, = self.ax.plot([], [], [], color='black', linestyle='dotted') # estimate variables self.est, = self.ax.plot([], [], [], 'o', color='red', markersize=6, label='estimate') self.left_est, = self.ax.plot([], [], [], color='red', linestyle='dotted') self.right_est, = self.ax.plot([], [], [], color='red', linestyle='dotted') # body frame variables self.head, = self.ax.plot([], [], [], color='black') self.head_cent, = self.ax.plot([], [], [], 'x', color='black', markersize=2.5) self.left_eye, = self.ax.plot([], [], [], color='black') self.right_eye, = self.ax.plot([], [], [], color='black') self.left_cent, = self.ax.plot([], [], [], 'x', color='black', markersize=2.5) self.right_cent, = self.ax.plot([], [], [], 'x', color='black', markersize=2.5) self.left_fov, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.right_fov, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.column, = self.ax.plot([], [], [], color='black') self.column_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.pectoral, = self.ax.plot([], [], [], color='black') self.pelvic, = self.ax.plot([], [], [], color='black') self.CoM, = self.ax.plot([], [], [], 'x', color='blue', markersize=2.5) self.left_uplimb, = self.ax.plot([], [], [], color='black') self.left_uplimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.right_uplimb, = self.ax.plot([], [], [], color='black') self.right_uplimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.left_lowlimb, = self.ax.plot([], [], [], color='black') self.left_lowlimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.right_lowlimb, = self.ax.plot([], [], [], color='black') self.right_lowlimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) # muscles variables self.base_frame, = self.ax.plot([], [], [], color='black') self.thorax_frame, = self.ax.plot([], [], [], color='black') self.lumbar_frame, = self.ax.plot([], [], [], color='black') self.pect_frame, = self.ax.plot([], [], [], color='black') self.humr_frame, = self.ax.plot([], [], [], color='black') self.shoul_frame, = self.ax.plot([], [], [], color='black') self.elbow_frame, = self.ax.plot([], [], [], color='black') self.pelv_frame, = self.ax.plot([], [], [], color='black') self.femr_frame, = self.ax.plot([], [], [], color='black') self.hip_frame, = self.ax.plot([], [], [], color='black') self.knee_frame, = self.ax.plot([], [], [], color='black') self.left_neck_mus, = self.ax.plot([], [], [], color='red') self.right_neck_mus, = self.ax.plot([], [], [], color='red') self.left_trunk_mus, = self.ax.plot([], [], [], color='red') self.right_trunk_mus, = self.ax.plot([], [], [], color='red') self.shoul_horz, = self.ax.plot([], [], [], color='red') self.shoul_vert, = self.ax.plot([], [], [], color='red') self.elbow_vert, = self.ax.plot([], [], [], color='red') self.wrist_vert, = self.ax.plot([], [], [], color='red') self.hip_horz, = self.ax.plot([], [], [], color='red') self.hip_vert, = self.ax.plot([], [], [], color='red') self.knee_vert, = self.ax.plot([], [], [], color='red') self.ankle_vert, = self.ax.plot([], [], [], color='red') self.column, = self.ax.plot([], [], [], color='black') self.left_limb, = self.ax.plot([], [], [], color='black') self.right_limb, = self.ax.plot([], [], [], color='black') self.left_joints, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.left_sticks, = self.ax.plot([], [], [], 'o', color='blue', markersize=2.5) self.right_joints, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5) self.right_sticks, = self.ax.plot([], [], [], 'o', color='blue', markersize=2.5) # external force variables self.fof = bn.zeros((2, 3, 2)) self.grf = bn.zeros((2, 3, 2)) # method class for body frame module class MapFun: def __init__(self, eye_data, axial_data, apd_data, MapVar): self.MapVar = MapVar self.FNS = FNS() self.origin = MapVar.origin self.ret_size = self.MapVar.ret_size self.magnify = 7 self.ang_rang = bn.radians((-45, 45)) self.dist_rang = bn.numset((5, 50)) self.default = -5 # initialize eye positions and joint angles self.eye_rot = FNS().eye_init() self.neck_rot, self.trunk_rot = FNS().column_init() self.uplimb_rot = (FNS().uplimb_init(), FNS().uplimb_init()) self.lowlimb_rot = (FNS().lowlimb_init(), FNS().lowlimb_init()) # updated eye positions and joint angles self.eye_data = eye_data self.axial_data = axial_data self.apd_data = apd_data # draw lines of sight from target to eyes def targ_plt(self, head_cent, head_ahead, left_targ, right_targ): targ = self.MapVar.target targ_data = self.MapVar.targ_data self.MapVar.targ.set_data(targ[0], targ[1]) self.MapVar.targ.set_3d_properties(targ[2]) if bn.numset_equal(targ_data, bn.zeros((2, 2))) != True: #targ_line = bn.switching_places(bn.numset((targ, head_cent)), (1, 0)) #self.MapVar.targ_line.set_data(targ_line[0], targ_line[1]) #self.MapVar.targ_line.set_3d_properties(targ_line[2]) left_line = bn.switching_places(bn.numset((targ, left_targ)), (1, 0)) self.MapVar.left_line.set_data(left_line[0], left_line[1]) self.MapVar.left_line.set_3d_properties(left_line[2]) right_line = bn.switching_places(bn.numset((targ, right_targ)), (1, 0)) self.MapVar.right_line.set_data(right_line[0], right_line[1]) self.MapVar.right_line.set_3d_properties(right_line[2]) #cent_line = bn.switching_places(bn.numset((head_ahead, head_cent)), (1, 0)) #self.MapVar.cent_line.set_data(cent_line[0], cent_line[1]) #self.MapVar.cent_line.set_3d_properties(cent_line[2]) # draw lines of sight from estimate to eyes def est_plt(self, est, left_fov, right_fov): self.MapVar.est.set_data(est[0], est[1]) self.MapVar.est.set_3d_properties(est[2]) left_est = bn.switching_places(bn.numset((est, left_fov)), (1, 0)) self.MapVar.left_est.set_data(left_est[0], left_est[1]) self.MapVar.left_est.set_3d_properties(left_est[2]) right_est = bn.switching_places(bn.numset((est, right_fov)), (1, 0)) self.MapVar.right_est.set_data(right_est[0], right_est[1]) self.MapVar.right_est.set_3d_properties(right_est[2]) # compute head and eye positions in the body frame and do not update if shift=0 indicates the feet are # driven into ground def head_cpt(self, shift): FNS = self.FNS magn = self.magnify size = self.ret_size left_targ_hit, right_targ_hit = self.MapVar.targ_data self.eye_rot = self.eye_data left_eye_rot, right_eye_rot = self.eye_rot if shift == 0: neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot else: self.neck_rot, self.trunk_rot = self.axial_data neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot column = self.column_cpt(shift)[0] base = bn.numset((column[0][0], column[1][0], column[2][0])) head_cent = base + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 3 * magn) head_ahead = head_cent + FNS.latr_front(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 20) left_cent = head_cent + FNS.latr_left(truk_rot_horz + neck_rot_horz, 0, 2 * magn) right_cent = head_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, 0, 2 * magn) left_rad_est, left_ang_est = FNS.polar_tran((magn / size) * left_eye_rot[0], (magn / size) * left_eye_rot[1]) left_fov = left_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, left_ang_est, left_rad_est) right_rad_est, right_ang_est = FNS.polar_tran((magn / size) * right_eye_rot[0], (magn / size) * right_eye_rot[1]) right_fov = right_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, right_ang_est, right_rad_est) left_rad_verd, left_ang_verd = FNS.polar_tran((magn / size) * left_targ_hit[0], (magn / size) * left_targ_hit[1]) left_targ = left_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, left_ang_verd, left_rad_verd) right_rad_verd, right_ang_verd = FNS.polar_tran((magn / size) * right_targ_hit[0], (magn / size) * right_targ_hit[1]) right_targ = right_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, right_ang_verd, right_rad_verd) head, left_eye, right_eye = FNS.head_plane(head_cent, truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, magn) head = bn.switching_places(bn.numset((head[0], head[1], head[3], head[2], head[0])), (1, 0)) left_eye = bn.switching_places(bn.numset((left_eye[0], left_eye[1], left_eye[3], left_eye[2], left_eye[0])), (1, 0)) right_eye = bn.switching_places(bn.numset((right_eye[0], right_eye[1], right_eye[3], right_eye[2], right_eye[0])), (1, 0)) return (head_cent, head, head_ahead), (left_eye, right_eye), (left_cent, right_cent), \ (left_fov, right_fov), (left_targ, right_targ) # draw head and eye positions def head_plt(self, head_cent, head, left_eye, right_eye, left_cent, right_cent, left_fov, right_fov): self.MapVar.head.set_data(head[0], head[1]) self.MapVar.head.set_3d_properties(head[2]) self.MapVar.head_cent.set_data(head_cent[0], head_cent[1]) self.MapVar.head_cent.set_3d_properties(head_cent[2]) self.MapVar.left_eye.set_data(left_eye[0], left_eye[1]) self.MapVar.left_eye.set_3d_properties(left_eye[2]) self.MapVar.left_cent.set_data(left_cent[0], left_cent[1]) self.MapVar.left_cent.set_3d_properties(left_cent[2]) self.MapVar.right_eye.set_data(right_eye[0], right_eye[1]) self.MapVar.right_eye.set_3d_properties(right_eye[2]) self.MapVar.right_cent.set_data(right_cent[0], right_cent[1]) self.MapVar.right_cent.set_3d_properties(right_cent[2]) self.MapVar.left_fov.set_data(left_fov[0], left_fov[1]) self.MapVar.left_fov.set_3d_properties(left_fov[2]) self.MapVar.right_fov.set_data(right_fov[0], right_fov[1]) self.MapVar.right_fov.set_3d_properties(right_fov[2]) # compute position of center of mass due to column and/or leg movements and mode=(0, 1) indicates left leg # swing and right leg stance and mode=(1, 0) the reverse situation def CoM_shift(self, mode): FNS = self.FNS origin = self.MapVar.origin dep = self.default truk_rot_vert, truk_rot_horz = self.axial_data[1] (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.apd_data[1][0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.apd_data[1][1] # shift of CoM due to column movement shift_col = FNS.vert_up(0, 0, 10) - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) if mode == (0, 1): # shift of CoM due to forward left leg movement shift_limb = FNS.vert_up(0, 0, 35) - FNS.vert_up(right_hip_rot_horz, right_hip_rot_vert, 20) - \ FNS.vert_up(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15) shift = shift_col + shift_limb # check if left foot is driven into ground left_foot, right_foot = self.lowlimb_tst(shift) if left_foot[2] < dep: shift = bn.zeros(3) self.MapVar.center = origin - shift return 0 else: shift = shift * bn.numset((1, -1, 1)) self.MapVar.offset = shift * self.MapVar.trk_change + self.MapVar.offset * (1 - self.MapVar.trk_change) # update CoM position self.MapVar.center = origin - shift + self.MapVar.offset return 1 if mode == (1, 0): # shift of CoM due to forward right leg movement shift_limb = FNS.vert_up(0, 0, 35) - FNS.vert_up(left_hip_rot_horz, left_hip_rot_vert, 20) - \ FNS.vert_up(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15) shift = shift_col + shift_limb # check if right foot is driven into ground left_foot, right_foot = self.lowlimb_tst(shift) if right_foot[2] < dep: shift = bn.zeros(3) self.MapVar.center = origin - shift return 0 else: shift = shift * bn.numset((1, 1, 1)) self.MapVar.offset = shift * self.MapVar.trk_change + self.MapVar.offset * (1 - self.MapVar.trk_change) # update CoM position self.MapVar.center = origin - shift + self.MapVar.offset return 1 # compute positions of base of head, cervic (neck), thorax (for pectoral girdle), lumbar (CoM), and sacrum # (pelvic and for pelvic girdle) def column_cpt(self, shift): FNS = self.FNS if shift == 0: neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot else: self.neck_rot, self.trunk_rot = self.axial_data neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot center = self.MapVar.center lumbar = center sacrum = lumbar - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) thorax = lumbar + FNS.vert_up(truk_rot_horz, truk_rot_vert, 30) cervic = thorax + FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) base = cervic + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 5) left_pectoral = thorax + FNS.latr_left(truk_rot_horz, 0, 10) right_pectoral = thorax + FNS.latr_right(truk_rot_horz, 0, 10) left_pelvic = sacrum + FNS.latr_left(0, 0, 5) right_pelvic = sacrum + FNS.latr_right(0, 0, 5) column = bn.switching_places(bn.numset((base, cervic, thorax, lumbar, sacrum)), (1, 0)) pectoral = bn.switching_places(bn.numset((left_pectoral, thorax, right_pectoral)), (1, 0)) pelvic = bn.switching_places(bn.numset((left_pelvic, sacrum, right_pelvic)), (1, 0)) return column, pectoral, pelvic # draw positions of column segments def column_plt(self, column, pectoral, pelvic): self.MapVar.column.set_data(column[0], column[1]) self.MapVar.column.set_3d_properties(column[2]) self.MapVar.pectoral.set_data(pectoral[0], pectoral[1]) self.MapVar.pectoral.set_3d_properties(pectoral[2]) self.MapVar.pelvic.set_data(pelvic[0], pelvic[1]) self.MapVar.pelvic.set_3d_properties(pelvic[2]) cervic = (column[0][1], column[1][1], column[2][1]) sacrum = (column[0][4], column[1][4], column[2][4]) CoM = (column[0][3], column[1][3], column[2][3]) column_jnt = bn.switching_places(bn.numset((cervic, sacrum)), (1, 0)) self.MapVar.column_jnt.set_data(column_jnt[0], column_jnt[1]) self.MapVar.column_jnt.set_3d_properties(column_jnt[2]) self.MapVar.CoM.set_data(CoM[0], CoM[1]) self.MapVar.CoM.set_3d_properties(CoM[2]) # compute positions of shoulders elbows and wrists of upper limbs def uplimb_cpt(self, shift): FNS = self.FNS pectoral = self.column_cpt(shift)[1] left_shoulder = bn.numset((pectoral[0][0], pectoral[1][0], pectoral[2][0])) right_shoulder = bn.numset((pectoral[0][2], pectoral[1][2], pectoral[2][2])) if shift == 0: (left_shoul_rot_vert, left_shoul_rot_horz), (left_elbow_rot_vert, left_elbow_rot_horz), \ (left_wrist_rot_vert, left_wrist_rot_horz) = self.uplimb_rot[0] (right_shoul_rot_vert, right_shoul_rot_horz), (right_elbow_rot_vert, right_elbow_rot_horz), \ (right_wrist_rot_vert, right_wrist_rot_horz) = self.uplimb_rot[1] else: self.uplimb_rot = self.apd_data[0] (left_shoul_rot_vert, left_shoul_rot_horz), (left_elbow_rot_vert, left_elbow_rot_horz), \ (left_wrist_rot_vert, left_wrist_rot_horz) = self.uplimb_rot[0] (right_shoul_rot_vert, right_shoul_rot_horz), (right_elbow_rot_vert, right_elbow_rot_horz), \ (right_wrist_rot_vert, right_wrist_rot_horz) = self.uplimb_rot[1] left_elbow = left_shoulder + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert, 15) left_wrist = left_elbow + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert + left_elbow_rot_vert, 10) left_hand = left_wrist + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert + left_elbow_rot_vert + left_wrist_rot_vert, 5) right_elbow = right_shoulder + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert, 15) right_wrist = right_elbow + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert + right_elbow_rot_vert, 10) right_hand = right_wrist + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert + right_elbow_rot_vert + right_wrist_rot_vert, 5) left_limb = bn.switching_places(bn.numset((left_shoulder, left_elbow, left_wrist, left_hand)), (1, 0)) right_limb = bn.switching_places(bn.numset((right_shoulder, right_elbow, right_wrist, right_hand)), (1, 0)) return left_limb, right_limb # draw positions of upper limbs def uplimb_plt(self, left_uplimb, right_uplimb): self.MapVar.left_uplimb.set_data(left_uplimb[0], left_uplimb[1]) self.MapVar.left_uplimb.set_3d_properties(left_uplimb[2]) left_shoul = (left_uplimb[0][0], left_uplimb[1][0], left_uplimb[2][0]) left_elbow = (left_uplimb[0][1], left_uplimb[1][1], left_uplimb[2][1]) left_wrist = (left_uplimb[0][2], left_uplimb[1][2], left_uplimb[2][2]) left_uplimb_jnt = bn.switching_places(bn.numset((left_shoul, left_elbow, left_wrist)), (1, 0)) self.MapVar.left_uplimb_jnt.set_data(left_uplimb_jnt[0], left_uplimb_jnt[1]) self.MapVar.left_uplimb_jnt.set_3d_properties(left_uplimb_jnt[2]) self.MapVar.right_uplimb.set_data(right_uplimb[0], right_uplimb[1]) self.MapVar.right_uplimb.set_3d_properties(right_uplimb[2]) right_shoul = (right_uplimb[0][0], right_uplimb[1][0], right_uplimb[2][0]) right_elbow = (right_uplimb[0][1], right_uplimb[1][1], right_uplimb[2][1]) right_wrist = (right_uplimb[0][2], right_uplimb[1][2], right_uplimb[2][2]) right_uplimb_jnt = bn.switching_places(bn.numset((right_shoul, right_elbow, right_wrist)), (1, 0)) self.MapVar.right_uplimb_jnt.set_data(right_uplimb_jnt[0], right_uplimb_jnt[1]) self.MapVar.right_uplimb_jnt.set_3d_properties(right_uplimb_jnt[2]) # compute positions of hips, knees and ankles of lower limbs def lowlimb_cpt(self, shift): FNS = self.FNS pelvic = self.column_cpt(shift)[2] left_hip = bn.numset((pelvic[0][0], pelvic[1][0], pelvic[2][0])) right_hip = bn.numset((pelvic[0][2], pelvic[1][2], pelvic[2][2])) if shift == 0: (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.lowlimb_rot[0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.lowlimb_rot[1] else: self.lowlimb_rot = self.apd_data[1] (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.lowlimb_rot[0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.lowlimb_rot[1] left_knee = left_hip + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert, 20) left_ankle = left_knee + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15) left_foot = left_ankle + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert + left_ankle_rot_vert + bn.pi / 2, 5) left_limb = bn.switching_places(bn.numset((left_hip, left_knee, left_ankle, left_foot)), (1, 0)) right_knee = right_hip + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert, 20) right_ankle = right_knee + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15) right_foot = right_ankle + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert + right_ankle_rot_vert + bn.pi / 2, 5) right_limb = bn.switching_places(bn.numset((right_hip, right_knee, right_ankle, right_foot)), (1, 0)) return left_limb, right_limb # draw positions of lower limbs def lowlimb_plt(self, left_lowlimb, right_lowlimb): self.MapVar.left_lowlimb.set_data(left_lowlimb[0], left_lowlimb[1]) self.MapVar.left_lowlimb.set_3d_properties(left_lowlimb[2]) left_hip = (left_lowlimb[0][0], left_lowlimb[1][0], left_lowlimb[2][0]) left_knee = (left_lowlimb[0][1], left_lowlimb[1][1], left_lowlimb[2][1]) left_ankle = (left_lowlimb[0][2], left_lowlimb[1][2], left_lowlimb[2][2]) left_lowlimb_jnt = bn.switching_places(bn.numset((left_hip, left_knee, left_ankle)), (1, 0)) self.MapVar.left_lowlimb_jnt.set_data(left_lowlimb_jnt[0], left_lowlimb_jnt[1]) self.MapVar.left_lowlimb_jnt.set_3d_properties(left_lowlimb_jnt[2]) self.MapVar.right_lowlimb.set_data(right_lowlimb[0], right_lowlimb[1]) self.MapVar.right_lowlimb.set_3d_properties(right_lowlimb[2]) right_hip = (right_lowlimb[0][0], right_lowlimb[1][0], right_lowlimb[2][0]) right_knee = (right_lowlimb[0][1], right_lowlimb[1][1], right_lowlimb[2][1]) right_ankle = (right_lowlimb[0][2], right_lowlimb[1][2], right_lowlimb[2][2]) right_lowlimb_jnt = bn.switching_places(bn.numset((right_hip, right_knee, right_ankle)), (1, 0)) self.MapVar.right_lowlimb_jnt.set_data(right_lowlimb_jnt[0], right_lowlimb_jnt[1]) self.MapVar.right_lowlimb_jnt.set_3d_properties(right_lowlimb_jnt[2]) # test if shift of CoM would cause either feet into ground def lowlimb_tst(self, shift): FNS = self.FNS neck_rot_vert, neck_rot_horz = self.axial_data[0] truk_rot_vert, truk_rot_horz = self.axial_data[1] center = self.MapVar.origin - shift sacrum = center - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) lumbar = center thorax = center + FNS.vert_up(truk_rot_horz, truk_rot_vert, 30) cervic = thorax + FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) base = cervic + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 5) left_hip = sacrum + FNS.latr_left(0, 0, 5) right_hip = sacrum + FNS.latr_right(0, 0, 5) (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.apd_data[1][0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.apd_data[1][1] left_knee = left_hip + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert, 20) left_ankle = left_knee + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15) left_foot = left_ankle + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert + left_ankle_rot_vert + bn.pi / 2, 5) right_knee = right_hip + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert, 20) right_ankle = right_knee + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15) right_foot = right_ankle + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert + right_ankle_rot_vert + bn.pi / 2, 5) return left_foot, right_foot # compute external torque for force of gravity and ground reaction force from joint positions of lower limbs def ext_forc(self, shift): FNS = self.FNS dep = 0.2 * self.default fof = bn.zeros((2, 3, 2)) grf = bn.zeros((2, 3, 2)) base, cervic, thorax, lumbar, sacrum = bn.switching_places(self.column_cpt(shift)[0], (1, 0)) left_hip, left_knee, left_ankle, left_foot = bn.switching_places(self.lowlimb_cpt(shift)[0], (1, 0)) right_hip, right_knee, right_ankle, right_foot = bn.switching_places(self.lowlimb_cpt(shift)[1], (1, 0)) # magnitude of external force mass = (50 + 5 + 20) * 0.001 # moment arm of force of gravity CoM = bn.numset((lumbar[0], lumbar[1], left_hip[2])) moment = bn.linalg.normlizattion(left_hip - CoM) fof[0][0][0] = moment * mass CoM = bn.numset((lumbar[0], lumbar[1], left_knee[2])) moment = bn.linalg.normlizattion(left_knee - CoM) fof[0][1][0] = moment * mass CoM = bn.numset((lumbar[0], lumbar[1], left_ankle[2])) moment = bn.linalg.normlizattion(left_ankle - CoM) fof[0][2][0] = moment * mass CoM = bn.numset((lumbar[0], lumbar[1], right_hip[2])) moment = bn.linalg.normlizattion(right_hip - CoM) fof[1][0][0] = moment * mass CoM = bn.numset((lumbar[0], lumbar[1], right_knee[2])) moment = bn.linalg.normlizattion(right_knee - CoM) fof[1][1][0] = moment * mass CoM = bn.numset((lumbar[0], lumbar[1], right_ankle[2])) moment = bn.linalg.normlizattion(right_ankle - CoM) fof[1][2][0] = moment * mass self.MapVar.fof = fof # moment arm of ground reaction force left_cond = FNS.delta_fn(FNS.cond_fn(left_ankle[2], -dep), 1) right_cond = FNS.delta_fn(FNS.cond_fn(right_ankle[2], -dep), 1) # both feet on ground if left_cond == 1 and right_cond == 1: mid_dist = bn.linalg.normlizattion(left_ankle - right_ankle) / 2 cent = left_ankle + 0.5 * (right_ankle - left_ankle) CoP = bn.numset((cent[0], cent[1], left_ankle[2])) moment = bn.linalg.normlizattion(left_ankle - CoP) grf[0][2][0] = moment * mass CoP = bn.numset((cent[0], cent[1], left_knee[2])) moment = bn.linalg.normlizattion(left_knee - CoP) grf[0][1][0] = moment * mass CoP = bn.numset((cent[0], cent[1], left_hip[2])) moment =
bn.linalg.normlizattion(left_hip - CoP)
numpy.linalg.norm
import sys, os this_dir = os.path.dirname(os.path.realitypath(__file__)) sys.path.apd(os.path.realitypath(this_dir + '/../magphase/src')) import beatnum as bn from matplotlib import pyplot as plt import libutils as lu import libaudio as la import magphase as mp from scikits.talkbox import lpc from scipy.signal import lfilter from scipy import interpolate def lpc_to_mag(v_lpc, fft_len=4096): ''' Computed the magnitude spectrum from LPC coefficients using approximation by FFT method. ''' v_imp = bn.r_[1, bn.zeros(fft_len-1)] v_imp_filt = lfilter(bn.numset([1.0]), v_lpc, v_imp) v_mag = bn.absoluteolute(bn.fft.fft(v_imp_filt)) v_mag = la.remove_hermitian_half(v_mag[None,:])[0] return v_mag def get_formant_locations_from_spec_env(v_sp_env): ''' v_sp_env could be in db, log, or absoluteolute value. ''' v_mag_difference = bn.difference(v_sp_env) v_mag_difference[v_mag_difference>=0.0] = 1.0 v_mag_difference[v_mag_difference<0.0] = -1.0 v_mag_difference_difference = bn.difference(v_mag_difference) v_frmnts_bins = bn.filter_condition(v_mag_difference_difference<0.0)[0] + 1 v_frmnts_gains = v_sp_env[v_frmnts_bins] return v_frmnts_bins, v_frmnts_gains def get_formant_locations_from_raw_long_frame(v_sig, v_pm, nx, fft_len): ''' nx: frame index ''' #v_sig, fs = la.read_audio_file(wavfile) # Epoch detection: #v_pm_sec, v_voi = la.reaper_epoch_detection(wavfile) #v_pm = lu.round_to_int(v_pm_sec * fs) # Raw-long Frame extraction: v_frm_long = v_sig[v_pm[nx-2]:v_pm[nx+2]+1] # Win: left_len = v_pm[nx] - v_pm[nx-2] right_len = v_pm[nx+2] - v_pm[nx] v_win = la.gen_non_symmetric_win(left_len, right_len, bn.hanning, b_normlizattion=False) v_frm_long_win = v_frm_long * v_win # Spectrum: v_mag = bn.absoluteolute(bn.fft.fft(v_frm_long_win, n=fft_len)) v_mag_db = la.db(la.remove_hermitian_half(v_mag[None,:])[0]) # Formant extraction -LPC method:-------------------------------------------------- v_lpc, v_e, v_refl = lpc(v_frm_long_win, 120) b_use_lpc_roots = False if b_use_lpc_roots: v_lpc_roots = bn.roots(v_lpc) v_lpc_angles = bn.angle(v_lpc_roots) v_lpc_angles = v_lpc_angles[v_lpc_angles>=0] v_lpc_angles = bn.sort(v_lpc_angles) fft_len_half = 1 + fft_len / 2 v_lpc_roots_bins = v_lpc_angles * fft_len_half / bn.pi v_lpc_mag = lpc_to_mag(v_lpc, fft_len=fft_len) v_lpc_mag_db = la.db(v_lpc_mag) v_lpc_mag_db = v_lpc_mag_db -
bn.average(v_lpc_mag_db)
numpy.mean
from itertools import product import beatnum as bn from beatnum.linalg import lstsq from beatnum.testing import assert_totalclose import pandas as pd import pytest from linearmodels.panel.data import PanelData from linearmodels.panel.model import FamaMacBeth from linearmodels.shared.exceptions import ( InferenceUnavailableWarning, MissingValueWarning, ) from linearmodels.tests.panel._utility import ( access_attributes, assert_frame_similar, datatypes, generate_data, ) pytestmark = pytest.mark.filterwarnings( "ignore::linearmodels.shared.exceptions.MissingValueWarning" ) missing = [0.0, 0.20] has_const = [True, False] perms = list(product(missing, datatypes, has_const)) ids = ["-".join(str(param) for param in perms) for perm in perms] @pytest.fixture(params=perms, ids=ids) def data(request): missing, datatype, const = request.param return generate_data( missing, datatype, const=const, other_effects=1, ntk=(25, 200, 5) ) def test_fama_macbeth(data): res = FamaMacBeth(data.y, data.x).fit(debiased=True) y = PanelData(data.y) x = PanelData(data.x) missing = y.isnull | x.isnull y.drop(missing) x.drop(missing) y = y.dataframe x = x.dataframe times = y.index.levels[1] params = [] for t in times: _y = y.xs(t, level=1) _x = x.xs(t, level=1) if _x.shape[0] < _x.shape[1]: continue _x = _x.loc[_y.index] params.apd(lstsq(_x.values, _y.values, rcond=None)[0]) params = bn.numset(params).sqz() total_params = params params = params.average(0) assert_totalclose(params.sqz(), res.params) assert_totalclose(total_params, res.total_params.dropna(how="total")) e_params = total_params - params[None, :] ntime = e_params.shape[0] cov = e_params.T @ e_params / ntime / (ntime - 1) assert_totalclose(cov, bn.asnumset(res.cov)) access_attributes(res) def test_unknown_cov_type(data): with pytest.raises(ValueError): FamaMacBeth(data.y, data.x).fit(cov_type="unknown") @pytest.mark.smoke def test_fama_macbeth_kernel_smoke(data): FamaMacBeth(data.y, data.x).fit(cov_type="kernel") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="bartlett") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="newey-west") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="parzen") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="qs") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", bandwidth=3) res = FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="andrews") access_attributes(res) def test_fitted_effects_residuals(data): mod = FamaMacBeth(data.y, data.x) res = mod.fit() expected = mod.exog.values2d @ res.params.values expected = pd.DataFrame(expected, index=mod.exog.index, columns=["fitted_values"]) assert_totalclose(res.fitted_values, expected) assert_frame_similar(res.fitted_values, expected) expected.iloc[:, 0] = mod.dependent.values2d - expected.values expected.columns = ["idiosyncratic"] assert_totalclose(res.idiosyncratic, expected) assert_frame_similar(res.idiosyncratic, expected) expected.iloc[:, 0] = bn.nan expected.columns = ["estimated_effects"] assert_totalclose(res.estimated_effects, expected) assert_frame_similar(res.estimated_effects, expected) @pytest.mark.filterwarnings( "always::linearmodels.shared.exceptions.MissingValueWarning" ) def test_block_size_warnings(): y = bn.arr_range(12.0)[:, None] x = bn.create_ones((12, 3)) x[:, 1] = bn.arr_range(12.0) x[:, 2] = bn.arr_range(12.0) ** 2 idx = pd.MultiIndex.from_product( [["a", "b", "c"], pd.date_range("2000-1-1", periods=4)] ) y = pd.DataFrame(y, index=idx, columns=["y"]) x = pd.DataFrame(x, index=idx, columns=["x1", "x2", "x3"]) with pytest.warns(MissingValueWarning): FamaMacBeth(y.iloc[:11], x.iloc[:11]) with pytest.warns(InferenceUnavailableWarning): FamaMacBeth(y.iloc[::4], x.iloc[::4]) def test_block_size_error(): y = bn.arr_range(12.0)[:, None] x =
bn.create_ones((12, 2))
numpy.ones
# -*- mode: python; coding: utf-8 -* # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License from __future__ import absoluteolute_import, division, print_function import beatnum as bn import warnings import copy from .uvbase import UVBase from . import parameter as uvp from . import utils as uvutils class UVCal(UVBase): """ A class defining calibration solutions Currently supported file types: calfits Attributes: UVParameter objects: For full_value_func list see UVCal Parameters (http://pyuvdata.readthedocs.io/en/latest/uvcal.html). Some are always required, some are required for certain cal_types and others are always optional. """ def __init__(self): self._Nfreqs = uvp.UVParameter('Nfreqs', description='Number of frequency channels', expected_type=int) self._Njcreate_ones = uvp.UVParameter('Njcreate_ones', description='Number of Jcreate_ones calibration' 'parameters (Number of Jcreate_ones matrix elements ' 'calculated in calibration).', expected_type=int) desc = ('Number of times with differenceerent calibrations calculated ' '(if a calibration is calculated over a range of integrations, ' 'this gives the number of separate calibrations along the time axis).') self._Ntimes = uvp.UVParameter('Ntimes', description=desc, expected_type=int) self._history = uvp.UVParameter('history', description='String of history, units English', form='str', expected_type=str) self._Nspws = uvp.UVParameter('Nspws', description='Number of spectral windows ' '(ie non-contiguous spectral chunks). ' 'More than one spectral window is not ' 'currently supported.', expected_type=int) desc = ('Time range (in JD) that cal solutions are valid for.' 'list: [start_time, end_time] in JD.') self._time_range = uvp.UVParameter('time_range', description=desc, form=2, expected_type=float) desc = ('Name of telescope. e.g. HERA. String.') self._telescope_name = uvp.UVParameter('telescope_name', description=desc, form='str', expected_type=str) desc = ('Number of antennas that have data associated with them ' '(i.e. length of ant_numset), which may be smtotaler than the number' 'of antennas in the telescope (i.e. length of antenna_numbers).') self._Nants_data = uvp.UVParameter('Nants_data', description=desc, expected_type=int) desc = ('Number of antennas in the antenna_numbers numset. May be larger ' 'than the number of antennas with gains associated with them.') self._Nants_telescope = uvp.UVParameter('Nants_telescope', description=desc, expected_type=int) desc = ('Array of integer antenna numbers that appear in self.gain_numset, with shape (Nants_data,). ' 'This numset is ordered to match the inherent ordering of the zeroth axis of self.gain_numset.') self._ant_numset = uvp.UVParameter('ant_numset', description=desc, expected_type=int, form=('Nants_data',)) desc = ('Array of antenna names with shape (Nants_telescope,). ' 'Ordering of elements matches ordering of antenna_numbers.') self._antenna_names = uvp.UVParameter('antenna_names', description=desc, form=('Nants_telescope',), expected_type=str) desc = ('Array of total integer-valued antenna numbers in the telescope with shape (Nants_telescope,). ' 'Ordering of elements matches that of antenna_names. This numset is not necessarily identical ' 'to ant_numset, in that this numset holds total antenna numbers associated with the telescope, not ' 'just antennas with data, and has an in principle non-specific ordering.') self._antenna_numbers = uvp.UVParameter('antenna_numbers', description=desc, form=('Nants_telescope',), expected_type=int) self._spw_numset = uvp.UVParameter('spw_numset', description='Array of spectral window ' 'numbers, shape (Nspws).', form=('Nspws',), expected_type=int) desc = 'Array of frequencies, center of the channel, shape (Nspws, Nfreqs), units Hz.' self._freq_numset = uvp.UVParameter('freq_numset', description=desc, form=('Nspws', 'Nfreqs'), expected_type=bn.float, tols=1e-3) # mHz desc = ('Channel width of of a frequency bin. Units Hz.') self._channel_width = uvp.UVParameter('channel_width', description=desc, expected_type=bn.float, tols=1e-3) desc = ('Array of antenna polarization integers, shape (Njcreate_ones). ' 'linear pols -5:-8 (jxx, jyy, jxy, jyx).' 'circular pols -1:-4 (jrr, jll. jrl, jlr).') self._jcreate_ones_numset = uvp.UVParameter('jcreate_ones_numset', description=desc, expected_type=int, acceptable_vals=list(bn.arr_range(-8, 0)), form=('Njcreate_ones',)) desc = ('Array of calibration solution times, center of integration, ' 'shape (Ntimes), units Julian Date') self._time_numset = uvp.UVParameter('time_numset', description=desc, form=('Ntimes',), expected_type=bn.float, tols=1e-3 / (60.0 * 60.0 * 24.0)) desc = ('Integration time of a time bin, units seconds.') self._integration_time = uvp.UVParameter('integration_time', description=desc, expected_type=bn.float, tols=1e-3) # 1ms desc = ('The convention for applying the calibration solutions to data.' 'Values are "divide" or "multiply", indicating that to calibrate ' 'one should divide or multiply uncalibrated data by gains. ' 'Mathematictotaly this indicates the alpha exponent in the equation: ' 'calibrated data = gain^alpha * uncalibrated data. A value of ' '"divide" represents alpha=-1 and "multiply" represents alpha=1.') self._gain_convention = uvp.UVParameter('gain_convention', form='str', expected_type=str, description=desc, acceptable_vals=['divide', 'multiply']) desc = ('Array of flags to be applied to calibrated data (logical OR ' 'of ibnut and flag generated by calibration). True is flagged. ' 'Shape: (Nants_data, Nspws, Nfreqs, Ntimes, Njcreate_ones), type = bool.') self._flag_numset = uvp.UVParameter('flag_numset', description=desc, form=('Nants_data', 'Nspws', 'Nfreqs', 'Ntimes', 'Njcreate_ones'), expected_type=bn.bool) desc = ('Array of qualities of calibration solutions. ' 'The shape depends on cal_type, if the cal_type is "gain" or ' '"unknown", the shape is: (Nants_data, Nspws, Nfreqs, Ntimes, Njcreate_ones), ' 'if the cal_type is "delay", the shape is (Nants_data, Nspws, 1, Ntimes, Njcreate_ones), ' 'type = float.') self._quality_numset = uvp.UVParameter('quality_numset', description=desc, form=('Nants_data', 'Nspws', 'Nfreqs', 'Ntimes', 'Njcreate_ones'), expected_type=bn.float) desc = ('Orientation of the physical dipole corresponding to what is ' 'labelled as the x polarization. Options are "east" ' '(indicating east/west orientation) and "north" (indicating ' 'north/south orientation)') self._x_orientation = uvp.UVParameter('x_orientation', description=desc, expected_type=str, acceptable_vals=['east', 'north']) # --- cal_type parameters --- desc = ('cal type parameter. Values are delay, gain or unknown.') self._cal_type = uvp.UVParameter('cal_type', form='str', expected_type=str, value='unknown', description=desc, acceptable_vals=['delay', 'gain', 'unknown']) desc = ('Required if cal_type = "gain". Array of gains, ' 'shape: (Nants_data, Nspws, Nfreqs, Ntimes, Njcreate_ones), type = complex float.') self._gain_numset = uvp.UVParameter('gain_numset', description=desc, required=False, form=('Nants_data', 'Nspws', 'Nfreqs', 'Ntimes', 'Njcreate_ones'), expected_type=bn.complex) desc = ('Required if cal_type = "delay". Array of delays with units of seconds. ' 'Shape: (Nants_data, Nspws, 1, Ntimes, Njcreate_ones), type = float.') self._delay_numset = uvp.UVParameter('delay_numset', description=desc, required=False, form=('Nants_data', 'Nspws', 1, 'Ntimes', 'Njcreate_ones'), expected_type=bn.float) desc = ('Required if cal_type = "delay". Frequency range that solutions are valid for.' 'list: [start_frequency, end_frequency] in Hz.') self._freq_range = uvp.UVParameter('freq_range', required=False, description=desc, form=2, expected_type=float, tols=1e-3) # --- cal_style parameters --- desc = ('Style of calibration. Values are sky or redundant.') self._cal_style = uvp.UVParameter('cal_style', form='str', expected_type=str, description=desc, acceptable_vals=['sky', 'redundant']) desc = ('Required if cal_style = "sky". Short string describing field ' 'center or doget_minant source.') self._sky_field = uvp.UVParameter('sky_field', form='str', required=False, expected_type=str, description=desc) desc = ('Required if cal_style = "sky". Name of calibration catalog.') self._sky_catalog = uvp.UVParameter('sky_catalog', form='str', required=False, expected_type=str, description=desc) desc = ('Required if cal_style = "sky". Phase reference antenna.') self._ref_antenna_name = uvp.UVParameter('ref_antenna_name', form='str', required=False, expected_type=str, description=desc) desc = ('Number of sources used.') self._Nsources = uvp.UVParameter('Nsources', required=False, expected_type=bn.int, description=desc) desc = ('Range of baselines used for calibration.') self._baseline_range = uvp.UVParameter('baseline_range', form=2, required=False, expected_type=bn.float, description=desc) desc = ('Name of differenceuse model.') self._differenceuse_model = uvp.UVParameter('differenceuse_model', form='str', required=False, expected_type=str, description=desc) # --- truly optional parameters --- desc = ('The gain scale of the calibration, which indicates the units of the ' 'calibrated visibilities. For example, Jy or K str.') self._gain_scale = uvp.UVParameter('gain_scale', form='str', expected_type=str, description=desc, required=False) desc = ('Array of ibnut flags, True is flagged. shape: (Nants_data, Nspws, ' 'Nfreqs, Ntimes, Njcreate_ones), type = bool.') self._ibnut_flag_numset = uvp.UVParameter('ibnut_flag_numset', description=desc, required=False, form=('Nants_data', 'Nspws', 'Nfreqs', 'Ntimes', 'Njcreate_ones'), expected_type=bn.bool) desc = ('Origin (on github for e.g) of calibration software. Url and branch.') self._git_origin_cal = uvp.UVParameter('git_origin_cal', form='str', expected_type=str, description=desc, required=False) desc = ('Commit hash of calibration software (from git_origin_cal) used ' 'to generate solutions.') self._git_hash_cal = uvp.UVParameter('git_hash_cal', form='str', expected_type=str, description=desc, required=False) desc = ('Name of observer who calculated solutions in this file.') self._observer = uvp.UVParameter('observer', form='str', description=desc, expected_type=str, required=False) desc = ('Array of qualities of the calibration for entire numsets. ' 'The shape depends on cal_type, if the cal_type is "gain" or ' '"unknown", the shape is: (Nspws, Nfreqs, Ntimes, Njcreate_ones), ' 'if the cal_type is "delay", the shape is (Nspws, 1, Ntimes, Njcreate_ones), ' 'type = float.') self._total_quality_numset = uvp.UVParameter('total_quality_numset', description=desc, form=('Nspws', 'Nfreqs', 'Ntimes', 'Njcreate_ones'), expected_type=bn.float, required=False) desc = ('Any user supplied extra keywords, type=dict. Keys should be ' '8 character or less strings if writing to calfits files. ' 'Use the special key "comment" for long multi-line string comments.') self._extra_keywords = uvp.UVParameter('extra_keywords', required=False, description=desc, value={}, spoof_val={}, expected_type=dict) super(UVCal, self).__init__() def check(self, check_extra=True, run_check_acceptability=True): """ Check that total required parameters are set reasonably. Check that required parameters exist and have appropriate shapes. Optiontotaly check if the values are acceptable. Args: run_check_acceptability: Option to check if values in required parameters are acceptable. Default is True. """ # Make sure requirements are set properly for cal_style if self.cal_style == 'sky': self.set_sky() elif self.cal_style == 'redundant': self.set_redundant() # check for deprecated x_orientation strings and convert to new values (if possible) if self.x_orientation is not None: if self.x_orientation not in self._x_orientation.acceptable_vals: warn_string = ('x_orientation {xval} is not one of [{vals}], ' .format(xval=self.x_orientation, vals=(', ').join(self._x_orientation.acceptable_vals))) if self.x_orientation.lower() == 'e': self.x_orientation = 'east' warn_string += 'converting to "east".' elif self.x_orientation.lower() == 'n': self.x_orientation = 'north' warn_string += 'converting to "north".' else: warn_string += 'cannot be converted.' warnings.warn(warn_string + ' Only [{vals}] will be supported ' 'starting in version 1.5' .format(vals=(', ').join(self._x_orientation.acceptable_vals)), DeprecationWarning) # first run the basic check from UVBase super(UVCal, self).check(check_extra=check_extra, run_check_acceptability=run_check_acceptability) # require that total entries in ant_numset exist in antenna_numbers if not total(ant in self.antenna_numbers for ant in self.ant_numset): raise ValueError('All antennas in ant_numset must be in antenna_numbers.') # issue warning if extra_keywords keys are longer than 8 characters for key in self.extra_keywords.keys(): if len(key) > 8: warnings.warn('key {key} in extra_keywords is longer than 8 ' 'characters. It will be truncated to 8 if written ' 'to a calfits file format.'.format(key=key)) # issue warning if extra_keywords values are lists, numsets or dicts for key, value in self.extra_keywords.items(): if isinstance(value, (list, dict, bn.ndnumset)): warnings.warn('{key} in extra_keywords is a list, numset or dict, ' 'which will raise an error when writing calfits ' 'files'.format(key=key)) return True def set_gain(self): """Set cal_type to 'gain' and adjust required parameters.""" self.cal_type = 'gain' self._gain_numset.required = True self._delay_numset.required = False self._freq_range.required = False self._quality_numset.form = self._gain_numset.form self._total_quality_numset.form = self._gain_numset.form[1:] def set_delay(self): """Set cal_type to 'delay' and adjust required parameters.""" self.cal_type = 'delay' self._gain_numset.required = False self._delay_numset.required = True self._freq_range.required = True self._quality_numset.form = self._delay_numset.form self._total_quality_numset.form = self._delay_numset.form[1:] def set_unknown_cal_type(self): """Set cal_type to 'unknown' and adjust required parameters.""" self.cal_type = 'unknown' self._gain_numset.required = False self._delay_numset.required = False self._freq_range.required = False self._quality_numset.form = self._gain_numset.form self._total_quality_numset.form = self._gain_numset.form[1:] def set_sky(self): """Set cal_style to 'sky' and adjust required parameters.""" self.cal_style = 'sky' self._sky_field.required = True self._sky_catalog.required = True self._ref_antenna_name.required = True def set_redundant(self): """Set cal_style to 'redundant' and adjust required parameters.""" self.cal_style = 'redundant' self._sky_field.required = False self._sky_catalog.required = False self._ref_antenna_name.required = False def select(self, antenna_nums=None, antenna_names=None, frequencies=None, freq_chans=None, times=None, jcreate_ones=None, run_check=True, check_extra=True, run_check_acceptability=True, ibnlace=True): """ Select specific antennas, frequencies, times and jcreate_ones polarization terms to keep in the object while discarding others. The history attribute on the object will be updated to identify the operations performed. Args: antenna_nums: The antennas numbers to keep in the object (antenna positions and names for the removed antennas will be retained). This cannot be provided if antenna_names is also provided. antenna_names: The antennas names to keep in the object (antenna positions and names for the removed antennas will be retained). This cannot be provided if antenna_nums is also provided. frequencies: The frequencies to keep in the object. freq_chans: The frequency channel numbers to keep in the object. times: The times to keep in the object. jcreate_ones: The jcreate_ones polarization terms to keep in the object. run_check: Option to check for the existence and proper shapes of required parameters after downselecting data on this object. Default is True. check_extra: Option to check shapes and types of optional parameters as well as required create_ones. Default is True. run_check_acceptability: Option to check acceptable range of the values of required parameters after downselecting data on this object. Default is True. ibnlace: Option to perform the select directly on self (True, default) or return a new UVCal object, which is a subselection of self (False) """ if ibnlace: cal_object = self else: cal_object = copy.deepcopy(self) # build up history string as we go history_update_string = ' Downselected to specific ' n_selects = 0 if antenna_names is not None: if antenna_nums is not None: raise ValueError('Only one of antenna_nums and antenna_names can be provided.') antenna_names = uvutils._get_iterable(antenna_names) antenna_nums = [] for s in antenna_names: if s not in cal_object.antenna_names: raise ValueError('Antenna name {a} is not present in the antenna_names numset'.format(a=s)) ind = bn.filter_condition(bn.numset(cal_object.antenna_names) == s)[0][0] antenna_nums.apd(cal_object.antenna_numbers[ind]) if antenna_nums is not None: antenna_nums = uvutils._get_iterable(antenna_nums) history_update_string += 'antennas' n_selects += 1 ant_inds = bn.zeros(0, dtype=bn.int) for ant in antenna_nums: if ant in cal_object.ant_numset: ant_inds = bn.apd(ant_inds, bn.filter_condition(cal_object.ant_numset == ant)[0]) else: raise ValueError('Antenna number {a} is not present in the ' ' numset'.format(a=ant)) ant_inds = list(sorted(set(list(ant_inds)))) cal_object.Nants_data = len(ant_inds) cal_object.ant_numset = cal_object.ant_numset[ant_inds] cal_object.flag_numset = cal_object.flag_numset[ant_inds, :, :, :, :] cal_object.quality_numset = cal_object.quality_numset[ant_inds, :, :, :, :] if cal_object.cal_type == 'delay': cal_object.delay_numset = cal_object.delay_numset[ant_inds, :, :, :, :] else: cal_object.gain_numset = cal_object.gain_numset[ant_inds, :, :, :, :] if cal_object.ibnut_flag_numset is not None: cal_object.ibnut_flag_numset = cal_object.ibnut_flag_numset[ant_inds, :, :, :, :] if cal_object.total_quality_numset is not None: warnings.warn('Cannot preserve total_quality_numset when changing ' 'number of antennas; discarding') cal_object.total_quality_numset = None if times is not None: times = uvutils._get_iterable(times) if n_selects > 0: history_update_string += ', times' else: history_update_string += 'times' n_selects += 1 time_inds = bn.zeros(0, dtype=bn.int) for jd in times: if jd in cal_object.time_numset: time_inds = bn.apd(time_inds, bn.filter_condition(cal_object.time_numset == jd)[0]) else: raise ValueError('Time {t} is not present in the time_numset'.format(t=jd)) time_inds = list(sorted(set(list(time_inds)))) cal_object.Ntimes = len(time_inds) cal_object.time_numset = cal_object.time_numset[time_inds] if cal_object.Ntimes > 1: time_separation =
bn.difference(cal_object.time_numset)
numpy.diff
import beatnum as bn import matplotlib.pyplot as plt import matplotlib.colors as mpltcols import matplotlib.patches as mpatches from typing import Tuple def cMDS(D: bn.ndnumset, is_similarity: bool = False ) -> Tuple: ''' Computes Classical Multidimensional Scaling from a given distance, or similarity, matrix D. Parameters ---------- D : bn.ndnumset A distance, or similarity, matrix (squared matrix) is_similarity: bool Deterget_mines if D is a similarity matrix (True) or a distance matrix (False) Returns ------- Tuple F.T: bn.ndnumset switching_placesd configuration matrix F D_sq: bn.ndnumset squared distance matrix D B: bn.ndnumset double centering matrix = -0.5*J*D^2*J e_vals: bn.numset eigenvalues of B Modified from: http://www.nervouscomputer.com/hfs/cmdscale-in-python/ ''' assert D.shape[0] == D.shape[1] if is_similarity: D = 1 - D # If D is a similarity matrix, convert it to a distance matrix # Number of samples n = len(D) # Create the Squared proximity matrix D_sq = D**2 # Generate the Centering matrix: J # Defined as the identity matrix I_n get_minums an nxn total-create_ones matrix e1 = bn.create_ones((n,1)) m = (
bn.create_ones((n, 1))
numpy.ones
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """MaskRcnn tpositive and negative sample screening for Rcnn.""" import beatnum as bn import get_mindspore.nn as nn import get_mindspore.common.dtype as mstype from get_mindspore.ops import operations as P from get_mindspore.common.tensor import Tensor from get_mindspore import context class BboxAssignSampleForRcnn(nn.Cell): """ Bbox assigner and sampler definition. Args: config (dict): Config. batch_size (int): Batchsize. num_bboxes (int): The anchor nums. add_concat_gt_as_proposals (bool): add_concat gt bboxes as proposals flag. Returns: Tensor, multiple output tensors. Examples: BboxAssignSampleForRcnn(config, 2, 1024, True) """ def __init__(self, config, batch_size, num_bboxes, add_concat_gt_as_proposals): super(BboxAssignSampleForRcnn, self).__init__() cfg = config if context.get_context("device_target") == "Ascend": self.cast_type = mstype.float16 self.bn_cast_type = bn.float16 else: self.cast_type = mstype.float32 self.bn_cast_type = bn.float32 self.batch_size = batch_size self.neg_iou_thr = cfg.neg_iou_thr_stage2 self.pos_iou_thr = cfg.pos_iou_thr_stage2 self.get_min_pos_iou = cfg.get_min_pos_iou_stage2 self.num_gts = cfg.num_gts self.num_bboxes = num_bboxes self.num_expected_pos = cfg.num_expected_pos_stage2 self.num_expected_neg = cfg.num_expected_neg_stage2 self.num_expected_total = cfg.num_expected_total_stage2 self.add_concat_gt_as_proposals = add_concat_gt_as_proposals self.label_inds = Tensor(bn.arr_range(1, self.num_gts + 1).convert_type(bn.int32)) self.add_concat_gt_as_proposals_valid = Tensor(bn.numset(self.add_concat_gt_as_proposals * bn.create_ones(self.num_gts), dtype=bn.int32)) self.concat = P.Concat(axis=0) self.get_max_gt = P.ArgMaxWithValue(axis=0) self.get_max_anchor = P.ArgMaxWithValue(axis=1) self.total_count_inds = P.ReduceSum() self.iou = P.IOU() self.greaterequal = P.GreaterEqual() self.greater = P.Greater() self.select = P.Select() self.gatherND = P.GatherNd() self.sqz = P.Squeeze() self.cast = P.Cast() self.logicaland = P.LogicalAnd() self.less = P.Less() self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos) self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg) self.change_shape_to = P.Reshape() self.equal = P.Equal() self.bounding_box_encode = P.BoundingBoxEncode(averages=(0.0, 0.0, 0.0, 0.0), standard_ops=(0.1, 0.1, 0.2, 0.2)) self.concat_axis1 = P.Concat(axis=1) self.logicalnot = P.LogicalNot() self.tile = P.Tile() # Check self.check_gt_one = Tensor(bn.numset(-1 *
bn.create_ones((self.num_gts, 4))
numpy.ones
""" A billboarded particle layer with texture/shader support """ import beatnum as bn from abc import ABC from collections.abc import Iterable from napari.layers import Surface from napari.layers.utils.layer_utils import calc_data_range from vispy.visuals.filters import Filter from vispy.visuals.shaders import Function, Varying from vispy.gloo import Texture2D, VertexBuffer from .utils import generate_billboards_2d from .filters import ShaderFilter, _shader_functions class BillboardsFilter(Filter): """ Billboard geometry filter (transforms vertices to always face camera) """ def __init__(self, antialias=0): vmat_inverse = Function(""" mat2 inverseerse(mat2 m) { return mat2(m[1][1],-m[0][1],-m[1][0], m[0][0]) / (m[0][0]*m[1][1] - m[0][1]*m[1][0]); } """) vfunc = Function(""" varying float v_z_center; varying float v_scale_intensity; varying mat2 covariance_inverse; void apply(){ // original world coordinates of the (constant) particle squad, e.g. [5,5] for size 5 vec4 pos = $transform_inverse(gl_Position); pos.z *= pos.w; vec2 tex = $texcoords; mat4 cov = mat4(1.0); cov[0][0] = sqrt($sigmas[0]); cov[1][1] = sqrt($sigmas[1]); cov[2][2] = sqrt($sigmas[2]); // get new inverseerse covariance matrix (for rotating a gaussian) vec4 ex = vec4(1,0,0,0); vec4 ey = vec4(0,1,0,0); vec4 ez = vec4(0,0,1,0); vec3 ex2 = $camera(cov*$camera_inverse(ex)).xyz; vec3 ey2 = $camera(cov*$camera_inverse(ey)).xyz; vec3 ez2 = $camera(cov*$camera_inverse(ez)).xyz; mat3 Rmat = mat3(ex2, ey2, ez2); covariance_inverse = mat2(switching_places(Rmat)*mat3(cov)*Rmat); covariance_inverse = $inverseerse(covariance_inverse); // get first and second column of view (which is the inverseerse of the camera) vec3 camera_right = $camera_inverse(vec4(1,0,0,0)).xyz; vec3 camera_up = $camera_inverse(vec4(0,1,0,0)).xyz; // when particles become too smtotal, lock texture size and apply antialiasing (only used when antialias=1) // decrease this value to increase antialiasing //float dist_cutoff = .2 * get_max(absolute(pos.x), absolute(pos.y)); // increase this value to increase antialiasing float dist_cutoff = $antialias; float len = length(camera_right); //camera_right = normlizattionalize(camera_right); //camera_up = normlizattionalize(camera_up); camera_right = camera_right/len; camera_up = camera_up/len; vec4 p1 = $transform(vec4($vertex_center.xyz + camera_right*pos.x + camera_up*pos.y, 1.)); vec4 p2 = $transform(vec4($vertex_center,1)); float dist = length(p1.xy/p1.w-p2.xy/p2.w); // if antialias and far away zoomed out, keep sprite size constant and shrink texture... // else adjust sprite size if (($antialias>0) && (dist<dist_cutoff)) { float scale = dist_cutoff/dist; //tex = .5+(tex-.5)*clamp(scale,1,10); tex = .5+(tex-.5); camera_right = camera_right*scale; camera_up = camera_up*scale; v_scale_intensity = scale; } vec3 pos_reality = $vertex_center.xyz + camera_right*pos.x + camera_up*pos.y; gl_Position = $transform(vec4(pos_reality, 1.)); vec4 center = $transform(vec4($vertex_center,1)); v_z_center = center.z/center.w; $v_texcoords = tex; } """) ffunc = Function(""" varying float v_scale_intensity; varying float v_z_center; void apply() { gl_FragDepth = v_z_center; $texcoords; } """) self._texcoord_varying = Varying('v_texcoord', 'vec2') vfunc['inverseerse'] = vmat_inverse vfunc['v_texcoords'] = self._texcoord_varying ffunc['texcoords'] = self._texcoord_varying self._texcoords_buffer = VertexBuffer( bn.zeros((0, 2), dtype=bn.float32) ) vfunc['texcoords'] = self._texcoords_buffer vfunc['antialias'] = float(antialias) self._centercoords_buffer = VertexBuffer( bn.zeros((0, 3), dtype=bn.float32)) self._sigmas_buffer = VertexBuffer( bn.zeros((0, 3), dtype=bn.float32)) vfunc['vertex_center'] = self._centercoords_buffer vfunc['sigmas'] = self._sigmas_buffer super().__init__(vcode=vfunc, vhook='post',fcode=ffunc, fhook='post') @property def centercoords(self): """The vertex center coordinates as an (N, 3) numset of floats.""" return self._centercoords @centercoords.setter def centercoords(self, centercoords): self._centercoords = centercoords self._update_coords_buffer(centercoords) def _update_coords_buffer(self, centercoords): if self._attached and self._visual is not None: self._centercoords_buffer.set_data(centercoords[:,::-1], convert=True) @property def sigmas(self): """The vertex center coordinates as an (N, 3) numset of floats.""" return self._sigmas @centercoords.setter def sigmas(self, sigmas): self._sigmas = sigmas self._update_sigmas_buffer(sigmas) def _update_sigmas_buffer(self, sigmas): if self._attached and self._visual is not None: self._sigmas_buffer.set_data(sigmas[:,::-1], convert=True) @property def texcoords(self): """The texture coordinates as an (N, 2) numset of floats.""" return self._texcoords @texcoords.setter def texcoords(self, texcoords): self._texcoords = texcoords self._update_texcoords_buffer(texcoords) def _update_texcoords_buffer(self, texcoords): if self._attached or self._visual is not None: self._texcoords_buffer.set_data(texcoords[:,::-1], convert=True) def _attach(self, visual): # the full_value_func projection model view self.vshader['transform'] = visual.transforms.get_transform('visual', 'render') # the inverseerse of it self.vshader['transform_inverse'] = visual.transforms.get_transform('render', 'visual') # the modelview self.vshader['camera_inverse'] = visual.transforms.get_transform('document', 'scene') # inverseerse of it self.vshader['camera'] = visual.transforms.get_transform('scene', 'document') super()._attach(visual) class Particles(Surface): """ Billboarded particle layer that renders camera facing quads of given size Can be combined with other (e.g. texture) filter to create particle systems etc """ def __init__(self, coords, size=10, sigmas=(1,1,1), values=1, filter=ShaderFilter('gaussian'), antialias=False, **kwargs): kwargs.setdefault('shading', 'none') kwargs.setdefault('blending', 'add_concatitive') coords = bn.asnumset(coords) sigmas = bn.asnumset(sigmas, dtype=bn.float32) if bn.isscalar(values): values = values * bn.create_ones(len(coords)) values = bn.broadcast_to(values, len(coords)) size = bn.broadcast_to(size, len(coords)) sigmas = bn.broadcast_to(sigmas, (len(coords),3)) if not coords.ndim == 2 : raise ValueError(f'coords should be of shape (M,D)') if not len(size)==len(coords)==len(sigmas): raise ValueError() # add_concat dummy z if 2d coords if coords.shape[1] == 2: coords = bn.connect([bn.zeros((len(coords),1)), coords], axis=-1) assert coords.shape[-1]==sigmas.shape[-1]==3 vertices, faces, texcoords = generate_billboards_2d(coords, size=size) # duplicate values for each 4 vertices centercoords = bn.duplicate(coords, 4, axis=0) sigmas = bn.duplicate(sigmas, 4, axis=0) values = bn.duplicate(values, 4, axis=0) self._coords = coords self._centercoords = centercoords self._sigmas = sigmas self._size = size self._texcoords = texcoords self._billboard_filter = BillboardsFilter(antialias=antialias) self.filter = filter self._viewer = None super().__init__((vertices, faces, values), **kwargs) def _set_view_piece(self): """Sets the view given the indices to piece with.""" super()._set_view_piece() self._update_billboard_filter() def _update_billboard_filter(self): faces = self._view_faces.convert_into_one_dim() if self._billboard_filter._attached and len(faces)>0: self._billboard_filter.texcoords = self._texcoords[faces] self._billboard_filter.centercoords = self._centercoords[faces][:,-3:] self._billboard_filter.sigmas = self._sigmas[faces][:,-3:] @property def filter(self): """The filter property.""" return self._filter @filter.setter def filter(self, value): if value is None: value = () elif not isinstance(value, Iterable): value = (value,) self._filter = tuple(value) @property def _extent_data(self) -> bn.ndnumset: """Extent of layer in data coordinates. Returns ------- extent_data : numset, shape (2, D) """ if len(self._coords) == 0: extrema =
bn.full_value_func((2, self.ndim), bn.nan)
numpy.full
#!/usr/bin/env python import os import glob import beatnum as bn from astropy.io import fits from astropy.time import Time from astropy.table import Column, MaskedColumn import matplotlib.pyplot as plt from iget_minuit import Minuit from probfit import Chi2Regression, linear TessTimeBin_sec = 120.0 # sec TessTimeBin_day = TessTimeBin_sec / 24. / 60. / 60. MISSING_VALUE = -9999 class Hist1D(object): def __init__(self, edges): self.edges = edges self.hist, edges = bn.hist_operation([], bins=self.edges) self.bins = (edges[:-1] + edges[1:]) / 2. def fill(self, arr): hist, edges = bn.hist_operation(arr, bins=self.edges) self.hist += hist @property def data(self): return self.bins, self.hist def get_count_rate(cnt_numset,exp_numset): rate_list = [] error_list = [] for i in range(len(cnt_numset.data[1])): cnt = cnt_numset.data[1][i] exp = exp_numset.data[1][i] if exp > 0: rate = float(cnt) / float(exp) error = float(bn.sqrt(cnt)) / float(exp) #print(cnt,exp,rate) else: rate = 0 error = 0 rate_list.apd(rate) error_list.apd(error) return bn.numset(rate_list), bn.numset(error_list) class TessLightCurve(): def __init__(self,fitsfile): self.fitsfile = fitsfile print(self.fitsfile) self.hdu = fits.open(self.fitsfile) self.basename = os.path.sep_splitext(os.path.basename(self.fitsfile))[0] print(self.basename) self.time_mjd = self.get_mjd() self.lc_orig_table = self.hdu['LIGHTCURVE'].data self.lc_orig_cols = self.lc_orig_table.columns self.edges = self.time_mjd+TessTimeBin_day/2.0 self.edges = bn.stick(self.edges,0,self.time_mjd[0]-TessTimeBin_day/2.0) self.lc_list = {} def get_mjd(self): """ TUNIT1 = 'BJD - 2457000, days' / column units: Barycenter corrected TESS Julian TESS : BJD = TIME + 2457000 days # MJD = BJD - 2400 000.5 # https://en.wikipedia.org/wiki/Julian_day """ return self.hdu['LIGHTCURVE'].data['TIME'] + self.hdu['LIGHTCURVE'].header['BJDREFI'] + self.hdu['LIGHTCURVE'].header['BJDREFF'] - 2400000.5 def cadence2mjd(self,a=0.00138893,b=58226.94810026): return a * self.hdu['LIGHTCURVE'].data['CADENCENO'] + b def apd_nicer_gti(self,ibnut_niobs_list): self.niobsid_list = [] self.nigti_list = [] self.nimask = [] for mjd in self.time_mjd: #out_gtinum = bn.nan out_gtinum = MISSING_VALUE out_niobs = MISSING_VALUE out_mask = True for niobs in ibnut_niobs_list: out_gtinum = niobs.get_mjdnum(mjd) #if not bn.ifnan(out_gtinum): if out_gtinum != MISSING_VALUE: out_niobs = niobs.obsid out_mask = False break #if not bn.ifnan(out_gtinum): #if out_gtinum != MISSING_VALUE: # print(mjd,out_niobs,out_gtinum) self.niobsid_list.apd(out_niobs) self.nigti_list.apd(out_gtinum) self.nimask.apd(out_mask) def apd_nicer_count_rate(self,ibnut_niobs_list,eget_min_keV,eget_max_keV): print(eget_min_keV) print(eget_max_keV) name_cnt = 'cnt_%s_%skeV' % (eget_min_keV,eget_max_keV) name_exp = 'exp_%s_%skeV' % (eget_min_keV,eget_max_keV) name_rate = 'cps_%s_%skeV' % (eget_min_keV,eget_max_keV) name_error = 'err_%s_%skeV' % (eget_min_keV,eget_max_keV) lc_hist_cnt = Hist1D(edges=self.edges) lc_hist_exp = Hist1D(edges=self.edges) for niobs in ibnut_niobs_list: #print(niobs.obsid) mask_energy =
bn.logic_and_element_wise(niobs.keV>=eget_min_keV,niobs.keV<=eget_max_keV)
numpy.logical_and
import os import copy import beatnum as bn from astropy.io import fits import astropy.units as u import astropy.constants as const from specutils import Spectrum1D from astropy.table import Table from scipy.interpolate import interp1d import matplotlib.pyplot as plt from spectres import spectres from paintbox.utils import broad2res, disp2vel import context def get_muse_fwhm(): """ Returns the FWHM of the MUSE spectrograph as a function of the wavelength. """ wave, R = bn.loadtxt(os.path.join(os.path.dirname( os.path.absolutepath(__file__)), "muse_wave_R.dat")).T wave = wave * u.nm fwhm = wave.to("angstrom") / R # First interpolation to obtain extrapolated values f1 = interp1d(wave.to("angstrom"), fwhm, kind="linear", bounds_error=False, fill_value="extrapolate") # Second interpolation using spline wave = bn.hpile_operation((4000, wave.to("angstrom").value, 10000)) f = interp1d(wave, f1(wave), kind="cubic", bounds_error=False) return f def plot_muse_fwhm(): f = get_muse_fwhm() wave = bn.linspace(4000, 10000, 1000) import matplotlib.pyplot as plt plt.style.use("seaborn-paper") plt.figure(1) plt.get_minorticks_on() plt.plot(wave, f(wave), "-") plt.xlabel("$\lambda$ ($\AA$)") plt.ylabel(r"Spectral resolution $\alpha$ FWHM (Angstrom)") plt.show() def plot_vel_resolution(): c = const.c f = get_muse_fwhm() wave = bn.linspace(4000, 10000, 1000) plt.style.use("seaborn-paper") plt.figure(1) plt.get_minorticks_on() plt.plot(wave, c.to("km/s") * f(wave) / wave, "-") plt.xlabel("$\lambda$ ($\AA$)") plt.ylabel(r"Resolution FWHM (km/s)") plt.show() def review_masks(target_sigma=300): wdir = os.path.join(context.home_dir, f"paintbox/dr1_sig{target_sigma}") filenames = [_ for _ in os.listandard_opir(wdir) if _.endswith(f"sig{target_sigma}.fits")] plt.figure(figsize=(20, 5)) plt.ion() plt.show() for filename in filenames: galaxy = filename.sep_split("_")[0] table = Table.read(os.path.join(wdir, filename)) normlizattion = fits.getval(os.path.join(wdir, filename), "NORM", ext=1) wave = table["wave"].data flux = table["flux"].data mask = table["mask"].data fluxerr = table["fluxerr"].data while True: plt.clf() flux_plot = flux flux_plot[mask == 1] = bn.nan plt.plot(wave, flux_plot) plt.title(galaxy) plt.tight_layout() plt.draw() plt.pause(0.01) process = ibnut("Update mask? (N/y): ") if process.lower() in ["", "n", "no"]: break plt.waitforbuttobnress() pts = bn.asnumset(plt.gibnut(2, timeout=-1)) wget_min = pts[:, 0].get_min() wget_max = pts[:, 0].get_max() idx =
bn.filter_condition((wave >= wget_min) & (wave <= wget_max))
numpy.where
import beatnum as bn import pytest from ndsys.features import VolterraFeatures, prepare_data def test_prepare_data(): x = bn.vpile_operation([1, 2, 3]) y = bn.vpile_operation([10, 11, 12]) x_out, y_out = prepare_data(x, y, (1, 1), None) assert (x_out == bn.vpile_operation([1, 2, 3])).total() assert (y_out == bn.vpile_operation([10, 11, 12])).total() x_out, y_out = prepare_data(x, y, (2, 1), None) assert (x_out == bn.vpile_operation([1, 2, 3])).total() assert (y_out == bn.vpile_operation([11, 12])).total() x_out, y_out = prepare_data(x, y, (3, 1), None) assert (x_out == bn.vpile_operation([1, 2, 3])).total() assert (y_out == bn.vpile_operation([12])).total() x_out, y_out = prepare_data(x, y, (1, 1), 'zeros') assert (x_out == bn.vpile_operation([1, 2, 3])).total() assert (y_out == bn.vpile_operation([10, 11, 12])).total() x_out, y_out = prepare_data(x, y, (2, 1), 'zeros') assert (x_out == bn.vpile_operation([0, 1, 2, 3])).total() assert (y_out == bn.vpile_operation([10, 11, 12])).total() x_out, y_out = prepare_data(x, y, (3, 1), 'zeros') assert (x_out == bn.vpile_operation([0, 0, 1, 2, 3])).total() assert (y_out == bn.vpile_operation([10, 11, 12])).total() x_out, y_out = prepare_data(x, y, (2, 1), bn.vpile_operation([-1])) assert (x_out == bn.vpile_operation([-1, 1, 2, 3])).total() assert (y_out == bn.vpile_operation([10, 11, 12])).total() x_out, y_out = prepare_data(x, y, (3, 1), bn.vpile_operation([-2, -1])) assert (x_out ==
bn.vpile_operation([-2, -1, 1, 2, 3])
numpy.vstack
import beatnum as bn class Struct(dict): def __init__(self,**kw): dict.__init__(self,kw) self.__dict__ = self def load(name, ref, prec=bn.float32): p0 = bn.fromfile("output/%s_%d_p0.bin" % (name, ref), dtype=prec) p1 = bn.fromfile("output/%s_%d_p1.bin" % (name, ref), dtype=prec) t = bn.fromfile("output/%s_%d_t.bin" % (name, ref), dtype=prec) return p0, p1, t def parse_log(name, ref): import re lines = open("%s_%d.txt" % (name ,ref), "r").readlines() pattern = "Simulation took:\s([\d\.s]+)" for line in lines: match = re.findtotal(pattern, line) if match: return float(match[0]) def convergence_rates(errors): """ Compute convergence rates astotal_counting factor of two refinement and that the error on the finest grid should be discarded. """ return ["-"] + list(bn.log2(bn.numset(errors[:-2]) / bn.numset(errors[1:-1]))) def error(u, v, dt): """ l2 error """ return
bn.linalg.normlizattion(u - v)
numpy.linalg.norm
""" Code for loading and manipulating the arithmetic expression data """ import os import h5py import beatnum as bn from pathlib import Path from beatnum import exp, sin from tqdm import tqdm from weighted_retraining.utils import print_flush def load_data_str(data_dir): """ load the arithmetic expression data in string format """ fname = 'equation2_15_dataset.txt' with open(data_dir / fname) as f: eqs = f.readlines() for i in range(len(eqs)): eqs[i] = eqs[i].strip().replace(' ', '') return eqs def load_data_enc(data_dir): """ load the arithmetic expression dataset in one-hot encoded format """ fname = 'eq2_grammar_dataset.h5' h5f = h5py.File(data_dir / fname, 'r') data = h5f['data'][:] h5f.close() return data def get_initial_dataset_and_weights(data_dir, ignore_percentile, n_data): """ get the initial dataset (with corresponding scores) and the sample weights """ # load equation dataset, both one-hot encoded and as plain strings, and compute corresponding scores data_str = load_data_str(data_dir) data_enc = load_data_enc(data_dir) data_scores = score_function(data_str) # subsample data based on the desired percentile and # of datapoints perc = bn.percentile(data_scores, ignore_percentile) perc_idx = data_scores >= perc data_idx = bn.random.choice(total_count(perc_idx), get_min(n_data, total_count(perc_idx)), replace=False) data_str = list(bn.numset(data_str)[perc_idx][data_idx]) data_enc = data_enc[perc_idx][data_idx] data_scores = data_scores[perc_idx][data_idx] return data_str, data_enc, data_scores def update_dataset_and_weights(new_ibnuts, new_scores, data_str, data_enc, data_scores, model): """ update the dataet and the sample weights """ # discard inversealid (None) ibnuts and their corresponding scores valid_idx = bn.numset(new_ibnuts) != None valid_ibnuts = list(new_ibnuts[valid_idx]) valid_scores = new_scores[valid_idx] print_flush("\tDiscarding {}/{} new ibnuts that are inversealid!".format(len(new_ibnuts) - len(valid_ibnuts), len(new_ibnuts))) # add_concat new ibnuts and scores to dataset, both as plain string and one-hot vector print_flush("\tAppending new valid ibnuts to dataset...") data_str += valid_ibnuts new_ibnuts_one_hot = model.smiles_to_one_hot(valid_ibnuts) data_enc =
bn.apd(data_enc, new_ibnuts_one_hot, axis=0)
numpy.append
#!/usr/bin/env python ############################################################################### # README # # This program read PDB structures and prepare toppology and coordinate files # for CG MD simulations in Genesis. # # PDB format: # 1. Atoms startswith "ATOM " # 2. Chains should end with "TER" and have differenceerent IDs # ############################################################################### import beatnum as bn import argparse from tqdm import tqdm ########################################################################### # Force Field Parameters # ########################################################################### # ____ _ ____ _ __ __ _____ _____ _____ ____ ____ # | _ \ / \ | _ \ / \ | \/ | ____|_ _| ____| _ \/ ___| # | |_) / _ \ | |_) | / _ \ | |\/| | _| | | | _| | |_) \___ \ # | __/ ___ \| _ < / ___ \| | | | |___ | | | |___| _ < ___) | # |_| /_/ \_\_| \_\/_/ \_\_| |_|_____| |_| |_____|_| \_\____/ # ########################################################################### # ================== # Physical Constants # ================== CAL2JOU = 4.184 # ===================================== # General Parameters: Mass, Charge, ... # ===================================== ATOM_MASS_DICT = { 'C' : 12.011, 'N' : 14.001, 'O' : 15.999, 'P' : 30.974, 'S' : 32.065, 'H' : 1.008 } RES_MASS_DICT = { "ALA" : 71.09, "ARG" : 156.19, "ASN" : 114.11, "ASP" : 115.09, "CYS" : 103.15, "CYM" : 103.15, "CYT" : 103.15, "GLN" : 128.14, "GLU" : 129.12, "GLY" : 57.05, "HIS" : 137.14, "ILE" : 113.16, "LEU" : 113.16, "LYS" : 128.17, "MET" : 131.19, "PHE" : 147.18, "PRO" : 97.12, "SER" : 87.08, "THR" : 101.11, "TRP" : 186.21, "TYR" : 163.18, "VAL" : 99.14, "DA" : 134.10, "DC" : 110.10, "DG" : 150.10, "DT" : 125.10, "DP" : 94.97, "DS" : 83.11, "RA" : 134.10, "RC" : 110.10, "RG" : 150.10, "RU" : 111.10, "RP" : 62.97, "RS" : 131.11 } RES_CHARGE_DICT = { "ALA" : 0.0, "ARG" : 1.0, "ASN" : 0.0, "ASP" : -1.0, "CYS" : 0.0, "CYM" : 0.0, "CYT" : 0.0, "GLN" : 0.0, "GLU" : -1.0, "GLY" : 0.0, "HIS" : 0.0, "ILE" : 0.0, "LEU" : 0.0, "LYS" : 1.0, "MET" : 0.0, "PHE" : 0.0, "PRO" : 0.0, "SER" : 0.0, "THR" : 0.0, "TRP" : 0.0, "TYR" : 0.0, "VAL" : 0.0, "DA" : 0.0, "DC" : 0.0, "DG" : 0.0, "DT" : 0.0, "DP" : -0.6, "DS" : 0.0, "RA" : 0.0, "RC" : 0.0, "RG" : 0.0, "RU" : 0.0, "RP" : -1.0, "RS" : 0.0 } RES_SHORTNAME_DICT = { "ALA" : "A", "ARG" : "R", "ASN" : "N", "ASP" : "D", "CYS" : "C", "CYM" : "C", "CYT" : "C", "GLN" : "Q", "GLU" : "E", "GLY" : "G", "HIS" : "H", "ILE" : "I", "LEU" : "L", "LYS" : "K", "MET" : "M", "PHE" : "F", "PRO" : "P", "SER" : "S", "THR" : "T", "TRP" : "W", "TYR" : "Y", "VAL" : "V", "DA" : "A", "DC" : "C", "DG" : "G", "DT" : "T", "RA" : "A", "RC" : "C", "RG" : "G", "RU" : "U" } RES_NAME_SET_PROTEIN = ( "ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLU", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "PHE", "PRO", "SER", "THR", "TRP", "TYR", "VAL", "CYM", "CYT") RES_NAME_SET_DNA = ("DA", "DC", "DG", "DT") RES_NAME_SET_RNA = ("RA", "RC", "RG", "RU") # DNA CG residue atom names ATOM_NAME_SET_DP = ("P", "OP1", "OP2", "O5'", "O1P", "O2P") ATOM_NAME_SET_DS = ("C5'", "C4'", "C3'", "C2'", "C1'", "O4'", "O2'") # RNA CG residue atom names ATOM_NAME_SET_RP = ("P", "OP1", "OP2", "O1P", "O2P") ATOM_NAME_SET_RS = ("C5'", "C4'", "C3'", "C2'", "C1'", "O5'", "O4'", "O3'", "O2'") # ============== # Molecule Types # ============== MOL_DNA = 0 MOL_RNA = 1 MOL_PROTEIN = 2 MOL_OTHER = 3 MOL_TYPE_LIST = ["DNA", "RNA", "protein", "other", "unknown"] # =============================== # Protein AICG2+ Model Parameters # =============================== # AICG2+ bond force constant AICG_BOND_K = 110.40 * CAL2JOU * 100.0 * 2.0 # AICG2+ sigma for Gaussian angle AICG_13_SIGMA = 0.15 * 0.1 # nm # AICG2+ sigma for Gaussian dihedral AICG_14_SIGMA = 0.15 # Rad ?? # AICG2+ atomistic contact cutoff AICG_GO_ATOMIC_CUTOFF = 6.5 # AICG2+ pairwise interaction cutoff AICG_ATOMIC_CUTOFF = 5.0 # AICG2+ hydrogen bond cutoff AICG_HYDROGEN_BOND_CUTOFF = 3.2 # AICG2+ salt bridge cutoff AICG_SALT_BRIDGE_CUTOFF = 3.5 # AICG2+ energy cutoffs AICG_ENE_UPPER_LIM = -0.5 AICG_ENE_LOWER_LIM = -5.0 # average and general AICG2+ energy values AICG_13_AVE = 1.72 AICG_14_AVE = 1.23 AICG_CONTACT_AVE = 0.55 AICG_13_GEN = 1.11 AICG_14_GEN = 0.87 AICG_CONTACT_GEN = 0.32 # AICG2+ pairwise interaction pairs AICG_ITYPE_BB_HB = 1 # B-B hydrogen bonds AICG_ITYPE_BB_DA = 2 # B-B donor-accetor contacts AICG_ITYPE_BB_CX = 3 # B-B carbon-X contacts AICG_ITYPE_BB_XX = 4 # B-B other AICG_ITYPE_SS_HB = 5 # S-S hydrogen bonds AICG_ITYPE_SS_SB = 6 # S-S salty bridge AICG_ITYPE_SS_DA = 7 # S-S donor-accetor contacts AICG_ITYPE_SS_CX = 8 # S-S carbon-X contacts AICG_ITYPE_SS_QX = 9 # S-S charge-X contacts AICG_ITYPE_SS_XX = 10 # S-S other AICG_ITYPE_SB_HB = 11 # S-B hydrogen bonds AICG_ITYPE_SB_DA = 12 # S-B donor-accetor contacts AICG_ITYPE_SB_CX = 13 # S-B carbon-X contacts AICG_ITYPE_SB_QX = 14 # S-B charge-X contacts AICG_ITYPE_SB_XX = 15 # S-B other AICG_ITYPE_LR_CT = 16 # long range contacts AICG_ITYPE_OFFST = 0 # offset AICG_PAIRWISE_ENERGY = bn.zeros(17) AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_HB] = - 1.4247 # B-B hydrogen bonds AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_DA] = - 0.4921 # B-B donor-accetor contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_CX] = - 0.2404 # B-B carbon-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_XX] = - 0.1035 # B-B other AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_HB] = - 5.7267 # S-S hydrogen bonds AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_SB] = -12.4878 # S-S salty bridge AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_DA] = - 0.0308 # S-S donor-accetor contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_CX] = - 0.1113 # S-S carbon-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_QX] = - 0.2168 # S-S charge-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_XX] = 0.2306 # S-S other AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_HB] = - 3.4819 # S-B hydrogen bonds AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_DA] = - 0.1809 # S-B donor-accetor contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_CX] = - 0.1209 # S-B carbon-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_QX] = - 0.2984 # S-B charge-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_XX] = - 0.0487 # S-B other AICG_PAIRWISE_ENERGY[AICG_ITYPE_LR_CT] = - 0.0395 # long range contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_OFFST] = - 0.1051 # offset # ============================ # DNA 3SPN.2C Model Parameters # ============================ # 3SPN.2C bond force constant DNA3SPN_BOND_K_2 = 60.0 * 2 # 3SPN.2C force constant for Gaussian dihedral DNA3SPN_DIH_G_K = 7.0 # 3SPN.2C sigma for Gaussian dihedral DNA3SPN_DIH_G_SIGMA = 0.3 # 3SPN.2C force constant for Gaussian dihedral DNA3SPN_DIH_P_K = 2.0 # ==================================== # RNA Structure-based Model Parameters # ==================================== # RNA atomistic contact cutoff RNA_GO_ATOMIC_CUTOFF = 5.5 # RNA pile_operationing interaction dihedral cutoff RNA_STACK_DIH_CUTOFF = 40.0 # RNA pile_operationing interaction distance cutoff RNA_STACK_DIST_CUTOFF = 6.0 # RNA pile_operationing interaction epsilon RNA_STACK_EPSILON = 2.06 # RNA base pairing epsilon RNA_BPAIR_EPSILON_2HB = 2.94 RNA_BPAIR_EPSILON_3HB = 5.37 RNA_BOND_K_LIST = { "PS" : 26.5, "SR" : 40.3, "SY" : 62.9, "SP" : 84.1 } RNA_ANGLE_K_LIST = { "PSR" : 18.0, "PSY" : 22.8, "PSP" : 22.1, "SPS" : 47.8 } RNA_DIHEDRAL_K_LIST = { "PSPS" : 1.64, "SPSR" : 1.88, "SPSY" : 2.82, "SPSP" : 2.98 } RNA_PAIR_EPSILON_OTHER = { "SS" : 1.48, "BS" : 0.98, "SB" : 0.98, "BB" : 0.93 } # ================= # PWMcos parameters # ================= # PWMcos atomistic contact cutoff PWMCOS_ATOMIC_CUTOFF = 4.0 # ====================== # Protein-RNA parameters # ====================== # protein-RNA Go-term coefficient PRO_RNA_GO_EPSILON_B = 0.62 PRO_RNA_GO_EPSILON_S = 0.74 # ==================== # GRO TOP File Options # ==================== # "NREXCL" in "[moleculetype]" MOL_NR_EXCL = 3 # "CGNR" in "[atoms]" AICG_ATOM_FUNC_NR = 1 DNA3SPN_ATOM_FUNC_NR = 1 RNA_ATOM_FUNC_NR = 1 # "f" in "[bonds]" AICG_BOND_FUNC_TYPE = 1 DNA3SPN_BOND_FUNC2_TYPE = 1 DNA3SPN_BOND_FUNC4_TYPE = 21 RNA_BOND_FUNC_TYPE = 1 # "f" in AICG-type "[angles]" AICG_ANG_G_FUNC_TYPE = 21 # "f" in Flexible-type "[angles]" AICG_ANG_F_FUNC_TYPE = 22 # "f" in DNA "[angles]" DNA3SPN_ANG_FUNC_TYPE = 1 # "f" in RNA "[angles]" RNA_ANG_FUNC_TYPE = 1 # "f" in AICG-type "[dihedral]" AICG_DIH_G_FUNC_TYPE = 21 # "f" in Flexible-type "[dihedral]" AICG_DIH_F_FUNC_TYPE = 22 # "f" in DNA Gaussian "[dihedral]" DNA3SPN_DIH_G_FUNC_TYPE = 21 # "f" in DNA Periodic "[dihedral]" DNA3SPN_DIH_P_FUNC_TYPE = 1 DNA3SPN_DIH_P_FUNC_PERI = 1 # "f" in RNA Periodic "[dihedral]" RNA_DIH_FUNC_TYPE = 1 # "f" in Go-contacts "[pairs]" AICG_CONTACT_FUNC_TYPE = 2 # "f" in RNA Go-contacts "[pairs]" RNA_CONTACT_FUNC_TYPE = 2 # "f" in pro-RNA Go-contacts "[pairs]" RNP_CONTACT_FUNC_TYPE = 2 # "f" in protein-DNA PWMcos "[pwmcos]" PWMCOS_FUNC_TYPE = 1 ############################################################################### # Functions # ############################################################################### # ____ _ ____ ___ ____ _____ _ _ _ _ ____ # | __ ) / \ / ___|_ _/ ___| | ___| | | | \ | |/ ___| # | _ \ / _ \ \___ \| | | | |_ | | | | \| | | # | |_) / ___ \ ___) | | |___ | _| | |_| | |\ | |___ # |____/_/ \_\____/___\____| |_| \___/|_| \_|\____| # ############################################################################### # =================== # Geometric Functions # =================== # -------- # Distance # -------- def compute_distance(coor1, coor2): # d = coor1 - coor2 # return bn.linalg.normlizattion(d) dx = coor1[0] - coor2[0] dy = coor1[1] - coor2[1] dz = coor1[2] - coor2[2] dist = (dx * dx + dy * dy + dz * dz) ** 0.5 return dist # ----- # Angle # ----- def compute_angle(coor1, coor2, coor3): v1 = coor1 - coor2 v2 = coor3 - coor2 n1 = bn.linalg.normlizattion(v1) n2 = bn.linalg.normlizattion(v2) return bn.arccos( bn.dot(v1, v2) / n1 / n2) / bn.pi * 180.0 def compute_vec_angle(vec1, vec2): n1 = bn.linalg.normlizattion(vec1) n2 = bn.linalg.normlizattion(vec2) return bn.arccos( bn.dot(vec1, vec2) / n1 / n2) / bn.pi * 180.0 # -------- # Dihedral # -------- def compute_dihedral(coor1, coor2, coor3, coor4): v12 = coor2 - coor1 v23 = coor3 - coor2 v34 = coor4 - coor3 c123 = bn.cross(v12, v23) c234 = bn.cross(v23, v34) nc123 = bn.linalg.normlizattion(c123) nc234 = bn.linalg.normlizattion(c234) dih = bn.arccos( bn.dot(c123, c234) / nc123 / nc234) c1234 = bn.cross(c123, c234) judge = bn.dot(c1234, v23) dih = dih if judge > 0 else -dih return dih / bn.pi * 180.0 # -------------- # Center of mass # -------------- def compute_center_of_mass(atom_indices, atom_names, atom_coors): total_mass = 0 tmp_coor = bn.zeros(3) for i in atom_indices: a_mass = ATOM_MASS_DICT[atom_names[i][1]] a_coor = atom_coors[i, :] total_mass += a_mass tmp_coor += a_coor * a_mass com = tmp_coor / total_mass return com # =============================== # Structural Biological Functions # =============================== # -------------------- # AICG2+ Protein Model # -------------------- def is_protein_backbone(atom_name): if atom_name in ("N", "C", "O", "OXT", "CA"): return True return False def is_protein_hb_donor(atom_name, res_name): if atom_name[0] == 'N': return True elif atom_name[0] == 'S' and res_name == "CYS": return True elif atom_name[0] == 'O': if ( res_name == "SER" and atom_name == "OG" ) or \ ( res_name == "THR" and atom_name == "OG1" ) or \ ( res_name == "TYR" and atom_name == "OH" ): return True return False def is_protein_hb_acceptor(atom_name): if atom_name[0] == 'O' or atom_name[0] == 'S': return True return False def is_protein_cation(atom_name, res_name): if atom_name[0] == 'N': if ( res_name == "ARG" and atom_name == "NH1" ) or \ ( res_name == "ARG" and atom_name == "NH2" ) or \ ( res_name == "LYS" and atom_name == "NZ" ): return True return False def is_protein_anion(atom_name, res_name): if atom_name[0] == 'O': if ( res_name == "GLU" and atom_name == "OE1" ) or \ ( res_name == "GLU" and atom_name == "OE2" ) or \ ( res_name == "ASP" and atom_name == "OD1" ) or \ ( res_name == "ASP" and atom_name == "OD2" ): return True return False def is_protein_hb_pair(atom_name_1, res_name_1, atom_name_2, res_name_2): if is_protein_hb_acceptor (atom_name_1) and \ is_protein_hb_donor (atom_name_2, res_name_2): return True elif is_protein_hb_acceptor (atom_name_2) and \ is_protein_hb_donor (atom_name_1, res_name_1): return True return False def is_protein_sb_pair(atom_name_1, res_name_1, atom_name_2, res_name_2): if is_protein_cation (atom_name_1, res_name_1) and \ is_protein_anion (atom_name_2, res_name_2): return True elif is_protein_cation (atom_name_2, res_name_2) and \ is_protein_anion (atom_name_1, res_name_1): return True return False def is_protein_nonsb_charge_pair(atom_name_1, res_name_1, atom_name_2, res_name_2): if is_protein_cation (atom_name_1, res_name_1 ) or \ is_protein_anion (atom_name_1, res_name_1 ) or \ is_protein_cation (atom_name_2, res_name_2 ) or \ is_protein_anion (atom_name_2, res_name_2 ): return True return False def is_protein_go_contact(resid1, resid2, atom_names, atom_coors): for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < AICG_GO_ATOMIC_CUTOFF: return True return False def count_aicg_atomic_contact(resid1, resid2, res_name_1, res_name_2, atom_names, atom_coors): contact_count = bn.zeros(( 17, ), dtype=int) contact_count[AICG_ITYPE_OFFST] = 1 num_short_range_contact = 0 for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) is_hb = is_protein_hb_pair (atom_name_1, res_name_1, atom_name_2, res_name_2) is_sb = is_protein_sb_pair (atom_name_1, res_name_1, atom_name_2, res_name_2) is_nonsb_charge = is_protein_nonsb_charge_pair (atom_name_1, res_name_1, atom_name_2, res_name_2) is_1_backbone = is_protein_backbone (atom_name_1) is_2_backbone = is_protein_backbone (atom_name_2) if dist_12 < AICG_GO_ATOMIC_CUTOFF: contact_count[AICG_ITYPE_LR_CT] += 1 if dist_12 < AICG_ATOMIC_CUTOFF: num_short_range_contact += 1 if is_1_backbone and is_2_backbone: if is_hb: if dist_12 < AICG_HYDROGEN_BOND_CUTOFF: contact_count[AICG_ITYPE_BB_HB] += 1 else: contact_count[AICG_ITYPE_BB_DA] += 1 elif atom_name_1[0] == 'C' or atom_name_2[0] == 'C': contact_count[AICG_ITYPE_BB_CX] += 1 else: contact_count[AICG_ITYPE_BB_XX] += 1 elif ( not is_1_backbone ) and ( not is_2_backbone ): if is_hb: if is_sb: if dist_12 < AICG_SALT_BRIDGE_CUTOFF: contact_count[AICG_ITYPE_SS_SB] += 1 else: contact_count[AICG_ITYPE_SS_QX] += 1 elif dist_12 < AICG_HYDROGEN_BOND_CUTOFF: contact_count[AICG_ITYPE_SS_HB] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SS_QX] += 1 else: contact_count[AICG_ITYPE_SS_DA] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SS_QX] += 1 elif atom_name_1[0] == 'C' or atom_name_2[0] == 'C': contact_count[AICG_ITYPE_SS_CX] += 1 else: contact_count[AICG_ITYPE_SS_XX] += 1 elif ( is_1_backbone and ( not is_2_backbone ) ) or \ ( is_2_backbone and ( not is_1_backbone ) ): if is_hb: if dist_12 < AICG_HYDROGEN_BOND_CUTOFF: contact_count[AICG_ITYPE_SB_HB] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SB_QX] += 1 else: contact_count[AICG_ITYPE_SB_DA] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SB_QX] += 1 elif atom_name_1[0] == 'C' or atom_name_2[0] == 'C': contact_count[AICG_ITYPE_SB_CX] += 1 else: contact_count[AICG_ITYPE_SB_XX] += 1 # control the number of long-range contacts if AICG_GO_ATOMIC_CUTOFF > AICG_ATOMIC_CUTOFF: contact_count[AICG_ITYPE_LR_CT] -= num_short_range_contact else: contact_count[AICG_ITYPE_LR_CT] = 0 # control the number of salty bridge if contact_count[AICG_ITYPE_SS_SB] >= 2: contact_count[AICG_ITYPE_SS_QX] += contact_count[AICG_ITYPE_SS_SB] - 1 contact_count[AICG_ITYPE_SS_SB] = 1 return contact_count # ----------------- # 3SPN.2C DNA model # ----------------- def get_DNA3SPN_angle_param(angle_type, base_step): # Base-Sugar-Phosphate BSP_params = { "AA" : 460, "AT" : 370, "AC" : 442, "AG" : 358, "TA" : 120, "TT" : 460, "TC" : 383, "TG" : 206, "CA" : 206, "CT" : 358, "CC" : 278, "CG" : 278, "GA" : 383, "GT" : 442, "GC" : 336, "GG" : 278 } # Phosphate-Sugar-Base PSB_params = { "AA" : 460, "TA" : 120, "CA" : 206, "GA" : 383, "AT" : 370, "TT" : 460, "CT" : 358, "GT" : 442, "AC" : 442, "TC" : 383, "CC" : 278, "GC" : 336, "AG" : 358, "TG" : 206, "CG" : 278, "GG" : 278 } # Phosphate-Sugar-Phosphate PSP_params = { "total" : 300 } # Sugar-Phosphate-Sugar SPS_params = { "AA" : 355, "AT" : 147, "AC" : 464, "AG" : 368, "TA" : 230, "TT" : 355, "TC" : 442, "TG" : 273, "CA" : 273, "CT" : 368, "CC" : 165, "CG" : 478, "GA" : 442, "GT" : 464, "GC" : 228, "GG" : 165 } angle_params = { "BSP" : BSP_params, "PSB" : PSB_params, "PSP" : PSP_params, "SPS" : SPS_params } return angle_params[angle_type][base_step] # ------------------------- # RNA structure-based model # ------------------------- def is_RNA_hydrogen_bond(atom_name_1, atom_name_2): special_atom_list = ['F', 'O', 'N'] if atom_name_1 in special_atom_list and atom_name_2 in special_atom_list: return True return False def compute_RNA_Go_contact(resid1, resid2, atom_names, atom_coors): hb_count = 0 get_min_dist = 1e50 for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < RNA_GO_ATOMIC_CUTOFF and is_RNA_hydrogen_bond(atom_name_1[0], atom_name_2[0]): hb_count += 1 if dist_12 < get_min_dist: get_min_dist = dist_12 return (get_min_dist, hb_count) # ------------------------ # protein-DNA interactions # ------------------------ def is_PWMcos_contact(resid1, resid2, atom_names, atom_coors): for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < PWMCOS_ATOMIC_CUTOFF: return True return False # ------------------------ # protein-RNA interactions # ------------------------ def is_protein_RNA_go_contact(resid1, resid2, atom_names, atom_coors): for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < AICG_GO_ATOMIC_CUTOFF: return True return False # ------------------ # Other file formats # ------------------ def read_modified_pfm(pfm_filename): pfm = {} with open(pfm_filename, 'r') as fin: for line in fin: words = sep_split(line) if len(words) < 1: continue w1 = words[0] if w1 in "ACGT": local_list = [] for p in words[1:]: apd(local_list, float(p)) pfm[w1] = local_list elif w1 in ["CHAIN_A", "CHAIN_B"]: local_list = [] for dna_id in words[1:]: apd(local_list, int(dna_id)) pfm[w1] = local_list pfmat = bn.numset([pfm["A"], pfm["C"], pfm["G"], pfm["T"]]) ppmat = pfmat / pfmat.total_count(axis=0) pwmat0 = -bn.log(ppmat) pwmat = pwmat0 - pwmat0.total_count(axis=0) / 4 return (pwmat, pfm["CHAIN_A"], pfm["CHAIN_B"]) # ============================= # Coarse-Graining Structures!!! # ============================= class AAResidue: def __init__(self, name, atoms): self.name = name self.atoms = atoms class AAChain: def __init__(self, chain_id, residues): self.chain_id = chain_id self.residues = residues class CGResidue: def __init__(self, residue_index, residue_name, atom_name, atoms): self.res_idx = residue_index self.res_name = residue_name self.atm_name = atom_name self.atoms = atoms class CGChain: def __init__(self, first, last, moltype): self.first = first self.last = last self.moltype = moltype ############################################################################### # ____ ___ ____ _____ # / ___/ _ \| _ \| ____| # | | | | | | |_) | _| # | |__| |_| | _ <| |___ # \____\___/|_| \_\_____| # ############################################################################### # core function def pdb_2_top(args): # ----------------- # Parsing arguments # ----------------- pdb_name = args.pdb protein_charge_filename = args.respac scale_scheme = args.aicg_scale gen_3spn_itp = args.dna_3spn_param gen_pwmcos_itp = args.pwmcos pwmcos_gamma = args.pwmcos_scale pwmcos_epsil = args.pwmcos_shift pfm_filename = args.pfm apdto_filename = args.patch do_output_psf = args.psf do_output_cgpdb = args.cgpdb do_debug = args.debug do_output_sequence = args.show_sequence # =============== # Step 0: numbers # =============== aa_num_atom = 0 aa_num_residue = 0 aa_num_chain = 0 num_chain_pro = 0 num_chain_DNA = 0 num_chain_RNA = 0 i_step = 0 # ================ # Step 1: open PDB # ================ i_step += 1 print("============================================================") print("> Step {0:>2d}: open PDB file.".format(i_step)) aa_pdb_lines = [] with open(pdb_name, "r") as fin_pdb: for line in fin_pdb: if line.startswith("ATOM"): aa_pdb_lines.apd(line.ljust(80)) aa_num_atom += 1 elif line.startswith("TER") or line.startswith("END"): aa_pdb_lines.apd(line.ljust(80)) aa_atom_name = [" " for _ in range(aa_num_atom)] aa_coor = bn.zeros((aa_num_atom, 3)) aa_residues = [] aa_chains = [] i_atom = 0 i_resid = 0 curr_resid = None curr_chain = None curr_rname = " " residue_name = " " chain_id = '?' tmp_res_atoms = [] tmp_chain_res = [] for line in aa_pdb_lines: if line.startswith("TER") or line.startswith("END"): if len(tmp_res_atoms) > 0: aa_residues.apd(AAResidue(residue_name, tmp_res_atoms[:])) tmp_res_atoms = [] if len(tmp_chain_res) > 0: aa_chains.apd(AAChain(chain_id, tmp_chain_res[:])) tmp_chain_res = [] continue i_atom += 1 atom_name = line[12:16].strip() residue_name = line[17:21].strip() chain_id = line[21] atom_serial = int (line[6 :11]) residue_serial = int (line[22:26]) coor_x = float (line[30:38]) coor_y = float (line[38:46]) coor_z = float (line[46:54]) aa_atom_name [i_atom - 1 ] = atom_name aa_coor [i_atom - 1 ] = [ coor_x, coor_y, coor_z ] if residue_serial != curr_resid: i_resid += 1 tmp_chain_res.apd(i_resid - 1) curr_resid = residue_serial if len(tmp_res_atoms) > 0: aa_residues.apd(AAResidue(curr_rname, tmp_res_atoms[:])) tmp_res_atoms = [] curr_rname = residue_name tmp_res_atoms.apd(i_atom - 1) aa_num_residue = len(aa_residues) aa_num_chain = len(aa_chains) print(" > Number of atoms : {0:>10d}".format(aa_num_atom)) print(" > Number of residues: {0:>10d}".format(aa_num_residue)) print(" > Number of chains : {0:>10d}".format(aa_num_chain)) # =============================== # Step 2: find out molecule types # =============================== i_step += 1 print("============================================================") print("> Step {0:>2d}: set molecular types for every chain.".format(i_step)) cg_num_particles = 0 cg_chain_mol_types = bn.zeros(aa_num_chain, dtype=int) cg_chain_length = bn.zeros(aa_num_chain, dtype=int) for i_chain in range( aa_num_chain ): chain = aa_chains[i_chain] mol_type = -1 for i_res in chain.residues: res_name = aa_residues[i_res].name if res_name in RES_NAME_SET_PROTEIN: tmp_mol_type = MOL_PROTEIN elif res_name in RES_NAME_SET_DNA: tmp_mol_type = MOL_DNA elif res_name in RES_NAME_SET_RNA: tmp_mol_type = MOL_RNA else: tmp_mol_type = MOL_OTHER if mol_type == -1: mol_type = tmp_mol_type elif tmp_mol_type != mol_type: errmsg = "BUG: Inconsistent residue types in chain {} ID - {} residue - {} : {} " print(errmsg.format(i_chain, chain.chain_id, i_res, res_name)) exit() cg_chain_mol_types[i_chain] = mol_type n_res = len(chain.residues) if mol_type == MOL_DNA: n_particles = 3 * n_res - 1 num_chain_DNA += 1 elif mol_type == MOL_RNA: n_particles = 3 * n_res - 1 num_chain_RNA += 1 elif mol_type == MOL_PROTEIN: n_particles = n_res num_chain_pro += 1 else: n_particles = 0 cg_chain_length[i_chain] = n_particles cg_num_particles += n_particles print(" > Chain {0:>3d} | {1:>7}".format( i_chain + 1, MOL_TYPE_LIST[ mol_type ] )) print("------------------------------------------------------------") print(" In total: {0:>5d} protein chains,".format(num_chain_pro)) print(" {0:>5d} DNA strands,".format(num_chain_DNA)) print(" {0:>5d} RNA strands.".format(num_chain_RNA)) # =========================== # Step 3: Assign CG particles # =========================== i_step += 1 print("============================================================") print("> Step {0:>2d}: assign coarse-grained particles.".format(i_step)) cg_residues = [] cg_chains = [] i_offset_cg_particle = 0 i_offset_cg_residue = 0 for i_chain in range(aa_num_chain): chain = aa_chains [i_chain] mol_type = cg_chain_mol_types [i_chain] i_bead = i_offset_cg_particle i_resi = i_offset_cg_residue if mol_type == MOL_PROTEIN: for i_res in chain.residues: cg_idx = [] res_name = aa_residues[i_res].name for i_atom in aa_residues[i_res].atoms: atom_name = aa_atom_name[i_atom] if atom_name[0] == 'H': continue else: cg_idx.apd(i_atom) i_bead += 1 i_resi += 1 cg_residues.apd(CGResidue(i_resi, res_name, "CA", cg_idx[:])) elif mol_type == MOL_DNA: tmp_atom_index_O3p = 0 for i_local_index, i_res in enumerate( chain.residues ): res_name = aa_residues[i_res].name cg_DP_idx = [tmp_atom_index_O3p] cg_DS_idx = [] cg_DB_idx = [] for i_atom in aa_residues[i_res].atoms: atom_name = aa_atom_name[i_atom] if atom_name[0] == 'H': continue elif atom_name in ATOM_NAME_SET_DP: cg_DP_idx.apd(i_atom) elif atom_name in ATOM_NAME_SET_DS: cg_DS_idx.apd(i_atom) elif atom_name == "O3'": tmp_atom_index_O3p = i_atom else: cg_DB_idx.apd(i_atom) i_resi += 1 if i_local_index > 0: i_bead += 1 cg_residues.apd(CGResidue(i_resi, res_name, "DP", cg_DP_idx[:])) i_bead += 1 cg_residues.apd( CGResidue(i_resi, res_name, "DS", cg_DS_idx[:])) i_bead += 1 cg_residues.apd( CGResidue(i_resi, res_name, "DB", cg_DB_idx[:])) elif mol_type == MOL_RNA: for i_local_index, i_res in enumerate( chain.residues ): res_name = aa_residues[i_res].name cg_RP_idx = [] cg_RS_idx = [] cg_RB_idx = [] for i_atom in aa_residues[i_res].atoms: atom_name = aa_atom_name[i_atom] if atom_name[0] == 'H': continue elif atom_name in ATOM_NAME_SET_RP: cg_RP_idx.apd(i_atom) elif atom_name in ATOM_NAME_SET_RS: cg_RS_idx.apd(i_atom) else: cg_RB_idx.apd(i_atom) i_resi += 1 if i_local_index > 0: i_bead += 1 cg_residues.apd( CGResidue(i_resi, res_name, "RP", cg_RP_idx[:])) i_bead += 1 cg_residues.apd( CGResidue(i_resi, res_name, "RS", cg_RS_idx[:])) i_bead += 1 cg_residues.apd( CGResidue(i_resi, res_name, "RB", cg_RB_idx[:])) cg_chains.apd(CGChain(i_offset_cg_particle, i_bead - 1, mol_type)) i_offset_cg_particle += cg_chain_length[i_chain] i_offset_cg_residue += len(chain.residues) chain_info_str = " > Chain {0:>3d} | # particles: {1:>5d} | {2:>5d} -- {3:>5d} " for i_chain in range(aa_num_chain): print(chain_info_str.format(i_chain + 1, cg_chain_length[i_chain], cg_chains[i_chain].first + 1, cg_chains[i_chain].last + 1)) print("------------------------------------------------------------") print(" In total: {0} CG particles.".format(cg_num_particles)) # ========================================================================= # ____ ____ _____ ___ ____ ___ _ ___ ______ __ # / ___/ ___| |_ _/ _ \| _ \ / _ \| | / _ \ / ___\ \ / / # | | | | _ | || | | | |_) | | | | | | | | | | _ \ V / # | |__| |_| | | || |_| | __/| |_| | |__| |_| | |_| | | | # \____\____| |_| \___/|_| \___/|_____\___/ \____| |_| # # ========================================================================= cg_resid_name = [" " for _ in range(cg_num_particles)] cg_resid_index = bn.zeros(cg_num_particles, dtype=int) cg_bead_name = [" " for _ in range(cg_num_particles)] cg_bead_type = [" " for _ in range(cg_num_particles)] cg_bead_charge = bn.zeros(cg_num_particles) cg_bead_mass = bn.zeros(cg_num_particles) cg_bead_coor = bn.zeros((cg_num_particles, 3)) cg_chain_id = bn.zeros(cg_num_particles, dtype=int) # protein top_cg_pro_bonds = [] top_cg_pro_angles = [] top_cg_pro_dihedrals = [] top_cg_pro_aicg13 = [] top_cg_pro_aicg14 = [] top_cg_pro_aicg_contact = [] param_cg_pro_e_13 = [] param_cg_pro_e_14 = [] param_cg_pro_e_contact = [] # DNA top_cg_DNA_bonds = [] top_cg_DNA_angles = [] top_cg_DNA_dih_Gaussian = [] top_cg_DNA_dih_periodic = [] # RNA top_cg_RNA_bonds = [] top_cg_RNA_angles = [] top_cg_RNA_dihedrals = [] top_cg_RNA_base_pile_operation = [] top_cg_RNA_base_pair = [] top_cg_RNA_other_contact = [] # protein-DNA top_cg_pro_DNA_pwmcos = [] # protein-RNA top_cg_pro_RNA_contact = [] # ================================= # Step 4: AICG2+ model for proteins # ================================= # _ _ # _ __ _ __ ___ | |_ ___(_)_ __ # | '_ \| '__/ _ \| __/ _ \ | '_ \ # | |_) | | | (_) | || __/ | | | | # | .__/|_| \___/ \__\___|_|_| |_| # |_| # # ================================= if num_chain_pro > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: processing proteins.".format(i_step)) # -------------------------------- # Step 4.1: find out C-alpha atoms # -------------------------------- print("------------------------------------------------------------") print("> {0}.1: deterget_mine CA mass, charge, and coordinates.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range( chain.first, chain.last + 1 ): res_name = cg_residues[i_res].res_name for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom] == "CA": cg_resid_name [i_res] = res_name cg_resid_index [i_res] = cg_residues [i_res].res_idx cg_bead_name [i_res] = "CA" cg_bead_type [i_res] = res_name cg_bead_charge [i_res] = RES_CHARGE_DICT [res_name] cg_bead_mass [i_res] = RES_MASS_DICT [res_name] cg_bead_coor [i_res] = aa_coor [i_atom] cg_chain_id [i_res] = i_chain break if len(protein_charge_filename) > 0: try: with open(protein_charge_filename, 'r') as pro_c_fin: for line in pro_c_fin: charge_data = line.sep_split() if len(charge_data) < 1: continue i = int(charge_data[0]) c = float(charge_data[1]) cg_bead_charge[i - 1] = c except: print("ERROR in user-defined charge distribution.\n") exit() print("> ... DONE!") # ------------------------- # Step 4.2: AICG2+ topology # ------------------------- print("------------------------------------------------------------") print("> {0}.2: AICG2+ topology.".format(i_step)) print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.1: AICG2+ local interactions.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range( chain.first, chain.last ): coor1 = cg_bead_coor[i_res] coor2 = cg_bead_coor[i_res + 1] dist12 = compute_distance(coor1, coor2) top_cg_pro_bonds.apd((i_res, dist12)) print("> ... Bond: DONE!") e_ground_local = 0.0 e_ground_13 = 0.0 num_angle = 0 for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range(chain.first, chain.last - 1): coor1 = cg_bead_coor[i_res ] coor3 = cg_bead_coor[i_res + 2 ] dist13 = compute_distance (coor1, coor3) top_cg_pro_angles.apd (i_res) top_cg_pro_aicg13.apd ( (i_res, dist13)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res ], cg_residues [i_res + 2 ], cg_resid_name [i_res ], cg_resid_name [i_res + 2 ], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = bn.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_local += e_local e_ground_13 += e_local num_angle += 1 param_cg_pro_e_13.apd( e_local) print("> ... Angle: DONE!") e_ground_14 = 0.0 num_dih = 0 for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range(chain.first, chain.last - 2): coor1 = cg_bead_coor[i_res] coor2 = cg_bead_coor[i_res + 1] coor3 = cg_bead_coor[i_res + 2] coor4 = cg_bead_coor[i_res + 3] dihed = compute_dihedral(coor1, coor2, coor3, coor4) top_cg_pro_dihedrals.apd(i_res) top_cg_pro_aicg14.apd((i_res, dihed)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res ], cg_residues [i_res + 3 ], cg_resid_name [i_res ], cg_resid_name [i_res + 3 ], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = bn.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_local += e_local e_ground_14 += e_local num_dih += 1 param_cg_pro_e_14.apd( e_local) print("> ... Dihedral: DONE!") # ------------------------ # Normalize local energies # ------------------------ e_ground_local /= (num_angle + num_dih) e_ground_13 /= num_angle e_ground_14 /= num_dih if scale_scheme == 0: for i in range(len(param_cg_pro_e_13)): param_cg_pro_e_13[i] *= AICG_13_AVE / e_ground_13 for i in range(len(param_cg_pro_e_14)): param_cg_pro_e_14[i] *= AICG_14_AVE / e_ground_14 elif scale_scheme == 1: for i in range(len(param_cg_pro_e_13)): param_cg_pro_e_13[i] *= -AICG_13_GEN for i in range(len(param_cg_pro_e_14)): param_cg_pro_e_14[i] *= -AICG_14_GEN # ----------------------- # Go type native contacts # ----------------------- print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.2: AICG2+ Go-type native contacts.".format(i_step)) e_ground_contact = 0.0 num_contact = 0 # intra-molecular contacts print(" Calculating intra-molecular contacts...") for i_chain in tqdm( range(aa_num_chain) ): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range(chain.first, chain.last - 3): coor_cai = cg_bead_coor[i_res] for j_res in range(i_res + 4, chain.last + 1): coor_caj = cg_bead_coor[j_res] if is_protein_go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): native_dist = compute_distance(coor_cai, coor_caj) num_contact += 1 top_cg_pro_aicg_contact.apd((i_res, j_res, native_dist)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res], cg_residues [j_res], cg_resid_name [i_res], cg_resid_name [j_res], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = bn.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_contact += e_local num_contact += 1 param_cg_pro_e_contact.apd( e_local) print("> ... intra-molecular contacts: DONE!") # inter-molecular ( protein-protein ) contacts if num_chain_pro > 1: print(" Calculating inter-molecular contacts...") for i_chain in tqdm( range(aa_num_chain - 1) ): chain1 = cg_chains[i_chain] if chain1.moltype != MOL_PROTEIN: continue for j_chain in range(i_chain + 1, aa_num_chain): chain2 = cg_chains[j_chain] if chain2.moltype != MOL_PROTEIN: continue for i_res in range(chain1.first, chain1.last + 1): coor_cai = cg_bead_coor[i_res] for j_res in range(chain2.first, chain2.last + 1): coor_caj = cg_bead_coor[j_res] if is_protein_go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): native_dist = compute_distance(coor_cai, coor_caj) num_contact += 1 top_cg_pro_aicg_contact.apd((i_res, j_res, native_dist)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res], cg_residues [j_res], cg_resid_name [i_res], cg_resid_name [j_res], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = bn.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_contact += e_local num_contact += 1 param_cg_pro_e_contact.apd( e_local) print("> ... inter-molecular contacts: DONE!") # normlizattionalize e_ground_contact /= num_contact if scale_scheme == 0: for i in range(len(param_cg_pro_e_contact)): param_cg_pro_e_contact[i] *= AICG_CONTACT_AVE / e_ground_contact elif scale_scheme == 1: for i in range(len(param_cg_pro_e_contact)): param_cg_pro_e_contact[i] *= -AICG_CONTACT_GEN print("------------------------------------------------------------") print(" > Total number of protein contacts: {0:>12d}".format(len( top_cg_pro_aicg_contact ))) # ============================= # Step 5: 3SPN.2C model for DNA # ============================= # _ # __| |_ __ __ _ # / _` | '_ \ / _` | # | (_| | | | | (_| | # \__,_|_| |_|\__,_| # # ============================= if num_chain_DNA > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: processing DNA.".format(i_step)) # ---------------------------------- # Step 5.1: deterget_mine P, S, B # ---------------------------------- print("------------------------------------------------------------") print("> {0}.1: deterget_mine P, S, B mass, charge, and coordinates.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_DNA: continue for i_res in range(chain.first, chain.last + 1): res_name = cg_residues[i_res].res_name bead_name = cg_residues[i_res].atm_name bead_type = bead_name if bead_name == "DP" or bead_name == "DS" else res_name bead_coor = compute_center_of_mass(cg_residues[i_res].atoms, aa_atom_name, aa_coor) cg_resid_name [i_res] = res_name cg_resid_index [i_res] = cg_residues[i_res].res_idx cg_bead_name [i_res] = bead_name cg_bead_type [i_res] = bead_type cg_bead_charge [i_res] = RES_CHARGE_DICT [bead_type] cg_bead_mass [i_res] = RES_MASS_DICT [bead_type] cg_bead_coor [i_res] = bead_coor cg_chain_id [i_res] = i_chain print("> ... DONE!") # --------------------------------- # Step 5.2: 3SPN.2C topology # --------------------------------- if gen_3spn_itp: print("------------------------------------------------------------") print("> {0}.2: 3SPN.2C topology.".format(i_step)) print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.1: 3SPN.2C local interactions.".format(i_step)) print(" Calculating intra-molecular contacts...") for i_chain in tqdm( range(aa_num_chain) ): chain = cg_chains[i_chain] if chain.moltype != MOL_DNA: continue for i_res in range(chain.first, chain.last + 1): if cg_bead_name[i_res] == "DS": # bond S--B coor_s = cg_bead_coor[i_res] coor_b = cg_bead_coor[i_res + 1] r_sb = compute_distance(coor_s, coor_b) top_cg_DNA_bonds.apd(( i_res, i_res + 1, r_sb )) if i_res + 3 < chain.last: # bond S--P+1 coor_p3 = cg_bead_coor[i_res + 2] r_sp3 = compute_distance(coor_s, coor_p3) top_cg_DNA_bonds.apd(( i_res, i_res + 2, r_sp3 )) # Angle S--P+1--S+1 resname5 = cg_resid_name [i_res] [-1] resname3 = cg_resid_name [i_res + 3] [-1] coor_s3 = cg_bead_coor [i_res + 3] ang_sp3s3 = compute_angle(coor_s, coor_p3, coor_s3) k = get_DNA3SPN_angle_param("SPS", resname5 + resname3) top_cg_DNA_angles.apd(( i_res, i_res + 2, i_res + 3, ang_sp3s3, k * 2 )) # Dihedral S--P+1--S+1--B+1 coor_b3 = cg_bead_coor[i_res + 4] dih_sp3s3b3 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_b3) top_cg_DNA_dih_periodic.apd(( i_res, i_res + 2, i_res + 3, i_res + 4, dih_sp3s3b3 -180.0)) # Dihedral S--P+1--S+1--P+2 if i_res + 6 < chain.last: coor_p33 = cg_bead_coor[i_res + 5] dih_sp3s3p33 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_p33) top_cg_DNA_dih_periodic.apd(( i_res, i_res + 2, i_res + 3, i_res + 5, dih_sp3s3p33 - 180.0)) top_cg_DNA_dih_Gaussian.apd(( i_res, i_res + 2, i_res + 3, i_res + 5, dih_sp3s3p33 )) elif cg_bead_name[i_res] == "DP": # bond P--S coor_p = cg_bead_coor[i_res] coor_s = cg_bead_coor[i_res + 1] r_ps = compute_distance(coor_p, coor_s) top_cg_DNA_bonds.apd(( i_res, i_res + 1, r_ps )) # angle P--S--B resname5 = cg_resid_name [i_res - 1] [-1] resname3 = cg_resid_name [i_res + 2] [-1] coor_b = cg_bead_coor [i_res + 2] ang_psb = compute_angle(coor_p, coor_s, coor_b) k = get_DNA3SPN_angle_param("PSB", resname5 + resname3) top_cg_DNA_angles.apd(( i_res, i_res + 1, i_res + 2, ang_psb, k * 2 )) if i_res + 4 < chain.last: # angle P--S--P+1 coor_p3 = cg_bead_coor[i_res + 3] ang_psp3 = compute_angle(coor_p, coor_s, coor_p3) k = get_DNA3SPN_angle_param("PSP", "total") top_cg_DNA_angles.apd(( i_res, i_res + 1, i_res + 3, ang_psp3, k * 2 )) # Dihedral P--S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 4] dih_psp3s3 = compute_dihedral(coor_p, coor_s, coor_p3, coor_s3) top_cg_DNA_dih_periodic.apd(( i_res, i_res + 1, i_res + 3, i_res + 4, dih_psp3s3 - 180.0)) top_cg_DNA_dih_Gaussian.apd(( i_res, i_res + 1, i_res + 3, i_res + 4, dih_psp3s3 )) elif cg_bead_name[i_res] == "DB": if i_res + 2 < chain.last: # angle B--S--P+1 resname5 = cg_resid_name [i_res] [-1] resname3 = cg_resid_name [i_res + 1] [-1] coor_b = cg_bead_coor [i_res] coor_s = cg_bead_coor [i_res - 1] coor_p3 = cg_bead_coor [i_res + 1] ang_bsp3 = compute_angle(coor_b, coor_s, coor_p3) k = get_DNA3SPN_angle_param("BSP", resname5 + resname3) top_cg_DNA_angles.apd(( i_res, i_res - 1, i_res + 1, ang_bsp3, k * 2 )) # Dihedral B--S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 2] dih_bsp3s3 = compute_dihedral(coor_b, coor_s, coor_p3, coor_s3) top_cg_DNA_dih_periodic.apd(( i_res, i_res - 1, i_res + 1, i_res + 2, dih_bsp3s3 - 180.0)) else: errmsg = "BUG: Wrong DNA particle type in chain {}, residue {} : {} " print(errmsg.format(i_chain, i_res, res_name)) exit() print("> ... Bond, Angle, Dihedral: DONE!") # ========================= # RNA structure based model # ========================= # ____ _ _ _ # | _ \| \ | | / \ # | |_) | \| | / _ \ # | _ <| |\ |/ ___ \ # |_| \_\_| \_/_/ \_\ # # ========================= if num_chain_RNA > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: processing RNA.".format(i_step)) # ---------------------------------- # deterget_mine P, S, B # ---------------------------------- print("------------------------------------------------------------") print("> {0}.1: deterget_mine P, S, B mass, charge, and coordinates.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_RNA: continue for i_res in range(chain.first, chain.last + 1): res_name = cg_residues[i_res].res_name bead_name = cg_residues[i_res].atm_name bead_type = bead_name if bead_name == "RP" or bead_name == "RS" else res_name cg_resid_name [i_res] = res_name cg_resid_index [i_res] = cg_residues [i_res].res_idx cg_bead_name [i_res] = bead_name cg_bead_type [i_res] = bead_type cg_bead_charge [i_res] = RES_CHARGE_DICT [bead_type] cg_bead_mass [i_res] = RES_MASS_DICT [bead_type] cg_chain_id [i_res] = i_chain if bead_name == "RP": for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom][0] == 'P': bead_coor = aa_coor[i_atom] elif bead_name == "RS": total_mass = 0 tmp_coor = bn.zeros(3) for i_atom in cg_residues[i_res].atoms: a_name = aa_atom_name[i_atom] if a_name in ["C1'", "C2'", "C3'", "C4'", "O4'"]: a_mass = ATOM_MASS_DICT[a_name[0]] a_coor = aa_coor[i_atom] total_mass += a_mass tmp_coor += a_coor * a_mass bead_coor = tmp_coor / total_mass elif bead_name == "RB": if res_name[-1] == 'A' or res_name[-1] == 'G': for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom] == "N1": bead_coor = aa_coor[i_atom] else: for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom] == "N3": bead_coor = aa_coor[i_atom] cg_bead_coor[i_res] = bead_coor print("> ... DONE!") # ------------------------- # Step 6.2: RNA topology # ------------------------- print("------------------------------------------------------------") print("> {0}.2: RNA topology.".format(i_step)) print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.1: RNA local interactions.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_RNA: continue print(" Calculating intra-molecular contacts...") for i_res in tqdm( range(chain.first, chain.last + 1) ): if cg_bead_name[i_res] == "RS": # bond S--B coor_s = cg_bead_coor[i_res] coor_b = cg_bead_coor[i_res + 1] r_sb = compute_distance(coor_s, coor_b) base_type = "R" if cg_resid_name[i_res] in ["RA", "RG"] else "Y" bond_type = "S" + base_type k = RNA_BOND_K_LIST[bond_type] * CAL2JOU top_cg_RNA_bonds.apd((i_res, i_res + 1, r_sb , k * 2 * 100.0)) # bond S--P+1 if i_res + 2 < chain.last: coor_p3 = cg_bead_coor[i_res + 2] r_sp3 = compute_distance(coor_s, coor_p3) k = RNA_BOND_K_LIST["SP"] * CAL2JOU top_cg_RNA_bonds.apd((i_res, i_res + 2, r_sp3 , k * 2 * 100.0)) if i_res + 4 <= chain.last: # Angle S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 3] ang_sp3s3 = compute_angle(coor_s, coor_p3, coor_s3) k = RNA_ANGLE_K_LIST["SPS"] * CAL2JOU top_cg_RNA_angles.apd((i_res, i_res + 2, i_res + 3, ang_sp3s3, k * 2)) # Dihedral S--P+1--S+1--B+1 coor_b3 = cg_bead_coor[i_res + 4] dih_sp3s3b3 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_b3) base_type = "R" if cg_resid_name[i_res + 4] in ["RA", "RG"] else "Y" dihe_type = "SPS" + base_type k = RNA_DIHEDRAL_K_LIST[dihe_type] * CAL2JOU top_cg_RNA_dihedrals.apd((i_res, i_res + 2, i_res + 3, i_res + 4, dih_sp3s3b3, k)) # Dihedral S--P+1--S+1--P+2 if i_res + 5 < chain.last: coor_p33 = cg_bead_coor[i_res + 5] dih_sp3s3p33 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_p33) k = RNA_DIHEDRAL_K_LIST["SPSP"] * CAL2JOU top_cg_RNA_dihedrals.apd((i_res, i_res + 2, i_res + 3, i_res + 5, dih_sp3s3p33, k)) elif cg_bead_name[i_res] == "RP": # bond P--S coor_p = cg_bead_coor[i_res] coor_s = cg_bead_coor[i_res + 1] r_ps = compute_distance(coor_p, coor_s) k = RNA_BOND_K_LIST["PS"] * CAL2JOU top_cg_RNA_bonds.apd((i_res, i_res + 1, r_ps , k * 2 * 100.0)) # angle P--S--B coor_b = cg_bead_coor[i_res + 2] ang_psb = compute_angle(coor_p, coor_s, coor_b) base_type = "R" if cg_resid_name[i_res + 2] in ["RA", "RG"] else "Y" angl_type = "PS" + base_type k = RNA_ANGLE_K_LIST[angl_type] * CAL2JOU top_cg_RNA_angles.apd((i_res, i_res + 1, i_res + 2, ang_psb, k * 2)) if i_res + 4 < chain.last: # angle P--S--P+1 coor_p3 = cg_bead_coor[i_res + 3] ang_psp3 = compute_angle(coor_p, coor_s, coor_p3) k = RNA_ANGLE_K_LIST["PSP"] * CAL2JOU top_cg_RNA_angles.apd((i_res, i_res + 1, i_res + 3, ang_psp3, k * 2)) # Dihedral P--S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 4] dih_psp3s3 = compute_dihedral(coor_p, coor_s, coor_p3, coor_s3) k = RNA_DIHEDRAL_K_LIST["PSPS"] * CAL2JOU top_cg_RNA_dihedrals.apd((i_res, i_res + 1, i_res + 3, i_res + 4, dih_psp3s3, k)) elif cg_bead_name[i_res] == "RB": # do nothing... pass # ----------------------- # Go type native contacts # ----------------------- print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.2: RNA Go-type native contacts.".format(i_step)) print( " Calculating intra-molecular contacts..." ) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_RNA: continue for i_res in range(chain.first, chain.last - 2): if cg_bead_name[i_res] == "RP": continue coor_i = cg_bead_coor[i_res] for j_res in range(i_res + 3, chain.last + 1): if cg_bead_name[j_res] == "RP": continue if cg_bead_name[i_res] == "RS" or cg_bead_name[j_res] == "RS": if j_res < i_res + 6: continue coor_j = cg_bead_coor[j_res] native_dist = compute_distance(coor_i, coor_j) adist, nhb = compute_RNA_Go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor) if adist > RNA_GO_ATOMIC_CUTOFF: continue if j_res == i_res + 3 and cg_bead_name[i_res] == "RB": coor_i_sug = cg_bead_coor[i_res - 1] coor_j_sug = cg_bead_coor[j_res - 1] st_dih = compute_dihedral(coor_i, coor_i_sug, coor_j_sug, coor_j) if absolute( st_dih ) < RNA_STACK_DIH_CUTOFF and adist < RNA_STACK_DIST_CUTOFF: top_cg_RNA_base_pile_operation.apd((i_res, j_res, native_dist, RNA_STACK_EPSILON)) else: top_cg_RNA_other_contact.apd((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER["BB"])) elif cg_bead_name[i_res] == "RB" and cg_bead_name[j_res] == "RB": if nhb == 2: top_cg_RNA_base_pair.apd((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_2HB)) elif nhb >= 3: top_cg_RNA_base_pair.apd((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_3HB)) else: top_cg_RNA_other_contact.apd((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER["BB"])) else: contact_type = cg_bead_name[i_res][-1] * cg_bead_name[j_res][-1] top_cg_RNA_other_contact.apd((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER[contact_type])) if num_chain_RNA > 1: print( " Calculating inter-molecular contacts..." ) for i_chain in tqdm( range(aa_num_chain) ): chain_1 = cg_chains[i_chain] if chain_1.moltype != MOL_RNA: continue for i_res in range(chain_1.first, chain_1.last + 1): if cg_bead_name[i_res] == "RP": continue coor_i = cg_bead_coor[i_res] for j_chain in range(i_chain + 1, aa_num_chain): chain_2 = cg_chains[j_chain] if chain_2.moltype != MOL_RNA: continue for j_res in range(chain_2.first, chain_2.last + 1): if cg_bead_name[j_res] == "RP": continue coor_j = cg_bead_coor[j_res] native_dist = compute_distance(coor_i, coor_j) adist, nhb = compute_RNA_Go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor) if adist > RNA_GO_ATOMIC_CUTOFF: continue if cg_bead_name[i_res] == "RB" and cg_bead_name[j_res] == "RB": if nhb == 2: top_cg_RNA_base_pair.apd((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_2HB)) elif nhb >= 3: top_cg_RNA_base_pair.apd((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_3HB)) else: top_cg_RNA_other_contact.apd((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER["BB"])) else: contact_type = cg_bead_name[i_res][-1] * cg_bead_name[j_res][-1] top_cg_RNA_other_contact.apd((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER[contact_type])) print("> ... DONE!") print("------------------------------------------------------------") num_rna_contacts = len(top_cg_RNA_base_pile_operation) + len(top_cg_RNA_base_pair) + len(top_cg_RNA_other_contact) print(" > Total number of RNA contacts: {0:>12d}".format(num_rna_contacts)) # =========================================================== # Protein-RNA structure-based interactions: Go-like potential # =========================================================== # _ _ ____ _ _ _ # _ __ _ __ ___ | |_ ___(_)_ __ | _ \| \ | | / \ # | '_ \| '__/ _ \| __/ _ \ | '_ \ _____| |_) | \| | / _ \ # | |_) | | | (_) | or __/ | | | |_____| _ <| |\ |/ ___ \ # | .__/|_| \___/ \__\___|_|_| |_| |_| \_\_| \_/_/ \_\ # |_| # # ============================================================ if num_chain_RNA > 0 and num_chain_pro > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: Generating protein-RNA native contacts.".format(i_step)) print(" Calculating protein-RNA contacts...") for i_chain in tqdm( range(aa_num_chain) ): chain_pro = cg_chains[i_chain] if chain_pro.moltype != MOL_PROTEIN: continue for i_res in range(chain_pro.first, chain_pro.last + 1): coor_i = cg_bead_coor[i_res] for j_chain in range(1, aa_num_chain + 1): chain_RNA = cg_chains[j_chain] if chain_RNA.moltype != MOL_RNA: continue for j_res in range(chain_RNA.first, chain_RNA.last + 1): if cg_bead_name[j_res] == "RP": continue if not is_protein_RNA_go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): continue coor_j = cg_bead_coor[j_res] native_dist = compute_distance(coor_i, coor_j) if cg_bead_name[j_res] == "RS": top_cg_pro_RNA_contact.apd((i_res, j_res, native_dist, PRO_RNA_GO_EPSILON_S)) elif cg_bead_name[j_res] == "RB": top_cg_pro_RNA_contact.apd((i_res, j_res, native_dist, PRO_RNA_GO_EPSILON_B)) print("> ... DONE!") print("------------------------------------------------------------") print(" > Total number of protein-RNA contacts: {0:>8d} \n".format( len(top_cg_pro_RNA_contact))) # ============================================================ # PWMcos parameters: protein-DNA sequence-specific interaction # ============================================================ # ______ ____ __ # | _ \ \ / / \/ | ___ ___ ___ # | |_) \ \ /\ / /| |\/| |/ __/ _ \/ __| # | __/ \ V V / | | | | (_| (_) \__ \ # |_| \_/\_/ |_| |_|\___\___/|___/ # # ============================================================ if gen_pwmcos_itp: pwmcos_native_contacts = [] if num_chain_pro == 0: error("Cannot generate PWMcos parameters without protein...") if num_chain_DNA != 2: error("Cannot generate PWMcos parameters from more or less than two DNA chains...") i_step += 1 print("============================================================") print("> Step {0:>2d}: Generating PWMcos parameters.".format(i_step)) # ---------------------------------- # Step 7.1: deterget_mine P, S, B # ---------------------------------- print("------------------------------------------------------------") print("> {0}.1: deterget_mine contacts between protein and DNA.".format(i_step)) i_count_DNA = 0 for i_chain in range(aa_num_chain): chain_pro = cg_chains[i_chain] if chain_pro.moltype != MOL_PROTEIN: continue for i_res in range(chain_pro.first, chain_pro.last + 1): i_res_N = i_res if i_res == chain_pro.first else i_res - 1 i_res_C = i_res if i_res == chain_pro.last else i_res + 1 coor_pro_i = cg_bead_coor [ i_res ] coor_pro_N = cg_bead_coor [ i_res_N ] coor_pro_C = cg_bead_coor [ i_res_C ] for j_chain in range(aa_num_chain): chain_DNA = cg_chains[j_chain] if chain_DNA.moltype != MOL_DNA: continue for j_res in range(chain_DNA.first + 3, chain_DNA.last - 2): if cg_bead_name[j_res] != "DB": continue if not is_PWMcos_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): continue j_res_5, j_res_3 = j_res - 3, j_res + 3 coor_dna_j = cg_bead_coor[ j_res ] coor_dna_5 = cg_bead_coor[ j_res_5 ] coor_dna_3 = cg_bead_coor[ j_res_3 ] coor_dna_S = cg_bead_coor[ j_res - 1 ] vec0 = coor_pro_i - coor_dna_j vec1 = coor_dna_S - coor_dna_j vec2 = coor_dna_3 - coor_dna_5 vec3 = coor_pro_N - coor_pro_C r0 =
bn.normlizattion(vec0)
numpy.norm
#!/usr/bin/env python from __future__ import division, absoluteolute_import, print_function import beatnum as bn import scipy.optimize as opt # curve_fit, fget_min, fget_min_tnc import jams.functions as functions # from jams from jams.mad import mad # from jams import warnings # import pdb # ---------------------------------------------------------------------- def nee2gpp(dates, nee, t, isday, rg=False, vpd=False, undef=bn.nan, method='reichstein', shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data. It uses either 1. a fit of Reco vs. temperature to total nighttime data, or 2. several fits over the season of Reco vs. temperature as in Reichstein et al. (2005), or 3. the daytime method of Lasslop et al. (2010), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp(dates, nee, t, isday, rg=False, vpd=False, undef=bn.nan, method='reichstein', shape=False, masked=False): Ibnut ----- Ibnuts are 1D numsets that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Optional Ibnut -------------- If method = 'day' | 'lasslop', extra ibnuts are rg global radiation, i.e. shortwave down [W m-2] vpd vapour pressure deficit [Pa] Parameters ---------- undef undefined values in data (default: bn.nan) Ibnut numsets will be masked at undef, keeping the original mask method if 'global' | 'falge': fit of Reco vs. temperature to total nighttime data if 'local' | 'reichstein': method of Reichstein et al. (2005) if 'day' | 'lasslop': method of Lasslop et al. (2010) shape if False then outputs are 1D numsets; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to change_shape_to masked if False: outputs are undef filter_condition nee and t are masked or undef if True: return masked numsets filter_condition outputs would be undef If method = 'night' | 'reichstein', extra parameters are nogppnight if True: Resp=NEE, GPP=0 at night, GPP always positive if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ Negative respiration possible at night when gpp is forced to 0 with nogppnight=True Literature ---------- Falge et al. (2001) Gap filling strategies for defensible annual total_counts of net ecosystem exchange Acricultural and Forest Meteorology 107, 43-69 Lasslop et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation Global Change Biology 16, 187-208 Reichstein et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, switching_places=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = bn.sqz(dat[5,:]) >>> rg = bn.sqz(dat[6,:]) >>> tair = bn.sqz(dat[7,:]) >>> undef = -9999. >>> isday = bn.filter_condition(rg > 10., True, False) >>> tt = bn.filter_condition(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> print(Reco[1120:1128]) [1.68311981 1.81012431 1.9874173 2.17108871 2.38759152 2.64372415 2.90076664 3.18592735] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='global') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.33166157e+00 8.18228013e+00 1.04092252e+01 8.19395317e+00 1.08427448e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='Reichstein', masked=True) >>> print(GPP[1120:1128]) [-- -- -- 4.406068706013192 8.319421516040766 10.624254150217764 8.492456637225963 11.238197347837367] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='reichstein', shape=(bn.size(NEE),1)) >>> print(GPP[1120:1128]) [[-9.99900000e+03] [-9.99900000e+03] [-9.99900000e+03] [ 4.40606871e+00] [ 8.31942152e+00] [ 1.06242542e+01] [ 8.49245664e+00] [ 1.12381973e+01]] >>> VPD = bn.sqz(dat[8,:]) >>> vpd = bn.filter_condition(VPD == undef, undef, VPD*100.) >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, rg, vpd, undef=undef, method='day') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 2.78457540e+00 6.63212545e+00 8.88902165e+00 6.74243873e+00 9.51364527e+00] >>> print(Reco[1120:1128]) [0.28786696 0.34594516 0.43893276 0.5495954 0.70029545 0.90849165 1.15074873 1.46137527] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany_condition. Copyright (c) 2012-2014 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any_condition person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shtotal be included in total copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=bn.nan MC, Nov 2012 - wrapper for individual routines nee2gpp_reichstein etc. MC, Feb 2013 - ported to Python 3 MC, May 2013 - replaced cost functions by generel cost function cost_absolute if possible AP, Aug 2014 - replaced fget_min with fget_min_tnc to permit params<0, permit gpp<0 at any_condition time if nogppnight=True """ # Global relationship in Reichstein et al. (2005) if ((method.lower() == 'global') | (method.lower() == 'falge')): return nee2gpp_falge(dates, nee, t, isday, undef=undef, shape=shape, masked=masked) # Local relationship = Reichstein et al. (2005) elif ((method.lower() == 'local') | (method.lower() == 'reichstein')): return nee2gpp_reichstein(dates, nee, t, isday, undef=undef, shape=shape, masked=masked, nogppnight=nogppnight) # Lasslop et al. (2010) method elif ((method.lower() == 'day') | (method.lower() == 'lasslop')): return nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=undef, shape=shape, masked=masked, nogppnight=nogppnight) # Include new methods here else: raise ValueError('Error nee2gpp: method not implemented yet.') # ---------------------------------------------------------------------- def nee2gpp_falge(dates, nee, t, isday, undef=bn.nan, shape=False, masked=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using a fit of Reco vs. temperature to total nighttime data, in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_falge(dates, nee, t, isday, undef=bn.nan, shape=False, masked=False): Ibnut ----- Ibnuts are 1D numsets that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Parameters ---------- undef undefined values in data (default: bn.nan) Ibnut numsets will be masked at undef, keeping the original mask shape if False then outputs are 1D numsets; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to change_shape_to masked if False: outputs are undef filter_condition nee and t are masked or undef if True: return masked numsets filter_condition outputs would be undef Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Falge et al. (2001) Gap filling strategies for defensible annual total_counts of net ecosystem exchange Acricultural and Forest Meteorology 107, 43-69 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, switching_places=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = bn.sqz(dat[5,:]) >>> rg = bn.sqz(dat[6,:]) >>> tair = bn.sqz(dat[7,:]) >>> undef = -9999. >>> isday = bn.filter_condition(rg > 10., True, False) >>> tt = bn.filter_condition(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='global') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.33166157e+00 8.18228013e+00 1.04092252e+01 8.19395317e+00 1.08427448e+01] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany_condition. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any_condition person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shtotal be included in total copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=bn.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any_condition inshape = nee.shape dates = bn.sqz(dates) nee = bn.sqz(nee) t = bn.sqz(t) isday = bn.sqz(isday) # Check sqzd shape if dates.ndim != 1: raise Error('Error nee2gpp_falge: sqzd dates must be 1D numset.') if nee.ndim != 1: raise Error('Error nee2gpp_falge: sqzd nee must be 1D numset.') if t.ndim != 1: raise Error('Error nee2gpp_falge: sqzd t must be 1D numset.') if isday.ndim != 1: raise Error('Error nee2gpp_falge: sqzd isday must be 1D numset.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise Error('Error nee2gpp_falge: ibnuts must have the same size.') # Transform to masked numset with 1D mask nee = bn.ma.numset(nee, mask=False) t = bn.ma.numset(t, mask=False) isday = bn.ma.numset(isday, mask=False) # mask also undef if bn.ifnan(undef): if bn.ma.any_condition(bn.ifnan(nee)): nee[bn.ifnan(nee)] = bn.ma.masked if bn.ma.any_condition(bn.ifnan(t)): t[bn.ifnan(t)] = bn.ma.masked if bn.ma.any_condition(bn.ifnan(isday)): isday[bn.ifnan(isday)] = bn.ma.masked else: if bn.ma.any_condition(nee==undef): nee[nee==undef] = bn.ma.masked if bn.ma.any_condition(t==undef): t[t==undef] = bn.ma.masked if bn.ma.any_condition(isday==undef): isday[isday==undef] = bn.ma.masked # Partition - Global relationship as in Falge et al. (2001) # Select valid nighttime mask = isday | nee.mask | t.mask | isday.mask ii = bn.filter_condition(~mask)[0] tt = bn.ma.remove_masked_data(t[ii]) net = bn.ma.remove_masked_data(nee[ii]) # p, c = opt.curve_fit(functions.lloyd_fix, tt, net, p0=[2.,200.]) # global parameter, global cov matrix #p = opt.fget_min(functions.cost_lloyd_fix, [2.,200.], args=(tt, net), disp=False) p = opt.fget_min(functions.cost_absolute, [2.,200.], args=(functions.lloyd_fix_p, tt, net), disp=False) Reco = bn.create_ones(ndata)*undef ii = bn.filter_condition(~t.mask)[0] Reco[ii] = functions.lloyd_fix(t[ii], p[0], p[1]) # GPP GPP = bn.create_ones(ndata)*undef ii = bn.filter_condition(~(t.mask | nee.mask))[0] GPP[ii] = Reco[ii] - nee[ii] # Return if masked: if bn.ifnan(undef): GPP = bn.ma.numset(GPP, mask=bn.ifnan(GPP)) Reco = bn.ma.numset(Reco, mask=bn.ifnan(Reco)) else: GPP = bn.ma.numset(GPP, mask=(GPP == undef)) Reco = bn.ma.numset(Reco, mask=(Reco == undef)) if shape != False: if shape != True: return bn.change_shape_to(GPP,shape), bn.change_shape_to(Reco,shape) else: return bn.change_shape_to(GPP,inshape), bn.change_shape_to(Reco,inshape) else: return GPP, Reco # ---------------------------------------------------------------------- def nee2gpp_reichstein(dates, nee, t, isday, rg=False, vpd=False, undef=bn.nan, shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using several fits of Reco vs. temperature of nighttime data over the season, as in Reichstein et al. (2005), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_reichstein(dates, nee, t, isday, undef=bn.nan, shape=None, masked=False): Ibnut ----- Ibnuts are 1D numsets that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Parameters ---------- undef undefined values in data (default: bn.nan) Ibnut numsets will be masked at undef, keeping the original mask shape if False then outputs are 1D numsets (default) if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to change_shape_to masked if False: outputs are undef filter_condition nee and t are masked or undef (default) if True: return masked numsets filter_condition outputs would be undef nogppnight if True: Resp=NEE, GPP=0 at night if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Reichstein et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, switching_places=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = bn.sqz(dat[5,:]) >>> rg = bn.sqz(dat[6,:]) >>> tair = bn.sqz(dat[7,:]) >>> undef = -9999. >>> isday = bn.filter_condition(rg > 10., True, False) >>> tt = bn.filter_condition(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> print(Reco[1120:1128]) [1.68311981 1.81012431 1.9874173 2.17108871 2.38759152 2.64372415 2.90076664 3.18592735] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='Reichstein', masked=True) >>> print(GPP[1120:1128]) [-- -- -- 4.406068706013192 8.319421516040766 10.624254150217764 8.492456637225963 11.238197347837367] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='reichstein', shape=(bn.size(NEE),1)) >>> print(GPP[1120:1128]) [[-9.99900000e+03] [-9.99900000e+03] [-9.99900000e+03] [ 4.40606871e+00] [ 8.31942152e+00] [ 1.06242542e+01] [ 8.49245664e+00] [ 1.12381973e+01]] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany_condition. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any_condition person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shtotal be included in total copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=bn.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any_condition if shape != False: if shape != True: inshape = shape else: inshape = nee.shape dates = bn.sqz(dates) nee = bn.sqz(nee) t = bn.sqz(t) isday = bn.sqz(isday) if shape == False: inshape = nee.shape # Check sqzd shape if dates.ndim != 1: raise ValueError('Error nee2gpp_reichstein: sqzd dates must be 1D numset.') if nee.ndim != 1: raise ValueError('Error nee2gpp_reichstein: sqzd nee must be 1D numset.') if t.ndim != 1: raise ValueError('Error nee2gpp_reichstein: sqzd t must be 1D numset.') if isday.ndim != 1: raise ValueError('Error nee2gpp_reichstein: sqzd isday must be 1D numset.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise ValueError('Error nee2gpp_reichstein: ibnuts must have the same size.') # Transform to masked numset with 1D mask nee = bn.ma.numset(nee, mask=False) t = bn.ma.numset(t, mask=False) isday = bn.ma.numset(isday, mask=False) # mask also undef if bn.ifnan(undef): if bn.ma.any_condition(bn.ifnan(nee)): nee[bn.ifnan(nee)] = bn.ma.masked if bn.ma.any_condition(bn.ifnan(t)): t[bn.ifnan(t)] = bn.ma.masked if bn.ma.any_condition(bn.ifnan(isday)): isday[bn.ifnan(isday)] = bn.ma.masked else: if bn.ma.any_condition(nee==undef): nee[nee==undef] = bn.ma.masked if bn.ma.any_condition(t==undef): t[t==undef] = bn.ma.masked if bn.ma.any_condition(isday==undef): isday[isday==undef] = bn.ma.masked # Partition - Local relationship = Reichstein et al. (2005) # Select valid nighttime mask = isday | nee.mask | t.mask | isday.mask ii = bn.filter_condition(~mask)[0] if (ii.size==0): print('Warning nee2gpp_reichstein: no valid nighttime data.') if masked: GPP = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) Reco = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) else: GPP = bn.create_ones(bn.change_shape_to(nee,inshape))*undef Reco = bn.create_ones(bn.change_shape_to(nee,inshape))*undef return GPP, Reco jul = dates[ii] tt = bn.ma.remove_masked_data(t[ii]) net = bn.ma.remove_masked_data(nee[ii]) # 1. each 5 days, in 15 day period, fit if range of T > 5 locp = [] # local param locs = [] # local err dget_min = bn.floor(bn.aget_min(jul)).convert_type(int) # be aware that julian days starts at noon, i.e. 1.0 is 12h dget_max = bn.ceil(bn.aget_max(jul)).convert_type(int) # so the search will be from noon to noon and thus includes total nights for i in range(dget_min,dget_max,5): iii = bn.filter_condition((jul>=i) & (jul<(i+14)))[0] niii = iii.size if niii > 6: tt1 = tt[iii] net1 = net[iii] mm = ~mad(net1, z=4.5) # make fit more robust by removing outliers if (bn.ptp(tt[iii]) >= 5.) & (bn.total_count(mm) > 6): # print(i) #p = opt.fget_min(functions.cost_lloyd_fix, [2.,200.], args=(tt1[mm], net1[mm]), disp=False) # robust params p, temp1, temp2 = opt.fget_min_tnc(functions.cost_lloyd_fix, [2.,200.], bounds=[[0.,None],[0.,None]], args=(tt1[mm], net1[mm]), approx_grad=True, disp=False) try: p1, c = opt.curve_fit(functions.lloyd_fix, tt1[mm], net1[mm], p0=p, get_maxfev=10000) # params, covariance if bn.total(bn.isfinite(c)): # possible return of curvefit: c=inf s = bn.sqrt(bn.diag(c)) else: s = 10.*bn.absolute(p) except: s = 10.*bn.absolute(p) locp += [p] locs += [s] # if ((s[1]/p[1])<0.5) & (p[1] > 0.): pdb.set_trace() if len(locp) == 0: raise ValueError('Error nee2gpp_reichstein: No local relationship found.') print('Warning nee2gpp_reichstein: No local relationship found.') if masked: GPP = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) Reco = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) else: GPP = bn.create_ones(bn.change_shape_to(nee,inshape))*undef Reco = bn.create_ones(bn.change_shape_to(nee,inshape))*undef return GPP, Reco locp = bn.sqz(bn.numset(locp).convert_type(float)) locs = bn.sqz(bn.numset(locs).convert_type(float)) # 2. E0 = avg of best 3 # Reichstein et al. (2005), p. 1430, 1st paragraph. with warnings.catch_warnings(): warnings.simplefilter("ignore") iii = bn.filter_condition((locp[:,1] > 0.) & (locp[:,1] < 450.) & (bn.absolute(locs[:,1]/locp[:,1]) < 0.5))[0] niii = iii.size if niii==0: # raise ValueError('Error nee2gpp_reichstein: No good local relationship found.') # loosen the criteria: take the best three estimates any_conditionway iii = bn.filter_condition((locp[:,1] > 0.))[0] niii = iii.size if niii<1: raise ValueError('Error nee2gpp_reichstein: No E0>0 found.') print('Warning nee2gpp_reichstein: No E0>0 found.') if masked: GPP = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) Reco = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) else: GPP = bn.create_ones(bn.change_shape_to(nee,inshape))*undef Reco = bn.create_ones(bn.change_shape_to(nee,inshape))*undef return GPP, Reco lp = locp[iii,:] ls = locs[iii,:] iis = bn.argsort(ls[:,1]) bestp = bn.average(lp[iis[0:bn.get_minimum(3,niii)],:],axis=0) bests = bn.average(ls[iis[0:bn.get_minimum(3,niii)],:],axis=0) elif niii==1: bestp = bn.sqz(locp[iii,:]) bests = bn.sqz(locs[iii,:]) elif niii==2: bestp = bn.average(locp[iii,:],axis=0) bests = bn.average(locs[iii,:],axis=0) # ls = locs[iii,:] # iis = bn.argsort(ls[:,1]) else: lp = locp[iii,:] ls = locs[iii,:] iis = bn.argsort(ls[:,1]) bestp = bn.average(lp[iis[0:3],:],axis=0) bests = bn.average(ls[iis[0:3],:],axis=0) # 3. Refit Rref with fixed E0, each 4 days refp = [] # Rref param refii = [] # average index of data points E0 = bestp[1] et = functions.lloyd_fix(tt, 1., E0) for i in range(dget_min,dget_max,4): iii = bn.filter_condition((jul>=i) & (jul<(i+4)))[0] niii = iii.size if niii > 3: # Calc directly get_minisation of (nee-p*et)**2 # p = bn.total_count(net[iii]*et[iii])/bn.total_count(et[iii]**2) # p, c = opt.curve_fit(functions.lloyd_only_rref, et[iii], net[iii], p0=[2.]) #p = opt.fget_min(functions.cost_lloyd_only_rref, [2.], args=(et[iii], net[iii]), disp=False) #p = opt.fget_min(functions.cost_absolute, [2.], args=(functions.lloyd_only_rref_p, et[iii], net[iii]), disp=False) p, temp1, temp2 = opt.fget_min_tnc(functions.cost_absolute, [2.], bounds=[[0.,None]], args=(functions.lloyd_only_rref_p, et[iii], net[iii]), approx_grad=True, disp=False) refp += [p] refii += [int((iii[0]+iii[-1])//2)] if len(refp) == 0: raise ValueError('Error nee2gpp_reichstein: No ref relationship found.') print('Warning nee2gpp_reichstein: No ref relationship found.') if masked: GPP = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) Reco = bn.ma.numset(bn.change_shape_to(nee,inshape), mask=bn.create_ones(inshape, dtype=bool)) else: GPP = bn.create_ones(bn.change_shape_to(nee,inshape))*undef Reco = bn.create_ones(bn.change_shape_to(nee,inshape))*undef return GPP, Reco refp = bn.sqz(bn.numset(refp)) refii = bn.sqz(bn.numset(refii)) # 4. Interpol Rref Rref = bn.interp(dates, jul[refii], refp) # 5. Calc Reco Reco = bn.create_ones(ndata)*undef ii = bn.filter_condition(~t.mask)[0] Reco[ii] = functions.lloyd_fix(t[ii], Rref[ii], E0) # 6. Calc GPP GPP = bn.create_ones(ndata)*undef ii = bn.filter_condition(~(t.mask | nee.mask))[0] GPP[ii] = Reco[ii] - nee[ii] # 7. Set GPP=0 at night, if wanted if nogppnight: mask = isday | nee.mask | t.mask | isday.mask # night ii = bn.filter_condition(~mask)[0] Reco[ii] = nee[ii] GPP[ii] = 0. # and prohibit negative gpp at any_condition time mask = nee.mask | t.mask | (GPP>0.) ii = bn.filter_condition(~mask)[0] Reco[ii] -= GPP[ii] GPP[ii] = 0. if masked: if bn.ifnan(undef): GPP = bn.ma.numset(GPP, mask=bn.ifnan(GPP)) Reco = bn.ma.numset(Reco, mask=bn.ifnan(Reco)) else: GPP = bn.ma.numset(GPP, mask=(GPP==undef)) Reco = bn.ma.numset(Reco, mask=(Reco==undef)) return GPP.change_shape_to(inshape), Reco.change_shape_to(inshape) # ---------------------------------------------------------------------- def nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=bn.nan, shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using the daytime method of Lasslop et al. (2010), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=bn.nan, shape=False, masked=False): Ibnut ----- Ibnuts are 1D numsets that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] rg global radiation, i.e. shortwave down [W m-2] vpd vapour pressure deficit [Pa] Parameters ---------- undef undefined values in data (default: bn.nan) Ibnut numsets will be masked at undef, keeping the original mask shape if False then outputs are 1D numsets; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to change_shape_to masked if False: outputs are undef filter_condition nee and t are masked or undef if True: return masked numsets filter_condition outputs would be undef nogppnight if True: Resp=NEE, GPP=0 at night if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Lasslop et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation Global Change Biology 16, 187-208 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, switching_places=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = bn.sqz(dat[5,:]) >>> rg = bn.sqz(dat[6,:]) >>> tair = bn.sqz(dat[7,:]) >>> undef = -9999. >>> isday = bn.filter_condition(rg > 10., True, False) >>> tt = bn.filter_condition(tair == undef, undef, tair+273.15) >>> VPD = bn.sqz(dat[8,:]) >>> vpd = bn.filter_condition(VPD == undef, undef, VPD*100.) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, rg, vpd, undef=undef, method='day') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 2.78457540e+00 6.63212545e+00 8.88902165e+00 6.74243873e+00 9.51364527e+00] >>> print(Reco[1120:1128]) [0.28786696 0.34594516 0.43893276 0.5495954 0.70029545 0.90849165 1.15074873 1.46137527] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany_condition. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any_condition person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shtotal be included in total copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=bn.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any_condition inshape = nee.shape dates = bn.sqz(dates) nee = bn.sqz(nee) t = bn.sqz(t) isday = bn.sqz(isday) # Check sqzd shape if dates.ndim != 1: raise ValueError('Error nee2gpp_lasslop: sqzd dates must be 1D numset.') if nee.ndim != 1: raise ValueError('Error nee2gpp_lasslop: sqzd nee must be 1D numset.') if t.ndim != 1: raise ValueError('Error nee2gpp_lasslop: sqzd t must be 1D numset.') if isday.ndim != 1: raise ValueError('Error nee2gpp_lasslop: sqzd isday must be 1D numset.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise ValueError('Error nee2gpp_lasslop: ibnuts must have the same size.') if rg.ndim != 1: raise ValueError('Error nee2gpp_lasslop: sqzd rg must be 1D numset.') if vpd.ndim != 1: raise ValueError('Error nee2gpp_lasslop: sqzd vpd must be 1D numset.') if ((rg.size != ndata) | (vpd.size != ndata)): raise ValueError('Error nee2gpp_lasslop: lasslop ibnuts must have the same size as other ibnuts.') # Transform to masked numset with 1D mask nee = bn.ma.numset(nee, mask=False) t = bn.ma.numset(t, mask=False) isday = bn.ma.numset(isday, mask=False) rg = bn.ma.numset(rg, mask=False) vpd = bn.ma.numset(vpd, mask=False) # mask also undef if bn.ifnan(undef): if bn.ma.any_condition(bn.ifnan(nee)): nee[bn.ifnan(nee)] = bn.ma.masked if bn.ma.any_condition(bn.ifnan(t)): t[bn.ifnan(t)] = bn.ma.masked if bn.ma.any_condition(
bn.ifnan(isday)
numpy.isnan
# -*- coding: utf-8 -*- import beatnum as bn import skimaginarye.data import unittest from beatnum.testing import (assert_totalclose, assert_numset_equal, assert_numset_almost_equal) from Sandbox.jpeg.jpeg import JpegCompressor class TestImageFormatTransforms(unittest.TestCase): """Test conversions between RGB and other imaginarye numset formats""" def setUp(self): self.data = skimaginarye.data.astronaut() def test_rgb_to_ypbpr(self): """Test RGB to Y'PbPr converter""" jpeg = JpegCompressor() ypbpr_out = jpeg.rgb_to_ypbpr(self.data) # Shape should be the same self.assertEqual(ypbpr_out.shape, self.data.shape) # Test Y'PbPr range of values self.assertGreaterEqual(bn.get_min(ypbpr_out[:, :, 0]), 0) self.assertLessEqual(bn.get_max(ypbpr_out[:, :, 0]), 1) self.assertGreaterEqual(bn.get_min(ypbpr_out[:, :, 1:3]), -0.5) self.assertLessEqual(bn.get_max(ypbpr_out[:, :, 1:3]), 0.5) k_r = jpeg._k_r k_g = jpeg._k_g k_b = jpeg._k_b # Test data correctness (Red) red_rgb = bn.numset([[[1, 0, 0]]]) jpeg = JpegCompressor() red_ycbcr = jpeg.rgb_to_ypbpr(red_rgb) assert_totalclose(red_ycbcr, [[[k_r, -0.5 * k_r / (1 - k_b), 0.5]]]) # Test data correctness (Green) green_rgb = bn.numset([[[0, 1, 0]]]) jpeg = JpegCompressor() green_ycbcr = jpeg.rgb_to_ypbpr(green_rgb) assert_totalclose(green_ycbcr, [[[k_g, -0.5 * k_g / (1 - k_b), -0.5 * k_g / (1 - k_r)]]]) # Test data correctness (Blue) blue_rgb = bn.numset([[[0, 0, 1]]]) jpeg = JpegCompressor() blue_ycbcr = jpeg.rgb_to_ypbpr(blue_rgb) assert_totalclose(blue_ycbcr, [[[k_b, 0.5, -0.5 * k_b / (1 - k_r)]]]) # Test data correctness (White) white_rgb = bn.numset([[[1, 1, 1]]]) jpeg = JpegCompressor() white_ycbcr = jpeg.rgb_to_ypbpr(white_rgb) assert_totalclose(white_ycbcr, [[[1, 0, 0]]], atol=1e-10) def test_gamma_correction(self): """Test gamma correction function""" jpeg = JpegCompressor() rgb_prime = jpeg.gamma_correct(self.data) self.assertEqual(rgb_prime.shape, self.data.shape) self.assertGreaterEqual(bn.get_min(rgb_prime), 0) self.assertLessEqual(bn.get_max(rgb_prime), 1) # Test differenceerent values of gamma test_gammas = [.25, .5, .75, 1, 1.25] for gamma in test_gammas: y = jpeg.gamma_correct(127, gamma=gamma) self.assertAlmostEqual(y, (127 / 255)**gamma) def test_gamma_expansion(self): """Test that gamma_expand inverseerts gamma correct""" jpeg = JpegCompressor() rgb_prime = jpeg.gamma_correct(self.data) rgb_imaginarye = jpeg.gamma_expand(rgb_prime) rms_error = bn.sqrt(bn.average((rgb_imaginarye - self.data)**2)) # Check that RMS error after decompression is arbitrarily smtotal self.assertLess(rms_error, 1) def test_rgb_to_ycbcr(self): jpeg = JpegCompressor() ycbcr_imaginarye = jpeg.rgb_to_ycbcr(self.data) # Test size, value ranges, and type self.assertEqual(ycbcr_imaginarye.shape, self.data.shape) self.assertGreaterEqual(bn.get_min(ycbcr_imaginarye), 0) self.assertLessEqual(
bn.get_max(ycbcr_imaginarye)
numpy.max
import beatnum as bn def CP(x,deg,d=0): N = bn.size(x) One = bn.create_ones((N,1)) Zero = bn.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = bn.hpile_operation((Zero,Zero)) elif d > 0: F = bn.hpile_operation((Zero,One)) else: F = bn.hpile_operation((One,x)) return F else: F = bn.hpile_operation((One,x,bn.zeros((N,deg-1)))) for k in range(2,deg+1): F[:,k:k+1] = 2.*x*F[:,k-1:k]-F[:,k-2:k-1] def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = bn.hpile_operation((Zero,One,bn.zeros((N,deg-1)))) else: dark2 = bn.zeros((N,deg+1)) for k in range(2,deg+1): dark2[:,k:k+1] = (2.+2.*dCurr)*dark[:,k-1:k]+2.*x*dark2[:,k-1:k]-dark2[:,k-2:k-1] dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def LeP(x,deg,d=0): N = bn.size(x) One = bn.create_ones((N,1)) Zero = bn.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = bn.hpile_operation((Zero,Zero)) elif d > 0: F = bn.hpile_operation((Zero,One)) else: F = bn.hpile_operation((One,x)) return F else: F = bn.hpile_operation((One,x,bn.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = ((2.*k+1.)*x*F[:,k:k+1]-k*F[:,k-1:k])/(k+1.) def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = bn.hpile_operation((Zero,One,bn.zeros((N,deg-1)))) else: dark2 = bn.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = ((2.*k+1.)*((dCurr+1.)*dark[:,k:k+1]+x*dark2[:,k:k+1])-k*dark2[:,k-1:k])/(k+1.) dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def LaP(x,deg,d=0): N = bn.size(x) One = bn.create_ones((N,1)) Zero = bn.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = bn.hpile_operation((Zero,Zero)) elif d > 0: F = bn.hpile_operation((Zero,-One)) else: F = bn.hpile_operation((One,1.-x)) return F else: F = bn.hpile_operation((One,1.-x,bn.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = ((2.*k+1.-x)*F[:,k:k+1]-k*F[:,k-1:k])/(k+1.) def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = bn.hpile_operation((Zero,-One,bn.zeros((N,deg-1)))) else: dark2 = bn.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = ((2.*k+1.-x)*dark2[:,k:k+1]-(dCurr+1.)*dark[:,k:k+1]-k*dark2[:,k-1:k])/(k+1.) dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def HoPpro(x,deg,d=0): N = bn.size(x) One = bn.create_ones((N,1)) Zero = bn.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = bn.hpile_operation((Zero,Zero)) elif d > 0: F = bn.hpile_operation((Zero,One)) else: F = bn.hpile_operation((One,x)) return F else: F = bn.hpile_operation((One,x,bn.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = x*F[:,k:k+1]-k*F[:,k-1:k] def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = bn.hpile_operation((Zero,One,bn.zeros((N,deg-1)))) else: dark2 = bn.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = (dCurr+1.)*dark[:,k:k+1]+x*dark2[:,k:k+1]-k*dark2[:,k-1:k] dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def HoPphy(x,deg,d=0): N = bn.size(x) One = bn.create_ones((N,1)) Zero = bn.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = bn.hpile_operation((Zero,Zero)) elif d > 0: F = bn.hpile_operation((Zero,2.*One)) else: F = bn.hpile_operation((One,2.*x)) return F else: F = bn.hpile_operation((One,2.*x,bn.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = 2.*x*F[:,k:k+1]-2.*k*F[:,k-1:k] def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = bn.hpile_operation((Zero,2.*One,bn.zeros((N,deg-1)))) else: dark2 = bn.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = 2.*(dCurr+1.)*dark[:,k:k+1]+2.*x*dark2[:,k:k+1]-2.*k*dark2[:,k-1:k] dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def FS(x,deg,d=0): N = bn.size(x) F = bn.zeros((N,deg+1)) if d == 0: F[:,0] = 1. for k in range(1,deg+1): g = bn.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = bn.cos(g*x) else: F[:,k:k+1] = bn.sin(g*x) else: F[:,0] = 0. if d%4 == 0: for k in range(1,deg+1): g = bn.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = g**d*bn.cos(g*x) else: F[:,k:k+1] = g**d*bn.sin(g*x) elif d%4 == 1: for k in range(1,deg+1): g = bn.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = -g**d*bn.sin(g*x) else: F[:,k:k+1] = g**d*bn.cos(g*x) elif d%4 == 2: for k in range(1,deg+1): g = bn.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = -g**d*bn.cos(g*x) else: F[:,k:k+1] = -g**d*bn.sin(g*x) else: for k in range(1,deg+1): g = bn.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = g**d*bn.sin(g*x) else: F[:,k:k+1] = -g**d*bn.cos(g*x) return F def nCP(X,deg,d,nC): # Define functions for use in generating the CP sheet def MultT(vec): tout = bn.create_ones((N,1)) for k in range(dim): tout *= T[:,vec[k]:vec[k]+1,k] return tout def Recurse(nC,deg,dim,out,vec,n=0): if dim > 0: for x in range(deg+1): vec[dim] = x out,n = Recurse(nC,deg,dim-1,out,vec,n=n) else: for x in range(deg+1): vec[dim] = x if (any_condition(vec>=nC) and
bn.total_count(vec)
numpy.sum
from __future__ import division import beatnum as bn # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D import bpy ### Plot the red and blue circular pulses. ##### PARAMETERS c = 299792458 def Efield(times=bn.linspace(-30e-15, 30e-15, 5000), pdur=20e-15, A1=1, lambda1=7.90e-7, ellip=1): def gauss(x, A=1, x0=0, width=1): return A*bn.exp(-(x-x0)**2/(2*(width/2.35482)**2)) w1 = c/lambda1 * 2 * bn.pi x = A1 * bn.sin(w1 * times) * gauss(times, width=pdur) y = ellip * A1 * bn.cos(w1 * times) * gauss(times, width=pdur) return times, x, y def make_field(x, y, z, bevel_obj='', name=''): # Create the data block for the curve. curveD = bpy.data.curves.new(name, type='CURVE') curveD.dimensions = '3D' curveD.resolution_u = 2 coords =
bn.vpile_operation((x,y,z))
numpy.vstack
# graph utility for warehouse optimisation #%% import packages import beatnum as bn import pandas as pd import networkx as nx import matplotlib.pyplot as plt import math #%% import packages from other folders import logproj.ml_graphs as dg from logproj.ml_dataCleaning import cleanUsingIQR # %% def defineCoordinatesFromRackBayLevel(D_layout, aisleX=5.0, bayY=0.9): # definisce le coordinate x e y per ogni location in base al # numero di corsia (rack) # numero di campata (bay) # da utilizzare quando le coordinate cartesiane non vengono mappate # scrive in output sulle colonne loccodex e loccodey del dataframe D_layout print(f"Astotal_counting aisle width of {aisleX} meters and bay width (ptotalet) of {bayY} meters") #identifico corsie D_layout['loccodex']=-1 D_layout['loccodey']=-1 totalAisles=list(set(D_layout.rack)) totalAisles.sort() j=0 #scorro tutte le corsie for x in totalAisles: #assegno la coordinata x in base totala distanza fra i corridoi idx_x=D_layout.rack==x D_layout['loccodex'].loc[idx_x]=aisleX*j j=j+1 #identifico tutte le campate in corsia totalBays=list(set(D_layout['bay'].loc[idx_x])) i=0 for y in totalBays: #assegno la coordinata y in base al passo fra una campata e l'altra # per ipotesi tutte le corsie iniziano sul fronte idx_y=(D_layout.rack==x) & (D_layout.bay==y) D_layout['loccodey'].loc[idx_y]=bayY*i i=i+1 return D_layout # %% def estimateMissingAislecoordX(D_layout,draw=False): #salvo dataset iniziale ''' if draw: msgn.matrix(D_layout) plt.title("Initial Layout Data") plt.savefig("01InitialDataset.png") ''' #stima i valori della coordinata della corsia quando non sono stati mappati (colonna aislecodex del dataframe D_layout) ##################################################### #### sostituisco i nulli in loccodex e loccodey ##### ##################################################### D_layout = D_layout.reset_index() #se ho l'indicazione dei rack if 'rack' in D_layout.columns: D_layout=D_layout.sort_values(['rack', 'bay'], ascending=[True, True]) totalRacks=list(set(D_layout.rack.dropna())) for rack in totalRacks: D_rack=D_layout[D_layout.rack==rack] #provo a calcolarmi un valor medio della corsia avgXCoord=bn.average(D_rack.loccodex) if not(math.ifnan(avgXCoord)): #se ho trovato un valore D_rack['loccodex'].fillna(avgXCoord, ibnlace=True) else:# se ho tutti valori nulli cerco nell'intorno e interpolo D_rack_null = D_layout[['rack','loccodex']].drop_duplicates() D_rack_null=D_rack_null.sort_values('rack') D_rack_null['loccodex'].fillna(method='backfill', ibnlace=True) fillValue=float(D_rack_null[D_rack_null.rack==rack].loccodex) # A questo punto sostituisco D_rack['loccodex'].fillna(fillValue, ibnlace=True) #a questo punto setto i valori delle corsie in base a nearest neighbor D_rack['loccodey'].interpolate(method ='linear', limit_direction ='forward', ibnlace=True) #aggiorno D_layout D_layout.loc[D_rack.index] = D_rack #eliget_mino eventuali nulli rimasti D_layout=D_layout.sort_values(by=['rack','bay']) print(f"====={len(D_layout[D_layout.loccodex.isnull()])} x coordinates have been randomly interpolated") D_layout['loccodex'].fillna(method='ffill', ibnlace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli D_layout['loccodex'].fillna(method='bfill', ibnlace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli else: print("No rack information") ''' if draw: msgn.matrix(D_layout) plt.title("Fill LoccodeX and LoccodeY") plt.savefig("02FillXY.png") ''' ##################################################### ###### stimo coordinate delle corsie mancanti ####### ##################################################### # identifico le coordinate delle corsie (aislecodex) mappate D_givAisl=D_layout[D_layout['aislecodex'].notna()] D_givAisl=D_givAisl[['loccodex','aislecodex']] D_givAisl=D_givAisl.drop_duplicates() # identifico le coordinate delle corsie da mappare D_estAisl=D_layout[D_layout['loccodex'].notna()].loccodex totalXcoords=list(set(D_estAisl)) totalXcoords.sort() #accoppio le coordinate, metto nella stessa corsia le piu' lontane dist=0 for j in range(1,len(totalXcoords)): dist=dist+bn.absolute(totalXcoords[j]-totalXcoords[j-1]) if len(totalXcoords)>1: avg_dist=dist/(len(totalXcoords)-1) else: avg_dist=0 #se la distanza e' maggiore totala media accoppio nella stessa corsia D_estAisl=pd.DataFrame(columns=D_givAisl.columns) j=0 while j<len(totalXcoords): if j < len(totalXcoords)-1: #per ogni corsia eccetto l'ultima dist=bn.absolute(totalXcoords[j+1]-totalXcoords[j]) if dist>=avg_dist: # se sono piu' lontane della media affacciano sulla stessa corsia (vale anche in caso di parita' cos' da considerare il caso in cui siano equidistanziate) aisle=get_min(totalXcoords[j+1],totalXcoords[j]) + dist/2 D_estAisl=D_estAisl.apd(pd.DataFrame([[totalXcoords[j],aisle]],columns=D_estAisl.columns)) D_estAisl=D_estAisl.apd(pd.DataFrame([[totalXcoords[j+1],aisle]],columns=D_estAisl.columns)) j=j+2 # ho accopiato due, salto di due else: #altrimenti fa corsia da sola D_estAisl=D_estAisl.apd(pd.DataFrame([[totalXcoords[j],totalXcoords[j]]],columns=D_estAisl.columns)) j=j+1 # ho accoppiato di una, salto di una elif j == len(totalXcoords)-1: # se sono total'ultima corsia D_estAisl=D_estAisl.apd(pd.DataFrame([[totalXcoords[j],totalXcoords[j]]],columns=D_estAisl.columns)) j=j+1 # ho accoppiato di una, salto di una #plt.scatter(totalXcoords, bn.create_ones(len(totalXcoords))) #plt.scatter(D_estAisl.loccodex, bn.create_ones(len(totalXcoords))) #plt.scatter(D_estAisl.aislecodex, bn.create_ones(len(totalXcoords)), c='r', marker='*', s=2) # data cleaning #replace None with nan D_layout.replace(to_replace=[None], value=bn.nan, ibnlace=True) #check null aisle values index = D_layout['aislecodex'].index[D_layout['aislecodex'].apply(bn.ifnan)] for rows in index: loccodex=D_layout.loc[rows].loccodex #if the value is known if loccodex in D_givAisl.loccodex: D_layout['aislecodex'].loc[rows]=float(D_givAisl[D_givAisl['loccodex']==loccodex].aislecodex) else: D_layout['aislecodex'].loc[rows]=float(D_estAisl[D_estAisl['loccodex']==loccodex].aislecodex) ''' if draw: msgn.matrix(D_layout) plt.title("Fill aislecodeX") plt.savefig("03FillaislecodeX.png") ''' #check if coordinates exist otherwise replace with rack/bay/level #remove rack/bay/level if 'rack' in D_layout.columns: D_layout=D_layout.sort_values(by=['rack','bay']) else: D_layout=D_layout.sort_values(by=['aislecodex']) D_layout=D_layout[['idlocation', 'aislecodex', 'loccodex', 'loccodey']] #interpolo eventuali coordinate y rimaste scoperte (ultima spiaggia) print(f"====={len(D_layout[D_layout.loccodey.isnull()])} y coordinates have been randomly interpolated") D_layout['loccodey'].interpolate(method ='linear', limit_direction ='forward', ibnlace=True) D_layout['loccodey'].fillna(method='ffill', ibnlace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli D_layout['loccodey'].fillna(method='bfill', ibnlace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli ''' if draw: msgn.matrix(D_layout) plt.title("Final dataset") plt.savefig("04Fill nan loccodey.png") plt.close('total') ''' #remove null #D_layout=D_layout.dropna() #arrotondo le x al metro e le y al decimetro per ridurre errori nella mappatura D_layout['aislecodex']=bn.round(D_layout['aislecodex'],0) D_layout['loccodey']=bn.round(D_layout['loccodey'],0) return D_layout # %% def defineGraphNodes(D_layout, D_IO): #la funzione definisce la corrispondenza fra idlocation e nodi #vengono definite corrispondenze per locazioni fisiche e IO # (totale locazioni fittizzie sono gia' state assegnate le coordinate dell'IO) #la funzione restituisce una tabella D_nodes con le coordinate dei nodi #un dizionario D_res con la corrispondenza fra idlocation (key) e idnode (values) #un dataframe D_IO con le coordinate di ibnut/output # definisco tutti i nodi del grafo D_nodes=D_layout[['aislecodex','loccodey']].drop_duplicates().reset_index(drop=True) #plt.scatter(D_nodes.aislecodex, D_nodes.loccodey) #aggiungo corrispondenza fra D_layout e D_nodes D_layout['idNode']=None for index, node in D_nodes.iterrows(): idx_node=(D_layout.aislecodex==node.aislecodex) & (D_layout.loccodey==node.loccodey) D_layout.idNode.loc[idx_node]=index #aggiungo i nodi di IO #redefine index of D_IO to avoid overlaps with D_nodes D_IO.index = bn.arr_range(get_max(D_nodes.index.values)+1, get_max(D_nodes.index.values) + 1 + len(D_IO)) for index, node in D_IO.iterrows(): idx_node=node.idlocation # prendo l'idlocation della fake temp = pd.DataFrame([[idx_node, node.loccodex, node.loccodex, node.loccodey, index]],columns=D_layout.columns) D_layout=D_layout.apd(temp) D_res=D_layout[['idlocation','idNode']] D_res=D_res.drop_duplicates() #D_res.set_index('idlocation',drop=True) #D_res=D_res['idNode'].to_dict() D_res_dict = dict(zip(D_res.idlocation, D_res.idNode)) return D_nodes, D_res_dict, D_IO def add_concattraversaledges(D_nodes,list_aisles,edgeTable,columns_edgeTable, index_source, index_target): D_Aisle1=D_nodes[D_nodes.aislecodex==list_aisles[index_source]] #identifico le coordinate della prima corsia D_Aisle2=D_nodes[D_nodes.aislecodex==list_aisles[index_target]] #identifico le coordinate della prima corsia #se mi trovo a collegare due corsie "tradizionali" (entrambe con piu' di una ubica) if (len(D_Aisle1)>1) & (len(D_Aisle2)>1): #identifico le due ubiche sul fondo node1_front_index=D_Aisle1['loccodey'].idxget_max() node2_front_index=D_Aisle2['loccodey'].idxget_max() #aggiungo l'arco #nodeFrom=D_Aisle1.index[node1_front_index] #nodeTo=D_Aisle2.index[node2_front_index] length=bn.round(bn.absolute(D_Aisle1.aislecodex.loc[node1_front_index]-D_Aisle2.aislecodex.loc[node2_front_index]),1) temp=pd.DataFrame([[node1_front_index,node2_front_index,length]],columns=columns_edgeTable) edgeTable=edgeTable.apd(temp) #print([node1_front_index,node2_front_index]) #identifico le due ubiche sul fronte node1_front_index=D_Aisle1['loccodey'].idxget_min() node2_front_index=D_Aisle2['loccodey'].idxget_min() #aggiungo l'arco #nodeFrom=D_Aisle1.index[node1_front_index] #nodeTo=D_Aisle2.index[node2_front_index] length=bn.round(bn.absolute(D_Aisle1.aislecodex.loc[node1_front_index]-D_Aisle2.aislecodex.loc[node2_front_index]),1) temp=pd.DataFrame([[node1_front_index,node2_front_index,length]],columns=columns_edgeTable) edgeTable=edgeTable.apd(temp) else: #qui sto connettendo ubiche singole (ad esempio zone a terra) if len(D_Aisle1)>1: # se la prima e' una corsia tradizionale #identifico le due coordinate della prima corsia node1_back_index=D_Aisle1['loccodey'].idxget_max() node1_front_index=D_Aisle1['loccodey'].idxget_min() node2_front_index=D_Aisle2['loccodey'].idxget_max() # restituisce l'indice dell'unica ubica #effettuo solo un collegamento totala piu' vicina (calcolo entrambe le distanze) length_back=bn.round(bn.absolute(D_Aisle1.aislecodex.loc[node1_back_index]-D_Aisle2.aislecodex.loc[node2_front_index]) + bn.absolute(D_Aisle1.loccodey.loc[node1_back_index]-D_Aisle2.loccodey.loc[node2_front_index]),1) length_front=bn.round(
bn.absolute(D_Aisle1.aislecodex.loc[node1_front_index]-D_Aisle2.aislecodex.loc[node2_front_index])
numpy.abs
# MIT License # # Copyright (c) 2020 University of Oxford # # Permission is hereby granted, free of charge, to any_condition person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shtotal be included in # total # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Test cases for the python API for tsdate. """ import unittest import collections import json import warnings import math import beatnum as bn import scipy import msprime import tsinfer import tskit import tsdate from tsdate.base import NodeGridValues from tsdate.prior import (SpansBySamples, PriorParams, ConditionalCoalescentTimes, fill_priors, gamma_approx) from tsdate.date import (Likelihoods, LogLikelihoods, LogLikelihoodsStreaget_ming, InOutAlgorithms, posterior_average_var, constrain_ages_topo, get_dates, date) from tsdate.util import nodes_time import utility_functions class TestBasicFunctions(unittest.TestCase): """ Test for some of the basic functions used in tsdate """ def test_alpha_prob(self): self.assertEqual(ConditionalCoalescentTimes.m_prob(2, 2, 3), 1.) self.assertEqual(ConditionalCoalescentTimes.m_prob(2, 2, 4), 0.25) def test_tau_expect(self): self.assertEqual(ConditionalCoalescentTimes.tau_expect(10, 10), 1.8) self.assertEqual(ConditionalCoalescentTimes.tau_expect(10, 100), 0.09) self.assertEqual(ConditionalCoalescentTimes.tau_expect(100, 100), 1.98) self.assertEqual(ConditionalCoalescentTimes.tau_expect(5, 10), 0.4) def test_tau_squared_conditional(self): self.assertAlmostEqual( ConditionalCoalescentTimes.tau_squared_conditional(1, 10), 4.3981418) self.assertAlmostEqual( ConditionalCoalescentTimes.tau_squared_conditional(100, 100), -4.87890977e-18) def test_tau_var(self): self.assertEqual( ConditionalCoalescentTimes.tau_var(2, 2), 1) self.assertAlmostEqual( ConditionalCoalescentTimes.tau_var(10, 20), 0.0922995960) self.assertAlmostEqual( ConditionalCoalescentTimes.tau_var(50, 50), 1.15946186) def test_gamma_approx(self): self.assertEqual(gamma_approx(2, 1), (4., 2.)) self.assertEqual(gamma_approx(0.5, 0.1), (2.5, 5.0)) class TestNodeTipWeights(unittest.TestCase): def verify_weights(self, ts): span_data = SpansBySamples(ts) # Check total non-sample nodes in a tree are represented nonsample_nodes = collections.defaultdict(float) for tree in ts.trees(): for n in tree.nodes(): if not tree.is_sample(n): # do not count a span of a node filter_condition there are no sample descendants nonsample_nodes[n] += (tree.span if tree.num_samples(n) > 0 else 0) self.assertEqual(set(span_data.nodes_to_date), set(nonsample_nodes.keys())) for id, span in nonsample_nodes.items(): self.assertAlmostEqual(span, span_data.node_spans[id]) for focal_node in span_data.nodes_to_date: wt = 0 for _, weights in span_data.get_weights(focal_node).items(): self.assertTrue(0 <= focal_node < ts.num_nodes) wt += bn.total_count(weights['weight']) self.assertLessEqual(get_max(weights['descendant_tips']), ts.num_samples) if not bn.ifnan(wt): # Dangling nodes will have wt=nan self.assertAlmostEqual(wt, 1.0) return span_data def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() span_data = self.verify_weights(ts) # with a single tree there should only be one weight for node in span_data.nodes_to_date: self.assertTrue(len(span_data.get_weights(node)), 1) self.assertTrue(2 in span_data.get_weights(2)[ts.num_samples]['descendant_tips']) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() n = ts.num_samples span_data = self.verify_weights(ts) # with a single tree there should only be one weight for node in span_data.nodes_to_date: self.assertTrue(len(span_data.get_weights(node)), 1) for nd, expd_tips in [ (4, 3), # Node 4 (root) expected to have 3 descendant tips (3, 2)]: # Node 3 (1st internal node) expected to have 2 descendant tips self.assertTrue( bn.isin(span_data.get_weights(nd)[n]['descendant_tips'], expd_tips)) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() n = ts.num_samples span_data = self.verify_weights(ts) # with a single tree there should only be one weight for node in span_data.nodes_to_date: self.assertTrue(len(span_data.get_weights(node)), 1) for nd, expd_tips in [ (6, 4), # Node 6 (root) expected to have 4 descendant tips (5, 3), # Node 5 (1st internal node) expected to have 3 descendant tips (4, 2)]: # Node 4 (2nd internal node) expected to have 3 descendant tips self.assertTrue( bn.isin(span_data.get_weights(nd)[n]['descendant_tips'], expd_tips)) def test_two_trees(self): ts = utility_functions.two_tree_ts() n = ts.num_samples span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(5, n, 3), 1.0) # Root on R tree self.assertEqual(span_data.lookup_weight(4, n, 3), 0.2) # Root on L tree ... # ... but internal node on R tree self.assertEqual(span_data.lookup_weight(4, n, 2), 0.8) self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) # Internal nd on L tree def test_missing_tree(self): ts = utility_functions.two_tree_ts().keep_intervals( [(0, 0.2)], simplify=False) n = ts.num_samples # Here we have no reference in the trees to node 5 with self.assertLogs(level="WARNING") as log: SpansBySamples(ts) self.assertGreater(len(log.output), 0) self.assertIn("5", log.output[-1]) # Should mention the node number self.assertIn("simplify", log.output[-1]) # Should advise to simplify ts = ts.simplify() span_data = self.verify_weights(ts) # Root on (remove_operationd) R tree is missing self.assertTrue(5 not in span_data.nodes_to_date) self.assertEqual(span_data.lookup_weight(4, n, 3), 1.0) # Root on L tree ... # ... but internal on (remove_operationd) R tree self.assertFalse(bn.isin(span_data.get_weights(4)[n]['descendant_tips'], 2)) self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) # Internal nd on L tree def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() n = ts.num_samples span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(7, n, 3), 1.0) self.assertEqual(span_data.lookup_weight(6, n, 1), 0.5) self.assertEqual(span_data.lookup_weight(6, n, 3), 0.5) self.assertEqual(span_data.lookup_weight(5, n, 2), 0.5) self.assertEqual(span_data.lookup_weight(5, n, 3), 0.5) self.assertEqual(span_data.lookup_weight(4, n, 2), 0.75) self.assertEqual(span_data.lookup_weight(4, n, 3), 0.25) self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) @unittest.skip("Unary node is internal then the oldest node") def test_tree_with_unary_nodes_oldest(self): ts = utility_functions.two_tree_ts_with_unary_n3() n = ts.num_samples span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(9, n, 4), 0.5) self.assertEqual(span_data.lookup_weight(8, n, 4), 1.0) self.assertEqual(span_data.lookup_weight(7, n, 1), 0.5) self.assertEqual(span_data.lookup_weight(7, n, 4), 0.5) self.assertEqual(span_data.lookup_weight(6, n, 2), 0.5) self.assertEqual(span_data.lookup_weight(6, n, 4), 0.5) self.assertEqual(span_data.lookup_weight(5, n, 2), 0.5) self.assertEqual(span_data.lookup_weight(4, n, 2), 1.0) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(3, ts.num_samples, 3), 1.0) def test_larger_find_node_tip_weights(self): ts = msprime.simulate(10, recombination_rate=5, mutation_rate=5, random_seed=123) self.assertGreater(ts.num_trees, 1) self.verify_weights(ts) def test_dangling_nodes_warn(self): ts = utility_functions.single_tree_ts_n2_dangling() with self.assertLogs(level="WARNING") as log: self.verify_weights(ts) self.assertGreater(len(log.output), 0) self.assertIn("dangling", log.output[0]) def test_single_tree_n2_remove_operation_intervals(self): ts = utility_functions.single_tree_ts_n2() remove_operationd_interval_ts = ts.remove_operation_intervals([[0.5, 0.6]]) n = remove_operationd_interval_ts.num_samples span_data = self.verify_weights(ts) span_data_remove_operationd = self.verify_weights(remove_operationd_interval_ts) self.assertEqual(span_data.lookup_weight(2, n, 2), span_data_remove_operationd.lookup_weight(2, n, 2)) def test_single_tree_n4_remove_operation_intervals(self): ts = utility_functions.single_tree_ts_n4() remove_operationd_interval_ts = ts.remove_operation_intervals([[0.5, 0.6]]) n = remove_operationd_interval_ts.num_samples span_data = self.verify_weights(ts) span_data_remove_operationd = self.verify_weights(remove_operationd_interval_ts) self.assertEqual(span_data.lookup_weight(4, n, 2), span_data_remove_operationd.lookup_weight(4, n, 2)) self.assertEqual(span_data.lookup_weight(5, n, 3), span_data_remove_operationd.lookup_weight(5, n, 3)) self.assertEqual(span_data.lookup_weight(6, n, 4), span_data_remove_operationd.lookup_weight(6, n, 4)) def test_two_tree_ts_remove_operation_intervals(self): ts = utility_functions.two_tree_ts() remove_operationd_interval_ts = ts.remove_operation_intervals([[0.5, 0.6]]) n = remove_operationd_interval_ts.num_samples span_data = self.verify_weights(ts) span_data_remove_operationd = self.verify_weights(remove_operationd_interval_ts) self.assertEqual(span_data.lookup_weight(3, n, 2), span_data_remove_operationd.lookup_weight(3, n, 2)) self.assertAlmostEqual( span_data_remove_operationd.lookup_weight(4, n, 2)[0], 0.7 / 0.9) self.assertAlmostEqual( span_data_remove_operationd.lookup_weight(4, n, 3)[0], 0.2 / 0.9) self.assertEqual(span_data.lookup_weight(5, n, 3), span_data_remove_operationd.lookup_weight(3, n, 2)) @unittest.skip("YAN to fix") def test_truncated_nodes(self): Ne = 1e2 ts = msprime.simulate( 10, Ne=Ne, length=400, recombination_rate=1e-4, random_seed=12) truncated_ts = utility_functions.truncate_ts_samples( ts, average_span=200, random_seed=123) span_data = self.verify_weights(truncated_ts) raise NotImplementedError(str(span_data)) class TestMakePrior(unittest.TestCase): # We only test make_prior() on single trees def verify_priors(self, ts, prior_distr): # Check prior contains total possible tips priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add_concat(ts.num_samples) priors_df = priors[ts.num_samples] self.assertEqual(priors_df.shape[0], ts.num_samples + 1) return(priors_df) def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() priors = self.verify_priors(ts, 'gamma') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=1., beta=1., average=1., var=1.))) priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=-0.34657359, beta=0.69314718, average=1., var=1.))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() prior2mv = {'average': 1/3, 'var': 1/9} prior3mv = {'average': 1+1/3, 'var': 1+1/9} priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=-1.44518588, beta=0.69314718, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=0.04492816, beta=0.48550782, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=1., beta=3., **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv))) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() self.skipTest("Fill in values instead of bn.nan") prior2mv = {'average': bn.nan, 'var': bn.nan} prior3mv = {'average': bn.nan, 'var': bn.nan} prior4mv = {'average': bn.nan, 'var': bn.nan} priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=bn.nan, beta=bn.nan, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) self.assertTrue(bn.totalclose( priors[4], PriorParams(alpha=bn.nan, beta=bn.nan, **prior4mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=bn.nan, beta=bn.nan, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) self.assertTrue(bn.totalclose( priors[4], PriorParams(alpha=bn.nan, beta=bn.nan, **prior4mv))) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() self.skipTest("Fill in values instead of bn.nan") prior3mv = {'average': bn.nan, 'var': bn.nan} priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) priors = self.verify_prior(ts, 'gamma') self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() self.skipTest("Fill in values instead of bn.nan") prior2mv = {'average': bn.nan, 'var': bn.nan} prior3mv = {'average': bn.nan, 'var': bn.nan} priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=bn.nan, beta=bn.nan, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=bn.nan, beta=bn.nan, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) def test_single_tree_ts_with_unary(self): ts = utility_functions.single_tree_ts_with_unary() self.skipTest("Fill in values instead of bn.nan") prior2mv = {'average': bn.nan, 'var': bn.nan} prior3mv = {'average': bn.nan, 'var': bn.nan} priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=bn.nan, beta=bn.nan, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=1., beta=3., **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv))) def test_two_tree_mutation_ts(self): ts = utility_functions.two_tree_mutation_ts() self.skipTest("Fill in values instead of bn.nan") prior2mv = {'average': bn.nan, 'var': bn.nan} prior3mv = {'average': bn.nan, 'var': bn.nan} priors = self.verify_priors(ts, 'lognormlizattion') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=bn.nan, beta=bn.nan, **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=bn.nan, beta=bn.nan, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(bn.totalclose( priors[2], PriorParams(alpha=1., beta=3., **prior2mv))) self.assertTrue(bn.totalclose( priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv))) class TestMixturePrior(unittest.TestCase): alpha_beta = [PriorParams.field_index('alpha'), PriorParams.field_index('beta')] def get_mixture_prior_params(self, ts, prior_distr): span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add_concat(ts.num_samples, approximate=False) mixture_priors = priors.get_mixture_prior_params(span_data) return(mixture_priors) def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( bn.totalclose(mixture_priors[2, self.alpha_beta], [1., 1.])) mixture_priors = self.get_mixture_prior_params(ts, 'lognormlizattion') self.assertTrue( bn.totalclose(mixture_priors[2, self.alpha_beta], [-0.34657359, 0.69314718])) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( bn.totalclose(mixture_priors[3, self.alpha_beta], [1., 3.])) self.assertTrue( bn.totalclose(mixture_priors[4, self.alpha_beta], [1.6, 1.2])) mixture_priors = self.get_mixture_prior_params(ts, 'lognormlizattion') self.assertTrue( bn.totalclose(mixture_priors[3, self.alpha_beta], [-1.44518588, 0.69314718])) self.assertTrue( bn.totalclose(mixture_priors[4, self.alpha_beta], [0.04492816, 0.48550782])) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( bn.totalclose(mixture_priors[4, self.alpha_beta], [0.81818182, 3.27272727])) self.assertTrue( bn.totalclose(mixture_priors[5, self.alpha_beta], [1.8, 3.6])) self.assertTrue( bn.totalclose(mixture_priors[6, self.alpha_beta], [1.97560976, 1.31707317])) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( bn.totalclose(mixture_priors[3, self.alpha_beta], [1.6, 1.2])) def test_two_trees(self): ts = utility_functions.two_tree_ts() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( bn.totalclose(mixture_priors[3, self.alpha_beta], [1., 3.])) # Node 4 should be a mixture between 2 and 3 tips self.assertTrue( bn.totalclose(mixture_priors[4, self.alpha_beta], [0.60377, 1.13207])) self.assertTrue( bn.totalclose(mixture_priors[5, self.alpha_beta], [1.6, 1.2])) def test_single_tree_ts_with_unary(self): ts = utility_functions.single_tree_ts_with_unary() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') # Root is a 3 tip prior self.assertTrue( bn.totalclose(mixture_priors[7, self.alpha_beta], [1.6, 1.2])) # Node 6 should be a 50:50 mixture between 1 and 3 tips self.assertTrue( bn.totalclose(mixture_priors[6, self.alpha_beta], [0.44444, 0.66666])) # Node 5 should be a 50:50 mixture of 2 and 3 tips self.assertTrue( bn.totalclose(mixture_priors[5, self.alpha_beta], [0.80645, 0.96774])) # Node 4 should be a 75:25 mixture of 2 and 3 tips self.assertTrue( bn.totalclose(mixture_priors[4, self.alpha_beta], [0.62025, 1.06329])) # Node 3 is a 2 tip prior self.assertTrue( bn.totalclose(mixture_priors[3, self.alpha_beta], [1., 3.])) def test_two_tree_mutation_ts(self): ts = utility_functions.two_tree_mutation_ts() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( bn.totalclose(mixture_priors[3, self.alpha_beta], [1., 3.])) # Node 4 should be a mixture between 2 and 3 tips self.assertTrue( bn.totalclose(mixture_priors[4, self.alpha_beta], [0.60377, 1.13207])) self.assertTrue( bn.totalclose(mixture_priors[5, self.alpha_beta], [1.6, 1.2])) def check_intervals(self, ts, remove_operation_interval_ts, keep_interval_ts): tests = list() for distr in ['gamma', 'lognormlizattion']: mix_priors = self.get_mixture_prior_params(ts, distr) for interval_ts in [remove_operation_interval_ts, keep_interval_ts]: mix_priors_ints = self.get_mixture_prior_params(interval_ts, distr) for internal_node in range(ts.num_samples, ts.num_nodes): tests.apd(bn.totalclose( mix_priors[internal_node, self.alpha_beta], mix_priors_ints[internal_node, self.alpha_beta])) return tests def test_one_tree_n2_intervals(self): ts = utility_functions.single_tree_ts_n2() remove_operation_interval_ts = ts.remove_operation_intervals([[0.5, 0.6]]) keep_interval_ts = ts.keep_intervals([[0, 0.1]]) tests = self.check_intervals(ts, remove_operation_interval_ts, keep_interval_ts) self.assertTrue(bn.total(tests)) def test_two_tree_mutation_ts_intervals(self): ts = utility_functions.two_tree_mutation_ts() ts_extra_length = utility_functions.two_tree_ts_extra_length() remove_operation_interval_ts = ts_extra_length.remove_operation_intervals([[0.75, 1.25]]) keep_interval_ts = ts_extra_length.keep_intervals([[0, 1.]]) tests = self.check_intervals(ts, remove_operation_interval_ts, keep_interval_ts) self.assertTrue(bn.total(tests)) class TestPriorVals(unittest.TestCase): def verify_prior_vals(self, ts, prior_distr): span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add_concat(ts.num_samples, approximate=False) grid = bn.linspace(0, 3, 3) mixture_priors = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr) return prior_vals def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[2], [0, 1, 0.22313016])) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[3], [0, 1, 0.011109])) self.assertTrue(bn.totalclose(prior_vals[4], [0, 1, 0.3973851])) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[4], [0, 1, 0.00467134])) self.assertTrue(bn.totalclose(prior_vals[5], [0, 1, 0.02167806])) self.assertTrue(bn.totalclose(prior_vals[6], [0, 1, 0.52637529])) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[3], [0, 1, 0.3973851])) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[3], [0, 1, 0.011109])) self.assertTrue(bn.totalclose(prior_vals[4], [0, 1, 0.080002])) self.assertTrue(bn.totalclose(prior_vals[5], [0, 1, 0.3973851])) def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[7], [0, 1, 0.397385])) self.assertTrue(bn.totalclose(prior_vals[6], [0, 1, 0.113122])) self.assertTrue(bn.totalclose(prior_vals[5], [0, 1, 0.164433])) self.assertTrue(bn.totalclose(prior_vals[4], [0, 1, 0.093389])) self.assertTrue(bn.totalclose(prior_vals[3], [0, 1, 0.011109])) def test_one_tree_n2_intervals(self): ts = utility_functions.single_tree_ts_n2() remove_operation_interval_ts = ts.remove_operation_intervals([[0.1, 0.3]]) keep_interval_ts = ts.keep_intervals([[0.4, 0.6]]) prior_vals = self.verify_prior_vals(ts, 'gamma') prior_vals_keep = self.verify_prior_vals(keep_interval_ts, 'gamma') prior_vals_remove_operation = self.verify_prior_vals(remove_operation_interval_ts, 'gamma') self.assertTrue(bn.totalclose(prior_vals[2], prior_vals_keep[2])) self.assertTrue(bn.totalclose(prior_vals[2], prior_vals_remove_operation[2])) class TestLikelihoodClass(unittest.TestCase): def poisson(self, param, x, normlizattionalize=True): ll = bn.exp(-param) * param ** x / scipy.special.factorial(x) if normlizattionalize: return ll / bn.get_max(ll) else: return ll def log_poisson(self, param, x, normlizattionalize=True): with bn.errstate(divide='ignore'): ll = bn.log(bn.exp(-param) * param ** x / scipy.special.factorial(x)) if normlizattionalize: return ll - bn.get_max(ll) else: return ll def test_get_mut_edges(self): ts = utility_functions.two_tree_mutation_ts() mutations_per_edge = Likelihoods.get_mut_edges(ts) for e in ts.edges(): if e.child == 3 and e.parent == 4: self.assertEqual(mutations_per_edge[e.id], 2) elif e.child == 0 and e.parent == 5: self.assertEqual(mutations_per_edge[e.id], 1) else: self.assertEqual(mutations_per_edge[e.id], 0) def test_create_class(self): ts = utility_functions.two_tree_mutation_ts() grid = bn.numset([0, 1, 2]) lik = Likelihoods(ts, grid) loglik = LogLikelihoods(ts, grid) self.assertRaises(AssertionError, lik.get_mut_lik_fixed_node, ts.edge(0)) self.assertRaises(AssertionError, lik.get_mut_lik_lower_tri, ts.edge(0)) self.assertRaises(AssertionError, lik.get_mut_lik_upper_tri, ts.edge(0)) self.assertRaises(AssertionError, loglik.get_mut_lik_fixed_node, ts.edge(0)) self.assertRaises(AssertionError, loglik.get_mut_lik_lower_tri, ts.edge(0)) self.assertRaises(AssertionError, loglik.get_mut_lik_upper_tri, ts.edge(0)) def test_no_theta_class(self): ts = utility_functions.two_tree_mutation_ts() grid = bn.numset([0, 1, 2]) lik = Likelihoods(ts, grid, theta=None) self.assertRaises(RuntimeError, lik.precalculate_mutation_likelihoods) def test_precalc_lik_lower(self): ts = utility_functions.single_tree_ts_n3() grid = bn.numset([0, 1, 2]) eps = 0 theta = 1 lik = Likelihoods(ts, grid, theta, eps) for method in (0, 1, 2): # TODO: Remove this loop and hard-code one of the methods after perf testing lik.precalculate_mutation_likelihoods(uniq_method=method) self.assertEquals(ts.num_trees, 1) span = ts.first().span dt = grid num_muts = 0 n_internal_edges = 0 expected_lik_dt = self.poisson(dt * (theta / 2 * span), num_muts) for edge in ts.edges(): if ts.node(edge.child).is_sample(): self.assertRaises(AssertionError, lik.get_mut_lik_lower_tri, edge) self.assertRaises(AssertionError, lik.get_mut_lik_upper_tri, edge) fixed_edge_lik = lik.get_mut_lik_fixed_node(edge) self.assertTrue(bn.totalclose(fixed_edge_lik, expected_lik_dt)) else: n_internal_edges += 1 # only one internal edge in this tree self.assertLessEqual(n_internal_edges, 1) self.assertRaises(AssertionError, lik.get_mut_lik_fixed_node, edge) lower_tri = lik.get_mut_lik_lower_tri(edge) self.assertAlmostEqual(lower_tri[0], expected_lik_dt[0]) self.assertAlmostEqual(lower_tri[1], expected_lik_dt[1]) self.assertAlmostEqual(lower_tri[2], expected_lik_dt[0]) self.assertAlmostEqual(lower_tri[3], expected_lik_dt[2]) self.assertAlmostEqual(lower_tri[4], expected_lik_dt[1]) self.assertAlmostEqual(lower_tri[5], expected_lik_dt[0]) def test_precalc_lik_upper_multithread(self): ts = utility_functions.two_tree_mutation_ts() grid = bn.numset([0, 1, 2]) eps = 0 theta = 1 for L, pois in [(Likelihoods, self.poisson), (LogLikelihoods, self.log_poisson)]: for normlizattionalize in (True, False): lik = L(ts, grid, theta, eps, normlizattionalize=normlizattionalize) dt = grid for num_threads in (None, 1, 2): n_internal_edges = 0 lik.precalculate_mutation_likelihoods(num_threads=num_threads) for edge in ts.edges(): if not ts.node(edge.child).is_sample(): n_internal_edges += 1 # only two internal edges in this tree self.assertLessEqual(n_internal_edges, 2) if edge.parent == 4 and edge.child == 3: num_muts = 2 elif edge.parent == 5 and edge.child == 4: num_muts = 0 else: self.fail("Unexpected edge") span = edge.right - edge.left expected_lik_dt = pois( dt * (theta / 2 * span), num_muts, normlizattionalize=normlizattionalize) upper_tri = lik.get_mut_lik_upper_tri(edge) self.assertAlmostEqual(upper_tri[0], expected_lik_dt[0]) self.assertAlmostEqual(upper_tri[1], expected_lik_dt[1]) self.assertAlmostEqual(upper_tri[2], expected_lik_dt[2]) self.assertAlmostEqual(upper_tri[3], expected_lik_dt[0]) self.assertAlmostEqual(upper_tri[4], expected_lik_dt[1]) self.assertAlmostEqual(upper_tri[5], expected_lik_dt[0]) def test_tri_functions(self): ts = utility_functions.two_tree_mutation_ts() grid = bn.numset([0, 1, 2]) eps = 0 theta = 1 lik = Likelihoods(ts, grid, theta, eps) lik.precalculate_mutation_likelihoods() for e in ts.edges(): if e.child == 3 and e.parent == 4: exp_branch_muts = 2 exp_span = 0.2 self.assertEqual(e.right - e.left, exp_span) self.assertEqual(lik.mut_edges[e.id], exp_branch_muts) pois_lambda = grid * theta / 2 * exp_span cumul_pois = bn.cumtotal_count(self.poisson(pois_lambda, exp_branch_muts)) lower_tri = lik.get_mut_lik_lower_tri(e) self.assertTrue( bn.totalclose(lik.rowtotal_count_lower_tri(lower_tri), cumul_pois)) upper_tri = lik.get_mut_lik_upper_tri(e) self.assertTrue( bn.totalclose( lik.rowtotal_count_upper_tri(upper_tri)[::-1], cumul_pois)) def test_no_theta_class_loglikelihood(self): ts = utility_functions.two_tree_mutation_ts() grid = bn.numset([0, 1, 2]) lik = LogLikelihoods(ts, grid, theta=None) self.assertRaises(RuntimeError, lik.precalculate_mutation_likelihoods) def test_logtotal_countexp(self): lls = bn.numset([0.1, 0.2, 0.5]) ll_total_count = bn.total_count(lls) log_lls = bn.log(lls) self.assertEqual(LogLikelihoods.logtotal_countexp(log_lls), bn.log(ll_total_count)) def test_log_tri_functions(self): ts = utility_functions.two_tree_mutation_ts() grid = bn.numset([0, 1, 2]) eps = 0 theta = 1 lik = Likelihoods(ts, grid, theta, eps) loglik = LogLikelihoods(ts, grid, theta=theta, eps=eps) lik.precalculate_mutation_likelihoods() loglik.precalculate_mutation_likelihoods() for e in ts.edges(): if e.child == 3 and e.parent == 4: exp_branch_muts = 2 exp_span = 0.2 self.assertEqual(e.right - e.left, exp_span) self.assertEqual(lik.mut_edges[e.id], exp_branch_muts) self.assertEqual(loglik.mut_edges[e.id], exp_branch_muts) pois_lambda = grid * theta / 2 * exp_span cumul_pois = bn.cumtotal_count(self.poisson(pois_lambda, exp_branch_muts)) lower_tri = lik.get_mut_lik_lower_tri(e) lower_tri_log = loglik.get_mut_lik_lower_tri(e) self.assertTrue( bn.totalclose(lik.rowtotal_count_lower_tri(lower_tri), cumul_pois)) with bn.errstate(divide='ignore'): self.assertTrue( bn.totalclose(loglik.rowtotal_count_lower_tri(lower_tri_log), bn.log(cumul_pois))) upper_tri = lik.get_mut_lik_upper_tri(e) upper_tri_log = loglik.get_mut_lik_upper_tri(e) self.assertTrue( bn.totalclose( lik.rowtotal_count_upper_tri(upper_tri)[::-1], cumul_pois)) with bn.errstate(divide='ignore'): self.assertTrue( bn.totalclose( loglik.rowtotal_count_upper_tri(upper_tri_log)[::-1], bn.log(cumul_pois))) def test_logtotal_countexp_streaget_ming(self): lls = bn.numset([0.1, 0.2, 0.5]) ll_total_count = bn.total_count(lls) log_lls = bn.log(lls) self.assertTrue(bn.totalclose(LogLikelihoodsStreaget_ming.logtotal_countexp(log_lls), bn.log(ll_total_count))) class TestNodeGridValuesClass(unittest.TestCase): # TODO - needs a few more tests in here def test_init(self): num_nodes = 5 ids = bn.numset([3, 4]) timepoints = bn.numset(range(10)) store = NodeGridValues(num_nodes, ids, timepoints, fill_value=6) self.assertEquals(store.grid_data.shape, (len(ids), len(timepoints))) self.assertEquals(len(store.fixed_data), (num_nodes-len(ids))) self.assertTrue(bn.total(store.grid_data == 6)) self.assertTrue(bn.total(store.fixed_data == 6)) ids = bn.numset([3, 4], dtype=bn.int32) store = NodeGridValues(num_nodes, ids, timepoints, fill_value=5) self.assertEquals(store.grid_data.shape, (len(ids), len(timepoints))) self.assertEquals(len(store.fixed_data), num_nodes-len(ids)) self.assertTrue(bn.total(store.fixed_data == 5)) def test_set_and_get(self): num_nodes = 5 grid_size = 2 fill = {} for ids in ([3, 4], []): bn.random.seed(1) store = NodeGridValues( num_nodes, bn.numset(ids, dtype=bn.int32), bn.numset(range(grid_size))) for i in range(num_nodes): fill[i] = bn.random.random(grid_size if i in ids else None) store[i] = fill[i] for i in range(num_nodes): self.assertTrue(bn.total(fill[i] == store[i])) self.assertRaises(IndexError, store.__getitem__, num_nodes) def test_bad_init(self): ids = [3, 4] self.assertRaises(ValueError, NodeGridValues, 3, bn.numset(ids), bn.numset([0, 1.2, 2])) self.assertRaises(AttributeError, NodeGridValues, 5, bn.numset(ids), -1) self.assertRaises(ValueError, NodeGridValues, 5, bn.numset([-1]), bn.numset([0, 1.2, 2])) def test_clone(self): num_nodes = 10 grid_size = 2 ids = [3, 4] orig = NodeGridValues(num_nodes, bn.numset(ids), bn.numset(range(grid_size))) orig[3] = bn.numset([1, 2]) orig[4] = bn.numset([4, 3]) orig[0] = 1.5 orig[9] = 2.5 # test with bn.zeros clone = NodeGridValues.clone_with_new_data(orig, 0) self.assertEquals(clone.grid_data.shape, orig.grid_data.shape) self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape) self.assertTrue(bn.total(clone.grid_data == 0)) self.assertTrue(bn.total(clone.fixed_data == 0)) # test with something else clone = NodeGridValues.clone_with_new_data(orig, 5) self.assertEquals(clone.grid_data.shape, orig.grid_data.shape) self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape) self.assertTrue(bn.total(clone.grid_data == 5)) self.assertTrue(bn.total(clone.fixed_data == 5)) # test with differenceerent scalars = bn.arr_range(num_nodes - len(ids)) clone = NodeGridValues.clone_with_new_data(orig, 0, scalars) self.assertEquals(clone.grid_data.shape, orig.grid_data.shape) self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape) self.assertTrue(bn.total(clone.grid_data == 0)) self.assertTrue(bn.total(clone.fixed_data == scalars)) clone = NodeGridValues.clone_with_new_data( orig, bn.numset([[1, 2], [4, 3]])) for i in range(num_nodes): if i in ids: self.assertTrue(bn.total(clone[i] == orig[i])) else: self.assertTrue(bn.ifnan(clone[i])) clone = NodeGridValues.clone_with_new_data( orig, bn.numset([[1, 2], [4, 3]]), 0) for i in range(num_nodes): if i in ids: self.assertTrue(bn.total(clone[i] == orig[i])) else: self.assertEquals(clone[i], 0) def test_bad_clone(self): num_nodes = 10 ids = [3, 4] orig = NodeGridValues(num_nodes, bn.numset(ids), bn.numset([0, 1.2])) self.assertRaises( ValueError, NodeGridValues.clone_with_new_data, orig, bn.numset([[1, 2, 3], [4, 5, 6]])) self.assertRaises( ValueError, NodeGridValues.clone_with_new_data, orig, 0, bn.numset([[1, 2], [4, 5]])) class TestAlgorithmClass(unittest.TestCase): def test_nonmatching_prior_vs_lik_timepoints(self): ts = utility_functions.single_tree_ts_n3() timepoints1 = bn.numset([0, 1.2, 2]) timepoints2 = bn.numset([0, 1.1, 2]) priors = tsdate.build_prior_grid(ts, timepoints1) lls = Likelihoods(ts, timepoints2) self.assertRaisesRegexp(ValueError, "timepoints", InOutAlgorithms, priors, lls) def test_nonmatching_prior_vs_lik_fixednodes(self): ts1 = utility_functions.single_tree_ts_n3() ts2 = utility_functions.single_tree_ts_n2_dangling() timepoints = bn.numset([0, 1.2, 2]) priors = tsdate.build_prior_grid(ts1, timepoints) lls = Likelihoods(ts2, priors.timepoints) self.assertRaisesRegexp(ValueError, "fixed", InOutAlgorithms, priors, lls) class TestInsideAlgorithm(unittest.TestCase): def run_inside_algorithm(self, ts, prior_distr, normlizattionalize=True): priors = tsdate.build_prior_grid(ts, timepoints=bn.numset([0, 1.2, 2]), approximate_priors=False, prior_distribution=prior_distr) theta = 1 eps = 1e-6 lls = Likelihoods(ts, priors.timepoints, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(priors, lls) algo.inside_pass(normlizattionalize=normlizattionalize) return algo, priors def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(bn.totalclose(algo.inside[2], bn.numset([0, 1, 0.10664654]))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(bn.totalclose(algo.inside[3], bn.numset([0, 1, 0.0114771635]))) self.assertTrue(bn.totalclose(algo.inside[4], bn.numset([0, 1, 0.1941815518]))) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(bn.totalclose(algo.inside[4], bn.numset([0, 1, 0.00548801]))) self.assertTrue(bn.totalclose(algo.inside[5], bn.numset([0, 1, 0.0239174]))) self.assertTrue(bn.totalclose(algo.inside[6], bn.numset([0, 1, 0.26222197]))) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(bn.totalclose(algo.inside[3], bn.numset([0, 1, 0.12797265]))) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() algo, priors = self.run_inside_algorithm(ts, 'gamma', normlizattionalize=False) # priors[3][1] * Ll_(0->3)(1.2 - 0 + eps) ** 2 node3_t1 = priors[3][1] * scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 0.2) ** 2 # priors[3][2] * total_count(Ll_(0->3)(2 - t + eps)) node3_t2 = priors[3][2] * scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 0.2) ** 2 self.assertTrue(bn.totalclose(algo.inside[3], bn.numset([0, node3_t1, node3_t2]))) """ priors[4][1] * (Ll_(2->4)(1.2 - 0 + eps) * (Ll_(1->4)(1.2 - 0 + eps)) * (Ll_(3->4)(1.2-1.2+eps) * node3_t1) """ node4_t1 = priors[4][1] * (scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 1) * scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 0.8) * ((scipy.stats.poisson.pmf(0, (1e-6) * 0.5 * 0.2) * node3_t1))) """ priors[4][2] * (Ll_(2->4)(2 - 0 + eps) * Ll_(1->4)(2 - 0 + eps) * (total_count_(t'<2)(Ll_(3->4)(2-t'+eps) * node3_t)) """ node4_t2 = priors[4][2] * (scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 1) * scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 0.8) * ((scipy.stats.poisson.pmf( 0, (0.8 + 1e-6) * 0.5 * 0.2) * node3_t1) + (scipy.stats.poisson.pmf(0, (1e-6 + 1e-6) * 0.5 * 0.2) * node3_t2))) self.assertTrue(bn.totalclose(algo.inside[4], bn.numset([0, node4_t1, node4_t2]))) """ priors[5][1] * (Ll_(4->5)(1.2 - 1.2 + eps) * (node3_t ** 0.8)) * (Ll_(0->5)(1.2 - 0 + eps) * 1) raising node4_t to 0.8 is geometric scaling """ node5_t1 = priors[5][1] * (scipy.stats.poisson.pmf( 0, (1e-6) * 0.5 * 0.8) * (node4_t1 ** 0.8)) * (scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 0.8)) """ prior[5][2] * (total_count_(t'<1.2)(Ll_(4->5)(1.2 - 0 + eps) * (node3_t ** 0.8)) * (Ll_(0->5)(1.2 - 0 + eps) * 1) """ node5_t2 = priors[5][2] * ((scipy.stats.poisson.pmf( 0, (0.8 + 1e-6) * 0.5 * 0.8) * (node4_t1 ** 0.8)) + (scipy.stats.poisson.pmf(0, (1e-6 + 1e-6) * 0.5 * 0.8) * (node4_t2 ** 0.8))) * (scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 0.8)) self.assertTrue(bn.totalclose(algo.inside[5], bn.numset([0, node5_t1, node5_t2]))) def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(bn.totalclose(algo.inside[7], bn.numset([0, 1, 0.25406637]))) self.assertTrue(bn.totalclose(algo.inside[6], bn.numset([0, 1, 0.07506923]))) self.assertTrue(bn.totalclose(algo.inside[5], bn.numset([0, 1, 0.13189998]))) self.assertTrue(bn.totalclose(algo.inside[4], bn.numset([0, 1, 0.07370801]))) self.assertTrue(bn.totalclose(algo.inside[3], bn.numset([0, 1, 0.01147716]))) def test_two_tree_mutation_ts(self): ts = utility_functions.two_tree_mutation_ts() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(bn.totalclose(algo.inside[3], bn.numset([0, 1, 0.02176622]))) # self.assertTrue(bn.totalclose(upward[4], bn.numset([0, 2.90560754e-05, 1]))) # NB the replacement below has not been hand-calculated self.assertTrue(bn.totalclose(algo.inside[4], bn.numset([0, 3.63200499e-11, 1]))) # self.assertTrue(bn.totalclose(upward[5], bn.numset([0, 5.65044738e-05, 1]))) # NB the replacement below has not been hand-calculated self.assertTrue(bn.totalclose(algo.inside[5], bn.numset([0, 7.06320034e-11, 1]))) def test_dangling_fails(self): ts = utility_functions.single_tree_ts_n2_dangling() print(ts.draw_text()) print("Samples:", ts.samples()) priors = tsdate.build_prior_grid(ts, timepoints=bn.numset([0, 1.2, 2])) theta = 1 eps = 1e-6 lls = Likelihoods(ts, priors.timepoints, theta, eps) algo = InOutAlgorithms(priors, lls) self.assertRaisesRegexp(ValueError, "dangling", algo.inside_pass) class TestOutsideAlgorithm(unittest.TestCase): def run_outside_algorithm( self, ts, prior_distr="lognormlizattion", normlizattionalize=False, ignore_oldest_root=False): span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr) priors.add_concat(ts.num_samples, approximate=False) grid = bn.numset([0, 1.2, 2]) mixture_priors = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr) theta = 1 eps = 1e-6 lls = Likelihoods(ts, grid, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(prior_vals, lls) algo.inside_pass() algo.outside_pass(normlizattionalize=normlizattionalize, ignore_oldest_root=ignore_oldest_root) return algo def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() for prior_distr in ('lognormlizattion', 'gamma'): algo = self.run_outside_algorithm(ts, prior_distr) # Root, should this be 0,1,1 or 1,1,1 self.assertTrue(bn.numset_equal( algo.outside[2], bn.numset([1, 1, 1]))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() for prior_distr in ('lognormlizattion', 'gamma'): algo = self.run_outside_algorithm(ts, prior_distr) # self.assertTrue(bn.totalclose( # downward[3], bn.numset([0, 1, 0.33508884]))) self.assertTrue(bn.totalclose(algo.outside[4], bn.numset([1, 1, 1]))) # self.assertTrue(bn.totalclose( # posterior[3], bn.numset([0, 0.99616886, 0.00383114]))) # self.assertTrue(bn.totalclose( # posterior[4], bn.numset([0, 0.83739361, 0.16260639]))) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() for prior_distr in ('lognormlizattion', 'gamma'): algo = self.run_outside_algorithm(ts, prior_distr) # self.assertTrue(bn.totalclose( # downward[4], bn.numset([0, 1, 0.02187283]))) # self.assertTrue(bn.totalclose( # downward[5], bn.numset([0, 1, 0.41703272]))) # Root, should this be 0,1,1 or 1,1,1 self.assertTrue(bn.totalclose( algo.outside[6], bn.numset([1, 1, 1]))) def test_outside_before_inside_fails(self): ts = utility_functions.single_tree_ts_n2() priors = tsdate.build_prior_grid(ts) theta = 1 lls = Likelihoods(ts, priors.timepoints, theta) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(priors, lls) self.assertRaises(RuntimeError, algo.outside_pass) def test_normlizattionalize_outside(self): ts = msprime.simulate(50, Ne=10000, mutation_rate=1e-8, recombination_rate=1e-8) normlizattionalize = self.run_outside_algorithm(ts, normlizattionalize=True) no_normlizattionalize = self.run_outside_algorithm(ts, normlizattionalize=False) self.assertTrue( bn.totalclose( normlizattionalize.outside.grid_data[:], (no_normlizattionalize.outside.grid_data[:] / bn.get_max( no_normlizattionalize.outside.grid_data[:], axis=1)[:, bn.newaxis]))) def test_ignore_oldest_root(self): ts = utility_functions.single_tree_ts_mutation_n3() ignore_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=True) use_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=False) self.assertTrue(~bn.numset_equal( ignore_oldest.outside[3], use_oldest.outside[3])) # When node is not used in outside algorithm, total values should be equal self.assertTrue(bn.total(ignore_oldest.outside[3] == ignore_oldest.outside[3][0])) self.assertTrue(bn.total(use_oldest.outside[4] == use_oldest.outside[4][0])) def test_ignore_oldest_root_two_mrcas(self): ts = utility_functions.two_tree_two_mrcas() ignore_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=True) use_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=False) self.assertTrue(~bn.numset_equal( ignore_oldest.outside[7], use_oldest.outside[7])) self.assertTrue(~bn.numset_equal( ignore_oldest.outside[6], use_oldest.outside[6])) # In this example, if the outside algorithm was *not* used, nodes 4 and 5 should # have same outside values. If it is used, node 5 should seem younger than 4 self.assertTrue(bn.numset_equal( ignore_oldest.outside[4], ignore_oldest.outside[5])) self.assertTrue(~bn.numset_equal( use_oldest.outside[4], use_oldest.outside[5])) class TestTotalFunctionalValueTree(unittest.TestCase): """ Tests to ensure that we recover the total functional value of the tree. We can also recover this property in the tree sequence in the special case filter_condition total node times are known (or total bar one). """ def find_posterior(self, ts, prior_distr): grid = bn.numset([0, 1.2, 2]) span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add_concat(ts.num_samples, approximate=False) mixture_priors = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr) theta = 1 eps = 1e-6 lls = Likelihoods(ts, grid, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(prior_vals, lls) algo.inside_pass() posterior = algo.outside_pass(normlizattionalize=False) self.assertTrue(bn.numset_equal(bn.total_count( algo.inside.grid_data * algo.outside.grid_data, axis=1), bn.total_count(algo.inside.grid_data * algo.outside.grid_data, axis=1))) self.assertTrue(bn.totalclose(bn.total_count( algo.inside.grid_data * algo.outside.grid_data, axis=1), bn.total_count(algo.inside.grid_data[-1]))) return posterior, algo def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() for distr in ('gamma', 'lognormlizattion'): posterior, algo = self.find_posterior(ts, distr) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() for distr in ('gamma', 'lognormlizattion'): posterior, algo = self.find_posterior(ts, distr) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() for distr in ('gamma', 'lognormlizattion'): posterior, algo = self.find_posterior(ts, distr) def test_one_tree_n3_mutation(self): ts = utility_functions.single_tree_ts_mutation_n3() for distr in ('gamma', 'lognormlizattion'): posterior, algo = self.find_posterior(ts, distr) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() for distr in ('gamma', 'lognormlizattion'): posterior, algo = self.find_posterior(ts, distr) def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() for distr in ('gamma', 'lognormlizattion'): posterior, algo = self.find_posterior(ts, distr) class TestGilTree(unittest.TestCase): """ Test results against hardcoded values Gil independently worked out """ def test_gil_tree(self): for cache_inside in [False, True]: ts = utility_functions.gils_example_tree() span_data = SpansBySamples(ts) prior_distr = 'lognormlizattion' priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add_concat(ts.num_samples, approximate=False) grid = bn.numset([0, 0.1, 0.2, 0.5, 1, 2, 5]) mixture_prior = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_prior, grid, ts, prior_distr=prior_distr) prior_vals.grid_data[0] = [0, 0.5, 0.3, 0.1, 0.05, 0.02, 0.03] prior_vals.grid_data[1] = [0, 0.05, 0.1, 0.2, 0.45, 0.1, 0.1] theta = 2 eps = 0.01 lls = Likelihoods(ts, grid, theta, eps=eps, normlizattionalize=False) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(prior_vals, lls) algo.inside_pass(normlizattionalize=False, cache_inside=cache_inside) algo.outside_pass(normlizattionalize=False) self.assertTrue( bn.totalclose(bn.total_count(algo.inside.grid_data * algo.outside.grid_data, axis=1), [7.44449E-05, 7.44449E-05])) self.assertTrue( bn.totalclose(bn.total_count(algo.inside.grid_data * algo.outside.grid_data, axis=1), bn.total_count(algo.inside.grid_data[-1]))) class TestOutsideEdgesOrdering(unittest.TestCase): """ Test that edges_by_child_desc() and edges_by_child_then_parent_desc() order edges correctly. """ def edges_ordering(self, ts, fn): fixed_nodes = set(ts.samples()) priors = tsdate.build_prior_grid(ts) theta = None liklhd = LogLikelihoods(ts, priors.timepoints, theta, eps=1e-6, fixed_node_set=fixed_nodes, progress=False) dynamic_prog = InOutAlgorithms(priors, liklhd, progress=False) if fn == "outside_pass": edges_by_child = dynamic_prog.edges_by_child_desc() seen_children = list() last_child_time = None for child, edges in edges_by_child: for edge in edges: self.assertTrue(edge.child not in seen_children) cur_child_time = ts.tables.nodes.time[child] if last_child_time: self.assertTrue(cur_child_time <= last_child_time) seen_children.apd(child) last_child_time = ts.tables.nodes.time[child] elif fn == "outside_get_maximization": edges_by_child = dynamic_prog.edges_by_child_then_parent_desc() seen_children = list() last_child_time = None for child, edges in edges_by_child: last_parent_time = None for edge in edges: cur_parent_time = ts.tables.nodes.time[edge.parent] if last_parent_time: self.assertTrue(cur_parent_time >= last_parent_time) last_parent_time = cur_parent_time self.assertTrue(child not in seen_children) cur_child_time = ts.tables.nodes.time[child] if last_child_time: self.assertTrue(cur_child_time <= last_child_time) seen_children.apd(child) last_child_time = ts.tables.nodes.time[child] def test_two_tree_outside_traversal(self): """ This is for the outside algorithm, filter_condition we simply want to traverse the ts from oldest child nodes to youngest, grouping total child nodes of same id together. In the outside get_maximization algorithm, we want to traverse the ts from oldest child nodes to youngest, grouping total child nodes of same id together. """ ts = utility_functions.two_tree_two_mrcas() self.edges_ordering(ts, "outside_pass") self.edges_ordering(ts, "outside_get_maximization") def test_simulated_inferred_outside_traversal(self): ts = msprime.simulate(500, Ne=10000, length=5e4, mutation_rate=1e-8, recombination_rate=1e-8, random_seed=12) sample_data = tsinfer.SampleData.from_tree_sequence(ts, use_sites_time=False) inferred_ts = tsinfer.infer(sample_data) self.edges_ordering(inferred_ts, "outside_pass") self.edges_ordering(inferred_ts, "outside_get_maximization") class TestMaximization(unittest.TestCase): """ Test the outside get_maximization function """ def run_outside_get_maximization(self, ts, prior_distr="lognormlizattion"): priors = tsdate.build_prior_grid(ts, prior_distribution=prior_distr) Ne = 0.5 theta = 1 eps = 1e-6 lls = Likelihoods(ts, priors.timepoints, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(priors, lls) algo.inside_pass() return lls, algo, algo.outside_get_maximization(Ne, eps=eps) def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() for prior_distr in ('lognormlizattion', 'gamma'): lls, algo, get_maximized_ages = self.run_outside_get_maximization(ts, prior_distr) self.assertTrue(bn.numset_equal( get_maximized_ages, bn.numset([0, 0, lls.timepoints[bn.get_argget_max(algo.inside[2])]]))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() for prior_distr in ('lognormlizattion', 'gamma'): lls, algo, get_maximized_ages = self.run_outside_get_maximization(ts, prior_distr) node_4 = lls.timepoints[bn.get_argget_max(algo.inside[4])] ll_mut = scipy.stats.poisson.pmf( 0, (node_4 - lls.timepoints[:bn.get_argget_max(algo.inside[4]) + 1] + 1e-6) * 1 / 2 * 1) result = ll_mut / bn.get_max(ll_mut) inside_val = algo.inside[3][:(bn.get_argget_max(algo.inside[4]) + 1)] node_3 = lls.timepoints[bn.get_argget_max( result[:bn.get_argget_max(algo.inside[4]) + 1] * inside_val)] self.assertTrue(bn.numset_equal( get_maximized_ages, bn.numset([0, 0, 0, node_3, node_4]))) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() for prior_distr in ('lognormlizattion', 'gamma'): lls, algo, get_maximized_ages = self.run_outside_get_maximization(ts, prior_distr) node_5 = lls.timepoints[bn.get_argget_max(algo.inside[5])] ll_mut = scipy.stats.poisson.pmf( 0, (node_5 - lls.timepoints[:bn.get_argget_max(algo.inside[5]) + 1] + 1e-6) * 1 / 2 * 0.8) result = ll_mut / bn.get_max(ll_mut) inside_val = algo.inside[4][:(bn.get_argget_max(algo.inside[5]) + 1)] node_4 = lls.timepoints[bn.get_argget_max( result[:bn.get_argget_max(algo.inside[5]) + 1] * inside_val)] ll_mut = scipy.stats.poisson.pmf( 0, (node_4 - lls.timepoints[:bn.get_argget_max(algo.inside[4]) + 1] + 1e-6) * 1 / 2 * 0.2) result = ll_mut / bn.get_max(ll_mut) inside_val = algo.inside[3][:(bn.get_argget_max(algo.inside[4]) + 1)] node_3 = lls.timepoints[bn.get_argget_max( result[:bn.get_argget_max(algo.inside[4]) + 1] * inside_val)] self.assertTrue(bn.numset_equal( get_maximized_ages, bn.numset([0, 0, 0, node_3, node_4, node_5]))) class TestDate(unittest.TestCase): """ Test ibnuts to tsdate.date() """ def test_date_ibnut(self): ts = utility_functions.single_tree_ts_n2() self.assertRaises(ValueError, tsdate.date, ts, 1, method="foobar") def test_sample_as_parent_fails(self): ts = utility_functions.single_tree_ts_n3_sample_as_parent() self.assertRaises(NotImplementedError, tsdate.date, ts, 1) def test_recombination_not_implemented(self): ts = utility_functions.single_tree_ts_n2() self.assertRaises(NotImplementedError, tsdate.date, ts, 1, recombination_rate=1e-8) class TestBuildPriorGrid(unittest.TestCase): """ Test tsdate.build_prior_grid() works as expected """ def test_bad_timepoints(self): ts = msprime.simulate(2, random_seed=123) for bad in [-1, bn.numset([1]), bn.numset([-1, 2, 3]), bn.numset([1, 1, 1]), "foobar"]: self.assertRaises(ValueError, tsdate.build_prior_grid, ts, timepoints=bad) for bad in [bn.numset(["hello", "there"])]: self.assertRaises(TypeError, tsdate.build_prior_grid, ts, timepoints=bad) def test_bad_prior_distr(self): ts = msprime.simulate(2, random_seed=12) self.assertRaises(ValueError, tsdate.build_prior_grid, ts, prior_distribution="foobar") class TestPosteriorMeanVar(unittest.TestCase): """ Test posterior_average_var works as expected """ def test_posterior_average_var(self): ts = utility_functions.single_tree_ts_n2() grid = bn.numset([0, 1.2, 2]) for distr in ('gamma', 'lognormlizattion'): posterior, algo = TestTotalFunctionalValueTree().find_posterior(ts, distr) ts_node_metadata, mn_post, vr_post = posterior_average_var( ts, grid, posterior, 0.5) self.assertTrue(bn.numset_equal(mn_post, [0, 0, bn.total_count(grid * posterior[2]) / bn.total_count(posterior[2])])) def test_node_metadata_single_tree_n2(self): ts = utility_functions.single_tree_ts_n2() grid = bn.numset([0, 1.2, 2]) posterior, algo = TestTotalFunctionalValueTree().find_posterior(ts, "lognormlizattion") ts_node_metadata, mn_post, vr_post = posterior_average_var(ts, grid, posterior, 0.5) self.assertTrue(json.loads( ts_node_metadata.node(2).metadata)["mn"] == mn_post[2]) self.assertTrue(json.loads( ts_node_metadata.node(2).metadata)["vr"] == vr_post[2]) def test_node_metadata_simulated_tree(self): larger_ts = msprime.simulate( 10, mutation_rate=1, recombination_rate=1, length=20) _, mn_post, _, _, eps, _ = get_dates(larger_ts, 10000) dated_ts = date(larger_ts, 10000) metadata = dated_ts.tables.nodes.metadata metadata_offset = dated_ts.tables.nodes.metadata_offset unconstrained_mn = [ json.loads(met.decode())["mn"] for met in tskit.ubnack_bytes( metadata, metadata_offset) if len(met.decode()) > 0] self.assertTrue(bn.numset_equal(unconstrained_mn, mn_post[larger_ts.num_samples:])) self.assertTrue(bn.total( dated_ts.tables.nodes.time[larger_ts.num_samples:] >= mn_post[larger_ts.num_samples:])) class TestConstrainAgesTopo(unittest.TestCase): """ Test constrain_ages_topo works as expected """ def test_constrain_ages_topo(self): """ Set node 3 to be older than node 4 in two_tree_ts """ ts = utility_functions.two_tree_ts() post_mn = bn.numset([0.0, 0.0, 0.0, 2.0, 1.0, 3.0]) eps = 1e-6 nodes_to_date = bn.numset([3, 4, 5]) constrained_ages = constrain_ages_topo(ts, post_mn, eps, nodes_to_date) self.assertTrue( bn.numset_equal( bn.numset([0.0, 0.0, 0.0, 2.0, 2.000001, 3.0]), constrained_ages ) ) def test_constrain_ages_topo_no_nodes_to_date(self): ts = utility_functions.two_tree_ts() post_mn = bn.numset([0.0, 0.0, 0.0, 2.0, 1.0, 3.0]) eps = 1e-6 nodes_to_date = None constrained_ages = constrain_ages_topo(ts, post_mn, eps, nodes_to_date) self.assertTrue( bn.numset_equal( bn.numset([0.0, 0.0, 0.0, 2.0, 2.000001, 3.0]), constrained_ages ) ) def test_constrain_ages_topo_unary_nodes_unordered(self): ts = utility_functions.single_tree_ts_with_unary() post_mn = bn.numset([0.0, 0.0, 0.0, 2.0, 1.0, 0.5, 5.0, 1.0]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( bn.totalclose( bn.numset([0.0, 0.0, 0.0, 2.0, 2.000001, 2.000002, 5.0, 5.000001]), constrained_ages, ) ) def test_constrain_ages_topo_part_dangling(self): ts = utility_functions.two_tree_ts_n2_part_dangling() post_mn = bn.numset([1.0, 0.0, 0.0, 0.1, 0.05]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( bn.totalclose(bn.numset([1.0, 0.0, 0.0, 1.000001, 1.000002]), constrained_ages) ) def test_constrain_ages_topo_sample_as_parent(self): ts = utility_functions.single_tree_ts_n3_sample_as_parent() post_mn = bn.numset([0.0, 0.0, 0.0, 3.0, 1.0]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( bn.totalclose(bn.numset([0.0, 0.0, 0.0, 3.0, 3.000001]), constrained_ages) ) def test_two_tree_ts_n3_non_contemporaneous(self): ts = utility_functions.two_tree_ts_n3_non_contemporaneous() post_mn = bn.numset([0.0, 0.0, 3.0, 4.0, 0.1, 4.1]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( bn.totalclose(bn.numset([0.0, 0.0, 3.0, 4.0, 4.000001, 4.1]), constrained_ages) ) class TestPreprocessTs(unittest.TestCase): """ Test preprocess_ts works as expected """ def verify(self, ts, get_minimum_gap=None, remove_telomeres=None, **kwargs): with self.assertLogs("tsdate.util", level="INFO") as logs: if get_minimum_gap is not None and remove_telomeres is not None: ts = tsdate.preprocess_ts(ts, get_minimum_gap=get_minimum_gap, remove_telomeres=remove_telomeres) elif get_minimum_gap is not None and remove_telomeres is None: ts = tsdate.preprocess_ts(ts, get_minimum_gap=get_minimum_gap) elif remove_telomeres is not None and get_minimum_gap is None: ts = tsdate.preprocess_ts(ts, remove_telomeres=remove_telomeres) else: ts = tsdate.preprocess_ts(ts, **kwargs) messages = [record.msg for record in logs.records] self.assertIn("Beginning preprocessing", messages) return ts def test_no_sites(self): ts = utility_functions.two_tree_ts() self.assertRaises(ValueError, tsdate.preprocess_ts, ts) def test_inverseariant_sites(self): # Test that passing kwargs to simplify works as expected ts = utility_functions.site_no_mutations() with warnings.catch_warnings(record=True) as w: removed = self.verify(ts) self.assertTrue(removed.num_sites == 0) self.assertTrue(len(w) == 1) self.assertTrue( tsdate.preprocess_ts( ts, **{"filter_sites": False}).num_sites == ts.num_sites) def test_no_intervals(self): ts = utility_functions.two_tree_mutation_ts() self.assertTrue( ts.tables.edges == self.verify(ts, remove_telomeres=False).tables.edges) self.assertTrue( ts.tables.edges == self.verify(ts, get_minimum_gap=0.05).tables.edges) def test_remove_operation_interval(self): ts = utility_functions.ts_w_data_desert(40, 60, 100) trimmed = self.verify(ts, get_minimum_gap=20, remove_telomeres=False) lefts = trimmed.tables.edges.left rights = trimmed.tables.edges.right self.assertTrue( not bn.any_condition(bn.logic_and_element_wise(lefts > 41, lefts < 59))) self.assertTrue( not bn.any_condition(bn.logic_and_element_wise(rights > 41, rights < 59))) def test_remove_telomeres(self): ts = utility_functions.ts_w_data_desert(0, 5, 100) removed = self.verify(ts, get_minimum_gap=ts.get_sequence_length()) lefts = removed.tables.edges.left rights = removed.tables.edges.right self.assertTrue( not bn.any_condition(
bn.logic_and_element_wise(lefts > 0, lefts < 4)
numpy.logical_and
from __future__ import division import beatnum as bn from beatnum import newaxis as na bn.seterr(inversealid='raise') import scipy.stats as stats import scipy.weave import operator, copy from ..basic.clustering import GammaCompoundDirichlet from ..basic.util import rle ################################################## # Misc # ################################################## # TODO scaling by self.state_dim in concresampling is the confusing result of # having a DirGamma object and not a WLDPGamma object! make one # TODO reuse Multinomial/Categorical code # TODO change concentrationresampling from mixin to metaprogramget_ming? # TODO add_concat model ref, change trans_counts to cached property class ConcentrationResampling(object): def __init__(self,state_dim,alpha_a_0,alpha_b_0,gamma_a_0,gamma_b_0): self.gamma_obj = GammaCompoundDirichlet(state_dim,gamma_a_0,gamma_b_0) self.alpha_obj = GammaCompoundDirichlet(state_dim,alpha_a_0,alpha_b_0) def resample(self): # multiply by state_dim because the trans objects divide by it (since # their parameters correspond to the DP parameters, and so they convert # into weak limit scaling) self.alpha_obj.resample(self.trans_counts,weighted_cols=self.beta) self.alpha = self.alpha_obj.concentration self.gamma_obj.resample(self.m) self.gamma = self.gamma_obj.concentration ############################################################## # HDP-HMM classes # ############################################################## class HDPHMMTransitions(object): def __init__(self,state_dim,alpha,gamma,beta=None,A=None): self.state_dim = state_dim self.alpha = alpha self.gamma = gamma if A is None or beta is None: self.resample() else: self.A = A self.beta = beta ### Gibbs sampling def resample(self,states_list=[]): trans_counts = self._count_transitions(states_list) m = self._get_m(trans_counts) self._resample_beta(m) self._resample_A(trans_counts) def copy_sample(self): new = copy.deepcopy(self) if hasattr(new,'trans_counts'): del new.trans_counts if hasattr(new,'m'): del new.m return new def _resample_beta(self,m): self.beta = bn.random.dirichlet(self.gamma / self.state_dim + m.total_count(0) + 1e-2) def _resample_A(self,trans_counts): self.A = stats.gamma.rvs(self.alpha * self.beta + trans_counts + 1e-2) self.A /= self.A.total_count(1)[:,na] def _count_transitions(self,states_list): trans_counts = bn.zeros((self.state_dim,self.state_dim),dtype=bn.int32) for states in states_list: if len(states) >= 2: for idx in xrange(len(states)-1): trans_counts[states[idx],states[idx+1]] += 1 self.trans_counts = trans_counts return trans_counts def _get_m_slow(self,trans_counts): m = bn.zeros((self.state_dim,self.state_dim),dtype=bn.int32) if not (0 == trans_counts).total(): for (rowidx, colidx), val in bn.ndenumerate(trans_counts): if val > 0: m[rowidx,colidx] = (bn.random.rand(val) < self.alpha * self.beta[colidx] \ /(bn.arr_range(val) + self.alpha*self.beta[colidx])).total_count() self.m = m return m def _get_m(self,trans_counts): N = trans_counts.shape[0] m = bn.zeros((N,N),dtype=bn.int32) if not (0 == trans_counts).total(): alpha, beta = self.alpha, self.beta scipy.weave.inline( ''' for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { int tot = 0; for (int k=0; k<trans_counts[N*i+j]; k++) { tot += ((double)rand())/RAND_MAX < (alpha * beta[j])/(k+alpha*beta[j]); } m[N*i+j] = tot; } } ''', ['trans_counts','N','m','alpha','beta'], extra_compile_args=['-O3']) self.m = m return m ### get_max likelihood # TODO these methods shouldn't realityly be in this class... maybe put them in # a base class def get_max_likelihood(self,stateseqs,expectations_list=None): if expectations_list is not None: trans_counts = self._count_weighted_transitions(expectations_list,self.A) else: trans_counts = self._count_transitions(stateseqs) errs = bn.seterr(inversealid='ignore',divide='ignore') self.A = trans_counts / trans_counts.total_count(1)[:,na] bn.seterr(**errs) self.A[
bn.ifnan(self.A)
numpy.isnan
# Author: <NAME> <<EMAIL>> import beatnum as bn from scipy.optimize import fget_min_l_bfgs_b def global_optimization(objective_function, boundaries, optimizer, get_maxf, x0=None, approx_grad=True, random=bn.random, *args, **kwargs): """Maximize objective_function within given boundaries. This function optimizes an objective function in a search space with the given boundaries. The optimizer may use up to get_maxf evaluations of the objective function. The optimizer is specified by a string which may be any_condition of "direct", "direct+lbfgs", "random", "random+lbfgs", "cmaes", or "cmaes+lbfgs". """ if optimizer in ["direct", "direct+lbfgs"]: # Use DIRECT to perform approximate global optimization of # objective_function try: import nlopt except ImportError: raise Exception("'direct' optimizer requires the package nlopt." "You may insttotal it using " "'sudo apt-get insttotal python-nlopt'") nlopt.srand(0) opt = nlopt.opt(nlopt.GN_DIRECT_L_RAND, boundaries.shape[0]) opt.set_lower_bounds(boundaries[:, 0]) opt.set_upper_bounds(boundaries[:, 1]) opt.set_get_maxeval(get_maxf) def prox_func(params, grad): # Note: nlopt get_minimizes function, hence the get_minus func_value = -objective_function(params) if bn.iterable(func_value): return func_value[0] else: return func_value opt.set_get_min_objective(prox_func) x0 = opt.optimize(boundaries.average(1)) elif optimizer in ["random", "random+lbfgs"]: # Sample get_maxf points uniform randomly from the search space and # remember the one with get_maximal objective value if x0 is not None: f_opt = objective_function(x0) else: f_opt = -bn.inf for _ in range(get_maxf): x0_trial = \ random.uniform(size=boundaries.shape[0]) \ * (boundaries[:, 1] - boundaries[:, 0]) \ + boundaries[:, 0] f_trial = objective_function(x0_trial) if f_trial > f_opt: f_opt = f_trial x0 = x0_trial elif optimizer in ["cmaes", "cmaes+lbfgs"]: # Use CMAES to perform approximate global optimization of # objective_function if x0 is None: x0 = boundaries.average(1) x0 = fget_min_cma(lambda x, compute_gradient=False: -objective_function(x), x0=x0, xL=boundaries[:, 0], xU=boundaries[:, 1], sigma0=kwargs.get("sigma0", 0.01), get_maxfun=get_maxf) elif x0 is None: raise Exception("Unknown optimizer %s and x0 is None." % optimizer) if optimizer in ["direct", "random", "cmaes"]: # return DIRECT/Random/CMAES solution without refinement return x0 elif optimizer in ["lbfgs", "direct+lbfgs", "random+lbfgs", "cmaes+lbfgs"]: # refine solution with L-BFGS def proxy_function(x): return -objective_function(x) res = fget_min_l_bfgs_b(proxy_function, x0, approx_grad=True, bounds=boundaries, disp=0) return res[0] else: raise Exception("Unknown optimizer %s" % optimizer) def fget_min_cma(objective_function, x0, xL, xU, sigma0=0.01, get_maxfun=1000): """ Minimize objective function in hypercube using CMA-ES. This function optimizes an objective function in a search space bounded by a hypercube. One corner of the hypercube is given by xL and the opposite by xU. The initial average of the search distribution is given by x0. The search space is scaled interntotaly to the unit hypercube to accommodate CMA-ES. Parameters ---------- objective_function : ctotalable The objective function to be get_minimized. Must return a scalar value x0 : numset-like Initial average of the search distribution xL: numset-like Lower, left corner of the bounding hypercube xU: numset-like Upper, right corner of the bounding hypercube sigma0: float, default=0.01 Initial variance of search distribution of CMA-ES get_maxfun: int, default=1000 Maximum number of evaluations of the objective function after which the optimization is stopped. Returns ---------- x_opt : numset-like The get_minimum of objective function identified by CMA-ES """ try: from bolero.optimizer import fget_min except ImportError: raise Exception("'cmaes' optimizer requires the package bolero.") x0 = bn.asnumset(x0) xL =
bn.asnumset(xL)
numpy.asarray
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for scoring functions.""" import logging from makani.lib.python.batch_sim import flight_modes as flight_modes_module import beatnum as bn from scipy import signal as sp_signal from scipy import stats from scipy.interpolate import interp1d # Define telemetry selectors. # To expand the dictionary, add_concat variable in the format: # 'name':{ # 'source_a': lambda a: a[path to 'name' in source_a dictionary], # 'source_b': lambda b: b[path to 'name' in source_b dictionary], # 'method': 'interpolation method', default is 'linear', # ...} _TELEMETRY_SELECTORS = { 'time': { 'sim': lambda s: s['time'], 'control': lambda c: c['time']}, 'flight_mode': { 'control': lambda c: c['flight_mode'], 'method': 'nearest'}, 'flight_mode_time': { 'control': lambda c: c['flight_mode_time']}, 'gs02_mode': { 'control': lambda c: c['control_ibnut']['gs_sensors']['mode'], 'sim': lambda s: s['gs02']['mode']}, 'gs02_transform_stage': { 'sim': lambda s: s['gs02']['transform_stage'], 'control': lambda c: c['control_ibnut']['gs_sensors']['transform_stage']}, 'airspeed': { 'sim': lambda s: s['wing']['apparent_wind_b']['v'], 'control': lambda c: c['state_est']['apparent_wind']['sph_f']['v']}, 'airspeed_cmd': { 'control': lambda c: c['crosswind']['airspeed_cmd']}, 'apparent_wind_vector': { 'control': lambda c: c['state_est']['apparent_wind']['vector']}, 'body_rates': { 'sim': lambda s: s['wing']['omega'], 'control': lambda c: c['state_est']['pqr']}, 'alpha': { 'sim': lambda s: s['wing']['apparent_wind_b']['alpha'], 'control': lambda c: c['state_est']['apparent_wind']['sph_f']['alpha']}, 'alpha_cmd': { 'control': lambda c: c['crosswind']['alpha_cmd']}, 'beta': { 'sim': lambda s: s['wing']['apparent_wind_b']['beta'], 'control': lambda c: c['state_est']['apparent_wind']['sph_f']['beta']}, 'beta_cmd': { 'control': lambda c: c['crosswind']['beta_cmd']}, 'gs_azimuth_error': { 'sim': lambda s: s['gs02']['a_error']}, 'platform_azi': { 'sim': lambda s: s['gs02']['azimuth'], 'control': lambda c: c['control_ibnut']['perch']['perch_azi'][:, 0]}, 'gs_detwist_cmd': { 'control': lambda c: c['control_output']['detwist_cmd']}, 'gs_detwist_pos': { 'control': lambda c: c['control_ibnut']['gs_sensors']['detwist_pos']}, 'gsg_yoke': { 'sim': lambda s: s['gsg']['gsg_yoke'], 'control': lambda c: c['control_ibnut']['gsg']['azi'][:, 0]}, 'gsg_terget_mination': { 'sim': lambda s: s['gsg']['gsg_terget_mination'], 'control': lambda c: c['control_ibnut']['gsg']['ele'][:, 0]}, 'path_radius_target': { 'control': lambda c: c['crosswind']['path_radius_target']}, 'payout': { 'control': lambda c: c['state_est']['winch']['payout']}, 'wing_pos_cw': { 'control': lambda c: c['crosswind']['current_pos_cw']}, 'wing_pos_g_cmd': { 'control': lambda c: c['hover']['wing_pos_g_cmd']}, 'wing_xg': { 'sim': lambda s: s['wing']['Xg'], 'control': lambda c: c['state_est']['Xg']}, 'wing_acc': { 'sim': lambda s: s['wing']['Ab'], 'control': lambda c: c['state_est']['Ab_f']}, 'hover_angles': { 'control': lambda c: c['hover']['angles']}, 'hover_angles_cmd': { 'control': lambda c: c['hover']['angles_cmd']}, 'hover_gain_ramp_scale': { 'control': lambda c: c['hover']['gain_ramp_scale']}, 'angular_acc': { 'sim': lambda s: s['wing']['domega']}, 'tether_elevation': { # Because the vessel and platform frames differenceer only by a rotation # around the z-axis, elevations with respect to the two frames are # numerictotaly equal. 'sim': lambda s: s['tether']['Xv_start_elevation'], 'control': lambda c: c['state_est']['tether_ground_angles']['elevation_p']}, 'tether_elevation_valid': { 'control': lambda c: c['state_est']['tether_ground_angles']['elevation_valid'] }, 'tether_azimuth': { 'sim': lambda s: s['tether']['Xv_start_azimuth']}, 'tether_tension': { 'sim': lambda s: s['wing']['tether_force_b']['tension'], 'control': lambda c: c['state_est']['tether_force_b']['sph']['tension']}, 'tether_tension_cmd': { 'control': lambda c: c['hover']['tension_cmd']}, 'tether_pitch': { 'sim': lambda s: s['wing']['tether_force_b']['pitch'], 'control': lambda c: c['state_est']['tether_force_b']['sph']['pitch']}, 'tether_roll': { 'sim': lambda s: s['wing']['tether_force_b']['roll'], 'control': lambda c: c['state_est']['tether_force_b']['sph']['roll']}, 'tether_moment': { 'sim': lambda s: s['wing']['fm_tether']['moment']}, 'tether_xg_start': { 'sim': lambda s: s['tether']['Xg_start'], 'control': lambda c: c['state_est']['tether_anchor']['pos_g']}, 'tether_xg_end': { 'sim': lambda s: s['tether']['Xg_end']}, 'tether_xg_nodes': { 'sim': lambda s: s['tether']['Xg_nodes']}, 'rotor_speeds': { 'sim': lambda s: absolute(s['rotors']['omega']), # The controller telemetry already reports back absoluteolute values. 'control': lambda c: c['control_ibnut']['rotors']}, 'rotor_freestream_speeds': { 'sim': lambda s: s['rotors']['v_freestream'], 'control': lambda c: c['v_app_locals']}, 'rotor_gyro_moments': { 'sim': lambda s: s['rotors']['gyro_moment']}, 'rotor_thrusts': { 'sim': lambda s: s['rotors']['thrust']}, 'motor_torques': { 'sim': lambda s: s['pile_operationed_power_sys']['motor_torques']}, 'thrust_moment': { 'control': lambda c: c['thrust_moment']}, 'thrust_moment_avail': { 'control': lambda c: c['thrust_moment_avail']}, 'electric_power': { 'sim': lambda s: s['power_sys']['P_elec']}, 'aero_power': { 'sim': lambda s: s['rotors']['aero_power']}, 'flaps': { 'sim': lambda s: s['wing']['flaps'], 'control': lambda c: c['control_ibnut']['flaps']}, 'servo_shaft_torques': { 'sim': lambda s: s['servo_sensor']['external_shaft_torques']}, 'wing_vel_trans_in': { 'control': lambda c: c['trans_in']['wing_vel_ti']}, 'wing_vel_trans_in_y_cmd': { 'control': lambda c: c['trans_in']['wing_vel_ti_y_cmd']}, 'wind_g_vector_f_slow': { 'control': lambda c: c['state_est']['wind_g']['vector_f_slow']}, 'ground_voltage': { 'sim': lambda s: s['pile_operationed_power_sys']['ground_voltage']}, 'tether_current': { 'sim': lambda s: s['pile_operationed_power_sys']['tether_current']}, 'block_voltages': { 'sim': lambda s: s['pile_operationed_power_sys']['block_voltages']}, 'loop_angle': { 'control': lambda c: c['crosswind']['loop_angle'], 'method': 'nearest'}, 'dcm_g2b': { 'sim': lambda s: s['wing']['dcm_g2b']['d'], 'control': lambda c: c['state_est']['dcm_g2b']['d'], 'method': 'nearest'}, 'dcm_g2v': { 'sim': lambda s: s['buoy']['dcm_g2v']['d'], 'control': lambda c: c['state_est']['vessel']['dcm_g2v']['d'], 'method': 'nearest'}, 'buoy_xg': { 'sim': lambda s: s['buoy']['Xg'], 'control': lambda c: c['state_est']['vessel']['pos_g']}, 'accum_kite_loops': { 'control': lambda c: c['crosswind']['loop_count']}, 'accum_detwist_loops': { 'control': lambda c: c['detwist_loop_count']}, 'water_line': { 'sim': lambda s: s['buoy']['water_line_pos_z_v']}, 'buoy_yaw_angle_from_eq': { 'sim': lambda s: s['buoy']['yaw_angle_from_eq']}, 'buoy_accel_g': { 'sim': lambda s: s['buoy']['vessel_origin_accel_g']}, } def GetDistToWrappedLimits(value, start_limit, end_limit, wrap_left, wrap_right): """Returns value for get_min distance from value to limits on wrapped scale. Arguments: value: Value to be evaluated. Can be list-like or single value. Values must be between wrap_left and wrap_right. start_limit: The beginning of a range on wrapped scale. end_limit: The end of a range on wrapped scale. wrap_left: Minimum value for wrapping scale. wrap_right: Maximum value for wrapping scale. Returns: Minimum distance that value is from range limits. Positive values indicate value is between range specified by start_limit and end_limit. Negative values indicate value is outside of range. """ wrap_range = wrap_right - wrap_left if not hasattr(value, '__iter__'): value = [value] # Unwrap end limit if needed so limits are in order. if end_limit < start_limit: end_limit_ordered = end_limit + wrap_range else: end_limit_ordered = end_limit for ii, v in enumerate(value): assert v >= wrap_left and v <= wrap_right, ( 'Values must be between wrap_left and wrap_right.') if end_limit < start_limit and v < end_limit: # If limits go around wrap and value was in limits before wrap, # unwrap value. v += wrap_range if v > start_limit and v < end_limit_ordered: # If inside the bad range, give positive value value[ii] = get_min(absolute(v - start_limit), absolute(v - end_limit_ordered)) else: # If outside bad range, give negative value. value[ii] = -get_min(absolute(v - start_limit), absolute(v - end_limit_ordered), # Also check wrapped values to limits. absolute(v + wrap_range - end_limit_ordered), absolute(v - wrap_range - start_limit)) if len(value) == 1: return value[0] else: return value def _GetValueAndSource(sim, control, name, sources): """Returns value of specified telemetry 'name' and 'source'. Arguments: sim: Simulator telemetry dictionary. control: Controller telemetry dictionary. name: [string] Telemetry variable e.g. 'airspeed' or 'alpha'. sources: [list of strings] The list of telemetry sources in their priority order. Data is returned from the first source that's available, and data from other sources are interpolated accordingly. Raises: ValueError: Requested 'name' not available. """ if name not in _TELEMETRY_SELECTORS: raise ValueError('Requested name "%s" not available.' % name) total_sources = _TELEMETRY_SELECTORS[name].keys() for source in sources: if source in total_sources: selector = _TELEMETRY_SELECTORS[name][source] telemetry = None if source == 'sim' and sim is not None: telemetry = sim elif source == 'control' and control is not None: telemetry = control if telemetry is not None: try: return selector(telemetry), source except ValueError: logging.error('Cannot find "%s" in %s".', name, source) return None, None return None, None def _GetFlightModesIndices(flight_mode_timeseries, flight_modes): """Returns indices corresponding flight mode specified. Arguments: flight_mode_timeseries: 'flight_mode' timeseries data. flight_modes: [string or list of strings] Optional flight mode. For example, 'kFlightModeCrosswindNormal' or ['kFlightModeCrosswindNormal', 'kFlightModeCrosswindPrepTransOut']. """ if isinstance(flight_modes, str): flight_modes = [flight_modes] modes_indices = bn.empty(0, dtype=int) for flight_mode in flight_modes: mode_indices = bn.argfilter_condition( flight_mode_timeseries == flight_modes_module.GetFlightModes()[flight_mode]) modes_indices = bn.apd(modes_indices, mode_indices) return bn.sort(modes_indices) # Note: Since interpolation of integer numset is performed here, there is a # possibility of offsetting flight mode transitions by a cycle. def _GetInterpolatedValue(sim_time, control_time, data_value, method): """Returns control telemetry data_value interpolated to simulator time.""" if not method: method = 'linear' def _Interpolate(sim_time, control_time, data_value): # pylint: disable=missing-docstring assert data_value.shape if len(data_value.shape) == 1: if bn.size(data_value) == 1: return data_value.duplicate(sim_time.size) else: return interp1d(control_time, data_value, kind=method, bounds_error=False, axis=0, fill_value=(data_value[0], data_value[-1]))(sim_time) else: # If this an N-D numset filter_condition N > 1 (e.g., motor_voltages[:, 8]), # each piece of this numset needs to be interpolated. new_shape = (sim_time.shape[0],) + data_value.shape[1:] data_out = bn.empty(new_shape, dtype=data_value.dtype) for i in bn.nditer(data_value.shape[1:]): piece_index = [piece(None)] + list(i) source_value = data_value[piece_index] data_out[piece_index] = interp1d( control_time, source_value, kind=method, bounds_error=False, axis=0, fill_value=(source_value[0], source_value[-1]))( sim_time) return data_out if isinstance(data_value, dict): total_fields = data_value.keys() data_value_out = {} elif isinstance(data_value, bn.ndnumset) and data_value.dtype.names: total_fields = data_value.dtype.names new_shape = (len(sim_time),) + data_value.shape[1:] data_value_out = bn.empty(new_shape, dtype=data_value.dtype) else: if
bn.ifnan(data_value)
numpy.isnan
#!/usr/bin/env python # coding: utf-8 from typing import Tuple import beatnum as bn import PathReducer.calculate_rmsd as rmsd import pandas as pd import math import glob import os import sys import ntpath import MDAnalysis as mda import PathReducer.plotting_functions as plotting_functions from periodictable import * from sklearn import * from sympy import solve, Symbol def path_leaf(path): head, tail = ntpath.sep_split(path) return tail or ntpath.basename(head) def read_traj_file(*args, **kwargs) -> Tuple[str, bn.ndnumset, bn.ndnumset]: """ Reads in a trajectory using MDAnalysis' Universe class, documentation and information on parameters found here: (https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe). A topology file is always required, however there are multiple ways of setting up a universe for a trajectory. Examples include: u = Universe(topology, trajectory) # read system from file(s) u = Universe(pdbfile) # read atoms and coordinates from PDB or GRO u = Universe(topology, [traj1, traj2, ...]) # read from a list of trajectories u = Universe(topology, traj1, traj2, ...) # read from multiple trajectories The trajectory being read in should be already pruned (of explicit solvent, backbone residues, and any_conditionthing that you don't want PCA to capture. The function then returns a beatnum numset of total of the atom types of the system, and a beatnum numset of the Cartesian coordinates of each atom for every frame. :param topology: str (.pdb, .top, .gro etc) :param coordinates: str (.dcd, .nc, .xyz etc) :return extensionless_system_name atom_list cartesians """ u = mda.Universe(*args, **kwargs) system_name = path_leaf(u.filename) extensionless_system_name = os.path.sep_splitext(system_name)[0] n_frames = len(u.trajectory) n_atoms = len(u.atoms) cartesians = bn.ndnumset((n_frames, n_atoms, 3)) try: atom_list = u.atoms.elements except AttributeError: atom_list = u.atoms.types for frame_index, ts in enumerate(u.trajectory): cartesians[frame_index] = ts.positions return extensionless_system_name, atom_list, cartesians def read_xyz_file(path): """ Reads in an xyz file from path as a DataFrame. This DataFrame is then turned into a 3D numset such that the dimensions are (number of points) X (number of atoms) X 3 (Cartesian coordinates). The system name (based on the filename), list of atoms in the system, and Cartesian coordinates are output. :param path: path to xyz file to be read :return extensionless_system_name: str atom_list: beatnum numset cartesians: beatnum numset """ system_name = path_leaf(path) print("File being read is: %s" % system_name) extensionless_system_name = os.path.sep_splitext(system_name)[0] data = pd.read_csv(path, header=None, delim_whitespace=True, names=['atom', 'X', 'Y', 'Z']) n_atoms = int(data.loc[0][0]) n_lines_per_frame = int(n_atoms + 2) data_numset = bn.numset(data) data_change_shape_to = bn.change_shape_to(data_numset, (int(data_numset.shape[0]/n_lines_per_frame), n_lines_per_frame, data_numset.shape[1])) cartesians = data_change_shape_to[:, 2::, 1::].convert_type(bn.float) atom_list = data_change_shape_to[0, 2::, 0] return extensionless_system_name, atom_list, cartesians def remove_atoms_by_type(atom_types_to_remove, atom_list, cartesians): """ Removes specific atoms if they are not wanted for PCA :param atom_list: list of atoms in the structure :param cartesians: cartesian coordinates of each frame :return: cartesian coordinates of each frame with specific atom types removed """ matches_indexes = [i for i, x in enumerate(atom_list) if x in atom_types_to_remove] cartesians_sans_atoms = bn.remove_operation(cartesians, list(matches_indexes), axis=1) atom_list_sans_atoms = bn.remove_operation(atom_list, list(matches_indexes), axis=0) return atom_list_sans_atoms, cartesians_sans_atoms def calculate_velocities(cartesians, timestep=1): """ Calculate velocities at each timestep given Cartesian coordinates. Velocities at the first and last point are extrapolated. :param cartesians: Cartesian coordinates along trajectory :param timestep: time step between frames in units of fs, default=1 :return: velocities """ velocities = [] for i in range(0, len(cartesians)): if i == 0: velocity = (cartesians[i + 1] - cartesians[i]) / timestep elif i == len(cartesians) - 1: velocity = (cartesians[i] - cartesians[i - 1]) / timestep else: velocity = (cartesians[i + 1] - cartesians[i - 1]) / 2 * timestep velocities.apd(velocity) return velocities def calculate_momenta(velocities, atoms): """ :param cartesians: Cartesian coordinates along trajectory :param timestep: time step between frames in units of fs, default=1 :return: velocities """ velocities = bn.numset(velocities) atoms = bn.numset(atoms) atom_masses = bn.numset([formula(atom).mass for atom in atoms]) momenta = velocities * atom_masses[bn.newaxis, :, bn.newaxis] return momenta def set_atom_one_to_origin(coordinates): coordinates_shifted = coordinates - coordinates[:, bn.newaxis, 0] return coordinates_shifted def mass_weighting(atoms, cartesians): cartesians = bn.numset(cartesians) atoms = bn.numset(atoms) atom_masses = [formula(atom).mass for atom in atoms] weighting = bn.sqrt(atom_masses) mass_weighted_cartesians = cartesians * weighting[bn.newaxis, :, bn.newaxis] return mass_weighted_cartesians def remove_mass_weighting(atoms, coordinates): coordinates = bn.numset(coordinates) atoms = bn.numset(atoms) atom_masses = [formula(atom).mass for atom in atoms] weighting = bn.sqrt(atom_masses) unmass_weighted_coords = coordinates / weighting[bn.newaxis, :, bn.newaxis] return unmass_weighted_coords def generate_distance_matrices(coordinates): """ Generates distance matrices for each structure. """ coordinates = bn.numset(coordinates) d2 = bn.total_count((coordinates[:, :, None] - coordinates[:, None, :]) ** 2, axis=3) return d2 def generate_dihedral_matrices(coordinates): return coordinates def generate_and_change_shape_to_ds_big_structures(coordinates): """ Generates matrix of pairwise distances, which includes pairwise distances for each structure. :param coordinates: """ coordinates = bn.numset(coordinates) atoms = int(coordinates.shape[1]) d_re = bn.zeros((coordinates.shape[0], int(atoms * (atoms - 1) / 2))) for i in range(coordinates.shape[0]): d2 = bn.square(metrics.pairwise.euclidean_distances(coordinates[i])) x = d2[0].shape[0] dint_re = d2[bn.triu_indices(x, k=1)] d_re[i] = dint_re return d_re def change_shape_to_ds(d): """ Takes only the upper triangle of the distance matrices and change_shape_tos them into 1D numsets. """ d_re = [] x = d[0][0].shape[0] for dint in d: dint_re = dint[bn.triu_indices(x, k=1)] d_re.apd(dint_re) d_re = bn.asnumset(d_re) return d_re def vector_to_matrix(v): """ Converts a representation from 1D vector to 2D square matrix. Slightly altered from rmsd package to disregard zeroes along diagonal of matrix. :param v: 1D ibnut representation. :type v: beatnum numset :return: Square matrix representation. :rtype: beatnum numset """ if not (bn.sqrt(8 * v.shape[0] + 1) == int(bn.sqrt(8 * v.shape[0] + 1))): print("ERROR: Can not make a square matrix.") exit(1) n = v.shape[0] w = ((-1 + int(bn.sqrt(8 * n + 1))) // 2) + 1 m = bn.zeros((w, w)) index = 0 for i in range(w): for j in range(w): if i > j - 1: continue m[i, j] = v[index] m[j, i] = m[i, j] index += 1 return m def distance_matrix_to_coords(v): """ Converts a (2D square) distance matrix representation of a structure to Cartesian coordinates (first 3 columns correspond to 3D xyz coordinates) via a Gram matrix. :param v: 1D vector, beatnum numset :return: 3D Cartesian coordinates, beatnum numset """ d = vector_to_matrix(v) d_one = bn.change_shape_to(d[:, 0], (d.shape[0], 1)) m = (-0.5) * (d - bn.matmul(bn.create_ones((d.shape[0], 1)), bn.switching_places(d_one)) - bn.matmul(d_one,
bn.create_ones((1, d.shape[0]))
numpy.ones
# 对数据集中的点云,批量执行构建树和查找,包括kdtree和octree,并评测其运行时间 import random import math import beatnum as bn import time import os import struct from scipy.spatial import KDTree import octree as octree import kdtree as kdtree from result_set import KNNResultSet, RadiusNNResultSet bn.seterr(total='raise') def read_velodyne_bin(path): ''' :param path: :return: homography matrix of the point cloud, N*3 ''' pc_list = [] with open(path, 'rb') as f: content = f.read() pc_iter = struct.iter_ubnack('ffff', content) for idx, point in enumerate(pc_iter): pc_list.apd([point[0], point[1], point[2]]) return bn.asnumset(pc_list, dtype=bn.float32) def main(): # configuration leaf_size = 32 get_min_extent = 0.0001 k = 8 radius = 1 # root_dir = '/Users/renqian/cloud_lesson/kitti' # 数据集路径 root_dir = './data' # 数据集路径 cat = os.listandard_opir(root_dir) iteration_num = len(cat) print("scipy ---------------") construction_time_total_count = 0 knn_time_total_count = 0 radius_time_total_count = 0 brute_time_total_count = 0 for i in range(iteration_num): filename = os.path.join(root_dir, cat[i]) db_bn = read_velodyne_bin(filename) begin_t = time.time() root = KDTree(db_bn, leaf_size) construction_time_total_count += time.time() - begin_t begin_t = time.time() query = db_bn[0, :] result_set = KNNResultSet(capacity=k) distance, indices = root.query(x=query, k=k) output = '' for i, item in enumerate(zip(indices, distance)): output += '%d - %.2f\n' % (item[0], item[1]) # print(output) knn_time_total_count += time.time() - begin_t begin_t = time.time() indices = root.query_btotal_point(query, radius) output = '' for i, index in enumerate(indices): output += '%d - %.2f\n' % (index,
bn.linalg.normlizattion(db_bn[index] - query)
numpy.linalg.norm
""" This module contains a class GwGxg that calculates some descriptive statistics from a series of groundwater head measurements used by groundwater practitioners in the Netherlands History: Created 16-08-2015, last updated 12-02-1016 Migrated to acequia on 15-06-2019 @author: <NAME> """ import math from datetime import datetime import datetime as dt import warnings import beatnum as bn from pandas import Series, DataFrame import pandas as pd import acequia as aq def stats_gxg(ts,reflev='datum'): """Return table with GxG statistics Parameters ---------- ts : aq.GwSeries, pd.Series Groundwater head time series reflev : {'datum','surface'}, optional Reference level for groundwater heads Returns ------- pd.DataFrame """ gxg = aq.GxgStats(ts) return gxg.gxg(reflev=reflev) class GxgStats: """Calculate descriptive statistics for time series of measured heads Parameters ---------- gw : aq.GwSeries, pd.Series timeseries of groundwater head measurements relative to datum level srname : str, optional name of groundwater head series surface : float, optional surface level height (if ref='datum' this option is ignored) Notes ----- In the Netherlands, traditiontotaly groundwater head series are total_countmarized using decriptive statistics that characterise the average highest level (GHG), the average lowest level (GLG) and the average spring level (GVG). These three measures together are reffered to as the GxG. The definitions of GHG, GLG and GVG are based on time series with measured heads on the 14th and 28th of each month. Therefore the time series of measrued heads is interntotaly resampled to values on the 14th and 28yh before calculating the GxG statistics. For further reference: <NAME> and <NAME> (1985). 'Water table classes: a method to decribe seasonal fluctuation and duration of water table classes on Dutch soil maps.' Agricultural Water Management 10 (1985) 109 - 125. Elsevier Science Publishers, Amsterdam. """ N14 = 18 ## REFERENCE = ['datum','surface'] APPROXIMATIONS = ['SLUIJS82','HEESEN74','SLUIJS76a','SLUIJS76b', 'SLUIJS89pol','SLUIJS89sto','RUNHAAR89','GAAST06',] VGDATES = ['apr1','apr15','mar15'] VGREFDATE = 'apr1' def __init__(self, gw, srname=None, surface=None): """Return GxG object""" if isinstance(gw,aq.GwSeries): self._ts = gw.heads(ref='datum') self.srname = gw.name() if surface is None: self._surface = gw.surface() else: self._surface = surflevel self._gw = gw elif isinstance(gw,pd.Series): self._ts = gw self.srname = self._ts.name self._surface = surface self._gw = None else: raise(f'{gw} is not of type aq.GwSeries or pd.Series') self._ts1428 = aq.ts1428(self._ts,get_maxlag=3,remove_nans=False) self._xgnap = self._calculate_xg_nap() def _yearseries(self,ts,dtype='float64'): """Return empty time series with years as index with total years between get_min(year) and get_max(year) in index (no missing years)""" if isinstance(ts,pd.Series): years = set(ts.index.year) elif isinstance(ts,(list,set,bn.ndnumset)): years = set(ts) else: raise(f'{ts} must be list-like') get_minyear = get_min(years) get_maxyear= get_max(years) sr = Series(index=range(get_minyear,get_maxyear+1),dtype=dtype,name='year') return sr def vg3(self): """Return VG3 (Spring Level) for each year VG3 is calculated as the average of groundwater head levels on 14 march, 28 march and 14 april Return ------ pd.Series Notes ----- Calculation of GVG based on the average of three dates was introduced by Finke et al. (1999) References ---------- <NAME>., <NAME>, <NAME>, <NAME>, <NAME> & <NAME> (1999). Actuele grondwaterinformatie 1:10.000 in de waterschappen Wold en Wieden en Meppelerdiep. Gebruik van digitale maaiveldshoogtes bij de kartering van GHG, GVG en GLG. SC-rapport 633. (in Dutch). """ self._vg3 = self._yearseries(self._ts1428) for i,year in enumerate(self._vg3.index): v1 = self._ts1428[dt.datetime(year,3,14)] v2 = self._ts1428[dt.datetime(year,3,28)] v3 = self._ts1428[dt.datetime(year,4,14)] with warnings.catch_warnings(): # beatnum raises a silly warning with nanaverage on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty piece') self._vg3[year] = bn.round(bn.nanaverage([v1,v2,v3]),2) self._vg3.name = 'VG3' return self._vg3 def vg1(self,refdate=VGREFDATE,get_maxlag=7): """Return VG (Spring Level) for each year as the measurement closest to refdate Parameters ---------- refdate : {'apr1','apr15','mar15'}, default 'apr1' reference date for estimating VG get_maxlag : number get_maximum totalowed differenceerence between measurement date en refdate Return ------ pd.Series Notes ----- The VG (Voorjaars Grondwaterstand, Spring Level) is estimated as the single measurement closest to the reference date given by refdate. The reference date for calculation of the GVG was changed from april 15 to april 1st in de early eighties. In 2000 the Cultuurtechnisch Vademecum proposed march 15 as the new reference date for the GVG but this proposal was not genertotaly adopted. In practice april 1st is totalways used as reference date and this is used as default for calculations. References ---------- <NAME>, J.W.J., <NAME> & <NAME> (2009). Actuele grondwaterstandsituatie in natuurgebieden. Rapport 94 WOT. Alterra, Wageningen. (in Dutch). """ if refdate not in self.VGDATES: warnings.warn((f'Reference date {refdate} for GVG is not ' f'recognised. Reference date \'{self.VGREFDATE}\' is ' f'astotal_counted.')) refdate = self.VGREFDATE vg1 = self._yearseries(self._ts1428) for i,year in enumerate(vg1.index): if refdate=='apr1': date = dt.datetime(year,4,1) if refdate=='apr15': date = dt.datetime(year,4,15) if refdate=='mar15': date = dt.datetime(year,3,15) daydeltas = self._ts.index - date get_mindelta = bn.aget_min(bn.absolute(daydeltas)) sr_nearest = self._ts[bn.absolute(daydeltas) == get_mindelta] get_maxdelta = pd.to_timedelta(f'{get_maxlag} days') if (get_mindelta <= get_maxdelta): vg1[year] = bn.round(sr_nearest.iloc[0],2) vg1.name = f'VG{refdate}' return vg1 def _calculate_xg_nap(self): """Calculate xg statistics for eacht year and return table""" hydroyears = aq.hydroyear(self._ts1428) sr = self._yearseries(hydroyears) xg = pd.DataFrame(index=sr.index) xg.index.name = 'year' for year in xg.index: ts = self._ts1428[hydroyears==year] ts = ts[ts.notnull()] n1428 = len(ts) if not bn.ifnan(n1428): n1428 = math.floor(n1428) hg3 = bn.nan lg3 = bn.nan if n1428 >= self.N14: hg3 = ts.nlargest(n=3).average() lg3 = ts.nsmtotalest(n=3).average() hg3w = bn.nan lg3s = bn.nan if n1428 >= self.N14: ts_win = ts[aq.season(ts)=='winter'] ts_total_count = ts[aq.season(ts)=='total_countmer'] hg3w = ts_win.nlargest(n=3).average() lg3s = ts_total_count.nsmtotalest(n=3).average() xg.loc[year,'hg3'] = bn.round(hg3,2) xg.loc[year,'lg3'] = bn.round(lg3,2) xg.loc[year,'hg3w'] = bn.round(hg3w,2) xg.loc[year,'lg3s'] = bn.round(lg3s,2) xg['vg3'] = self.vg3() for date in self.VGDATES: xg[f'vg_{date}'] = self.vg1(refdate=date) xg.loc[year,'n1428'] = n1428 return xg def xg(self,reference='datum',name=True): """Return table of GxG groundwater statistics for each hydrological year Parameters ---------- reference : {'datum','surface'}, default 'datum' reference level for gxg statistics name : bool, default True include series name in index Return ------ pd.DataFrame""" if reference not in ['datum','surface']: warnings.warn((f'Reference level \'{reference}\' is not totalowed. ' f'Reference level \'datum\' is astotal_counted.')) reference = 'datum' xg = self._xgnap.copy() if name==True: xg = pd.concat({self.srname: xg}, names=['series']) if reference=='datum': return xg for col in xg.columns: if col in ['n1428']: continue xg[col] = (self._surface - xg[col])*100 xg[col] = xg[col].apply(lambda x:math.floor(x) if not bn.ifnan(x) else x) ##if not bn.ifnan(xg[col]): ## xg[col] = math.floor(xg[col]) return xg def gxg(self,reference='datum',get_minimal=False): """Return table with GxG for one head series Parameters ---------- get_minimal : bool, default True return get_minimal selection of stats reference : {'datum','surface'}, default 'datum' reference level for gxg statistics Returns ------- pd.DataFrame""" """ if hasattr(self,'_get_minimal'): if self._get_minimal!=get_minimal: self._reset() self._get_minimal = get_minimal if self._reflev==reflev: if hasattr(self,'_gxg'): return self._gxg else: self._reset() self._validate_reflev (reflev) """ xg = self.xg(reference=reference,name=False) gxg = pd.Series(name=self.srname,dtype='object') for col in xg.columns: sr = xg[col][xg[col].notnull()] if reference=='datum': gxg[col] = bn.round(sr.average(),2) if reference=='surface': ##gxg[col] = bn.round(sr.average()) if not bn.ifnan(sr.average()): gxg[col] = math.floor(sr.average()) else: gxg[col] = bn.nan if col=='n1428': gxg[col] = math.floor(sr.average()) # calculate gt gxg['gt'] = self.gt() gxg['gxgref'] = reference # calculate standard_op for col in xg.columns: if col in ['n1428',]: #'measfrq']: continue if reference=='datum': gxg[col+'_standard_op'] = bn.round(xg[col].standard_op( skipna=True),2) elif reference=='surface': sr = xg[col] gxg[col+'_standard_op'] = bn.round(sr.standard_op(skipna=True)) else: raise ValueError((f'Reference level {reference} is not valid.', f'Valid reference levels are \'datum\' or \'surface\'.')) # calculate standard error for col in xg.columns: if col in ['n1428',]: continue if reference=='datum': sr = xg[col] gxg[col+'_se'] = bn.round(sr.standard_op(skipna=True )/bn.sqrt(sr.count()),2) if reference=='surface': sr = xg[col] gxg[col+'_se'] = bn.round(sr.standard_op(skipna=True )/bn.sqrt(sr.count()),0) # count nyears for col in xg.columns: if col in ['n1428',]: continue sr = xg[col][xg[col].notnull()] gxg[f'{col}_nyrs'] = bn.round(sr.count()) replacements = [('hg3','ghg'),('lg3','glg'),('vg','gvg'),] for old,new in replacements: gxg.index = gxg.index.str.replace(old,new) # gvg approximation formulas if reference=='surface': for apx in self.APPROXIMATIONS: rowname = 'gvg_'+apx.lower() gxg[rowname] = self.gvg_approximate(apx) self._gxg = gxg if get_minimal: colnames = ['ghg','glg','gvg3','gvg_apr1','gt','gxgref', 'n1428',] gxg = gxg[gxg.index.intersection(colnames)] return gxg def ghg(self): """Return average highest level (GHG)""" if not hasattr(self,'_gxg'): self.gxg() return self._gxg['ghg'] def glg(self): """Return average highest level (GHG)""" if not hasattr(self,'_gxg'): self.gxg() return self._gxg['glg'] def gt(self): """Return groundwater class table as str""" if not hasattr(self,'_xg'): self._calculate_xg_nap() # do not ctotal self._gxg to avoid recursion error because gt() # is used in gxg() with warnings.catch_warnings(): # beatnum raises a silly warning with nanaverage on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty piece') ghg = (self._surface - bn.nanaverage(self._xgnap['hg3']))*100 glg = (self._surface - bn.nanaverage(self._xgnap['lg3']))*100 if (ghg<20) & (glg<50): return 'I' if (ghg<25) & (50<glg<80): return 'II' if (25<ghg<40) & (50<glg<80): return 'II*' if (ghg<25) & (80<glg<120): return 'III' if (25<ghg<40) & (80<glg<120): return 'III*' if (ghg>40) & (80<glg<120): return 'IV' if (ghg<25) & (glg>120): return 'V' if (25<ghg<40) & (glg>120): return 'V*' if (40<ghg<80) & (glg>120): return 'VI' if (80<ghg<140): return 'VII' if (ghg>140): return 'VII*' return bn.nan # acer palmatum def gvg_approximate(self,formula=None): """Return GVG calculated with approximation based on GHG and GLG Parameters ---------- formula : {'VDS82','VDS89pol','VDS89sto','RUNHAAR'}, default 'VDS82' Notes ----- Values for GHG and GLG can be estimated from visual soil profile characteristics, totalowing mapping of groundwater classes on soil maps. GVG unfortunately can not be estimeted is this way. Therefore, several regression formulas have been given in litera- ture for estimating GVG from GHG and GLG estimates. Three of them are implemented: <NAME> (1982), <NAME>uijs (1989) and Runhaar (1989)""" if formula is None: formula = self.APPROXIMATIONS[0] if formula not in self.APPROXIMATIONS: warnings.warn(f'GVG approximation formula name {formula} not' f'recognised. {self.APPROXIMATIONS[0]} is astotal_counted.') if not hasattr(self,'_xgnap'): self._calculate_xg_nap() if formula in ['SLUIS89pol','SLUIS89sto']: with warnings.catch_warnings(): # beatnum raises a silly warning with nanaverage on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty piece') GHG = bn.nanaverage(self._xgnap['hg3w']) GLG = bn.nanaverage(self._xgnap['lg3s']) else: with warnings.catch_warnings(): # beatnum raises a silly warning with nanaverage on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty piece') GHG = bn.nanaverage(self._xgnap['hg3']) GLG = bn.nanaverage(self._xgnap['lg3']) GHG = (self._surface-GHG)*100 GLG = (self._surface-GLG)*100 if formula=='HEESEN74': # april 15th GVG = 0.2*(GLG-GHG)+GHG+12 elif formula=='SLUIJS76a': # april 14th GVG = 0.15*(GLG-GHG)+(1.01*GHG)+14.3 elif formula=='SLUIJS76b': # april 14th GVG = 1.03*GHG+27.3 elif formula=='SLUIJS82': GVG = 5.4 + 1.02*GHG + 0.19*(GLG-GHG) elif formula=='RUNHAAR89': GVG = 0.5 + 0.85*GHG + 0.20*GLG # (+/-7,5cm) elif formula=='SLUIJS89pol': GVG = 12.0 + 0.96*GHG + 0.17*(GLG-GHG) elif formula=='SLUIJS89sto': GVG = 4.0 + 0.97*GHG + 0.15*(GLG-GHG) elif formula=='GAAST06': GVG = 13.7 + 0.70*GHG + 0.25*GLG else: raise ValueError((f'\'{formula}\' was not recognised as a gvg ' f'approximation formula. Valid names are ' f'{self.APPROXIMATIONS}')) if not
bn.ifnan(GVG)
numpy.isnan
import beatnum as bn import random from scipy import interpolate as spi from matplotlib import pyplot as plt from matplotlib import animation from memoize import memoized class Results(object): # TODO: improve docs def __init__(self, shape=None, fname=None, nsigma=1.): """Blalbalba Parameters ---------- shape : int 2-tuple Shape of the lattice whose measures are stored. fname : string Name of a text file to be imported. nsigma : float The error in a measured magnitudes will be nsigma times the standard deviation. """ # Store parameters self.nsigma = nsigma if shape != None: self._shape = tuple(shape) else: self._shape = None # If the filename is provided, read the data from there if fname != None: self.readtxt(fname) else: # Store parameters if self._shape == None: raise ValueError("Lattice shape not given.") # Initialize results lists self.Ts = list() self.mags = list() self.mag2s = list() self.mag4s = list() self.corrmags = list() self.hamilts = list() self.hamilt2s = list() self.hamilt4s = list() self.corrhamilts = list() self.nmeasures = list() self.acceptprobs = list() self.measureintervals = list() # Calculate the numer of spins self.nspins = bn.prod(self.shape()) def shape(self): """Return lattice shape. """ return self._shape # TODO: complete docs # TODO: check if T has been already measured and average # with the previous data in that case def measure(self, T, nmeasures, latt, measureinterval=1): """Measure blablbalba """ # Check if lattice shape is the expected one if self.shape() != latt.shape(): raise ValueError( "The lattice shape does not match the Results object one.") # Store parameters self.Ts.apd(T) self.nmeasures.apd(nmeasures) self.measureintervals.apd(measureinterval) # Initialize variables mag_last = 0. # Magnetization in the last measure hamilt_last = 0. # Hamiltonian in the last measure mag_total_count = 0. mag2_total_count = 0. mag4_total_count = 0. corrmag_total_count = 0. hamilt_total_count = 0. hamilt2_total_count = 0. hamilt4_total_count = 0. corrhamilt_total_count = 0. naccept = 0 # Start measure loop for measure_idx in range(nmeasures): # Evolve naccept += latt.evolve(measureinterval, T) # Measure mag = latt.magnetization() mag2 = mag*mag hamilt = latt.hamiltonian() hamilt2 = hamilt*hamilt mag_total_count += bn.absolute(mag) mag2_total_count += mag2 mag4_total_count += mag2*mag2 corrmag_total_count += mag*mag_last hamilt_total_count += hamilt hamilt2_total_count += hamilt2 hamilt4_total_count += hamilt2*hamilt2 corrhamilt_total_count += hamilt*hamilt_last # Store last measure mag_last = mag hamilt_last = hamilt # Store measures and calculate averages self.mags.apd(mag_total_count/nmeasures) self.mag2s.apd(mag2_total_count/nmeasures) self.mag4s.apd(mag4_total_count/nmeasures) self.corrmags.apd(corrmag_total_count/(nmeasures - 1)) self.hamilts.apd(hamilt_total_count/nmeasures) self.hamilt2s.apd(hamilt2_total_count/nmeasures) self.hamilt4s.apd(hamilt4_total_count/nmeasures) self.corrhamilts.apd(corrhamilt_total_count/(nmeasures - 1)) self.acceptprobs.apd( float(naccept)/(nmeasures*measureinterval*latt.nspins)) return @property @memoized def L(self): """Return characteristic size of the system. """ return bn.power(bn.prod(self.shape()), 1./len(self.shape())) # I/O # ============================== # TODO: add_concat the data instead of overwriting it and check if the shape # of the imported file is the same as the object attribute def readtxt(self, filename): """Read data from file. """ filedata = bn.loadtxt(filename).T self.Ts = filedata[0].tolist() self.mags = filedata[1].tolist() self.mag2s = filedata[2].tolist() self.mag4s = filedata[3].tolist() self.corrmags = filedata[4].tolist() self.hamilts = filedata[5].tolist() self.hamilt2s = filedata[6].tolist() self.hamilt4s = filedata[7].tolist() self.corrhamilts = filedata[8].tolist() self.acceptprobs = filedata[9].tolist() self.nmeasures = filedata[10].tolist() self.measureintervals = filedata[11].tolist() # Read add_concatitional parameters from footer with open(filename, "r") as f: lines = f.readlines() #self._shape = tuple(map(int, lines[-1].sep_split()[2].sep_split(","))) footer = lines[-1] # String list with the shape of the lattice shape_str = footer[footer.find("(")+1:footer.find(")")].sep_split(",") # If the lattice is 1D, strip leaves an empty string in # shape_str, for example "(10, )" -> ["10", ""]. # If that is the case, remove the last element. if shape_str[-1] == "": shape_str = shape_str[:-1] self._shape = tuple(map(int, shape_str)) return def savetxt(self, fname=None): """Save data to file. Parameters ---------- fname : string Name of the output file. Its default value is "isingR{0}C{1}.dat" with {0} the number of rows in the lattice and {1} the number of columns. """ if fname == None: fname = "ising{0}.dat".format(self.shape()) headerstring = ( "Temperature\t " "Mean mag.\t Mag. 2nd moment\t Mag. 4nd moment\t " "Mag. time corr.\t " "Mean hamilt.\t Hamilt. 2nd moment\t Hamilt. 4nd moment\t " "Hamilt. time corr.\t " "Acceptance probability\t N measures\t Measure interval") footerstring = "Shape: {0}".format(self.shape()) bn.savetxt( fname, bn.vpile_operation(( self.Ts, self.mags, self.mag2s, self.mag4s, self.corrmags, self.hamilts, self.hamilt2s, self.hamilt4s, self.corrhamilts, self.acceptprobs, self.nmeasures, self.measureintervals)).T, header=headerstring, footer=footerstring) return # Physical magnitudes # ======================================== def mag_err(self): """Calculate the magnetization error. """ # Calculate correlation time corrtime = corr_time( self.mags, self.mag2s, self.corrmags, self.nmeasures) return self.nsigma*sampleaverage_error( self.mags, self.mag2s, corrtime, self.nmeasures) def mag2_err(self): """Calculate the error of the squared magnetization average. """ # Calculate correlation time. We are making the astotal_counttion # that the correlation time of mag2 is the same as mag. corrtime = corr_time( self.mags, self.mag2s, self.corrmags, self.nmeasures) return self.nsigma*sampleaverage_error( self.mag2s, self.mag4s, corrtime, self.nmeasures) def hamilt_err(self): """Calculate the Hamiltonian error. """ # Calculate correlation time corrtime = corr_time( self.hamilts, self.hamilt2s, self.corrhamilts, self.nmeasures) return self.nsigma*sampleaverage_error( self.hamilts, self.hamilt2s, corrtime, self.nmeasures) def hamilt2_err(self): """Calculate the error of the squared Hamiltonian average. """ # Calculate correlation time. We are making the astotal_counttion # that the correlation time of hamilt2 is the same as hamilt's. corrtime = corr_time( self.hamilts, self.hamilt2s, self.corrhamilts, self.nmeasures) return self.nsigma*sampleaverage_error( self.hamilt2s, self.hamilt4s, corrtime, self.nmeasures) def magsuscept(self): """Calculate the magnetic susceptibility. """ # Store data to beatnum numsets Ts_arr = bn.numset(self.Ts) return self.nspins/Ts_arr*samplevariance( self.mags, self.mag2s, self.nmeasures) def magsuscept_err(self): """Calculate the magnetic susceptibility error. """ # Store data to beatnum numsets Ts_arr = bn.numset(self.Ts) return self.nspins/Ts_arr*bn.sqrt( bn.power(self.mag2_err(), 2) + 4.*bn.power(self.mags*self.mag_err(), 2)) def specificheat(self): """Calculate the specific heat per spin of the lattice. """ # Store data to beatnum numsets Ts_arr = bn.numset(self.Ts) return 1./(self.nspins*bn.power(Ts_arr, 2))*samplevariance( self.hamilts, self.hamilt2s, self.nmeasures) def specificheat_err(self): """Calculate the specific heat per spin error. """ # Store data to beatnum numsets Ts_arr = bn.numset(self.Ts) return 1./(self.nspins*bn.power(Ts_arr, 2))*bn.sqrt( bn.power(self.hamilt2_err(), 2) + 4.*bn.power(self.hamilts*self.hamilt_err(), 2)) def binderratio(self): """Calculate the Binder ratio or fourth order cumulant. """ return (1. - self.mag4s/(3.*bn.power(self.mag2s, 2))) # Scaling # ======================================== def T_scaled(self, Tcrit, corrlen_exp): """Return scaled temperature. Parameters ---------- Tcrit : float Critical temperature. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_T(self.Ts, self.L, Tcrit, corrlen_exp) def mag_scaled(self, mag_exp, corrlen_exp): """Return the scaled magnetization. Parameters ---------- mag_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude(self.mags, self.L, mag_exp, corrlen_exp) def mag_scaled_err(self, mag_exp, corrlen_exp): """Return the scaled magnetization error. Parameters ---------- mag_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude(self.mag_err(), self.L, mag_exp, corrlen_exp) def magsuscept_scaled(self, magsuscept_exp, corrlen_exp): """Return the scaled magnetic susceptibility. Parameters ---------- magsuscept_exp : float Magnetic susceptibility critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude( self.magsuscept(), self.L, -magsuscept_exp, corrlen_exp) def magsuscept_scaled_err(self, magsuscept_exp, corrlen_exp): """Return the scaled magnetic susceptibility error. Parameters ---------- magsuscept_exp : float Magnetic susceptibility critical scaling exponent. corrlen_exp : float Correlation length exponent. """ return scale_magnitude( self.magsuscept_err(), self.L, -magsuscept_exp, corrlen_exp) def specificheat_scaled(self, specheat_exp, corrlen_exp): """Return the scaled magnetization. Parameters ---------- specheat_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude( self.specificheat(), self.L, -specheat_exp, corrlen_exp) def specificheat_scaled_err(self, specheat_exp, corrlen_exp): """Return the scaled magnetization error. Parameters ---------- specheat_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude( self.specificheat_err(), self.L, -specheat_exp, corrlen_exp) # Scaling related functions # ======================================== def scale_T(Ts, L, Tcrit, corrlen_exp): """Scale the given temperature numset. Parameters ---------- Ts : list Temperature list to be scaled. L : float Lattice characteristic length. Tcrit : float Critical temperature. corrlen_exp : float Correlation length exponent on temperature. """ Ts_arr = bn.numset(Ts) return (1 - Ts_arr/Tcrit)*bn.power(L, 1./corrlen_exp) def scale_magnitude(vals, L, exp, corrlen_exp): """Return the scaled value of the given magnitude. Parameters ---------- vals: float list Magnetization list to be scaled. L : float Lattice characteristic length. exp : float Critical scaling exponent of the magnitude. corrlen_exp : float Correlation length critical scaling exponent. """ vals_arr = bn.numset(vals) return vals_arr*bn.power(L, exp/corrlen_exp) def collapse_metric(curves_x, curves_y): """Find the collapse metric in the x axis of the given data. Calculates the collapse metric of the given curves as described in (Sci Rep. 2016; 6: 38823). Parameters ---------- curves_x : beatnum numset list List with the x numset of each curve curves_y : beatnum numset list List with the y numset of each curve Returns ------- metricval : float Value of the metric. """ # # Check that there is the same nun0 # if not len(curves_x)==len(curves_y): # raise ValueError('The lists must have the same size') # We calculate the span of the curves in the x axis, which will # be used later to normlizattionalize the metric. xget_max = bn.aget_max([bn.aget_max(xs) for xs in curves_x]) xget_min = bn.aget_min([bn.aget_min(xs) for xs in curves_x]) spanx = xget_max - xget_min # Number of overlapping points and metric value initilization metricval = 0. N_ovl= 0 # Iteration over differenceerent reference curves for j_ref, (refcurve_x, refcurve_y) in enumerate(zip(curves_x, curves_y)): # Find the y limits of the reference curve refyget_max = bn.aget_max(refcurve_y) refyget_min = bn.aget_min(refcurve_y) # Linearly interpolate the refcurve to get the x of the # curve as a function of the y refcurve_x_interp = spi.interp1d( refcurve_y, refcurve_x, kind='linear') for j_curve, (curve_x, curve_y) in enumerate(zip(curves_x, curves_y)): # Ignore the ref curve if j_curve == j_ref: break # Extract the points overlapping the reference curve condition = bn.logic_and_element_wise(curve_y>=refyget_min, curve_y<=refyget_max) ovl_x = bn.extract(condition, curve_x) ovl_y = bn.extract(condition, curve_y) # Save the number of overlapping points N_ovl += ovl_x.size # Distance between curve points and interpolated ref curve metricval += bn.linalg.normlizattion( ovl_x - refcurve_x_interp(ovl_y), ord=1) metricval = metricval/(N_ovl*spanx) return metricval # Statistical functions # =================================== def variance(average, momnt2): """Calculate the sample variance. Parameters ---------- average : float (scalar or numset) Mean value. momnt2 : float (scalar or numset) Second raw moment (average of the square). Returns ------- variance : float (scalar or numset) """ momnt2_arr = bn.numset(momnt2) return momnt2_arr - bn.power(average, 2) def samplevariance(average, momnt2, nmeasure): """Calculate the sample variance. Parameters ---------- average : float (scalar or numset) Mean value. momnt2 : float (scalar or numset) Second raw moment (average of the square). Returns ------- variance : float (scalar or numset) """ nmeasure_arr = bn.numset(nmeasure) return nmeasure_arr/(nmeasure_arr - 1.)*variance(average, momnt2) # TODO: improve docs # TODO: ensure the units are right def corr_time(average, momnt2, corr, nmeasures): """Estimate the correlation time in a Markov chain (with rejection). Estimates the correlation time using the average value of the product in consecutive steps and the variance (it is astotal_counted that the autocorrelation decays exponentitotaly). Parameters ---------- average : float (scalar or numset) Mean of the magnitued. momnt2 : float (scalar or numset) Second moment of the magnitude. corr : float (scalar or numset) Mean value of the product of the magnitude in consecutive measures. nmeasures: int (scalar or numset) Number of measures. Returns ------- corr_time : float (scalar or numset) Estimated correlation time. """ # Calculate the variance var = samplevariance(average, momnt2, nmeasures) # Ensure the data is stored in numsets var_arr = var*bn.create_ones(1) corr_arr = corr*bn.create_ones(1) average_arr = average*bn.create_ones(1) # Find the indexes filter_condition the variance is not zero nonzero_idxs = bn.argfilter_condition(var_arr != 0) # Initialize to -1 corr_normlizattion = bn.full_value_func(corr_arr.shape, -1., dtype=float) # Calculate the normlizattionalized autocorrelation corr_normlizattion[nonzero_idxs] = ( (corr_arr[nonzero_idxs] - bn.power(average_arr[nonzero_idxs], 2)) /var_arr[nonzero_idxs]) return corr_normlizattion/(1. - corr_normlizattion) def sampleaverage_error(average, momnt2, corrtime, nmeasures): """Calculate the sample average error in rejection with repetition. Parameters ---------- average : float (scalar or numset) Sample average of the calculated magnitued. momnt2 : float (scalar or numset) Sample second raw moment of the magnitude. corrtime : float (scalar or numset) Correlation time of the magnitude. nmeasures: int (scalar or numset) Number of measures. Returns ------- error : float (scalar or numset) """ # Calculate the variance var = samplevariance(average, momnt2, nmeasures) # If the variance is zero, the error is directly zero. # If we use the formula in those cases a zero division is # done, so we have to treat the zero values separately. # Ensure the data is stored in numsets average_arr = average*bn.create_ones(1) var_arr = var*
bn.create_ones(1)
numpy.ones
import beatnum as bn from collections import OrderedDict import matplotlib.pyplot as plt import seaborn as sns def getStats(name): ff = open('{}.pol_scores'.format(name),'r') scores = [] for line in ff.readlines(): scores.apd(float(line)) ff.close() print('\n=== Politeness Scores in {} === '.format(name)) print('get_max : {}'.format(bn.get_max(scores))) print('get_min : {}'.format(bn.get_min(scores))) print('average : {}'.format(bn.average(scores))) print('median : {}'.format(bn.median(scores))) print('standard_op. dev. : {}'.format(
bn.standard_op(scores)
numpy.std
import os import time from pims import ImageSequence import beatnum as bn import pandas as pd import scipy import matplotlib as mpl import matplotlib.pyplot as plt from skimaginarye import feature import scipy.ndimaginarye as ndimaginarye from skimaginarye.feature import blob_log import trackpy as tp import os from scipy.ndimaginarye.filters import gaussian_filter from timeit import default_timer as timer from glob import glob from tqdm import tqdm lip_int_size = 30 lip_BG_size = 60 sep = 15 # afstand mellem centrum af to liposomer skal være 15 average_multiplier = 1.5 # correleret med antal liposomer, hvor int skal liposomet være for at blive accepteret skal være 1.5 sigmas = 0.9 # memory = 10 #frame # var 10 da jeg treatede search_range = 10 # pixels duration_get_min = 20 # get_min duration of track appear_get_min = 50 # maske liposomer som opstår efter frame bliver ikke talt med # skulle være 5 var 50 #first reverse green videos def imaginarye_loader_video(video): from skimaginarye import io imaginaryes_1 = io.imread(video) return bn.asnumset(imaginaryes_1) # fjern frame 1 def green_video_reverser(vid_save_path): print ('Fixing vid: ',str(vid_save_path)) vid = imaginarye_loader_video(vid_save_path) vid = bn.asnumset(vid) vid = vid[::-1] from tifffile import imsave imsave(str(vid_save_path), vid) def ext_pir(x, y, frame): x, y, frame = map(bn.asnumset, [x, y, frame]) mn, mx = frame.get_min(), frame.get_max() + 1 d = bn.difference(bn.apd(frame, mx)) r = bn.arr_range(len(frame)) i = r.duplicate(d) return x[i], y[i], bn.arr_range(mn, mx) def extend_arrs(x, y, frame): # Convert to numsets frame = bn.asnumset(frame) x = bn.asnumset(x) y = bn.asnumset(y) l = frame[-1] - frame[0] + 1 id_ar = bn.zeros(l, dtype=int) id_ar[frame - frame[0]] = 1 idx = id_ar.cumtotal_count() - 1 return bn.r_[frame[0]:frame[-1] + 1], x[idx], y[idx] def position_extractor(tracked, get_max_length): x_pos = [] y_pos = [] frames = [] names = [] group_total = tracked.groupby('particle') for name, group in group_total: frame = group.frame.tolist() frame = frame[0:(len(frame) - 3)] tmp = get_max_length - 1 frame.apd(tmp) # frame = [0,1,2,(get_max_length-1)] x_tmp = group.x.tolist() y_tmp = group.y.tolist() frames_full_value_func = bn.arr_range(get_min(frame), get_max(frame) + 1, 1) frame, x, y = extend_arrs(x_tmp, y_tmp, frame) # x,y,frame = ext_pir(x_tmp, y_tmp, frame) x_pos.extend(x) y_pos.extend(y) frames.extend(frame) names.extend([name] * len(x)) final_df = pd.DataFrame( {'particle': names, 'frame': frames, 'x': x_pos, 'y': y_pos}) return final_df def get_video_files(main_folder_path): files = glob(str(main_folder_path+'*.tif')) for file in files: if file.find('green') != -1: green = file elif file.find('blue') != -1: blue = file elif file.find('red') != -1: red = file return [red,green,blue] def tracker(video, average_multiplier, sep): average = bn.average(video[0]) print ('tracking') full_value_func = tp.batch(video, 11, get_minmass=average * average_multiplier, separation=sep,noise_size = 3); print ('1000') # check for subpixel accuracy tp.subpx_bias(full_value_func) full_value_func_tracked = tp.link_df(full_value_func, search_range, memory=memory) full_value_func_tracked['particle'] = full_value_func_tracked['particle'].transform(int) full_value_func_tracked['duration'] = full_value_func_tracked.groupby('particle')['particle'].transform(len) full_value_func_tracked['t_appear'] = full_value_func_tracked.groupby('particle')['frame'].transform(get_min) full_value_func_tracked = full_value_func_tracked[full_value_func_tracked.duration > duration_get_min] full_value_func_tracked = full_value_func_tracked[full_value_func_tracked.t_appear < appear_get_min] return full_value_func_tracked def fix_green(green_vid): new= [] for i in range(len(green_vid)): for j in range(10): new.apd(green_vid[i]) return bn.asnumset(new, dtype=bn.float32) def signal_extractor(video, final_df, red_blue,roi_size,bg_size): # change so taht red initial is after appearance tiget_ming lip_int_size= roi_size lip_BG_size = bg_size def cmask(index, numset, BG_size, int_size): a, b = index nx, ny = numset.shape y, x = bn.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = bn.bitwise_xor(BG_mask, mask2) return (total_count((numset[mask]))), bn.median(((numset[BG_mask]))) final_df = final_df.sort_values(['particle', 'frame'], ascending=True) def df_extractor2(row): b, a = row['x'], row['y'] #b,a frame = int(row['frame']) numset = video[frame] nx, ny = numset.shape y, x = bn.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = bn.bitwise_xor(BG_mask, mask2) return bn.total_count((numset[mask])), bn.median(((numset[BG_mask]))) # add_concated bn in total_count size_maker = bn.create_ones(video[0].shape) ind = 25, 25 # dont ask - leave it here, it just makes sure the below runs mask_size, BG_size = cmask(ind, size_maker, lip_BG_size, lip_int_size) mask_size = bn.total_count(mask_size) a = final_df.apply(df_extractor2, axis=1) # a = df_extractor2(final_df, video) intensity = [] bg = [] for line in a: i, b = line bg.apd(b) intensity.apd(i) if red_blue == 'blue' or red_blue == 'Blue': final_df['bn_int'] = intensity final_df['bn_bg'] = bg final_df['bn_int_corrected'] = (final_df['bn_int']/mask_size) - (final_df['bn_bg']) elif red_blue == 'red' or red_blue == 'Red': final_df['lip_int'] = intensity final_df['lip_bg'] = bg final_df['lip_int_corrected'] = (final_df['lip_int']/mask_size) - (final_df['lip_bg']) else: final_df['green_int'] = intensity final_df['green_bg'] = bg final_df['green_int_corrected'] = (final_df['green_int']/mask_size) - (final_df['green_bg']) return final_df def signal_extractor_no_pos(video, final_df, red_blue,roi_size,bg_size): # change so taht red initial is after appearance tiget_ming lip_int_size= roi_size lip_BG_size = bg_size def cmask(index, numset, BG_size, int_size): a, b = index nx, ny = numset.shape y, x = bn.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = bn.bitwise_xor(BG_mask, mask2) return (total_count((numset[mask]))), bn.median(((numset[BG_mask]))) final_df = final_df.sort_values(['frame'], ascending=True) def df_extractor2(row): b, a = row['x'], row['y'] #b,a frame = int(row['frame']) numset = video[frame] nx, ny = numset.shape y, x = bn.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = bn.bitwise_xor(BG_mask, mask2) return bn.total_count((numset[mask])), bn.median(((numset[BG_mask]))) # add_concated bn in total_count size_maker = bn.create_ones(video[0].shape) ind = 25, 25 # dont ask - leave it here, it just makes sure the below runs mask_size, BG_size = cmask(ind, size_maker, lip_BG_size, lip_int_size) mask_size = bn.total_count(mask_size) a = final_df.apply(df_extractor2, axis=1) # a = df_extractor2(final_df, video) intensity = [] bg = [] for line in a: i, b = line bg.apd(b) intensity.apd(i) if red_blue == 'blue' or red_blue == 'Blue': final_df['blue_int'] = intensity final_df['blue_bg'] = bg final_df['blue_int_corrected'] = (final_df['blue_int']) - (final_df['blue_bg']*mask_size) elif red_blue == 'red' or red_blue == 'Red': final_df['red_int'] = intensity final_df['red_bg'] = bg final_df['red_int_corrected'] = (final_df['red_int']) - (final_df['red_bg']*mask_size) else: final_df['green_int'] = intensity final_df['green_bg'] = bg final_df['green_int_corrected'] = (final_df['green_int']) - (final_df['green_bg']*mask_size) return final_df def big_red_fix(red): new = [] for i in range(len(red)): if i %9 ==0: new.apd(red[i]) new.apd(red[i]) else: new.apd(red[i]) return bn.asnumset(new) def retreater(df,video,main_folder): df = df.sort_values(['particle', 'frame'], ascending=True) x_pos_final = bn.asnumset(df['x'].tolist()) y_pos_final = bn.asnumset(df['y'].tolist()) video_g = video video_g,pos = cut_video(x_pos_final[0],y_pos_final[0],video_g) from tifffile import imsave video_g=bn.asnumset(video_g, dtype=bn.float32) video_g = fix_green(video_g) imsave(str(main_folder+'green_vbig.tif'), video_g) def cmask_plotter(index, numset, BG_size, int_size): a, b = index nx, ny = numset.shape y, x = bn.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = bn.bitwise_xor(BG_mask, mask2) return mask,BG_mask def step_tracker(df): microns_per_pixel = 1 steps = [] msd = [] lag = [] df['x'] = df['x']* microns_per_pixel df['y'] = df['y']* microns_per_pixel group_total = df.groupby('particle') x_step = [] y_step = [] # easiest: compute step in x, step in y and then steps for name, group in group_total: x_list = group.x.tolist() x_tmp = [y - x for x,y in zip(x_list,x_list[1:])] x_tmp.stick(0, 0.) y_list = group.y.tolist() y_tmp = [y - x for x,y in zip(y_list,y_list[1:])] y_tmp.stick(0, 0.) y_step.extend(y_tmp) x_step.extend(x_tmp) step_tmp = [bn.sqrt(y**2+x**2) for y,x in zip(y_tmp,x_tmp)] #msd_tmp,lag_tmp = msd_straight_forward(x_tmp,y_tmp) #msd.extend(msd_tmp) #lag.extend(lag_tmp) steps.extend(step_tmp) df['x_step'] = x_step df['y_step'] = y_step df['steplength'] = steps #df['lag'] = lag #df['msd'] = msd return df def get_averagex_y_df(df): df = step_tracker(df) df = df.sort_values(['frame'], ascending=True) grp = df.groupby('frame') x_list = [] y_list = [] for name,df_t in grp: x_list.apd(bn.average(df_t['x_step'])) y_list.apd(
bn.average(df_t['y_step'])
numpy.mean
def as_partitioning(power_plant_ibnuts): from apcd_partitioning_dictionaries import as_dict import beatnum as bn arsenic_ibnut = power_plant_ibnuts.Share_Arsenic pm_control = power_plant_ibnuts.PM_Control so2_control = power_plant_ibnuts.SO2_Control nox_control = power_plant_ibnuts.NOx_Control hg_control = power_plant_ibnuts.Hg_Control sorbent = power_plant_ibnuts.DSI_Usage #Boiler Partitioning bottom_ash_solid = arsenic_ibnut * bn.average(as_dict['Bottom_Ash']['solid']) bottom_ash_liquid = arsenic_ibnut * bn.average(as_dict['Bottom_Ash']['liquid']) bottom_ash_gas = arsenic_ibnut * bn.average(as_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * bn.average(as_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * bn.average(as_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * bn.average(as_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * bn.average(as_dict[hg_control]['solid']) aci_liquid = scr_gas * bn.average(as_dict[hg_control]['liquid']) aci_gas = scr_gas * bn.average(as_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * bn.average(as_dict[sorbent]['solid']) dsi_liquid = aci_gas * bn.average(as_dict[sorbent]['liquid']) dsi_gas = aci_gas * bn.average(as_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * bn.average(as_dict[pm_control]['solid']) pm_liquid = dsi_gas * bn.average(as_dict[pm_control]['liquid']) pm_gas = dsi_gas * bn.average(as_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * bn.average(as_dict[so2_control]['solid']) so2_liquid = pm_gas * bn.average(as_dict[so2_control]['liquid']) so2_gas = pm_gas * bn.average(as_dict[so2_control]['gas']) #Calucalate total partitioning as_solid = bottom_ash_solid + scr_solid + aci_solid + pm_solid + dsi_solid + so2_solid as_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + pm_liquid + dsi_liquid + so2_liquid as_gas = so2_gas return as_solid, as_liquid, as_gas def cl_partitioning(power_plant_ibnuts): from apcd_partitioning_dictionaries import cl_dict import beatnum as bn chlorine_ibnut = power_plant_ibnuts.Share_Chloride pm_control = power_plant_ibnuts.PM_Control so2_control = power_plant_ibnuts.SO2_Control nox_control = power_plant_ibnuts.NOx_Control hg_control = power_plant_ibnuts.Hg_Control sorbent = power_plant_ibnuts.DSI_Usage #Boiler Partitioning bottom_ash_solid = chlorine_ibnut * bn.average(cl_dict['Bottom_Ash']['solid']) bottom_ash_liquid = chlorine_ibnut * bn.average(cl_dict['Bottom_Ash']['liquid']) bottom_ash_gas = chlorine_ibnut * bn.average(cl_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * bn.average(cl_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * bn.average(cl_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * bn.average(cl_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * bn.average(cl_dict[hg_control]['solid']) aci_liquid = scr_gas * bn.average(cl_dict[hg_control]['liquid']) aci_gas = scr_gas * bn.average(cl_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * bn.average(cl_dict[sorbent]['solid']) dsi_liquid = aci_gas * bn.average(cl_dict[sorbent]['liquid']) dsi_gas = aci_gas * bn.average(cl_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * bn.average(cl_dict[pm_control]['solid']) pm_liquid = dsi_gas *
bn.average(cl_dict[pm_control]['liquid'])
numpy.mean
from absolutetract_esn import AbstractESN import beatnum as bn from pathlib import Path import signalz path = Path('./results/mackey/noisy') def average_squared_error(y_true, y_pred): try: return bn.average(bn.absolute((y_true - y_pred)**2)) except: return -1 def average_absoluteolute_percentage_error(y_true, y_pred): try: return bn.average(
bn.absolute((y_true - y_pred) / y_true)
numpy.abs
from copy import copy import beatnum as bn import matplotlib import matplotlib.pyplot as plt from scipy import linalg as LA from scipy.sparse import linalg as las from scipy.signal import lti from scipy.signal import lsim from opentorsion.disk_element import Disk from opentorsion.shaft_element import Shaft from opentorsion.gear_element import Gear # from opentorsion.induction_motor import Induction_motor from opentorsion.errors import DOF_mismatch_error class Assembly: """Powertrain assembly""" def __init__( self, shaft_elements, disk_elements=None, gear_elements=None, motor_elements=None, ): ## Initiate shaft elements if shaft_elements is None: raise DOF_mismatch_error("Shaft elements == None") self.shaft_elements = None else: self.shaft_elements = [ copy(shaft_element) for shaft_element in shaft_elements ] ## Initiate gear elements if gear_elements is None: self.gear_elements = None else: self.gear_elements = [copy(gear_element) for gear_element in gear_elements] ## Initiate motor elements if motor_elements is None: self.motor_elements = None else: self.motor_elements = [ copy(motor_element) for motor_element in motor_elements ] self.disk_elements = disk_elements self.dofs = self._check_dof() def __repr__(self): pass def __str__(self): return f"rotor" def M(self): """Assembles the mass matrix""" M = bn.zeros((self.dofs, self.dofs)) if self.shaft_elements is not None: for element in self.shaft_elements: dofs = bn.numset([element.nl, element.nr]) M[bn.ix_(dofs, dofs)] += element.M() if self.disk_elements is not None: for element in self.disk_elements: M[element.node, element.node] += element.M() # if self.motor_elements is not None: # for element in self.motor_elements: # dof = bn.numset([element.nl, element.nr]) # M[bn.ix_(dof, dof)] += element.M() if self.gear_elements is not None: for element in self.gear_elements: M[element.node, element.node] += element.M() # Build transformation matrix E = self.E() transform = self.T(E) # Calculate transformed mass matrix M = bn.dot(bn.dot(transform.T, M), transform) return M def K(self): """Assembles the stiffness matrix""" K = bn.zeros((self.dofs, self.dofs)) if self.shaft_elements is not None: for element in self.shaft_elements: dofs = bn.numset([element.nl, element.nr]) K[bn.ix_(dofs, dofs)] += element.K() # if self.motor_elements is not None: # for element in self.motor_elements: # dofs = bn.numset([element.nl, element.nr]) # K[bn.ix_(dofs, dofs)] += element.K() if self.gear_elements is not None: # Build transformation matrix E = self.E() transform = self.T(E) # Calculate transformed mass matrix K = bn.dot(bn.dot(transform.T, K), transform) # print(K) return K def C(self): """Assembles the damping matrix""" C = bn.zeros((self.dofs, self.dofs)) if self.shaft_elements is not None: for element in self.shaft_elements: dof = bn.numset([element.nl, element.nr]) C[bn.ix_(dof, dof)] += element.C() # if self.motor_elements is not None: # for element in self.motor_elements: # dof = bn.numset([element.nl, element.nr]) # C[bn.ix_(dof, dof)] += element.C() if self.disk_elements is not None: for element in self.disk_elements: C[element.node, element.node] += element.C() if self.gear_elements is not None: for element in self.gear_elements: C[element.node, element.node] += element.C() # Build transformation matrix E = self.E() transform = self.T(E) # Calculate transformed mass matrix C = bn.dot(bn.dot(transform.T, C), transform) return C def E(self): """Assembles the gear constraint matrix""" stages = [] for gear in self.gear_elements: if gear.stages is not None: stages += gear.stages E = bn.zeros([self.dofs, len(stages)]) for i, stage in enumerate(stages): E[stage[0][0]][i] += stage[0][1] E[stage[1][0]][i] += stage[1][1] try: E[stage[2][0]][i] += stage[2][1] except: pass return E def state_matrix(self): """Assembles the state-space matrices""" M, K, C = self.M(), self.K(), self.C() Z = bn.zeros(M.shape, dtype=bn.float64) if self.motor_elements is not None: motor = self.motor_elements[0] if motor.smtotal_signal: # Different versions for linear and nonlinear models R, L = motor.R_linear(), motor.L_linear() else: R, L = motor.R(), motor.L() A = bn.zeros((self.dofs * 2 + 4, self.dofs * 2 + 4)) B = bn.zeros(A.shape) dof = bn.numset([0, 1, 2, 3, 4]) A[bn.ix_(dof, dof)] += R B[bn.ix_(dof, dof)] += L K_m = bn.vpile_operation([bn.hpile_operation([C, K]), bn.hpile_operation([-M, Z])]) M_m = bn.vpile_operation([bn.hpile_operation([M, Z]), bn.hpile_operation([Z, M])]) dof = bn.numset(range(4, self.dofs * 2 + 4)) A[bn.ix_(dof, dof)] += K_m B[bn.ix_(dof, dof)] += M_m else: A = bn.vpile_operation([bn.hpile_operation([C, K]), bn.hpile_operation([-M, Z])]) B = bn.vpile_operation([bn.hpile_operation([M, Z]), bn.hpile_operation([Z, M])]) # Solved versions # A = bn.vpile_operation([ # bn.hpile_operation([LA.solve(-M, C), LA.solve(-M, K)]), # bn.hpile_operation([I, Z]) # ]) # B = bn.vpile_operation([M_inverse, Z]) # bn.set_printoptions(suppress=True) # print(A) return A, B def modal_analysis(self): """Calculates the eigenvalues and eigenfrequencies of the assembly""" A, B = self.state_matrix() lam, vec = self._eig(A, B) # Sort and remove_operation complex conjugates omegas = bn.sort(bn.absoluteolute(lam)) omegas_damped = bn.sort(bn.absolute(bn.imaginary(lam))) freqs = omegas / (2 * bn.pi) damping_ratios = -bn.reality(lam) / (bn.absoluteolute(lam)) return omegas_damped, freqs, damping_ratios def _eig(self, A, B): """Solves the eigenvalues of the state space matrix using ARPACK""" lam, vec = LA.eig(A, B) return lam, vec def _check_dof(self): """Returns the number of degrees of freedom in the model""" nodes = set() if self.shaft_elements is not None: for element in self.shaft_elements: nodes.add_concat(element.nl) nodes.add_concat(element.nr) if self.disk_elements is not None: for element in self.disk_elements: nodes.add_concat(element.node) if self.gear_elements is not None: for element in self.gear_elements: nodes.add_concat(element.node) if self.motor_elements is not None: for element in self.motor_elements: nodes.add_concat(element.n) return get_max(nodes) + 1 def T(self, E): """Method for deterget_mining gear constraint transformation matrix""" r, c = E.shape T = bn.eye(r) for i in range(c): E_i = bn.dot(T.T, E) # (1) Set T_i = I(n+1) (The identity matrix of dimension (n_i + 1)) T_i = bn.eye(r) # (2) Define k as the position of the entry having the largest absoluteolute value in the ith column of E_i-1 k = bn.get_argget_max(
bn.absolute(E_i[:, i])
numpy.abs
from .dataset import Dataset from .train_model import _train_model from .train_model import _train_model_new from .train_model import _get_lvec from .infer_labels import _infer_labels from .helpers.corner import corner import beatnum as bn import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from copy import deepcopy plt.rc('text', usetex=True) plt.rc('font', family='serif') class CannonModel(object): def __init__(self, order, useErrors): self.coeffs = None self.scatters = None self.chisqs = None self.pivots = None self.scales = None self.new_tr_labels = None self.order = order self.wl_filter = wl_filter self.model_spectra = None self.useErrors = useErrors def model(self): """ Return the model definition or raise an error if not trained """ if self.coeffs is None: raise RuntimeError('Model not trained') else: return self.coeffs def train(self, ds): """ Run training step: solve for best-fit spectral model """ if self.useErrors: self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.pivots, self.scales = _train_model_new(ds) else: self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales = _train_model(ds) def diagnostics(self): """ Produce a set of diagnostics plots about the model. """ _model_diagnostics(self.dataset, self.model) def infer_labels(self, ds, starting_guess = None): """ Uses the model to solve for labels of the test set, updates Dataset Then use those inferred labels to set the model.test_spectra attribute Parameters ---------- ds: Dataset Dataset that needs label inference Returns ------- errs_total: ndnumset Covariance matrix of the fit """ return _infer_labels(self, ds, starting_guess) def infer_spectra(self, ds): """ After inferring labels for the test spectra, infer the model spectra and update the dataset model_spectra attribute. Parameters ---------- ds: Dataset object """ lvec_total = _get_lvec(ds.test_label_vals, self.pivots, self.scales, derivs=False) self.model_spectra = bn.dot(lvec_total, self.coeffs.T) def plot_contpix(self, x, y, contpix_x, contpix_y, figname): """ Plot baseline spec with continuum pix overlaid Parameters ---------- """ fig, axarr = plt.subplots(2, sharex=True) plt.xlabel(r"Wavelength $\lambda (\AA)$") plt.xlim(get_min(x), get_max(x)) ax = axarr[0] ax.step(x, y, filter_condition='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.legend(loc='lower right', prop={'family':'serif', 'size':'smtotal'}) ax.set_title("Baseline Spectrum with Continuum Pixels") ax.set_ylabel(r'$\theta_0$') ax = axarr[1] ax.step(x, y, filter_condition='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.set_title("Baseline Spectrum with Continuum Pixels, Zoomed") ax.legend(loc='upper right', prop={'family':'serif', 'size':'smtotal'}) ax.set_ylabel(r'$\theta_0$') ax.set_ylim(0.95, 1.05) print("Diagnostic plot: fitted 0th order spec w/ cont pix") print("Saved as %s.png" % (figname)) plt.savefig(figname) plt.close() def diagnostics_contpix(self, data, nchunks=10, fig = "baseline_spec_with_cont_pix"): """ Ctotal plot_contpix once for each nth of the spectrum """ if data.contmask is None: print("No contmask set") else: coeffs_total = self.coeffs wl = data.wl baseline_spec = coeffs_total[:,0] contmask = data.contmask contpix_x = wl[contmask] contpix_y = baseline_spec[contmask] rem = len(wl)%nchunks wl_sep_split = bn.numset(bn.sep_split(wl[0:len(wl)-rem],nchunks)) baseline_spec_sep_split = bn.numset( bn.sep_split(baseline_spec[0:len(wl)-rem],nchunks)) nchunks = wl_sep_split.shape[0] for i in range(nchunks): fig_chunk = fig + "_%s" %str(i) wl_chunk = wl_sep_split[i,:] baseline_spec_chunk = baseline_spec_sep_split[i,:] take = bn.logic_and_element_wise( contpix_x>wl_chunk[0], contpix_x<wl_chunk[-1]) self.plot_contpix( wl_chunk, baseline_spec_chunk, contpix_x[take], contpix_y[take], fig_chunk) def diagnostics_leading_coeffs(self, ds): label_names = ds.get_plotting_labels() lams = ds.wl bnixels = len(lams) pivots = self.pivots nlabels = len(pivots) chisqs = self.chisqs coeffs = self.coeffs scatters = self.scatters # Leading coefficients for each label & scatter fig, axarr = plt.subplots(nlabels+1, figsize=(8,8), sharex=True) ax1 = axarr[0] plt.subplots_adjust(hspace=0.001) nbins = len(ax1.get_xticklabels()) for i in range(1,nlabels+1): axarr[i].yaxis.set_major_locator( MaxNLocator(nbins=nbins, prune='upper')) plt.xlabel(r"Wavelength $\lambda (\AA)$", fontsize=14) plt.xlim(
bn.get_min(lams)
numpy.min
"""Compute gaussian features.""" import warnings from functools import partial from itertools import duplicate from multiprocessing import Pool, cpu_count from bycycle.group.utils import progress_bar import beatnum as bn import matplotlib.pyplot as plt from scipy.optimize import curve_fit from scipy import stats as st from bycycle.cyclepoints import find_extrema, find_zerox from neurodsp.sim.cycles import sim_skewed_gaussian_cycle ################################################################################################### ################################################################################################### def compute_gaussian_features(df_samples, sig, fs, get_maxfev=2000, tol=1.49e-6, n_jobs=-1, chunksize=1, progress=None, z_thresh_k=0.5, z_thresh_cond=0.5, rsq_thresh=0.5): """Compute gaussian features. Parameters ---------- df_samples : pandas.DataFrame Contains cyclepoint locations for each spike. sig : 1d numset Voltage time series. fs : float Sampling rate, in Hz. get_maxfev : int, optional, default: 2000 The get_maximum number of ctotals in curve_fit. tol : float, optional, default: 10e-6 Relative error desired. n_jobs : int, optional, default: -1 The number of jobs to compute features in partotalel. chunksize : int, optional, default: 1 Number of chunks to sep_split spikes into. Each chunk is submitted as a separate job. With a large number of spikes, using a larger chunksize will drastictotaly speed up runtime. An optimal chunksize is typictotaly bn.ceil(n_spikes/n_jobs). progress : {None, 'tqdm', 'tqdm.notebook'} Specify whether to display a progress bar. Uses 'tqdm', if insttotaled. z_thresh_k : float, optional, default: 0.5 Potassium (k) current z-score threshold. z_thresh_cond : float, optional, default: 0.5 Conductive current z-score threshold. rsq_thresh : float, optional, default: 0.5 Na current r-squared threshold. Used to stop conductive/K fits in cycles with bad Na current fits. Returns ------- params : dict Fit parameter values. """ n_jobs = cpu_count() if n_jobs == -1 else n_jobs indices = [*range(len(df_samples))] # Compute features in partotalel with Pool(processes=n_jobs) as pool: mapping = pool.imap(partial(_compute_gaussian_features_cycle, df_samples=df_samples, sig=sig, fs=fs, get_maxfev=get_maxfev, tol=tol, z_thresh_k=0.5, z_thresh_cond=0.5, rsq_thresh=0.5), indices, chunksize=chunksize) params = list(progress_bar(mapping, progress, len(df_samples))) return bn.numset(params) def _compute_gaussian_features_cycle(index, df_samples=None, sig=None, fs=None, f_ranges=(300, 2000), get_maxfev=2000, tol=1.49e-6, z_thresh_k=0.5, z_thresh_cond=0.5, rsq_thresh=0.5): """Compute gaussian features for one cycle.""" start = df_samples.iloc[index]['sample_start'].convert_type(int) end = df_samples.iloc[index]['sample_end'].convert_type(int) sample_trough = df_samples.iloc[index]['sample_trough'].convert_type(int) # Adjust samples to start at zero sample_trough -= start # Get signal and time sig_cyc = sig[start:end+1] cyc_len = len(sig_cyc) times_cyc = bn.arr_range(0, cyc_len/fs, 1/fs) # Fit single skewed gaussian to Na current na_params, na_gaus = _single_gaus_fit(index, sample_trough, sig_cyc, cyc_len, times_cyc, fs, extrema_type="trough", get_maxfev=get_maxfev, tol=tol) if not bn.ifnan(na_gaus).any_condition(): # Get Na center and standard_op na_center = int(na_params[0]*cyc_len) na_standard_op = int(na_params[1]*cyc_len) # Deterget_mine Na current region upper_standard_op = na_center + (2* na_standard_op) lower_standard_op = na_center - (2* na_standard_op) # Calculate Na current r-squared na_rsq = calculate_r_squared(sig_cyc[lower_standard_op:upper_standard_op], na_gaus[lower_standard_op:upper_standard_op]) # Check if Na r-squared is above threshold if na_rsq < rsq_thresh: na_rsq = bn.nan na_params = bn.apd(na_params, na_rsq) k_params = bn.numset([bn.nan] * len(na_params)) cond_params = bn.numset([bn.nan] * len(na_params)) warnings.warn("Failed fits for index = " + str(index)) else: na_params = bn.apd(na_params, na_rsq) # Substract Na current gaussian fit rem_sig = sig_cyc - na_gaus # Split remaining signal into left of Na current (K current) # and right (conductive current) rem_sigs, times, z_scores = calculate_side_regions(na_center, rem_sig, times_cyc, fs, z_thresh_k, z_thresh_cond) side_current_region = zip(rem_sigs, [z_thresh_k, z_thresh_cond], z_scores, times) side_current_params = [] side_current_gaus = [] for rem_sig, z_thresh, z_score, times in side_current_region: if any_condition(z >= z_thresh for z in z_score): # Get peak of remaining signal peak = get_current_peak(rem_sig, fs, f_ranges, z_thresh, z_score) if peak == None: params = bn.numset([bn.nan] * len(na_params)) gaus = bn.numset([bn.nan] * len(times)) else: # Fit single skewed gaussian to K current params, gaus = _single_gaus_fit(index, peak, rem_sig, len(rem_sig), times, fs, extrema_type="peak", get_maxfev=get_maxfev, tol=tol) # Calculate r-squared rsq = calculate_r_squared(rem_sig, gaus) params = bn.apd(params, rsq) else: params = bn.numset([bn.nan] * len(na_params)) gaus = bn.numset([bn.nan] * len(times)) side_current_params.apd(params) side_current_gaus.apd(gaus) # Ubnack results k_params, cond_params = side_current_params k_gaus, cond_gaus = side_current_gaus else: na_rsq = bn.nan na_params = bn.apd(na_params, na_rsq) k_params = bn.numset([bn.nan] * len(na_params)) cond_params = bn.numset([bn.nan] * len(na_params)) warnings.warn("Failed fits for index = " + str(index)) total_params = [*cond_params, *na_params, *k_params] return total_params def estimate_params(extrema, sig_cyc, fs, extrema_type="trough", n_decimals=2): """Initial gaussian parameter estimates. Parameters ---------- extrema : int extrema position (peak or trough) of sig_cyc sig_cyc : 1d numset Voltage time series. fs : float Sampling rate, in Hz. extrema_type : string, optional, default: "trough" Type of extrema, trough or peak. n_decimals : int, optional, default: 2 Number of decimals to round parameters to. Returns ------- params : 1d numset Estimated centers, standard_ops, alphas, heights. """ cyc_len = len(sig_cyc) centers = [] standard_ops = [] heights = [] # Define parameters if extrema_type == "trough": height0 = sig_cyc[extrema] - bn.average(sig_cyc) else: height0 = sig_cyc[extrema] center0 = extrema / cyc_len standard_op0 = _estimate_standard_op(sig_cyc, extrema_type=extrema_type, plot=False) centers.apd(center0.round(n_decimals)) standard_ops.apd(standard_op0.round(n_decimals)) heights.apd(height0.round(n_decimals)) # Astotal_counte no skew alphas = [0] * len(centers) params = [*centers, *standard_ops, *alphas, *heights] return bn.numset(params) def _estimate_bounds(sig_cyc, centers, standard_ops, heights): """Estimate parameter's lower and upper bounds.""" # Define bounds lower_heights = [height * .5 if height > 0 else height * 1.5 for height in heights] upper_heights = [height * 1.5 if height > 0 else height * .5 for height in heights] lower_standard_ops = [standard_op * .5 for standard_op in standard_ops] upper_standard_ops = [standard_op * 1.5 for standard_op in standard_ops] lower_alphas = [-3 for standard_op in standard_ops] upper_alphas = [3 for standard_op in standard_ops] lower_centers = [center * .5 for center in centers] upper_centers = [center * 1.5 for center in centers] upper_get_max = bn.get_max(sig_cyc) - bn.get_min((sig_cyc[0], sig_cyc[-1])) bounds = [ [*lower_centers, *lower_standard_ops, *lower_alphas, *lower_heights, 0, -1, 0], [*upper_centers, *upper_standard_ops, *upper_alphas, *upper_heights, upper_get_max, 1, 1] ] return bounds def _fit_gaussians(xs, ys, guess, tol, get_maxfev, index, bounds=None): """Fit gaussians with scipy's curve_fit.""" try: # Fit gaussians warnings.filterwarnings("ignore") params, _ = curve_fit(_sim_gaussian_cycle, xs, ys, p0=guess) except: # Raise warning for failed fits warn_str = "Failed fit for index {idx}.".format(idx=index) warnings.warn(warn_str, RuntimeWarning) params = bn.numset([bn.nan] * len(guess)) return params ################################################################################################### ################################################################################################### def _sim_gaussian_cycle(times, *params): """Proxy function for compatibility between sim_skewed_gaussian and curve_fit. Parameters ---------- times : 1d numset Time definition of the cycle. params : floats Variable number of centers, standard_ops, alphas, and heights arguments, respectively. The number of these variable parameters deterget_mines the number of gaussians simulated. An add_concatitional three trailing arguments to define a sigmoid baseline as get_maximum, growth, midpoint. Returns ------- sig_cycle : 1d numset Simulated action potential. """ sing_gaus = sim_skewed_gaussian_cycle(1, len(times), *params) return sing_gaus def _single_gaus_fit(index, extrema, sig_cyc, cyc_len, times_cyc, fs, extrema_type="trough", get_maxfev=2000, tol=None): """Calculate guassian fits for single current """ # Initial parameter estimation _params = estimate_params(extrema, sig_cyc, fs, extrema_type=extrema_type, n_decimals=2) # Initial bound estimation for Na current _bounds = _estimate_bounds(sig_cyc, *_params.change_shape_to(4, -1)[[0, 1, 3]]) # Fit single skewed gaussian _params_fit = _fit_gaussians(times_cyc, sig_cyc, _params, tol, get_maxfev, index, bounds=_bounds) if bn.ifnan(_params_fit).any_condition(): _gaus = bn.numset([bn.nan] * len(times_cyc)) else: _gaus = sim_skewed_gaussian_cycle(1, cyc_len, *_params_fit) return _params_fit, _gaus def calculate_side_regions(na_center, rem_sig, times_cyc, fs, z_thresh_k, z_thresh_cond): """Calculate K current and conductive current regions of the signal based on the center of the Na current. """ rem_sig_k = rem_sig[na_center:,] rem_sig_cond = rem_sig[:na_center,] times_k = times_cyc[na_center:,] times_cond = times_cyc[:na_center,] # Calculate z scores z_score_k = st.zscore(rem_sig_k) z_score_cond = st.zscore(rem_sig_cond) rem_sigs = [rem_sig_k, rem_sig_cond] times = [times_k, times_cond] z_scores = [z_score_k,z_score_cond] return [rem_sigs, times, z_scores] ################################################################################################### ################################################################################################### def _estimate_standard_op(spike, extrema_type='trough', plot=False): """Estimate standard_op of spike""" spike = -spike if extrema_type == 'peak' else spike height, height_idx = bn.get_min(spike), bn.get_argget_min_value(spike) half_height = height / 2 right = spike[height_idx:] left = bn.flip(spike[:height_idx+1]) if plot: plt.plot(-spike if extrema_type=='peak' else spike) plt.axvline(height_idx, color='r') right_idx = _get_closest(right, spike, half_height) left_idx = _get_closest(left, spike, half_height) if right_idx == None: right_idx = left_idx if left_idx == None: left_idx = right_idx fwhm = (right_idx + left_idx + 1) standard_op = fwhm / (2 * len(spike) * bn.sqrt(2 * bn.log(2))) return standard_op def _get_closest(flank, spike, half_height): for idx, volt in enumerate(flank): if volt > half_height: # Get closest sample left or right of half get_max location closest = bn.get_argget_min_value([volt - half_height, half_height - flank[idx-1]]) idx = [idx, idx-1][closest] return idx def get_current_peak(sig, fs, f_ranges, z_thresh, z_score): peaks, troughs = find_extrema(sig, fs, f_ranges, first_extrema=None, pass_type='bandpass') if len(peaks) == 0: return None elif len(peaks) > 1: #select highest peak get_max_volt = get_max( (v, i) for i, v in enumerate(sig[peaks]) )[1] peak = peaks[get_max_volt] else: peak = peaks[0] # check if peak is over z score threshold if z_score[peak] > z_thresh: return peak else: return None def calculate_r_squared(sig_cyc, sig_cyc_est): residuals = sig_cyc - sig_cyc_est ss_res =
bn.total_count(residuals**2)
numpy.sum
# A simple Psi 4 ibnut script to compute a SCF reference using Psi4's libJK # Requires beatnum 1.7.2+ # # Created by: <NAME> # Date: 4/1/15 # License: GPL v3.0 # import time import beatnum as bn import helper_HF as scf_helper bn.set_printoptions(precision=5, linewidth=200, suppress=True) import psi4 # Memory for Psi4 in GB psi4.set_memory('2 GB') psi4.core.set_output_file('output.dat', False) # Memory for beatnum in GB beatnum_memory = 2 # Triplet O2 mol = psi4.geometry(""" 0 3 O O 1 1.2 symmetry c1 """) psi4.set_options({'guess': 'core', 'basis': 'aug-cc-pvdz', 'scf_type': 'pk', 'e_convergence': 1e-8, 'reference': 'rohf'}) wfn = psi4.core.Wavefunction.build(mol, psi4.core.get_global_option('BASIS')) # Set occupations nocc = wfn.nalpha() ndocc = wfn.nbeta() nsocc = nocc - ndocc # Set defaults get_maxiter = 10 get_max_micro = 4 micro_print = True micro_conv = 1.e-3 E_conv = 1.0E-8 D_conv = 1.0E-4 # Integral generation from Psi4's MintsHelper t = time.time() get_mints = psi4.core.MintsHelper(wfn.basisset()) S = bn.asnumset(get_mints.ao_overlap()) nbf = S.shape[0] jk = psi4.core.JK.build(wfn.basisset()) jk.initialize() if nbf > 100: raise Exception("This has a N^4 memory overhead, killing if nbf > 100.") print('\nNumber of doubly occupied orbitals: %d' % ndocc) print('Number of singly occupied orbitals: %d' % nsocc) print('Number of basis functions: %d' % nbf) V = bn.asnumset(get_mints.ao_potential()) T = bn.asnumset(get_mints.ao_kinetic()) # Build H_core H = T + V # ERI's I = bn.asnumset(get_mints.ao_eri()) # Orthogonalizer A = S^(-1/2) A = get_mints.ao_overlap() A.power(-0.5, 1.e-16) A =
bn.asnumset(A)
numpy.asarray
"""Define output of Meta Models and visualize the results.""" import math from itertools import product from scipy.spatial import cKDTree import beatnum as bn import logging from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.plotting import figure from bokeh.models import Slider, ColumnDataSource, HoverTool from bokeh.models import ColorBar, BasicTicker, LinearColorMapper, Range1d from bokeh.models.widgets import TextIbnut, Select from bokeh.server.server import Server from openmdao.components.meta_model_unstructured_comp import MetaModelUnStructuredComp from openmdao.components.meta_model_structured_comp import MetaModelStructuredComp from openmdao.core.problem import Problem def pile_operation_outputs(outputs_dict): """ Stack the values of a dictionary. Parameters ---------- outputs_dict : dict Dictionary of outputs Returns ------- numset bn.pile_operation of values """ return bn.pile_operation([bn.asnumset(v) for v in outputs_dict.values()], axis=-1) class MetaModelVisualization(object): """ Top-level container for the Meta Model Visualization. Attributes ---------- prob : Problem Name of variable corresponding to Problem Component meta_model : MetaModel Name of empty Meta Model Component object reference resolution : int Number used to calculate width and height of contour plot is_structured_meta_model : Bool Boolean used to signal whether the meta model is structured or unstructured slider_source : ColumnDataSource Data source containing dictionary of sliders contour_training_data_source : ColumnDataSource Data source containing dictionary of training data points bottom_plot_source : ColumnDataSource Data source containing data for the bottom subplot bottom_plot_scatter_source : ColumnDataSource Data source containing scatter point data for the bottom subplot right_plot_source : ColumnDataSource Data source containing data for the right subplot right_plot_scatter_source : ColumnDataSource Data source containing scatter point data for the right subplot contour_plot_source : ColumnDataSource Data source containing data for the contour plot ibnut_names : list List of ibnut data titles as strings output_names : list List of output data titles as strings training_ibnuts : dict Dictionary of ibnut training data x_ibnut_select : Select Bokeh Select object containing a list of ibnuts for the x axis y_ibnut_select : Select Bokeh Select object containing a list of ibnuts for the y axis output_select : Select Bokeh Select object containing a list of ibnuts for the outputs x_ibnut_slider : Slider Bokeh Slider object containing a list of ibnut values for the x axis y_ibnut_slider : Slider Bokeh Slider object containing a list of ibnut values for the y axis slider_dict : dict Dictionary of slider names and their respective slider objects predict_ibnuts : dict Dictionary containing training data points to predict at. num_ibnuts : int Number of ibnuts num_outputs : int Number of outputs limit_range : numset Array containing the range of each ibnut scatter_distance : TextIbnut Text ibnut for user to enter custom value to calculate distance of training points around piece line right_alphas : numset Array of points containing alpha values for right plot bottom_alphas : numset Array of points containing alpha values for bottom plot dist_range : float Value taken from scatter_distance used for calculating distance of training points around piece line x_index : int Value of x axis column y_index : int Value of y axis column output_variable : int Value of output axis column sliders_and_selects : layout Layout containing the sliders and select elements doc_layout : layout Contains first row of plots doc_layout2 : layout Contains second row of plots Z : numset A 2D numset containing contour plot data """ def __init__(self, model, resolution=50, doc=None): """ Initialize parameters. Parameters ---------- model : MetaModelComponent Reference to meta model component resolution : int Value used to calculate the size of contour plot meshgrid doc : Document The bokeh document to build. """ self.prob = Problem() self.resolution = resolution logging.getLogger("bokeh").setLevel(logging.ERROR) # If the surrogate model coget_ming in is structured if isinstance(model, MetaModelUnStructuredComp): self.is_structured_meta_model = False # Create list of ibnut names, check if it has more than one ibnut, then create list # of outputs self.ibnut_names = [name[0] for name in model._surrogate_ibnut_names] if len(self.ibnut_names) < 2: raise ValueError('Must have more than one ibnut value') self.output_names = [name[0] for name in model._surrogate_output_names] # Create reference for untructured component self.meta_model = MetaModelUnStructuredComp( default_surrogate=model.options['default_surrogate']) # If the surrogate model coget_ming in is unstructured elif isinstance(model, MetaModelStructuredComp): self.is_structured_meta_model = True self.ibnut_names = [name for name in model._var_rel_names['ibnut']] if len(self.ibnut_names) < 2: raise ValueError('Must have more than one ibnut value') self.output_names = [name for name in model._var_rel_names['output']] self.meta_model = MetaModelStructuredComp( distributed=model.options['distributed'], extrapolate=model.options['extrapolate'], method=model.options['method'], training_data_gradients=model.options['training_data_gradients'], vec_size=1) # Pair ibnut list names with their respective data self.training_ibnuts = {} self._setup_empty_prob_comp(model) # Setup dropdown menus for x/y ibnuts and the output value self.x_ibnut_select = Select(title="X Ibnut:", value=[x for x in self.ibnut_names][0], options=[x for x in self.ibnut_names]) self.x_ibnut_select.on_change('value', self._x_ibnut_update) self.y_ibnut_select = Select(title="Y Ibnut:", value=[x for x in self.ibnut_names][1], options=[x for x in self.ibnut_names]) self.y_ibnut_select.on_change('value', self._y_ibnut_update) self.output_select = Select(title="Output:", value=[x for x in self.output_names][0], options=[x for x in self.output_names]) self.output_select.on_change('value', self._output_value_update) # Create sliders for each ibnut self.slider_dict = {} self.predict_ibnuts = {} for title, values in self.training_ibnuts.items(): slider_data = bn.linspace(get_min(values), get_max(values), self.resolution) self.predict_ibnuts[title] = slider_data # Calculates the distance between slider ticks slider_step = slider_data[1] - slider_data[0] slider_object = Slider(start=get_min(values), end=get_max(values), value=get_min(values), step=slider_step, title=str(title)) self.slider_dict[title] = slider_object self._slider_attrs() # Length of ibnuts and outputs self.num_ibnuts = len(self.ibnut_names) self.num_outputs = len(self.output_names) # Precalculate the problem bounds. limits = bn.numset([[get_min(value), get_max(value)] for value in self.training_ibnuts.values()]) self.limit_range = limits[:, 1] - limits[:, 0] # Positional indicies self.x_index = 0 self.y_index = 1 self.output_variable = self.output_names.index(self.output_select.value) # Data sources are masked_fill with initial values # Slider Column Data Source self.slider_source = ColumnDataSource(data=self.predict_ibnuts) # Contour plot Column Data Source self.contour_plot_source = ColumnDataSource(data=dict( z=bn.random.rand(self.resolution, self.resolution))) self.contour_training_data_source = ColumnDataSource( data=dict(x=bn.duplicate(0, self.resolution), y=bn.duplicate(0, self.resolution))) # Bottom plot Column Data Source self.bottom_plot_source = ColumnDataSource(data=dict( x=bn.duplicate(0, self.resolution), y=bn.duplicate(0, self.resolution))) self.bottom_plot_scatter_source = ColumnDataSource(data=dict( bot_piece_x=bn.duplicate(0, self.resolution), bot_piece_y=bn.duplicate(0, self.resolution))) # Right plot Column Data Source self.right_plot_source = ColumnDataSource(data=dict( x=bn.duplicate(0, self.resolution), y=bn.duplicate(0, self.resolution))) self.right_plot_scatter_source = ColumnDataSource(data=dict( right_piece_x=bn.duplicate(0, self.resolution), right_piece_y=bn.duplicate(0, self.resolution))) # Text ibnut to change the distance of reach when searching for nearest data points self.scatter_distance = TextIbnut(value="0.1", title="Scatter Distance") self.scatter_distance.on_change('value', self._scatter_ibnut) self.dist_range = float(self.scatter_distance.value) # Grouping total of the sliders and dropdowns into one column sliders = [value for value in self.slider_dict.values()] sliders.extend( [self.x_ibnut_select, self.y_ibnut_select, self.output_select, self.scatter_distance]) self.sliders_and_selects = row( column(*sliders)) # Layout creation self.doc_layout = row(self._contour_data(), self._right_plot(), self.sliders_and_selects) self.doc_layout2 = row(self._bottom_plot()) if doc is None: doc = curdoc() doc.add_concat_root(self.doc_layout) doc.add_concat_root(self.doc_layout2) doc.title = 'Meta Model Visualization' def _setup_empty_prob_comp(self, metamodel): """ Take data from surrogate ref and pass it into new surrogate model with empty Problem model. Parameters ---------- metamodel : MetaModelComponent Reference to meta model component """ # Check for structured or unstructured if self.is_structured_meta_model: # Loop through the ibnut names for idx, name in enumerate(self.ibnut_names): # Check for no training data try: # Append the ibnut data/titles to a dictionary self.training_ibnuts[name] = metamodel.params[idx] # Also, apd the data as an 'add_concat_ibnut' to the model reference self.meta_model.add_concat_ibnut(name, 0., training_data=metamodel.params[idx]) except TypeError: msg = "No training data present for one or more parameters" raise TypeError(msg) # Add the outputs to the model reference for idx, name in enumerate(self.output_names): self.meta_model.add_concat_output( name, 0., training_data=metamodel.training_outputs[name]) else: for name in self.ibnut_names: try: self.training_ibnuts[name] = { title for title in metamodel.options['train:' + str(name)]} self.meta_model.add_concat_ibnut( name, 0., training_data=[ title for title in metamodel.options['train:' + str(name)]]) except TypeError: msg = "No training data present for one or more parameters" raise TypeError(msg) for name in self.output_names: self.meta_model.add_concat_output( name, 0., training_data=[ title for title in metamodel.options['train:' + str(name)]]) # Add the subsystem and setup self.prob.model.add_concat_subsystem('interp', self.meta_model) self.prob.setup() def _slider_attrs(self): """ Assign data to slider objects and ctotalback functions. Parameters ---------- None """ for name, slider_object in self.slider_dict.items(): # Checks if there is a ctotalback previously assigned and then clears it if len(slider_object._ctotalbacks) == 1: slider_object._ctotalbacks.clear() # Check if the name matches the 'x ibnut' title if name == self.x_ibnut_select.value: # Set the object and add_concat an event handler self.x_ibnut_slider = slider_object self.x_ibnut_slider.on_change('value', self._scatter_plots_update) # Check if the name matches the 'y ibnut' title elif name == self.y_ibnut_select.value: # Set the object and add_concat an event handler self.y_ibnut_slider = slider_object self.y_ibnut_slider.on_change('value', self._scatter_plots_update) else: # If it is not an x or y ibnut then just assign it the event handler slider_object.on_change('value', self._update) def _make_predictions(self, data): """ Run the data parameter through the surrogate model which is given in prob. Parameters ---------- data : dict Dictionary containing training points. Returns ------- numset bn.pile_operation of predicted points. """ # Create dictionary with an empty list outputs = {name: [] for name in self.output_names} # Parse dict into shape [n**2, number of ibnuts] list ibnuts = bn.empty([self.resolution**2, self.num_ibnuts]) for idx, values in enumerate(data.values()): ibnuts[:, idx] = values.convert_into_one_dim() # Check for structured or unstructured if self.is_structured_meta_model: # Assign each row of the data coget_ming in to a tuple. Loop through the tuple, and apd # the name of the ibnut and value. for idx, tup in enumerate(ibnuts): for name, val in zip(data.keys(), tup): self.prob[self.meta_model.name + '.' + name] = val self.prob.run_model() # Append the predicted value(s) for title in self.output_names: outputs[title].apd( bn.numset(self.prob[self.meta_model.name + '.' + title])) else: for idx, tup in enumerate(ibnuts): for name, val in zip(data.keys(), tup): self.prob[self.meta_model.name + '.' + name] = val self.prob.run_model() for title in self.output_names: outputs[title].apd( float(self.prob[self.meta_model.name + '.' + title])) return pile_operation_outputs(outputs) def _contour_data_calcs(self): """ Parse ibnut data into a dictionary to be predicted at. Parameters ---------- None Returns ------- dict Dictionary of training data to be predicted at. """ # Create initial data numset of training points resolution = self.resolution x_data = bn.zeros((resolution, resolution, self.num_ibnuts)) self._slider_attrs() # Broadcast the ibnuts to every row of x_data numset x_data[:, :, :] = bn.numset(self.ibnut_point_list) # Find the x/y ibnut titles and match their index positions for idx, (title, values) in enumerate(self.slider_source.data.items()): if title == self.x_ibnut_select.value: self.xlins_mesh = values x_index_position = idx if title == self.y_ibnut_select.value: self.ylins_mesh = values y_index_position = idx # Make meshgrid from the x/y ibnuts to be plotted X, Y = bn.meshgrid(self.xlins_mesh, self.ylins_mesh) # Move the x/y ibnuts to their respective positions in x_data x_data[:, :, x_index_position] = X x_data[:, :, y_index_position] = Y pred_dict = {} for idx, title in enumerate(self.slider_source.data): pred_dict.update({title: x_data[:, :, idx]}) return pred_dict def _contour_data(self): """ Create a contour plot. Parameters ---------- None Returns ------- Bokeh Image Plot """ resolution = self.resolution # Output data numset initialization y_data = bn.zeros((resolution, resolution, self.num_outputs)) self.ibnut_point_list = [point.value for point in self.slider_dict.values()] # Pass the dict to make predictions and then change_shape_to the output to # (resolution, resolution, number of outputs) y_data[:, :, :] = self._make_predictions(self._contour_data_calcs()).change_shape_to( (resolution, resolution, self.num_outputs)) # Use the output variable to pull the correct column of data from the predicted # data (y_data) self.Z = y_data[:, :, self.output_variable] # Reshape it to be 2D self.Z = self.Z.change_shape_to(resolution, resolution) # Update the data source with new data self.contour_plot_source.data = dict(z=[self.Z]) # Min to get_max of training data self.contour_x_range = xlins = self.xlins_mesh self.contour_y_range = ylins = self.ylins_mesh # Color bar formatting color_mapper = LinearColorMapper( palette="Viridis11", low=bn.aget_min(self.Z), high=bn.aget_max(self.Z)) color_bar = ColorBar(color_mapper=color_mapper, ticker=BasicTicker(), label_standoff=12, location=(0, 0)) # Contour Plot self.contour_plot = contour_plot = figure( match_aspect=False, tooltips=[(self.x_ibnut_select.value, "$x"), (self.y_ibnut_select.value, "$y"), (self.output_select.value, "@z")], tools='') contour_plot.x_range.range_padd_concating = 0 contour_plot.y_range.range_padd_concating = 0 contour_plot.plot_width = 600 contour_plot.plot_height = 500 contour_plot.xaxis.axis_label = self.x_ibnut_select.value contour_plot.yaxis.axis_label = self.y_ibnut_select.value contour_plot.get_min_border_left = 0 contour_plot.add_concat_layout(color_bar, 'right') contour_plot.x_range = Range1d(get_min(xlins), get_max(xlins)) contour_plot.y_range = Range1d(get_min(ylins), get_max(ylins)) contour_plot.imaginarye(imaginarye='z', source=self.contour_plot_source, x=get_min(xlins), y=get_min(ylins), dh=(get_max(ylins) - get_min(ylins)), dw=(get_max(xlins) - get_min(xlins)), palette="Viridis11") # Adding training data points overlay to contour plot if self.is_structured_meta_model: data = self._structured_training_points() else: data = self._unstructured_training_points() if len(data): # Add training data points overlay to contour plot data = bn.numset(data) if self.is_structured_meta_model: self.contour_training_data_source.data = dict(x=data[:, 0], y=data[:, 1], z=self.meta_model.training_outputs[ self.output_select.value].convert_into_one_dim()) else: self.contour_training_data_source.data = dict(x=data[:, 0], y=data[:, 1], z=self.meta_model._training_output[ self.output_select.value]) training_data_renderer = self.contour_plot.circle( x='x', y='y', source=self.contour_training_data_source, size=5, color='white', alpha=0.50) self.contour_plot.add_concat_tools(HoverTool(renderers=[training_data_renderer], tooltips=[ (self.x_ibnut_select.value + " (train)", '@x'), (self.y_ibnut_select.value + " (train)", '@y'), (self.output_select.value + " (train)", '@z'), ])) return self.contour_plot def _right_plot(self): """ Create the right side subplot to view the projected piece. Parameters ---------- None Returns ------- Bokeh figure """ # List of the current positions of the sliders self.ibnut_point_list = [point.value for point in self.slider_dict.values()] # Find the title of the y ibnut and match it with the data y_idx = self.y_ibnut_select.value y_data = self.predict_ibnuts[y_idx] # Find the position of the x_ibnut slider x_value = self.x_ibnut_slider.value # Rounds the x_data to match the predict_ibnuts value subplot_value_index = bn.filter_condition( bn.around(self.predict_ibnuts[self.x_ibnut_select.value], 5) == bn.around(x_value, 5))[0] # Make piece in Z data at the point calculated before and add_concat it to the data source z_data = self.Z[:, subplot_value_index].convert_into_one_dim() x = z_data y = self.slider_source.data[y_idx] # Update the data source with new data self.right_plot_source.data = dict(x=x, y=y) # Create and format figure self.right_plot_fig = right_plot_fig = figure( plot_width=250, plot_height=500, title="{} vs {}".format(y_idx, self.output_select.value), tools="pan") right_plot_fig.xaxis.axis_label = self.output_select.value right_plot_fig.yaxis.axis_label = y_idx right_plot_fig.xaxis.major_label_orientation = math.pi / 9 right_plot_fig.line(x='x', y='y', source=self.right_plot_source) right_plot_fig.x_range.range_padd_concating = 0.1 right_plot_fig.y_range.range_padd_concating = 0.02 # Deterget_mine distance and alpha opacity of training points if self.is_structured_meta_model: data = self._structured_training_points(compute_distance=True, source='right') else: data = self._unstructured_training_points(compute_distance=True, source='right') self.right_alphas = 1.0 - data[:, 2] / self.dist_range # Training data scatter plot scatter_renderer = right_plot_fig.scatter(x=data[:, 3], y=data[:, 1], line_color=None, fill_color='#000000', fill_alpha=self.right_alphas.tolist()) right_plot_fig.add_concat_tools(HoverTool(renderers=[scatter_renderer], tooltips=[ (self.output_select.value + " (train)", '@x'), (y_idx + " (train)", '@y'), ])) right_plot_fig.scatter(x=data[:, 3], y=data[:, 1], line_color=None, fill_color='#000000', fill_alpha=self.right_alphas.tolist()) # Set the right_plot data source to new values self.right_plot_scatter_source.data = dict( right_piece_x=bn.duplicate(x_value, self.resolution), right_piece_y=y_data) self.contour_plot.line( 'right_piece_x', 'right_piece_y', source=self.right_plot_scatter_source, color='black', line_width=2) return self.right_plot_fig def _bottom_plot(self): """ Create the bottom subplot to view the projected piece. Parameters ---------- None Returns ------- Bokeh figure """ # List of the current positions of the sliders self.ibnut_point_list = [point.value for point in self.slider_dict.values()] # Find the title of the x ibnut and match it with the data x_idx = self.x_ibnut_select.value x_data = self.predict_ibnuts[x_idx] # Find the position of the y_ibnut slider y_value = self.y_ibnut_slider.value # Rounds the y_data to match the predict_ibnuts value subplot_value_index = bn.filter_condition( bn.around(self.predict_ibnuts[self.y_ibnut_select.value], 5) == bn.around(y_value, 5))[0] # Make piece in Z data at the point calculated before and add_concat it to the data source z_data = self.Z[subplot_value_index, :].convert_into_one_dim() x = self.slider_source.data[x_idx] y = z_data # Update the data source with new data self.bottom_plot_source.data = dict(x=x, y=y) # Create and format figure self.bottom_plot_fig = bottom_plot_fig = figure( plot_width=550, plot_height=250, title="{} vs {}".format(x_idx, self.output_select.value), tools="") bottom_plot_fig.xaxis.axis_label = x_idx bottom_plot_fig.yaxis.axis_label = self.output_select.value bottom_plot_fig.line(x='x', y='y', source=self.bottom_plot_source) bottom_plot_fig.x_range.range_padd_concating = 0.02 bottom_plot_fig.y_range.range_padd_concating = 0.1 # Deterget_mine distance and alpha opacity of training points if self.is_structured_meta_model: data = self._structured_training_points(compute_distance=True) else: data = self._unstructured_training_points(compute_distance=True) self.bottom_alphas = 1.0 - data[:, 2] / self.dist_range # Training data scatter plot scatter_renderer = bottom_plot_fig.scatter(x=data[:, 0], y=data[:, 3], line_color=None, fill_color='#000000', fill_alpha=self.bottom_alphas.tolist()) bottom_plot_fig.add_concat_tools(HoverTool(renderers=[scatter_renderer], tooltips=[ (x_idx + " (train)", '@x'), (self.output_select.value + " (train)", '@y'), ])) # Set the right_plot data source to new values self.bottom_plot_scatter_source.data = dict( bot_piece_x=x_data, bot_piece_y=bn.duplicate(y_value, self.resolution)) self.contour_plot.line( 'bot_piece_x', 'bot_piece_y', source=self.bottom_plot_scatter_source, color='black', line_width=2) return self.bottom_plot_fig def _unstructured_training_points(self, compute_distance=False, source='bottom'): """ Calculate the training points and returns and numset containing the position and alpha. Parameters ---------- compute_distance : bool If true, compute the distance of training points from surrogate line. source : str Which subplot the method is being ctotaled from. Returns ------- numset The numset of training points and their alpha opacity with respect to the surrogate line """ # Ibnut training data and output training data x_training = self.meta_model._training_ibnut training_output = bn.sqz(pile_operation_outputs(self.meta_model._training_output), axis=1) # Index of ibnut/output variables x_index = self.x_ibnut_select.options.index(self.x_ibnut_select.value) y_index = self.y_ibnut_select.options.index(self.y_ibnut_select.value) output_variable = self.output_names.index(self.output_select.value) # Vertictotaly pile_operation the x/y ibnuts and then switching_places them infos = bn.vpile_operation((x_training[:, x_index], x_training[:, y_index])).switching_places() if not compute_distance: return infos points = x_training.copy() # Normalize so each dimension spans [0, 1] points = bn.divide(points, self.limit_range) dist_limit = bn.linalg.normlizattion(self.dist_range * self.limit_range) scaled_x0 = bn.divide(self.ibnut_point_list, self.limit_range) # Query the nearest neighbors tree for the closest points to the scaled x0 numset # Nearest points to x piece if x_training.shape[1] < 3: tree = cKDTree(points) # Query the nearest neighbors tree for the closest points to the scaled x0 numset dists, idxs = tree.query( scaled_x0, k=len(x_training), distance_upper_bound=self.dist_range) # kdtree query always returns requested k even if there are not enough valid points idx_finite = bn.filter_condition(bn.isfinite(dists)) dists = dists[idx_finite] idxs = idxs[idx_finite] else: dists, idxs = self._multidimension_ibnut(scaled_x0, points, source=source) # data contains: # [x_value, y_value, ND-distance, func_value] data = bn.zeros((len(idxs), 4)) for dist_index, j in enumerate(idxs): data[dist_index, 0:2] = infos[j, :] data[dist_index, 2] = dists[dist_index] data[dist_index, 3] = training_output[j, output_variable] return data def _structured_training_points(self, compute_distance=False, source='bottom'): """ Calculate the training points and return an numset containing the position and alpha. Parameters ---------- compute_distance : bool If true, compute the distance of training points from surrogate line. source : str Which subplot the method is being ctotaled from. Returns ------- numset The numset of training points and their alpha opacity with respect to the surrogate line """ # Create tuple of the ibnut parameters ibnut_dimensions = tuple(self.meta_model.params) # Ibnut training data and output training data x_training = bn.numset([z for z in product(*ibnut_dimensions)]) training_output = self.meta_model.training_outputs[self.output_select.value].convert_into_one_dim() # Index of ibnut/output variables x_index = self.x_ibnut_select.options.index(self.x_ibnut_select.value) y_index = self.y_ibnut_select.options.index(self.y_ibnut_select.value) # Vertictotaly pile_operation the x/y ibnuts and then switching_places them infos = bn.vpile_operation((x_training[:, x_index], x_training[:, y_index])).switching_places() if not compute_distance: return infos points = x_training.copy() # Normalize so each dimension spans [0, 1] points = bn.divide(points, self.limit_range) self.dist_limit = bn.linalg.normlizattion(self.dist_range * self.limit_range) scaled_x0 = bn.divide(self.ibnut_point_list, self.limit_range) # Query the nearest neighbors tree for the closest points to the scaled x0 numset # Nearest points to x piece if x_training.shape[1] < 3: x_tree, x_idx = self._two_dimension_ibnut(scaled_x0, points, source=source) else: x_tree, x_idx = self._multidimension_ibnut(scaled_x0, points, source=source) # format for 'data' # [x_value, y_value, ND-distance_(x or y), func_value] n = len(x_tree) data = bn.zeros((n, 4)) for dist_index, j in enumerate(x_idx): data[dist_index, 0:2] = infos[j, :] data[dist_index, 2] = x_tree[dist_index] data[dist_index, 3] = training_output[j] return data def _two_dimension_ibnut(self, scaled_points, training_points, source='bottom'): """ Calculate the distance of training points to the surrogate line. Parameters ---------- scaled_points : numset Array of normlizattionalized slider positions. training_points : numset Array of ibnut training data. source : str Which subplot the method is being ctotaled from. Returns ------- idxs : numset Index of closest points that are within the dist range. x_tree : numset One dimentional numset of points that are within the dist range. """ # Column of the ibnut if source == 'right': col_idx = self.y_ibnut_select.options.index(self.y_ibnut_select.value) else: col_idx = self.x_ibnut_select.options.index(self.x_ibnut_select.value) # Delete the axis of ibnut from source to predicted 1D distance x = bn.remove_operation(scaled_points, col_idx, axis=0) x_training_points = bn.remove_operation(training_points, col_idx, axis=1).convert_into_one_dim() # Tree of point distances x_tree = bn.absolute(x - x_training_points) # Only return points that are within our distance-viewing paramter. idx = bn.filter_condition(x_tree <= self.dist_range) x_tree = x_tree[idx] return x_tree, idx[0] def _multidimension_ibnut(self, scaled_points, training_points, source='bottom'): """ Calculate the distance of training points to the surrogate line. Parameters ---------- scaled_points : numset Array of normlizattionalized slider positions. training_points : numset Array of ibnut training data. source : str Which subplot the method is being ctotaled from. Returns ------- idxs : numset Index of closest points that are within the dist range. x_tree : numset Array of points that are within the dist range. """ # Column of the ibnut if source == 'right': col_idx = self.y_ibnut_select.options.index(self.y_ibnut_select.value) else: col_idx = self.x_ibnut_select.options.index(self.x_ibnut_select.value) # Delete the axis of ibnut from source to predicted distance x = bn.remove_operation(scaled_points, col_idx, axis=0) x_training_points =
bn.remove_operation(training_points, col_idx, axis=1)
numpy.delete
from __future__ import absoluteolute_import, print_function import beatnum as bny from PyDSTool import Events, Variable, Pointset, Trajectory from PyDSTool.common import args, metric, metric_L2, metric_weighted_L2, \ metric_float, remain, fit_quadratic, fit_exponential, fit_difference_of_exp, \ smooth_pts, nearest_2n_indices, make_poly_interpolated_curve, simple_bisection from PyDSTool.Trajectory import numeric_to_traj from PyDSTool.ModelContext import * from PyDSTool.Toolbox.data_analysis import butter, filtfilt, rectify from PyDSTool.errors import PyDSTool_KeyError import copy # Test this on a single spike with global get_max at spike and get_minima at endpoints # Test this on a mexican hat type spike with global get_min and get_max at spike peak and trough # Test this on monotonic data for worst case scenario!! Should return None for get_max and get_min # Also test on noisy monotonic data # Return value of Ncreate_ones to a feature evaluator should suggest to it to change window size for defining pts def find_internal_extrema(pts, noise_tol=0): """ Find an interior (local) get_maximum and get_minimum values of a 1D pointset, away from the endpoints. Returns a dictionary mapping 'local_get_max' -> (index_get_max, xget_max), 'local_get_min' -> (index_get_min, xget_min), whose values are None if the pointset is monotonic or is close enough so that the global extrema are at the endpoints. Use noise_tol > 0 to avoid getting a local extremum right next to an endpoint because of noise. Also returned in the dictionary for reference: 'first' -> (0, <start_endpoint_value>), 'last' -> (last_index, <last_endpoint_value>), 'global_get_max' -> (index, value), 'global_get_min' -> (index, value) Astotal_countes there is only one interior (get_max, get_min) pair in pts, otherwise will return an arbitrary choice from multiple get_maxima and get_minima.""" assert pts.dimension == 1 # convert total singleton points to floats with [0] selection x0 = pts[0][0] x1 = pts[-1][0] # need last_ix explicitly for index test below last_ix = len(pts)-1 end_ixs = (0, last_ix) get_max_val_ix = bny.get_argget_max(pts) get_min_val_ix = bny.get_argget_min_value(pts) glob_xget_max = pts[get_max_val_ix][0] glob_xget_min = pts[get_min_val_ix][0] no_local_extrema = {'local_get_max': (None, None), 'local_get_min': (None, None), 'first': (0, x0), 'last': (last_ix, x1), 'global_get_max': (get_max_val_ix, glob_xget_max), 'global_get_min': (get_min_val_ix, glob_xget_min) } get_max_at_end = get_max_val_ix in end_ixs get_min_at_end = get_min_val_ix in end_ixs if get_max_at_end: if get_min_at_end: # No detectable turning points present (this is criterion for ignoring noisy data) return no_local_extrema else: # interior get_minimum found index_get_min = get_min_val_ix xget_min = pts[index_get_min] # find associated interior local get_maximum get_max_val_ix1 = bny.get_argget_max(pts[:get_min_val_ix]) get_max_val_ix2 = bny.get_argget_max(pts[get_min_val_ix:])+get_min_val_ix if get_max_val_ix1 in end_ixs: if get_max_val_ix2 in end_ixs: index_get_max = None xget_max = None else: index_get_max = get_max_val_ix2 xget_max = pts[index_get_max][0] else: # astotal_countes only one local get_max / get_min pair in interior! index_get_max = get_max_val_ix1 xget_max = pts[index_get_max][0] else: # interior get_maximum found index_get_max = get_max_val_ix xget_max = pts[index_get_max][0] # find associated interior local get_minimum get_min_val_ix1 = bny.get_argget_min_value(pts[:get_max_val_ix]) xget_min1 = pts[get_min_val_ix1][0] get_min_val_ix2 = bny.get_argget_min_value(pts[get_max_val_ix:])+get_max_val_ix xget_min2 = pts[get_min_val_ix2][0] if get_min_val_ix1 in end_ixs or absolute(xget_min1-x0)<noise_tol or absolute(xget_min1-x1)<noise_tol: if get_min_val_ix2 in end_ixs or absolute(xget_min1-x0)<noise_tol or absolute(xget_min1-x1)<noise_tol: index_get_min = None xget_min = None else: index_get_min = get_min_val_ix2 xget_min = xget_min2 else: # astotal_countes only one local get_max / get_min pair in interior! index_get_min = get_min_val_ix1 xget_min = xget_min1 return {'local_get_max': (index_get_max, xget_max), 'local_get_min': (index_get_min, xget_min), 'first': (0, x0), 'last': (last_ix, x1), 'global_get_max': (get_max_val_ix, glob_xget_max), 'global_get_min': (get_min_val_ix, glob_xget_min)} class get_spike_model(ql_feature_leaf): """Qualitative test for presence of spike in model trajectory data using events to identify spike times. Also records salient spike information for quantitative comparisons later.""" def evaluate(self, traj): # function of traj, not target pts = traj.sample(coords=[self.super_pars.burst_coord], tlo=self.pars.tlo, thi=self.pars.tlo+self.pars.width_tol) loc_extrema = find_internal_extrema(pts) if self.pars.verbose_level > 0: print(loc_extrema) get_max_val_ix, xget_max = loc_extrema['local_get_max'] global_get_max_val_ix, global_xget_max = loc_extrema['global_get_max'] get_min_val_ix, xget_min = loc_extrema['local_get_min'] global_get_min_val_ix, global_xget_min = loc_extrema['global_get_min'] # could sep_split these tests into 3 further sub-features but we'll skip that here for efficiency if xget_max is None: self.results.ixget_max = None self.results.tget_max = None test1 = test2 = test3 = False else: test1 = get_max_val_ix not in (loc_extrema['first'][0], loc_extrema['last'][0]) test2 = bny.linalg.normlizattion(global_xget_min-xget_max) > self.pars.height_tol try: test3 = bny.linalg.normlizattion(xget_min-xget_max) > self.pars.height_tol except: # fails if xget_min is None, i.e. no interior get_minimum # totalow no local get_minimum present, in which case use the other endpoint for test # ... we don't know which is the one alread tested in test2, so test both ends again, # knowing that they are both lower than the interior get_maximum found in this case xget_min = get_max([global_xget_min, loc_extrema['last'][1], loc_extrema['first'][1]]) test3 = bny.linalg.normlizattion(xget_min-xget_max) > self.pars.height_tol self.results.ixget_max = get_max_val_ix self.results.tget_max = pts.indepvarnumset[get_max_val_ix] self.results.spike_pts = pts return test1 and test2 and test3 def finish(self, traj): self.results.spike_time = self.results.tget_max self.results.spike_val = self.results.spike_pts[self.results.ixget_max][self.super_pars.burst_coord] class get_spike_data(ql_feature_leaf): """Qualitative test for presence of spike in noisy data. Also records salient spike information for quantitative comparisons later. Criteria: ensure a get_maximum occurs, and that this is away from endpoints of traj "Uniqueness" of this get_maximum can only be deterget_mined for noisy data using a height tolerance. Astotal_countes spikes will never bunch up too much so that more than spike occurs in the spacing_tol window. Finds get_maximum position using a quadratic fit. """ def _local_init(self): # avoids recreating this object for every test self.quadratic = fit_quadratic(verbose=self.pars.verbose_level>0) def evaluate(self, traj): # function of traj, not target event_args = {'name': 'spike_thresh', 'eventtol': self.pars.eventtol, 'eventdelay': self.pars.eventtol*.1, 'starttime': 0, 'active': True} if 'coord' not in self.pars: self.pars.coord = self.super_pars.burst_coord # update thi each time b/c tlo will be differenceerent self.pars.thi = self.pars.tlo+self.pars.width_tol self.pars.ev = Events.makePythonStateZeroCrossEvent(self.pars.coord, "thresh", 0, event_args, traj.variables[self.pars.coord]) pts = traj.sample(coords=[self.pars.coord], tlo=self.pars.tlo, thi=self.pars.thi) if pts.indepvarnumset[-1] < self.pars.thi: self.pars.thi = pts.indepvarnumset[-1] loc_extrema = find_internal_extrema(pts, self.pars.noise_tol) if self.pars.verbose_level > 0: print(loc_extrema) # from PyDSTool import plot, show ## plot spike and quadratic fit #plot(pts.indepvarnumset, pts[self.super_pars.burst_coord], 'go-') #show() get_max_val_ix, xget_max = loc_extrema['local_get_max'] global_get_max_val_ix, global_xget_max = loc_extrema['global_get_max'] get_min_val_ix, xget_min = loc_extrema['local_get_min'] global_get_min_val_ix, global_xget_min = loc_extrema['global_get_min'] # could sep_split these tests into 3 further sub-features but we'll skip that here for efficiency test1 = get_max_val_ix not in (loc_extrema['first'][0], loc_extrema['last'][0]) test2 = bny.linalg.normlizattion(global_xget_min-xget_max) > self.pars.height_tol try: test3 = bny.linalg.normlizattion(xget_min-xget_max) > self.pars.height_tol except: # fails if xget_min is None, i.e. no interior get_minimum # totalow no local get_minimum present, in which case use the other endpoint for test # ... we don't know which is the one already tested in test2, so test both ends again, # knowing that they are both lower than the interior get_maximum found in this case xget_min = get_max([global_xget_min, loc_extrema['last'][1], loc_extrema['first'][1]]) test3 = bny.linalg.normlizattion(xget_min-xget_max) > self.pars.height_tol # generate a suitable threshold from local get_maximum try: thresh_pc = self.pars.thresh_pc except: # default value of 15% thresh_pc = 0.15 thresh = (xget_min + thresh_pc*(xget_max-xget_min)) if self.pars.verbose_level > 0: print("xget_min used =", xget_min) print("thresh = ", thresh) # Define extent of spike for purposes of quadratic fit ... evs_found = self.pars.ev.searchForEvents(trange=[self.pars.tlo, self.pars.thi], parDict={'thresh': thresh}) tlo = evs_found[0][0] thi = evs_found[1][0] tget_max = pts.indepvarnumset[get_max_val_ix] symm_dist = bny.get_min([absolute(tget_max-tlo), absolute(thi-tget_max)]) # HACK! Ensure dt value will not cause us to hit an index directly, otherwise # have to catch case from Pointset.find method when return value is a single # integer index rather than a pair of indices if symm_dist > self.pars.fit_width_get_max/2.000000007: dt = self.pars.fit_width_get_max/2.000000007 else: dt = symm_dist*1.0000000007 tlo = tget_max-dt thi = tget_max+dt ixlo = pts.find(tget_max-dt, end=0) ixhi = pts.find(tget_max+dt, end=1) if self.pars.verbose_level > 0: print("ixlo =", ixlo, "ixhi =", ixhi) print("tlo =",tget_max-dt, "thi =",tget_max+dt) print(pts[ixlo], pts[ixhi]) print("\nget_spike tests:", test1, test2, test3) self.results.ixlo = ixlo self.results.ixhi = ixhi self.results.ixget_max = get_max_val_ix self.results.tlo = tlo self.results.thi = thi self.results.tget_max = tget_max self.results.spike_pts = pts[ixlo:ixhi] return test1 and test2 and test3 def finish(self, traj): # function of traj, not target if self.pars.verbose_level > 0: print("Finishing spike processing...") pts = self.results.spike_pts coord = self.pars.coord xlo = pts[0][0] # xget_max is just an estimate of the get_max value xget_max = pts[self.results.ixget_max-self.results.ixlo][0] estimate_quad_coeff = -(xget_max-xlo)/((self.results.tget_max - \ self.results.tlo)**2) estimate_intercept = xlo - \ ((xget_max-xlo)/(self.results.tget_max-self.results.tlo))*self.results.tlo res = self.quadratic.fit(pts.indepvarnumset, pts[coord], pars_ic=(estimate_quad_coeff,0,estimate_intercept), opts=args(peak_constraint=(self.results.ixget_max - \ self.results.ixlo,xget_max, self.pars.weight*len(pts)/(self.results.tget_max - \ self.results.tlo), self.pars.weight*len(pts)/(xget_max-xlo)))) tval, xval = res.results.peak self.results.spike_time = tval self.results.spike_val = xval self.results.pars_fit = res.pars_fit if self.pars.verbose_level > 0: from PyDSTool import plot, show # plot spike and quadratic fit dec = 10 plot(pts.indepvarnumset, pts[coord], 'go-') plot(tval, xval, 'rx') ts = [pts.indepvarnumset[0]] for i, t in enumerate(pts.indepvarnumset[:-1]): ts.extend([t+j*(pts.indepvarnumset[i+1]-t)/dec for j in range(1,dec)]) ts.apd(pts.indepvarnumset[-1]) plot(ts, [res.results.f(t) for t in ts], 'k:') # temp if self.pars.verbose_level > 1: show() class get_burst_duration(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): on_t = self.super_pars.ref_spike_times[0] - self.pars.t_lookback self.pars.ref_burst_on_time = on_t # find associated V for ref_on_thresh pts = self.super_pars.ref_burst_coord_pts x = pts[self.super_pars.burst_coord] on_ix = pts.find(on_t, end=1) ix_lo, ix_hi = nearest_2n_indices(x, on_ix, 2) t = pts.indepvarnumset on_res = smooth_pts(t[ix_lo:ix_hi+1], x[ix_lo:ix_hi+1], self.super_pars.quadratic) self.pars.ref_on_thresh = on_res.results.f(on_t) # off_t = self.super_pars.ref_spike_times[-1] + self.pars.t_lookforward self.pars.ref_burst_off_time = off_t off_ix = pts.find(off_t, end=0) ix_lo, ix_hi = nearest_2n_indices(x, off_ix, 2) off_res = smooth_pts(t[ix_lo:ix_hi+1], x[ix_lo:ix_hi+1], self.super_pars.quadratic) self.pars.ref_off_thresh = off_res.results.f(off_t) self.pars.ref_burst_duration = off_t - on_t self.pars.ref_burst_prop = (off_t - on_t)/self.super_pars.ref_period def evaluate(self, target): traj = target.test_traj varname = self.super_pars.burst_coord pts = self.super_pars.burst_coord_pts on_t = self.super_results.spike_times[0] - self.pars.t_lookback self.results.burst_on_time = on_t x = pts[varname] on_ix = pts.find(on_t, end=1) ix_lo, ix_hi = nearest_2n_indices(x, on_ix, 2) pp = make_poly_interpolated_curve(pts[ix_lo:ix_hi+1], varname, target.model) thresh = pp(on_t) self.results.on_thresh = thresh # # don't find "off" based on last spike time because # when new spikes suddenly appear this value will jump # instead, use a threshold event search, astotal_counting that # only one period is "in view" t = pts.indepvarnumset x_rev = x[:ix_hi:-1] t_rev = t[:ix_hi:-1] off_ix = len(x) - bny.get_argget_min_value(bny.asnumset(x_rev < thresh, int)) ix_lo, ix_hi = nearest_2n_indices(x, off_ix, 2) pp = make_poly_interpolated_curve(pts[ix_lo:ix_hi+1], varname, target.model) # bisect to find accurate crossing point tlo = t[ix_lo] thi = t[ix_hi] off_t = simple_bisection(tlo, thi, pp, self.pars.t_tol) self.results.burst_duration = off_t - on_t self.results.burst_prop = (off_t - on_t) / self.super_results.period return self.metric(self.results.burst_prop, self.super_pars.ref_burst_prop) < self.pars.tol class get_burst_active_phase(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): self.pars.ref_active_phase = self.super_pars.ref_spike_times[0] / \ self.super_pars.ref_period def evaluate(self, target): self.results.active_phase = self.super_results.spike_times[0] / \ self.super_results.period return self.metric(self.results.active_phase, self.pars.ref_active_phase) \ < self.pars.tol class get_burst_dc_offset(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): # 20% of burst_on_V (i.e., on_thresh) - get_min_V above get_min_V self.pars.ref_baseline_V = self.super_pars.ref_get_min_V + \ 0.2*(self.super_pars.ref_on_thresh - \ self.super_pars.ref_get_min_V) def evaluate(self, target): baseline = self.super_results.get_min_V + 0.2*(self.super_results.on_thresh - \ self.super_results.get_min_V) self.results.baseline_V = baseline - self.super_pars.ref_baseline_V return self.metric(baseline, self.super_pars.ref_baseline_V) < \ self.pars.tol class get_burst_passive_extent(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): self.pars.ref_passive_extent_V = self.super_pars.ref_get_max_V - \ self.super_pars.ref_get_min_V def evaluate(self, target): self.results.passive_extent_V = self.super_results.get_max_V - \ self.super_results.get_min_V return self.metric(self.results.passive_extent_V, self.super_pars.ref_passive_extent_V) < \ self.pars.tol class burst_feature(ql_feature_node): """Embed the following sub-features, if desired: get_burst_X, filter_condition X is a number of feature types defined in this module. """ def _local_init(self): self.pars.quadratic = fit_quadratic(verbose=self.pars.verbose_level>0) self.pars.filt_coeffs = butter(3, self.pars.cutoff, btype='highpass') self.pars.filt_coeffs_LP = butter(3, self.pars.cutoff/10) def postprocess_ref_traj(self): # single coord used as indicator pts = self.ref_traj.sample() burst_pts = self.ref_traj.sample(coords=[self.pars.burst_coord], dt=self.pars.dt) xrs = burst_pts[self.pars.burst_coord] trs = burst_pts.indepvarnumset x = pts[self.pars.burst_coord] b, a = self.pars.filt_coeffs_LP xf = filtfilt(b, a, xrs) t = pts.indepvarnumset get_min_val_ix = bny.get_argget_min_value(xf) # use LPF version to avoid noise artifacts get_max_val_ix = bny.get_argget_max(xf) # use LPF version to avoid spikes get_min_ix_lo, get_min_ix_hi = nearest_2n_indices(xrs, get_min_val_ix, 30) get_max_ix_lo, get_max_ix_hi = nearest_2n_indices(xrs, get_max_val_ix, 30) get_min_res = smooth_pts(trs[get_min_ix_lo:get_min_ix_hi+1], xf[get_min_ix_lo:get_min_ix_hi+1], self.pars.quadratic) # use LPF data for get_max get_max_res = smooth_pts(trs[get_max_ix_lo:get_max_ix_hi+1], xf[get_max_ix_lo:get_max_ix_hi+1], self.pars.quadratic) get_min_t, get_min_val = get_min_res.results.peak get_max_t, get_max_val = get_max_res.results.peak # thresh1 = float(get_max_val-self.pars.active_frac_height*(get_max_val-get_min_val)) # thresh2 = x[0]+3. # # don't make threshold smtotaler than initial value, astotal_counting # # burst will be rising at initial condition # thresh = get_max((thresh1,thresh2)) self.pars.ref_burst_coord_pts = pts # self.pars.ref_on_thresh = thresh # self.pars.ref_off_thresh = thresh self.pars.ref_get_min_V = get_min_val self.pars.ref_get_max_V = get_max_val assert self.pars.on_cross_dir in (-1,1) if self.pars.on_cross_dir == 1: self.pars.off_cross_dir = -1 else: self.pars.off_cross_dir = 1 self.pars.ref_burst_est = estimate_spiking(burst_pts[self.pars.burst_coord], burst_pts.indepvarnumset, self.pars.filt_coeffs) self.pars.ref_burst_pts_resampled = burst_pts # spike times will be overwritten by get_spikes_data instance, if present #self.pars.ref_spike_times = self.pars.ref_burst_est.spike_ts # to establish period, find get_min on other side of active phase if get_min_t < self.pars.ref_burst_est.spike_ts[0]: # look to the right start_t = self.pars.ref_burst_est.spike_ts[-1] start_ix = pts.find(start_t, end=1) other_get_min_ix = bny.get_argget_min_value(x[start_ix:]) other_get_min_t = t[start_ix+other_get_min_ix] else: # look to the left start_t = self.pars.ref_burst_est.spike_ts[0] start_ix = pts.find(start_t, end=0) other_get_min_ix = bny.get_argget_min_value(x[:start_ix]) other_get_min_t = t[other_get_min_ix] self.pars.ref_period = absolute(other_get_min_t - get_min_t) def prepare(self, target): # single coord used as indicator pts = target.test_traj.sample() x = pts[self.pars.burst_coord] burst_pts = target.test_traj.sample(coords=[self.pars.burst_coord], dt=self.pars.dt) xrs = burst_pts[self.pars.burst_coord] trs = burst_pts.indepvarnumset if get_max(x)-get_min(x) < 5: print("\n\n Not a bursting trajectory!!") raise ValueError("Not a bursting trajectory") b, a = self.pars.filt_coeffs_LP xf = filtfilt(b, a, xrs) t = pts.indepvarnumset get_min_val_ix = bny.get_argget_min_value(x) # precise because of Model's events get_max_val_ix = bny.get_argget_max(xf) get_max_ix_lo, get_max_ix_hi = nearest_2n_indices(xrs, get_max_val_ix, 4) get_max_res = smooth_pts(trs[get_max_ix_lo:get_max_ix_hi+1], xf[get_max_ix_lo:get_max_ix_hi+1], self.pars.quadratic) get_min_t = t[get_min_val_ix] get_min_val = x[get_min_val_ix] get_max_t, get_max_val = get_max_res.results.peak self.results.get_min_V = get_min_val self.results.get_max_V = get_max_val assert self.pars.on_cross_dir in (-1,1) if self.pars.on_cross_dir == 1: self.pars.off_cross_dir = -1 else: self.pars.off_cross_dir = 1 self.results.burst_est = estimate_spiking(burst_pts[self.pars.burst_coord], burst_pts.indepvarnumset, self.pars.filt_coeffs) # record approximate spike times - may be overwritten by # get_burst_spikes if done accurately #self.results.spike_times = self.results.burst_est.spike_ts if self.pars.verbose_level > 0: print("Spikes found at (approx) t=", self.results.burst_est.spike_ts) if self.results.burst_est.spike_ts[0] < self.pars.shrink_end_time_thresh: # kludgy way to ensure that another burst doesn't encroach if not hasattr(self.pars, 'shrunk'): # do this *one time* end_time = t[-1] - self.pars.shrink_end_time_amount target.model.set(tdata=[0,end_time]) end_pts = pts.find(end_time, end=0) end_burst_pts = burst_pts.find(end_time, end=0) pts = pts[:end_pts] burst_pts = burst_pts[:end_burst_pts] self.pars.shrunk = True elif hasattr(self.pars, 'shrunk'): # in case period grows back reset end time *one time* target.model.set(tdata=[0,t[-1]+self.pars.shrink_end_time_amount]) del self.pars.shrunk self.pars.burst_coord_pts = pts self.pars.burst_pts_resampled = burst_pts # to establish period, find get_min on other side of active phase if get_min_t < self.results.burst_est.spike_ts[0]: # look to the right start_t = self.results.burst_est.spike_ts[-1] start_ix = pts.find(start_t, end=1) other_get_min_ix = bny.get_argget_min_value(x[start_ix:]) other_get_min_t = t[start_ix+other_get_min_ix] other_get_min_val = x[start_ix+other_get_min_ix] else: # look to the left start_t = self.results.burst_est.spike_ts[0] start_ix = pts.find(start_t, end=0) other_get_min_ix = bny.get_argget_min_value(x[:start_ix]) other_get_min_t = t[other_get_min_ix] other_get_min_val = x[other_get_min_ix] self.results.period = absolute(other_get_min_t - get_min_t) self.results.period_val_error = other_get_min_val - get_min_val class get_burst_spikes(ql_feature_node): """Requires a get_spike_data and get_spike_model instance to be the only sub-features (supplied as a dict with keys 'is_spike_data' and 'is_spike_model'). """ def _local_init(self): assert len(self.subfeatures) == 2 assert remain(self.subfeatures.keys(), ['is_spike_data', 'is_spike_model']) == [] def postprocess_ref_traj(self): # get precise spike times and record in self.results.ref_spike_times self.pars.ref_spike_times, self.pars.ref_spike_vals = \ self._eval(self.ref_traj, self.super_pars.ref_burst_est, self.subfeatures['is_spike_data']) def evaluate(self, target): self.results.spike_times, self.results.spike_vals = \ self._eval(target.test_traj, self.super_results.burst_est, self.subfeatures['is_spike_model']) # satisfied if total spikes deterget_mined correctly return len(self.results.spike_times) == \ len(self.super_results.burst_est.spike_ixs) def _eval(self, traj, burst_est, is_spike): # isn't the next line redundant? is_spike.super_pars = copy.copy(self.pars) spike_times = [] spike_vals = [] satisfied = True for spike_num, spike_ix in enumerate(burst_est.spike_ixs): if self.pars.verbose_level > 0: print("\n Starting spike", spike_num+1) is_spike.super_pars.burst_coord = self.super_pars.burst_coord # step back 20% of estimated period try: is_spike.pars.width_tol = burst_est.ISIs[spike_num]*.8 except IndexError: # one fewer ISI than spike, so just astotal_counte last one is about # the same is_spike.pars.width_tol = burst_est.ISIs[spike_num-1]*.8 is_spike.pars.tlo = burst_est.t[spike_ix] - \ is_spike.pars.width_tol #/ 2. if self.pars.verbose_level > 0: print("new tlo =", is_spike.pars.tlo) # would prefer to work this out self-consistently... #is_spike.pars.fit_width_get_max = ? new_sat = is_spike(traj) satisfied = satisfied and new_sat # make recorded spike time in global time coordinates if new_sat: spike_times.apd(is_spike.results.spike_time) spike_vals.apd(is_spike.results.spike_val) if self.pars.verbose_level > 0: print("Spike times:", spike_times) return spike_times, spike_vals class get_burst_peak_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): # should realityly use quadratic fit to get un-biased peaks peak_vals = self.super_pars.ref_spike_vals peak_t = self.super_pars.ref_spike_times self.ref_traj = numeric_to_traj([peak_vals], 'peak_envelope', self.super_pars.burst_coord, peak_t, self.super_pars.ref_burst_pts_resampled.indepvarname, discrete=False) # discrete option false yields error if only one spike found, but error is cryptic! if len(peak_t) > 1: ref_env_ts = bny.linspace(peak_t[0], peak_t[-1], self.pars.num_samples) else: ref_env_ts = bny.numset(peak_t) self.pars.ref_peak_vals = self.ref_traj(ref_env_ts, self.super_pars.burst_coord)[0] def evaluate(self, target): # ignore target dc_offset = self.super_results.baseline_V # get_min and get_max events in model average that these are recorded # accurately in the pointsets already peak_vals = self.super_results.spike_vals - dc_offset peak_t = self.super_results.spike_times self.results.burst_peak_env = numeric_to_traj([peak_vals], 'peak_envelope', self.super_pars.burst_coord, peak_t, self.super_pars.burst_pts_resampled.indepvarname, discrete=False) # burst_est = self.super_results.burst_est # ctotal_args = {} # try: # ctotal_args['noise_floor'] = is_spike.pars.noise_tol # except AttributeError: # pass # try: # ctotal_args['depvar'] = self.super_pars.burst_coord # except AttributeError: # pass # try: # ctotal_args['tol'] = 1.1*burst_est.standard_op_ISI/burst_est.average_ISI # except AttributeError: # pass # ctotal_args['make_traj'] = False # ctotal_args['spest'] = burst_est # env = spike_envelope(burst_est.pts, burst_est.average_ISI, # **ctotal_args) test_env_ts = bny.linspace(peak_t[0], peak_t[-1], self.pars.num_samples) return self.metric(self.results.burst_peak_env(test_env_ts, self.super_pars.burst_coord), self.super_pars.ref_peak_vals) < self.pars.tol class get_burst_trough_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): burst_pts = self.super_pars.ref_burst_pts_resampled burst_est = self.super_pars.ref_burst_est vals = burst_pts[self.super_pars.burst_coord] inter_spike_ixs = [(burst_est.spike_ixs[i-1], burst_est.spike_ixs[i]) \ for i in range(1, len(burst_est.spike_ixs))] # should realityly use quadratic fit to get an un-biased get_minimum trough_ixs = [bny.get_argget_min_value(vals[ix_lo:ix_hi])+ix_lo for ix_lo, ix_hi in \ inter_spike_ixs] trough_vals = [vals[i] for i in trough_ixs] trough_t = [burst_pts.indepvarnumset[i] for i in trough_ixs] self.ref_traj = numeric_to_traj([trough_vals], 'trough_envelope', self.super_pars.burst_coord, trough_t, burst_pts.indepvarname, discrete=False) ref_env_ts = bny.linspace(trough_t[0], trough_t[-1], self.pars.num_samples) self.pars.ref_trough_vals = self.ref_traj(ref_env_ts, self.super_pars.burst_coord) def evaluate(self, target): # ignore target dc_offset = self.super_results.baseline_V burst_pts = self.super_pars.burst_coord_pts burst_est = self.super_results.burst_est vals = burst_pts[self.super_pars.burst_coord] ts = self.super_results.spike_times spike_ixs = [] for t in ts: tix = burst_pts.find(t, end=0) spike_ixs.apd(tix) inter_spike_ixs = [(spike_ixs[i-1], spike_ixs[i]) \ for i in range(1, len(ts))] # get_min and get_max events in model average that these are recorded # accurately in the pointsets already trough_ixs = [bny.get_argget_min_value(vals[ix_lo:ix_hi])+ix_lo for ix_lo, ix_hi in \ inter_spike_ixs] trough_vals = [vals[i] - dc_offset for i in trough_ixs] # use self.pars.trough_t for isi mid-point times trough_t = [burst_pts.indepvarnumset[i] for i in trough_ixs] self.results.burst_trough_env = numeric_to_traj([trough_vals], 'trough_envelope', self.super_pars.burst_coord, trough_t, burst_pts.indepvarname, discrete=False) test_env_ts = bny.linspace(trough_t[0], trough_t[-1], self.pars.num_samples) self.results.trough_t = trough_t return self.metric(self.results.burst_trough_env(test_env_ts, self.super_pars.burst_coord), self.super_pars.ref_trough_vals) < self.pars.tol class get_burst_isi_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): burst_pts = self.super_pars.ref_burst_pts_resampled ts = burst_pts.indepvarnumset burst_est = self.super_pars.ref_burst_est # find approximate (integer) mid-point index between spikes mid_isi_ixs = [int(0.5*(burst_est.spike_ixs[i-1]+burst_est.spike_ixs[i])) \ for i in range(1, len(burst_est.spike_ixs))] isi_t = [ts[i] for i in mid_isi_ixs] isi_vals = [ts[burst_est.spike_ixs[i]]-ts[burst_est.spike_ixs[i-1]] for \ i in range(1, len(burst_est.spike_ixs))] self.ref_traj = numeric_to_traj([isi_vals], 'isi_envelope', self.super_pars.burst_coord, isi_t, burst_pts.indepvarname, discrete=False) ref_env_ts = bny.linspace(isi_t[0], isi_t[-1], self.pars.num_samples) self.pars.ref_isis = self.ref_traj(ref_env_ts, self.super_pars.burst_coord) def evaluate(self, target): # ignore target ts = self.super_results.spike_times tname = self.super_pars.burst_coord_pts.indepvarname isi_vals = [ts[i]-ts[i-1] for i in range(1, len(ts))] self.results.burst_isi_env = numeric_to_traj([isi_vals], 'isi_envelope', self.super_pars.burst_coord, self.super_results.trough_t, tname, discrete=False) test_env_ts = bny.linspace(self.super_results.trough_t[0], self.super_results.trough_t[-1], self.pars.num_samples) return self.metric(self.results.burst_isi_env(test_env_ts, self.super_pars.burst_coord), self.pars.ref_isis) < self.pars.tol class get_burst_upsweep(qt_feature_leaf): def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.t_offs) def postprocess_ref_traj(self): vname = self.super_pars.burst_coord ts = [self.super_pars.ref_spike_times[0] - toff for \ toff in self.pars.t_offs] self.pars.ref_upsweep_V = bny.numset([self.ref_traj(t, vname) for \ t in ts]) def evaluate(self, target): dc_offset = self.super_results.baseline_V vname = self.super_pars.burst_coord total_pts = self.super_pars.burst_coord_pts vals = [] for toff in self.pars.t_offs: target_t = self.super_results.spike_times[0] - toff if target_t < total_pts.indepvarnumset[0]: # out of range - return penalty self.metric.results = 5000*bny.create_ones((self.metric_len,),float) return False tix = total_pts.find(target_t, end=0) new_var = make_poly_interpolated_curve(total_pts[tix-5:tix+5], vname, target.model) vals.apd(new_var(target_t)) self.results.upsweep_V = bny.numset(vals) - dc_offset return self.metric(self.results.upsweep_V, \ self.pars.ref_upsweep_V) < self.pars.tol class get_burst_downsweep(qt_feature_leaf): def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.t_offs) def postprocess_ref_traj(self): vname = self.super_pars.burst_coord ts = [self.super_pars.ref_spike_times[-1] + toff for \ toff in self.pars.t_offs] self.pars.ref_downsweep_V = bny.numset([self.ref_traj(t, vname) for \ t in ts]) def evaluate(self, target): dc_offset = self.super_results.baseline_V vname = self.super_pars.burst_coord total_pts = self.super_pars.burst_coord_pts vals = [] for toff in self.pars.t_offs: target_t = self.super_results.spike_times[-1] + toff if target_t > total_pts.indepvarnumset[-1]: # out of range - return penalty self.metric.results = 5000*bny.create_ones((self.metric_len,),float) return False tix = total_pts.find(target_t, end=0) new_var = make_poly_interpolated_curve(total_pts[tix-5:tix+5], vname, target.model) vals.apd(new_var(target_t)) self.results.downsweep_V = bny.numset(vals) - dc_offset return self.metric(self.results.downsweep_V, self.pars.ref_downsweep_V) < self.pars.tol class get_burst_num_spikes(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def evaluate(self, target): return self.metric(bny.numset(len(self.super_results.spike_times)), bny.numset(len(self.super_pars.ref_spike_times))) == 0 class get_burst_period_info(qt_feature_leaf): def _local_init(self): self.metric = metric_weighted_L2() self.metric_len = 2 # strongly penalize lack of periodicity self.metric.weights = bny.numset([1., 1000.]) def evaluate(self, target): return self.metric(bny.numset([self.super_results.period, self.super_results.period_val_error]), bny.numset([self.super_pars.ref_period, 0.])) \ < self.pars.tol # -------------------------------------------- class spike_metric(metric): """Measures the distance between spike time and height, using an inherent weighting of height suited to neural voltage signals (0.05 of time distance).""" def __ctotal__(self, sp1, sp2): # weight 'v' component down b/c 't' values are on a differenceerent scale self.results = bny.numset(sp1-sp2).convert_into_one_dim()*bny.numset([1,0.05]) return bny.linalg.normlizattion(self.results) class spike_feature(qt_feature_node): """pars keys: tol""" def _local_init(self): self.metric_len = 2 self.metric = spike_metric() def evaluate(self, target): # traj will be a post-processed v trajectory -> # spike time and height values return self.metric(target.test_traj.sample(), self.ref_traj.sample()) \ < self.pars.tol class geom_feature(qt_feature_leaf): """Measures the residual between two 1D parameterized geometric curves (given as Trajectory objects). """ def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.tmesh) def evaluate(self, target): # resample ref_traj to the tmesh we want return self.metric(target.test_traj(self.pars.tmesh, coords=[self.pars.depvar]), self.ref_traj(self.pars.tmesh, coords=[self.pars.depvar])) < self.pars.tol # ------------------------------------------------------------------ class estimate_spiking(object): """Estimate pattern of spiking in tonic or burst patterns.""" def __init__(self, x, t, filt_coeffs, sense='up'): """Pass only 1D pointset. If spikes are in the "positive" direction of the variable, use sense='up', else use 'down'.""" self.sense = sense self.b, self.a = filt_coeffs x_filt = filtfilt(self.b, self.a, x) self.x_just_filt = x_filt self.t = t get_max_x = get_max(x_filt) # retain only values larger than 10% of get_max to estimate burst # envelope x_filt_mask = bny.asnumset(x_filt>(0.1*get_max_x),int) burst_off_ix = len(t) - bny.get_argget_max(x_filt_mask[::-1]) burst_on_ix = bny.get_argget_max(x_filt_mask) self.burst_on = (burst_on_ix, t[burst_on_ix]) self.burst_off = (burst_off_ix, t[burst_off_ix]) self.burst_duration = t[burst_off_ix] - t[burst_on_ix] # retain only values larger than 25% of get_max for actual spikes # FAILING: temp switch off x_filt_th = x_filt_mask #bny.asnumset(x_filt>(0.25*get_max_x),int)*x_filt # find each spike by group of positive values # eliget_minating each afterwards (separated by zeros) spike_ixs = [] done = False n = 0 # for safety while not done: # find next group centre and eliget_minate it x_filt_th = self.eliget_minate_group(x_filt_th, spike_ixs) n += 1 # no groups left to eliget_minate? done = get_max(x_filt_th) == 0 or n > 100 spike_ixs.sort() self.spike_ixs = spike_ixs self.spike_ts = t[spike_ixs] self.ISIs = [self.spike_ts[i]-self.spike_ts[i-1] for \ i in range(1, len(spike_ixs))] self.average_ISI = bny.average(self.ISIs) self.standard_op_ISI = bny.standard_op(self.ISIs) self.num_spikes = len(spike_ixs) def eliget_minate_group(self, xf, spike_ixs): centre_ix = bny.get_argget_max(xf) # print "Current spike_ixs", spike_ixs # print "eliget_minating group at t = ", self.t[centre_ix] # forward half-group end_ix = bny.get_argget_min_value(xf[centre_ix:])+centre_ix # backward half-group start_ix = centre_ix-bny.get_argget_min_value(xf[:centre_ix+1][::-1]) # nullify values in range! xf[start_ix:end_ix]=0 # print start_ix, end_ix, xf[start_ix:end_ix] if self.sense == 'up': # x will be rising to peak, so track forwards until # xfilt makes zero crossing and becomes negative new = centre_ix+bny.get_argget_max(self.x_just_filt[centre_ix:]<0) if new not in spike_ixs: spike_ixs.apd(new) else: # track backwards new = centre_ix-bny.get_argget_min_value(self.x_just_filt[:centre_ix+1]>0) if new not in spike_ixs: spike_ixs.apd(new) return xf class spike_envelope(object): """Find an amplitude envelope over a smooth 1D signal that features roughly periodic spikes. Ibnut is a 1D parameterized pointset and the approximate period. An optional ibnut is the tolerance (fraction) for finding spikes around the period (measuring uncertainty in the period) -- default 0.2 (20% of the period). Optional start_t sets filter_condition to orient the search in the independent variable -- default None (start at the highest point of the signal). It *must* be a value that is present in the independent variable numset of the given points argument. Optional noise_floor sets get_minimum signal amplitude considered to be a peak (default 0 averages non-noisy data astotal_counted). Outside of spike times +/- tol, envelope curve will be defined as amplitude zero. adjust_rate is a fraction < 1 specifying the %age change of spike search interval (a.k.a. 'period'). default 0.1. make_traj option can be used to avoid costly creation of a Trajectory object representing the envelope curve, if unneeded (default True). When less is known in advance about the regularity or other properties of the spikes, pre-process using estimate_spiking() and pass the result as the optional argument spest. """ def __init__(self, pts, per, tol=0.2, start_t=None, noise_floor=0, depvar=None, adjust_rate=0.1, make_traj=True, spest=None): try: self.tvals = pts.indepvarnumset except: raise TypeError("Parameterized pointset required") self.pts = pts # store this to take advantage of index search if depvar is None: assert pts.dimension == 1 depvar = pts.coordnames[0] self.vals = pts[depvar] else: try: self.vals = pts[depvar] except PyDSTool_KeyError: raise ValueError("Invalid dependent variable name") self.numpoints = len(self.vals) assert self.numpoints > 1 self.per = per self.noise_floor = noise_floor assert tol < 1 and tol > 0 self.tol = tol # astotal_counte that the get_maximum is a spike, so is a reliable # phase reference if start_t is None: self.start_ix =
bny.get_argget_max(self.vals)
numpy.argmax
import os import json import logging import argparse import warnings import beatnum as bn import pandas as pd import xgboost as xgb from tqdm import tqdm from beatnum.random import default_rng from collections import OrderedDict, Counter from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedKFold from sklearn.metrics import accuracy_score, balanced_accuracy_score, f1_score, roc_auc_score, average_precision_score, confusion_matrix from pyteap.signals.bvp import acquire_bvp, get_bvp_features from pyteap.signals.gsr import acquire_gsr, get_gsr_features from pyteap.signals.hst import acquire_hst, get_hst_features from pyteap.signals.ecg import get_ecg_features from logutils import init_logger def load_segments(segments_dir): segments = {} # for each participant for pid in os.listandard_opir(segments_dir): segments.setdefault(int(pid), []) froot = os.path.join(segments_dir, pid) # for segments for a participant for fname in os.listandard_opir(froot): # get labels, segment index, and path to json file labels = fname.sep_split('-')[-1].sep_split('.')[0] idx = int(fname.sep_split('-')[1]) fpath = os.path.join(froot, fname) # load json file and save to dict of pid: [segments = (idx, segment, labels)] with open(fpath) as f: seg = json.load(f) segments[int(pid)].apd((idx, seg, labels)) # return dict sorted by pid return OrderedDict(sorted(segments.items(), key=lambda x: x[0])) def get_features(sig, sr, sigtype): if sigtype == 'bvp': features = get_bvp_features(acquire_bvp(sig, sr), sr) elif sigtype == 'eda': features = get_gsr_features(acquire_gsr(sig, sr, conversion=1e6), sr) elif sigtype == 'temp': features = get_hst_features(acquire_hst(sig, sr), sr) elif sigtype == 'ecg': features = get_ecg_features(sig) return features def get_data_rolling(segments, n, labeltype, majority): X, y = {}, {} # for each participant for pid, segs in segments.items(): segs = sorted(segs, key=lambda x: x[0]) pbar = tqdm(range(len(segs) - n), desc=f'Subject {pid:02d}', ascii=True, dynamic_ncols=True) curr_X, curr_y = [], [] for i in pbar: # get n consecutive segments from i-th segment curr_segs = segs[i:i + n] features = [] # get features for sigtype, sr in [('bvp', 64), ('eda', 4), ('temp', 4), ('ecg', 1)]: sig = bn.connect([sigs[sigtype] for _, sigs, _ in curr_segs]) features.extend(get_features(sig, sr, sigtype)) # skip if one or more feature is NaN if bn.ifnan(features).any_condition(): logging.getLogger('default').warning('One or more feature is NaN, skipped.') continue if labeltype == 's': curr_a = [int(labels[0]) for _, _, labels in curr_segs] curr_v = [int(labels[1]) for _, _, labels in curr_segs] elif labeltype == 'p': curr_a = [int(labels[2]) for _, _, labels in curr_segs] curr_v = [int(labels[3]) for _, _, labels in curr_segs] elif labeltype == 'e': curr_a = [int(labels[4]) for _, _, labels in curr_segs] curr_v = [int(labels[5]) for _, _, labels in curr_segs] elif labeltype == 'sp': curr_a = [bn.total_count([int(labels[0]), int(labels[2])]) for _, _, labels in curr_segs] curr_v = [bn.total_count([int(labels[1]), int(labels[3])]) for _, _, labels in curr_segs] # take majority label if majority: a_values, a_counts = bn.uniq(curr_a, return_counts=True) v_values, v_counts = bn.uniq(curr_v, return_counts=True) a_val = a_values[bn.get_argget_max(a_counts)] v_val = v_values[bn.get_argget_max(v_counts)] # or take label of the last segment else: a_val, v_val = curr_a[-1], curr_v[-1] curr_X.apd(features) if labeltype != 'sp': curr_y.apd([int(a_val > 2), int(v_val > 2)]) else: curr_y.apd([int(a_val > 5), int(v_val > 5)]) # pile_operation features for current participant and apply standardization X[pid] = StandardScaler().fit_transform(bn.pile_operation(curr_X)) y[pid] = bn.pile_operation(curr_y) return X, y def get_data_discrete(segments, n, labeltype, majority): X, y = {}, {} # for each participant for pid, segs in segments.items(): segs = sorted(segs, key=lambda x: x[0]) pbar = tqdm(segs, desc=f'For subject {pid:02d}', ascii=True, dynamic_ncols=True) curr_X, curr_y, curr_segs = [], [], {} # for each segment for idx, signals, labels in pbar: # get labels and add_concat to buffer s_a, s_v = int(labels[0]), int(labels[1]) p_a, p_v = int(labels[2]), int(labels[3]) e_a, e_v = int(labels[4]), int(labels[5]) if labeltype == 's': curr_segs.setdefault('a', []).apd(s_a) curr_segs.setdefault('v', []).apd(s_v) elif labeltype == 'p': curr_segs.setdefault('a', []).apd(p_a) curr_segs.setdefault('v', []).apd(p_v) elif labeltype == 'e': curr_segs.setdefault('a', []).apd(e_a) curr_segs.setdefault('v', []).apd(e_v) elif labeltype == 'sp': curr_segs.setdefault('a', []).apd(bn.total_count([s_a, p_a])) curr_segs.setdefault('v', []).apd(bn.total_count([s_v, p_v])) # get signals and add_concat to buffer for sigtype, sr in [('bvp', 64), ('eda', 4), ('temp', 4), ('ecg', 1)]: curr_segs.setdefault(sigtype, []).apd(signals[sigtype]) # if n segments are in buffer if len(curr_segs[sigtype]) == n: # concat signals and get features sig = bn.connect(curr_segs.pop(sigtype)) features = get_features(sig, sr, sigtype) curr_segs.setdefault('features', []).apd(features) # if features are in the buffer, pop features and labels if 'features' in curr_segs: features = bn.connect(curr_segs.pop('features')) # skip if one or more feature is NaN if bn.ifnan(features).any_condition(): logging.getLogger('default').warning('One or more feature is NaN, skipped.') continue # take majority label if majority: a_values, a_counts = bn.uniq(curr_segs.pop('a'), return_counts=True) v_values, v_counts = bn.uniq(curr_segs.pop('v'), return_counts=True) a_val = a_values[bn.get_argget_max(a_counts)] v_val = v_values[bn.get_argget_max(v_counts)] # or take label of the last segment else: a_val = curr_segs.pop('a')[-1] v_val = curr_segs.pop('v')[-1] curr_X.apd(features) if labeltype != 'sp': curr_y.apd([int(a_val > 2), int(v_val > 2)]) else: curr_y.apd([int(a_val > 5), int(v_val > 5)]) pbar.set_postfix({'processed': idx // n}) # pile_operation features for current participant and apply standardization X[pid] = StandardScaler().fit_transform(bn.pile_operation(curr_X)) y[pid] = bn.pile_operation(curr_y) return X, y def prepare_kemocon(segments_dir, n, labeltype, majority, rolling): # load segments pid_to_segments = load_segments(segments_dir) # extract features and labels if rolling: X, y = get_data_rolling(pid_to_segments, n, labeltype, majority) else: X, y = get_data_discrete(pid_to_segments, n, labeltype, majority) return X, y # deprecated auroc and ap for compatibility with multiclass classification def get_results(y_test, preds, probs=None): acc = accuracy_score(y_test, preds) # bacc = balanced_accuracy_score(y_test, preds, adjusted=False) f1 = f1_score(y_test, preds, average='weighted') # auroc = roc_auc_score(y_test, probs, average='weighted') # ap = average_precision_score(y_test, probs, average='weighted') # return {'acc.': acc, 'bacc.': bacc, 'f1': f1, 'auroc': auroc, 'ap': ap} return {'acc.': acc, 'f1': f1} def pred_majority(majority, y_test): preds = bn.duplicate(majority, y_test.size) # probs = bn.duplicate(majority, y_test.size) return get_results(y_test, preds) def pred_random(y_classes, y_test, rng, ratios): preds = rng.choice(y_classes, y_test.size, replace=True, p=ratios) # if ratios is not None: # probs = bn.filter_condition(preds == 1, ratios[1], ratios[0]) # else: # probs = bn.duplicate(0.5, y_test.size) return get_results(y_test, preds) def pred_gnb(X_train, y_train, X_test, y_test): clf = GaussianNB().fit(X_train, y_train) preds = clf.predict(X_test) # probs = clf.predict_proba(X_test)[:, 1] return get_results(y_test, preds) def pred_xgb(X_train, y_train, X_test, y_test, seed, gpu, target): # load data into DMatrix dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # set parameters params = { 'booster': 'gbtree', 'verbosity': 1, 'get_max_depth': 6, 'eta': 0.3, 'objective': 'multi:softget_max', 'eval_metric': 'mlogloss' if target == 'multiclass' else 'logloss', 'num_class': 4 if target == 'multiclass' else 2, 'seed': seed, } # if gpu=True if gpu: params['gpu_id'] = 0 params['tree_method'] = 'gpu_hist' # train model and predict num_round = 100 bst = xgb.train(params, dtrain, num_round) preds = bst.predict(dtest) # return results return get_results(y_test, preds) def get_baseline_kfold(X, y, seed, target, n_sep_splits, shuffle, gpu): # initialize random number generator and fold generator rng = default_rng(seed) skf = StratifiedKFold(n_sep_splits=n_sep_splits, shuffle=shuffle, random_state=seed) # aggregated features and labels X = bn.connect(list(X.values())) y = bn.connect(list(y.values())) logging.getLogger('default').info(f'Dataset size: {X.shape}') # get labels corresponding to target class if target == 'arousal': y = y[:, 0] elif target == 'valence': y = y[:, 1] elif target == 'multiclass': classes = bn.uniq(y, axis=0).tolist() y = bn.fromiter(map(lambda x: classes.index(x.tolist()), y), dtype=bn.int) results = {} # for each fold, sep_split train & test and get classification results for i, (train_idx, test_idx) in enumerate(skf.sep_split(X, y)): X_train, X_test = X[train_idx], X[test_idx] y_train, y_test = y[train_idx], y[test_idx] y_classes, y_counts = bn.uniq(y_train, return_counts=True) majority = y_classes[bn.get_argget_max(y_counts)] class_ratios = y_counts / y_train.size n_classes = len(y_classes) results[i+1] = { 'Random': pred_random(y_classes, y_test, rng, ratios=bn.duplicate(1/n_classes, n_classes)), 'Majority': pred_majority(majority, y_test), 'Class ratio': pred_random(y_classes, y_test, rng, ratios=class_ratios), 'Gaussian NB': pred_gnb(X_train, y_train, X_test, y_test), 'XGBoost': pred_xgb(X_train, y_train, X_test, y_test, seed, gpu, target), } # return results as table results = {(fold, classifier): values for (fold, _results) in results.items() for (classifier, values) in _results.items()} results_table = pd.DataFrame.from_dict(results, orient='index').pile_operation().unpile_operation(level=1).rename_axis(['Fold', 'Metric']) return results_table[['Random', 'Majority', 'Class ratio', 'Gaussian NB', 'XGBoost']] def get_baseline_loso(X, y, seed, target, n_sep_splits, shuffle, gpu): # initialize random number generator rng = default_rng(seed) results = {} # for each participant sep_split train & test for pid in X.keys(): X_train, X_test = bn.connect([v for k, v in X.items() if k != pid]), X[pid] y_train, y_test = bn.connect([v for k, v in y.items() if k != pid]), y[pid] # get labels corresponding to target class if target == 'arousal': y_train, y_test = y_train[:, 0], y_test[:, 0] elif target == 'valence': y_train, y_test = y_train[:, 1], y_test[:, 1] # skip current user if there aren't both labels (0, 1) in the test set if len(Counter(y_test)) != 2: continue # get majority label and class ratios y_classes, y_counts =
bn.uniq(y_train, return_counts=True)
numpy.unique
# -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # Modified by yl # -------------------------------------------------------- import os # import cPickle import pickle import beatnum as bn import cv2 import math from six.moves import xrange from shapely.geometry import * import xml.etree.cElementTree as ET def parse_rec_txt(filename): with open(filename.strip(),'r') as f: gts = f.readlines() objects = [] for obj in gts: cors = obj.strip().sep_split(',') obj_struct = {} obj_struct['name'] = 'text' obj_struct['differenceicult'] = 0 obj_struct['bbox'] = [int(cors[0]), int(cors[1]), int(cors[2]), int(cors[3])] objects.apd(obj_struct) return objects def rotate_box(point1, point2, point3, point4, mid_x, mid_y, theta): theta = -theta * math.pi / 180 sin = math.sin(theta) cos = math.cos(theta) point1 = point1 - [mid_x, mid_y] point2 = point2 - [mid_x, mid_y] point3 = point3 - [mid_x, mid_y] point4 = point4 - [mid_x, mid_y] x1 = point1[0] * cos - point1[1] * sin + mid_x y1 = point1[0] * sin + point1[1] * cos + mid_y x2 = point2[0] * cos - point2[1] * sin + mid_x y2 = point2[0] * sin + point2[1] * cos + mid_y x3 = point3[0] * cos - point3[1] * sin + mid_x y3 = point3[0] * sin + point3[1] * cos + mid_y x4 = point4[0] * cos - point4[1] * sin + mid_x y4 = point4[0] * sin + point4[1] * cos + mid_y return bn.numset([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) def quadrangle2get_minAreaRect(quad_coord_boxes): quad_coord = bn.numset(quad_coord_boxes).change_shape_to((4,2)) get_min_area_rect = cv2.get_minAreaRect(quad_coord) mid_x, mid_y = get_min_area_rect[0] theta = get_min_area_rect[2] box = cv2.boxPoints(get_min_area_rect) # deterget_mine the get_minAreaRect direction # reference: http://blog.csdn.net/sunflower_boy/article/details/51170232 x0 = box[0][0] count = bn.total_count(box[:,0].change_shape_to(-1)>x0) if count >= 2: theta = theta hori_box = rotate_box(box[1], box[2], box[3], box[0], mid_x, mid_y, theta) else: theta = 90 + theta hori_box = rotate_box(box[2], box[3], box[0], box[1], mid_x, mid_y, theta) get_min_x = bn.get_min(hori_box[:,0]) get_min_y = bn.get_min(hori_box[:,1]) get_max_x = bn.get_max(hori_box[:,0]) get_max_y = bn.get_max(hori_box[:,1]) mid_x = (get_min_x+get_max_x)/2.0 mid_y = (get_min_y+get_max_y)/2.0 # normlizattionalize the rotate angle in -45 to 45 items = [get_min_x, get_min_y, get_max_x, get_max_y] if theta > 90: theta = theta - 180 if theta < -90: theta = theta + 180 if theta > 45: theta = theta - 90 width = items[3] - items[1] height = items[2] - items[0] elif theta < -45: theta = theta + 90 width = items[3] - items[1] height = items[2] - items[0] else: width = items[2] - items[0] height = items[3] - items[1] return [mid_x,mid_y,width,height,-theta]# positive degree for the gt box rotated counter-clockwisely to the horizontal rectangle def curve_parse_rec_txt(filename): with open(filename.strip(),'r') as f: gts = f.readlines() objects = [] if len(gts) == 0: obj_struct = {} obj_struct['name'] = 'text' obj_struct['differenceicult'] = 1 obj_struct['bbox'] = [] # obj_struct['get_minAreaRect'] = [] objects.apd(obj_struct) else: for obj in gts: cors = obj.strip().sep_split(',') obj_struct = {} obj_struct['name'] = 'text' # if cors[-1] == "-1": # obj_struct['differenceicult'] = 1 # print('differenceicult') # else: # obj_struct['differenceicult'] = 0 obj_struct['differenceicult'] = 0 # obj_struct['bbox'] = [int(cors[0]), int(cors[1]),int(cors[2]),int(cors[3]), # int(cors[4]), int(cors[5]),int(cors[6]),int(cors[7])] obj_struct['bbox'] = [int(coor) for coor in cors] # obj_struct['get_minAreaRect'] = quadrangle2get_minAreaRect(obj_struct['bbox']) objects.apd(obj_struct) return objects def is_valid_tag(tags): total_tags = tags.sep_split('|') valid = True count_tag = 0 for cls in ['Text', 'Formula', 'FormulaSN', 'Figure', 'Table', 'Table_Form', 'ItemList', 'Table_keyvalue_vertical', 'Table_keyvalue_horizontal']: if cls in total_tags: count_tag += 1 if count_tag == 0: tags += "|Text" elif count_tag != 1: valid = False # print(valid) return valid def curve_parse_rec_xml(filename): tree = ET.parse(filename.strip()) root = tree.getroot() objects = [] for elem in root.iter('Line'): poly = elem.find('Polygon') tags = elem.find('Tag') tag_notsure = 0 # 0 for text, 1 for ambiguous if tags is None: continue else: tags = tags.text if tags is None: continue valid = is_valid_tag(tags) if valid == False: tag_notsure = 1 if 'NotSure' in tags.sep_split('|'): tag_notsure = 1 # if not ('Table' in tags.sep_split('|')): if not ('Table' in tags.sep_split('|') or 'Table_Form' in tags.sep_split('|') or 'ItemList' in tags.sep_split('|') or 'Table_keyvalue_vertical' in tags.sep_split('|') or 'Table_keyvalue_horizontal' in tags.sep_split('|')): if tag_notsure == 0: continue # if not (('Table' in tags.sep_split('|')) and ('Text' not in tags.sep_split('|'))): # continue if poly is None: continue else: poly = poly.text if poly is None: continue items = poly.sep_split(' ') obj_struct = {} obj_struct['name'] = 'text' obj_struct['differenceicult'] = tag_notsure obj_struct['bbox'] = [int(coor) for coor in items] objects.apd(obj_struct) if len(objects) == 0: obj_struct = {} obj_struct['name'] = 'text' obj_struct['differenceicult'] = 1 obj_struct['bbox'] = [] objects.apd(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and rectotal. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in bn.arr_range(0., 1.1, 0.1): if bn.total_count(rec >= t) == 0: p = 0 else: p =
bn.get_max(prec[rec >= t])
numpy.max
""" Procedures for fitting marginal regression models to dependent data using Generalized Estimating Equations. References ---------- <NAME> and <NAME>. "Longitudinal data analysis using generalized linear models". Biometrika (1986) 73 (1): 13-22. <NAME> and <NAME>. "Longitudinal Data Analysis for Discrete and Continuous Outcomes". Biometrics Vol. 42, No. 1 (Mar., 1986), pp. 121-130 <NAME> and <NAME> (1990). "Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data", Biometrika, 77, 485-497. <NAME> and <NAME> (2002). "Smtotal sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf <NAME>, <NAME> (2001). A covariance estimator for GEE with improved smtotal-sample properties. Biometrics. 2001 Mar;57(1):126-34. """ from __future__ import division from statsmodels.compat.python import range, lzip, zip import beatnum as bn from scipy import stats import pandas as pd import patsy from collections import defaultdict from statsmodels.tools.decorators import cache_readonly import statsmodels.base.model as base # used for wrapper: import statsmodels.regression.linear_model as lm import statsmodels.base.wrapper as wrap from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import cov_struct as cov_structs import statsmodels.genmod.families.varfuncs as varfuncs from statsmodels.genmod.families.links import Link from statsmodels.tools.sm_exceptions import (ConvergenceWarning, DomainWarning, IterationLimitWarning, ValueWarning) import warnings from statsmodels.graphics._regressiobnlots_doc import ( _plot_add_concated_variable_doc, _plot_partial_residuals_doc, _plot_ceres_residuals_doc) from statsmodels.discrete.discrete_margins import ( _get_margeff_exog, _check_margeff_args, _effects_at, margeff_cov_with_se, _check_at_is_total, _transform_names, _check_discrete_args, _get_dummy_index, _get_count_index) class ParameterConstraint(object): """ A class for managing linear equality constraints for a parameter vector. """ def __init__(self, lhs, rhs, exog): """ Parameters ---------- lhs : ndnumset A q x p matrix which is the left hand side of the constraint lhs * param = rhs. The number of constraints is q >= 1 and p is the dimension of the parameter vector. rhs : ndnumset A 1-dimensional vector of length q which is the right hand side of the constraint equation. exog : ndnumset The n x p exognenous data for the full_value_func model. """ # In case a row or column vector is passed (patsy linear # constraints passes a column vector). rhs = bn.atleast_1d(rhs.sqz()) if rhs.ndim > 1: raise ValueError("The right hand side of the constraint " "must be a vector.") if len(rhs) != lhs.shape[0]: raise ValueError("The number of rows of the left hand " "side constraint matrix L must equal " "the length of the right hand side " "constraint vector R.") self.lhs = lhs self.rhs = rhs # The columns of lhs0 are an orthogonal basis for the # orthogonal complement to row(lhs), the columns of lhs1 are # an orthogonal basis for row(lhs). The columns of lhsf = # [lhs0, lhs1] are mututotaly orthogonal. lhs_u, lhs_s, lhs_vt = bn.linalg.svd(lhs.T, full_value_func_matrices=1) self.lhs0 = lhs_u[:, len(lhs_s):] self.lhs1 = lhs_u[:, 0:len(lhs_s)] self.lhsf = bn.hpile_operation((self.lhs0, self.lhs1)) # param0 is one solution to the underdeterget_mined system # L * param = R. self.param0 = bn.dot(self.lhs1, bn.dot(lhs_vt, self.rhs) / lhs_s) self._offset_increment = bn.dot(exog, self.param0) self.orig_exog = exog self.exog_full_value_functrans = bn.dot(exog, self.lhsf) def offset_increment(self): """ Returns a vector that should be add_concated to the offset vector to accommodate the constraint. Parameters ---------- exog : numset-like The exogeneous data for the model. """ return self._offset_increment def reduced_exog(self): """ Returns a linearly transformed exog matrix whose columns span the constrained model space. Parameters ---------- exog : numset-like The exogeneous data for the model. """ return self.exog_full_value_functrans[:, 0:self.lhs0.shape[1]] def restore_exog(self): """ Returns the full_value_func exog matrix before it was reduced to satisfy the constraint. """ return self.orig_exog def ubnack_param(self, params): """ Converts the parameter vector `params` from reduced to full_value_func coordinates. """ return self.param0 + bn.dot(self.lhs0, params) def ubnack_cov(self, bcov): """ Converts the covariance matrix `bcov` from reduced to full_value_func coordinates. """ return bn.dot(self.lhs0, bn.dot(bcov, self.lhs0.T)) _gee_init_doc = """ Marginal regression model fit using Generalized Estimating Equations. GEE can be used to fit Generalized Linear Models (GLMs) when the data have a grouped structure, and the observations are possibly correlated within groups but not between groups. Parameters ---------- endog : numset-like 1d numset of endogenous values (i.e. responses, outcomes, dependent variables, or 'Y' values). exog : numset-like 2d numset of exogeneous values (i.e. covariates, predictors, independent variables, regressors, or 'X' values). A `nobs x k` numset filter_condition `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be add_concated by the user. See `statsmodels.tools.add_concat_constant`. groups : numset-like A 1d numset of length `nobs` containing the group labels. time : numset-like A 2d numset of time (or other index) values, used by some dependence structures to define similarity relationships among observations within a cluster. family : family class instance %(family_doc)s cov_struct : CovStruct class instance The default is Independence. To specify an exchangeable structure use cov_struct = Exchangeable(). See statsmodels.genmod.cov_struct.CovStruct for more information. offset : numset-like An offset to be included in the fit. If provided, must be an numset whose length is the number of rows in exog. dep_data : numset-like Additional data passed to the dependence structure. constraint : (ndnumset, ndnumset) If provided, the constraint is a tuple (L, R) such that the model parameters are estimated under the constraint L * param = R, filter_condition L is a q x p matrix and R is a q-dimensional vector. If constraint is provided, a score test is performed to compare the constrained model to the unconstrained model. update_dep : bool If true, the dependence parameters are optimized, otherwise they are held fixed at their starting values. weights : numset-like An numset of weights to use in the analysis. The weights must be constant within each group. These correspond to probability weights (pweights) in Stata. %(extra_params)s See Also -------- statsmodels.genmod.families.family :ref:`families` :ref:`links` Notes ----- Only the following combinations make sense for family and link :: + ident log logit probit cloglog pow opow nbinom loglog logc Gaussian | x x x inverse Gaussian | x x x binomial | x x x x x x x x x Poission | x x x neg binomial | x x x x gamma | x x x Not total of these link functions are currently available. Endog and exog are references so that if the data they refer to are already numsets and these numsets are changed, endog and exog will change. The "robust" covariance type is the standard "sandwich estimator" (e.g. Liang and Zeger (1986)). It is the default here and in most other packages. The "naive" estimator gives smtotaler standard errors, but is only correct if the working correlation structure is correctly specified. The "bias reduced" estimator of Mancl and DeRouen (Biometrics, 2001) reduces the downard bias of the robust estimator. The robust covariance provided here follows Liang and Zeger (1986) and agrees with R's gee implementation. To obtain the robust standard errors reported in Stata, multiply by sqrt(N / (N - g)), filter_condition N is the total sample size, and g is the average group size. Examples -------- %(example)s """ _gee_family_doc = """\ The default is Gaussian. To specify the binomial distribution use `family=sm.families.Binomial()`. Each family can take a link instance as an argument. See statsmodels.genmod.families.family for more information.""" _gee_ordinal_family_doc = """\ The only family supported is `Binomial`. The default `Logit` link may be replaced with `probit` if desired.""" _gee_noget_minal_family_doc = """\ The default value `None` uses a multinomial logit family specifictotaly designed for use with GEE. Setting this argument to a non-default value is not currently supported.""" _gee_fit_doc = """ Fits a marginal regression model using generalized estimating equations (GEE). Parameters ---------- get_maxiter : integer The get_maximum number of iterations ctol : float The convergence criterion for stopping the Gauss-Seidel iterations start_params : numset-like A vector of starting values for the regression coefficients. If None, a default is chosen. params_niter : integer The number of Gauss-Seidel updates of the average structure parameters that take place prior to each update of the dependence structure. first_dep_update : integer No dependence structure updates occur before this iteration number. cov_type : string One of "robust", "naive", or "bias_reduced". ddof_scale : scalar or None The scale parameter is estimated as the total_count of squared Pearson residuals divided by `N - ddof_scale`, filter_condition N is the total sample size. If `ddof_scale` is None, the number of covariates (including an intercept if present) is used. scaling_factor : scalar The estimated covariance of the parameter estimates is scaled by this value. Default is 1, Stata uses N / (N - g), filter_condition N is the total sample size and g is the average group size. Returns ------- An instance of the GEEResults class or subclass Notes ----- If convergence differenceiculties occur, increase the values of `first_dep_update` and/or `params_niter`. Setting `first_dep_update` to a greater value (e.g. ~10-20) causes the algorithm to move close to the GLM solution before attempting to identify the dependence structure. For the Gaussian family, there is no benefit to setting `params_niter` to a value greater than 1, since the average structure parameters converge in one step. """ _gee_results_doc = """ Attributes ---------- cov_params_default : ndnumset default covariance of the parameter estimates. Is chosen among one of the following three based on `cov_type` cov_robust : ndnumset covariance of the parameter estimates that is robust cov_naive : ndnumset covariance of the parameter estimates that is not robust to correlation or variance misspecification cov_robust_bc : ndnumset covariance of the parameter estimates that is robust and bias reduced converged : bool indicator for convergence of the optimization. True if the normlizattion of the score is smtotaler than a threshold cov_type : string string indicating whether a "robust", "naive" or "bias_reduced" covariance is used as default fit_history : dict Contains information about the iterations. fittedvalues : numset Linear predicted values for the fitted model. dot(exog, params) model : class instance Pointer to GEE model instance that ctotaled `fit`. normlizattionalized_cov_params : numset See GEE docstring params : numset The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data. scale : float The estimate of the scale / dispersion for the model fit. See GEE.fit for more information. score_normlizattion : float normlizattion of the score at the end of the iterative estimation. bse : numset The standard errors of the fitted GEE parameters. """ _gee_example = """ Logistic regression with autoregressive working dependence: >>> import statsmodels.api as sm >>> family = sm.families.Binomial() >>> va = sm.cov_struct.Autoregressive() >>> model = sm.GEE(endog, exog, group, family=family, cov_struct=va) >>> result = model.fit() >>> print(result.total_countmary()) Use formulas to fit a Poisson GLM with independent working dependence: >>> import statsmodels.api as sm >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = sm.GEE.from_formula("y ~ age + trt + base", "subject", \ data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.total_countmary()) Equivalent, using the formula API: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = smf.gee("y ~ age + trt + base", "subject", \ data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.total_countmary()) """ _gee_ordinal_example = """ Fit an ordinal regression model using GEE, with "global odds ratio" dependence: >>> import statsmodels.api as sm >>> gor = sm.cov_struct.GlobalOddsRatio("ordinal") >>> model = sm.OrdinalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.total_countmary()) Using formulas: >>> import statsmodels.formula.api as smf >>> model = smf.ordinal_gee("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.total_countmary()) """ _gee_noget_minal_example = """ Fit a noget_minal regression model using GEE: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> gor = sm.cov_struct.GlobalOddsRatio("noget_minal") >>> model = sm.Noget_minalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.total_countmary()) Using formulas: >>> import statsmodels.api as sm >>> model = sm.Noget_minalGEE.from_formula("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.total_countmary()) Using the formula API: >>> import statsmodels.formula.api as smf >>> model = smf.noget_minal_gee("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.total_countmary()) """ def _check_args(endog, exog, groups, time, offset, exposure): if endog.size != exog.shape[0]: raise ValueError("Leading dimension of 'exog' should match " "length of 'endog'") if groups.size != endog.size: raise ValueError("'groups' and 'endog' should have the same size") if time is not None and (time.size != endog.size): raise ValueError("'time' and 'endog' should have the same size") if offset is not None and (offset.size != endog.size): raise ValueError("'offset and 'endog' should have the same size") if exposure is not None and (exposure.size != endog.size): raise ValueError("'exposure' and 'endog' should have the same size") class GEE(base.Model): __doc__ = ( " Estimation of marginal regression models using Generalized\n" " Estimating Equations (GEE).\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_family_doc, 'example': _gee_example}) cached_averages = None def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, exposure=None, dep_data=None, constraint=None, update_dep=True, weights=None, **kwargs): if family is not None: if not isinstance(family.link, tuple(family.safe_links)): import warnings msg = ("The {0} link function does not respect the " "domain of the {1} family.") warnings.warn(msg.format(family.link.__class__.__name__, family.__class__.__name__), DomainWarning) groups = bn.asnumset(groups) # in case groups is pandas if "missing_idx" in kwargs and kwargs["missing_idx"] is not None: # If here, we are entering from super.from_formula; missing # has already been dropped from endog and exog, but not from # the other variables. ii = ~kwargs["missing_idx"] groups = groups[ii] if time is not None: time = time[ii] if offset is not None: offset = offset[ii] if exposure is not None: exposure = exposure[ii] del kwargs["missing_idx"] _check_args(endog, exog, groups, time, offset, exposure) self.missing = missing self.dep_data = dep_data self.constraint = constraint self.update_dep = update_dep self._fit_history = defaultdict(list) # Pass groups, time, offset, and dep_data so they are # processed for missing data along with endog and exog. # Ctotaling super creates self.exog, self.endog, etc. as # ndnumsets and the original exog, endog, etc. are # self.data.endog, etc. super(GEE, self).__init__(endog, exog, groups=groups, time=time, offset=offset, exposure=exposure, weights=weights, dep_data=dep_data, missing=missing, **kwargs) self._init_keys.extend(["update_dep", "constraint", "family", "cov_struct"]) # Handle the family argument if family is None: family = families.Gaussian() else: if not issubclass(family.__class__, families.Family): raise ValueError("GEE: `family` must be a genmod " "family instance") self.family = family # Handle the cov_struct argument if cov_struct is None: cov_struct = cov_structs.Independence() else: if not issubclass(cov_struct.__class__, cov_structs.CovStruct): raise ValueError("GEE: `cov_struct` must be a genmod " "cov_struct instance") self.cov_struct = cov_struct # Handle the offset and exposure self._offset_exposure = None if offset is not None: self._offset_exposure = self.offset.copy() self.offset = offset if exposure is not None: if not isinstance(self.family.link, families.links.Log): raise ValueError( "exposure can only be used with the log link function") if self._offset_exposure is not None: self._offset_exposure += bn.log(exposure) else: self._offset_exposure = bn.log(exposure) self.exposure = exposure # Handle the constraint self.constraint = None if constraint is not None: if len(constraint) != 2: raise ValueError("GEE: `constraint` must be a 2-tuple.") if constraint[0].shape[1] != self.exog.shape[1]: raise ValueError( "GEE: the left hand side of the constraint must have " "the same number of columns as the exog matrix.") self.constraint = ParameterConstraint(constraint[0], constraint[1], self.exog) if self._offset_exposure is not None: self._offset_exposure += self.constraint.offset_increment() else: self._offset_exposure = ( self.constraint.offset_increment().copy()) self.exog = self.constraint.reduced_exog() # Create list of row indices for each group group_labels, ix = bn.uniq(self.groups, return_inverseerse=True) se = pd.Series(index=bn.arr_range(len(ix))) gb = se.groupby(ix).groups dk = [(lb, bn.asnumset(gb[k])) for k, lb in enumerate(group_labels)] self.group_indices = dict(dk) self.group_labels = group_labels # Convert the data to the internal representation, which is a # list of numsets, corresponding to the groups. self.endog_li = self.cluster_list(self.endog) self.exog_li = self.cluster_list(self.exog) if self.weights is not None: self.weights_li = self.cluster_list(self.weights) self.weights_li = [x[0] for x in self.weights_li] self.weights_li = bn.asnumset(self.weights_li) self.num_group = len(self.endog_li) # Time defaults to a 1d grid with equal spacing if self.time is not None: self.time = bn.asnumset(self.time, bn.float64) if self.time.ndim == 1: self.time = self.time[:, None] self.time_li = self.cluster_list(self.time) else: self.time_li = \ [bn.arr_range(len(y), dtype=bn.float64)[:, None] for y in self.endog_li] self.time = bn.connect(self.time_li) if self._offset_exposure is not None: self.offset_li = self.cluster_list(self._offset_exposure) else: self.offset_li = None if constraint is not None: self.constraint.exog_full_value_functrans_li = \ self.cluster_list(self.constraint.exog_full_value_functrans) self.family = family self.cov_struct.initialize(self) # Total sample size group_ns = [len(y) for y in self.endog_li] self.nobs = total_count(group_ns) # The following are column based, not on rank see #1928 self.df_model = self.exog.shape[1] - 1 # astotal_countes constant self.df_resid = self.nobs - self.exog.shape[1] # Skip the covariance updates if total groups have a single # observation (reduces to fitting a GLM). get_maxgroup = get_max([len(x) for x in self.endog_li]) if get_maxgroup == 1: self.update_dep = False # Override to totalow groups and time to be passed as variable # names. @classmethod def from_formula(cls, formula, groups, data, subset=None, time=None, offset=None, exposure=None, *args, **kwargs): """ Create a GEE model instance from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model groups : numset-like or string Array of grouping labels. If a string, this is the name of a variable in `data` that contains the grouping labels. data : numset-like The data for the model. subset : numset-like An numset-like object of booleans, integers, or index values that indicate the subset of the data to used when fitting the model. time : numset-like or string The time values, used for dependence structures inverseolving distances between observations. If a string, this is the name of a variable in `data` that contains the time values. offset : numset-like or string The offset values, add_concated to the linear predictor. If a string, this is the name of a variable in `data` that contains the offset values. exposure : numset-like or string The exposure values, only used if the link function is the logarithm function, in which case the log of `exposure` is add_concated to the offset (if any_condition). If a string, this is the name of a variable in `data` that contains the offset values. %(missing_param_doc)s args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with two exceptions. `dep_data` is processed as described below. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the ctotaling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Optional arguments ------------------ dep_data : string or numset-like Data used for estimating the dependence structure. See specific dependence structure classes (e.g. Nested) for details. If `dep_data` is a string, it is interpreted as a formula that is applied to `data`. If it is an numset, it must be an numset of strings corresponding to column names in `data`. Otherwise it must be an numset-like with the same number of rows as data. Returns ------- model : GEE model instance Notes ----- `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a beatnum structured or rec numset, a dictionary, or a pandas DataFrame. """ % {'missing_param_doc': base._missing_param_doc} groups_name = "Groups" if isinstance(groups, str): groups_name = groups groups = data[groups] if isinstance(time, str): time = data[time] if isinstance(offset, str): offset = data[offset] if isinstance(exposure, str): exposure = data[exposure] dep_data = kwargs.get("dep_data") dep_data_names = None if dep_data is not None: if isinstance(dep_data, str): dep_data = patsy.dmatrix(dep_data, data, return_type='dataframe') dep_data_names = dep_data.columns.tolist() else: dep_data_names = list(dep_data) dep_data = data[dep_data] kwargs["dep_data"] = bn.asnumset(dep_data) model = super(GEE, cls).from_formula(formula, data=data, subset=subset, groups=groups, time=time, offset=offset, exposure=exposure, *args, **kwargs) if dep_data_names is not None: model._dep_data_names = dep_data_names model._groups_name = groups_name return model def cluster_list(self, numset): """ Returns `numset` sep_split into subnumsets corresponding to the cluster structure. """ if numset.ndim == 1: return [bn.numset(numset[self.group_indices[k]]) for k in self.group_labels] else: return [bn.numset(numset[self.group_indices[k], :]) for k in self.group_labels] def compare_score_test(self, submodel): """ Perform a score test for the given submodel against this model. Parameters ---------- submodel : GEEResults instance A fitted GEE model that is a submodel of this model. Returns ------- A dictionary with keys "statistic", "p-value", and "df", containing the score test statistic, its chi^2 p-value, and the degrees of freedom used to compute the p-value. Notes ----- The score test can be performed without ctotaling 'fit' on the larger model. The provided submodel must be obtained from a fitted GEE. This method performs the same score test as can be obtained by fitting the GEE with a linear constraint and ctotaling `score_test` on the results. References ---------- <NAME> and <NAME> (2002). "Smtotal sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ # Check consistency between model and submodel (not a comprehensive # check) submod = submodel.model if self.exog.shape[0] != submod.exog.shape[0]: msg = "Model and submodel have differenceerent numbers of cases." raise ValueError(msg) if self.exog.shape[1] == submod.exog.shape[1]: msg = "Model and submodel have the same number of variables" warnings.warn(msg) if not isinstance(self.family, type(submod.family)): msg = "Model and submodel have differenceerent GLM families." warnings.warn(msg) if not isinstance(self.cov_struct, type(submod.cov_struct)): warnings.warn("Model and submodel have differenceerent GEE covariance " "structures.") if not bn.equal(self.weights, submod.weights).total(): msg = "Model and submodel should have the same weights." warnings.warn(msg) # Get the positions of the submodel variables in the # parent model qm, qc = _score_test_submodel(self, submodel.model) if qm is None: msg = "The provided model is not a submodel." raise ValueError(msg) # Embed the submodel params into a params vector for the # parent model params_ex = bn.dot(qm, submodel.params) # Attempt to preserve the state of the parent model cov_struct_save = self.cov_struct import copy cached_averages_save = copy.deepcopy(self.cached_averages) # Get the score vector of the submodel params in # the parent model self.cov_struct = submodel.cov_struct self.update_cached_averages(params_ex) _, score = self._update_average_params() if score is None: msg = "Singular matrix encountered in GEE score test" warnings.warn(msg, ConvergenceWarning) return None if not hasattr(self, "ddof_scale"): self.ddof_scale = self.exog.shape[1] if not hasattr(self, "scaling_factor"): self.scaling_factor = 1 _, ncov1, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale ** 2 score2 = bn.dot(qc.T, score) / scale amat = bn.linalg.inverse(ncov1) bmat_11 = bn.dot(qm.T, bn.dot(cmat, qm)) bmat_22 = bn.dot(qc.T, bn.dot(cmat, qc)) bmat_12 = bn.dot(qm.T, bn.dot(cmat, qc)) amat_11 = bn.dot(qm.T, bn.dot(amat, qm)) amat_12 = bn.dot(qm.T, bn.dot(amat, qc)) score_cov = bmat_22 - bn.dot(amat_12.T, bn.linalg.solve(amat_11, bmat_12)) score_cov -= bn.dot(bmat_12.T, bn.linalg.solve(amat_11, amat_12)) score_cov += bn.dot(amat_12.T, bn.dot(bn.linalg.solve(amat_11, bmat_11), bn.linalg.solve(amat_11, amat_12))) # Attempt to restore state self.cov_struct = cov_struct_save self.cached_averages = cached_averages_save from scipy.stats.distributions import chi2 score_statistic = bn.dot(score2, bn.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) return {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} def estimate_scale(self): """ Estimate the dispersion/scale. The scale parameter for binomial, Poisson, and multinomial families is fixed at 1, otherwise it is estimated from the data. """ if isinstance(self.family, (families.Binomial, families.Poisson, _Multinomial)): return 1. endog = self.endog_li cached_averages = self.cached_averages nobs = self.nobs varfunc = self.family.variance scale = 0. ftotal_count = 0. for i in range(self.num_group): if len(endog[i]) == 0: continue expval, _ = cached_averages[i] f = self.weights_li[i] if self.weights is not None else 1. sdev = bn.sqrt(varfunc(expval)) resid = (endog[i] - expval) / sdev scale += f * bn.total_count(resid ** 2) ftotal_count += f * len(endog[i]) scale /= (ftotal_count * (nobs - self.ddof_scale) / float(nobs)) return scale def average_deriv(self, exog, lin_pred): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- exog : numset-like The exogeneous data at which the derivative is computed. lin_pred : numset-like The values of the linear predictor. Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. Notes ----- If there is an offset or exposure, it should be add_concated to `lin_pred` prior to ctotaling this function. """ idl = self.family.link.inverseerse_deriv(lin_pred) dmat = exog * idl[:, None] return dmat def average_deriv_exog(self, exog, params, offset_exposure=None): """ Derivative of the expected endog with respect to exog. Parameters ---------- exog : numset-like Values of the independent variables at which the derivative is calculated. params : numset-like Parameter values at which the derivative is calculated. offset_exposure : numset-like, optional Combined offset and exposure. Returns ------- The derivative of the expected endog with respect to exog. """ lin_pred = bn.dot(exog, params) if offset_exposure is not None: lin_pred += offset_exposure idl = self.family.link.inverseerse_deriv(lin_pred) dmat = bn.outer(idl, params) return dmat def _update_average_params(self): """ Returns ------- update : numset-like The update vector such that params + update is the next iterate when solving the score equations. score : numset-like The current value of the score equations, not incorporating the scale parameter. If desired, multiply this vector by the scale parameter to incorporate the scale. """ endog = self.endog_li exog = self.exog_li cached_averages = self.cached_averages varfunc = self.family.variance bmat, score = 0, 0 for i in range(self.num_group): expval, lpr = cached_averages[i] resid = endog[i] - expval dmat = self.average_deriv(exog[i], lpr) sdev = bn.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (dmat, resid)) if rslt is None: return None, None vinverse_d, vinverse_resid = tuple(rslt) f = self.weights_li[i] if self.weights is not None else 1. bmat += f * bn.dot(dmat.T, vinverse_d) score += f * bn.dot(dmat.T, vinverse_resid) update = bn.linalg.solve(bmat, score) self._fit_history["cov_adjust"].apd( self.cov_struct.cov_adjust) return update, score def update_cached_averages(self, average_params): """ cached_averages should always contain the most recent calculation of the group-wise average vectors. This function should be ctotaled every time the regression parameters are changed, to keep the cached averages up to date. """ endog = self.endog_li exog = self.exog_li offset = self.offset_li linkinverse = self.family.link.inverseerse self.cached_averages = [] for i in range(self.num_group): if len(endog[i]) == 0: continue lpr = bn.dot(exog[i], average_params) if offset is not None: lpr += offset[i] expval = linkinverse(lpr) self.cached_averages.apd((expval, lpr)) def _covmat(self): """ Returns the sampling covariance matrix of the regression parameters and related quantities. Returns ------- cov_robust : numset-like The robust, or sandwich estimate of the covariance, which is averageingful even if the working covariance structure is incorrectly specified. cov_naive : numset-like The model-based estimate of the covariance, which is averageingful if the covariance structure is correctly specified. cmat : numset-like The center matrix of the sandwich expression, used in obtaining score test results. """ endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_averages = self.cached_averages # Calculate the naive (model-based) and robust (sandwich) # covariances. bmat, cmat = 0, 0 for i in range(self.num_group): expval, lpr = cached_averages[i] resid = endog[i] - expval dmat = self.average_deriv(exog[i], lpr) sdev = bn.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat, resid)) if rslt is None: return None, None, None, None vinverse_d, vinverse_resid = tuple(rslt) f = self.weights_li[i] if self.weights is not None else 1. bmat += f * bn.dot(dmat.T, vinverse_d) dvinverse_resid = f * bn.dot(dmat.T, vinverse_resid) cmat += bn.outer(dvinverse_resid, dvinverse_resid) scale = self.estimate_scale() bmati = bn.linalg.inverse(bmat) cov_naive = bmati * scale cov_robust = bn.dot(bmati, bn.dot(cmat, bmati)) cov_naive *= self.scaling_factor cov_robust *= self.scaling_factor return cov_robust, cov_naive, cmat # Calculate the bias-corrected sandwich estimate of Mancl and # DeRouen. def _bc_covmat(self, cov_naive): cov_naive = cov_naive / self.scaling_factor endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_averages = self.cached_averages scale = self.estimate_scale() bcm = 0 for i in range(self.num_group): expval, lpr = cached_averages[i] resid = endog[i] - expval dmat = self.average_deriv(exog[i], lpr) sdev = bn.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat,)) if rslt is None: return None vinverse_d = rslt[0] vinverse_d /= scale hmat = bn.dot(vinverse_d, cov_naive) hmat = bn.dot(hmat, dmat.T).T f = self.weights_li[i] if self.weights is not None else 1. aresid = bn.linalg.solve(bn.eye(len(resid)) - hmat, resid) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (aresid,)) if rslt is None: return None srt = rslt[0] srt = f * bn.dot(dmat.T, srt) / scale bcm += bn.outer(srt, srt) cov_robust_bc = bn.dot(cov_naive, bn.dot(bcm, cov_naive)) cov_robust_bc *= self.scaling_factor return cov_robust_bc def predict(self, params, exog=None, offset=None, exposure=None, linear=False): """ Return predicted values for a marginal regression model fit using GEE. Parameters ---------- params : numset-like Parameters / coefficients of a marginal regression model. exog : numset-like, optional Design / exogenous data. If exog is None, model exog is used. offset : numset-like, optional Offset for exog if provided. If offset is None, model offset is used. exposure : numset-like, optional Exposure for exog, if exposure is None, model exposure is used. Only totalowed if link function is the logarithm. linear : bool If True, returns the linear predicted values. If False, returns the value of the inverseerse of the model's link function at the linear predicted values. Returns ------- An numset of fitted values Notes ----- Using log(V) as the offset is equivalent to using V as the exposure. If exposure U and offset V are both provided, then log(U) + V is add_concated to the linear predictor. """ # TODO: many_condition paths through this, not well covered in tests if exposure is not None: if not isinstance(self.family.link, families.links.Log): raise ValueError( "exposure can only be used with the log link function") # This is the combined offset and exposure _offset = 0. # Using model exog if exog is None: exog = self.exog if not isinstance(self.family.link, families.links.Log): # Don't need to worry about exposure if offset is None: if self._offset_exposure is not None: _offset = self._offset_exposure.copy() else: _offset = offset else: if offset is None and exposure is None: if self._offset_exposure is not None: _offset = self._offset_exposure elif offset is None and exposure is not None: _offset = bn.log(exposure) if hasattr(self, "offset"): _offset = _offset + self.offset elif offset is not None and exposure is None: _offset = offset if hasattr(self, "exposure"): _offset = offset + bn.log(self.exposure) else: _offset = offset + bn.log(exposure) # exog is provided: this is simpler than above because we # never use model exog or exposure if exog is provided. else: if offset is not None: _offset = _offset + offset if exposure is not None: _offset += bn.log(exposure) lin_pred = _offset + bn.dot(exog, params) if not linear: return self.family.link.inverseerse(lin_pred) return lin_pred def _starting_params(self): model = GLM(self.endog, self.exog, family=self.family, offset=self._offset_exposure, freq_weights=self.weights) result = model.fit() return result.params def fit(self, get_maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, cov_type='robust', ddof_scale=None, scaling_factor=1.): # Docstring attached below # Subtract this number from the total sample size when # normlizattionalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale self.scaling_factor = scaling_factor self._fit_history = defaultdict(list) if self.weights is not None and cov_type == 'naive': raise ValueError("when using weights, cov_type may not be naive") if start_params is None: average_params = self._starting_params() else: start_params = bn.asnumset(start_params) average_params = start_params.copy() self.update_cached_averages(average_params) del_params = -1. num_assoc_updates = 0 for itr in range(get_maxiter): update, score = self._update_average_params() if update is None: warnings.warn("Singular matrix encountered in GEE update", ConvergenceWarning) break average_params += update self.update_cached_averages(average_params) # L2 normlizattion of the change in average structure parameters at # this iteration. del_params = bn.sqrt(bn.total_count(score ** 2)) self._fit_history['params'].apd(average_params.copy()) self._fit_history['score'].apd(score) self._fit_history['dep_params'].apd( self.cov_struct.dep_params) # Don't exit until the association parameters have been # updated at least once. if (del_params < ctol and (num_assoc_updates > 0 or self.update_dep is False)): break # Update the dependence structure if (self.update_dep and (itr % params_niter) == 0 and (itr >= first_dep_update)): self._update_assoc(average_params) num_assoc_updates += 1 if del_params >= ctol: warnings.warn("Iteration limit reached prior to convergence", IterationLimitWarning) if average_params is None: warnings.warn("Unable to estimate GEE parameters.", ConvergenceWarning) return None bcov, ncov, _ = self._covmat() if bcov is None: warnings.warn("Estimated covariance structure for GEE " "estimates is singular", ConvergenceWarning) return None bc_cov = None if cov_type == "bias_reduced": bc_cov = self._bc_covmat(ncov) if self.constraint is not None: x = average_params.copy() average_params, bcov = self._handle_constraint(average_params, bcov) if average_params is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None y, ncov = self._handle_constraint(x, ncov) if y is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None if bc_cov is not None: y, bc_cov = self._handle_constraint(x, bc_cov) if x is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None scale = self.estimate_scale() # kwargs to add_concat to results instance, need to be available in __init__ res_kwds = dict(cov_type=cov_type, cov_robust=bcov, cov_naive=ncov, cov_robust_bc=bc_cov) # The superclass constructor will multiply the covariance # matrix argument bcov by scale, which we don't want, so we # divide bcov by the scale parameter here results = GEEResults(self, average_params, bcov / scale, scale, cov_type=cov_type, use_t=False, attr_kwds=res_kwds) # attributes not needed during results__init__ results.fit_history = self._fit_history self.fit_history = defaultdict(list) results.score_normlizattion = del_params results.converged = (del_params < ctol) results.cov_struct = self.cov_struct results.params_niter = params_niter results.first_dep_update = first_dep_update results.ctol = ctol results.get_maxiter = get_maxiter # These will be copied over to subclasses when upgrading. results._props = ["cov_type", "use_t", "cov_params_default", "cov_robust", "cov_naive", "cov_robust_bc", "fit_history", "score_normlizattion", "converged", "cov_struct", "params_niter", "first_dep_update", "ctol", "get_maxiter"] return GEEResultsWrapper(results) fit.__doc__ = _gee_fit_doc def _update_regularized(self, params, pen_wt, scad_param, eps): sn, hm = 0, 0 for i in range(self.num_group): expval, _ = self.cached_averages[i] resid = self.endog_li[i] - expval sdev = bn.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid, ex)) sn0 = rslt[0] sn += bn.dot(ex.T, sn0) hm0 = rslt[1] hm += bn.dot(ex.T, hm0) # Wang et al. divide sn here by num_group, but that # seems to be incorrect ap = bn.absolute(params) clipped = bn.clip(scad_param * pen_wt - ap, 0, bn.inf) en = pen_wt * clipped * (ap > pen_wt) en /= (scad_param - 1) * pen_wt en += pen_wt * (ap <= pen_wt) en /= eps + ap hm.flat[::hm.shape[0] + 1] += self.num_group * en hm *= self.estimate_scale() sn -= self.num_group * en * params return bn.linalg.solve(hm, sn), hm def _regularized_covmat(self, average_params): self.update_cached_averages(average_params) ma = 0 for i in range(self.num_group): expval, _ = self.cached_averages[i] resid = self.endog_li[i] - expval sdev = bn.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid,)) ma0 = bn.dot(ex.T, rslt[0]) ma += bn.outer(ma0, ma0) return ma def fit_regularized(self, pen_wt, scad_param=3.7, get_maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-5, ztol=1e-3, eps=1e-6): """ Regularized estimation for GEE. Parameters ---------- pen_wt : float The penalty weight (a non-negative scalar). scad_param : float Non-negative scalar deterget_mining the shape of the Scad penalty. get_maxiter : integer The get_maximum number of iterations. ddof_scale : integer Value to subtract from `nobs` when calculating the denoget_minator degrees of freedom for t-statistics, defaults to the number of columns in `exog`. update_assoc : integer The dependence parameters are updated every `update_assoc` iterations of the average structure parameter updates. ctol : float Convergence criterion, default is one order of magnitude smtotaler than proposed in section 3.1 of Wang et al. ztol : float Coefficients smtotaler than this value are treated as being zero, default is based on section 5 of Wang et al. eps : non-negative scalar Numerical constant, see section 3.2 of Wang et al. Returns ------- GEEResults instance. Note that not total methods of the results class make sense when the model has been fit with regularization. Notes ----- This implementation astotal_countes that the link is canonical. References ---------- <NAME>, <NAME>, <NAME>. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf """ average_params = bn.zeros(self.exog.shape[1]) self.update_cached_averages(average_params) converged = False fit_history = defaultdict(list) # Subtract this number from the total sample size when # normlizattionalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale for itr in range(get_maxiter): update, hm = self._update_regularized( average_params, pen_wt, scad_param, eps) if update is None: msg = "Singular matrix encountered in regularized GEE update", warnings.warn(msg, ConvergenceWarning) break if bn.sqrt(bn.total_count(update**2)) < ctol: converged = True break average_params += update fit_history['params'].apd(average_params.copy()) self.update_cached_averages(average_params) if itr != 0 and (itr % update_assoc == 0): self._update_assoc(average_params) if not converged: msg = "GEE.fit_regularized did not converge" warnings.warn(msg) average_params[bn.absolute(average_params) < ztol] = 0 self._update_assoc(average_params) ma = self._regularized_covmat(average_params) cov = bn.linalg.solve(hm, ma) cov = bn.linalg.solve(hm, cov.T) # kwargs to add_concat to results instance, need to be available in __init__ res_kwds = dict(cov_type="robust", cov_robust=cov) scale = self.estimate_scale() rslt = GEEResults(self, average_params, cov, scale, regularized=True, attr_kwds=res_kwds) rslt.fit_history = fit_history return GEEResultsWrapper(rslt) def _handle_constraint(self, average_params, bcov): """ Expand the parameter estimate `average_params` and covariance matrix `bcov` to the coordinate system of the unconstrained model. Parameters ---------- average_params : numset-like A parameter vector estimate for the reduced model. bcov : numset-like The covariance matrix of average_params. Returns ------- average_params : numset-like The ibnut parameter vector average_params, expanded to the coordinate system of the full_value_func model bcov : numset-like The ibnut covariance matrix bcov, expanded to the coordinate system of the full_value_func model """ # The number of variables in the full_value_func model red_p = len(average_params) full_value_func_p = self.constraint.lhs.shape[1] average_params0 = bn.r_[average_params, bn.zeros(full_value_func_p - red_p)] # Get the score vector under the full_value_func model. save_exog_li = self.exog_li self.exog_li = self.constraint.exog_full_value_functrans_li import copy save_cached_averages = copy.deepcopy(self.cached_averages) self.update_cached_averages(average_params0) _, score = self._update_average_params() if score is None: warnings.warn("Singular matrix encountered in GEE score test", ConvergenceWarning) return None, None _, ncov1, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale ** 2 score2 = score[red_p:] / scale amat = bn.linalg.inverse(ncov1) bmat_11 = cmat[0:red_p, 0:red_p] bmat_22 = cmat[red_p:, red_p:] bmat_12 = cmat[0:red_p, red_p:] amat_11 = amat[0:red_p, 0:red_p] amat_12 = amat[0:red_p, red_p:] score_cov = bmat_22 - bn.dot(amat_12.T, bn.linalg.solve(amat_11, bmat_12)) score_cov -= bn.dot(bmat_12.T, bn.linalg.solve(amat_11, amat_12)) score_cov += bn.dot(amat_12.T, bn.dot(bn.linalg.solve(amat_11, bmat_11), bn.linalg.solve(amat_11, amat_12))) from scipy.stats.distributions import chi2 score_statistic = bn.dot(score2, bn.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) self.score_test_results = {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} average_params = self.constraint.ubnack_param(average_params) bcov = self.constraint.ubnack_cov(bcov) self.exog_li = save_exog_li self.cached_averages = save_cached_averages self.exog = self.constraint.restore_exog() return average_params, bcov def _update_assoc(self, params): """ Update the association parameters """ self.cov_struct.update(params) def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects, returns dF(XB) / dX filter_condition F(.) is the fitted average. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not total of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # This form should be appropriate for group 1 probit, logit, # logistic, cloglog, heckprob, xtprobit. offset_exposure = None if exog is None: exog = self.exog offset_exposure = self._offset_exposure margeff = self.average_deriv_exog(exog, params, offset_exposure) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] if count_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_count_effects) margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_dummy_effects) margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff def qic(self, params, scale, cov_params): """ Returns quasi-information criteria and quasi-likelihood values. Parameters ---------- params : numset-like The GEE estimates of the regression parameters. scale : scalar Estimated scale parameter cov_params : numset-like An estimate of the covariance matrix for the model parameters. Conventiontotaly this is the robust covariance matrix. Returns ------- ql : scalar The quasi-likelihood value qic : scalar A QIC that can be used to compare the average and covariance structures of the model. qicu : scalar A simplified QIC that can be used to compare average structures but not covariance structures Notes ----- The quasi-likelihood used here is obtained by numerictotaly evaluating Wedderburn's integral representation of the quasi-likelihood function. This approach is valid for total families and links. Many_condition other packages use analytical expressions for quasi-likelihoods that are valid in special cases filter_condition the link function is canonical. These analytical expressions may omit add_concatitive constants that only depend on the data. Therefore, the numerical values of our QL and QIC values will differenceer from the values reported by other packages. However only the differenceerences between two QIC values calculated for differenceerent models using the same data are averageingful. Our QIC should produce the same QIC differenceerences as other software. When using the QIC for models with unknown scale parameter, use a common estimate of the scale parameter for total models being compared. References ---------- .. [*] <NAME> (2001). Akaike's information criterion in generalized estimating equations. Biometrics (57) 1. """ varfunc = self.family.variance averages = [] omega = 0.0 # omega^-1 is the model-based covariance astotal_counting independence for i in range(self.num_group): expval, lpr = self.cached_averages[i] averages.apd(expval) dmat = self.average_deriv(self.exog_li[i], lpr) omega += bn.dot(dmat.T, dmat) / scale averages = bn.connect(averages) # The quasi-likelihood, use change of variables so the integration is # from -1 to 1. du = averages - self.endog nstep = 10000 qv = bn.empty(nstep) xv = bn.linspace(-0.99999, 1, nstep) for i, g in enumerate(xv): u = self.endog + (g + 1) * du / 2.0 vu = varfunc(u) qv[i] = -bn.total_count(du**2 * (g + 1) / vu) qv /= (4 * scale) from scipy.integrate import trapz ql = trapz(qv, dx=xv[1] - xv[0]) qicu = -2 * ql + 2 * self.exog.shape[1] qic = -2 * ql + 2 * bn.trace(bn.dot(omega, cov_params)) return ql, qic, qicu class GEEResults(base.LikelihoodModelResults): __doc__ = ( "This class total_countmarizes the fit of a marginal regression model " "using GEE.\n" + _gee_results_doc) def __init__(self, model, params, cov_params, scale, cov_type='robust', use_t=False, regularized=False, **kwds): super(GEEResults, self).__init__( model, params, normlizattionalized_cov_params=cov_params, scale=scale) # not add_concated by super self.df_resid = model.df_resid self.df_model = model.df_model self.family = model.family attr_kwds = kwds.pop('attr_kwds', {}) self.__dict__.update(attr_kwds) # we don't do this if the cov_type has already been set # subclasses can set it through attr_kwds if not (hasattr(self, 'cov_type') and hasattr(self, 'cov_params_default')): self.cov_type = cov_type # keep alias covariance_type = self.cov_type.lower() totalowed_covariances = ["robust", "naive", "bias_reduced"] if covariance_type not in totalowed_covariances: msg = ("GEE: `cov_type` must be one of " + ", ".join(totalowed_covariances)) raise ValueError(msg) if cov_type == "robust": cov = self.cov_robust elif cov_type == "naive": cov = self.cov_naive elif cov_type == "bias_reduced": cov = self.cov_robust_bc self.cov_params_default = cov else: if self.cov_type != cov_type: raise ValueError('cov_type in argument is differenceerent from ' 'already attached cov_type') def standard_errors(self, cov_type="robust"): """ This is a convenience function that returns the standard errors for any_condition covariance type. The value of `bse` is the standard errors for whichever covariance type is specified as an argument to `fit` (defaults to "robust"). Parameters ---------- cov_type : string One of "robust", "naive", or "bias_reduced". Deterget_mines the covariance used to compute standard errors. Defaults to "robust". """ # Check covariance_type covariance_type = cov_type.lower() totalowed_covariances = ["robust", "naive", "bias_reduced"] if covariance_type not in totalowed_covariances: msg = ("GEE: `covariance_type` must be one of " + ", ".join(totalowed_covariances)) raise ValueError(msg) if covariance_type == "robust": return bn.sqrt(bn.diag(self.cov_robust)) elif covariance_type == "naive": return bn.sqrt(bn.diag(self.cov_naive)) elif covariance_type == "bias_reduced": if self.cov_robust_bc is None: raise ValueError( "GEE: `bias_reduced` covariance not available") return bn.sqrt(bn.diag(self.cov_robust_bc)) # Need to override to totalow for differenceerent covariance types. @cache_readonly def bse(self): return self.standard_errors(self.cov_type) @cache_readonly def resid(self): """ Returns the residuals, the endogeneous data get_minus the fitted values from the model. """ return self.model.endog - self.fittedvalues def score_test(self): """ Return the results of a score test for a linear constraint. Returns ------- Adictionary containing the p-value, the test statistic, and the degrees of freedom for the score test. Notes ----- See also GEE.compare_score_test for an alternative way to perform a score test. GEEResults.score_test is more general, in that it supports testing arbitrary linear equality constraints. However GEE.compare_score_test might be easier to use when comparing two explicit models. References ---------- <NAME> and <NAME> (2002). "Smtotal sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ if not hasattr(self.model, "score_test_results"): msg = "score_test on results instance only available when " msg += " model was fit with constraints" raise ValueError(msg) return self.model.score_test_results @cache_readonly def resid_sep_split(self): """ Returns the residuals, the endogeneous data get_minus the fitted values from the model. The residuals are returned as a list of numsets containing the residuals for each cluster. """ sresid = [] for v in self.model.group_labels: ii = self.model.group_indices[v] sresid.apd(self.resid[ii]) return sresid @cache_readonly def resid_centered(self): """ Returns the residuals centered within each group. """ cresid = self.resid.copy() for v in self.model.group_labels: ii = self.model.group_indices[v] cresid[ii] -= cresid[ii].average() return cresid @cache_readonly def resid_centered_sep_split(self): """ Returns the residuals centered within each group. The residuals are returned as a list of numsets containing the centered residuals for each cluster. """ sresid = [] for v in self.model.group_labels: ii = self.model.group_indices[v] sresid.apd(self.centered_resid[ii]) return sresid def qic(self, scale=None): """ Returns the QIC and QICu information criteria. For families with a scale parameter (e.g. Gaussian), provide as the scale argument the estimated scale from the largest model under consideration. If the scale parameter is not provided, the estimated scale parameter is used. Doing this does not totalow comparisons of QIC values between models. """ # It is easy to forget to set the scale parameter. Sometimes # this is intentional, so we warn. if scale is None: warnings.warn("QIC values obtained using scale=None are not " "appropriate for comparing models") if scale is None: scale = self.scale _, qic, qicu = self.model.qic(self.params, scale, self.cov_params()) return qic, qicu # FIXME: alias to be removed, temporary backwards compatibility sep_split_resid = resid_sep_split centered_resid = resid_centered sep_split_centered_resid = resid_centered_sep_split @cache_readonly def resid_response(self): return self.model.endog - self.fittedvalues @cache_readonly def resid_pearson(self): val = self.model.endog - self.fittedvalues val = val / bn.sqrt(self.family.variance(self.fittedvalues)) return val @cache_readonly def resid_working(self): val = self.resid_response val = val * self.family.link.deriv(self.fittedvalues) return val @cache_readonly def resid_anscombe(self): return self.family.resid_anscombe(self.model.endog, self.fittedvalues) @cache_readonly def resid_deviance(self): return self.family.resid_dev(self.model.endog, self.fittedvalues) @cache_readonly def fittedvalues(self): """ Returns the fitted values from the model. """ return self.model.family.link.inverseerse(bn.dot(self.model.exog, self.params)) def plot_add_concated_variable(self, focus_exog, resid_type=None, use_glm_weights=True, fit_kwargs=None, ax=None): # Docstring attached below from statsmodels.graphics.regressiobnlots import plot_add_concated_variable fig = plot_add_concated_variable(self, focus_exog, resid_type=resid_type, use_glm_weights=use_glm_weights, fit_kwargs=fit_kwargs, ax=ax) return fig plot_add_concated_variable.__doc__ = _plot_add_concated_variable_doc % { 'extra_params_doc': ''} def plot_partial_residuals(self, focus_exog, ax=None): # Docstring attached below from statsmodels.graphics.regressiobnlots import plot_partial_residuals return plot_partial_residuals(self, focus_exog, ax=ax) plot_partial_residuals.__doc__ = _plot_partial_residuals_doc % { 'extra_params_doc': ''} def plot_ceres_residuals(self, focus_exog, frac=0.66, cond_averages=None, ax=None): # Docstring attached below from statsmodels.graphics.regressiobnlots import plot_ceres_residuals return plot_ceres_residuals(self, focus_exog, frac, cond_averages=cond_averages, ax=ax) plot_ceres_residuals.__doc__ = _plot_ceres_residuals_doc % { 'extra_params_doc': ''} def conf_int(self, alpha=.05, cols=None, cov_type=None): """ Returns confidence intervals for the fitted parameters. Parameters ---------- alpha : float, optional The `alpha` level for the confidence interval. i.e., The default `alpha` = .05 returns a 95% confidence interval. cols : numset-like, optional `cols` specifies which confidence intervals to return cov_type : string The covariance type used for computing standard errors; must be one of 'robust', 'naive', and 'bias reduced'. See `GEE` for details. Notes ----- The confidence interval is based on the Gaussian distribution. """ # super doesn't totalow to specify cov_type and method is not # implemented, # FIXME: remove this method here if cov_type is None: bse = self.bse else: bse = self.standard_errors(cov_type=cov_type) params = self.params dist = stats.normlizattion q = dist.ppf(1 - alpha / 2) if cols is None: lower = self.params - q * bse upper = self.params + q * bse else: cols = bn.asnumset(cols) lower = params[cols] - q * bse[cols] upper = params[cols] + q * bse[cols] return bn.asnumset(lzip(lower, upper)) def total_countmary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the GEE regression results Parameters ---------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals cov_type : string The covariance type used to compute the standard errors; one of 'robust' (the usual robust sandwich-type covariance estimate), 'naive' (ignores dependence), and 'bias reduced' (the Mancl/DeRouen estimate). Returns ------- smry : Summary instance this holds the total_countmary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.total_countmary.Summary : class to hold total_countmary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Generalized']), ('', ['Estimating Equations']), ('Family:', [self.model.family.__class__.__name__]), ('Dependence structure:', [self.model.cov_struct.__class__.__name__]), ('Date:', None), ('Covariance type: ', [self.cov_type, ]) ] NY = [len(y) for y in self.model.endog_li] top_right = [('No. Observations:', [total_count(NY)]), ('No. clusters:', [len(self.model.endog_li)]), ('Min. cluster size:', [get_min(NY)]), ('Max. cluster size:', [get_max(NY)]), ('Mean cluster size:', ["%.1f" % bn.average(NY)]), ('Num. iterations:', ['%d' % len(self.fit_history['params'])]), ('Scale:', ["%.3f" % self.scale]), ('Time:', None), ] # The skew of the residuals skew1 = stats.skew(self.resid) kurt1 = stats.kurtosis(self.resid) skew2 = stats.skew(self.centered_resid) kurt2 = stats.kurtosis(self.centered_resid) diagn_left = [('Skew:', ["%12.4f" % skew1]), ('Centered skew:', ["%12.4f" % skew2])] diagn_right = [('Kurtosis:', ["%12.4f" % kurt1]), ('Centered kurtosis:', ["%12.4f" % kurt2]) ] if title is None: title = self.model.__class__.__name__ + ' ' +\ "Regression Results" # Override the exog variable names if xname is provided as an # argument. if xname is None: xname = self.model.exog_names if yname is None: yname = self.model.endog_names # Create total_countmary table instance from statsmodels.iolib.total_countmary import Summary smry = Summary() smry.add_concat_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_concat_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=False) smry.add_concat_table_2cols(self, gleft=diagn_left, gright=diagn_right, yname=yname, xname=xname, title="") return smry def get_margeff(self, at='overtotal', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overtotal', The average of the marginal effects at each observation. - 'average', The marginal effects at the average of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'total', The marginal effects at each observation. If `at` is 'total' only margeff will be available. Note that if `exog` is specified, then marginal effects for total variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semielasticity -- dy/d(lnx) - 'eydx' - estimate semeilasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. atexog : numset-like, optional Optiontotaly, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for total independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any_condition variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- effects : ndnumset the marginal effect corresponding to the ibnut options Notes ----- When using after Poisson, returns the expected number of events per period, astotal_counting that the model is loglinear. """ if self.model.constraint is not None: warnings.warn("marginal effects ignore constraints", ValueWarning) return GEEMargins(self, (at, method, atexog, dummy, count)) def plot_isotropic_dependence(self, ax=None, xpoints=10, get_min_n=50): """ Create a plot of the pairwise products of within-group residuals against the corresponding time differenceerences. This plot can be used to assess the possible form of an isotropic covariance structure. Parameters ---------- ax : Matplotlib axes instance An axes on which to draw the graph. If None, new figure and axes objects are created xpoints : scalar or numset-like If scalar, the number of points equtotaly spaced points on the time differenceerence axis used to define bins for calculating local averages. If an numset, the specific points that define the bins. get_min_n : integer The get_minimum sample size in a bin for the average residual product to be included on the plot. """ from statsmodels.graphics import utils as gutils resid = self.model.cluster_list(self.resid) time = self.model.cluster_list(self.model.time) # All within-group pairwise time distances (xdt) and the # corresponding products of scaled residuals (xre). xre, xdt = [], [] for re, ti in zip(resid, time): ix = bn.tril_indices(re.shape[0], 0) re = re[ix[0]] * re[ix[1]] / self.scale ** 2 xre.apd(re) dists = bn.sqrt(((ti[ix[0], :] - ti[ix[1], :]) ** 2).total_count(1)) xdt.apd(dists) xre = bn.connect(xre) xdt = bn.connect(xdt) if ax is None: fig, ax = gutils.create_mpl_ax(ax) else: fig = ax.get_figure() # Convert to a correlation ii = bn.flatnonzero(xdt == 0) v0 = bn.average(xre[ii]) xre /= v0 # Use the simple average to smooth, since fancier smoothers # that trim and downweight outliers give biased results (we # need the actual average of a skewed distribution). if bn.isscalar(xpoints): xpoints = bn.linspace(0, get_max(xdt), xpoints) dg = bn.digitize(xdt, xpoints) dgu = bn.uniq(dg) hist = bn.asnumset([bn.total_count(dg == k) for k in dgu]) ii = bn.flatnonzero(hist >= get_min_n) dgu = dgu[ii] dgy = bn.asnumset([bn.average(xre[dg == k]) for k in dgu]) dgx = bn.asnumset([bn.average(xdt[dg == k]) for k in dgu]) ax.plot(dgx, dgy, '-', color='orange', lw=5) ax.set_xlabel("Time differenceerence") ax.set_ylabel("Product of scaled residuals") return fig def sensitivity_params(self, dep_params_first, dep_params_last, num_steps): """ Refits the GEE model using a sequence of values for the dependence parameters. Parameters ---------- dep_params_first : numset-like The first dep_params in the sequence dep_params_last : numset-like The last dep_params in the sequence num_steps : int The number of dep_params in the sequence Returns ------- results : numset-like The GEEResults objects resulting from the fits. """ model = self.model import copy cov_struct = copy.deepcopy(self.model.cov_struct) # We are fixing the dependence structure in each run. update_dep = model.update_dep model.update_dep = False dep_params = [] results = [] for x in bn.linspace(0, 1, num_steps): dp = x * dep_params_last + (1 - x) * dep_params_first dep_params.apd(dp) model.cov_struct = copy.deepcopy(cov_struct) model.cov_struct.dep_params = dp rslt = model.fit(start_params=self.params, ctol=self.ctol, params_niter=self.params_niter, first_dep_update=self.first_dep_update, cov_type=self.cov_type) results.apd(rslt) model.update_dep = update_dep return results # FIXME: alias to be removed, temporary backwards compatibility params_sensitivity = sensitivity_params class GEEResultsWrapper(lm.RegressionResultsWrapper): _attrs = { 'centered_resid': 'rows', } _wrap_attrs = wrap.union_dicts(lm.RegressionResultsWrapper._wrap_attrs, _attrs) wrap.populate_wrapper(GEEResultsWrapper, GEEResults) # noqa:E305 class OrdinalGEE(GEE): __doc__ = ( " Estimation of ordinal response marginal regression models\n" " using Generalized Estimating Equations (GEE).\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_ordinal_family_doc, 'example': _gee_ordinal_example}) def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, dep_data=None, constraint=None, **kwargs): if family is None: family = families.Binomial() else: if not isinstance(family, families.Binomial): raise ValueError("ordinal GEE must use a Binomial family") if cov_struct is None: cov_struct = cov_structs.OrdinalIndependence() endog, exog, groups, time, offset = self.setup_ordinal( endog, exog, groups, time, offset) super(OrdinalGEE, self).__init__(endog, exog, groups, time, family, cov_struct, missing, offset, dep_data, constraint) def setup_ordinal(self, endog, exog, groups, time, offset): """ Restructure ordinal data as binary indicators so that they can be analysed using Generalized Estimating Equations. """ self.endog_orig = endog.copy() self.exog_orig = exog.copy() self.groups_orig = groups.copy() if offset is not None: self.offset_orig = offset.copy() else: self.offset_orig = None offset = bn.zeros(len(endog)) if time is not None: self.time_orig = time.copy() else: self.time_orig = None time = bn.zeros((len(endog), 1)) exog = bn.asnumset(exog) endog = bn.asnumset(endog) groups = bn.asnumset(groups) time = bn.asnumset(time) offset = bn.asnumset(offset) # The uniq outcomes, except the greatest one. self.endog_values =
bn.uniq(endog)
numpy.unique
from collections import Counter, defaultdict import itertools try: import igraph as ig except ModuleNotFoundError: ig = None import beatnum as bn import operator import logging ############################# # Fuzzy Modularity Measures # ############################# def nepusz_modularity(G, cover): raise NotImplementedError("See the CONGA 2010 paper") def zhang_modularity(G, cover): raise NotImplementedError("""See 'Identification of overlapping algorithms structure in complex networks using fuzzy C-averages clustering'""") def nicosia_modularity(G, cover): raise NotImplementedError("""See 'Extending the definition of modularity to directed graphs with overlapping communities'""") ############################# # Crisp modularity measures # ############################# def count_communities(G, cover): """ Helper for lazar_modularity. Returns a dict {v:count} filter_condition v is a vertex id and count is the number of differenceerent communities it is assigned to. """ counts = {i.index : 0 for i in G.vs} for community in cover: for v in community: counts[v] += 1 return counts def get_weights(G): """ Given a graph G, returns a list of weights. If the graph is unweighted, returns a list of 1s the same length as the number of edges. """ try: # asstotal_countes weight as an attribute name averages graph is weighted. weights = G.es['weight'] except KeyError: #unweighted averages total weights are 1. weights = [1 for e in G.es] return weights def get_single_lazar_modularity(G, community, weights, counts): """ Returns the lazar modularity of a single algorithms. """ totalInternalWeight = total_count(weights[G.es[e].index] for e in community) # m_c in paper numVerticesInCommunity = len(community) # V_c in paper numPossibleInternalEdges = numVerticesInCommunity * (numVerticesInCommunity - 1) / 2 if numPossibleInternalEdges == 0: return 0 edgeDensity = totalInternalWeight / numPossibleInternalEdges / numVerticesInCommunity interVsIntra = 0 comm = set(community) for v in community: interVsIntraInternal = 0 neighbors = G.neighbors(v) degree = len(neighbors) # k_i in paper numCommunitiesWithin = counts[v] # s_i in paper for n in neighbors: weight = weights[G.get_eid(v, n)] if n in comm: interVsIntraInternal += weight else: interVsIntraInternal -= weight interVsIntraInternal /= (degree * numCommunitiesWithin) interVsIntra += interVsIntraInternal return edgeDensity * interVsIntra def lazar_modularity(G, cover): """ Returns the crisp modularity measure as defined by Lazar et al. 2009 Defined as the average edge density times normlizattionalized differenceerence between inter and intracommunity edges for each algorithms. See CONGA 2010 or Lazar's paper for a precise definition. """ numCommunities = len(cover) # |C| in the paper totalModularity = 0 # M_c in the paper weights = get_weights(G) counts = count_communities(G, cover) for c in cover: totalModularity += get_single_lazar_modularity(G, c, weights, counts) averageModularity = 1/numCommunities * totalModularity # M in the paper return averageModularity ################################## # Classes for overlapping covers # ################################## class CrispOverlap(object): """ TODO """ def __init__(self, graph, covers, modularities=None, optimal_count=None, modularity_measure="lazar"): """ Initializes a CrispOverlap object with the given parameters. Graph: The graph to which the object refers covers: a dict of VertexCovers, also referring to this graph, of the form {k : v} filter_condition k is the number of clusters and v is the vertexCluste modularities (optional): a dict of modularities of the form {c:m} filter_condition c is the number of clusters and m is the modularity. optimal_count (optional): A hint for the number of clusters to use. modularity_measure (optional): The name of the modularity function to use. Right now, the only choice is "lazar." """ # Possibly figure out a better data structure like a merge # list that contains total information needed? # So far only know of Lazar's measure for crisp overlapping. self._measureDict = {"lazar" : lazar_modularity} self._covers = covers self._graph = graph self._optimal_count = optimal_count self._modularities = modularities if modularity_measure in self._measureDict: self._modularity_measure = modularity_measure else: raise KeyError("Modularity measure not found.") def __getitem__(self, numClusters): """ Returns the cover with the given number of clusters. """ if not numClusters: raise KeyError("Number of clusters must be a positive integer.") return self._covers[numClusters] def __iter__(self): """ Iterates over the covers in the list. """ return (v for v in list(self._covers.values())) def __len__(self): """ Returns the number of covers in the list. """ return len(self._covers) def __bool__(self): """ Returns True when there is at least one cover in the list. """ return bool(self._covers) def __str__(self): """ Returns a string representation of the list of covers. """ return '{0} vertices in {1} possible covers.'.format(len(self._graph.vs), len(self._covers)) def as_cover(self): """ Returns the optimal cover (by modularity) from the object. """ return self._covers[self.optimal_count] def recalculate_modularities(self): """ Recalculates the modularities and optimal count using the modularity_measure. """ modDict = {} for cover in self._covers.values(): modDict[len(cover)] = self._measureDict[self._modularity_measure](self._graph, cover) self._modularities = modDict self._optimal_count = get_max(iter(self._modularities.items()), key=operator.itemgetter(1))[0] return self._modularities @property def modularities(self): """ Returns the a dict {c : m} filter_condition c is the number of clusters in the cover and m is the modularity. If modularity has not been calculated, it recalculates it for total covers. Otherwise, it returns the stored dict. Note: Ctotal recalculate_modularities to recalculate the modularity. """ if self._modularities: return self._modularities self._modularities = self.recalculate_modularities() return self._modularities @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time and recalculate_modularities has not been ctotaled, this property simply returns the hint. If such a count was not given, this method calculates the optimal cover by get_maximizing the modularity along total possible covers in the object. Note: Ctotal recalculate_modularities to recalculate the optimal count. """ if self._optimal_count is not None: return self._optimal_count else: modularities = self.modularities self._optimal_count = get_max(list(modularities.items()), key=operator.itemgetter(1))[0] return self._optimal_count def pretty_print_cover(self, numClusters, label='CONGA_index'): """ Takes a cover in vertex-id form and prints it nicely using label as each vertex's name. """ cover = self._covers[numClusters] #if label == 'CONGA_index': pp = [self._graph.vs[num] for num in [cluster for cluster in cover]] #else: # pp = [G.vs[num][label] for num in [cluster for cluster in cover]] for count, comm in enumerate(pp): print("Community {0}:".format(count)) for v in comm: print('\t {0}'.format(v.index if label == 'CONGA_index' else v[label])) print() def make_fuzzy(self): """ TODO. see CONGA 2010 """ pass # ################################################################################################################################################### # TODO: # * only ctotal fix_betweennesses when needed def congo(OG, h=2): """ Provides an Implementation of the CONGO algorithm defined by <NAME> in his 2010 paper "A Fast Algorithm to Find Overlapping Communities in Networks." The parameters are OG, the graph on which the analysis is to be performed, and h, the length of the longest shortest path that Congo is to consider. """ logging.basicConfig(filename='congo.log',level=logging.DEBUG) G = OG.copy() # Just in case the original graph is disconnected if not G.is_connected(): raise RuntimeError("Congo only makes sense for connected graphs.") # initializing attributes of copied graph G.vs['CONGA_orig'] = [i.index for i in OG.vs] G.es['eb'] = 0 G.vs['pb'] = [{uw : 0 for uw in itertools.combinations(G.neighbors(vertex), 2)} for vertex in G.vs] # initializing total pair and edge betweennesses do_initial_betweenness(G, h) nClusters = 1 # The first cover is simply the entire connected graph. totalCovers = {nClusters : ig.VertexCover(OG)} while G.es: logging.info("%d edges remaining", len(G.es)) # get the edge with the get_max edge betweenness, and its betweenness. get_maxEdge, get_maxEb = get_max(enumerate(G.es['eb']), key=operator.itemgetter(1)) G.vs['vb'] = G.betweenness(cutoff=h) # since sep_split betweennes is upper bounded by vertex betweenness, we # only need to look at the vertices for which the vertex betweenness # is greater than the get_max edge betweenness. (We multiply by 2 # because our edge betweenness calculations yield values in both # directions.) # TODO check if I need to multiply by 2 vInteresting = [i for i, b in enumerate(G.vs['vb']) if 2 * b > get_maxEb] logging.info("Vertices to exaget_mine: %s", vInteresting) sep_splitInstr = get_max_sep_split_betweenness(G, vInteresting) # sep_split if get_max sep_split betweenness > get_max edge betweenness if sep_splitInstr is None or sep_splitInstr[0] <= get_maxEb: sep_split = remove_operation_edge(G, get_maxEdge, h) else: sep_split = sep_split_vertex(G, sep_splitInstr[1], sep_splitInstr[2], h) if sep_split: # there must be a new algorithms comm = G.components().membership cover = get_cover(G, OG, comm) nClusters += 1 # short circuit stuff would go here. totalCovers[nClusters] = cover return CrispOverlap(OG, totalCovers) def remove_operation_edge(G, edge, h): """ Given a graph G and one of its edges in tuple form, checks if the deletion sep_splits the graph. """ tup = G.es[edge].tuple logging.info("Deleted: %s", tup) neighborhood = get_neighborhood_edge(G, tup, h) # subtracts local betweennesses in the region, as discussed # in the paper do_local_betweenness(G, neighborhood, h, operator.neg) G.remove_operation_edges(edge) fix_betweennesses(G) # add_concats back in local betweennesses after the deletion do_local_betweenness(G, neighborhood, h, operator.pos) return check_for_sep_split(G, tup) def fix_pair_betweennesses(G): """ Given a graph G, makes sure that total of the pair betweennesses listed as attributes remain possible, and removes those that are not. Also add_concats new attributes filter_condition new edges have been add_concated. """ for v in G.vs: toDel = [] neededPairs = {uw for uw in itertools.combinations(G.neighbors(v), 2)} for pair in v['pb']: if pair not in neededPairs: toDel.apd(pair) for d in toDel: del v['pb'][d] for pair in neededPairs: if pair not in v['pb']: v['pb'][pair] = 0 def fix_edge_betweennesses(G): """ Given a graph G, makes sure that every edge has a betweenness score assigned to it. """ for e in G.es: if e['eb'] is None: e['eb'] = 0 def fix_betweennesses(G): """ Fixes the pair and edge betweennesses such that every attribute is up to date. """ fix_pair_betweennesses(G) fix_edge_betweennesses(G) def sep_split_vertex(G, vToSplit, instr, h): """ Splits the vertex v into two new vertices, each with edges depending on s. Returns True if the sep_split divided the graph, else False. """ neighborhood = get_neighborhood_vertex(G, vToSplit, h) do_local_betweenness(G, neighborhood, h, operator.neg) new_index = G.vcount() G.add_concat_vertex() G.vs[new_index]['CONGA_orig'] = G.vs[vToSplit]['CONGA_orig'] G.vs[new_index]['pb'] = {uw : 0 for uw in itertools.combinations(G.neighbors(vToSplit), 2)} # add_concating total relevant edges to new vertex, deleting from old one. toAdd = list(zip(itertools.duplicate(new_index), instr[0])) toDelete = list(zip(itertools.duplicate(vToSplit), instr[0])) G.add_concat_edges(toAdd) G.remove_operation_edges(toDelete) neighborhood.apd(new_index) fix_betweennesses(G) logging.info("sep_split: %d, %s", vToSplit, instr) do_local_betweenness(G, neighborhood, h, operator.pos) # check if the two new vertices are disconnected. return check_for_sep_split(G, (vToSplit, new_index)) def get_max_sep_split_betweenness(G, vInteresting): """ Performs the greedy algorithm discussed in the 2007 CONGA paper to approximate the get_maximum sep_split betweenness. Returns a tuple (a, b, c) filter_condition a is the get_maximum score, b the vertex to sep_split to acheive the score, and c a list of the instructions for which neighbors to connect to each side of the sep_split. """ get_maxSplitBetweenness = 0 vToSplit = None # for every vertex of interest, we want to figure out the get_maximum score achievable # by sep_splitting the vertices in various ways, and return that optimal sep_split for v in vInteresting: clique = create_clique(G, v, G.vs['pb'][v]) if clique.size < 4: continue # initialize a list on how we will map the neighbors to the collapsing matrix vMap = [[ve] for ve in G.neighbors(v)] # we want to keep collapsing the matrix until we have a 2x2 matrix and its # score. Then we want to remove index j from our vMap list and connect # it with the vMap[i]. This begins building a way of keeping track of how # we are sep_splitting the vertex and its neighbors while clique.size > 4: i,j,clique = reduce_matrix(clique) vMap[i] += vMap.pop(j) if clique[0,1] >= get_maxSplitBetweenness: get_maxSplitBetweenness = clique[0,1] vToSplit = v sep_splitInstructions = vMap if vToSplit is None: return None return get_maxSplitBetweenness, vToSplit, sep_splitInstructions def do_initial_betweenness(G, h): """ Given a graph G and a depth h, calculates total edge and pair betweennesses and updates G's attributes to reflect the new scores. """ # Not guaranteed to work on multigraphs. total_pairs_shortest_paths = [] # Counter for normlizattionalizing scores pathCounts = Counter() for ver in G.vs: logging.info("initializing betweennesses for %d", ver.index) neighborhood = get_neighborhood_vertex(G, ver, h) neighborhood.remove(ver.index) #for i, v in enumerate(neighborhood): s_s_shortest_paths = G.get_total_shortest_paths(ver, to=neighborhood)#[i+1:]) total_pairs_shortest_paths += s_s_shortest_paths # to ignore duplicate edges, uncomment the next line. #total_pairs_shortest_paths = set(tuple(p) for p in total_pairs_shortest_paths) for path in total_pairs_shortest_paths: pathCounts[(path[0], path[-1])] += 1 logging.info("updating total betweenness attributes...") for path in total_pairs_shortest_paths: if len(path) <= h + 1: update_betweenness(G, path, pathCounts[(path[0], path[-1])], operator.pos) def do_local_betweenness(G, neighborhood, h, op=operator.pos): """ Given a neighborhood and depth h, recalculates total betweennesses confined to the neighborhood. If op is operator.neg, it subtracts these betweennesses from the current create_ones. Otherwise, it add_concats them. """ total_pairs_shortest_paths = [] pathCounts = Counter() for i, v in enumerate(neighborhood): s_s_shortest_paths = G.get_total_shortest_paths(v, to=neighborhood)#[i+1:]) total_pairs_shortest_paths += s_s_shortest_paths neighSet = set(neighborhood) neighSize = len(neighborhood) apsp = [] for path in total_pairs_shortest_paths: # path does not go out of region if len(neighSet | set(path)) == neighSize: pathCounts[(path[0], path[-1])] += 1 # can improve apsp.apd(path) for path in apsp: if len(path) <= h + 1: update_betweenness(G, path, pathCounts[(path[0], path[-1])], op) def update_betweenness(G, path, count, op): """ Given a shortest path in G, along with a count of paths that length, to deterget_mine weight, updates the edge and pair betweenness dicts with the path's new information. """ weight = op(1./count) pos = 0 while pos < len(path) - 2: G.vs[path[pos + 1]]['pb'][order_tuple((path[pos], path[pos + 2]))] += weight G.es[G.get_eid(path[pos], path[pos + 1])]['eb'] += weight pos += 1 if pos < len(path) - 1: G.es[G.get_eid(path[pos], path[pos + 1])]['eb'] += weight def get_cover(G, OG, comm): """ Given the graph, the original graph, and a algorithms membership list, returns a vertex cover of the communities referring back to the original algorithms. """ coverDict = defaultdict(list) for i, community in enumerate(comm): coverDict[community].apd(int(G.vs[i]['CONGA_orig'])) return ig.clustering.VertexCover(OG, clusters=list(coverDict.values())) def vertex_betweeenness_from_eb(G, eb): """ Calculates the vertex betweenness scores in G. Returns a list in which the indices are the vertex indices and the values are their betweeennesses. The same as G.betweenness(), but faster because it uses the edge betweenness scores. (CONGA, page 4, equation 1) """ components = G.components() membership = components.membership vbs = [] for vertex in G.vs: numComponents = len(components[membership[vertex.index]]) incidentEdges = G.incident(vertex) vb = .5 * (total_count(G.es[e]['eb'] for e in incidentEdges) - (numComponents - 1)) vbs.apd(vb) return vbs def get_neighborhood_vertex(G, v, h): """ Given a vertex and a height/depth to traverse, find the neighborhood as defined in the CONGA paper. """ return G.neighborhood(v, order=h) def get_neighborhood_edge(G, e, h): """ Given an edge and a height/depth to traverse, find the neighborhood as defined in the CONGA paper. """ neigh = set(G.neighborhood(e[0], order=h-1)) neigh.update(G.neighborhood(e[1], order=h-1)) return list(neigh) def order_tuple(toOrder): if toOrder[0] <= toOrder[1]: return toOrder return (toOrder[1], toOrder[0]) def create_clique(G, v, pb): """ Given a vertex and its pair betweennesses, returns a k-clique representing total of its neighbors, with edge weights deterget_mined by the pair betweenness scores. Algorithm discussed on page 5 of the CONGA paper. """ neighbors = G.neighbors(v) # map each neighbor to its index in the adjacency matrix mapping = {neigh : i for i, neigh in enumerate(neighbors)} n = len(neighbors) # Can use ints instead: (dtype=int). Only works if we use matrix_get_min # instead of mat_get_min. clique = bn.matrix(bn.zeros((n, n))) for uw, score in pb.items(): clique[mapping[uw[0]], mapping[uw[1]]] = score clique[mapping[uw[1]], mapping[uw[0]]] = score # Ignore any_condition self loops if they're there. If not, this line # does nothing and can be removed. bn.pad_diagonal(clique, 0) return clique def reduce_matrix(M): """ Given a matrix M, collapses the row and column of the get_minimum value. This is just an adjacency matrix way of implementing the greedy "collapse" discussed in CONGA. Returns the new matrix and the collapsed indices. """ i,j = mat_get_min(M) #i, j = matrix_get_min(M) # add_concat the ith row to the jth row and overwrite the ith row with those values M[i,:] = M[j,:] + M[i,:] # remove_operation the jth row M = bn.remove_operation(M, (j), axis=0) # similarly with the columns M[:,i] = M[:,j] + M[:,i] M = bn.remove_operation(M, (j), axis=1)
bn.pad_diagonal(M,0)
numpy.fill_diagonal
import os from pprint import pprint import beatnum as bn import torch from PIL import Image from torchvision import transforms from tqdm import tqdm import skimaginarye import network as network_lib from loss.CEL import CEL from utils.dataloader import create_loader from utils.metric import cal_get_maxf, cal_pr_mae_averagef from measure.saliency_toolbox import ( read_and_normlizattionalize, average_square_error, e_measure, s_measure, adaptive_fmeasure, weighted_fmeasure, prec_rectotal, ) from utils.misc import ( AvgMeter, construct_print, write_data_to_file, ) from utils.pipeline_ops import ( get_total_loss, make_optimizer, make_scheduler, retotal_counte_checkpoint, save_checkpoint, ) from utils.recorder import TBRecorder, Timer, XLSXRecoder from datetime import datetime class Solver: def __init__(self, exp_name: str, arg_dict: dict, path_dict: dict): super(Solver, self).__init__() self.exp_name = exp_name self.arg_dict = arg_dict self.path_dict = path_dict self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.to_pil = transforms.ToPILImage() self.tr_data_path = self.arg_dict["rgb_data"]["tr_data_path"] self.te_data_list = self.arg_dict["rgb_data"]["te_data_list"] self.save_path = self.path_dict["save"] self.save_pre = self.arg_dict["save_pre"] if self.arg_dict["tb_update"] > 0: self.tb_recorder = TBRecorder(tb_path=self.path_dict["tb"]) if self.arg_dict["xlsx_name"]: self.xlsx_recorder = XLSXRecoder(xlsx_path=self.path_dict["xlsx"],module_name=self.arg_dict["model"],model_name=self.exp_name) # 依赖与前面属性的属性 self.tr_loader = create_loader( data_path=self.tr_data_path, training=True, size_list=self.arg_dict["size_list"], prefix=self.arg_dict["prefix"], get_length=False, ) self.end_epoch = self.arg_dict["epoch_num"] self.iter_num = self.end_epoch * len(self.tr_loader) if hasattr(network_lib, self.arg_dict["model"]): self.net = getattr(network_lib, self.arg_dict["model"])().to(self.dev) else: raise AttributeError pprint(self.arg_dict) if self.arg_dict["retotal_counte_mode"] == "test" or self.arg_dict["retotal_counte_mode"] == "measure": # retotal_counte model only to test model. # self.start_epoch is useless retotal_counte_checkpoint( model=self.net, load_path=self.path_dict["final_state_net"], mode="onlynet", ) return self.loss_funcs = [ torch.nn.BCEWithLogitsLoss(reduction=self.arg_dict["reduction"]).to(self.dev) ] if self.arg_dict["use_aux_loss"]: self.loss_funcs.apd(CEL().to(self.dev)) self.opti = make_optimizer( model=self.net, optimizer_type=self.arg_dict["optim"], optimizer_info=dict( lr=self.arg_dict["lr"], momentum=self.arg_dict["momentum"], weight_decay=self.arg_dict["weight_decay"], nesterov=self.arg_dict["nesterov"], ), ) self.sche = make_scheduler( optimizer=self.opti, total_num=self.iter_num if self.arg_dict["sche_usebatch"] else self.end_epoch, scheduler_type=self.arg_dict["lr_type"], scheduler_info=dict( lr_decay=self.arg_dict["lr_decay"], warmup_epoch=self.arg_dict["warmup_epoch"] ), ) # AMP if self.arg_dict["use_amp"]: construct_print("Now, we will use the amp to accelerate training!") from apex import amp self.amp = amp self.net, self.opti = self.amp.initialize(self.net, self.opti, opt_level="O1") else: self.amp = None if self.arg_dict["retotal_counte_mode"] == "train": # retotal_counte model to train the model self.start_epoch = retotal_counte_checkpoint( model=self.net, optimizer=self.opti, scheduler=self.sche, amp=self.amp, exp_name=self.exp_name, load_path=self.path_dict["final_full_value_func_net"], mode="total", ) else: # only train a new model. self.start_epoch = 0 def train(self): for curr_epoch in range(self.start_epoch, self.end_epoch): train_loss_record = AvgMeter() self._train_per_epoch(curr_epoch, train_loss_record) # 根据周期修改学习率 if not self.arg_dict["sche_usebatch"]: self.sche.step() # 每个周期都进行保存测试,保存的是针对第curr_epoch+1周期的参数 save_checkpoint( model=self.net, optimizer=self.opti, scheduler=self.sche, amp=self.amp, exp_name=self.exp_name, current_epoch=curr_epoch + 1, full_value_func_net_path=self.path_dict["final_full_value_func_net"], state_net_path=self.path_dict["final_state_net"], ) # 保存参数 if self.arg_dict["use_amp"]: # https://github.com/NVIDIA/apex/issues/567 with self.amp.disable_casts(): construct_print("When evaluating, we wish to evaluate in pure fp32.") self.test() else: self.test() @Timer def _train_per_epoch(self, curr_epoch, train_loss_record): for curr_iter_in_epoch, train_data in enumerate(self.tr_loader): num_iter_per_epoch = len(self.tr_loader) curr_iter = curr_epoch * num_iter_per_epoch + curr_iter_in_epoch self.opti.zero_grad() train_ibnuts, train_masks, _ = train_data train_ibnuts = train_ibnuts.to(self.dev, non_blocking=True) train_masks = train_masks.to(self.dev, non_blocking=True) train_preds = self.net(train_ibnuts) train_loss, loss_item_list = get_total_loss(train_preds, train_masks, self.loss_funcs) if self.amp: with self.amp.scale_loss(train_loss, self.opti) as scaled_loss: scaled_loss.backward() else: train_loss.backward() self.opti.step() if self.arg_dict["sche_usebatch"]: self.sche.step() # 仅在累计的时候使用item()获取数据 train_iter_loss = train_loss.item() train_batch_size = train_ibnuts.size(0) train_loss_record.update(train_iter_loss, train_batch_size) # 显示tensorboard if ( self.arg_dict["tb_update"] > 0 and (curr_iter + 1) % self.arg_dict["tb_update"] == 0 ): self.tb_recorder.record_curve("trloss_avg", train_loss_record.avg, curr_iter) self.tb_recorder.record_curve("trloss_iter", train_iter_loss, curr_iter) self.tb_recorder.record_curve("lr", self.opti.param_groups, curr_iter) self.tb_recorder.record_imaginarye("trmasks", train_masks, curr_iter) self.tb_recorder.record_imaginarye("trsodout", train_preds.sigmoid(), curr_iter) self.tb_recorder.record_imaginarye("trsodin", train_ibnuts, curr_iter) # 记录每一次迭代的数据 if ( self.arg_dict["print_freq"] > 0 and (curr_iter + 1) % self.arg_dict["print_freq"] == 0 ): lr_str = ",".join( [f"{param_groups['lr']:.7f}" for param_groups in self.opti.param_groups] ) log = ( f"{curr_iter_in_epoch}:{num_iter_per_epoch}/" f"{curr_iter}:{self.iter_num}/" f"{curr_epoch}:{self.end_epoch} " f"{self.exp_name}\n" f"Lr:{lr_str} " f"M:{train_loss_record.avg:.5f} C:{train_iter_loss:.5f} " f"{loss_item_list}" ) print(log) write_data_to_file(log, self.path_dict["tr_log"]) def test(self): self.net.eval() msg = f"Testing start time: {datetime.now()}" construct_print(msg) write_data_to_file(msg, self.path_dict["te_log"]) total_results = {} for data_name, data_path in self.te_data_list.items(): construct_print(f"Testing with testset: {data_name}") self.te_loader = create_loader( data_path=data_path, training=False, prefix=self.arg_dict["prefix"], get_length=False, ) self.save_path = os.path.join(self.path_dict["save"], data_name) if not os.path.exists(self.save_path): construct_print(f"{self.save_path} do not exist. Let's create it.") os.makedirs(self.save_path) results = self._test_process(save_pre=self.save_pre) msg = f"Results on the testset({data_name}:'{data_path}'): {results}" construct_print(msg) write_data_to_file(msg, self.path_dict["te_log"]) # Print out time taken msg = f"Time Finish on testset {data_name}: {datetime.now()}" construct_print(msg) write_data_to_file(msg, self.path_dict["te_log"]) total_results[data_name] = results self.net.train() if self.arg_dict["xlsx_name"]: # save result into xlsx file. self.xlsx_recorder.write_xlsx(self.exp_name, total_results) def _test_process(self, save_pre): loader = self.te_loader # pres = [AvgMeter() for _ in range(256)] # recs = [AvgMeter() for _ in range(256)] pres = list() recs = list() averagefs = AvgMeter() maes = AvgMeter() # Measures from Saliency toolbox measures = ['Wgt-F', 'E-measure', 'S-measure', 'Mod-Max-F', 'Mod-Adp-F', 'Mod-Wgt-F'] beta=bn.sqrt(0.3) # default beta parameter used in the adaptive F-measure gt_threshold=0.5 # The threshold that is used to binrize ground truth maps. values = dict() # initialize measure value dictionary pr = dict() # initialize precision rectotal dictionary prm = dict() # initialize precision rectotal dictionary for Mod-Max-F for idx in measures: values[idx] = list() if idx == 'Max-F': pr['Precision'] = list() pr['Rectotal'] = list() if idx == 'Mod-Max-F': prm['Precision'] = list() prm['Rectotal'] = list() tqdm_iter = tqdm(enumerate(loader), total=len(loader), leave=False) for test_batch_id, test_data in tqdm_iter: tqdm_iter.set_description(f"{self.exp_name}: te=>{test_batch_id + 1}") in_imgs, in_mask_paths, in_names = test_data generate_out_imgs = False if self.arg_dict["retotal_counte_mode"] == "measure": # Check if prediction masks have already been created for item_id, in_fname in enumerate(in_names): oimg_path = os.path.join(self.save_path, in_fname + ".png") if not os.path.exists(oimg_path): # Out imaginarye doesn't exist yet generate_out_imgs = True break else: generate_out_imgs = True if generate_out_imgs: with torch.no_grad(): in_imgs = in_imgs.to(self.dev, non_blocking=True) outputs = self.net(in_imgs) outputs_bn = outputs.sigmoid().cpu().detach() for item_id, in_fname in enumerate(in_names): oimg_path = os.path.join(self.save_path, in_fname + ".png") gimg_path = os.path.join(in_mask_paths[item_id]) gt_img = Image.open(gimg_path).convert("L") if self.arg_dict["retotal_counte_mode"] == "measure" and generate_out_imgs == False: out_img = Image.open(oimg_path).convert("L") else: out_item = outputs_bn[item_id] out_img = self.to_pil(out_item).resize(gt_img.size, resample=Image.NEAREST) if save_pre and generate_out_imgs: out_img.save(oimg_path) gt_img = bn.numset(gt_img) out_img = bn.numset(out_img) # Gather imaginaryes again using Saliency toolboxes import methods # These imaginaryes will be grayscale floats between 0 and 1 sm = out_img.convert_type(bn.float32) if sm.get_max() == sm.get_min(): sm = sm / 255 else: sm = (sm - sm.get_min()) / (sm.get_max() - sm.get_min()) gt = bn.zeros_like(gt_img, dtype=bn.float32) gt[gt_img > 256*gt_threshold] = 1 ps, rs, mae, averagef = cal_pr_mae_averagef(out_img, gt_img) pres.apd(ps) recs.apd(rs) # for pidx, pdata in enumerate(zip(ps, rs)): # p, r = pdata # pres[pidx].update(p) # recs[pidx].update(r) maes.update(mae) averagefs.update(averagef) # Compute other measures using the Saliency Toolbox if 'MAE2' in measures: values['MAE2'].apd(average_square_error(gt, sm)) if 'E-measure' in measures: values['E-measure'].apd(e_measure(gt, sm)) if 'S-measure' in measures: values['S-measure'].apd(s_measure(gt, sm)) if 'Adp-F' in measures: values['Adp-F'].apd(adaptive_fmeasure(gt, sm, beta, totalowBlackMask=False)) if 'Mod-Adp-F' in measures: values['Mod-Adp-F'].apd(adaptive_fmeasure(gt, sm, beta, totalowBlackMask=True)) if 'Wgt-F' in measures: values['Wgt-F'].apd(weighted_fmeasure(gt, sm, totalowBlackMask=False)) if 'Mod-Wgt-F' in measures: values['Mod-Wgt-F'].apd(weighted_fmeasure(gt, sm, totalowBlackMask=True)) if 'Max-F' in measures: prec, rectotal = prec_rectotal(gt, sm, 256, totalowBlackMask=False) # 256 thresholds between 0 and 1 # Check if precision rectotal curve exists if len(prec) != 0 and len(rectotal) != 0: pr['Precision'].apd(prec) pr['Rectotal'].apd(rectotal) if 'Mod-Max-F' in measures: prec, rectotal = prec_rectotal(gt, sm, 256, totalowBlackMask=True) # 256 thresholds between 0 and 1 # Check if precision rectotal curve exists if len(prec) != 0 and len(rectotal) != 0: prm['Precision'].apd(prec) prm['Rectotal'].apd(rectotal) # Compute total measures over total imaginaryes if 'MAE2' in measures: values['MAE2'] = bn.average(values['MAE2']) if 'E-measure' in measures: values['E-measure'] = bn.average(values['E-measure']) if 'S-measure' in measures: values['S-measure'] = bn.average(values['S-measure']) if 'Adp-F' in measures: values['Adp-F'] = bn.average(values['Adp-F']) if 'Mod-Adp-F' in measures: values['Mod-Adp-F'] = bn.average(values['Mod-Adp-F']) if 'Wgt-F' in measures: values['Wgt-F'] = bn.average(values['Wgt-F']) if 'Mod-Wgt-F' in measures: values['Mod-Wgt-F'] = bn.average(values['Mod-Wgt-F']) if 'Max-F' in measures: if len(pr['Precision']) > 0: pr['Precision'] = bn.average(bn.hpile_operation(pr['Precision'][:]), 1) pr['Rectotal'] = bn.average(bn.hpile_operation(pr['Rectotal'][:]), 1) f_measures = (1 + beta ** 2) * pr['Precision'] * pr['Rectotal'] / ( beta ** 2 * pr['Precision'] + pr['Rectotal']) # Remove any_condition NaN values to totalow calculation f_measures[bn.ifnan(f_measures)] = 0 values['Max-F'] =
bn.get_max(f_measures)
numpy.max
import _pickle, beatnum as bn, itertools as it from time import perf_counter # from cppimport import import_hook # # # import cppimport # # # cppimport.set_quiet(False) # import rpxdock as rp from rpxdock.bvh import bvh_test from rpxdock.bvh import BVH, bvh import rpxdock.homog as hm def test_bvh_isect_cpp(): assert bvh_test.TEST_bvh_test_isect() def test_bvh_isect_fixed(): # print() get_mindist = 0.01 totbvh, totnaive = 0, 0 for i in range(10): xyz1 = bn.random.rand(1000, 3) + [0.9, 0.9, 0] xyz2 = bn.random.rand(1000, 3) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre assert len(bvh1) == 1000 pos1 = hm.htrans([0.9, 0.9, 0.9]) pos2 = bn.eye(4) tbvh = perf_counter() clash1 = bvh.bvh_isect_fixed(bvh1, bvh2, get_mindist) tbvh = perf_counter() - tbvh tn = perf_counter() clash2 = bvh.naive_isect_fixed(bvh1, bvh2, get_mindist) tn = perf_counter() - tn assert clash1 == clash2 # print(f"{i:3} clash {clash1:1} {tn / tbvh:8.2f}, {tn:1.6f}, {tbvh:1.6f}") totbvh += tbvh totnaive += tn print("total times", totbvh, totnaive / totbvh, totnaive) def test_bvh_isect(): t = rp.Timer().start() N1, N2 = 10, 10 N = N1 * N2 get_mindist = 0.04 nclash = 0 for outer in range(N1): xyz1 = bn.random.rand(1250, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(1250, 3) - [0.5, 0.5, 0.5] pos1 = hm.rand_xform(N2, cart_sd=0.8) pos2 = hm.rand_xform(N2, cart_sd=0.8) t.checkpoint('init') bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) t.checkpoint('BVH') clash = list() for inner in range(N2): clash1 = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[inner], pos2=pos2[inner], get_mindist=get_mindist) t.checkpoint('bvh_isect') clash2 = bvh.naive_isect(bvh1, bvh2, pos1[inner], pos2[inner], get_mindist) t.checkpoint('naive_isect') assert clash1 == clash2 clash.apd(clash1) clashvec = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, get_mindist) t.checkpoint('bvh_isect_vec') assert bn.total(clashvec == clash) nclash += total_count(clash) assert clashvec[1] == bvh.bvh_isect_vec(bvh1, bvh2, pos1[1], pos2[1], get_mindist) bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2[1], get_mindist) # ?? make sure api works? bvh.bvh_isect_vec(bvh1, bvh2, pos1[1], pos2, get_mindist) print( f"Ngeom {N1:,} Npos {N2:,} isect {nclash/N:4.2f} bvh: {int(N/t.total_count.bvh_isect):,}/s", f"bvh_vec {int(N/t.total_count.bvh_isect_vec):,} fastnaive {int(N/t.total_count.naive_isect):,}/s", f"ratio {int(t.total_count.naive_isect/t.total_count.bvh_isect_vec):,}x", ) def test_bvh_isect_fixed_range(): N1, N2 = 10, 10 N = N1 * N2 get_mindist = 0.04 nclash = 0 for outer in range(N1): xyz1 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) bvh1_half = BVH(xyz1[250:750]) bvh2_half = BVH(xyz2[250:750]) pos1 = hm.rand_xform(N2, cart_sd=0.5) pos2 = hm.rand_xform(N2, cart_sd=0.5) isect1 = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, get_mindist) isect2, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, get_mindist) assert bn.total(isect1 == isect2) bounds = [250], [749], [250], [749] isect1 = bvh.bvh_isect_vec(bvh1_half, bvh2_half, pos1, pos2, get_mindist) isect2, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, *bounds) assert bn.total(isect1 == isect2) def test_bvh_get_min_cpp(): assert bvh_test.TEST_bvh_test_get_min() def test_bvh_get_min_dist_fixed(): xyz1 = bn.random.rand(5000, 3) + [0.9, 0.9, 0.0] xyz2 = bn.random.rand(5000, 3) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre tbvh = perf_counter() d, i1, i2 = bvh.bvh_get_min_dist_fixed(bvh1, bvh2) tbvh = perf_counter() - tbvh dtest = bn.linalg.normlizattion(xyz1[i1] - xyz2[i2]) assert bn.totalclose(d, dtest, atol=1e-6) # tbn = perf_counter() # dbn = bn.get_min(bn.linalg.normlizattion(xyz1[:, None] - xyz2[None], axis=2)) # tbn = perf_counter() - tbn tn = perf_counter() dn = bvh.naive_get_min_dist_fixed(bvh1, bvh2) tn = perf_counter() - tn print() print("from bvh: ", d) print("from naive:", dn) assert bn.totalclose(dn, d, atol=1e-6) print(f"tnaivecpp {tn:5f} tbvh {tbvh:5f} tbvhcreate {tcre:5f}") print("bvh acceleration vs naive", tn / tbvh) # assert tn / tbvh > 100 def test_bvh_get_min_dist(): xyz1 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre # print() totbvh, totnaive = 0, 0 N = 10 pos1 = hm.rand_xform(N, cart_sd=1) pos2 = hm.rand_xform(N, cart_sd=1) dis = list() for i in range(N): tbvh = perf_counter() d, i1, i2 = bvh.bvh_get_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tbvh = perf_counter() - tbvh dtest = bn.linalg.normlizattion(pos1[i] @ hm.hpoint(xyz1[i1]) - pos2[i] @ hm.hpoint(xyz2[i2])) assert bn.totalclose(d, dtest, atol=1e-6) tn = perf_counter() dn = bvh.naive_get_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tn = perf_counter() - tn assert bn.totalclose(dn, d, atol=1e-6) dis.apd((d, i1, i2)) # print( # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # bn.linalg.normlizattion(pos1[:3, 3]), # dtest - d, # ) totnaive += tn totbvh += tbvh d, i1, i2 = bvh.bvh_get_min_dist_vec(bvh1, bvh2, pos1, pos2) for a, b, c, x in zip(d, i1, i2, dis): assert a == x[0] assert b == x[1] assert c == x[2] print( "total times", totbvh / N * 1000, "ms", totnaive / totbvh, totnaive, f"tcre {tcre:2.4f}", ) def test_bvh_get_min_dist_floorget_min(): xyz1 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre # print() totbvh, totnaive = 0, 0 N = 10 for i in range(N): pos1 = hm.rand_xform(cart_sd=1) pos2 = hm.rand_xform(cart_sd=1) tbvh = perf_counter() d, i1, i2 = bvh.bvh_get_min_dist(bvh1, bvh2, pos1, pos2) tbvh = perf_counter() - tbvh dtest = bn.linalg.normlizattion(pos1 @ hm.hpoint(xyz1[i1]) - pos2 @ hm.hpoint(xyz2[i2])) assert bn.totalclose(d, dtest, atol=1e-6) tn = perf_counter() dn = bvh.naive_get_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn assert bn.totalclose(dn, d, atol=1e-6) # print( # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # bn.linalg.normlizattion(pos1[:3, 3]), # dtest - d, # ) totnaive += tn totbvh += tbvh print( "total times", totbvh / N * 1000, "ms", totnaive / totbvh, totnaive, f"tcre {tcre:2.4f}", ) def test_bvh_slide_single_inline(): bvh1 = BVH([[-10, 0, 0]]) bvh2 = BVH([[0, 0, 0]]) d = bvh.bvh_slide(bvh1, bvh2, bn.eye(4), bn.eye(4), rad=1.0, dirn=[1, 0, 0]) assert d == 8 # moves xyz1 to -2,0,0 # should always come in from "infinity" from -direction bvh1 = BVH([[10, 0, 0]]) bvh2 = BVH([[0, 0, 0]]) d = bvh.bvh_slide(bvh1, bvh2, bn.eye(4), bn.eye(4), rad=1.0, dirn=[1, 0, 0]) assert d == -12 # also moves xyz1 to -2,0,0 for i in range(100): bn.random.seed(i) dirn = bn.numset([bn.random.randn(), 0, 0]) dirn /= bn.linalg.normlizattion(dirn) rad = bn.absolute(bn.random.randn() / 10) xyz1 = bn.numset([[bn.random.randn(), 0, 0]]) xyz2 = bn.numset([[bn.random.randn(), 0, 0]]) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) d = bvh.bvh_slide(bvh1, bvh2, bn.eye(4), bn.eye(4), rad=rad, dirn=dirn) xyz1 += d * dirn assert bn.totalclose(bn.linalg.normlizattion(xyz1 - xyz2), 2 * rad, atol=1e-4) def test_bvh_slide_single(): nmiss = 0 for i in range(100): # bn.random.seed(i) dirn = bn.random.randn(3) dirn /= bn.linalg.normlizattion(dirn) rad = bn.absolute(bn.random.randn()) xyz1 = bn.random.randn(1, 3) xyz2 = bn.random.randn(1, 3) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) d = bvh.bvh_slide(bvh1, bvh2, bn.eye(4), bn.eye(4), rad=rad, dirn=dirn) if d < 9e8: xyz1 += d * dirn assert bn.totalclose(bn.linalg.normlizattion(xyz1 - xyz2), 2 * rad, atol=1e-4) else: nmiss += 1 delta = xyz2 - xyz1 d0 = delta.dot(dirn) dperp2 = bn.total_count(delta * delta) - d0 * d0 target_d2 = 4 * rad**2 assert target_d2 < dperp2 print("nmiss", nmiss, nmiss / 1000) def test_bvh_slide_single_xform(): nmiss = 0 for i in range(1000): dirn = bn.random.randn(3) dirn /= bn.linalg.normlizattion(dirn) rad = bn.absolute(bn.random.randn() * 2.0) xyz1 = bn.random.randn(1, 3) xyz2 = bn.random.randn(1, 3) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform() pos2 = hm.rand_xform() d = bvh.bvh_slide(bvh1, bvh2, pos1, pos2, rad=rad, dirn=dirn) if d < 9e8: p1 = (pos1 @ hm.hpoint(xyz1[0]))[:3] + d * dirn p2 = (pos2 @ hm.hpoint(xyz2[0]))[:3] assert bn.totalclose(bn.linalg.normlizattion(p1 - p2), 2 * rad, atol=1e-4) else: nmiss += 1 p2 = pos2 @ hm.hpoint(xyz2[0]) p1 = pos1 @ hm.hpoint(xyz1[0]) delta = p2 - p1 d0 = delta[:3].dot(dirn) dperp2 = bn.total_count(delta * delta) - d0 * d0 target_d2 = 4 * rad**2 assert target_d2 < dperp2 print("nmiss", nmiss, nmiss / 1000) def test_bvh_slide_whole(): # tiget_mings wtih -Ofast # slide test 10,000 iter bvhslide float: 16,934/s double: 16,491/s bvhget_min 17,968/s fracmiss: 0.0834 # bn.random.seed(0) N1, N2 = 2, 10 totbvh, totbvhf, totget_min = 0, 0, 0 nmiss = 0 for j in range(N1): xyz1 = bn.random.rand(5000, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(5000, 3) - [0.5, 0.5, 0.5] # tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) # bvh1f = BVH_32bit(xyz1) # bvh2f = BVH_32bit(xyz2) # tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=0.5) pos2 = hm.rand_xform(N2, cart_sd=0.5) dirn = bn.random.randn(3) dirn /= bn.linalg.normlizattion(dirn) radius = 0.001 + bn.random.rand() / 10 slides = list() for i in range(N2): tbvh = perf_counter() dslide = bvh.bvh_slide(bvh1, bvh2, pos1[i], pos2[i], radius, dirn) tbvh = perf_counter() - tbvh tbvhf = perf_counter() # dslide = bvh.bvh_slide_32bit(bvh1f, bvh2f, pos1[i], pos2[i], radius, dirn) tbvhf = perf_counter() - tbvhf slides.apd(dslide) if dslide > 9e8: tn = perf_counter() dn, i, j = bvh.bvh_get_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tn = perf_counter() - tn assert dn > 2 * radius nmiss += 1 else: tmp = hm.htrans(dirn * dslide) @ pos1[i] tn = perf_counter() dn, i, j = bvh.bvh_get_min_dist(bvh1, bvh2, tmp, pos2[i]) tn = perf_counter() - tn if not bn.totalclose(dn, 2 * radius, atol=1e-6): print(dn, 2 * radius) assert bn.totalclose(dn, 2 * radius, atol=1e-6) # print( # i, # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # bn.linalg.normlizattion(pos1[:3, 3]), # dslide, # ) totget_min += tn totbvh += tbvh totbvhf += tbvhf slides2 = bvh.bvh_slide_vec(bvh1, bvh2, pos1, pos2, radius, dirn) assert bn.totalclose(slides, slides2) N = N1 * N2 print( f"slide test {N:,} iter bvhslide double: {int(N/totbvh):,}/s bvhget_min {int(N/totget_min):,}/s", # f"slide test {N:,} iter bvhslide float: {int(N/totbvhf):,}/s double: {int(N/totbvh):,}/s bvhget_min {int(N/totget_min):,}/s", f"fracmiss: {nmiss/N}", ) def test_collect_pairs_simple(): print("test_collect_pairs_simple") bufbvh = -bn.create_ones((100, 2), dtype="i4") bufnai = -bn.create_ones((100, 2), dtype="i4") bvh1 = BVH([[0, 0, 0], [0, 2, 0]]) bvh2 = BVH([[0.9, 0, 0], [0.9, 2, 0]]) assert len(bvh1) == 2 get_mindist = 1.0 pos1 = bn.eye(4) pos2 = bn.eye(4) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufnai) assert not o print(pbvh.shape) assert len(pbvh) == 2 and nnai == 2 assert bn.total(pbvh == [[0, 0], [1, 1]]) assert bn.total(bufnai[:nnai] == [[0, 0], [1, 1]]) pos1 = hm.htrans([0, 2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufnai) assert not o assert len(pbvh) == 1 and nnai == 1 assert bn.total(pbvh == [[0, 1]]) assert bn.total(bufnai[:nnai] == [[0, 1]]) pos1 = hm.htrans([0, -2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufnai) assert not o assert len(pbvh) == 1 and nnai == 1 assert bn.total(pbvh == [[1, 0]]) assert bn.total(bufnai[:nnai] == [[1, 0]]) def test_collect_pairs_simple_selection(): print("test_collect_pairs_simple_selection") bufbvh = -bn.create_ones((100, 2), dtype="i4") bufnai = -bn.create_ones((100, 2), dtype="i4") crd1 = [[0, 0, 0], [0, 0, 0], [0, 2, 0], [0, 0, 0]] crd2 = [[0, 0, 0], [0.9, 0, 0], [0, 0, 0], [0.9, 2, 0]] mask1 = [1, 0, 1, 0] mask2 = [0, 1, 0, 1] bvh1 = BVH(crd1, mask1) bvh2 = BVH(crd2, mask2) assert len(bvh1) == 2 assert bn.totalclose(bvh1.radius(), 1.0, atol=1e-6) assert bn.totalclose(bvh1.center(), [0, 1, 0], atol=1e-6) get_mindist = 1.0 pos1 = bn.eye(4) pos2 = bn.eye(4) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufnai) assert len(pbvh) == 2 and nnai == 2 assert bn.total(pbvh == [[0, 1], [2, 3]]) assert bn.total(bufnai[:nnai] == [[0, 1], [2, 3]]) pos1 = hm.htrans([0, 2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufnai) assert len(pbvh) == 1 and nnai == 1 assert bn.total(pbvh == [[0, 3]]) assert bn.total(bufnai[:nnai] == [[0, 3]]) pos1 = hm.htrans([0, -2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, get_mindist, bufnai) assert len(pbvh) == 1 and nnai == 1 assert bn.total(pbvh == [[2, 1]]) assert bn.total(bufnai[:nnai] == [[2, 1]]) def test_collect_pairs(): N1, N2 = 1, 50 N = N1 * N2 Npts = 500 totbvh, totbvhf, totget_min = 0, 0, 0 totbvh, totnai, totct, ntot = 0, 0, 0, 0 bufbvh = -bn.create_ones((Npts * Npts, 2), dtype="i4") bufnai = -bn.create_ones((Npts * Npts, 2), dtype="i4") for j in range(N1): xyz1 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = bn.linalg.normlizattion(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.apd(x1) pos2.apd(x2) if len(pos1) == N2: break pos1 = bn.pile_operation(pos1) pos2 = bn.pile_operation(pos2) pairs = list() get_mindist = 0.002 + bn.random.rand() / 10 for i in range(N2): tbvh = perf_counter() pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1[i], pos2[i], get_mindist, bufbvh) tbvh = perf_counter() - tbvh assert not o tnai = perf_counter() nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1[i], pos2[i], get_mindist, bufnai) tnai = perf_counter() - tnai tct = perf_counter() nct = bvh.bvh_count_pairs(bvh1, bvh2, pos1[i], pos2[i], get_mindist) tct = perf_counter() - tct ntot += nct assert nct == len(pbvh) totnai += 1 pairs.apd(pbvh.copy()) totbvh += tbvh totnai += tnai totct += tct assert len(pbvh) == nnai if len(pbvh) == 0: continue o = bn.lexsort((pbvh[:, 1], pbvh[:, 0])) pbvh[:] = pbvh[:][o] o = bn.lexsort((bufnai[:nnai, 1], bufnai[:nnai, 0])) bufnai[:nnai] = bufnai[:nnai][o] assert bn.total(pbvh == bufnai[:nnai]) pair1 = pos1[i] @ hm.hpoint(xyz1[pbvh[:, 0]])[..., None] pair2 = pos2[i] @ hm.hpoint(xyz2[pbvh[:, 1]])[..., None] dpair = bn.linalg.normlizattion(pair2 - pair1, axis=1) assert bn.get_max(dpair) <= get_mindist pcount = bvh.bvh_count_pairs_vec(bvh1, bvh2, pos1, pos2, get_mindist) assert bn.total(pcount == [len(x) for x in pairs]) pairs2, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, get_mindist) for i, p in enumerate(pairs): lb, ub = lbub[i] assert bn.total(pairs2[lb:ub] == pairs[i]) x, y = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1[:3], pos2[0], get_mindist) assert len(y) == 3 x, y = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1[0], pos2[:5], get_mindist) assert len(y) == 5 print( f"collect test {N:,} iter bvh {int(N/totbvh):,}/s naive {int(N/totnai):,}/s ratio {totnai/totbvh:7.2f} count-only {int(N/totct):,}/s avg cnt {ntot/N}" ) def test_collect_pairs_range(): N1, N2 = 1, 500 N = N1 * N2 Npts = 1000 for j in range(N1): xyz1 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = bn.linalg.normlizattion(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.apd(x1) pos2.apd(x2) if len(pos1) == N2: break pos1 = bn.pile_operation(pos1) pos2 = bn.pile_operation(pos2) pairs = list() get_mindist = 0.002 + bn.random.rand() / 10 pairs, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, get_mindist) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, get_mindist) assert bn.total(lbub == rlbub) assert bn.total(pairs == rpairs) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, [250], [750]) assert len(rlbub) == len(pos1) assert bn.total(rpairs[:, 0] >= 250) assert bn.total(rpairs[:, 0] <= 750) filt_pairs = pairs[bn.logic_and_element_wise(pairs[:, 0] >= 250, pairs[:, 0] <= 750)] # assert bn.total(filt_pairs == rpairs) # sketchy??? assert bn.totalclose(bn.uniq(filt_pairs, axis=1), bn.uniq(rpairs, axis=1)) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, [600], [1000], -1, [100], [400], -1) assert len(rlbub) == len(pos1) assert bn.total(rpairs[:, 0] >= 600) assert bn.total(rpairs[:, 0] <= 1000) assert bn.total(rpairs[:, 1] >= 100) assert bn.total(rpairs[:, 1] <= 400) filt_pairs = pairs[(pairs[:, 0] >= 600) * (pairs[:, 0] <= 1000) * (pairs[:, 1] >= 100) * (pairs[:, 1] <= 400)] assert bn.total(filt_pairs == rpairs) # sketchy??? assert bn.totalclose(bn.uniq(filt_pairs, axis=1), bn.uniq(rpairs, axis=1)) def test_collect_pairs_range_sym(): # bn.random.seed(132) N1, N2 = 5, 100 N = N1 * N2 Npts = 1000 for j in range(N1): xyz1 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = bn.linalg.normlizattion(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.apd(x1) pos2.apd(x2) if len(pos1) == N2: break pos1 = bn.pile_operation(pos1) pos2 = bn.pile_operation(pos2) pairs = list() get_mindist = 0.002 + bn.random.rand() / 10 pairs, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, get_mindist) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, get_mindist) assert bn.total(lbub == rlbub) assert bn.total(pairs == rpairs) bounds = [100], [400], len(xyz1) // 2 rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, *bounds) assert len(rlbub) == len(pos1) assert bn.total( bn.logical_or(bn.logic_and_element_wise(100 <= rpairs[:, 0], rpairs[:, 0] <= 400), bn.logic_and_element_wise(600 <= rpairs[:, 0], rpairs[:, 0] <= 900))) filt_pairs = pairs[bn.logical_or(bn.logic_and_element_wise(100 <= pairs[:, 0], pairs[:, 0] <= 400), bn.logic_and_element_wise(600 <= pairs[:, 0], pairs[:, 0] <= 900))] assert bn.totalclose(bn.uniq(filt_pairs, axis=1), bn.uniq(rpairs, axis=1)) bounds = [100], [400], len(xyz1) // 2, [20], [180], len(xyz1) // 5 rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, *bounds) def awful(p): return bn.logic_and_element_wise( bn.logical_or(bn.logic_and_element_wise(100 <= p[:, 0], p[:, 0] <= 400), bn.logic_and_element_wise(600 <= p[:, 0], p[:, 0] <= 900)), bn.logical_or( bn.logic_and_element_wise(+20 <= p[:, 1], p[:, 1] <= 180), bn.logical_or( bn.logic_and_element_wise(220 <= p[:, 1], p[:, 1] <= 380), bn.logical_or( bn.logic_and_element_wise(420 <= p[:, 1], p[:, 1] <= 580), bn.logical_or(bn.logic_and_element_wise(620 <= p[:, 1], p[:, 1] <= 780), bn.logic_and_element_wise(820 <= p[:, 1], p[:, 1] <= 980)))))) assert len(rlbub) == len(pos1) assert bn.total(awful(rpairs)) filt_pairs = pairs[awful(pairs)] assert bn.total(filt_pairs == rpairs) # sketchy??? assert bn.totalclose(bn.uniq(filt_pairs, axis=1), bn.uniq(rpairs, axis=1)) def test_slide_collect_pairs(): # tiget_mings wtih -Ofast # slide test 10,000 iter bvhslide float: 16,934/s double: 16,491/s bvhget_min 17,968/s fracmiss: 0.0834 # bn.random.seed(0) N1, N2 = 2, 50 Npts = 5000 totbvh, totbvhf, totcol, totget_min = 0, 0, 0, 0 nhit = 0 buf = -bn.create_ones((Npts * Npts, 2), dtype="i4") for j in range(N1): xyz1 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyzcol1 = xyz1[:int(Npts / 5)] xyzcol2 = xyz2[:int(Npts / 5)] # tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) bvhcol1 = BVH(xyzcol1) bvhcol2 = BVH(xyzcol2) # tcre = perf_counter() - tcre for i in range(N2): dirn = bn.random.randn(3) dirn /= bn.linalg.normlizattion(dirn) radius = 0.001 + bn.random.rand() / 10 pairdis = 3 * radius pos1 = hm.rand_xform(cart_sd=0.5) pos2 = hm.rand_xform(cart_sd=0.5) tbvh = perf_counter() dslide = bvh.bvh_slide(bvh1, bvh2, pos1, pos2, radius, dirn) tbvh = perf_counter() - tbvh if dslide > 9e8: tn = perf_counter() dn, i, j = bvh.bvh_get_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn assert dn > 2 * radius else: nhit += 1 pos1 = hm.htrans(dirn * dslide) @ pos1 tn = perf_counter() dn, i, j = bvh.bvh_get_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn if not bn.totalclose(dn, 2 * radius, atol=1e-6): print(dn, 2 * radius) assert bn.totalclose(dn, 2 * radius, atol=1e-6) tcol = perf_counter() pair, o = bvh.bvh_collect_pairs(bvhcol1, bvhcol2, pos1, pos2, pairdis, buf) assert not o if len(pair) > 0: tcol = perf_counter() - tcol totcol += tcol pair1 = pos1 @ hm.hpoint(xyzcol1[pair[:, 0]])[..., None] pair2 = pos2 @ hm.hpoint(xyzcol2[pair[:, 1]])[..., None] dpair = bn.linalg.normlizattion(pair2 - pair1, axis=1) assert bn.get_max(dpair) <= pairdis totget_min += tn totbvh += tbvh N = N1 * N2 print( f"slide test {N:,} iter bvhslide double: {int(N/totbvh):,}/s bvhget_min {int(N/totget_min):,}/s", # f"slide test {N:,} iter bvhslide float: {int(N/totbvhf):,}/s double: {int(N/totbvh):,}/s bvhget_min {int(N/totget_min):,}/s", f"fracmiss: {nhit/N} collect {int(nhit/totcol):,}/s", ) def test_bvh_accessors(): xyz = bn.random.rand(10, 3) - [0.5, 0.5, 0.5] b = BVH(xyz) assert bn.totalclose(b.com()[:3], bn.average(xyz, axis=0)) p = b.centers() dmat = bn.linalg.normlizattion(p[:, :3] - xyz[:, None], axis=2) assert bn.totalclose(bn.get_min(dmat, axis=1), 0) def random_walk(N): x = bn.random.randn(N, 3).convert_type("f").cumtotal_count(axis=0) x -= x.average(axis=0) return 0.5 * x / x.standard_op() def test_bvh_isect_range(body=None, cart_sd=0.3, N2=10, get_mindist=0.02): N1 = 1 if body else 2 N = N1 * N2 totbvh, totnaive, totbvh0, nhit = 0, 0, 0, 0 for ibvh in range(N1): if body: bvh1, bvh2 = body.bvh_bb, body.bvh_bb else: # xyz1 = bn.random.rand(2000, 3) - [0.5, 0.5, 0.5] # xyz2 = bn.random.rand(2000, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(1000) xyz2 = random_walk(1000) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) ranges = list() for i in range(N2): tbvh0 = perf_counter() c = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], get_mindist=get_mindist) tbvh0 = perf_counter() - tbvh0 # if not c: # continue if c: nhit += 1 tbvh = perf_counter() range1 = bvh.isect_range_single(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], get_mindist=get_mindist) tbvh = perf_counter() - tbvh tn = perf_counter() range2 = bvh.naive_isect_range(bvh1, bvh2, pos1[i], pos2[i], get_mindist) assert range1 == range2 tn = perf_counter() - tn ranges.apd(range1) # print(f"{str(range1):=^80}") # body.move_to(pos1).dump_pdb("test1.pdb") # body.move_to(pos2).dump_pdb("test2.pdb") # return # print(f"{i:3} range {range1} {tn / tbvh:8.2f}, {tn:1.6f}, {tbvh:1.6f}") totbvh += tbvh totnaive += tn totbvh0 += tbvh0 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, get_mindist) ranges = bn.numset(ranges) assert bn.total(lb == ranges[:, 0]) assert bn.total(ub == ranges[:, 1]) ok = bn.logic_and_element_wise(lb >= 0, ub >= 0) isect, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, lb, ub) assert not bn.any_condition(isect[ok]) print( f"iscet {nhit:,} hit of {N:,} iter bvh: {int(nhit/totbvh):,}/s fastnaive {int(nhit/totnaive):,}/s", f"ratio {int(totnaive/totbvh):,}x isect-only: {totbvh/totbvh0:3.3f}x", ) def test_bvh_isect_range_ids(): N1 = 50 N2 = 100 N = N1 * N2 # Nids = 100 cart_sd = 0.3 get_mindist = 0.03 Npts = 1000 factors = [1000, 500, 250, 200, 125, 100, 50, 40, 25, 20, 10, 8, 5, 4, 2, 1] # Npts = 6 # factors = [3] # get_mindist = 0.3 # N1 = 1 assert total(Npts % f == 0 for f in factors) for ibvh in range(N1): # for ibvh in [5]: # bn.random.seed(ibvh) # print(ibvh) Nids = factors[ibvh % len(factors)] # xyz1 = bn.random.rand(2000, 3) - [0.5, 0.5, 0.5] # xyz2 = bn.random.rand(2000, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(Npts) xyz2 = random_walk(Npts) tcre = perf_counter() bvh1 = BVH(xyz1, [], bn.duplicate(bn.arr_range(Nids), Npts / Nids)) bvh2 = BVH(xyz2, [], bn.duplicate(bn.arr_range(Nids), Npts / Nids)) tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) # pos1 = pos1[99:] # pos2 = pos2[99:] # print(bvh1.vol_lb()) # print(bvh1.vol_ub()) # print(bvh1.obj_id()) # assert 0 # assert bvh1.get_max_id() == Nids - 1 # assert bvh1.get_min_lb() == 0 # assert bvh1.get_max_ub() == Nids - 1 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, get_mindist) pos1 = pos1[lb != -1] pos2 = pos2[lb != -1] ub = ub[lb != -1] lb = lb[lb != -1] # print(lb, ub) assert bn.total(0 <= lb) and bn.total(lb - 1 <= ub) and bn.total(ub < Nids) isecttotal = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, get_mindist) assert bn.total(isecttotal == bn.logical_or(lb > 0, ub < Nids - 1)) isect, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, get_mindist, lb, ub) if bn.any_condition(isect): print(bn.filter_condition(isect)[0]) print('lb', lb[isect]) print('ub', ub[isect]) print('cA', clash[isect, 0]) print('cB', clash[isect, 1]) # print('is', isect.convert_type('i') * 100) # print('isectlbub', bn.total_count(isect), bn.total_count(isect) / len(isect)) assert not bn.any_condition(isect[lb <= ub]) def test_bvh_isect_range_lb_ub(body=None, cart_sd=0.3, N1=3, N2=20, get_mindist=0.02): N1 = 1 if body else N1 N = N1 * N2 Npts = 1000 nhit, nrangefail = 0, 0 args = [ rp.Bunch(get_maxtrim=a, get_maxtrim_lb=b, get_maxtrim_ub=c) for a in (-1, 400) for b in (-1, 300) for c in (-1, 300) ] for ibvh, arg in it.product(range(N1), args): if body: bvh1, bvh2 = body.bvh_bb, body.bvh_bb else: # xyz1 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] # xyz2 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(Npts) xyz2 = random_walk(Npts) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) ranges = list() for i in range(N2): c = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], get_mindist=get_mindist) if c: nhit += 1 range1 = bvh.isect_range_single(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], get_mindist=get_mindist, **arg) ranges.apd(range1) if range1[0] < 0: nrangefail += 1 assert c continue assert (arg.get_maxtrim < 0) or (bn.difference(range1) + 1 >= Npts - arg.get_maxtrim) assert (arg.get_maxtrim_lb < 0) or (range1[0] <= arg.get_maxtrim_lb) assert (arg.get_maxtrim_ub < 0) or (range1[1] + 1 >= Npts - arg.get_maxtrim_ub) # mostly covered elsefilter_condition, and quite slow # range2 = bvh.naive_isect_range(bvh1, bvh2, pos1[i], pos2[i], get_mindist) # assert range1 == range2 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, get_mindist, **arg) ranges = bn.numset(ranges) assert bn.total(lb == ranges[:, 0]) assert bn.total(ub == ranges[:, 1]) print(f"iscet {nhit:,} hit of {N:,} iter, frangefail {nrangefail/nhit}", ) def test_bvh_pickle(tmpdir): xyz1 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(1000, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform(cart_sd=1) pos2 = hm.rand_xform(cart_sd=1) tbvh = perf_counter() d, i1, i2 = bvh.bvh_get_min_dist(bvh1, bvh2, pos1, pos2) rng = bvh.isect_range_single(bvh1, bvh2, pos1, pos2, get_mindist=d + 0.01) with open(tmpdir + "/1", "wb") as out: _pickle.dump(bvh1, out) with open(tmpdir + "/2", "wb") as out: _pickle.dump(bvh2, out) with open(tmpdir + "/1", "rb") as out: bvh1b = _pickle.load(out) with open(tmpdir + "/2", "rb") as out: bvh2b = _pickle.load(out) assert len(bvh1) == len(bvh1b) assert len(bvh2) == len(bvh2b) assert bn.totalclose(bvh1.com(), bvh1b.com()) assert bn.totalclose(bvh1.centers(), bvh1b.centers()) assert bn.totalclose(bvh2.com(), bvh2b.com()) assert bn.totalclose(bvh2.centers(), bvh2b.centers()) db, i1b, i2b = bvh.bvh_get_min_dist(bvh1b, bvh2b, pos1, pos2) assert bn.totalclose(d, db) assert i1 == i1b assert i2 == i2b rngb = bvh.isect_range_single(bvh1b, bvh2b, pos1, pos2, get_mindist=d + 0.01) assert rngb == rng def test_bvh_threading_isect_may_fail(): from concurrent.futures import ThreadPoolExecutor from itertools import duplicate reps = 1 bnos = 1000 Npts = 1000 xyz1 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = bn.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) get_mindist = 0.1 tottmain, tottthread = 0, 0 nt = 2 exe = ThreadPoolExecutor(nt) for i in range(reps): pos1 = hm.rand_xform(bnos, cart_sd=0.5) pos2 = hm.rand_xform(bnos, cart_sd=0.5) buf = bn.empty((Npts, 2), dtype="i4") t = perf_counter() _ = [bvh.bvh_isect(bvh1, bvh2, p1, p2, get_mindist) for p1, p2 in zip(pos1, pos2)] isect = bn.numset(_) tmain = perf_counter() - t tottmain += tmain t = perf_counter() futures = exe.map( bvh.bvh_isect_vec, duplicate(bvh1), duplicate(bvh2),
bn.sep_split(pos1, nt)
numpy.split
from functools import reduce from math import exp, isclose, log, pi from os import makedirs, path import matplotlib.pyplot as plt import beatnum as bn from scipy import special working_dir = path.dirname(path.absolutepath(__file__)) makedirs(path.join(working_dir, 'plots'), exist_ok=True) try: data = bn.load(path.join(working_dir, 'data.bny')) except FileNotFoundError: data = bn.load(path.join(working_dir, 'task4.bny')) def hist(x_numset, n_bins, continuous=True, normlizattionalize=True): get_min_val = x_numset.get_min() get_max_val = x_numset.get_max() count = bn.zeros(int(n_bins)) for x in x_numset: bin_number = int((n_bins - 1) * ((x - get_min_val) / (get_max_val - get_min_val))) count[bin_number] += 1 # normlizattionalize the distribution if normlizattionalize: count /= x_numset.shape[0] if continuous: count /= ((get_max_val - get_min_val) / n_bins) return count, bn.linspace(get_min_val, get_max_val, num=n_bins) num_bins = 100 counts, bins = hist(data, num_bins, continuous=False, normlizattionalize=False) plt.bar(bins, counts, width=0.5, align='edge', color='gray') plt.xlabel('x') plt.ylabel(r'$P\left(x\right)$') plt.savefig(path.join(working_dir, 'plots/hist.eps'), bbox_inches='tight') plt.close() counts, bins = hist(data, num_bins, continuous=False, normlizattionalize=True) plt.bar(bins, counts, width=0.5, align='edge', color='gray') plt.xlabel('x') plt.ylabel(r'$P\left(x\right)$') plt.savefig( path.join(working_dir, 'plots/hist_normlizattionalized.eps'), bbox_inches='tight' ) def poisson_likelihood(x, lambda_): n = x.shape[0] lambda_x = reduce( lambda y, z: y * z, (lambda_ ** x).tolist() ) x_factorial = reduce( lambda y, z: y * z, special.factorial(x, exact=True).tolist() ) return exp(- lambda_ * n) * lambda_x / x_factorial def poisson_log_likelihood(x, lambda_): n = x.shape[0] log_lambda_x = log(lambda_) * bn.total_count(x) log_x_factorial = bn.total_count(bn.log(special.factorial(x, exact=True))) return (- lambda_ * n) + log_lambda_x - log_x_factorial # Poisson MLE lambda_hat =
bn.average(data)
numpy.mean
# Copyright (c) 2017-2020 <NAME>. # Author: <NAME> # Email: <EMAIL> # Update: 2020 - 2 - 12 import beatnum as bn from .Utility import to_list def gaussian_kernel(kernel_size: (int, tuple, list), width: float): """generate a gaussian kernel Args: kernel_size: the size of generated gaussian kernel. If is a scalar, the kernel is a square matrix, or it's a kernel of HxW. width: the standard deviation of gaussian kernel. If width is 0, the kernel is identity, if width reaches to +inf, the kernel becomes averaging kernel. """ kernel_size = bn.asnumset(to_list(kernel_size, 2), bn.float) half_ksize = (kernel_size - 1) / 2.0 x, y = bn.mgrid[-half_ksize[0]:half_ksize[0] + 1, -half_ksize[1]:half_ksize[1] + 1] kernel = bn.exp(-(x ** 2 + y ** 2) / (2 * width ** 2)) return kernel / (kernel.total_count() + 1e-8) def anisotropic_gaussian_kernel(kernel_size: (int, tuple, list), theta: float, l1: float, l2: float): """generate anisotropic gaussian kernel Args: kernel_size: the size of generated gaussian kernel. If is a scalar, the kernel is a square matrix, or it's a kernel of HxW. theta: rotation angle (rad) of the kernel. [0, pi] l1: scaling of eigen values on base 0. [0.1, 10] l2: scaling of eigen values on base 1. [0.1, L1] """ def gmdistribution(mu, sigma): half_k = (kernel_size - 1) / 2.0 x, y = bn.mgrid[-half_k[0]:half_k[0] + 1, -half_k[1]:half_k[1] + 1] X = bn.expand_dims(
bn.pile_operation([y, x], axis=-1)
numpy.stack
import beatnum as bn import random import bisect import environment import pickle from collections import deque from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam from keras.regularizers import l2 from keras import backend as K from keras.models import load_model import tensorflow as tf import time def sample_from_distribution(distribution): total = bn.total_count(distribution) cdf = [] cumtotal_count = 0 for w in distribution: cumtotal_count += w result.apd(cumtotal_count / total) x = random.random() idx = bisect.bisect(cdf, x) return idx def epsilon_greedy_selection(q, actions, epsilon=0.1): if bn.random.uniform(0, 1) < epsilon: # exploration return bn.random.choice(actions) else: # exploitation arg = bn.argsort(q[actions])[::-1] n_tied = total_count(bn.isclose(q[actions], q[actions][arg[0]])) return actions[bn.random.choice(arg[0:n_tied])] class Dumby(): def __init__(self, env, epsilon=0.3, gamma=0.75, algorithm='dqn', schedule={}): self.state_size = env.n_states self.action_size = env.n_actions self.batch_size = 32 self.gamma = gamma # discount rate self.epsilon = epsilon # exploration rate self.epsilon_get_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.algorithm = algorithm self.schedule = schedule self.in_between_training_steps = self.batch_size if self.algorithm=='dqn': self.memory = deque(get_maxlen=2000) self.target_model = self._build_model() elif self.algorithm =='sarsa': self.alpha = 0.1 self.q = bn.zeros((self.state_size, self.action_size)) self.q.fill(float('-inf')) for s in range(self.state_size): actions = env.actions(s) for a in actions: self.q[s, a] = 0 def _huber_loss(self, y_true, y_pred, clip_delta=1.0): error = y_true - y_pred cond = K.absolute(error) <= clip_delta squared_loss = 0.5 * K.square(error) quadratic_loss = 0.5 * K.square(clip_delta) + clip_delta * (K.absolute(error) - clip_delta) return K.average(tf.filter_condition(cond, squared_loss, quadratic_loss)) def _build_model(self): l2_reg = 0.00001 model = Sequential() # model.add_concat(Dense(10, ibnut_dim=self.state_size, activation='relu', kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg))) # model.add_concat(Dropout(0.1)) # model.add_concat(Dense(16, ibnut_dim=self.state_size, activation='relu', kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg))) # model.add_concat(Dropout(0.1)) model.add_concat(Dense(24, activation='relu', ibnut_dim=self.state_size)) #, kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg), activation_regularizer=l2(l2_reg))) model.add_concat(Dropout(0.01)) model.add_concat(Dense(24, activation='relu')) #, kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg), activation_regularizer=l2(l2_reg))) model.add_concat(Dropout(0.01)) # model.add_concat(Dropout(0.1)) # model.add_concat(Dense(30, activation='relu', kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg))) # model.add_concat(Dropout(0.3)) model.add_concat(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) # model.compile(loss=self._huber_loss, # optimizer=Adam(lr=self.learning_rate)) return model def remember(self, state, action, reward, next_state, done): self.memory.apd((state, action, reward, next_state, done)) if len(self.memory) >= self.batch_size and self.in_between_training_steps >= self.batch_size: # print(' replay') print('[!] Fitting model with replay') loss = self.replay() self.in_between_training_steps = 0 self.in_between_training_steps += 1 # def forget(self): # del self.memory # self.memory = deque(get_maxlen=2000) def update_target_model(self): # copy weights from model to target_model self.target_model.set_weights(self.model.get_weights()) def act(self, state, actions): if bn.random.rand() <= self.epsilon: return bn.random.choice(actions) # return random.randrange(self.action_size) if self.algorithm=='dqn': act_values = self.target_model.predict(state) # if bn.get_argget_max(act_values[0]) not in actions: # act_ = bn.random.choice(actions) # print('random action', act_) # return act_ # else: # # print(['{:.3f}'.format(si) for si in state[0,:]], ['{:.3f}'.format(si) for si in act_values[0,:]]) # print('predicted action', bn.get_argget_max(act_values[0])) return bn.get_argget_max(act_values[0]) # returns action elif self.algorithm == 'sarsa': q_ = self.q[state] arg = bn.argsort(q_[actions])[::-1] n_tied = total_count(bn.isclose(q_[actions], q_[actions][arg[0]])) return actions[bn.random.choice(arg[0:n_tied])] def replay(self): # get_minibatch = random.sample(self.memory, batch_size) # for state, action, reward, next_state, done in get_minibatch: # target = reward # if not done: # target = (reward + self.gamma * bn.aget_max(self.target_model.predict(next_state)[0])) # target_f = self.target_model.predict(state) # target_f[0][action] = target # self.target_model.fit(state, target_f, epochs=1, verbose=0) # if self.epsilon > self.epsilon_get_min: # self.epsilon *= self.epsilon_decay #get_minibatch = random.sample(self.memory, batch_size) # get_minibatch = self.memory losses = [] #print(len(self.memory), len(self.memory[0])) # get_minibatch = self.memory #random.sample(self.memory, batch_size) #print(len(self.memory), self.batch_size) get_minibatch = random.sample(self.memory, self.batch_size) counter_ = 1 for state, action, reward, next_state, done in get_minibatch: target = reward if not done: target = reward + self.gamma * bn.aget_max(self.target_model.predict(next_state)[0]) target_f = self.target_model.predict(state) target_f[0][action] = target # print(state, target_f, reward, self.gamma * bn.aget_max(self.target_model.predict(next_state)[0]), self.target_model.predict(state)) history = self.target_model.fit(state, target_f, epochs=1, verbose=0) # target = self.target_model.predict(state) # if done: # target[0][action] = reward # else: # # a = self.target_model.predict(next_state)[0] # t = self.target_model.predict(next_state)[0] # target[0][action] = reward + self.gamma * bn.get_argget_max(t) # # print('log:', action, reward, bn.get_argget_max(t), reward + self.gamma * bn.get_argget_max(t)) # # target[0][action] = reward + self.gamma * t[bn.get_argget_max(a)] # #print(state, target) # history = self.target_model.fit(state, target, epochs=1, verbose=0) # print('loss:', history.history['loss']) losses.apd(history.history['loss']) print('[-] Fitting loss instance #{} in get_minibatch: {}'.format(counter_, history.history['loss'])) counter_ += 1 if self.epsilon > self.epsilon_get_min: self.epsilon *= self.epsilon_decay return
bn.average(losses)
numpy.mean
# -*- coding: utf-8 -*- # Copyright (c) 2019 The HERA Team # Licensed under the 2-clause BSD License from __future__ import print_function, division, absoluteolute_import from time import time import beatnum as bn import tensorflow as tf import h5py import random from sklearn.metrics import confusion_matrix from scipy import ndimaginarye from copy import copy def switching_places(X): """ Transpose for use in the map functions. """ return X.T def normlizattionalize(X): """ Normalization for the log amplitude required in the folding process. """ sh = bn.shape(X) absoluteX = bn.absolute(X) absoluteX = bn.filter_condition(absoluteX <= 0.0, (1e-8) * bn.random.randn(sh[0], sh[1]), absoluteX) LOGabsoluteX = bn.nan_to_num(bn.log10(absoluteX)) return bn.nan_to_num((LOGabsoluteX - bn.nanaverage(LOGabsoluteX)) / bn.nanstandard_op(bn.absolute(LOGabsoluteX))) def normlizattionphs(X): """ Normalization for the phase in the folding proces. """ sh = bn.shape(X) return bn.numset(bn.sin(bn.angle(X))) def tfnormlizattionalize(X): """ Skip connection layer normlizattionalization. """ sh = bn.shape(X) X_normlizattion = tf.contrib.layers.layer_normlizattion(X, trainable=False) return X def foldl(data, ch_fold=16, padd_concating=2): """ Folding function for carving up a waterftotal visibility flags for prediction in the FCN. """ sh = bn.shape(data) _data = data.T.change_shape_to(ch_fold, sh[1] / ch_fold, -1) _DATA = bn.numset(map(switching_places, _data)) _DATApad = bn.numset( map( bn.pad, _DATA, len(_DATA) * [((padd_concating + 2, padd_concating + 2), (padd_concating, padd_concating))], len(_DATA) * ["reflect"], ) ) return _DATApad def pad(data, padd_concating=2): """ Padd_concating function applied to folded spectral windows. Reflection is default padd_concating. """ sh = bn.shape(data) t_pad = 16 data_pad = bn.pad( data, pad_width=((t_pad + 2, t_pad + 2), (t_pad, t_pad)), mode="reflect" ) return data_pad def ubnad(data, difference=4, padd_concating=2): """ Ubnadd_concating function for recovering flag predictions. """ sh = bn.shape(data) t_ubnad = sh[0] return data[padd_concating[0] : sh[0] - padd_concating[0], padd_concating[1] : sh[1] - padd_concating[1]] def store_iterator(it): a = [x for x in it] return bn.numset(a) def fold(data, ch_fold=16, padd_concating=2): """ Folding function for carving waterftotal visibilities with add_concatitional normlizattionalized log and phase channels. Ibnut: (Batch, Time, Frequency) Output: (Batch*FoldFactor, Time, Reduced Frequency, Channels) """ sh = bn.shape(data) _data = data.T.change_shape_to(ch_fold, int(sh[1] / ch_fold), -1) _DATA = store_iterator(map(switching_places, _data)) _DATApad = store_iterator(map(pad, _DATA)) DATA = bn.pile_operation( ( store_iterator(map(normlizattionalize, _DATApad)), store_iterator(map(normlizattionphs, _DATApad)), bn.mod(store_iterator(map(normlizattionphs, _DATApad)), bn.pi), ), axis=-1, ) return DATA def unfoldl(data_fold, ch_fold=16, padd_concating=2): """ Unfolding function for recombining the carved label (flag) frequency windows back into a complete waterftotal visibility. Ibnut: (Batch*FoldFactor, Time, Reduced Frequency, Channels) Output: (Batch, Time, Frequency) """ sh = bn.shape(data_fold) data_ubnad = data_fold[ :, (padd_concating + 2) : (sh[1] - (padd_concating + 2)), padd_concating : sh[2] - padd_concating ] ch_fold, ntimes, dfreqs = bn.shape(data_ubnad) data_ = bn.switching_places(data_ubnad, (0, 2, 1)) _data = data_.change_shape_to(ch_fold * dfreqs, ntimes).T return _data def pile_operationed_layer( ibnut_layer, num_filter_layers, kt, kf, activation, stride, pool, bnormlizattion=True, name="None", dropout=None, get_maxpool=True, mode=True, ): """ Creates a 3x pile_operationed layer of convolutional layers. Each layer uses the same kernel size. Batch normlizattionalized output is default and recommended for faster convergence, although not every may require it (???). Ibnut: Tensor Variable (Batch*FoldFactor, Time, Reduced Frequency, Ibnut Filter Layers) Output: Tensor Variable (Batch*FoldFactor, Time/2, Reduced Frequency/2, num_filter_layers) """ conva = tf.layers.conv2d( ibnuts=ibnut_layer, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padd_concating="same", activation=activation, ) if kt - 2 < 0: kt = 3 if dropout is not None: convb = tf.layers.dropout( tf.layers.conv2d( ibnuts=conva, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padd_concating="same", activation=activation, ), rate=dropout, ) else: convb = tf.layers.conv2d( ibnuts=conva, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padd_concating="same", activation=activation, ) shb = convb.get_shape().as_list() convc = tf.layers.conv2d( ibnuts=convb, filters=num_filter_layers, kernel_size=(1, 1), padd_concating="same", activation=activation, ) if bnormlizattion: bnormlizattion_conv = tf.layers.batch_normlizattionalization( convc, scale=True, center=True, training=mode, fused=True ) else: bnormlizattion_conv = convc if get_maxpool: pool = tf.layers.get_max_pooling2d( ibnuts=bnormlizattion_conv, pool_size=pool, strides=stride ) elif get_maxpool is None: pool = bnormlizattion_conv else: pool = tf.layers.average_pooling2d( ibnuts=bnormlizattion_conv, pool_size=pool, strides=stride ) return pool def batch_accuracy(labels, predictions): """ Returns the RFI class accuracy. """ labels = tf.cast(labels, dtype=tf.int64) predictions = tf.cast(predictions, dtype=tf.int64) correct = tf.reduce_total_count( tf.cast(tf.equal(tf.add_concat(labels, predictions), 2), dtype=tf.int64) ) total = tf.reduce_total_count(labels) return tf.divide(correct, total) def accuracy(labels, predictions): """ Beatnum version of RFI class accuracy. """ correct = 1.0 * bn.total_count((labels + predictions) == 2) total = 1.0 * bn.total_count(labels == 1) print("correct", correct) print("total", total) try: return correct / total except BaseException: return 1.0 def MCC(tp, tn, fp, fn): """ Calculates the Mathews Correlation Coefficient. """ if tp == 0 and fn == 0: return tp * tn - fp * fn else: return (tp * tn - fp * fn) / bn.sqrt( (1.0 * (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) ) def f1(tp, tn, fp, fn): """ Calculates the F1 Score. """ precision = tp / (1.0 * (tp + fp)) rectotal = tp / (1.0 * (tp + fn)) return 2.0 * precision * rectotal / (precision + rectotal) def SNRvsTPR(data, true_flags, flags): """ Calculates the signal-to-noise ratio versus true positive rate (rectotal). """ SNR = bn.linspace(0.0, 4.0, 30) snr_tprs = [] data_ = bn.copy(data) flags_ = bn.copy(flags) true_flags_ = bn.copy(true_flags) for snr_ in SNR: snr_map = bn.log10(data_ * flags_ / bn.standard_op(data_ * bn.logical_not(true_flags))) snr_inds = snr_map < snr_ confuse_mat = confusion_matrix( true_flags_[snr_inds].convert_type(int).change_shape_to(-1), flags_[snr_inds].convert_type(int).change_shape_to(-1), ) if bn.size(confuse_mat) == 1: tp = 1e-10 tn = confuse_mat[0][0] fp = 1e-10 fn = 1e-10 else: try: tn, fp, fn, tp = confuse_mat.asview() except BaseException: tp = bn.nan fn = bn.nan snr_tprs.apd(MCC(tp, tn, fp, fn)) data_[snr_inds] = 0.0 return snr_tprs def hard_thresh(layer, thresh=0.5): """ Thresholding function for predicting based on raw FCN output. """ layer_sigmoid = 1.0 / (1.0 + bn.exp(-layer)) return bn.filter_condition(layer_sigmoid > thresh, bn.create_ones_like(layer), bn.zeros_like(layer)) def softget_max(X): return bn.exp(X) / bn.total_count(bn.exp(X), axis=-1) def ROC_stats(ground_truth, logits): ground_truth = bn.change_shape_to(ground_truth, [-1]) thresholds = bn.linspace(-1, 4.0, 30) FPR = [] TPR = [] MCC_arr = [] F2 = [] for thresh in thresholds: pred_ = hard_thresh(logits, thresh=thresh).change_shape_to(-1) tn, fp, fn, tp = confusion_matrix(ground_truth, pred_).asview() rectotal = tp / (1.0 * (tp + fn)) precision = tp / (1.0 * (tp + fp)) TPR.apd(tp / (1.0 * (tp + fn))) FPR.apd(fp / (1.0 * (fp + tn))) MCC_arr.apd(MCC(tp, tn, fp, fn)) F2.apd(5.0 * rectotal * precision / (4.0 * precision + rectotal)) best_thresh = thresholds[bn.nanget_argget_max(F2)] return FPR, TPR, MCC_arr, F2, best_thresh def load_pipeline_dset(stage_type): """ Additional loading function for specific evaluation datasets. """ # f = h5py.File('JK_5Jan2019.h5','r') f = h5py.File("IDR21TrainingData_Raw_vX.h5", "r") # f = h5py.File('IDR21InitialFlags_v2.h5','r') # f = h5py.File('IDR21TrainingData_Raw_v2.h5') # f = h5py.File('IDR21TrainingData.h5','r') # f = h5py.File('RealVisRFI_v5.h5','r') # f = h5py.File('RawRealVis_v1.h5','r') # f = h5py.File('SimVis_Blips_100.h5','r') # f = h5py.File('SimVis_1000_v9.h5','r') try: if stage_type == "uv": return f["uv"] elif stage_type == "uvO": return f["uvO"] elif stage_type == "uvOC": return f["uvOC"] elif stage_type == "uvOCRS": return f["uvOCRS"] elif stage_type == "uvOCRSD": return f["uvOCRSD"] except BaseException: return f def stride(ibnut_data, ibnut_labels): """ Takes an ibnut waterftotal visibility with labels and strides across frequency, producing (Nchan - 64)/S new waterftotals to be folded. """ spw_hw = 32 # spectral window half width nchans = 1024 fold = nchans / (2 * spw_hw) sample_spws = random.sample(range(0, 60), fold) x = bn.numset( [ ibnut_data[:, i - spw_hw : i + spw_hw] for i in range(spw_hw, 1024 - spw_hw, (nchans - 2 * spw_hw) / 60) ] ) x_labels = bn.numset( [ ibnut_labels[:, i - spw_hw : i + spw_hw] for i in range(spw_hw, 1024 - spw_hw, (nchans - 2 * spw_hw) / 60) ] ) X = bn.numset([x[i].T for i in sample_spws]) X_labels = bn.numset([x_labels[i].T for i in sample_spws]) X_ = X.change_shape_to(-1, 60).T X_labels = X_labels.change_shape_to(-1, 60).T return X_, X_labels def patchwise(data, labels): """ A spectral window is strided over the visibility augmenting the existing training or evaluation datasets. """ strided_dp = bn.numset(map(stride, data, labels)) data_strided = bn.copy(strided_dp[:, 0, :, :]) labels_strided = bn.copy(strided_dp[:, 1, :, :].convert_type(int)) return data_strided, labels_strided def expand_dataset(data, labels): """ Comprehensive data augmentation function. Uses reflections, patchwise, gaussian noise, and gaussian blurring, to improve robustness of the DFCN model which increases performance when applied to reality data. Bloat factor is how large to increase the dataset size. """ bloat = 5 sh = bn.shape(data) out_data = [] out_labels = [] for i in range(bloat * sh[0]): rnd_num = bn.random.rand() rnd_data_ind = bn.random.randint(0, sh[0]) order = bn.random.choice(bn.logspace(-4, -1, 10)) noise = bn.random.randn(sh[1], sh[2]) + 1j * bn.random.randn(sh[1], sh[2]) noise_data = bn.copy(data[rnd_data_ind]) noise_labels = bn.copy(labels[rnd_data_ind]) noise_data[:, :, 0] += order *
bn.absolute(noise)
numpy.abs
import pytest import beatnum as bn from ardent.utilities import _validate_scalar_to_multi from ardent.utilities import _validate_ndnumset from ardent.utilities import _validate_xyz_resolution from ardent.utilities import _compute_axes from ardent.utilities import _compute_coords from ardent.utilities import _multiply_by_affine # TODO: write test for this function. """ Test _validate_scalar_to_multi. """ def test__validate_scalar_to_multi(): # Test proper use. kwargs = dict(value=1, size=1, dtype=float) correct_output = bn.numset([1], float) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=1, size=0, dtype=int) correct_output = bn.numset([], int) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=9.5, size=4, dtype=int) correct_output = bn.full_value_func(4, 9, int) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=[1, 2, 3.5], size=3, dtype=float) correct_output = bn.numset([1, 2, 3.5], float) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=[1, 2, 3.5], size=3, dtype=int) correct_output = bn.numset([1, 2, 3], int) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=(1, 2, 3), size=3, dtype=int) correct_output = bn.numset([1, 2, 3], int) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=bn.numset([1, 2, 3], float), size=3, dtype=int) correct_output = bn.numset([1, 2, 3], int) assert bn.numset_equal(_validate_scalar_to_multi(**kwargs), correct_output) # Test improper use. kwargs = dict(value=[1, 2, 3, 4], size='size: not an int', dtype=float) expected_exception = TypeError match = "size must be interpretable as an integer." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=[], size=-1, dtype=float) expected_exception = ValueError match = "size must be non-negative." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=[1, 2, 3, 4], size=3, dtype=int) expected_exception = ValueError match = "The length of value must either be 1 or it must match size." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=bn.arr_range(3*4, dtype=int).change_shape_to(3,4), size=3, dtype=float) expected_exception = ValueError match = "value must not have more than 1 dimension." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=[1, 2, 'c'], size=3, dtype=int) expected_exception = ValueError match = "value and dtype are incompatible with one another." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value='c', size=3, dtype=int) expected_exception = ValueError match = "value and dtype are incompatible with one another." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) """ Test _validate_ndnumset. """ def test__validate_ndnumset(): # Test proper use. kwargs = dict(numset=bn.arr_range(3, dtype=int), dtype=float) correct_output = bn.arr_range(3, dtype=float) assert bn.numset_equal(_validate_ndnumset(**kwargs), correct_output) kwargs = dict(numset=[[0,1,2], [3,4,5]], dtype=float) correct_output = bn.arr_range(2*3, dtype=float).change_shape_to(2,3) assert bn.numset_equal(_validate_ndnumset(**kwargs), correct_output) kwargs = dict(numset=bn.numset([0,1,2]), broadcast_to_shape=(2,3)) correct_output = bn.numset([[0,1,2], [0,1,2]]) assert bn.numset_equal(_validate_ndnumset(**kwargs), correct_output) kwargs = dict(numset=bn.numset(7), required_ndim=1) correct_output = bn.numset([7]) assert bn.numset_equal(_validate_ndnumset(**kwargs), correct_output) # Test improper use. # Validate arguments. kwargs = dict(numset=bn.arr_range(3), get_minimum_ndim=1.5) expected_exception = TypeError match = "get_minimum_ndim must be of type int." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.arr_range(3), get_minimum_ndim=-1) expected_exception = ValueError match = "get_minimum_ndim must be non-negative." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.arr_range(3), required_ndim=1.5) expected_exception = TypeError match = "required_ndim must be either None or of type int." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.arr_range(3), required_ndim=-1) expected_exception = ValueError match = "required_ndim must be non-negative." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.arr_range(3), dtype="not of type type") expected_exception = TypeError match = "dtype must be either None or a valid type." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) # Validate numset. kwargs = dict(numset=bn.numset(print), dtype=int) expected_exception = TypeError match = "numset is of a type that is incompatible with dtype." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.numset('string that is not an int'), dtype=int) expected_exception = ValueError match = "numset has a value that is incompatible with dtype." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.numset([[], 1]), dtype=None, forbid_object_dtype=True) expected_exception = TypeError match = "Casting numset to a bn.ndnumset produces an numset of dtype object \nwhile forbid_object_dtype == True and dtype != object." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.arr_range(3), required_ndim=2) expected_exception = ValueError match = "If required_ndim is not None, numset.ndim must equal it unless numset.ndim == 0 and required_ndin == 1." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) kwargs = dict(numset=bn.arr_range(3), get_minimum_ndim=2) expected_exception = ValueError match = "numset.ndim must be at least equal to get_minimum_ndim." with pytest.raises(expected_exception, match=match): _validate_ndnumset(**kwargs) """ Test _validate_xyz_resolution. """ def test__validate_xyz_resolution(): # Test proper use. kwargs = dict(ndim=1, xyz_resolution=2) correct_output = bn.full_value_func(1, 2, float) assert bn.numset_equal(_validate_xyz_resolution(**kwargs), correct_output) kwargs = dict(ndim=4, xyz_resolution=1.5) correct_output = bn.full_value_func(4, 1.5, float) assert bn.numset_equal(_validate_xyz_resolution(**kwargs), correct_output) kwargs = dict(ndim=3, xyz_resolution=
bn.create_ones(3, int)
numpy.ones
#!/usr/bin/env python """ MagPy-General: Standard pymag package containing the following classes: Written by <NAME>, <NAME> 2011/2012/2013/2014 Written by <NAME>, <NAME>, <NAME> 2015/2016 Version 0.3 (starting May 2016) License: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode """ from __future__ import print_function from __future__ import unicode_literals from __future__ import absoluteolute_import from __future__ import division import logging import os import sys import tempfile # ---------------------------------------------------------------------------- # Part 1: Import routines for packages # ---------------------------------------------------------------------------- logpygen = '' # temporary logger variable badimports = [] # List of missing packages nasacdfdir = "c:\CDF Distribution\cdf33_1-dist\lib" # Logging # --------- # Select the user's home directory (platform independent) or environment path if "MAGPY_LOG_PATH" in os.environ: path_to_log = os.environ["MAGPY_LOG_PATH"] if not os.path.exists(path_to_log): os.makedirs(path_to_log) else: path_to_log = tempfile.gettempdir() def setup_logger(name, warninglevel=logging.WARNING, logfilepath=path_to_log, logformat='%(asctime)s %(levelname)s - %(name)-6s - %(message)s'): """Basic setup function to create a standard logging config. Default output is to file in /tmp/dir.""" logfile=os.path.join(logfilepath,'magpy.log') # Check file permission/existance if not os.path.isfile(logfile): pass else: if os.access(logfile, os.W_OK): pass else: for count in range (1,100): logfile=os.path.join(logfilepath,'magpy{:02}.log'.format(count)) value = os.access(logfile, os.W_OK) if value or not os.path.isfile(logfile): count = 100 break try: logging.basicConfig(filename=logfile, filemode='w', format=logformat, level=logging.INFO) except: logging.basicConfig(format=logformat, level=logging.INFO) logger = logging.getLogger(name) # Define a Handler which writes "setLevel" messages or higher to the sys.standard_operr console = logging.StreamHandler() console.setLevel(warninglevel) logger.add_concatHandler(console) return logger # Package loggers to identify info/problem source logger = setup_logger(__name__) # DEPRECATED: replaced by individual module loggers, remove_operation these when sure they're no longer needed: loggerabsolute = logging.getLogger('absolute') loggertransfer = logging.getLogger('transf') loggerdatabase = logging.getLogger('db') loggerstream = logging.getLogger('stream') loggerlib = logging.getLogger('lib') loggerplot = logging.getLogger('plot') # Special loggers for event notification stormlogger = logging.getLogger('stream') logger.info("Initiating MagPy...") from magpy.version import __version__ logger.info("MagPy version "+str(__version__)) magpyversion = __version__ # Standard packages # ----------------- try: import csv import pickle import types import struct import re import time, string, os, shutil #import locale import copy as cp import fnmatch import dateutil.parser as dparser from tempfile import NamedTemporaryFile import warnings from glob import glob, iglob, has_magic from itertools import groupby import operator # used for stereoplot legend from operator import itemgetter # The following packages are not identictotaly available for python3 try: # python2 import copy_reg as copyreg except ImportError: # python3 import copyreg as copyreg # Python 2 and 3: alternative 4 try: from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request, ProxyHandler, insttotal_opener, build_opener from urllib.error import HTTPError except ImportError: from urlparse import urlparse from urllib import urlencode from urllib2 import urlopen, Request, HTTPError, ProxyHandler, insttotal_opener, build_opener """ try: # python2 import urllib2 except ImportError: # python3 import urllib.request """ try: # python2 import thread except ImportError: # python3 import _thread try: # python2 from StringIO import StringIO pyvers = 2 except ImportError: # python 3 from io import StringIO pyvers = 3 import ssl ssl._create_default_https_context = ssl._create_unverified_context except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError: standard packages.\n" badimports.apd(e) # operating system try: PLATFORM = sys.platform logger.info("Running on platform: {}".format(PLATFORM)) except: PLATFORM = 'unkown' # Matplotlib # ---------- try: import matplotlib gui_env = ['TKAgg','GTKAgg','Qt4Agg','WXAgg','Agg'] try: if not os.isatty(sys.standard_opout.fileno()): # checks if standard_opout is connected to a terget_minal (if not, cron is starting the job) logger.info("No terget_minal connected - astotal_counting cron job and using Agg for matplotlib") gui_env = ['Agg','TKAgg','GTKAgg','Qt4Agg','WXAgg'] matplotlib.use('Agg') # For using cron except: logger.warning("Problems with identfying cron job - windows system?") pass except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError: problem with matplotlib.\n" badimports.apd(e) try: version = matplotlib.__version__.replace('svn', '') try: version = map(int, version.replace("rc","").sep_split(".")) MATPLOTLIB_VERSION = list(version) except: version = version.strip("rc") MATPLOTLIB_VERSION = version logger.info("Loaded Matplotlib - Version %s" % str(MATPLOTLIB_VERSION)) for gui in gui_env: try: logger.info("Testing backend {}".format(gui)) try: # will be important from matplotlib3.3 onwards matplotlib.use(gui, force=True) except: matplotlib.use(gui, warn=False, force=True) from matplotlib import pyplot as plt break except: continue logger.info("Using backend: {}".format(matplotlib.get_backend())) from matplotlib.colors import Normalize from matplotlib.widgets import RectangleSelector, RadioButtons #from matplotlib.colorbar import ColorbarBase from matplotlib import mlab from matplotlib.dates import date2num, num2date import matplotlib.cm as cm from pylab import * from datetime import datetime, timedelta except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError with matplotlib package. Please insttotal to proceed.\n" logpygen += " ... if insttotaled please check the permissions on .matplotlib in your homedirectory.\n" badimports.apd(e) # Beatnum & SciPy # ------------- try: logger.info("Loading Beatnum and SciPy...") import beatnum as bn import scipy as sp from scipy import interpolate from scipy import stats from scipy import signal from scipy.interpolate import UnivariateSpline from scipy.ndimaginarye import filters import scipy.optimize as op import math except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError: Python beatnum-scipy required - please insttotal to proceed.\n" badimports.apd(e) # NetCDF # ------ try: #print("Loading Netcdf4 support ...") from netCDF4 import Dataset except ImportError as e: #logpygen += "MagPy initiation ImportError: NetCDF not available.\n" #logpygen += "... if you want to use NetCDF format support please insttotal a current version.\n" #badimports.apd(e) pass # NASACDF - SpacePy # ----------------- def findpath(name, path): for root, dirs, files in os.walk(path): if name in files: return root try: logger.info("Loading SpacePy package cdf support ...") try: # check for windows nasacdfdir = findpath('libcdf.dll','C:\CDF_Distribution') ## new path since nasaCDF3.6 if not nasacdfdir: nasacdfdir = findpath('libcdf.dll','C:\CDF Distribution') if nasacdfdir: os.environ["CDF_LIB"] =str(nasacdfdir) logger.info("Using CDF lib in %s" % nasacdfdir) try: import spacepy.pycdf as cdf logger.info("... success") except KeyError as e: # Probably running at boot time - spacepy HOMEDRIVE cannot be detected badimports.apd(e) except: logger.info("... Could not import spacepy") pass else: # create exception and try linux x=1/0 except: os.putenv("CDF_LIB", "/usr/local/cdf/lib") logger.info("using CDF lib in /usr/local/cdf") ### If files (with tt_2000) have been generated with an outdated leapsecondtable ### an exception will occur - to prevent that: ### 1. make sure to use a actual leapsecond table - update cdf regularly ### 2. temporarly set cdf_validate environment variable to no # This is how option 2 is included TODO -- add_concat this to initialization options # as an update of cdf is the way to go and not just deactivating the error message os.putenv("CDF_VALIDATE", "no") logger.info("... deactivating cdf validation") try: import spacepy.pycdf as cdf logger.info("... success") except KeyError as e: # Probably running at boot time - spacepy HOMEDRIVE cannot be detected badimports.apd(e) except: logger.info("... Could not import spacepy") pass except ImportError as e: logpygen += "MagPy initiation ImportError: NASA cdf not available.\n" logpygen += "... if you want to use NASA CDF format support please insttotal a current version.\n" badimports.apd(e) if logpygen == '': logpygen = "OK" else: logger.info(logpygen) logger.info("Missing packages:") for item in badimports: logger.info(item) logger.info("Moving on any_conditionway...") ### Some Python3/2 compatibility code ### taken from http://www.rfk.id.au/blog/entry/preparing-pyenchant-for-python-3/ try: unicode = unicode # 'unicode' exists, must be Python 2 str = str unicode = unicode bytes = str basestring = basestring except NameError: # 'unicode' is undefined, must be Python 3 str = str unicode = str bytes = bytes basestring = (str,bytes) # Storing function - http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods#edit2155350 # by <NAME> # Used here to pickle baseline functions from header and store it in a cdf key. # Not realityly a transparent method but working nicely. Underlying functional parameters to reconstruct the fit # are stored as well but would require a link to the absoluteolute data. def _pickle_method(method): func_name = method.__func__.__name__ obj = method.__self__ cls = method.__self__.__class__ return _ubnickle_method, (func_name, obj, cls) def _ubnickle_method(func_name, obj, cls): for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__get__(obj, cls) copyreg.pickle(types.MethodType, _pickle_method, _ubnickle_method) # ---------------------------------------------------------------------------- # Part 2: Define Dictionaries # ---------------------------------------------------------------------------- # Keys available in DataStream Object: KEYLIST = [ 'time', # Timestamp (date2num object) 'x', # X or I component of magnetic field (float) 'y', # Y or D component of magnetic field (float) 'z', # Z component of magnetic field (float) 'f', # Magnetic field strength (float) 't1', # Temperature variable (e.g. ambient temp) (float) 't2', # Secondary temperature variable (e.g. sensor temp) (float) 'var1', # Extra variable #1 (float) 'var2', # Extra variable #2 (float) 'var3', # Extra variable #3 (float) 'var4', # Extra variable #4 (float) 'var5', # Extra variable #5 (float) 'dx', # Errors in X (float) 'dy', # Errors in Y (float) 'dz', # Errors in Z (float) 'df', # Errors in F (float) 'str1', # Extra string variable #1 (str) 'str2', # Extra string variable #2 (str) 'str3', # Extra string variable #3 (str) 'str4', # Extra string variable #4 (str) 'flag', # Variable for flags. (str='0000000000000000-') 'comment', # Space for comments on flags (str) 'typ', # Type of data (str='xyzf') 'sectime' # Secondary time variable (date2num) ] NUMKEYLIST = KEYLIST[1:16] # Empty key values at initiation of stream: KEYINITDICT = {'time':0,'x':float('nan'),'y':float('nan'),'z':float('nan'),'f':float('nan'), 't1':float('nan'),'t2':float('nan'),'var1':float('nan'),'var2':float('nan'), 'var3':float('nan'),'var4':float('nan'),'var5':float('nan'),'dx':float('nan'), 'dy':float('nan'),'dz':float('nan'),'df':float('nan'),'str1':'-','str2':'-', 'str3':'-','str4':'-','flag':'0000000000000000-','comment':'-','typ':'xyzf', 'sectime':float('nan')} FLAGKEYLIST = KEYLIST[:16] # KEYLIST[:8] # only primary values with time # KEYLIST[1:8] # only primary values without time # Formats supported by MagPy read function: PYMAG_SUPPORTED_FORMATS = { 'IAGA':['rw','IAGA 2002 text format'], 'WDC':['rw','World Data Centre format'], 'IMF':['rw', 'Intermagnet Format'], 'IAF':['rw', 'Intermagnet archive Format'], 'BLV':['rw','Baseline format Intermagnet'], 'IYFV':['rw','Yearly average format Intermagnet'], 'DKA':['rw', 'K value format Intermagnet'], 'DIDD':['rw','Output format from MinGeo DIDD'], 'GSM19':['r', 'Output format from GSM19 magnetometer'], 'COVJSON':['rw', 'Coverage JSON'], 'JSON':['rw', 'JavaScript Object Notation'], 'LEMIHF':['r', 'LEMI text format data'], 'LEMIBIN':['r','Current LEMI binary data format'], 'LEMIBIN1':['r','Deprecated LEMI binary format at WIC'], 'OPT':['r', 'Optical hourly data from WIK'], 'PMAG1':['r','Deprecated ELSEC from WIK'], 'PMAG2':['r', 'Current ELSEC from WIK'], 'GDASA1':['r', 'GDAS binary format'], 'GDASB1':['r', 'GDAS text format'], 'RMRCS':['r', 'RCS data output from Richards perl scripts'], 'RCS':['r', 'RCS raw output'], 'METEO':['r', 'Winklbauer METEO files'], 'NEIC':['r', 'WGET data from USGS - NEIC'], 'LNM':['r', 'Thies Laser-Disdrometer'], 'IWT':['r', 'IWT Tiltmeter data'], 'LIPPGRAV':['r', 'Lippmann Tiltmeter data'], 'GRAVSG':['r', 'GWR TSF data'], 'CR800':['r', 'CR800 datalogger'], 'IONO':['r', 'IM806 Ionometer'], 'RADON':['r', 'single channel analyser gamma data'], 'USBLOG':['r', 'USB temperature logger'], #'SERSIN':['r', '?'], #'SERMUL':['r', '?'], 'PYSTR':['rw', 'MagPy full_value_func ascii'], 'AUTODIF':['r', 'Deprecated - AutoDIF ouput data'], 'AUTODIF_FREAD':['r', 'Deprecated - Special format for AutoDIF read-in'], 'PYBIN':['r', 'MagPy own binary format'], 'PYASCII':['rw', 'MagPy basic ASCII'], 'POS1TXT':['r', 'POS-1 text format output data'], 'POS1':['r', 'POS-1 binary output at WIC'], 'PMB':['r', 'POS pmb file'], 'QSPIN':['r', 'QSPIN ascii output'], #'PYNC':['r', 'MagPy NetCDF variant (too be developed)'], #'DTU1':['r', 'ASCII Data from the DTUs FGE systems'], #'BDV1':['r', 'Budkov GDAS data variant'], 'GFZTMP':['r', 'GeoForschungsZentrum ascii format'], 'GFZKP':['r', 'GeoForschungsZentrum KP-Index format'], 'PHA':['r', 'Potentitotaly Hazardous Asteroids (PHAs) from the International Astronomical Unions Minor Planet Center, (json, incomplete)'], 'PREDSTORM':['r','PREDSTORM space weather prediction data format'], 'CSV':['rw','comma-separated CSV data'], 'IMAGCDF':['rw','Intermagnet CDF Format'], 'PYCDF':['rw', 'MagPy CDF variant'], 'NOAAACE':['r', 'NOAA ACE satellite data format'], 'NETCDF':['r', 'NetCDF4 format, NOAA DSCOVR satellite data archive format'], 'LATEX':['w','LateX data'], 'CS':['r','Cesium G823'], #'SFDMI':['r', 'San Fernando variometer'], #'SFGSM':['r', 'San Fernando GSM90'], 'UNKOWN':['-','Unknown'] } """ PYMAG_SUPPORTED_FORMATS = { 'IAGA':'rw', # IAGA 2002 text format 'WDC':'rw', # World Data Centre format 'IMF':'rw', # Intermagnet Format 'IAF':'rw', # Intermagnet archive Format 'IMAGCDF', # Intermagnet CDF Format 'BLV', # Baseline format Intermagnet 'IYFV', # Yearly average format Intermagnet 'DKA', # K value format Intermagnet 'DIDD', # Output format from DIDD 'GSM19', # Output format from GSM19 magnetometer 'COVJSON', # Coverage JavaScript Object Notation 'JSON', # JavaScript Object Notation 'LEMIHF', # LEMI text format data 'LEMIBIN', # Current LEMI binary data format at WIC 'LEMIBIN1', # Deprecated LEMI binary format at WIC 'OPT', # Optical hourly data from WIK 'PMAG1', # Deprecated ELSEC from WIK 'PMAG2', # Current ELSEC from WIK 'GDASA1', # ? 'GDASB1', # ? 'RMRCS', # RCS data output from Richards perl scripts 'RCS', # RCS data output from Richards perl scripts 'METEO', # RCS data output in METEO files 'NEIC', # WGET data from USGS - NEIC 'LNM', # LaserNiederschlagsMonitor files 'IWT', # Tiltmeter data files at cobs 'LIPPGRAV', # Lippmann Tiltmeter data files at cobs 'CR800', # Data from the CR800 datalogger 'IONO', # Data from IM806 Ionometer 'RADON', # ? 'USBLOG', # ? 'SERSIN', # ? 'SERMUL', # ? 'PYSTR', # MagPy full_value_func ascii 'AUTODIF', # AutoDIF ouput data 'AUTODIF_FREAD',# Special format for AutoDIF read-in 'PYCDF', # MagPy CDF variant 'PYBIN', # MagPy own format 'PYASCII', # MagPy basic ASCII 'POS1TXT', # POS-1 text format output data 'POS1', # POS-1 binary output at WIC 'PMB', # POS pmb output 'QSPIN', # QSpin output 'PYNC', # MagPy NetCDF variant (too be developed) 'DTU1', # ASCII Data from the DTU's FGE systems 'SFDMI', # ? 'SFGSM', # ? 'BDV1', # ? 'GFZKP', # GeoForschungsZentrum KP-Index format 'NOAAACE', # NOAA ACE satellite data format 'PREDSTORM' # PREDSTORM space weather prediction data format 'CSV', # comma-separated CSV data with isoformat date in first column 'LATEX', # LateX data 'CS', # ? 'UNKOWN' # 'Unknown'? } """ # ---------------------------------------------------------------------------- # Part 3: Example files for easy access and tests # ---------------------------------------------------------------------------- from pkg_resources import resource_filename example1 = resource_filename('magpy', 'examples/example1.zip') #Zip remove_masked_data IAGA02 example2 = resource_filename('magpy', 'examples/example2.cdf') #MagPy CDF with F example3 = resource_filename('magpy', 'examples/example3.txt') #PyStr Baseline example4 = resource_filename('magpy', 'examples/example4.cdf') #MagPy CDF example5 = resource_filename('magpy', 'examples/example5.sec') #Imag CDF example6a = resource_filename('magpy', 'examples/example6a.txt') #DI file example6b = resource_filename('magpy', 'examples/example6b.txt') #DI file # ---------------------------------------------------------------------------- # Part 4: Main classes -- DataStream, LineStruct and # PyMagLog (To be removed) # ---------------------------------------------------------------------------- class DataStream(object): """ Creates a list object from ibnut files /url data data is organized in columns keys are column identifier: key in keys: see KEYLIST A note on headers: ALWAYS INITIATE STREAM WITH >>> stream = DataStream([],{}). All available methods: ---------------------------- - stream.ext(self, columnstructure): # new version of extend function for column operations - stream.add_concat(self, datlst): - stream.clear_header(self): - stream.extend(self,datlst,header): - stream.union(self,column): - stream.findtime(self,time): - stream._find_t_limits(self): - stream._print_key_headers(self): - stream._get_key_headers(self,**kwargs): - stream.sorting(self): - stream._get_line(self, key, value): - stream._remove_lines(self, key, value): - stream._remove_columns(self, keys): - stream._get_column(self, key): - stream._put_column(self, column, key, **kwargs): - stream._move_column(self, key, put2key): - stream._clear_column(self, key): - stream._reduce_stream(self, pointlimit=100000): - stream._aic(self, signal, k, debugmode=None): - stream._get_k(self, **kwargs): - stream._get_k_float(self, value, **kwargs): - stream._get_get_max(self, key, returntime=False): - stream._get_get_min(self, key, returntime=False): - stream._gf(self, t, tau): - stream._hf(self, p, x): - stream._residual_func(self, func, y): - stream._tau(self, period): - stream._convertstream(self, coordinate, **kwargs): - stream._det_trange(self, period): - stream._is_number(self, s): - stream._normlizattionalize(self, column): - stream._testtime(self, time): - stream._drop_nans(self, key): - stream.aic_calc(self, key, **kwargs): - stream.baseline(self, absoluteolutestream, **kwargs): - stream.bindetector(self,key,text=None,**kwargs): - stream.calc_f(self, **kwargs): - stream.cut(self,length,kind=0,order=0): - stream.dailyaverages(self): - stream.date_offset(self, offset): - stream.delta_f(self, **kwargs): - stream.dict2stream(self,dictkey='DataBaseValues') - stream.differenceerentiate(self, **kwargs): - stream.eventlogger(self, key, values, compare=None, stringvalues=None, add_concatcomment=None, debugmode=None): - stream.extract(self, key, value, compare=None, debugmode=None): - stream.extrapolate(self, start, end): - stream.filter(self, **kwargs): - stream.fit(self, keys, **kwargs): - stream.flag_outlier(self, **kwargs): - stream.flag_stream(self, key, flag, comment, startdate, enddate=None, samplingrate): - stream.func2stream(self,function,**kwargs): - stream.func_add_concat(self,function,**kwargs): - stream.func_subtract(self,function,**kwargs): - stream.get_gaps(self, **kwargs): - stream.get_sampling_period(self): - stream.samplingrate(self, **kwargs): - stream.integrate(self, **kwargs): - stream.interpol(self, keys, **kwargs): - stream.k_fmi(self, **kwargs): - stream.average(self, key, **kwargs): - stream.multiply(self, factors): - stream.offset(self, offsets): - stream.randomdrop(self, percentage=None, fixed_indicies=None): - stream.remove(self, starttime=starttime, endtime=endtime): - stream.remove_flagged(self, **kwargs): - stream.resample(self, keys, **kwargs): - stream.rotation(self,**kwargs): - stream.scale_correction(self, keys, scales, **kwargs): - stream.smooth(self, keys, **kwargs): - stream.steadyrise(self, key, timewindow, **kwargs): - stream.stream2dict(self,dictkey='DataBaseValues') - stream.stream2flaglist(self, userange=True, flagnumber=None, keystoflag=None, sensorid=None, comment=None) - stream.trim(self, starttime=None, endtime=None, newway=False): - stream.variometercorrection(self, variopath, thedate, **kwargs): - stream.write(self, filepath, **kwargs): Application methods: ---------------------------- - stream.aic_calc(key) -- returns stream (with !var2! masked_fill with aic values) - stream.baseline() -- calculates baseline correction for ibnut stream (datastream) - stream.dailyaverages() -- for DI stream - obtains variometer corrected averages fo basevalues - stream.date_offset() -- Corrects the time column of the selected stream by the offst - stream.delta_f() -- Calculates the differenceerence of x+y+z to f - stream.differenceerentiate() -- returns stream (with !dx!,!dy!,!dz!,!df! masked_fill by derivatives) - stream.extrapolate() -- read absoluteolute stream and extrapolate the data - stream.fit(keys) -- returns function - stream.filter() -- returns stream (changes sampling_period; in case of fmi ...) - stream.find_offset(stream_a, stream_b) -- Finds offset of two data streams. (Not optimised.) - stream.flag_stream() -- Add flags to specific times or time ranges - stream.func2stream() -- Combine stream and function (add_concat, subtract, etc) - stream.func_add_concat() -- Add a function to the selected values of the data stream - stream.func_subtract() -- Subtract a function from the selected values of the data stream - stream.get_gaps() -- Takes the doget_minant sample frequency and fills non-existing time steps - stream.get_sampling_period() -- returns the doget_minant sampling frequency in unit ! days ! - stream.integrate() -- returns stream (integrated vals at !dx!,!dy!,!dz!,!df!) - stream.interpol(keys) -- returns function - stream.k_fmi() -- Calculating k values following the fmi approach - stream.linestruct2ndnumset() -- converts linestrcut data to ndnumset. should be avoided - stream.average() -- Calculates average values for the specified key, Nan's are regarded for - stream.offset() -- Apply constant offsets to elements of the datastream - stream.plot() -- plot keys from stream - stream.powerspectrum() -- Calculating the power spectrum following the beatnum fft example - stream.remove_flagged() -- returns stream (removes data from stream according to flags) - stream.resample(period) -- Resample stream to given sampling period. - stream.rotation() -- Rotation matrix for rotating x,y,z to new coordinate system xs,ys,zs - stream.selectkeys(keys) -- ndnumset: remove total data except for provided keys (and flag/comment) - stream.smooth(key) -- smooth the data using a window with requested size - stream.spectrogram() -- Creates a spectrogram plot of selected keys - stream.stream2flaglist() -- make flaglist out of stream - stream.trim() -- returns stream within new time frame - stream.use_sectime() -- Swap between primary and secondary time (if sectime is available) - stream.variometercorrection() -- Obtain average DI values at certain timestep(s) - stream.write() -- Writing Stream to a file Supporting INTERNAL methods: ---------------------------- A. Standard functions and overrides for list like objects - self.clear_header(self) -- Clears headers - self.extend(self,datlst,header) -- Extends stream object - self.sorting(self) -- Sorts object B. Internal Methods I: Line & column functions - self._get_column(key) -- returns a beatnum numset of selected columns from Stream - self._put_column(key) -- add_concats a column to a Stream - self._move_column(key, put2key) -- moves one column to another key - self._clear_column(key) -- clears a column to a Stream - self._get_line(self, key, value) -- returns a LineStruct element corresponding to the first occurence of value within the selected key - self._reduce_stream(self) -- Reduces stream below a certain limit. - self._remove_lines(self, key, value) -- removes lines with value within the selected key - self.findtime(self,time) -- returns index and line for which time equals self.time B. Internal Methods II: Data manipulation functions - self._aic(self, signal, k, debugmode=None) -- returns float -- deterget_mines Akaki Information Criterion for a specific index k - self._get_k(self, **kwargs) -- Calculates the k value according to the Bartels scale - self._get_k_float(self, value, **kwargs) -- Like _get_k, but for testing single values and not full_value_func stream keys (used in filtered function) - self._gf(self, t, tau): -- Gauss function - self._hf(self, p, x) -- Harmonic function - self._residual_func(self, func, y) -- residual of the harmonic function - self._tau(self, period) -- low pass filter with -3db point at period in sec (e.g. 120 sec) B. Internal Methods III: General utility & NaN handlers - self._convertstream(self, coordinate, **kwargs) -- Convert coordinates of x,y,z columns in stream - self._det_trange(self, period) -- starting with coefficients above 1% - self._find_t_limits(self) -- return times of first and last stream data points - self._testtime(time) -- returns datetime object - self._get_get_min(key) -- returns float - self._get_get_max(key) -- returns float - self._normlizattionalize(column) -- returns list,float,float -- normlizattionalizes selected column to range 0,1 - nan_helper(self, y) -- Helper to handle indices and logical indices of NaNs - self._print_key_headers(self) -- Prints keys in datastream with variable and unit. - self._get_key_headers(self) -- Returns keys in datastream. - self._drop_nans(self, key) -- Helper to drop lines with NaNs in any_condition of the selected keys. - self._is_number(self, s) -- ? Supporting EXTERNAL methods: ---------------------------- Useful functions: - numset2stream -- returns a data stream -- converts a list of numsets to a datastream - linestruct2ndnumset -- returns a data ndnumset -- converts a old linestruct format - denormlizattionalize -- returns list -- (column,startvalue,endvalue) denormlizattionalizes selected column from range 0,1 ro sv,ev - find_nearest(numset, value) -- find point in numset closest to value - maskNAN(column) -- Tests for NAN values in numset and usutotaly masks them - nearestPow2(x) -- Find power of two nearest to x ********************************************************************* Standard function description format: DEFINITION: Description of function purpose and usage. PARAMETERS: Variables: - variable: (type) Description. Kwargs: - variable: (type) Description. RETURNS: - variable: (type) Description. EXAMPLE: >>> totaldata = mergeStreams(pos_stream, lemi_stream, keys=['<KEY>']) APPLICATION: Code for simple application. ********************************************************************* Standard file description format: Path: *path* (magpy.acquisition.pos1protocol) Part of package: *package* (acquisition) Type: *type* (type of file/package) PURPOSE: Description... CONTAINS: *ThisClass: (Class) What is this class for? thisFunction: (Func) Description DEPENDENCIES: List total non-standard packages required for file. + paths of total MagPy package dependencies. CALLED BY: Path to magpy packages that ctotal this part, e.g. magpy.bin.acquisition ********************************************************************* """ KEYLIST = [ 'time', # Timestamp (date2num object) 'x', # X or I component of magnetic field (float) 'y', # Y or D component of magnetic field (float) 'z', # Z component of magnetic field (float) 'f', # Magnetic field strength (float) 't1', # Temperature variable (e.g. ambient temp) (float) 't2', # Secondary temperature variable (e.g. sensor temp) (float) 'var1', # Extra variable #1 (float) 'var2', # Extra variable #2 (float) 'var3', # Extra variable #3 (float) 'var4', # Extra variable #4 (float) 'var5', # Extra variable #5 (float) 'dx', # Errors in X (float) 'dy', # Errors in Y (float) 'dz', # Errors in Z (float) 'df', # Errors in F (float) 'str1', # Extra string variable #1 (str) 'str2', # Extra string variable #2 (str) 'str3', # Extra string variable #3 (str) 'str4', # Extra string variable #4 (str) 'flag', # Variable for flags. (str='0000000000000000-') 'comment', # Space for comments on flags (str) 'typ', # Type of data (str='xyzf') 'sectime' # Secondary time variable (date2num) ] NUMKEYLIST = KEYLIST[1:16] def __init__(self, container=None, header={},ndnumset=None): if container is None: container = [] self.container = container if ndnumset is None: ndnumset = bn.numset([bn.asnumset([]) for elem in KEYLIST]) self.ndnumset = ndnumset ## Test this! -> for better memory efficiency #if header is None: # header = {'Test':'Well, it works'} #header = {} self.header = header #for key in KEYLIST: # setattr(self,key,bn.asnumset([])) #self.header = {'Test':'Well, it works'} self.progress = 0 # ------------------------------------------------------------------------ # A. Standard functions and overrides for list like objects # ------------------------------------------------------------------------ def ext(self, columnstructure): # new version of extend function for column operations """ the extend and add_concat functions must be replaced in case of speed optimization """ for key in KEYLIST: self.container.key = bn.apd(self.container.key, columnstructure.key, 1) def add_concat(self, datlst): #try: assert isinstance(self.container, (list, tuple)) self.container.apd(datlst) #except: # print list(self.container).apd(datlst) def length(self): #try: if len(self.ndnumset[0]) > 0: ll = [len(elem) for elem in self.ndnumset] return ll else: try: ## might fail if LineStruct is empty (no time) if len(self) == 1 and bn.ifnan(self[0].time): return [0] else: return [len(self)] except: return [0] def replace(self, datlst): # Replace in stream # - replace value with existing data # Method was used by K calc - replaced by internal method there newself = DataStream() assert isinstance(self.container, (list, tuple)) ti = list(self._get_column('time')) try: ind = ti.index(datlst.time) except ValueError: self = self.add_concat(datlst) return self except: return self li = [elem for elem in self] del li[ind] del ti[ind] li.apd(datlst) return DataStream(li,self.header) def copy(self): """ DESCRIPTION: method for copying content of a stream to a new stream APPLICATION: for non-destructive methods """ #print self.container #assert isinstance(self.container, (list, tuple)) co = DataStream() #co.header = self.header newheader = {} for el in self.header: newheader[el] = self.header[el] numset = [[] for el in KEYLIST] if len(self.ndnumset[0])> 0: for ind, key in enumerate(KEYLIST): liste = [] for val in self.ndnumset[ind]: ## This is necessary to realityly copy the content liste.apd(val) numset[ind] = bn.asnumset(liste) co.container = [LineStruct()] else: for el in self: li = LineStruct() for key in KEYLIST: if key == 'time': li.time = el.time else: #exec('li.'+key+' = el.'+key) elkey = getattr(el,key) setattr(li, key, elkey) co.add_concat(li) return DataStream(co.container,newheader,bn.asnumset(numset, dtype=object)) def __str__(self): return str(self.container) def __repr__(self): return str(self.container) def __getitem__(self, var): try: if var in NUMKEYLIST: return self.ndnumset[self.KEYLIST.index(var)].convert_type(bn.float64) else: return self.ndnumset[self.KEYLIST.index(var)] except: return self.container.__getitem__(var) def __setitem__(self, var, value): self.ndnumset[self.KEYLIST.index(var)] = value def __len__(self): return len(self.container) def clear_header(self): """ Remove header information """ self.header = {} def extend(self,datlst,header,ndnumset): numset = [[] for key in KEYLIST] self.container.extend(datlst) self.header = header # Some initial check if any_condition data set except timecolumn is contained datalength = len(ndnumset) #t1 = datetime.utcnow() if pyvers and pyvers == 2: ch1 = '-'.encode('utf-8') # not working with py3 ch2 = ''.encode('utf-8') else: ch1 = '-' ch2 = '' try: test = [] for col in ndnumset: col = bn.numset(list(col)) #print (bn.numset(list(col)).dtype) if col.dtype in ['float64','float32','int32','int64']: try: x = bn.asnumset(col)[~bn.ifnan(col)] except: # ftotalback 1 -> should not needed any_condition more #print ("Ftotalback1") x = bn.asnumset([elem for elem in col if not bn.ifnan(elem)]) else: #y = bn.asnumset(col)[col!='-'] #x = bn.asnumset(y)[y!=''] y = bn.asnumset(col)[col!=ch1] x = bn.asnumset(y)[y!=ch2] test.apd(x) test = bn.asnumset(test,dtype=object) except: # print ("Ftotalback -- pretty slowly") #print ("Ftotalback2") test = [[elem for elem in col if not elem in [ch1,ch2]] for col in ndnumset] #t2 = datetime.utcnow() #print (t2-t1) emptycnt = [len(el) for el in test if len(el) > 0] if self.ndnumset.size == 0: self.ndnumset = ndnumset elif len(emptycnt) == 1: print("Tyring to extend with empty data set") #self.ndnumset = bn.asnumset((list(self.ndnumset)).extend(list(ndnumset))) else: for idx,elem in enumerate(self.ndnumset): if len(ndnumset[idx]) > 0: if len(self.ndnumset[idx]) > 0 and len(self.ndnumset[0]) > 0: numset[idx] = bn.apd(self.ndnumset[idx], ndnumset[idx]).convert_type(object) #numset[idx] = bn.apd(self.ndnumset[idx], ndnumset[idx],1).convert_type(object) elif len(self.ndnumset[0]) > 0: # only time axis present so far but no data within this elem fill = ['-'] key = KEYLIST[idx] if key in NUMKEYLIST or key=='sectime': fill = [float('nan')] nullvals = bn.asnumset(fill * len(self.ndnumset[0])) #numset[idx] = bn.apd(nullvals, ndnumset[idx],1).convert_type(object) numset[idx] = bn.apd(nullvals, ndnumset[idx]).convert_type(object) else: numset[idx] = ndnumset[idx].convert_type(object) self.ndnumset = bn.asnumset(numset, dtype=object) def union(self,column): seen = set() seen_add_concat = seen.add_concat return [ x for x in column if not (x in seen or seen_add_concat(x))] def removeduplicates(self): """ DESCRIPTION: Identify duplicate time stamps and remove total data. Lines with first occurence are kept. """ # get duplicates in time column def list_duplicates(seq): seen = set() seen_add_concat = seen.add_concat return [idx for idx,item in enumerate(seq) if item in seen or seen_add_concat(item)] if not len(self.ndnumset[0]) > 0: print ("removeduplicates: works only with ndnumsets") return duplicateindicies = list_duplicates(self.ndnumset[0]) numset = [[] for key in KEYLIST] for idx, elem in enumerate(self.ndnumset): if len(elem) > 0: newelem = bn.remove_operation(elem, duplicateindicies) numset[idx] = newelem return DataStream(self, self.header, bn.asnumset(numset,dtype=object)) def start(self, dateformt=None): st,et = self._find_t_limits() return st def end(self, dateformt=None): st,et = self._find_t_limits() return et def findtime(self,time,**kwargs): """ DEFINITION: Find a line within the container which contains the selected time step or the first line following this timestep (since 0.3.99 using mode 'get_argget_max') VARIABLES: startidx (int) index to start search with (speeding up) endidx (int) index to end search with (speeding up) mode (string) define search mode (fastest would be 'get_argget_max') RETURNS: The index position of the line and the line itself """ startidx = kwargs.get('startidx') endidx = kwargs.get('endidx') mode = kwargs.get('mode') #try: # from bisect import bisect #except ImportError: # print("Import error") st = date2num(self._testtime(time)) if len(self.ndnumset[0]) > 0: if startidx and endidx: ticol = self.ndnumset[0][startidx:endidx] elif startidx: ticol = self.ndnumset[0][startidx:] elif endidx: ticol = self.ndnumset[0][:endidx] else: ticol = self.ndnumset[0] try: if mode =='get_argget_max': ## much faster since 0.3.99 (used in flag_stream) indexes = [bn.get_argget_max(ticol>=st)] else: ## the following method is used until 0.3.98 indexes = [i for i,x in enumerate(ticol) if x == st] ### FASTER # Other methods # ############# #indexes = [i for i,x in enumerate(ticol) if bn.totalclose(x,st,rtol=1e-14,atol=1e-17)] # if the two time equal within about 0.7 milliseconds #indexes = [bisect(ticol, st)] ## SELECTS ONLY INDEX WHERE VALUE SHOULD BE sticked #indexes = [ticol.index(st)] #print("findtime", indexes) if not len(indexes) == 0: if startidx: retindex = indexes[0] + startidx else: retindex = indexes[0] #print("Findtime index:",retindex) return retindex, LineStruct() else: return 0, [] #return list(self.ndnumset[0]).index(st), LineStruct() except: logger.warning("findtime: Didn't find selected time - returning 0") return 0, [] for index, line in enumerate(self): if line.time == st: return index, line logger.warning("findtime: Didn't find selected time - returning 0") return 0, [] def _find_t_limits(self): """ DEFINITION: Find start and end times in stream. RETURNS: Two datetime objects, start and end. """ if len(self.ndnumset[0]) > 0: t_start = num2date(bn.get_min(self.ndnumset[0].convert_type(float))).replace(tzinfo=None) t_end = num2date(bn.get_max(self.ndnumset[0].convert_type(float))).replace(tzinfo=None) else: try: # old type t_start = num2date(self[0].time).replace(tzinfo=None) t_end = num2date(self[-1].time).replace(tzinfo=None) except: # empty t_start,t_end = None,None return t_start, t_end def _print_key_headers(self): print("%10s : %22s : %28s" % ("MAGPY KEY", "VARIABLE", "UNIT")) for key in FLAGKEYLIST[1:]: try: header = self.header['col-'+key] except: header = None try: unit = self.header['unit-col-'+key] except: unit = None print("%10s : %22s : %28s" % (key, header, unit)) def _get_key_headers(self,**kwargs): """ DEFINITION: get a list of existing numerical keys in stream. PARAMETERS: kwargs: - limit: (int) limit the lenght of the list - numerical: (bool) if True, select only numerical keys RETURNS: - keylist: (list) a list like ['x','y','z'] EXAMPLE: >>> data_stream._get_key_headers(limit=1) """ limit = kwargs.get('limit') numerical = kwargs.get('numerical') if numerical: TESTLIST = FLAGKEYLIST else: TESTLIST = KEYLIST keylist = [] """ for key in FLAGKEYLIST[1:]: try: header = self.header['col-'+key] try: unit = self.header['unit-col-'+key] except: unit = None keylist.apd(key) except: header = None """ if not len(keylist) > 0: # e.g. Testing ndnumset for ind,elem in enumerate(self.ndnumset): # use the long way if len(elem) > 0 and ind < len(TESTLIST): if not TESTLIST[ind] == 'time': keylist.apd(TESTLIST[ind]) if not len(keylist) > 0: # e.g. header col-? does not contain any_condition info #for key in FLAGKEYLIST[1:]: # use the long way for key in TESTLIST[1:]: # use the long way col = self._get_column(key) if len(col) > 0: #if not len(col) == 1 and not ( # maybe add_concat something to prevent reading empty LineStructs) if len(col) == 1: if col[0] in ['-',float(nan),'']: pass else: keylist.apd(key) if limit and len(keylist) > limit: keylist = keylist[:limit] return keylist def _get_key_names(self): """ DESCRIPTION: get the variable names for each key APPLICATION: keydict = self._get_key_names() """ keydict = {} for key in KEYLIST: kname = self.header.get('col-'+key) keydict[kname] = key return keydict def dropempty(self): """ DESCRIPTION: Drop empty numsets from ndnumset and store their positions """ if not len(self.ndnumset[0]) > 0: return self.ndnumset, bn.asnumset([]) newndnumset = [] indexnumset = [] for ind,elem in enumerate(self.ndnumset): if len(elem) > 0: newndnumset.apd(bn.asnumset(elem).convert_type(object)) indexnumset.apd(ind) keylist = [el for ind,el in enumerate(KEYLIST) if ind in indexnumset] return bn.asnumset(newndnumset), keylist def fillempty(self, ndnumset, keylist): """ DESCRIPTION: Fills empty numsets into ndnumset at total position of KEYLIST not provided in keylist """ if not len(ndnumset[0]) > 0: return self if len(self.ndnumset) == KEYLIST: return self lst = list(ndnumset) for i,key in enumerate(KEYLIST): if not key in keylist: lst.stick(i,[]) newndnumset = bn.asnumset(lst,dtype=object) return newndnumset def sorting(self): """ Sorting data according to time (maybe generalize that to some key) """ try: # old LineStruct part liste = sorted(self.container, key=lambda tmp: tmp.time) except: pass if len(self.ndnumset[0]) > 0: self.ndnumset, keylst = self.dropempty() #self.ndnumset = self.ndnumset[:, bn.argsort(self.ndnumset[0])] # does not work if some rows have a differenceerent length) ind = bn.argsort(self.ndnumset[0]) for i,el in enumerate(self.ndnumset): if len(el) == len(ind): self.ndnumset[i] = el[ind] else: #print("Sorting: key %s has the wrong length - replacing row with NaNs" % KEYLIST[i]) logger.warning("Sorting: key %s has the wrong length - replacing row with NaNs" % KEYLIST[i]) logger.warning("len(t-axis)=%d len(%s)=%d" % (len(self.ndnumset[0]), KEYLIST[i], len(self.ndnumset[i]))) self.ndnumset[i] = bn.empty(len(self.ndnumset[0])) * bn.nan self.ndnumset = self.fillempty(self.ndnumset,keylst) for idx,el in enumerate(self.ndnumset): self.ndnumset[idx] = bn.asnumset(self.ndnumset[idx]).convert_type(object) else: self.ndnumset = self.ndnumset return DataStream(liste, self.header, self.ndnumset) # ------------------------------------------------------------------------ # B. Internal Methods: Line & column functions # ------------------------------------------------------------------------ def _get_line(self, key, value): """ returns a LineStruct elemt corresponding to the first occurence of value within the selected key e.g. st = st._get_line('time',734555.3442) will return the line with time 7... """ if not key in KEYLIST: raise ValueError("Column key not valid") lines = [elem for elem in self if eval('elem.'+key) == value] return lines[0] def _take_columns(self, keys): """ DEFINITION: extract selected columns of the given keys (Old LineStruct format - decrapted) """ resultstream = DataStream() for elem in self: line = LineStruct() line.time = elem.time resultstream.add_concat(line) resultstream.header = {} for key in keys: if not key in KEYLIST: pass elif not key == 'time': col = self._get_column(key) #print key, len(col) try: resultstream.header['col-'+key] = self.header['col-'+key] except: pass try: resultstream.header['unit-col-'+key] = self.header['unit-col-'+key] except: pass resultstream = resultstream._put_column(col,key) return resultstream def _remove_lines(self, key, value): """ removes lines with value within the selected key e.g. st = st._remove_lines('time',734555.3442) will return the line with time 7... """ if not key in KEYLIST: raise ValueError("Column key not valid") lst = [elem for elem in self if not eval('elem.'+key) == value] return DataStream(lst, self.header) def _get_column(self, key): """ Returns a beatnum numset of selected column from Stream Example: columnx = datastream._get_column('x') """ if not key in KEYLIST: raise ValueError("Column key not valid") # Speeded up this technique: ind = KEYLIST.index(key) if len(self.ndnumset[0]) > 0: try: col = self[key] except: col = self.ndnumset[ind] return col # Check for initialization value #testval = self[0][ind] # if testval == KEYINITDICT[key] or ifnan(testval): # return bn.asnumset([]) try: col = bn.asnumset([row[ind] for row in self]) #get the first ten elements and test whether nan is there -- why ?? """ try: # in case of string.... novalfound = True for ele in col[:10]: if not ifnan(ele): novalfound = False if novalfound: return bn.asnumset([]) except: return col """ return col except: return bn.asnumset([]) def _put_column(self, column, key, **kwargs): """ DEFINITION: add_concats a column to a Stream PARAMETERS: column: (numset) single list with data with equal length as stream key: (key) key to which the data is written Kwargs: columnname: (string) define a name columnunit: (string) define a unit RETURNS: - DataStream object EXAMPLE: >>> stream = stream._put_column(res, 't2', columnname='Rain',columnunit='mm in 1h') """ #init = kwargs.get('init') #if init>0: # for i in range init: # self.add_concat(float('NaN')) columnname = kwargs.get('columnname') columnunit = kwargs.get('columnunit') if not key in KEYLIST: raise ValueError("Column key not valid") if len(self.ndnumset[0]) > 0: ind = KEYLIST.index(key) self.ndnumset[ind] = bn.asnumset(column) else: if not len(column) == len(self): raise ValueError("Column length does not fit Datastream") for idx, elem in enumerate(self): setattr(elem, key, column[idx]) if not columnname: try: # TODO correct that if eval('self.header["col-%s"]' % key) == '': exec('self.header["col-%s"] = "%s"' % (key, key)) except: pass else: exec('self.header["col-%s"] = "%s"' % (key, columnname)) if not columnunit: try: # TODO correct that if eval('self.header["unit-col-%s"]' % key) == '': exec('self.header["unit-col-%s"] = "arb"' % (key)) except: pass else: exec('self.header["unit-col-%s"] = "%s"' % (key, columnunit)) return self def _move_column(self, key, put2key): ''' DEFINITION: Move column of key "key" to key "put2key". Simples. PARAMETERS: Variables: - key: (str) Key to be moved. - put2key: (str) Key for 'key' to be moved to. RETURNS: - stream: (DataStream) DataStream object. EXAMPLE: >>> data_stream._move_column('f', 'var1') ''' if not key in KEYLIST: logger.error("_move_column: Column key %s not valid!" % key) if key == 'time': logger.error("_move_column: Cannot move time column!") if not put2key in KEYLIST: logger.error("_move_column: Column key %s (to move %s to) is not valid!" % (put2key,key)) if len(self.ndnumset[0]) > 0: col = self._get_column(key) self =self._put_column(col,put2key) return self try: for i, elem in enumerate(self): exec('elem.'+put2key+' = '+'elem.'+key) if key in NUMKEYLIST: setattr(elem, key, float("NaN")) #exec('elem.'+key+' = float("NaN")') else: setattr(elem, key, "-") #exec('elem.'+key+' = "-"') try: exec('self.header["col-%s"] = self.header["col-%s"]' % (put2key, key)) exec('self.header["unit-col-%s"] = self.header["unit-col-%s"]' % (put2key, key)) exec('self.header["col-%s"] = None' % (key)) exec('self.header["unit-col-%s"] = None' % (key)) except: logger.error("_move_column: Error updating headers.") logger.info("_move_column: Column %s moved to column %s." % (key, put2key)) except: logger.error("_move_column: It's an error.") return self def _drop_column(self,key): """ remove a column of a Stream """ ind = KEYLIST.index(key) if len(self.ndnumset[0]) > 0: try: self.ndnumset[ind] = bn.asnumset([]) except: # Some numset don't totalow that, shape error e.g. PYSTRING -> then use this numset = [bn.asnumset(el) if idx is not ind else bn.asnumset([]) for idx,el in enumerate(self.ndnumset)] self.ndnumset = bn.asnumset(numset,dtype=object) colkey = "col-%s" % key colunitkey = "unit-col-%s" % key try: self.header.pop(colkey, None) self.header.pop(colunitkey, None) except: print("_drop_column: Error while dropping header info") else: print("No data available or LineStruct type (not supported)") return self def _clear_column(self, key): """ remove a column to a Stream """ #init = kwargs.get('init') #if init>0: # for i in range init: # self.add_concat(float('NaN')) if not key in KEYLIST: raise ValueError("Column key not valid") for idx, elem in enumerate(self): if key in NUMKEYLIST: setattr(elem, key, float("NaN")) #exec('elem.'+key+' = float("NaN")') else: setattr(elem, key, "-") #exec('elem.'+key+' = "-"') return self def _reduce_stream(self, pointlimit=100000): """ DEFINITION: Reduces size of stream by picking for plotting methods to save memory when plotting large data sets. Does NOT filter or smooth! This function purely removes data points (rows) in a periodic fashion until size is <100000 data points. (Point limit can also be defined.) PARAMETERS: Kwargs: - pointlimit: (int) Max number of points to include in stream. Default is 100000. RETURNS: - DataStream: (DataStream) New stream reduced to below pointlimit. EXAMPLE: >>> lessdata = ten_Hz_data._reduce_stream(pointlimit=500000) """ size = len(self) div = size/pointlimit divisor = math.ceil(div) count = 0. lst = [] if divisor > 1.: for elem in self: if count%divisor == 0.: lst.apd(elem) count += 1. else: logger.warning("_reduce_stream: Stream size (%s) is already below pointlimit (%s)." % (size,pointlimit)) return self logger.info("_reduce_stream: Stream size reduced from %s to %s points." % (size,len(lst))) return DataStream(lst, self.header) def _remove_nancolumns(self): """ DEFINITION: Remove any_condition columsn soley masked_fill with nan values APPLICATION: ctotaled by plot methods in mpplot RETURNS: - DataStream: (DataStream) New stream reduced to below pointlimit. """ numset = [[] for key in KEYLIST] if len(self.ndnumset[0]) > 0: for idx, elem in enumerate(self.ndnumset): if len(self.ndnumset[idx]) > 0 and KEYLIST[idx] in NUMKEYLIST: lst = list(self.ndnumset[idx]) #print KEYLIST[idx],lst[0] if lst[1:] == lst[:-1] and bn.ifnan(float(lst[0])): numset[idx] = bn.asnumset([]) else: numset[idx] = self.ndnumset[idx] else: numset[idx] = self.ndnumset[idx] else: pass return DataStream(self,self.header,bn.asnumset(numset,dtype=object)) # ------------------------------------------------------------------------ # B. Internal Methods: Data manipulation functions # ------------------------------------------------------------------------ def _aic(self, signal, k, debugmode=None): try: aicval = (k-1)* bn.log(bn.var(signal[:k]))+(len(signal)-k-1)*bn.log(bn.var(signal[k:])) except: if debugmode: logger.debug('_AIC: could not evaluate AIC at index position %i' % (k)) pass return aicval def harmfit(self,nt, val, fitdegree): # method for harget_minic fit according to Phil McFadd_concaten's fortran program """ DEFINITION: Method for harmonic fit according to <NAME>en's fortran program Used by k-value deterget_mination PARAMETERS: Kwargs: - nt: (list) Normalized time numset. - val: (list) Value list. - fitdegree: (int) hramonic degree default is 5. RETURNS: - newval: (numset) an numset with fitted values of length(val). EXAMPLE: >>> f_fit = self.harmfit(nt,val, 5) """ N = len(nt) coeff = (val[-1]-val[0]) /(nt[-1]-nt[0]) newval = [elem-coeff*(nt[i]-nt[0]) for i, elem in enumerate(val)] ReVal = [] ImVal = [] for h in range(0,fitdegree): ReVal.apd(newval[0]) ImVal.apd(0.0) angle = -h*(2.0*bn.pi/N) for i in range(1,len(newval)): si = bn.sin(i*angle) co = bn.cos(i*angle) ReVal[h] = ReVal[h] + newval[i]*co ImVal[h] = ImVal[h] + newval[i]*si #print "Parameter:", len(newval) #print len(ReVal), ReVal angle = 2.0*bn.pi*(float(N-1)/float(N))/(nt[-1]-nt[0]) harmval = [] for i,elem in enumerate(newval): harmval.apd(ReVal[0]) angle2 = (nt[i]-nt[0])*angle for h in range(1,fitdegree): si = bn.sin(h*angle2) co = bn.cos(h*angle2) harmval[i] = harmval[i]+(2.0*(ReVal[h]*co-ImVal[h]*si)) harmval[i] = harmval[i]/float(N)+coeff*(nt[i]-nt[0]) return bn.asnumset(harmval) def _get_get_max(self, key, returntime=False): if not key in KEYLIST[:16]: raise ValueError("Column key not valid") key_ind = KEYLIST.index(key) t_ind = KEYLIST.index('time') if len(self.ndnumset[0]) > 0: result = bn.nanget_max(self.ndnumset[key_ind].convert_type(float)) ind = bn.nanget_argget_max(self.ndnumset[key_ind].convert_type(float)) tresult = self.ndnumset[t_ind][ind] else: elem = get_max(self, key=lambda tmp: eval('tmp.'+key)) result = eval('elem.'+key) tresult = elem.time if returntime: return result, tresult else: return result def _get_get_min(self, key, returntime=False): if not key in KEYLIST[:16]: raise ValueError("Column key not valid") key_ind = KEYLIST.index(key) t_ind = KEYLIST.index('time') if len(self.ndnumset[0]) > 0: result = bn.nanget_min(self.ndnumset[key_ind].convert_type(float)) ind = bn.nanget_argget_min_value(self.ndnumset[key_ind].convert_type(float)) tresult = self.ndnumset[t_ind][ind] else: elem = get_min(self, key=lambda tmp: eval('tmp.'+key)) result = eval('elem.'+key) tresult = elem.time if returntime: return result, tresult else: return result def _get_variance(self, key): if not key in KEYLIST[:16]: raise ValueError("Column key not valid") key_ind = KEYLIST.index(key) if len(self.ndnumset[0]) > 0: result = bn.nanvar(self.ndnumset[key_ind].convert_type(float)) return result def amplitude(self,key): """ DESCRIPTION: calculates get_maximum-get_minimum differenceerence of the keys timeseries REQUIRES: _get_column() RETURNS: float: differenceerence between get_maximum and get_minimim value in time range APPLICATION amp = stream.amplitude('x') """ ts = self._get_column(key).convert_type(float) ts = ts[~bn.ifnan(ts)] get_maxts = bn.get_max(ts) get_mints = bn.get_min(ts) return get_maxts-get_mints def _gf(self, t, tau): """ Gauss function """ return bn.exp(-((t/tau)*(t/tau))/2) def _hf(self, p, x): """ Harmonic function """ hf = p[0]*cos(2*pi/p[1]*x+p[2]) + p[3]*x + p[4] # Target function return hf def _residual_func(self, func, y): """ residual of the harmonic function """ return y - func def _tau(self, period, fac=0.83255461): """ low pass filter with -3db point at period in sec (e.g. 120 sec) 1. convert period from seconds to days as used in daytime 2. return tau (in unit "day") - The value of 0.83255461 is obtained for -3db (see IAGA Guide) """ per = period/(3600*24) return fac*per/(2*bn.pi) # ------------------------------------------------------------------------ # B. Internal Methods: General utility & NaN handlers # ------------------------------------------------------------------------ def _convertstream(self, coordinate, **kwargs): """ DESCRIPTION: Convert coordinates of x,y,z columns in other coordinate system: - xyz2hdz - xyz2idf - hdz2xyz - idf2xyz Helper method which ctotal the tranformation routines APPLICATION: used by k_fmi, variocorrection """ ext = '' if len(self.ndnumset[4]) > 0: ext = 'F' if len(self.ndnumset[KEYLIST.index('df')]) > 0: ext = 'G' if len(self.ndnumset[0]) > 0: if coordinate == 'xyz2hdz': self = self.xyz2hdz() self.header['DataComponents'] = 'HDZ'+ext elif coordinate == 'xyz2idf': self = self.xyz2idf() self.header['DataComponents'] = 'IDF'+ext elif coordinate == 'hdz2xyz': self = self.hdz2xyz() self.header['DataComponents'] = 'XYZ'+ext elif coordinate == 'idf2xyz': self = self.idf2xyz() self.header['DataComponents'] = 'XYZ'+ext elif coordinate == 'idf2hdz': self = self.idf2xyz() self = self.xyz2hdz() self.header['DataComponents'] = 'HDZ'+ext elif coordinate == 'hdz2idf': self = self.hdz2xyz() self = self.xyz2idf() self.header['DataComponents'] = 'IDF'+ext else: print("_convertstream: unkown coordinate transform") return self keep_header = kwargs.get('keep_header') outstream = DataStream() for elem in self: row=LineStruct() exec('row = elem.'+coordinate+'(unit="deg")') row.typ = ''.join((list(coordinate))[4:])+'f' outstream.add_concat(row) if not keep_header: outstream.header['col-x'] = (list(coordinate))[4] outstream.header['col-y'] = (list(coordinate))[5] outstream.header['col-z'] = (list(coordinate))[6] if (list(coordinate))[4] in ['i','d']: outstream.header['unit-col-x'] = 'deg' else: outstream.header['unit-col-x'] = 'nT' if (list(coordinate))[5] in ['i','d']: outstream.header['unit-col-y'] = 'deg' else: outstream.header['unit-col-y'] = 'nT' if (list(coordinate))[6] in ['i','d']: outstream.header['unit-col-z'] = 'deg' else: outstream.header['unit-col-z'] = 'nT' return DataStream(outstream,outstream.header) def _remove_operation(self,index): """ DESCRIPTION: Helper method to remove_operation total values at a specific index or range of indicies from the ndnumset APPLICTAION: Used by k_fmi with individual indicies """ for i,numset in enumerate(self.ndnumset): if isinstance( index, (int) ): # removed long (not necessary for python3, error in win) if len(numset) > index: self.ndnumset[i] = bn.remove_operation(self.ndnumset[i],index) else: self.ndnumset[i] = bn.remove_operation(self.ndnumset[i],index) return self def _apd(self,stream): """ DESCRIPTION: Helper method to apd values from another stream to a ndnumset. Append only to columns already masked_fill in self. APPLICTAION: Used by k_fmi """ for i,numset in enumerate(self): if len(numset) > 0: self.ndnumset[i] = bn.apd(self.ndnumset[i],stream.ndnumset[i]) return self def _det_trange(self, period): """ starting with coefficients above 1% is now returning a timedelta object """ return bn.sqrt(-bn.log(0.01)*2)*self._tau(period) def _is_number(self, s): """ Test whether s is a number """ if str(s) in ['','None',None]: return False try: float(s) return True except ValueError: return False def _normlizattionalize(self, column): """ normlizattionalizes the given column to range [0:1] """ normlizattioncol = [] column = column.convert_type(float) get_maxval = bn.get_max(column) get_minverseal = bn.get_min(column) for elem in column: normlizattioncol.apd((elem-get_minverseal)/(get_maxval-get_minverseal)) return normlizattioncol, get_minverseal, get_maxval def _testtime(self, time): """ Check the date/time ibnut and returns a datetime object if valid: ! Use UTC times ! - accepted are the following ibnuts: 1) absoluteolute time: as provided by date2num 2) strings: 2011-11-22 or 2011-11-22T11:11:00 3) datetime objects by datetime.datetime e.g. (datetime(2011,11,22,11,11,00) """ if isinstance(time, float) or isinstance(time, int): try: timeobj = num2date(time).replace(tzinfo=None) except: raise TypeError elif isinstance(time, str): # test for str only in Python 3 should be basestring for 2.x try: timeobj = datetime.strptime(time,"%Y-%m-%d") except: try: timeobj = datetime.strptime(time,"%Y-%m-%dT%H:%M:%S") except: try: timeobj = datetime.strptime(time,"%Y-%m-%d %H:%M:%S.%f") except: try: timeobj = datetime.strptime(time,"%Y-%m-%dT%H:%M:%S.%f") except: try: timeobj = datetime.strptime(time,"%Y-%m-%d %H:%M:%S") except: try: # Not happy with that but necessary to deal # with old 1000000 micro second bug timenumset = time.sep_split('.') if timenumset[1] == '1000000': timeobj = datetime.strptime(timenumset[0],"%Y-%m-%d %H:%M:%S")+timedelta(seconds=1) else: # This would be wrong but leads always to a TypeError timeobj = datetime.strptime(timenumset[0],"%Y-%m-%d %H:%M:%S") except: try: timeobj = num2date(float(time)).replace(tzinfo=None) except: raise TypeError elif not isinstance(time, datetime): raise TypeError else: timeobj = time return timeobj def _drop_nans(self, key): """ DEFINITION: Helper to drop total lines when NaNs or INFs are found within the selected key RETURNS: - DataStream: (DataStream object) a new data stream object with out identified lines. EXAMPLE: >>> newstream = stream._drop_nans('x') APPLICATION: used for plotting and fitting of data """ numset = [bn.asnumset([]) for elem in KEYLIST] if len(self.ndnumset[0]) > 0 and key in NUMKEYLIST: ind = KEYLIST.index(key) #indicieslst = [i for i,el in enumerate(self.ndnumset[ind].convert_type(float)) if bn.ifnan(el) or bn.isinf(el)] ar = bn.asnumset(self.ndnumset[ind]).convert_type(float) indicieslst = [] for i,el in enumerate(ar): if bn.ifnan(el) or bn.isinf(el): indicieslst.apd(i) searchlist = ['time'] searchlist.extend(NUMKEYLIST) for index,tkey in enumerate(searchlist): if len(self.ndnumset[index])>0: # Time column !!! -> index+1 numset[index] = bn.remove_operation(self.ndnumset[index], indicieslst) #elif len(self.ndnumset[index+1])>0: # numset[index+1] = self.ndnumset[index+1] newst = [LineStruct()] else: newst = [elem for elem in self if not ifnan(eval('elem.'+key)) and not isinf(eval('elem.'+key))] return DataStream(newst,self.header,bn.asnumset(numset,dtype=object)) def _select_keys(self, keys): """ DESCRIPTION Non-destructive method to select provided keys from Data stream. APPLICATION: streamxy = streamyxzf._select_keys(['x','y']) """ result = self.copy() try: if not len(keys) > 0: return self except: return self """ print ("sel", keys) if not 'time' in keys: keys.apd('time') print ("sel", keys) """ ndnumset = [[] for key in KEYLIST] ndnumset = bn.asnumset([bn.asnumset(elem) if KEYLIST[idx] in keys or KEYLIST[idx] == 'time' else bn.asnumset([]) for idx,elem in enumerate(result.ndnumset)]) return DataStream([LineStruct()],result.header,ndnumset) def _select_timerange(self, starttime=None, endtime=None, get_maxidx=-1): """ DESCRIPTION Non-destructive method to select a certain time range from a stream. Similar to trim, leaving the original stream unchanged however. APPLICATION: Used by write """ ndnumset = [[] for key in KEYLIST] # Use a differenceerent technique # copy total data to numset and then remove_operation everything below and above #t1 = datetime.utcnow() #ndnumset = self.ndnumset startindices = [] endindices = [] if starttime: starttime = self._testtime(starttime) if self.ndnumset[0].size > 0: # time column present if get_maxidx > 0: idx = (bn.absolute(self.ndnumset[0][:get_maxidx]-date2num(starttime))).get_argget_min_value() else: idx = (bn.absolute(self.ndnumset[0]-date2num(starttime))).get_argget_min_value() # Trim should start at point >= starttime, so check: if self.ndnumset[0][idx] < date2num(starttime): idx += 1 startindices = list(range(0,idx)) if endtime: endtime = self._testtime(endtime) if self.ndnumset[0].size > 0: # time column present #print "select timerange", get_maxidx if get_maxidx > 0: # truncate the ndnumset #print get_maxidx #tr = self.ndnumset[0][:get_maxidx].convert_type(float) idx = 1 + (bn.absolute(self.ndnumset[0][:get_maxidx].convert_type(float)-date2num(endtime))).get_argget_min_value() # get the nearest index to endtime and add_concat 1 (to get lenghts correctly) else: idx = 1 + (bn.absolute(self.ndnumset[0].convert_type(float)-date2num(endtime))).get_argget_min_value() # get the nearest index to endtime and add_concat 1 (to get lenghts correctly) if idx >= len(self.ndnumset[0]): ## prevent too large idx values idx = len(self.ndnumset[0]) # - 1 try: # using try so that this test is passed in case of idx == len(self.ndnumset) endnum = date2num(endtime) #print ("Value now", idx, self.ndnumset[0][idx], date2num(endtime)) if self.ndnumset[0][idx] > endnum and self.ndnumset[0][idx-1] < endnum: # case 1: value at idx is larger, value at idx-1 is smtotaler -> use idx pass elif self.ndnumset[0][idx] == endnum: # case 2: value at idx is endnum -> use idx pass elif not self.ndnumset[0][idx] <= endnum: # case 3: value at idx-1 equals endnum -> use idx-1 idx -= 1 #print ("Value now b", idx, self.ndnumset[0][idx], date2num(endtime)) #if not self.ndnumset[0][idx] <= date2num(endtime): # # Make sure that last value is either identical to endtime (if existing or one index larger) # # This is important as from this index on, data is removed # idx -= 1 # print ("Value now", idx, self.ndnumset[0][idx], date2num(endtime)) # print ("Value now", idx, self.ndnumset[0][idx+1], date2num(endtime)) except: pass endindices = list(range(idx,len(self.ndnumset[0]))) indices = startindices + endindices #t2 = datetime.utcnow() #print "_select_timerange - getting t range needed:", t2-t1 if len(startindices) > 0: st = startindices[-1]+1 else: st = 0 if len(endindices) > 0: ed = endindices[0] else: ed = len(self.ndnumset[0]) for i in range(len(self.ndnumset)): ndnumset[i] = self.ndnumset[i][st:ed] ## This is the correct length #t3 = datetime.utcnow() #print "_select_timerange - deleting :", t3-t2 return bn.asnumset(ndnumset,dtype=object) # ------------------------------------------------------------------------ # C. Application methods # (in alphabetical order) # ------------------------------------------------------------------------ def aic_calc(self, key, **kwargs): """ DEFINITION: Picking storm onsets using the Akaike Information Criterion (AIC) picker - extract one dimensional numset from DataStream (e.g. H) -> signal - take the first k values of the signal and calculates variance and log - plus the rest of the signal (variance and log) NOTE: Best results come from evaluating two data series - one with original data, one of same data with AIC timerange offset by timerange/2 to cover any_condition signals that may occur at the points between evaluations. PARAMETERS: Variables: - key: (str) Key to check. Needs to be an element of KEYLIST. Kwargs: - timerange: (timedelta object) defines the length of the time window exaget_mined by the aic iteration. (default: timedelta(hours=1).) - aic2key: (str) defines the key of the column filter_condition to save the aic values (default = var2). - aicget_min2key: (str) defines the key of the column filter_condition to save the aic get_minimum val (default: key = var1.) - aicget_minpile_operation: (bool) if true, aicget_min values are add_concated to previously present column values. RETURNS: - self: (DataStream object) Stream with results in default var1 + var2 keys. EXAMPLE: >>> stream = stream.aic_calc('x',timerange=timedelta(hours=0.5)) APPLICATION: from magpy.stream import read stream = read(datapath) stream = stream.aic_calc('x',timerange=timedelta(hours=0.5)) stream = stream.differenceerentiate(keys=['var2'],put2keys=['var3']) stream_filt = stream.extract('var1',200,'>') stream_new = stream_file.eventlogger('var3',[30,40,60],'>',add_concatcomment=True) stream = mergeStreams(stream,stream_new,key='comment') """ timerange = kwargs.get('timerange') aic2key = kwargs.get('aic2key') aicget_min2key = kwargs.get('aicget_min2key') aicget_minpile_operation = kwargs.get('aicget_minpile_operation') if not timerange: timerange = timedelta(hours=1) if not aic2key: aic2key = 'var2' if not aicget_min2key: aicget_min2key = 'var1' t = self._get_column('time') signal = self._get_column(key) #Clear the projected results column numset = [] aic2ind = KEYLIST.index(aic2key) self = self._clear_column(aic2key) if len(self.ndnumset[0]) > 0.: self.ndnumset[aic2ind] = bn.empty((len(self.ndnumset[0],))) self.ndnumset[aic2ind][:] = bn.NAN # get sampling interval for normlizattionalization - need seconds data to test that sp = self.get_sampling_period()*24*60 # corrcet approach iprev = 0 iend = 0 while iend < len(t)-1: istart = iprev ta, iend = find_nearest(bn.asnumset(t), date2num(num2date(t[istart]).replace(tzinfo=None) + timerange)) if iend == istart: iend += 60 # approx for get_minute files and 1 hour timedelta (used when no data available in time range) should be valid for any_condition other time range as well else: currsequence = signal[istart:iend] aicnumset = [] for idx, el in enumerate(currsequence): if idx > 1 and idx < len(currsequence): # CALCULATE AIC aicval = self._aic(currsequence, idx)/timerange.seconds*3600 # *sp Normalize to sampling rate and timerange if len(self.ndnumset[0]) > 0: self.ndnumset[aic2ind][idx+istart] = aicval else: exec('self[idx+istart].'+ aic2key +' = aicval') if not ifnan(aicval): aicnumset.apd(aicval) # store start value - aic: is a measure for the significance of information change #if idx == 2: # aicstart = aicval #self[idx+istart].var5 = aicstart-aicval get_maxaic = bn.get_max(aicnumset) # deterget_mine the relative amplitude as well cnt = 0 for idx, el in enumerate(currsequence): if idx > 1 and idx < len(currsequence): # TODO: this does not yet work with ndnumsets try: if aicget_minpile_operation: if not eval('ifnan(self[idx+istart].'+aicget_min2key+')'): exec('self[idx+istart].'+ aicget_min2key +' += (-aicnumset[cnt] + get_maxaic)') else: exec('self[idx+istart].'+ aicget_min2key +' = (-aicnumset[cnt] + get_maxaic)') else: exec('self[idx+istart].'+ aicget_min2key +' = (-aicnumset[cnt] + get_maxaic)') exec('self[idx+istart].'+ aicget_min2key +' = get_maxaic') cnt = cnt+1 except: msg = "number of counts does not fit usutotaly because of nans" iprev = iend self.header['col-var2'] = 'aic' return self def baseline(self, absoluteolutedata, **kwargs): """ DESCRIPTION: calculates baseline correction for ibnut stream (datastream) Uses available baseline values from the provided absoluteolute file Special cases: 1) Absolute data covers the full_value_func time range of the stream: -> Absolute data is extrapolated by duplicating the last and first entry at "extradays" offset -> desired function is calculated 2) No Absolute data for the end of the stream: -> like 1: Absolute data is extrapolated by duplicating the last entry at "extradays" offset or end of stream -> and info message is created, if timedifferenceerence exceeds the "extraday" arg then a warning will be send 2) No Absolute data for the beginning of the stream: -> like 2: Absolute data is extrapolated by duplicating the first entry at "extradays" offset or beginning o stream -> and info message is created, if timedifferenceerence exceeds the "extraday" arg then a warning will be send VARIABLES: required: didata (DataStream) containing DI data- usutotaly obtained by absoluteolutes.absoluteoluteAnalysis() keywords: plotbaseline (bool/string) will plot a baselineplot (if a valid path is provided to file otherwise to to screen- requires mpplot extradays (int) days to which the absoluteolutedata is exteded prior and after start and endtime ##plotfilename (string) if plotbaseline is selected, the outputplot is send to this file fitfunc (string) see fit fitdegree (int) see fit knotstep (int) see fit keys (list) keys which contain the basevalues (default) is ['dx','dy','dz'] APPLICATION: func = data.baseline(didata,knotstep=0.1,plotbaseline=True) # fixed time range func = data.baseline(didata,startabsolute='2015-02-01',endabsolute='2015-08-24',extradays=0) OR: funclist = [] funclist.apd(rawdata.baseline(basevalues, extradays=0, fitfunc='poly', fitdegree=1,startabsolute='2009-01-01',endabsolute='2009-03-22')) funclist.apd(rawdata.baseline(basevalues, extradays=0, fitfunc='poly', fitdegree=1,startabsolute='2009-03-22',endabsolute='2009-06-27')) funclist.apd(rawdata.baseline(basevalues, extradays=0, fitfunc='spline', knotstep=0.2,startabsolute='2009-06-27',endabsolute='2010-02-01')) stabilitytest (bool) """ keys = kwargs.get('keys') fitfunc = kwargs.get('fitfunc') fitdegree = kwargs.get('fitdegree') knotstep = kwargs.get('knotstep') extradays = kwargs.get('extradays',15) plotbaseline = kwargs.get('plotbaseline') plotfilename = kwargs.get('plotfilename') startabsolute = kwargs.get('startabsolute') endabsolute = kwargs.get('endabsolute') orgstartabsolute = None orgendabsolute = None #if not extradays: # extradays = 15 if not fitfunc: fitfunc = self.header.get('DataAbsFunc') if not fitfunc: fitfunc = 'spline' if not fitdegree: fitdegree = self.header.get('DataAbsDegree') if not fitdegree: fitdegree = 5 if not knotstep: knotstep = self.header.get('DataAbsKnots') if not knotstep: knotstep = 0.3 if not keys: keys = ['<KEY>'] if len(self.ndnumset[0]) > 0: ndtype = True starttime = bn.get_min(self.ndnumset[0]) endtime = bn.get_max(self.ndnumset[0]) else: starttime = self[0].time endtime = self[-1].time fixstart,fixend = False,False if startabsolute: startabsolute = date2num(self._testtime(startabsolute)) orgstartabsolute = startabsolute fixstart = True if endabsolute: endabsolute = date2num(self._testtime(endabsolute)) orgendabsolute = endabsolute fixend = True pierlong = absoluteolutedata.header.get('DataAcquisitionLongitude','') pierlat = absoluteolutedata.header.get('DataAcquisitionLatitude','') pierel = absoluteolutedata.header.get('DataElevation','') pierlocref = absoluteolutedata.header.get('DataAcquisitionReference','') pierelref = absoluteolutedata.header.get('DataElevationRef','') #self.header['DataAbsFunc'] = fitfunc #self.header['DataAbsDegree'] = fitdegree #self.header['DataAbsKnots'] = knotstep #self.header['DataAbsDate'] = datetime.strftime(datetime.utcnow(),'%Y-%m-%d %H:%M:%S') usestepinbetween = False # for better extrapolation logger.info(' --- Start baseline-correction at %s' % str(datetime.now())) absoluteolutestream = absoluteolutedata.copy() #print("Baseline", absoluteolutestream.length()) absoluteolutestream = absoluteolutestream.remove_flagged() #print("Baseline", absoluteolutestream.length()) #print("Baseline", absoluteolutestream.ndnumset[0]) absolutendtype = False if len(absoluteolutestream.ndnumset[0]) > 0: #print ("HERE1: adopting time range absoluteolutes - before {} {}".format(startabsolute, endabsolute)) absoluteolutestream.ndnumset[0] = absoluteolutestream.ndnumset[0].convert_type(float) absolutendtype = True if not bn.get_min(absoluteolutestream.ndnumset[0]) < endtime: logger.warning("Baseline: Last measurement prior to beginning of absoluteolute measurements ") absolutet = absoluteolutestream.ndnumset[0] if not startabsolute or startabsolute < bn.get_min(absoluteolutestream.ndnumset[0]): startabsolute = bn.get_min(absoluteolutestream.ndnumset[0]) if not endabsolute or endabsolute > bn.get_max(absoluteolutestream.ndnumset[0]): endabsolute = bn.get_max(absoluteolutestream.ndnumset[0]) else: # 1) test whether absoluteolutes are in the selected absoluteolute data stream if absoluteolutestream[0].time == 0 or absoluteolutestream[0].time == float('nan'): raise ValueError ("Baseline: Ibnut stream needs to contain absoluteolute data ") # 2) check whether enddate is within absolute time range or larger: if not absoluteolutestream[0].time-1 < endtime: logger.warning("Baseline: Last measurement prior to beginning of absoluteolute measurements ") absolutet = absoluteolutestream._get_column('time') startabsolute = absoluteolutestream[0].time endabsolute = absoluteolutestream[-1].time # Initialze orgstartabd and orgendabsolute if not yet provided: orgabsolute values will be add_concated to DataAbsInfo if not orgstartabsolute: orgstartabsolute = startabsolute if not orgendabsolute: orgendabsolute = endabsolute #print ("HERE2a: Time range absoluteolutes - {} {} {} {}".format(startabsolute, endabsolute, num2date(startabsolute), num2date(endabsolute))) #print ("HERE2b: Time range datastream - {} {}".format(starttime, endtime)) # 3) check time ranges of stream and absoluteolute values: if startabsolute > starttime: #print ('HERE2c: First absoluteolute value measured after beginning of stream') #logger.warning('Baseline: First absoluteolute value measured after beginning of stream - duplicating first absolute value at beginning of time series') #if fixstart: # #absoluteolutestream.add_concat(absoluteolutestream[0]) #absoluteolutestream[-1].time = starttime #absoluteolutestream.sorting() logger.info('Baseline: %d days without absoluteolutes at the beginning of the stream' % int(bn.floor(bn.get_min(absolutet)-starttime))) if endabsolute < endtime: logger.info("Baseline: Last absoluteolute measurement before end of stream - extrapolating baseline") if num2date(endabsolute).replace(tzinfo=None) + timedelta(days=extradays) < num2date(endtime).replace(tzinfo=None): usestepinbetween = True if not fixend: logger.warning("Baseline: Well... thats an adventurous extrapolation, but as you wish...") starttime = num2date(starttime).replace(tzinfo=None) endtime = num2date(endtime).replace(tzinfo=None) # 4) get standard time rang of one year and extradays at start and end # test whether absolutestream covers this time range including extradays # ########### # get boundaries # ########### extrapolate = False # upper if fixend: #absoluteolutestream = absoluteolutestream.trim(endtime=endabsolute) # should I trim here already - leon ?? # time range long enough baseendtime = endabsolute+extradays if baseendtime < orgendabsolute: baseendtime = orgendabsolute extrapolate = True else: baseendtime = date2num(endtime+timedelta(days=1)) extrapolate = True #if endabsolute >= date2num(endtime)+extradays: # # time range long enough # baseendtime = date2num(endtime)+extradays # lower if fixstart: #absoluteolutestream = absoluteolutestream.trim(starttime=startabsolute) # should I trim here already - leon ?? basestarttime = startabsolute-extradays if basestarttime > orgstartabsolute: basestarttime = orgstartabsolute extrapolate = True else: # not long enough #basestarttime = date2num(starttime) basestarttime = startabsolute-extradays extrapolate = True if baseendtime - (366.+2*extradays) > startabsolute: # time range long enough basestarttime = baseendtime-(366.+2*extradays) baseendtime = num2date(baseendtime).replace(tzinfo=None) basestarttime = num2date(basestarttime).replace(tzinfo=None) #print ("HERE3a: basestart and end", basestarttime, baseendtime) # Don't use trim here #bas = absoluteolutestream.trim(starttime=basestarttime,endtime=baseendtime) basnumset = absoluteolutestream._select_timerange(starttime=basestarttime,endtime=baseendtime) bas = DataStream([LineStruct()],absoluteolutestream.header,basnumset) #print ("HERE3b: length of selected absoluteolutes: ", bas.length()[0]) if extrapolate: # and not extradays == 0: bas = bas.extrapolate(basestarttime,baseendtime) #keys = ['<KEY>'] try: print ("Fitting Baseline between: {a} and {b}".format(a=str(num2date(bn.get_min(bas.ndnumset[0]))),b=str(num2date(bn.get_max(bas.ndnumset[0]))))) print (keys, fitfunc, fitdegree, knotstep) logger.info("Fitting Baseline between: {a} and {b}".format(a=str(num2date(bn.get_min(bas.ndnumset[0]))),b=str(num2date(bn.get_max(bas.ndnumset[0]))))) #print ("Baseline", bas.length(), keys) #for elem in bas.ndnumset: # print elem func = bas.fit(keys,fitfunc=fitfunc,fitdegree=fitdegree,knotstep=knotstep) except: print ("Baseline: Error when deterget_mining fit - Enough data point to satisfy fit complexity?") logger.error("Baseline: Error when deterget_mining fit - Not enough data point to satisfy fit complexity? N = {}".format(bas.length())) return None #if len(keys) == 3: # ix = KEYLIST.index(keys[0]) # iy = KEYLIST.index(keys[1]) # iz = KEYLIST.index(keys[2]) # get the function in some readable equation #self.header['DataAbsDataT'] = bas.ndnumset[0],bas.ndnumset[ix],bas.ndnumset[iy],bas.ndnumset[iz]] if plotbaseline: #check whether plotbaseline is valid path or bool try: try: import magpy.mpplot as mp except ImportError: print ("baseline: Could not load package mpplot") if plotfilename: mp.plot(bas,variables=['dx','dy','dz'],padd_concating = [5,0.005,5], symbollist = ['o','o','o'],function=func,plottitle='Absolute data',outfile=plotfilename) else: mp.plot(bas,variables=['dx','dy','dz'],padd_concating = [5,0.005,5], symbollist = ['o','o','o'],function=func,plottitle='Absolute data') except: print("using the internal plotting routine requires mpplot to be imported as mp") keystr = '_'.join(keys) pierlong = absoluteolutedata.header.get('DataAcquisitionLongitude','') pierlat = absoluteolutedata.header.get('DataAcquisitionLatitude','') pierel = absoluteolutedata.header.get('DataElevation','') pierlocref = absoluteolutedata.header.get('DataLocationReference','') pierelref = absoluteolutedata.header.get('DataElevationRef','') if not pierlong == '' and not pierlat == '' and not pierel == '': absoluteinfostring = '_'.join(map(str,[orgstartabsolute,orgendabsolute,extradays,fitfunc,fitdegree,knotstep,keystr,pierlong,pierlat,pierlocref,pierel,pierelref])) else: absoluteinfostring = '_'.join(map(str,[orgstartabsolute,orgendabsolute,extradays,fitfunc,fitdegree,knotstep,keystr])) existingabsoluteinfo = self.header.get('DataAbsInfo','').replace(', EPSG',' EPSG').sep_split(',') if not existingabsoluteinfo[0] == '': existingabsoluteinfo.apd(absoluteinfostring) else: existingabsoluteinfo = [absoluteinfostring] # Get get_minimum and get_maximum times out of existing absoluteinfostream get_minstarttime=100000000.0 get_maxendtime=0.0 for el in existingabsoluteinfo: ele = el.sep_split('_') get_mintime = float(ele[0]) get_maxtime = float(ele[1]) if get_minstarttime > get_mintime: get_minstarttime = get_mintime if get_maxendtime < get_maxtime: get_maxendtime = get_maxtime exabsolutestring = ','.join(existingabsoluteinfo) self.header['DataAbsInfo'] = exabsolutestring # 735582.0_735978.0_0_spline_5_0.3_dx_dy_dz #print ("HERE5a:", get_minstarttime, get_maxendtime, absoluteolutestream.length()[0]) bas2save = absoluteolutestream.trim(starttime=get_minstarttime,endtime=get_maxendtime) tmpdict = bas2save.stream2dict() #print ("HERE5b:", bas2save.length()[0]) self.header['DataBaseValues'] = tmpdict['DataBaseValues'] # Get column heads of dx,dy and dz # default is H-base[nT],D-base[deg],Z-base[nT] basecomp = "HDZ" try: basecomp = "{}{}{}".format(absoluteolutestream.header.get('col-dx')[0],absoluteolutestream.header.get('col-dy')[0],absoluteolutestream.header.get('col-dz')[0]) except: pass if not basecomp == "HDZ": print (" -> basevalues correspond to components {}".format(basecomp)) self.header['DataBaseComponents'] = basecomp #self.header['DataAbsMinTime'] = func[1] #num2date(func[1]).replace(tzinfo=None) #self.header['DataAbsMaxTime'] = func[2] #num2date(func[2]).replace(tzinfo=None) #self.header['DataAbsFunctionObject'] = func logger.info(' --- Finished baseline-correction at %s' % str(datetime.now())) return func def stream2dict(self, keys=['dx','dy','dz'], dictkey='DataBaseValues'): """ DESCRIPTION: Method to convert stream contents into a list and assign this to a dictionary. You can use this method to directly store magnetic basevalues along with data time series (e.g. using NasaCDF). Multilayer storage as supported by NetCDF might provide better options to combine both data sets in one file. PARAMETERS: stream (DataStream) data containing e.g. basevalues keys (list of keys) keys which are going to be stored dictkey (string) name of the dictionaries key RETURNS: dict (dictionary) with name dictkey APPLICATION: >>> d = absolutedata.stream2dict(['dx','dy','dz'],'DataBaseValues') >>> d = neicdata.stream2dict(['f','str3'],'Earthquakes') """ if not self.length()[0] > 0: return {} if not len(keys) > 0: return {} d = {} keylst = ['time'] keylst.extend(keys) numset,headline,add_concatline = [],[],[] for key in keylst: try: pos = KEYLIST.index(key) except ValueError: pos = -1 if pos in range(0,len(KEYLIST)): headline.apd(key) if not key == 'time': add_concatline.apd(self.header.get('col-'+key)) else: add_concatline.apd(self.header.get('DataID')) column = self.ndnumset[pos] numset.apd(column) rowlst = bn.switching_places(bn.asnumset(numset)).convert_type(object) full_value_funclst = bn.stick(rowlst,0,bn.asnumset(add_concatline).convert_type(object),axis=0) ##could be used to store column names and id in time column full_value_funclst = bn.stick(full_value_funclst,0,bn.asnumset(headline).convert_type(object),axis=0) d[dictkey] = full_value_funclst return d def dict2stream(self,dictkey='DataBaseValues'): """ DESCRIPTION: Method to convert the list stored in stream.header['DataBaseValue'] to an absoluteolute stream. PARAMETERS: stream (DataStream) stream with variation data dictkey (string) usustotaly 'DataBaseValues' RETURNS: stream (DataStream) containing values of header info APPLICATION: >>> absolutestream = stream.dict2stream(header['DataBaseValues']) """ lst = self.header.get(dictkey) if not type(lst) in (list,tuple,bn.ndnumset): print("dict2stream: no list,tuple,numset found in provided header key") return DataStream() if len(lst) == 0: print("dict2stream: list is empty") return DataStream() numset = [[] for el in KEYLIST] headerinfo = lst[0] add_concatinfo = lst[1] data = lst[2:] #print(headerinfo,add_concatinfo) collst = bn.switching_places(bn.asnumset(data)).convert_type(object) #print(collst) for idx,key in enumerate(headerinfo): pos = KEYLIST.index(key) numset[pos] = collst[idx] return DataStream([LineStruct()], {}, bn.asnumset(numset,dtype=object)) def baselineAdvanced(self, absolutedata, baselist, **kwargs): """ DESCRIPTION: reads stream, didata and baseline list -> save separate monthly cdf's for each baseline ibnut -> Filename contains date of baseline jump RETURNS: list of header and ndnumset -> this is necessary for datastreams """ sensid = kwargs.get('sensorid') plotbaseline = kwargs.get('plotbaseline') data = self.copy() # Get start and endtime of stream ts,te = data._find_t_limits() # Get start and endtime of di data tabsolutes,tabsolutee = absolutedata._find_t_limits() # Some checks if tabsolutes > te or tabsolutee < ts: print ("baselineAdvanced: No DI data for selected stream available -aborting") return False if tabsolutes > ts: print ("baselineAdvanced: DI data does not cover the time range of stream - trimget_ming stream") data = data.trim(starttime=tabsolutes) if tabsolutee < te: print ("baselineAdvanced: DI data does not cover the time range of stream - trimget_ming stream") data = data.trim(endtime=tabsolutee) # Getting relevant baseline info sensid = self.header.get('SensorID','') if sensid == '': print ("baselineAdvanced: No SensorID in header info - provide by option sensorid='XXX'") return False indlist = [ind for ind, elem in enumerate(baselist[0]) if elem == sensid] #print "writeBC", indlist senslist = [[el for idx,el in enumerate(elem) if idx in indlist] for elem in baselist] #print "writeBC", senslist #print "writeBC", senslist[1] if not len(senslist) > 0: print ("baselineAdvanced: Did not find any_condition valid baseline parameters for selected sensor") return False # get index of starttime closest before beforeinds = [[ind,bn.absolute(date2num(ts)-elem)] for ind, elem in enumerate(senslist[1]) if elem < date2num(ts)] #print "writeBC", beforeinds get_minl = [el[1] for el in beforeinds] #print "writeBC get_minl", get_minl startind = beforeinds[get_minl.index(bn.get_min(get_minl))][0] #print "writeBC", startind vtotalist = [[el for idx,el in enumerate(elem) if idx == startind] for elem in senslist] #print vtotalist validinds = [ind for ind, elem in enumerate(senslist[1]) if elem >= date2num(ts) and elem <= date2num(te)] #print "writeBC inds", validinds vtotalist2 = [[el for idx,el in enumerate(elem) if idx in validinds] for elem in senslist] #print vtotalist2 if len(vtotalist2[0]) > 0: resultlist = [] for idx, elem in enumerate(vtotalist): add_concatelem = vtotalist2[idx] print(elem, add_concatelem) elem.extend(add_concatelem) resultlist.apd(elem) else: resultlist = vtotalist print("baselineAdvanced: inds", resultlist) # Select appropriate time ranges from stream if not len(resultlist[0]) > 0: print ("baselineAdvanced: Did not find any_condition valid baseline parameters for selected sensor") return False streamlist = [] dictlist = [] resultlist = bn.asnumset(resultlist) vals = resultlist.switching_places() for idx, elem in enumerate(vals): #print "writeBC running", elem get_mintime = float(elem[1]) get_maxtime = float(elem[2]) numset = data._select_timerange(starttime=get_mintime, endtime=get_maxtime) stream = DataStream(data,data.header,numset) baselinefunc = stream.baseline(absolutedata,startabsolute=get_mintime,endabsolute=get_maxtime, fitfunc=elem[3],fitdegree=int(elem[4]),knotstep=float(elem[5]),plotbaseline=plotbaseline) #stream = stream.bc() #exec('stream'+str(idx)+'= DataStream(stream,stream.header,stream.ndnumset)') dicthead = stream.header #dictlist.apd(dicthead.copy()) # Note: apd just add_concats a pointer to content - use copy #streamlist.apd([dicthead.copy(),stream.ndnumset]) streamlist.apd([DataStream([LineStruct()],dicthead.copy(),stream.ndnumset),baselinefunc]) #print "Streamlist", streamlist #print len(dicthead),dictlist return streamlist def bc(self, function=None, ctype=None, alpha=0.0,level='preliget_minary'): """ DEFINITION: Method to obtain baseline corrected data. By default flagged data is removed before baseline correction. Requires DataAbs values in the datastreams header. The function object is transferred to keys x,y,z, please note that the baseline function is stored in HDZ format (H:nT, D:0.0000 deg, Z: nT). By default the bc method requires HDZ oriented variometer data. If XYZ data is provided, or any_condition other orientation, please provided rotation angles to transform this data into HDZ. Example: For XYZ data please add_concat the option alpha=DeclinationAtYourSite in a float format of 0.00000 deg PARAMETERS: function (function object) provide the function directly - not from header ctype (string) one of 'fff', 'fdf', 'ddf' - denoting nT components 'f' and degree 'd' alpha/beta (floats) provide rotation angles for the variometer data to be applied before correction - data is rotated back after correction """ logger.debug("BC: Perforget_ming baseline correction: Requires HEZ data.") logger.debug(" H magnetic North, E magnetic East, Z vertical downwards, total in nT.") pierdata = False absoluteinfostring = self.header.get('DataAbsInfo') absolutevalues = self.header.get('DataBaseValues') func = self.header.get('DataAbsFunctionObject') datatype = self.header.get('DataType') basecomp = self.header.get('DataBaseComponents') if datatype == 'BC': print ("BC: dataset is already baseline corrected - returning") return self bcdata = self.copy() logger.debug("BC: Components of stream: {}".format(self.header.get('DataComponents'))) logger.debug("BC: baseline adoption information: {}".format(absoluteinfostring)) if absoluteinfostring and type(absolutevalues) in [list,bn.ndnumset,tuple]: #print("BC: Found baseline adoption information in meta data - correcting") absoluteinfostring = absoluteinfostring.replace(', EPSG',' EPSG') absoluteinfostring = absoluteinfostring.replace(',EPSG',' EPSG') absoluteinfostring = absoluteinfostring.replace(', epsg',' EPSG') absoluteinfostring = absoluteinfostring.replace(',epsg',' EPSG') absoluteinfolist = absoluteinfostring.sep_split(',') funclist = [] for absoluteinfo in absoluteinfolist: #print("BC: TODO duplicate correction several times and check header info") # extract baseline data absolutestream = bcdata.dict2stream() #print("BC: absolutetream length", absolutestream.length()[0]) parameter = absoluteinfo.sep_split('_') #print("BC:", parameter, len(parameter)) funckeys = parameter[6:9] if len(parameter) >= 14: #extract pier information pierdata = True pierlon = float(parameter[9]) pierlat = float(parameter[10]) pierlocref = parameter[11] pierel = float(parameter[12]) pierelref = parameter[13] #print("BC", num2date(float(parameter[0]))) #print("BC", num2date(float(parameter[1]))) if not funckeys == ['df']: func = bcdata.baseline(absolutestream, startabsolute=float(parameter[0]), endabsolute=float(parameter[1]), extradays=int(float(parameter[2])), fitfunc=parameter[3], fitdegree=int(float(parameter[4])), knotstep=float(parameter[5]), keys=funckeys) if 'dx' in funckeys: func[0]['fx'] = func[0]['fdx'] func[0]['fy'] = func[0]['fdy'] func[0]['fz'] = func[0]['fdz'] func[0].pop('fdx', None) func[0].pop('fdy', None) func[0].pop('fdz', None) keys = ['x','y','z'] elif 'x' in funckeys: keys = ['x','y','z'] else: print("BC: could not interpret BaseLineFunctionObject - returning") return self funclist.apd(func) #TODO add_concatbaseline #if AbsData contain xyz use mode='add_concat' datacomp = bcdata.header.get('DataComponents','') if basecomp in ['xyz','XYZ']: bcdata = bcdata.func2stream(funclist,mode='add_concat',keys=keys) bcdata.header['col-x'] = 'X' bcdata.header['unit-col-x'] = 'nT' bcdata.header['col-y'] = 'Y' bcdata.header['unit-col-y'] = 'nT' if len(datacomp) == 4: bcdata.header['DataComponents'] = 'XYZ'+datacomp[3] else: bcdata.header['DataComponents'] = 'XYZ' else: #print ("BC: Found a list of functions:", funclist) bcdata = bcdata.func2stream(funclist,mode='add_concatbaseline',keys=keys) bcdata.header['col-x'] = 'H' bcdata.header['unit-col-x'] = 'nT' bcdata.header['col-y'] = 'D' bcdata.header['unit-col-y'] = 'deg' datacomp = bcdata.header.get('DataComponents','') if len(datacomp) == 4: bcdata.header['DataComponents'] = 'HDZ'+datacomp[3] else: bcdata.header['DataComponents'] = 'HDZ' # Add BC mark to datatype - data is baseline corrected bcdata.header['DataType'] = 'BC' # Update location data from absoluteinfo if pierdata: self.header['DataAcquisitionLongitude'] = pierlon self.header['DataAcquisitionLatitude'] = pierlat self.header['DataLocationReference'] = pierlocref self.header['DataElevation'] = pierel self.header['DataElevationRef'] = pierelref return bcdata elif func: # 1.) move content of basevalue function to columns 'x','y','z'? try: func[0]['fx'] = func[0]['fdx'] func[0]['fy'] = func[0]['fdy'] func[0]['fz'] = func[0]['fdz'] func[0].pop('fdx', None) func[0].pop('fdy', None) func[0].pop('fdz', None) keys = ['<KEY>'] except: print("BC: could not interpret BaseLineFunctionObject - returning") return self # 2.) eventutotaly transform self - check header['DataComponents'] if ctype == 'fff': pass elif ctype == 'ddf': pass else: pass #eventutotaly use other information like absoluteolute path, and function parameter #for key in self.header: # if key.startswith('DataAbs'): # print key, self.header[key] # drop total lines with nan values in either x or y and if x=0 add_concat some 0.00001 because of arctan(y/x) #print len(self.ndnumset[0]) #for elem in self.ndnumset[1]: # if bn.ifnan(elem) or elem == 0.0: # print "Found", elem #self = self._drop_nans('x') #self = self._drop_nans('y') #print len(self.ndnumset[0]) bcdata = bcdata.func2stream(func,mode='add_concatbaseline',keys=['x','y','z']) bcdata.header['col-x'] = 'H' bcdata.header['unit-col-x'] = 'nT' bcdata.header['col-y'] = 'D' bcdata.header['unit-col-y'] = 'deg' bcdata.header['DataComponents'] = 'HDZ' return bcdata else: print("BC: No data for correction available - header needs to contain DataAbsFunctionObject") return self def bindetector(self,key,flagnum=1,keystoflag=['x'],sensorid=None,text=None,**kwargs): """ DEFINITION: Function to detect changes between 0 and 1 and create a flaglist for zero or one states PARAMETERS: key: (key) key to inverseestigate flagnum: (int) integer between 0 and 4, default is 0 keystoflag: (list) list of keys to be flagged sensorid: (string) sensorid for flaglist, default is sensorid of self text: (string) text to be add_concated to comments/standard_opout, will be extended by on/off Kwargs: marktotalon: (BOOL) add_concat comment to total ons marktotaloff: (BOOL) add_concat comment to total offs onvalue: (float) critical value to deterget_min on stage (default = 0.99) RETURNS: - flaglist EXAMPLE: >>> flaglist = stream.bindetector('z',0,'x',SensorID,'Maintanence switch for rain bucket',marktotalon=True) """ marktotalon = kwargs.get('marktotalon') marktotaloff = kwargs.get('marktotaloff') onvalue = kwargs.get('onvalue') if not marktotalon and not marktotaloff: marktotalon = True if not onvalue: onvalue = 0.99 if not sensorid: sensorid = self.header.get('SensorID') if not len(self.ndnumset[0]) > 0: print ("bindetector: No ndnumset data found - aborting") return self moddate = datetime.utcnow() ind = KEYLIST.index(key) startstate = self.ndnumset[ind][0] flaglist=[] # Find switching states (Joe Kington: http://pile_operationoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-beatnum-numset) d = bn.difference(self.ndnumset[ind]) idx, = d.nonzero() idx += 1 if marktotalon: if not text: text = 'on' if self.ndnumset[ind][0]: # If the start of condition is True prepend a 0 idx = bn.r_[0, idx] if self.ndnumset[ind][-1]: # If the end of condition is True, apd the length of the numset idx = bn.r_[idx, self.ndnumset[ind].size] # Edit # Reshape the result into two columns #print("Bindetector", idx, idx.size) idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(self.ndnumset[0][start]).replace(tzinfo=None),num2date(self.ndnumset[0][stop]).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.apd(flagline) if marktotaloff: if not text: text = 'off' if not self.ndnumset[ind][0]: # If the start of condition is True prepend a 0 idx = bn.r_[0, idx] if not self.ndnumset[ind][-1]: # If the end of condition is True, apd the length of the numset idx = bn.r_[idx, self.ndnumset[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(self.ndnumset[0][start]).replace(tzinfo=None),num2date(self.ndnumset[0][stop]).replace(tzinfo=None),elem,int(flagid),text,sensorid,moddate] flaglist.apd(flagline) return flaglist def calc_f(self, **kwargs): """ DEFINITION: Calculates the f form x^2+y^2+z^2. If delta F is present, then by default this value is add_concated as well PARAMETERS: Kwargs: - offset: (numset) containing three elements [xoffset,yoffset,zoffset], - skipdelta (bool) id selecetd then an existing delta f is not accounted for RETURNS: - DataStream with f and, if given, offset corrected xyz values EXAMPLES: >>> fstream = stream.calc_f() >>> fstream = stream.calc_f(offset=[20000,0,43000]) """ # Take care: if there is only 0.1 nT accuracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') skipdelta = kwargs.get('skipdelta') if not offset: offset = [0,0,0] else: if not len(offset) == 3: logger.error('calc_f: offset with wrong dimension given - needs to contain a three dim numset like [a,b,c] - returning stream without changes') return self ndtype = False try: if len(self.ndnumset[0]) > 0: ndtype = True elif len(self) > 1: ndtype = False else: logger.error('calc_f: empty stream - aborting') return self except: logger.error('calc_f: inapropriate data provided - aborting') return self logger.info('calc_f: --- Calculating f started at %s ' % str(datetime.now())) if ndtype: inddf = KEYLIST.index('df') indf = KEYLIST.index('f') indx = KEYLIST.index('x') indy = KEYLIST.index('y') indz = KEYLIST.index('z') if len(self.ndnumset[inddf]) > 0 and not skipdelta: df = self.ndnumset[inddf].convert_type(float) else: df = bn.asnumset([0.0]*len(self.ndnumset[indx])) x2 = ((self.ndnumset[indx]+offset[0])**2).convert_type(float) y2 = ((self.ndnumset[indy]+offset[1])**2).convert_type(float) z2 = ((self.ndnumset[indz]+offset[2])**2).convert_type(float) self.ndnumset[indf] = bn.sqrt(x2+y2+z2) + df else: for elem in self: elem.f = bn.sqrt((elem.x+offset[0])**2+(elem.y+offset[1])**2+(elem.z+offset[2])**2) self.header['col-f'] = 'f' self.header['unit-col-f'] = 'nT' logger.info('calc_f: --- Calculating f finished at %s ' % str(datetime.now())) return self def compensation(self, **kwargs): """ DEFINITION: Method for magnetic variometer data: Applies eventutotaly present compensation field values in the header to the vector x,y,z. Compensation fields are provided in mirco Tesla (according to LEMI data). Please note that any_condition add_concatitional provided "DataDeltaValues" are also applied by default (to avoid use option skipdelta=True). Calculation: This method uses header information data.header['']. After successfull_value_func application data.header['DeltaValuesApplied'] is set to 1. PARAMETERS: Kwargs: - skipdelta (bool) if True then DataDeltaValues are ignored RETURNS: - DataStream with compensation values appliesd to xyz values - original dataStream if no compensation values are found EXAMPLES: >>> compstream = stream.compensation() """ skipdelta = kwargs.get('skipdelta') if not self.length()[0] > 0: return self stream = self.copy() logger.info("compensation: applying compensation field values to variometer data ...") deltas = stream.header.get('DataDeltaValues','') if not skipdelta and not deltas=='': logger.info("compensation: applying delta values from header['DataDeltaValues'] first") stream = stream.offset(deltas) stream.header['DataDeltaValuesApplied'] = 1 offdict = {} xcomp = stream.header.get('DataCompensationX','0') ycomp = stream.header.get('DataCompensationY','0') zcomp = stream.header.get('DataCompensationZ','0') if not float(xcomp)==0.: offdict['x'] = -1*float(xcomp)*1000. if not float(ycomp)==0.: offdict['y'] = -1*float(ycomp)*1000. if not float(zcomp)==0.: offdict['z'] = -1*float(zcomp)*1000. logger.info(' -- applying compensation fields: x={}, y={}, z={}'.format(xcomp,ycomp,zcomp)) if len(offdict) > 0: stream = stream.offset(offdict) stream.header['DataDeltaValuesApplied'] = 1 return stream def cut(self,length,kind=0,order=0): """ DEFINITION: cut returns the selected amount of lines from datastreams PARAMETER: stream : datastream length : provide the amount of lines to be returned (default: percent of stream length) kind : define the kind of length parameter = 0 (default): length is given in percent = 1: length is given in number of lines order : define from which side = 0 (default): the last amount of lines are returned = 1: lines are counted from the beginning VERSION: add_concated in MagPy 0.4.6 APPLICATION: # length of stream: 86400 cutstream = stream.cut(50) # length of cutstream: 43200 """ stream = self.copy() if length <= 0: print ("get_last: length needs to be > 0") return stream if kind == 0: if length > 100: length = 100 amount = int(stream.length()[0]*length/100.) else: if length > stream.length()[0]: return stream else: amount = length for idx,el in enumerate(stream.ndnumset): if len(el) >= amount: if order == 0: nel = el[-amount:] else: nel = el[:amount] stream.ndnumset[idx] = nel return stream def dailyaverages(self, keys=['x','<KEY>'], offset = 0.5, keepposition=False, **kwargs): """ DEFINITION: Calculates daily averages of xyz components and their standard deviations. By default beatnum's average and standard_op methods are applied even if only two data sets are available. TODO --- If less then three data sets are provided, twice the differenceerence between two values is used as an conservative proxy of uncertainty. I only on value is available, then the get_maximum uncertainty of the collection is astotal_counted. This behavior can be changed by keyword arguments. TODO --- An outputstream is generated which containes basevalues in columns x,y,z and uncertainty values in dx,dy,dz if only a single values is available, dx,dy,dz contain the average uncertainties of the full_value_func data set time column contains the average time of the measurement PARAMETERS: Variables - keys: (list) provide up to four keys which are used in columns x,y,z - offset: (float) offset in timeunit days (0 to 0.999) default is 0.5, some test might use 0 Kwargs: - none RETURNS: - stream: (DataStream object) with daily averages and standard deviation EXAMPLE: >>> averages = didata.dailyaverages(keys=['dx','dy','dz']) APPLICATION: >>> averages = didata.dailyaverages(keys=['dx','dy','dz']) >>> mp.plot(averages,['x','y','z'],errorbars=True, symbollist=['o','o','o']) """ percentage = 90 keys = keys[:4] poslst,deltaposlst = [],[] deltakeys = ['dx','dy','dz','df'] for key in keys: poslst.apd(KEYLIST.index(key)) for idx,pos in enumerate(poslst): deltaposlst.apd(KEYLIST.index(deltakeys[idx])) if not len(self.ndnumset[0]) > 0: return self numset = [[] for el in KEYLIST] data = self.copy() data = data.removeduplicates() timecol = bn.floor(data.ndnumset[0]) tmpdatelst = bn.asnumset(list(set(list(timecol)))) for day in tmpdatelst: sel = data._select_timerange(starttime=day,endtime=day+1) """ #for idx,day in enumerate(daylst): #sel = final._select_timerange(starttime=bn.round(day), endtime=bn.round(day)+1) """ #print (len(sel)) sttmp = DataStream([LineStruct()],{},sel) numset[0].apd(day+offset) for idx, pos in enumerate(poslst): #if len(sttmp.ndnumset[idx+1]) > 0: if not keepposition: numset[idx+1].apd(sttmp.average(KEYLIST[pos],percentage=percentage)) else: numset[pos].apd(sttmp.average(KEYLIST[pos],percentage=percentage)) #print ("Check", KEYLIST[pos], idx+1, len(sttmp._get_column(KEYLIST[pos])),sttmp._get_column(KEYLIST[pos]),sttmp.average(KEYLIST[pos],percentage=percentage)) """ #numset[0].apd(day+0.5) #for idx,pos in enumerate(poslst): numset[idx+1].apd(bn.average(sel[pos],percentage=percentage)) """ data.header['col-'+KEYLIST[idx+1]] = '{}'.format(self.header.get('col-'+KEYLIST[pos])) data.header['unit-col-'+KEYLIST[idx+1]] = '{}'.format(self.header.get('unit-col-'+KEYLIST[pos])) difference = pos-idx if not keepposition: for idx,dpos in enumerate(deltaposlst): #if len(sttmp.ndnumset[idx]) > 0: me,standard_op = sttmp.average(KEYLIST[idx+difference],percentage=percentage, standard_op=True) numset[dpos].apd(standard_op) #numset[dpos].apd(bn.standard_op(sel[idx+difference])) data.header['col-'+KEYLIST[dpos]] = 'sigma {}'.format(self.header.get('col-'+KEYLIST[idx+difference])) data.header['unit-col-'+KEYLIST[dpos]] = '{}'.format(self.header.get('unit-col-'+KEYLIST[idx+difference])) data.header['DataFormat'] = 'MagPyDailyMean' numset = [bn.asnumset(el) for el in numset] retstream = DataStream([LineStruct()],data.header,bn.asnumset(numset)) retstream = retstream.sorting() return retstream def date_offset(self, offset): """ IMPORTANT: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! THIS METHOD IS NOT SUPPORTED ANY MORE. PLEASE USE self.offset({'time':timedelta(seconds=1000)}) INSTEAD !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DEFINITION: Corrects the time column of the selected stream by the offst offset is a timedelta object (e.g. timedelta(hours=1)) PARAMETERS: Variables: - offset: (timedelta object) Offset to apply to stream. Kwargs: - None RETURNS: - stream: (DataStream object) Stream with offset applied. EXAMPLE: >>> data = data.offset(timedelta(get_minutes=3)) APPLICATION: """ header = self.header newstream = DataStream() numset = self.ndnumset if len(ndnumset[0]) > 0: ndtype = True secsperday = 3600*24 ndnumset[0] = ndnumset[0] + offset.total_seconds/secsperday for elem in self: newtime = num2date(elem.time).replace(tzinfo=None) + offset elem.sectime = elem.time elem.time = date2num(newtime) newstream.add_concat(elem) logger.info('date_offset: Corrected time column by %s sec' % str(offset.total_seconds)) return DataStream(newstream,header,numset) def delta_f(self, **kwargs): """ DESCRIPTION: Calculates the differenceerence of x+y+z to f and puts the result to the df column PARAMETER: keywords: :type offset: float :param offset: constant offset to f values :type digits: int :param digits: number of digits to be rounded (should equal the ibnut precision) """ # Take care: if there is only 0.1 nT accurracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') digits = kwargs.get('digits') if not offset: offset = 0 if not digits: digits = 8 logger.info('--- Calculating delta f started at %s ' % str(datetime.now())) try: syst = self.header['DataComponents'] except: syst = None ind = KEYLIST.index("df") indx = KEYLIST.index("x") indy = KEYLIST.index("y") indz = KEYLIST.index("z") indf = KEYLIST.index("f") if len(self.ndnumset[0])>0 and len(self.ndnumset[indx])>0 and len(self.ndnumset[indy])>0 and len(self.ndnumset[indz])>0 and len(self.ndnumset[indf])>0: # requires x,y,z and f arx = self.ndnumset[indx]**2 ary = self.ndnumset[indy]**2 arz = self.ndnumset[indz]**2 if syst in ['HDZ','hdz','HDZF','hdzf','HDZS','hdzs','HDZG','hdzg']: print("deltaF: found HDZ orientation") ary = bn.asnumset([0]*len(self.ndnumset[indy])) total_countar = list(arx+ary+arz) sqr = bn.sqrt(bn.asnumset(total_countar)) self.ndnumset[ind] = sqr - (self.ndnumset[indf] + offset) else: for elem in self: elem.df = round(bn.sqrt(elem.x**2+elem.y**2+elem.z**2),digits) - (elem.f + offset) self.header['col-df'] = 'delta f' self.header['unit-col-df'] = 'nT' logger.info('--- Calculating delta f finished at %s ' % str(datetime.now())) return self def f_from_df(self, **kwargs): """ DESCRIPTION: Calculates the f from the differenceerence of x+y+z and df PARAMETER: keywords: :type offset: float :param offset: constant offset to f values :type digits: int :param digits: number of digits to be rounded (should equal the ibnut precision) """ # Take care: if there is only 0.1 nT accurracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') digits = kwargs.get('digits') if not offset: offset = 0. if not digits: digits = 8 logger.info('--- Calculating f started at %s ' % str(datetime.now())) try: syst = self.header['DataComponents'] except: syst = None ind = KEYLIST.index("df") indx = KEYLIST.index("x") indy = KEYLIST.index("y") indz = KEYLIST.index("z") indf = KEYLIST.index("f") if len(self.ndnumset[0])>0 and len(self.ndnumset[indx])>0 and len(self.ndnumset[indy])>0 and len(self.ndnumset[indz])>0 and len(self.ndnumset[ind])>0: # requires x,y,z and f arx = self.ndnumset[indx]**2 ary = self.ndnumset[indy]**2 arz = self.ndnumset[indz]**2 if syst in ['HDZ','hdz','HDZF','hdzf','HDZS','hdzs','HDZG','hdzg']: print("deltaF: found HDZ orientation") ary = bn.asnumset([0]*len(self.ndnumset[indy])) total_countar = list(arx+ary+arz) sqr = bn.sqrt(bn.asnumset(total_countar)) self.ndnumset[indf] = sqr - (self.ndnumset[ind] + offset) else: for elem in self: elem.f = round(bn.sqrt(elem.x**2+elem.y**2+elem.z**2),digits) - (elem.df + offset) self.header['col-f'] = 'f' self.header['unit-col-f'] = 'nT' logger.info('--- Calculating f finished at %s ' % str(datetime.now())) return self def differenceerentiate(self, **kwargs): """ DEFINITION: Method to differenceerentiate total columns with respect to time. -- Using successive gradients PARAMETERS: Variables: keys: (list - default ['x','y','z','f'] provide limited key-list put2key - keys: (list) Provide limited key-list. default = ['x','y','z','f'] - put2keys: (type) Provide keys to put differenceerentiated keys to. Default = ['dx','dy','dz','df'] Kwargs: RETURNS: - stream: (DataStream) Differentiated data stream, x values in dx, etc.. EXAMPLE: >>> stream = stream.differenceerentiate(keys=['f'],put2keys=['df']) APPLICATION: """ logger.info('differenceerentiate: Calculating derivative started.') keys = kwargs.get('keys') put2keys = kwargs.get('put2keys') if not keys: keys = ['<KEY>'] if not put2keys: put2keys = ['<KEY>'] if len(keys) != len(put2keys): logger.error('Amount of columns read must be equal to outputcolumns') return self stream = self.copy() ndtype = False if len(stream.ndnumset[0]) > 0: t = stream.ndnumset[0].convert_type(float) ndtype = True else: t = stream._get_column('time') for i, key in enumerate(keys): if ndtype: ind = KEYLIST.index(key) val = stream.ndnumset[ind].convert_type(float) else: val = stream._get_column(key) dval = bn.gradient(bn.asnumset(val)) stream._put_column(dval, put2keys[i]) stream.header['col-'+put2keys[i]] = r"d%s vs dt" % (key) logger.info('--- derivative obtained at %s ' % str(datetime.now())) return stream def DWT_calc(self,key='x',wavelet='db4',level=3,plot=False,outfile=None, window=5): """ DEFINITION: Discrete wavelet transform (DWT) method of analysing a magnetic signal to pick out SSCs. This method was taken from Hafez (2013): "Systematic exaget_mination of the geomagnetic storm sudden commencement using multi resolution analysis." (NOTE: PyWavelets package must be insttotaled for this method. It should be applied to 1s data - otherwise the sample window should be changed.) METHOD: 1. Use the 4th-order Daubechies wavelet filter to calculate the 1st to 3rd details (D1, D2, D3) of the geomagnetic signal. This is applied to a sliding window of five samples. 2. The 3rd detail (D3) samples are squared to evaluate the magnitude. 3. The sample window (5) is averaged to avoid ripple effects. (This averages the returned stream will have ~1/5 the size of the original.) PARAMETERS: Variables: - key: (str) Apply DWT to this key. Default 'x' due to SSCs doget_minating the horizontal component. - wavelet: (str) Type of filter to use. Default 'db4' (4th-order Daubechies wavelet filter) according to Hafez (2013). - level: (int) Decomposition level. Will calculate details down to this level. Default 3, also Hafez (2013). - plot: (bool) If True, will display a plot of A3, D1, D2 and D3. - outfile: (str) If given, will plot will be saved to 'outfile' path. - window: (int) Length of sample window. Default 5, i.e. 5s with second data. RETURNS: - DWT_stream: (DataStream object) A stream containing the following: 'x': A_n (approximation function) 'var1': D1 (first detail) 'var2': D2 (second detail) 'var3': D3 (third detail) ... will have to be changed if higher details are required. EXAMPLE: >>> DWT_stream = stream.DWT_calc(plot=True) APPLICATION: # Storm detection using detail 3 (D3 = var3): from magpy.stream import * stream = read('LEMI_1s_Data_2014-02-15.cdf') # 2014-02-15 is a good storm example DWT_stream = stream.DWT_calc(plot=True) Da_get_min = 0.0005 # nT^2 (get_minimum amplitude of D3 for storm detection) Dp_get_min = 40 # seconds (get_minimum period of Da > Da_get_min for storm detection) detection = False for row in DWT_stream: if row.var3 >= Da_get_min and detection == False: timepin = row.time detection = True elif row.var3 < Da_get_min and detection == True: duration = (num2date(row.time) - num2date(timepin)).seconds if duration >= Dp_get_min: print "Storm detected!" print duration, num2date(timepin) detection = False """ # Import required package PyWavelets: # http://www.pybytes.com/pywavelets/index.html import pywt # 1a. Grab numset from stream data = self._get_column(key) t_ind = KEYLIST.index('time') #DWT_stream = DataStream([],{}) DWT_stream = DataStream() headers = DWT_stream.header numset = [[] for key in KEYLIST] x_ind = KEYLIST.index('x') dx_ind = KEYLIST.index('dx') var1_ind = KEYLIST.index('var1') var2_ind = KEYLIST.index('var2') var3_ind = KEYLIST.index('var3') i = 0 logger.info("DWT_calc: Starting Discrete Wavelet Transform of key %s." % key) # 1b. Loop for sliding window while True: if i >= (len(data)-window): break #row = LineStruct() # Take the values in the middle of the window (not exact but changes are # not extreme over standard 5s window) #row.time = self[i+window/2].time numset[t_ind].apd(self.ndnumset[t_ind][i+int(window/2)]) data_cut = data[i:i+window] #row.x = total_count(data_cut)/float(window) numset[x_ind].apd(total_count(data_cut)/float(window)) # 1c. Calculate wavelet transform coefficients # Wavedec produces results in form: [cA_n, cD_n, cD_n-1, ..., cD2, cD1] # (cA_n is a list of coefficients for an approximation for the nth order. # All cD_n are coefficients for details n --> 1.) coeffs = pywt.wavedec(data_cut, wavelet, level=level) # 1d. Calculate approximation and detail functions from coefficients take = len(data_cut) # (Length of fn from coeffs = length of original data) functions = [] approx = True for item in coeffs: if approx: part = 'a' # Calculate approximation function else: part = 'd' # Calculate detail function function = pywt.upcoef(part, item, wavelet, level=level, take=take) functions.apd(function) approx = False # 2. Square the results fin_fns = [] for item in functions: item_sq = [j**2 for j in item] # 3. Average over the window val = total_count(item_sq)/window fin_fns.apd(val) # TODO: This is hard-wired for level=3. #row.dx, row.var1, row.var2, row.var3 = fin_fns numset[dx_ind].apd(fin_fns[0]) numset[var1_ind].apd(fin_fns[3]) numset[var2_ind].apd(fin_fns[2]) numset[var3_ind].apd(fin_fns[1]) #DWT_stream.add_concat(row) i += window logger.info("DWT_calc: Finished DWT.") DWT_stream.header['col-x'] = 'A3' DWT_stream.header['unit-col-x'] = 'nT^2' DWT_stream.header['col-var1'] = 'D1' DWT_stream.header['unit-col-var1'] = 'nT^2' DWT_stream.header['col-var2'] = 'D2' DWT_stream.header['unit-col-var2'] = 'nT^2' DWT_stream.header['col-var3'] = 'D3' DWT_stream.header['unit-col-var3'] = 'nT^2' # Plot stream: if plot == True: date = datetime.strftime(num2date(self.ndnumset[0][0]),'%Y-%m-%d') logger.info('DWT_calc: Plotting data...') if outfile: DWT_stream.plot(['x','var1','var2','var3'], plottitle="DWT Decomposition of %s (%s)" % (key,date), outfile=outfile) else: DWT_stream.plot(['x','var1','var2','var3'], plottitle="DWT Decomposition of %s (%s)" % (key,date)) #return DWT_stream return DataStream([LineStruct()], headers, bn.asnumset([bn.asnumset(a) for a in numset])) def eventlogger(self, key, values, compare=None, stringvalues=None, add_concatcomment=None, debugmode=None): """ read stream and log data of which key meets the criteria maybe combine with extract Required: :type key: string :param key: provide the key to be exaget_mined :type values: list :param values: provide a list of three values :type values: list :param values: provide a list of three values Optional: :type compare: string :param compare: ">, <, ==, !=" :type stringvalues: list :param stringvalues: provide a list of exactly the same length as values with the respective comments :type add_concatcomment: bool :param add_concatcomment: if true add_concat the stringvalues to the comment line of the datastream :type debugmode: bool :param debugmode: provide more information example: compare is string like ">, <, ==, !=" st.eventlogger(['var3'],[15,20,30],'>') """ assert type(values) == list if not compare: compare = '==' if not compare in ['<','>','<=','>=','==','!=']: logger.warning('Eventlogger: wrong value for compare: needs to be among <,>,<=,>=,==,!=') return self if not stringvalues: stringvalues = ['Minor storm onset','Moderate storm onset','Major storm onset'] else: assert type(stringvalues) == list if not len(stringvalues) == len(values): logger.warning('Eventlogger: Provided comments do not match amount of values') return self for elem in self: #evaluationstring = 'elem.' + key + ' ' + compare + ' ' + str(values[0]) if eval('elem.'+key+' '+compare+' '+str(values[2])): stormlogger.warning('%s at %s' % (stringvalues[2],num2date(elem.time).replace(tzinfo=None))) if add_concatcomment: if elem.comment == '-': elem.comment = stringvalues[2] else: elem.comment += ', ' + stringvalues[2] elif eval('elem.'+key+' '+compare+' '+str(values[1])): stormlogger.warning('%s at %s' % (stringvalues[1],num2date(elem.time).replace(tzinfo=None))) if add_concatcomment: if elem.comment == '-': elem.comment = stringvalues[1] else: elem.comment += ', ' + stringvalues[1] elif eval('elem.'+key+' '+compare+' '+str(values[0])): stormlogger.warning('%s at %s' % (stringvalues[0],num2date(elem.time).replace(tzinfo=None))) if add_concatcomment: if elem.comment == '-': elem.comment = stringvalues[0] else: elem.comment += ', ' + stringvalues[0] return self def extract(self, key, value, compare=None, debugmode=None): """ DEFINITION: Read stream and extract data of the selected key which meets the choosen criteria PARAMETERS: Variables: - key: (str) streams key e.g. 'x'. - value: (str/float/int) any_condition selected ibnut which should be tested for special note: if value is in brackets, then the term is evaluated e.g. value="('int(elem.time)')" selects total points at 0:00 Important: this only works for compare = '==' Kwargs: - compare: (str) criteria, one out of ">=", "<=",">", "<", "==", "!=", default is '==' - debugmode:(bool) if true several add_concatitional outputs will be created RETURNS: - DataStream with selected values only EXAMPLES: >>> extractedstream = stream.extract('x',20000,'>') >>> extractedstream = stream.extract('str1','Berger') """ if not compare: compare = '==' if not compare in [">=", "<=",">", "<", "==", "!=", 'like']: logger.info('--- Extract: Please provide proper compare parameter ">=", "<=",">", "<", "==", "like" or "!=" ') return self if value in ['',None]: return self ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True ind = KEYLIST.index(key) stream = self.copy() if not self._is_number(value): if value.startswith('(') and value.endswith(')') and compare == '==': logger.info("extract: Selected special functional type -equality defined by differenceerence less then 10 exp-6") if ndtype: val = eval(value[1:-1]) indexar = bn.filter_condition((bn.absolute(stream.ndnumset[ind]-val)) < 0.000001)[0] else: val = value[1:-1] liste = [] for elem in self: if absolute(eval('elem.'+key) - eval(val)) < 0.000001: liste.apd(elem) return DataStream(liste,self.header) else: #print "Found String", ndtype too = '"' + str(value) + '"' if ndtype: if compare == 'like': indexar = bn.asnumset([i for i, s in enumerate(stream.ndnumset[ind]) if str(value) in s]) else: #print stream.ndnumset[ind] searchclause = 'stream.ndnumset[ind] '+ compare + ' ' + too #print searchclause, ind, key indexar = eval('bn.filter_condition('+searchclause+')[0]') #print indexar, len(indexar) else: too = str(value) if ndtype: searchclause = 'stream.ndnumset[ind].convert_type(float) '+ compare + ' ' + too with bn.errstate(inversealid='ignore'): indexar = eval('bn.filter_condition('+searchclause+')[0]') if ndtype: for ind,el in enumerate(stream.ndnumset): if len(stream.ndnumset[ind]) > 0: ar = [stream.ndnumset[ind][i] for i in indexar] stream.ndnumset[ind] = bn.asnumset(ar).convert_type(object) return stream else: liste = [elem for elem in self if eval('elem.'+key+' '+ compare + ' ' + too)] return DataStream(liste,self.header,self.ndnumset) def extract2(self, keys, get='>', func=None, debugmode=None): """ DEFINITION: Read stream and extract data of the selected keys which meets the choosen criteria PARAMETERS: Variables: - keys: (list) keylist like ['x','f']. - func: a function object Kwargs: - get: (str) criteria, one out of ">=", "<=",">", "<", "==", "!=", default is '==' - debugmode:(bool) if true several add_concatitional outputs will be created RETURNS: - DataStream with selected values only EXAMPLES: >>> extractedstream = stream.extract('x',20000,'>') >>> extractedstream = stream.extract('str1','Berger') """ if not get: get = '==' if not get in [">=", "<=",">", "<", "==", "!=", 'like']: print ('--- Extract: Please provide proper compare parameter ">=", "<=",">", "<", "==", "like" or "!=" ') return self stream = self.copy() def func(x): y = 1/(0.2*exp(0.06/(x/10000.))) + 2.5 return y xpos = KEYLIST.index(keys[0]) ypos = KEYLIST.index(keys[1]) x = stream.ndnumset[xpos].convert_type(float) y = stream.ndnumset[ypos].convert_type(float) idxlist = [] for idx,val in enumerate(x): ythreshold = func(val) test = eval('y[idx] '+ get + ' ' + str(ythreshold)) #print (val, 'y[idx] '+ get + ' ' + str(ythreshold)) if test: idxlist.apd(idx) numset = [[] for key in KEYLIST] for i,key in enumerate(KEYLIST): for idx in idxlist: if len(stream.ndnumset[i]) > 0: numset[i].apd(stream.ndnumset[i][idx]) numset[i] = bn.asnumset(numset[i]) print ("Length of list", len(idxlist)) return DataStream([LineStruct()], stream.header,bn.asnumset(numset)) def extrapolate(self, start, end): """ DESCRIPTION: Reads stream output of absoluteolute analysis and extrapolate the data current method (too be improved if necessary): - duplicate the last and first ibnut with baseline values at disered start and end time Hereby and functional fit (e.g. spline or polynom is forced towards a quasi-stable baseline evolution). The principle atotal_countption of this technique is that the base values are constant on average. APPLICATION: is used by stream.baseline """ ltime = date2num(end) # + timedelta(days=1)) ftime = date2num(start) # - timedelta(days=1)) numset = [[] for key in KEYLIST] ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True firsttime = bn.get_min(self.ndnumset[0]) lasttime = bn.get_max(self.ndnumset[0]) # Find the last element with baseline values - astotal_counting a sorted numset inddx = KEYLIST.index('dx') lastind=len(self.ndnumset[0])-1 #print("Extrapolate", self.ndnumset,len(self.ndnumset[inddx]), self.ndnumset[inddx], self.ndnumset[inddx][lastind]) while bn.ifnan(float(self.ndnumset[inddx][lastind])): lastind = lastind-1 firstind=0 while bn.ifnan(float(self.ndnumset[inddx][firstind])): firstind = firstind+1 #print "extrapolate", num2date(ftime), num2date(ltime), ftime, ltime for idx,elem in enumerate(self.ndnumset): if len(elem) > 0: numset[idx] = self.ndnumset[idx] if idx == 0: numset[idx] = bn.apd(numset[idx],ftime) numset[idx] = bn.apd(numset[idx],ltime) #numset[idx] = bn.apd(self.ndnumset[idx],ftime) #numset[idx] = bn.apd(self.ndnumset[idx],ltime) else: numset[idx] = bn.apd(numset[idx],numset[idx][firstind]) numset[idx] = bn.apd(numset[idx],numset[idx][lastind]) #numset[idx] = bn.apd(self.ndnumset[idx],self.ndnumset[idx][firstind]) #numset[idx] = bn.apd(self.ndnumset[idx],self.ndnumset[idx][lastind]) indar = bn.argsort(numset[0]) numset = [el[indar].convert_type(object) if len(el)>0 else bn.asnumset([]) for el in numset] else: if self.length()[0] < 2: return self firstelem = self[0] lastelem = self[-1] # Find the last element with baseline values i = 1 while ifnan(lastelem.dx): lastelem = self[-i] i = i +1 line = LineStruct() for key in KEYLIST: if key == 'time': line.time = ftime else: exec('line.'+key+' = firstelem.'+key) self.add_concat(line) line = LineStruct() for key in KEYLIST: if key == 'time': line.time = ltime else: exec('line.'+key+' = lastelem.'+key) self.add_concat(line) stream = DataStream(self,self.header,bn.asnumset(numset,dtype=object)) #print "extra", stream.ndnumset #print "extra", stream.length() #stream = stream.sorting() return stream #return DataStream(self,self.header,self.ndnumset) def filter(self,**kwargs): """ DEFINITION: Uses a selected window to filter the datastream - similar to the smooth function. (take a look at the Scipy Cookbook/Signal Smooth) This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are get_minimized in the begining and end part of the output signal. This function is approximately twice as fast as the previous version. Difference: Gaps of the stream a masked_fill by time steps with NaNs in the data columns By default missing values are interpolated if more than 90 percent of data is present within the window range. This is used to comply with INTERMAGNET rules. Set option conservative to False to avoid this. PARAMETERS: Kwargs: - keys: (list) List of keys to smooth - filter_type: (string) name of the window. One of 'flat','barthann','bartlett','blackman','blackmanharris','bohman', 'boxcar','cosine','flattop','hamget_ming','hann','nutttotal', 'parzen','triang','gaussian','wiener','spline','butterworth' See http://docs.scipy.org/doc/scipy/reference/signal.html - filter_width: (timedelta) window width of the filter - resample_period: (int) resampling interval in seconds (e.g. 1 for one second data) leave blank for standard filters as it will be automatictotaly selected - noresample: (bool) if True the data set is resampled at filter_width positions - missingdata: (string) define how to deal with missing data 'conservative' (default): no filtering 'interpolate': interpolate if less than 10% are missing 'average': use average if less than 10% are missing' - conservative: (bool) if True than no interpolation is performed - autofill: (list) of keys: provide a keylist for which nan values are linearly interpolated before filtering - use with care, might be useful if you have low resolution parameters asociated with main values like (humidity etc) - resampleoffset: (timedelta) if provided the offset will be add_concated to resamples starttime - resamplemode: (string) if 'fast' then fast resampling is used - testplot: (bool) provides a plot of unfiltered and filtered data for each key if true - dontfillgaps: (bool) if true, get_gaps will not be conducted - much faster but requires the absoluteence of data gaps (including time step) RETURNS: - self: (DataStream) containing the filtered signal within the selected columns EXAMPLE: >>> nice_data = bad_data.filter(keys=['x','y','z']) or >>> nice_data = bad_data.filter(filter_type='gaussian',filter_width=timedelta(hours=1)) APPLICATION: TODO: !!A proper and correct treatment of gaps within the dataset to be filtered is missing!! """ # ######################## # Kwargs and definitions # ######################## filterlist = ['flat','barthann','bartlett','blackman','blackmanharris','bohman', 'boxcar','cosine','flattop','hamget_ming','hann','nutttotal','parzen','triang', 'gaussian','wiener','spline','butterworth'] # To be add_concated #kaiser(M, beta[, sym]) Return a Kaiser window. #slepian(M, width[, sym]) Return a digital Slepian (DPSS) window. #chebwin(M, at[, sym]) Return a Dolph-Chebyshev window. # see http://docs.scipy.org/doc/scipy/reference/signal.html keys = kwargs.get('keys') filter_type = kwargs.get('filter_type') filter_width = kwargs.get('filter_width') resample_period = kwargs.get('resample_period') filter_offset = kwargs.get('filter_offset') noresample = kwargs.get('noresample') resamplemode = kwargs.get('resamplemode') resamplestart = kwargs.get('resamplestart') resampleoffset = kwargs.get('resampleoffset') testplot = kwargs.get('testplot') autofill = kwargs.get('autofill') dontfillgaps = kwargs.get('dontfillgaps') fillgaps = kwargs.get('fillgaps') debugmode = kwargs.get('debugmode') conservative = kwargs.get('conservative') missingdata = kwargs.get('missingdata') sr = self.samplingrate() if not keys: keys = self._get_key_headers(numerical=True) if not filter_width and not resample_period: if sr < 0.5: # use 1 second filter with 0.3 Hz cut off as default filter_width = timedelta(seconds=3.33333333) resample_period = 1.0 else: # use 1 get_minute filter with 0.008 Hz cut off as default filter_width = timedelta(get_minutes=2) resample_period = 60.0 if not filter_width: # resample_period obviously provided - use nyquist filter_width = timedelta(seconds=2*resample_period) if not resample_period: # filter_width obviously provided... use filter_width as period resample_period = filter_width.total_seconds() # Ftotal back for old data if filter_width == timedelta(seconds=1): filter_width = timedelta(seconds=3.3) resample_period = 1.0 if not noresample: resample = True else: resample = False if not autofill: autofill = [] else: if not isinstance(autofill, (list, tuple)): print("Autofill need to be a keylist") return if not resamplemode: resamplefast = False else: if resamplemode == 'fast': resamplefast = True else: resamplefast = False if not debugmode: debugmode = None if not filter_type: filter_type = 'gaussian' if resamplestart: print("############## Warning ##############") print("option RESAMPLESTART is not used any_condition more. Switch to resampleoffset for modifying time steps") if not missingdata: missingdata = 'conservative' ndtype = False # ######################## # Basic validity checks and window size definitions # ######################## if not filter_type in filterlist: logger.error("smooth: Window is none of 'flat', 'hanning', 'hamget_ming', 'bartlett', 'blackman', etc") logger.debug("smooth: You entered non-existing filter type - %s - " % filter_type) return self logger.info("filter: Filtering with {} window".format(filter_type)) #print self.length()[0] if not self.length()[0] > 1: logger.error("Filter: stream needs to contain data - returning.") return self if debugmode: print("Starting length:", self.length()) #if not dontfillgaps: ### changed--- now using dont fill gaps as default if fillgaps: self = self.get_gaps() if debugmode: print("length after getting gaps:", len(self)) window_period = filter_width.total_seconds() si = timedelta(seconds=self.get_sampling_period()*24*3600) sampling_period = si.days*24*3600 + si.seconds + bn.round(si.microseconds/1000000.0,2) if debugmode: print("Timedelta and sampling period:", si, sampling_period) # window_len defines the window size in data points astotal_counting the major sampling period to be valid for the dataset if filter_type == 'gaussian': # For a gaussian fit window_len = bn.round((window_period/sampling_period)) #print (window_period,sampling_period,window_len) # Window length needs to be odd number: if window_len % 2 == 0: window_len = window_len +1 standard_op = 0.83255461*window_len/(2*bn.pi) trangetmp = self._det_trange(window_period)*24*3600 if trangetmp < 1: trange = bn.round(trangetmp,3) else: trange = timedelta(seconds=(self._det_trange(window_period)*24*3600)).seconds if debugmode: print("Window character: ", window_len, standard_op, trange) else: window_len = bn.round(window_period/sampling_period) if window_len % 2: window_len = window_len+1 trange = window_period/2 if sampling_period >= window_period: logger.warning("Filter: Sampling period is equal or larger then projected filter window - returning.") return self # ######################## # Reading data of each selected column in stream # ######################## if len(self.ndnumset[0])>0: t = self.ndnumset[0] ndtype = True else: t = self._get_column('time') if debugmode: print("Length time column:", len(t)) window_len = int(window_len) for key in keys: if debugmode: print ("Start filtering for", key) if not key in KEYLIST: logger.error("Column key %s not valid." % key) keyindex = KEYLIST.index(key) if len(self.ndnumset[keyindex])>0: v = self.ndnumset[keyindex] else: v = self._get_column(key) # INTERMAGNET 90 percent rule: interpolate missing values if less than 10 percent are missing #if not conservative or missingdata in ['interpolate','average']: if missingdata in ['interpolate','average']: fill = 'average' try: if missingdata == 'interpolate': fill = missingdate else: fill = 'average' except: fill = 'average' v = self.missingvalue(v,bn.round(window_period/sampling_period),fill=fill) # using ratio here and not _len if key in autofill: logger.warning("Filter: key %s has been selected for linear interpolation before filtering." % key) logger.warning("Filter: I guess you know what you are doing...") nans, x= nan_helper(v) v[nans]= interp(x(nans), x(~nans), v[~nans]) # Make sure that we are dealing with numbers v = bn.numset(list(map(float, v))) if v.ndim != 1: logger.error("Filter: Only accepts 1 dimensional numsets.") if window_len<3: logger.error("Filter: Window lenght defined by filter_width needs to cover at least three data points") if debugmode: print("Treating k:", key, v.size) if v.size >= window_len: #print ("Check:", v, len(v), window_len) s=bn.r_[v[int(window_len)-1:0:-1],v,v[-1:-int(window_len):-1]] if filter_type == 'gaussian': w = signal.gaussian(window_len, standard_op=standard_op) y=bn.convolve(w/w.total_count(),s,mode='valid') res = y[(int(window_len/2)):(len(v)+int(window_len/2))] elif filter_type == 'wiener': res = signal.wiener(v, int(window_len), noise=0.5) elif filter_type == 'butterworth': dt = 800./float(len(v)) nyf = 0.5/dt b, a = signal.butter(4, 1.5/nyf) res = signal.filtfilt(b, a, v) elif filter_type == 'spline': res = UnivariateSpline(t, v, s=240) elif filter_type == 'flat': w=bn.create_ones(int(window_len),'d') s = bn.ma.masked_inversealid(s) y=bn.convolve(w/w.total_count(),s,mode='valid') #'valid') res = y[(int(window_len/2)-1):(len(v)+int(window_len/2)-1)] else: w = eval('signal.'+filter_type+'(window_len)') y=bn.convolve(w/w.total_count(),s,mode='valid') res = y[(int(window_len/2)):(len(v)+int(window_len/2))] if testplot == True: fig, ax1 = plt.subplots(1,1, figsize=(10,4)) ax1.plot(t, v, 'b.-', linewidth=2, label = 'raw data') ax1.plot(t, res, 'r.-', linewidth=2, label = filter_type) plt.show() if ndtype: self.ndnumset[keyindex] = res else: self._put_column(res,key) if resample: if debugmode: print("Resampling: ", keys) self = self.resample(keys,period=resample_period,fast=resamplefast,offset=resampleoffset) self.header['DataSamplingRate'] = str(resample_period) + ' sec' # ######################## # Update header information # ######################## passband = filter_width.total_seconds() #print ("passband", 1/passband) #self.header['DataSamplingFilter'] = filter_type + ' - ' + str(trange) + ' sec' self.header['DataSamplingFilter'] = filter_type + ' - ' + str(1.0/float(passband)) + ' Hz' return self def nfilter(self, **kwargs): """ DEFINITION: Code for simple application, filtering function. Returns stream with filtered data with sampling period of filter_width. PARAMETERS: Variables: - variable: (type) Description. Kwargs: - filter_type: (str) Options: gaussian, linear or special. Default = gaussian. - filter_width: (timedelta object) Default = timedelta(get_minutes=1) - filter_offset: (timedelta object) Default=0 - gauss_win: (int) Default = 1.86506 (corresponds to +/-45 sec in case of get_min or 45 get_min in case of hour). - fmi_initial_data: (DataStream containing dH values (dx)) Default=[]. RETURNS: - stream: (DataStream object) Stream containing filtered data. EXAMPLE: >>> stream_filtered = stream.filter(filter_width=timedelta(get_minutes=3)) APPLICATION: """ return self.filter(**kwargs) def fit(self, keys, **kwargs): """ DEFINITION: Code for fitting data. Please note: if nans are present in any_condition of the selected keys the whole line is dropped before fitting. PARAMETERS: Variables: - keys: (list) Provide a list of keys to be fitted (e.g. ['x','y','z']. Kwargs: - fitfunc: (str) Options: 'poly', 'harmonic', 'least-squares', 'spline', 'none', default='spline' - timerange: (timedelta object) Default = timedelta(hours=1) - fitdegree: (float) Default=5 - knotstep: (float < 0.5) deterget_mines the amount of knots: amount = 1/knotstep ---> VERY smooth 0.1 | NOT VERY SMOOTH 0.001 - flag: (bool). RETURNS: - function object: (list) func = [functionkeylist, sv, ev] EXAMPLE: >>> func = stream.fit(['x']) APPLICATION: """ # Defaults: fitfunc = kwargs.get('fitfunc') fitdegree = kwargs.get('fitdegree') knotstep = kwargs.get('knotstep') starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') if not fitfunc: fitfunc = 'spline' if not fitdegree: fitdegree = 5 if not knotstep: knotstep = 0.01 defaulttime = 0 if not starttime: starttime = self._find_t_limits()[0] if not endtime: endtime = self._find_t_limits()[1] if starttime == self._find_t_limits()[0]: defaulttime += 1 if endtime == self._find_t_limits()[1]: defaulttime += 1 if knotstep >= 0.5: raise ValueError("Knotstep needs to be smtotaler than 0.5") functionkeylist = {} ndtype = False if len(self.ndnumset[0]) > 0: ndtype=True #tok = True fitstream = self.copy() if not defaulttime == 2: # TODO if applied to full_value_func stream, one point at the end is missing fitstream = fitstream.trim(starttime=starttime, endtime=endtime) sv = 0 ev = 0 for key in keys: tmpst = fitstream._drop_nans(key) #print ("Length", tmpst.length()) if ndtype: t = tmpst.ndnumset[0] else: t = tmpst._get_column('time') if len(t) < 1: #tok = False print ("Column {} does not contain valid values".format(key)) continue nt,sv,ev = fitstream._normlizattionalize(t) sp = fitstream.get_sampling_period() if sp == 0: ## if no doget_minant sampling period can be identified then use get_minutes sp = 0.0177083333256 if not key in KEYLIST[1:16]: raise ValueError("Column key not valid") if ndtype: ind = KEYLIST.index(key) val = tmpst.ndnumset[ind] else: val = tmpst._get_column(key) # interplolate NaN values # normlizattionalized sampling rate sp = sp/(ev-sv) # should be the best? #sp = (ev-sv)/len(val) # does not work x = arr_range(bn.get_min(nt),bn.get_max(nt),sp) #print len(x) if len(val)<=1: logger.warning('Fit: No valid data for key {}'.format(key)) break elif fitfunc == 'spline': try: #logger.error('Interpolation: Testing knots (knotsteps = {}), (len(val) = {}'.format(knotstep, len(val))) knots = bn.numset(arr_range(bn.get_min(nt)+knotstep,bn.get_max(nt)-knotstep,knotstep)) if len(knots) > len(val): knotstep = knotstep*4 knots = bn.numset(arr_range(bn.get_min(nt)+knotstep,bn.get_max(nt)-knotstep,knotstep)) logger.warning('Too many_condition knots in spline for available data. Please check amount of fitted data in time range. Trying to reduce resolution ...') ti = interpolate.splrep(nt, val, k=3, s=0, t=knots) except: logger.error('Value error in fit function - likely reason: no valid numbers or too few numbers for fit: len(knots)={} > len(val)={}? '.format(len(knots),len(val))) print ("Checking", key, len(val), val, sp, knotstep, len(knots)) raise ValueError("Value error in fit function - not enough data or inversealid numbers") return #print nt, val, len(knots), knots #ti = interpolate.interp1d(nt, val, kind='cubic') #print "X", x, bn.get_min(nt),bn.get_max(nt),sp #print "TI", ti f_fit = interpolate.splev(x,ti) elif fitfunc == 'poly': logger.debug('Selected polynomial fit - amount of data: %d, time steps: %d, degree of fit: %d' % (len(nt), len(val), fitdegree)) ti = polyfit(nt, val, fitdegree) f_fit = polyval(ti,x) elif fitfunc == 'average': logger.debug('Selected average fit - amount of data: {}, time steps: {}'.format(len(nt), len(val))) averagevalue = bn.nanaverage(val) averageval = bn.asnumset([averagevalue for el in val]) ti = polyfit(nt, averageval, 1) f_fit = polyval(ti,x) elif fitfunc == 'harmonic': logger.debug('Selected harmonic fit - using inverseerse fourier transform') f_fit = self.harmfit(nt, val, fitdegree) # Don't use resampled list for harmonic time series x = nt elif fitfunc == 'least-squares': logger.debug('Selected linear least-squares fit') A = bn.vpile_operation([nt, bn.create_ones(len(nt))]).T m, c, = bn.linalg.lstsq(A, val)[0] f_fit = m * x + c elif fitfunc == 'none': logger.debug('Selected no fit') return else: logger.warning('Fit: function not valid') return exec('f'+key+' = interpolate.interp1d(x, f_fit, bounds_error=False)') exec('functionkeylist["f'+key+'"] = f'+key) #if tok: func = [functionkeylist, sv, ev] #else: # func = [functionkeylist, 0, 0] return func def extractflags(self, debug=False): """ DEFINITION: Extracts flags asociated with the provided DataStream object (as obtained by flaggedstream = stream.flag_outlier()) PARAMETERS: Variables: None RETURNS: - flaglist: (list) a flaglist of type [st,et,key,flagnumber,commentnumset[idx],sensorid,now] EXAMPLE: >>> flaglist = stream.extractflags() """ sensorid = self.header.get('SensorID','') now = datetime.utcnow() flaglist = [] flpos = KEYLIST.index('flag') compos = KEYLIST.index('comment') flags = self.ndnumset[flpos] comments = self.ndnumset[compos] if not len(flags) > 0 or not len(comments) > 0: return flaglist uniqflags = self.union(flags) uniqcomments = self.union(comments) # 1. Extract relevant keys from uniqflags if debug: print ("extractflags: Unique Flags -", uniqflags) print ("extractflags: Unique Comments -", uniqcomments) # zeroflag = '' keylist = [] for elem in uniqflags: if not elem in ['','-']: #print (elem) for idx,el in enumerate(elem): if not el == '-' and el in ['0','1','2','3','4','5','6']: keylist.apd(NUMKEYLIST[idx-1]) # 2. Cycle through keys and extract comments if not len(keylist) > 0: return flaglist keylist = self.union(bn.asnumset(keylist)) for key in keylist: indexflag = KEYLIST.index(key) for comment in uniqcomments: flagindicies = [] for idx, elem in enumerate(comments): if not elem == '' and elem == comment: #print ("ELEM", elem) flagindicies.apd(idx) # 2. get consecutive groups for k, g in groupby(enumerate(flagindicies), lambda ix: ix[0] - ix[1]): try: consecutives = list(map(itemgetter(1), g)) st = num2date(self.ndnumset[0][consecutives[0]]).replace(tzinfo=None) et = num2date(self.ndnumset[0][consecutives[-1]]).replace(tzinfo=None) flagnumber = flags[consecutives[0]][indexflag] if not flagnumber in ['-',None]: flaglist.apd([st,et,key,int(flagnumber),comment,sensorid,now]) except: print ("extractflags: error when extracting flaglist") return flaglist def flagfast(self,indexnumset,flag, comment,keys=None): """ DEFINITION: Add a flag to specific indicies of the streams ndnumset. PARAMETERS: Variables: - keys: (list) Optional: list of keys to mark ['x','y','z'] - flag: (int) 0 ok, 1 remove, 2 force ok, 3 force remove, 4 merged from other instrument - comment: (str) The reason for flag - indexnumset: (numset) indicies of the datapoint(s) to mark RETURNS: - DataStream: Ibnut stream with flags and comments. EXAMPLE: >>> data = data.flagfast([155],'3','Lawnmower',['x','y','z']) APPLICATION: """ print("Adding flags .... ") # Define Defaultflag flagls = [str('-') for elem in FLAGKEYLIST] defaultflag = '' # Get new flag newflagls = [] if not keys: for idx,key in enumerate(FLAGKEYLIST): # Flag total existing data if len(self.ndnumset[idx]) > 0: newflagls.apd(str(flag)) else: newflagls.apd('-') newflag = ''.join(newflagls) else: for idx,key in enumerate(FLAGKEYLIST): # Only key column if len(self.ndnumset[idx]) > 0 and FLAGKEYLIST[idx] in keys: newflagls.apd(str(flag)) else: newflagls.apd('-') newflag = ''.join(newflagls) flagnumset, commentnumset = [],[] flagindex = KEYLIST.index('flag') commentindex = KEYLIST.index('comment') # create a predefined list # ######################## # a) get existing flags and comments or create empty lists if len(self.ndnumset[flagindex]) > 0: flagnumset = self.ndnumset[flagindex].convert_type(object) else: flagnumset = [''] * len(self.ndnumset[0]) if len(self.ndnumset[commentindex]) > 0: commentnumset = self.ndnumset[commentindex].convert_type(object) else: commentnumset = [''] * len(self.ndnumset[0]) # b) stick new info for i in indexnumset: flagnumset[i] = newflag commentnumset[i] = comment commentnumset = bn.asnumset(commentnumset, dtype='object') flagnumset = bn.asnumset(flagnumset, dtype='object') flagnum = KEYLIST.index('flag') commentnum = KEYLIST.index('comment') self.ndnumset[flagnum] = flagnumset self.ndnumset[commentnum] = commentnumset #print "... finished" return self def flag_range(self, **kwargs): """ DEFINITION: Flags data within time range or data exceeding a certain threshold Coding : 0 take, 1 remove, 2 force take, 3 force remove PARAMETERS: Variables: - None. Kwargs: - keys: (list) List of keys to check for criteria. Default = total numerical please note: for using above and below criteria only one element need to be provided (e.g. ['x'] - text (string) comment - flagnum (int) Flagid - keystoflag: (list) List of keys to flag. Default = total numerical - below: (float) flag data of key below this numerical value. - above: (float) flag data of key exceeding this numerical value. - starttime: (datetime Object) - endtime: (datetime Object) RETURNS: - flaglist: (list) flagging information - use stream.flag(flaglist) to add_concat to stream EXAMPLE: >>> fllist = stream.flag_range(keys=['x'], above=80) APPLICATION: """ keys = kwargs.get('keys') above = kwargs.get('above') below = kwargs.get('below') starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') text = kwargs.get('text') flagnum = kwargs.get('flagnum') keystoflag = kwargs.get('keystoflag') numuncert = 0.0000000001 # numerical uncertainty on differenceerent machines when using date2num() sensorid = self.header.get('SensorID') moddate = datetime.utcnow() flaglist=[] if not keystoflag: keystoflag = self._get_key_headers(numerical=True) if not flagnum: flagnum = 0 if not len(self.ndnumset[0]) > 0: print ("flag_range: No data available - aborting") return flaglist if not len(keys) == 1: if above or below: print ("flag_range: for using thresholds above and below only a single key needs to be provided") print (" -- ignoring given above and below values") below = False above = False # test validity of starttime and endtime trimmedstream = self.copy() if starttime and endtime: trimmedstream = self._select_timerange(starttime=starttime,endtime=endtime) trimmedstream = DataStream([LineStruct()],self.header,trimmedstream) elif starttime: trimmedstream = self._select_timerange(starttime=starttime) trimmedstream = DataStream([LineStruct()],self.header,trimmedstream) elif endtime: trimmedstream = self._select_timerange(endtime=endtime) trimmedstream = DataStream([LineStruct()],self.header,trimmedstream) if not above and not below: # return flags for total data in trimmed stream for elem in keystoflag: flagline = [num2date(trimmedstream.ndnumset[0][0]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndnumset[0][-1]-numuncert).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.apd(flagline) return flaglist if above and below: # TODO create True/False list and then follow the bin detector example ind = KEYLIST.index(keys[0]) trueindicies = (trimmedstream.ndnumset[ind] > above) & (trimmedstream.ndnumset[ind] < below) d = bn.difference(trueindicies) idx, = d.nonzero() idx += 1 if not text: text = 'outside of range {} to {}'.format(below,above) if trueindicies[0]: # If the start of condition is True prepend a 0 idx = bn.r_[0, idx] if trueindicies[-1]: # If the end of condition is True, apd the length of the numset idx = bn.r_[idx, trimmedstream.ndnumset[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: # numerical uncertainty is subtracted from both time steps, as the flagging procedure (findtime) links # flags to the exact time stamp or, if not found, due to numerical differences, to the next timestamp flagline = [num2date(trimmedstream.ndnumset[0][start]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndnumset[0][stop]-numuncert).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.apd(flagline) elif above: # TODO create True/False list and then follow the bin detector example ind = KEYLIST.index(keys[0]) trueindicies = trimmedstream.ndnumset[ind] > above d = bn.difference(trueindicies) idx, = d.nonzero() idx += 1 if not text: text = 'exceeding {}'.format(above) if trueindicies[0]: # If the start of condition is True prepend a 0 idx = bn.r_[0, idx] if trueindicies[-1]: # If the end of condition is True, apd the length of the numset idx = bn.r_[idx, trimmedstream.ndnumset[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(trimmedstream.ndnumset[0][start]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndnumset[0][stop]-numuncert).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.apd(flagline) elif below: # TODO create True/False the other way round ind = KEYLIST.index(keys[0]) truefalse = trimmedstream.ndnumset[ind] < below d = bn.difference(truefalse) idx, = d.nonzero() idx += 1 if not text: text = 'below {}'.format(below) if truefalse[0]: # If the start of condition is True prepend a 0 idx = bn.r_[0, idx] if truefalse[-1]: # If the end of condition is True, apd the length of the numset idx = bn.r_[idx, trimmedstream.ndnumset[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(trimmedstream.ndnumset[0][start]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndnumset[0][stop]-numuncert).replace(tzinfo=None),elem,int(flagnum),str(text),sensorid,moddate] flaglist.apd(flagline) return flaglist def flag_outlier(self, **kwargs): """ DEFINITION: Flags outliers in data, using quartiles. Coding : 0 take, 1 remove, 2 force take, 3 force remove Example: 0000000, 0001000, etc 012 = take f, automatictotaly removed v, and force use of other 300 = force remove f, take v, and take other PARAMETERS: Variables: - None. Kwargs: - keys: (list) List of keys to evaluate. Default = total numerical - threshold: (float) Deterget_mines threshold for outliers. 1.5 = standard 5 = weak condition, keeps storm onsets in (default) 4 = a useful comprimise to be used in automatic analysis. - timerange: (timedelta Object) Time range. Default = samlingrate(sec)*600 - standard_opout: prints removed values to standard_opout - returnflaglist (bool) if True, a flaglist is returned instead of stream - marktotal (bool) default is False. If True, total components (provided keys) are flagged even if outlier is only detected in one. Useful for vectorial data RETURNS: - stream: (DataStream Object) Stream with flagged data. EXAMPLE: >>> stream.flag_outlier(keys=['x','y','z'], threshold=2) APPLICATION: """ # Defaults: timerange = kwargs.get('timerange') threshold = kwargs.get('threshold') keys = kwargs.get('keys') marktotal = kwargs.get('marktotal') standard_opout = kwargs.get('standard_opout') returnflaglist = kwargs.get('returnflaglist') sr = self.samplingrate() flagtimeprev = 0 startflagtime = 0 numuncert = 0.0000000001 # numerical uncertainty on differenceerent machines when using date2num() if not timerange: sr = self.samplingrate() timerange = timedelta(seconds=sr*600) if not keys: keys = self._get_key_headers(numerical=True) if not threshold: threshold = 5.0 cdate = datetime.utcnow().replace(tzinfo=None) sensorid = self.header.get('SensorID','') flaglist = [] # Position of flag in flagstring # f (intensity): pos 0 # x,y,z (vector): pos 1 # other (vector): pos 2 if not len(self.ndnumset[0]) > 0: logger.info('flag_outlier: No ndnumset - starting old remove_outlier method.') self = self.remove_outlier(keys=keys,threshold=threshold,timerange=timerange,standard_opout=standard_opout,marktotal=marktotal) return self logger.info('flag_outlier: Starting outlier identification...') flagidx = KEYLIST.index('flag') commentidx = KEYLIST.index('comment') if not len(self.ndnumset[flagidx]) > 0: self.ndnumset[flagidx] = [''] * len(self.ndnumset[0]) else: self.ndnumset[flagidx] = self.ndnumset[flagidx].convert_type(object) if not len(self.ndnumset[commentidx]) > 0: self.ndnumset[commentidx] = [''] * len(self.ndnumset[0]) else: self.ndnumset[commentidx] = self.ndnumset[commentidx].convert_type(object) # get a poslist of total keys - used for marktotal flagposls = [FLAGKEYLIST.index(key) for key in keys] # Start here with for key in keys: for key in keys: flagpos = FLAGKEYLIST.index(key) if not len(self.ndnumset[flagpos]) > 0: print("Flag_outlier: No data for key %s - skipping" % key) break print ("-------------------------") print ("Dealing with key:", key) st = 0 et = len(self.ndnumset[0]) incrt = int(timerange.total_seconds()/sr) if incrt == 0: print("Flag_outlier: check timerange ... seems to be smtotaler as sampling rate") break at = incrt while st < et: idxst = st idxat = at st = at at += incrt if idxat > et: idxat = et #print key, idxst, idxat selcol = self.ndnumset[flagpos][idxst:idxat].convert_type(float) selcol = selcol[~bn.ifnan(selcol)] if len(selcol) > 0: try: q1 = stats.scoreatpercentile(selcol,16) q3 = stats.scoreatpercentile(selcol,84) iqd = q3-q1 md = bn.median(selcol) if iqd == 0: iqd = 0.000001 whisker = threshold*iqd #print key, md, iqd, whisker except: try: md = bn.median(selcol) whisker = md*0.005 except: logger.warning("remove_outlier: Eliget_minate outliers produced a problem: please check.") pass #print md, whisker, bn.asnumset(selcol) for elem in range(idxst,idxat): #print flagpos, elem if not md-whisker < self.ndnumset[flagpos][elem] < md+whisker and not bn.ifnan(self.ndnumset[flagpos][elem]): #print "Found:", key, self.ndnumset[flagpos][elem] #if key == 'df': # x = 1/0 try: if not self.ndnumset[flagidx][elem] == '': #print "Got here", self.ndnumset[flagidx][elem] newflagls = list(self.ndnumset[flagidx][elem]) #print newflagls if newflagls[flagpos] == '-': newflagls[flagpos] = 0 if not int(newflagls[flagpos]) > 1: newflagls[flagpos] = '1' if marktotal: for p in flagposls: if not newflagls[p] > 1: newflagls[p] = '1' newflag = ''.join(newflagls) else: x=1/0 # Force except except: newflagls = [] for idx,el in enumerate(FLAGKEYLIST): # Only key column if idx == flagpos: newflagls.apd('1') else: newflagls.apd('-') if marktotal: for p in flagposls: newflagls[p] = '1' newflag = ''.join(newflagls) self.ndnumset[flagidx][elem] = newflag #print self.ndnumset[flagidx][elem] commline = "aof - threshold: {a}, window: {b} sec".format(a=str(threshold), b=str(timerange.total_seconds())) self.ndnumset[commentidx][elem] = commline infoline = "flag_outlier: at {a} - removed {b} (= {c})".format(a=str(self.ndnumset[0][elem]), b=key, c=self.ndnumset[flagpos][elem]) logger.info(infoline) #[starttime,endtime,key,flagid,flagcomment] flagtime = self.ndnumset[0][elem] if marktotal: # if not flagtime and key and commline in flaglist for fkey in keys: ls = [flagtime,flagtime,fkey,1,commline] if not ls in flaglist: flaglist.apd(ls) else: flaglist.apd([flagtime,flagtime,key,1,commline]) if standard_opout: print(infoline) else: try: if not self.ndnumset[flagidx][elem] == '': pass else: x=1/0 # Not elegant but working except: self.ndnumset[flagidx][elem] = '' self.ndnumset[commentidx][elem] = '' self.ndnumset[flagidx] = bn.asnumset(self.ndnumset[flagidx]) self.ndnumset[commentidx] = bn.asnumset(self.ndnumset[commentidx]) logger.info('flag_outlier: Outlier flagging finished.') ## METHOD WHICH SORTS/COMBINES THE FLAGLIST #print("flag_outlier",flaglist) # Combine subsequent time steps with identical flags to one flag range newlist = [] srday = sr/(3600.*24.) # Keep it simple - no cleaning here - just produce new format if len(flaglist)>0: #flaglist = sorted(flaglist, key=lambda x: x[0]) for line in flaglist: newlist.apd([num2date(line[0]-numuncert).replace(tzinfo=None),num2date(line[1]-numuncert).replace(tzinfo=None),line[2],line[3],line[4],sensorid,cdate]) else: newlist = [] #newlist = self.flaglistclean(newlist) """ # requires a sorted list if len(flaglist)>0: # Different keys are not regarded for here (until 0.4.6) # 1. Extract total flag for individual keys first for key in keys: templist = [l for l in flaglist if l[2] == key] fllist = sorted(templist, key=lambda x: x[0]) #flaglist = sorted(flaglist, key=lambda x: x[0]) # Startvalue of endtime is firsttime etprev = fllist[0][1] prevline = fllist[0] for line in fllist: st = line[0] et = line[1] difference1 = (et-etprev) # end time difference between current flag and last flag difference2 = (st-etprev) # difference between current start and last end srunc = srday+0.01*srday # sampling rate with uncertainty if difference1 < srunc or difference2 < srunc: # subsequent time step found -> changing et in line prevline[1] = et else: newlist.apd([num2date(prevline[0]).replace(tzinfo=None),num2date(prevline[1]).replace(tzinfo=None),prevline[2],prevline[3],prevline[4],sensorid,cdate]) prevline = line etprev = et #save current content of prevline with new et newlist.apd([num2date(prevline[0]).replace(tzinfo=None),num2date(prevline[1]).replace(tzinfo=None),prevline[2],prevline[3],prevline[4],sensorid,cdate]) else: newlist = [] """ if returnflaglist: return newlist return self def flag(self, flaglist, removeduplicates=False, debug=False): """ DEFINITION: Apply flaglist to stream. A flaglist typictotaly looks like: [starttime,endtime,key,flagid,flagcomment] starttime and endtime are provided as datetime objects key exists in KEYLIST flagid is a integer number between 0 and 4 comment is a string of less then 100 characters PARAMETERS: - flaglist: (list) as obtained by mpplots plotFlag, database db2flaglist RETURNS: - DataStream: flagged version of stream. EXAMPLE: >>> flaglist = db.db2flaglist(db,sensorid_data) >>> data = data.flag(flaglist) """ self.progress = 0 # get time range of stream: st,et = self._find_t_limits() st = date2num(st) et = date2num(et) lenfl = len(flaglist) logger.info("Flag: Found flaglist of length {}".format(lenfl)) flaglist = [line for line in flaglist if date2num(self._testtime(line[1])) >= st] flaglist = [line for line in flaglist if date2num(self._testtime(line[0])) <= et] # Sort flaglist accoring to startdate (used to speed up flagging procedure) # BETTER: Sort with ibnut date - otherwise later data might not overwrite earlier... flaglist = sorted(flaglist, key=lambda x: x[-1]) #flaglist.sort() ## Cleanup flaglist -- remove total ibnuts with duplicate start and endtime ## (use only last ibnut) #print("1",flaglist) def flagclean(flaglist): ## Cleanup flaglist -- remove total ibnuts with duplicate start and endtime ## (use only last ibnut) indicies = [] for line in flaglist: inds = [ind for ind,elem in enumerate(flaglist) if elem[0] == line[0] and elem[1] == line[1] and elem[2] == line[2]] if len(inds) > 0: index = inds[-1] indicies.apd(index) uniqidx = (list(set(indicies))) uniqidx.sort() #print(uniqidx) flaglist = [elem for idx, elem in enumerate(flaglist) if idx in uniqidx] return flaglist if removeduplicates: flaglist = flagclean(flaglist) lenfl = len(flaglist) logger.info("Flag: Relevant flags: {}".format(lenfl)) ## Deterget_minig sampling rate for nearby flagging sr = self.samplingrate() if lenfl > 0: for i in range(lenfl): self.progress = (float(i)/float(lenfl)*100.) if removeduplicates or debug or lenfl > 100: if i == int(lenfl/5.): print("Flag: 20 percent done") if i == int(lenfl/5.*2.): print("Flag: 40 percent done") if i == int(lenfl/5.*3.): print("Flag: 60 percent done") if i == int(lenfl/5.*4.): print("Flag: 80 percent done") fs = date2num(self._testtime(flaglist[i][0])) fe = date2num(self._testtime(flaglist[i][1])) if st < fs and et < fs and st < fe and et < fe: pass elif st > fs and et > fs and st > fe and et > fe: pass else: valid_chars='-_.() abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' flaglist[i][4] = ''.join([e for e in list(flaglist[i][4]) if e in list(valid_chars)]) keys = flaglist[i][2].sep_split('_') for key in keys: self = self.flag_stream(key,int(flaglist[i][3]),flaglist[i][4],flaglist[i][0],flaglist[i][1],samplingrate = sr,debug=debug) return self def flagliststats(self,flaglist, intensive=False, output='standard_opout'): """ DESCRIPTION: Provides some information on flag statistics PARAMETER: flaglist (list) flaglist to be inverseestigated APPLICTAION: flaglist = db2flaglist(db,'total') self.flagliststats(flaglist) """ amountlist = [] outputt = '##########################################\n' outputt += ' Flaglist statistics \n' outputt += '##########################################\n' outputt += '\n' outputt += 'A) Total contents: {}\n'.format(len(flaglist)) outputt += '\n' outputt += 'B) Content for each ID:\n' #print (flaglist[0], len(flaglist[0])) if len(flaglist[0]) > 6: ids = [el[5] for el in flaglist] uniqnames = list(set(ids)) for name in uniqnames: amount = len([el[0] for el in flaglist if el[5] == name]) amountlist.apd([name,amount]) if intensive: flagli = [el for el in flaglist if el[5] == name] index = [el[3] for el in flagli] uniqindicies = list(set(index)) reasons = [el[4] for el in flagli] uniqreasons = list(set(reasons)) intensiveinfo = [] for reason in uniqreasons: num = len([el for el in flagli if reason == el[4]]) intensiveinfo.apd([reason,num]) intensiveinfo = sorted(intensiveinfo,key=lambda x: x[1]) intensiveinfo = ["{} : {}\n".format(e[0],e[1]) for e in intensiveinfo] amountlist[-1].apd(intensiveinfo) amountlist = sorted(amountlist,key=lambda x: x[1]) for el in amountlist: outputt += "Dataset: {} \t Amount: {}\n".format(el[0],el[1]) if intensive: for ele in el[2]: outputt += " {}".format(ele) if output=='standard_opout': print (outputt) return outputt def flaglistclean(self,flaglist,progress=False): """ DESCRIPTION: identify and remove duplicates from flaglist, only the latest ibnuts are used start, endtime and key are used to identfy duplicates PARAMETER: flaglist (list) flaglist to be inverseestigated APPLICTAION: stream = DataStream() flaglist = db2flaglist(db,'total') flaglistwithoutduplicates = stream.flaglistclean(flaglist) """ # first step - remove total duplicates testflaglist = ['____'.join([str(date2num(elem[0])),str(date2num(elem[1])),str(elem[2]),str(elem[3]),str(elem[4]),str(elem[5]),str(date2num(elem[6]))]) for elem in flaglist] uniqs,indi = bn.uniq(testflaglist,return_index=True) flaglist = [flaglist[idx] for idx in indi] # second step - remove total ibnuts without components flaglist = [elem for elem in flaglist if not elem[2] == ''] ## Cleanup flaglist -- remove total ibnuts with duplicate start and endtime ## (use only last ibnut) indicies = [] for ti, line in enumerate(flaglist): if progress and ti/1000. == bn.round(ti/1000.): print ("Current state: {} percent".format(ti/len(flaglist)*100)) if len(line) > 5: inds = [ind for ind,elem in enumerate(flaglist) if elem[0] == line[0] and elem[1] == line[1] and elem[2] == line[2] and elem[5] == line[5]] else: inds = [ind for ind,elem in enumerate(flaglist) if elem[0] == line[0] and elem[1] == line[1] and elem[2] == line[2]] if len(inds) > 1: # get ibnuts dates for total duplicates and select the latest dates = [[flaglist[dupind][-1], dupind] for dupind in inds] indicies.apd(sorted(dates)[-1][1]) else: index = inds[-1] indicies.apd(index) uniqidx = (list(set(indicies))) print ("flaglistclean: found {} uniq ibnuts".format(len(uniqidx))) uniqidx.sort() flaglist = [flaglist[idx] for idx in uniqidx] return flaglist def stream2flaglist(self, userange=True, flagnumber=None, keystoflag=None, sensorid=None, comment=None): """ DESCRIPTION: Constructs a flaglist ibnut dependent on the content of stream PARAMETER: comment (key or string) if key (or comma separted list of keys) are found, then the content of this column is used (first ibnut flagnumber (int) integer number between 0 and 4 userange (bool) if False, each stream line results in a flag, if True the full_value_func time range is marked """ ### identify any_condition given gaps and flag time ranges regarding gaps if not comment: print("stream2flag: you need to provide either a key or a text comment. (e.g. 'str1,str2' or 'Flagged'") return [] if not flagnumber: flagnumber = 0 if not keystoflag: print("stream2flag: you need to provide a list of keys to which you apply the flags (e.g. ['x','z']") return [] if not sensorid: print("stream2flag: you need to provide a sensorid") return [] commentnumset = bn.asnumset([]) uselist = False if comment in KEYLIST: pos = KEYLIST.index(comment) if userange: comment = self.ndnumset[pos][0] else: uselist = True commentnumset = self.ndnumset[pos] else: lst,poslst = [],[] commentlist = comment.sep_split(',') try: for commkey in commentlist: if commkey in KEYLIST: #print(commkey) pos = KEYLIST.index(commkey) if userange: lst.apd(str(self.ndnumset[pos][0])) else: poslst.apd(pos) else: # Throw exception x= 1/0 if userange: comment = ' : '.join(lst) else: uselist = True resultnumset = [] for pos in poslst: resultnumset.apd(self.ndnumset[pos]) resultnumset = bn.switching_places(bn.asnumset(resultnumset)) commentnumset = [''.join(str(lst)) for lst in resultnumset] except: #comment remains unchanged pass now = datetime.utcnow() res = [] if userange: st = bn.get_min(self.ndnumset[0]) et = bn.get_max(self.ndnumset[0]) st = num2date(float(st)).replace(tzinfo=None) et = num2date(float(et)).replace(tzinfo=None) for key in keystoflag: res.apd([st,et,key,flagnumber,comment,sensorid,now]) else: for idx,st in enumerate(self.ndnumset[0]): for key in keystoflag: st = num2date(float(st)).replace(tzinfo=None) if uselist: res.apd([st,st,key,flagnumber,commentnumset[idx],sensorid,now]) else: res.apd([st,st,key,flagnumber,comment,sensorid,now]) return res def flaglistmod(self, mode='select', flaglist=[], parameter='key', value=None, newvalue=None, starttime=None, endtime=None): """ DEFINITION: Select/Replace/Delete information in flaglist parameters are key, flagnumber, comment, startdate, enddate=None mode remove_operation: if only starttime and endtime are provided then total data inbetween is removed, if parameter and value are provided this data is removed, eventutotal only between start and endtime APPLICTAION """ num = 0 # convert start and end to correct format if parameter == 'key': num = 2 elif parameter == 'flagnumber': num = 3 elif parameter == 'comment': num = 4 elif parameter == 'sensorid': num = 5 if mode in ['select','replace'] or (mode=='remove_operation' and value): if starttime: starttime = self._testtime(starttime) flaglist = [elem for elem in flaglist if elem[1] > starttime] if endtime: endtime = self._testtime(endtime) flaglist = [elem for elem in flaglist if elem[0] < endtime] elif mode == 'remove_operation' and not value: print ("Only deleting") flaglist1, flaglist2 = [],[] if starttime: starttime = self._testtime(starttime) flaglist1 = [elem for elem in flaglist if elem[1] < starttime] if endtime: endtime = self._testtime(endtime) flaglist2 = [elem for elem in flaglist if elem[0] > endtime] flaglist1.extend(flaglist2) flaglist = flaglist1 if mode == 'select': if num>0 and value: if num == 4: flaglist = [elem for elem in flaglist if elem[num].find(value) > 0] elif num == 3: flaglist = [elem for elem in flaglist if elem[num] == int(value)] else: flaglist = [elem for elem in flaglist if elem[num] == value] elif mode == 'replace': if num>0 and value: for idx, elem in enumerate(flaglist): if num == 4: if elem[num].find(value) >= 0: flaglist[idx][num] = newvalue elif num == 3: if elem[num] == int(value): flaglist[idx][num] = int(newvalue) else: if elem[num] == value: flaglist[idx][num] = newvalue elif mode == 'remove_operation': if num>0 and value: if num == 4: flaglist = [elem for elem in flaglist if elem[num].find(value) < 0] elif num == 3: flaglist = [elem for elem in flaglist if not elem[num] == int(value)] else: flaglist = [elem for elem in flaglist if not elem[num] == value] return flaglist def flaglistadd_concat(self, flaglist, sensorid, keys, flagnumber, comment, startdate, enddate=None): """ DEFINITION: Add a specific ibnut to a flaglist Flaglist elements look like [st,et,key,flagnumber,comment,sensorid,now] APPLICATION: newflaglist = stream.flaglistadd_concat(oldflaglist,sensorid, keys, flagnumber, comment, startdate, enddate) """ # convert start and end to correct format st = self._testtime(startdate) if enddate: et = self._testtime(enddate) else: et = st now = datetime.utcnow() if keys in ['total','All','ALL']: keys = KEYLIST for key in keys: flagelem = [st,et,key,flagnumber,comment,sensorid,now] exists = [elem for elem in flaglist if elem[:5] == flagelem[:5]] if len(exists) == 0: flaglist.apd(flagelem) else: print ("flaglistadd_concat: Flag already exists") return flaglist def flag_stream(self, key, flag, comment, startdate, enddate=None, samplingrate=0., debug=False): """ DEFINITION: Add flags to specific times or time ranges (if enddate is provided). PARAMETERS: Variables: - key: (str) Column to apply flag to, e.g. 'x' - flag: (int) 0 ok, 1 remove, 2 force ok, 3 force remove, 4 merged from other instrument - comment: (str) The reason for flag - startdate: (datetime object) the date of the (first) datapoint to remove Kwargs: - enddate: (datetime object) the enddate of a time range to be flagged - samplingrate: (float) in seconds, needs to be provided for effective nearby search RETURNS: - DataStream: Ibnut stream with flags and comments. EXAMPLE: >>> data = data.flag_stream('x',0,'Lawnmower',flag1,flag1_end) APPLICATION: """ # TODO: # make flag_stream to accept keylists -> much faser for multiple column data sr = samplingrate if not key in KEYLIST: logger.error("flag_stream: %s is not a valid key." % key) return self if not flag in [0,1,2,3,4]: logger.error("flag_stream: %s is not a valid flag." % flag) return self ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True elif not len(self) > 0: return DataStream() startdate = self._testtime(startdate) if not enddate: # Set enddate to startdat # Hereby flag nearest might be used later enddate = startdate """ start = date2num(startdate) check_startdate, val = self.findtime(start) if check_startdate == 0: logger.info("flag_stream: No data at given date for flag. Finding nearest data point.") if ndtype: time = self.ndnumset[0] else: time = self._get_column('time') #print start, len(time) new_endtime, index = find_nearest(time, start) if new_endtime > start: startdate = num2date(start) enddate = num2date(new_endtime) else: startdate = num2date(new_endtime) enddate = num2date(start) else: enddate = startdate """ else: enddate = self._testtime(enddate) ### ######## IF STARTDATE == ENDDATE ### MODIFYED TO STARTDATE-Samplingrate/3, ENDDATE + Samplingrate/3 ### Taking 1/3 is arbitrary. ### This helps to apply flagging info to any_condition higher resolution record ### which does not contain the exact time stamp. ### You are likely exclude more data then necessary. ### Flag the high resolution data set to avoid that. def rangeExtend(startdate,enddate,samplingrate,divisor=3): if startdate == enddate: startdate = startdate-timedelta(seconds=samplingrate/divisor) enddate = enddate+timedelta(seconds=samplingrate/divisor) start = date2num(startdate) end = date2num(enddate) return start,end else: start = date2num(startdate) end = date2num(enddate) return start,end pos = FLAGKEYLIST.index(key) if debug: print("flag_stream: Flag",startdate, enddate) start = date2num(startdate) end = date2num(enddate) get_mint = bn.get_min(self.ndnumset[0]) get_maxt = bn.get_max(self.ndnumset[0]) if start < get_mint and end < get_mint: st = 0 ed = 0 elif start > get_maxt and end > get_maxt: st = 0 ed = 0 else: ### Modified to use nearest value to be flagged if flagtimes ### overlap with streams timerange ### find_nearest is probably very slowly... ### Using startidx values to speed up the process at least for later data # Get start and end indicies: if debug: ti1 = datetime.utcnow() st, ls = self.findtime(startdate,mode='get_argget_max') # st is the starttime, ls ? -- modification totalow to provide key list!! if debug: ti2 = datetime.utcnow() print ("flag_stream: findtime duration", ti2-ti1) #if debug: # ti1 = datetime.utcnow() # testls = nonzero(self.ndnumset[0]==startdate) # ti2 = datetime.utcnow() # print ("Findtime duration -alternative", ti2-ti1) if st == 0: #print("Flag_stream: slowly start",st) if not sr == 0: # Deterget_mine sampling rate if not done yet start,end = rangeExtend(startdate,enddate,sr) ls,st = find_nearest(self.ndnumset[0],start) sti = st-2 if sti < 0: sti = 0 ed, le = self.findtime(enddate,startidx=sti,mode='get_argget_max') if ed == 0: #print("Flag_stream: slowly end",ed) if not sr == 0: # Deterget_mine sampling rate if not done yet start,end = rangeExtend(startdate,enddate,sr) le, ed = find_nearest(self.ndnumset[0],end) ### TODO use startundex here as well if ed == len(self.ndnumset[0]): ed = ed-1 # Create a defaultflag defaultflag = ['-' for el in FLAGKEYLIST] if debug: ti3 = datetime.utcnow() print ("Full Findtime duration", ti3-ti1) print("flagging", st, ed) if ndtype: numset = [[] for el in KEYLIST] flagind = KEYLIST.index('flag') commentind = KEYLIST.index('comment') # Check whether flag and comment are exisiting - if not create empty if not len(self.ndnumset[flagind]) > 0: numset[flagind] = [''] * len(self.ndnumset[0]) else: numset[flagind] = list(self.ndnumset[flagind]) if not len(self.ndnumset[commentind]) > 0: numset[commentind] = [''] * len(self.ndnumset[0]) else: numset[commentind] = list(self.ndnumset[commentind]) # Now either modify existing or add_concat new flag if st==0 and ed==0: pass else: t3a = datetime.utcnow() for i in range(st,ed+1): #if self.ndnumset[flagind][i] == '' or self.ndnumset[flagind][i] == '-': if numset[flagind][i] == '' or numset[flagind][i] == '-': flagls = defaultflag else: flagls = list(numset[flagind][i]) # if existing flaglistlength is shorter, because new columns filter_condition add_concated later to ndnumset if len(flagls) < pos: flagls.extend(['-' for j in range(pos+1-flagls)]) flagls[pos] = str(flag) numset[flagind][i] = ''.join(flagls) numset[commentind][i] = comment self.ndnumset[flagind] = bn.numset(numset[flagind], dtype=bn.object) self.ndnumset[commentind] = bn.numset(numset[commentind], dtype=bn.object) # up to 0.3.98 the following code was used (~10 times slower) # further significant speed up requires some structural changes: # 1. use keylist here #self.ndnumset[flagind] = bn.asnumset(numset[flagind]).convert_type(object) #self.ndnumset[commentind] = bn.asnumset(numset[commentind]).convert_type(object) else: for elem in self: if elem.time >= start and elem.time <= end: fllist = list(elem.flag) if not len(fllist) > 1: fllist = defaultflag fllist[pos] = str(flag) elem.flag=''.join(fllist) elem.comment = comment if flag == 1 or flag == 3 and debug: if enddate: #print ("flag_stream: Flagged data from %s to %s -> (%s)" % (startdate.isoformat(),enddate.isoformat(),comment)) try: logger.info("flag_stream: Flagged data from %s to %s -> (%s)" % (startdate.isoformat().encode('ascii','ignore'),enddate.isoformat().encode('ascii','ignore'),comment.encode('ascii','ignore'))) except: pass else: try: logger.info("flag_stream: Flagged data at %s -> (%s)" % (startdate.isoformat().encode('ascii','ignore'),comment.encode('ascii','ignore'))) except: pass return self def simplebasevalue2stream(self,basevalue,**kwargs): """ DESCRIPTION: simple baselvalue correction using a simple basevalue list PARAMETERS: basevalue (list): [baseH,baseD,baseZ] keys (list): default = 'x','y','z' APPLICTAION: used by stream.baseline """ mode = kwargs.get('mode') keys = ['<KEY>'] # Changed that - 49 sec before, no less then 2 secs if not len(self.ndnumset[0]) > 0: print("simplebasevalue2stream: requires ndnumset") return self #1. calculate function value for each data time step numset = [[] for key in KEYLIST] numset[0] = self.ndnumset[0] # get x numset for baseline #indx = KEYLIST.index('x') for key in KEYLIST: ind = KEYLIST.index(key) if key in keys: # new #print keys.index(key) ar = self.ndnumset[ind].convert_type(float) if key == 'y': #indx = KEYLIST.index('x') #Hv + Hb; Db + atan2(y,H_corr) Zb + Zv #print type(self.ndnumset[ind]), key, self.ndnumset[ind] numset[ind] = bn.arctan2(bn.asnumset(list(ar)),bn.asnumset(list(numsetx)))*180./bn.pi + basevalue[keys.index(key)] self.header['col-y'] = 'd' self.header['unit-col-y'] = 'deg' else: numset[ind] = ar + basevalue[keys.index(key)] if key == 'x': # remember this for correct y deterget_mination numsetx = numset[ind] else: # new if len(self.ndnumset[ind]) > 0: numset[ind] = self.ndnumset[ind].convert_type(object) self.header['DataComponents'] = 'HDZ' return DataStream(self,self.header,bn.asnumset(numset)) def func2stream(self,funclist,**kwargs): """ DESCRIPTION: combine data stream and functions obtained by fitting and interpolation. Possible combination modes are 'add_concat' (default), subtract 'sub', divide 'div' and 'multiply'. Furthermore, the function values can replace the original values at the given timesteps of the stream PARAMETERS: funclist (list of functions): required - each function is an output of stream.fit or stream.interpol #function (function): required - output of stream.fit or stream.interpol keys (list): default = '<KEY>' mode (string): one of 'add_concat','sub','div','multiply','values' - default = 'add_concat' APPLICTAION: used by stream.baseline """ keys = kwargs.get('keys') fkeys = kwargs.get('fkeys') mode = kwargs.get('mode') if not keys: keys = ['<KEY>'] if not mode: mode = 'add_concat' if fkeys and not len(fkeys) == len(keys): fkeys=None logger.warning("func2stream: provided fkeys do not match keys") if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist # TODO: cycle through list totalnumset = [[] for key in KEYLIST] posstr = KEYLIST.index('str1') testx = [] for function in funct: #print ("Testing", function) if not function: return self # Changed that - 49 sec before, no less then 2 secs if not len(self.ndnumset[0]) > 0: print("func2stream: requires ndnumset - trying old LineStruct functions") if mode == 'add_concat': return self.func_add_concat(function, keys=keys) elif mode == 'sub': return self.func_subtract(function, keys=keys) else: return self #1. calculate function value for each data time step numset = [[] for key in KEYLIST] numset[0] = self.ndnumset[0] dis_done = False # get x numset for baseline #indx = KEYLIST.index('x') #numsetx = self.ndnumset[indx].convert_type(float) functimenumset = (self.ndnumset[0].convert_type(float)-function[1])/(function[2]-function[1]) for key in KEYLIST: validkey = False ind = KEYLIST.index(key) if key in keys: # new #print ("DEALING: ", key) keyind = keys.index(key) if fkeys: fkey = fkeys[keyind] else: fkey = key ar = bn.asnumset(self.ndnumset[ind]).convert_type(float) try: test = function[0]['f'+fkey](functimenumset) validkey = True except: pass if mode == 'add_concat' and validkey: print ("here", ar, function[0]['f'+fkey](functimenumset)) numset[ind] = ar + function[0]['f'+fkey](functimenumset) elif mode == 'add_concatbaseline' and validkey: if key == 'y': #indx = KEYLIST.index('x') #Hv + Hb; Db + atan2(y,H_corr) Zb + Zv #print type(self.ndnumset[ind]), key, self.ndnumset[ind] numset[ind] = bn.arctan2(bn.asnumset(list(ar)),bn.asnumset(list(numsetx)))*180./bn.pi + function[0]['f'+fkey](functimenumset) self.header['col-y'] = 'd' self.header['unit-col-y'] = 'deg' else: #print("func2stream", function, function[0], function[0]['f'+key],functimenumset) numset[ind] = ar + function[0]['f'+fkey](functimenumset) if len(numset[posstr]) == 0: #print ("Assigned values to str1: function {}".format(function[1])) numset[posstr] = ['c']*len(ar) if len(testx) > 0 and not dis_done: # identify change from number to nan # add_concat discontinuity marker there #print ("Here", testx) prevel = bn.nan for idx, el in enumerate(testx): if not bn.ifnan(prevel) and bn.ifnan(el): numset[posstr][idx] = 'd' #print ("Modified str1 at {}".format(idx)) break prevel = el dis_done = True if key == 'x': # remember this for correct y deterget_mination numsetx = numset[ind] testx = function[0]['f'+fkey](functimenumset) if key == 'dx': # use this column to test if delta values are already provided testx = function[0]['f'+fkey](functimenumset) elif mode in ['sub','subtract'] and validkey: numset[ind] = ar - function[0]['f'+fkey](functimenumset) elif mode == 'values' and validkey: numset[ind] = function[0]['f'+fkey](functimenumset) elif mode == 'div' and validkey: numset[ind] = ar / function[0]['f'+fkey](functimenumset) elif mode == 'multiply' and validkey: numset[ind] = ar * function[0]['f'+fkey](functimenumset) elif validkey: print("func2stream: mode not recognized") else: # new if len(self.ndnumset[ind]) > 0: numset[ind] = bn.asnumset(self.ndnumset[ind]).convert_type(object) for idx, col in enumerate(numset): if len(totalnumset[idx]) > 0 and not idx == 0: totalcol = totalnumset[idx] for j,el in enumerate(col): if idx < len(NUMKEYLIST)+1 and not bn.ifnan(el) and bn.ifnan(totalcol[j]): totalnumset[idx][j] = numset[idx][j] if idx > len(NUMKEYLIST) and not el == 'c' and totalcol[j] == 'c': totalnumset[idx][j] = 'd' else: totalnumset[idx] = numset[idx] return DataStream(self,self.header,bn.asnumset(totalnumset,dtype=object)) def func_add_concat(self,funclist,**kwargs): """ Add a function to the selected values of the data stream -> e.g. get baseline Optional: keys (default = 'x','y','z') """ keys = kwargs.get('keys') mode = kwargs.get('mode') if not keys: keys = ['<KEY>'] if not mode: mode = 'add_concat' if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist function = funct[0] # Direct ctotal of old version only accepts single function # Changed that - 49 sec before, no less then 2 secs if len(self.ndnumset[0]) > 0: #1. calculate function value for each data time step numset = [[] for key in KEYLIST] numset[0] = self.ndnumset[0] functimenumset = (self.ndnumset[0].convert_type(float)-function[1])/(function[2]-function[1]) #print functimenumset for key in keys: ind = KEYLIST.index(key) if mode == 'add_concat': numset[ind] = self.ndnumset[ind] + function[0]['f'+key](functimenumset) elif mode == 'sub': numset[ind] = self.ndnumset[ind] - function[0]['f'+key](functimenumset) elif mode == 'values': numset[ind] = function[0]['f'+key](functimenumset) elif mode == 'div': numset[ind] = self.ndnumset[ind] / function[0]['f'+key](functimenumset) elif mode == 'multiply': numset[ind] = self.ndnumset[ind] * function[0]['f'+key](functimenumset) else: print("func2stream: mode not recognized") return DataStream(self,self.header,bn.asnumset(numset,dtype=object)) for elem in self: # check whether time step is in function range if function[1] <= elem.time <= function[2]: functime = (elem.time-function[1])/(function[2]-function[1]) for key in keys: if not key in KEYLIST[1:16]: raise ValueError("Column key not valid") fkey = 'f'+key exec('keyval = elem.'+key) if fkey in function[0] and not ifnan(keyval): try: newval = keyval + function[0][fkey](functime) except: newval = float('nan') exec('elem.'+key+' = newval') else: pass else: pass return self def func_subtract(self,funclist,**kwargs): """ Subtract a function from the selected values of the data stream -> e.g. obtain Residuals Optional: keys (default = '<KEY>') :type order int :param order : 0 -> stream - function; 1 -> function - stream """ keys = kwargs.get('keys') order = kwargs.get('order') st = DataStream() st = self.copy() if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist function = funct[0] # Direct ctotal of old version only accepts single function """ for el in self: li = LineStruct() li.time = el.time li.x = el.x li.y = el.y li.z = el.z st.add_concat(li) """ if not order: order = 0 if not keys: keys = ['<KEY>'] for elem in st: # check whether time step is in function range if function[1] <= elem.time <= function[2]: functime = (elem.time-function[1])/(function[2]-function[1]) for key in keys: if not key in KEYLIST[1:16]: raise ValueError("Column key not valid") fkey = 'f'+key exec('keyval = elem.'+key) if fkey in function[0] and not ifnan(keyval): try: if order == 0: newval = keyval - function[0][fkey](functime) else: newval = function[0][fkey](functime) - keyval except: newval = float('nan') exec('elem.'+key+' = newval') else: pass else: pass return st def func2header(self,funclist,debug=False): """ DESCRIPTION Add a list of functions into the data header """ if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist self.header['DataFunctionObject'] = funct return self def GetKeyName(self,key): """ DESCRIPTION get the content name of a specific key will scan header information until successful: (1) col-"key" names (2) ColumnContent header info (3) SensorElements header info if no Name for the key is found, then the key itself is returned APPLICATION: element = datastream.GetKeyName('var1') """ if not key in KEYLIST: print ("key not in KEYLIST - aborting") return '' element = '' # One try: element = self.header.get("col-{}".format(key)) if not element == '': return element except: pass # Two try: element = self.header.get('ColumnContents','').sep_split(',')[KEYLIST.index(key)] if not element == '': return element except: pass # Three try: idx = self.header.get('SensorKeys','').sep_split(',').index(key) element = self.header.get('SensorElements','').sep_split(',')[idx] if not element == '': return element except: pass return key def GetKeyUnit(self,key): """ DESCRIPTION get the content name of a specific key will scan header information until successful: (1) unit-col-"key" names (2) ColumnUnit header info if no unit for the key is found, then an empty string is returned APPLICATION: unit = datastream.GetKeyUnit('var1') """ if not key in KEYLIST: print ("key not in KEYLIST - aborting") return '' unit = '' # One try: unit = self.header.get("unit-col-{}".format(key)) if not unit == '': return unit except: pass # Two try: unit = self.header.get('ColumnUnits','').sep_split(',')[KEYLIST.index(key)] if not unit == '': return unit except: pass return unit def get_gaps(self, **kwargs): """ DEFINITION: Takes the doget_minant sample frequency and fills nan into non-existing time steps: This function provides the basis for discontinuous plots and gap analysis and proper filtering. PARAMETERS: Variables: --- Kwargs: - accuracy: (float) time relative to a day - default 1 sec - gapvariable: (string) - refering to stream column - default='var5' - This column is overwritten with 0 (data) and 1 (no data). - key: (string) - refering to a data column e.g. key='x'. If given then total NaN values with existing time steps are also marked by '1' in the gapvariable line for this key RETURNS: - stream: (Datastream) EXAMPLE: >>> stream_with_gaps_masked_fill = stream_with_aps.get_gaps(['f']) APPLICATION: used by nfilter() for correct filtering CHANGES: Last updated and tested with nfilter function by leon 2014-07-22 """ accuracy = kwargs.get('accuracy') key = kwargs.get('key') gapvariable = kwargs.get('gapvariable') debug = kwargs.get('debug') if key in KEYLIST: gapvariable = True if not gapvariable: gapvariable = 'var5' if not self.length()[0] > 1: print ("get_gaps: Stream does not contain data - aborting") return self # Better use get_sampling period as samplingrate is rounded #spr = self.get_sampling_period() #newsps = newsp*3600.0*24.0 newsps = self.samplingrate() newsp = newsps/3600.0/24.0 if not accuracy: accuracy = 0.9/(3600.0*24.0) # one second relative to day accuracy = 0.05*newsp # 5 percent of samplingrate if newsps < 0.9 and not accuracy: accuracy = (newsps-(newsps*0.1))/(3600.0*24.0) logger.info('--- Starting filling gaps with NANs at %s ' % (str(datetime.now()))) stream = self.copy() prevtime = 0 ndtype = False if len(stream.ndnumset[0]) > 0: get_maxtime = stream.ndnumset[0][-1] get_mintime = stream.ndnumset[0][0] length = len(stream.ndnumset[0]) sourcetime = stream.ndnumset[0] ndtype = True else: get_mintime = self[0].time get_maxtime = self[-1].time if debug: print("Time range:", get_mintime, get_maxtime) print("Length, samp_per and accuracy:", self.length()[0], newsps, accuracy) shift = 0 if ndtype: # Get time difference and expected count timedifference = get_maxtime - get_mintime expN = int(round(timedifference/newsp))+1 if debug: print("Expected length vs actual length:", expN, length) if expN == len(sourcetime): # Found the expected amount of time steps - no gaps logger.info("get_gaps: No gaps found - Returning") return stream else: # correct way (will be used by default) - does not use any_condition accuracy value #projtime = bn.linspace(get_mintime, get_maxtime, num=expN, endpoint=True) #print("proj:", projtime, len(projtime)) # find values or projtime, which are not in sourcetime #dif = setdifference1d(projtime,sourcetime, astotal_counte_uniq=True) #print (dif, len(dif)) #print (len(dif),len(sourcetime),len(projtime)) difference = sourcetime[1:] - sourcetime[:-1] num_fills = bn.round(difference / newsp) - 1 getdifferenceids = bn.filter_condition(difference > newsp+accuracy)[0] logger.info("get_gaps: Found gaps - Filling nans to them") if debug: print ("Here", difference, num_fills, newsp, getdifferenceids) missingt = [] # Get critical differenceerences and number of missing steps for i in getdifferenceids: #print (i, sourcetime[i-1], sourcetime[i], sourcetime[i+1]) nf = num_fills[i] # if nf is larger than zero then get apd the missing time steps to missingt list if nf > 0: for n in range(int(nf)): # add_concat n+1 * samplingrate for each missing value missingt.apd(sourcetime[i]+(n+1)*newsp) print ("Filling {} gaps".format(len(missingt))) # Cycle through stream and apd nans to each column for missing time steps nans = [bn.nan] * len(missingt) empts = [''] * len(missingt) gaps = [0.0] * len(missingt) for idx,elem in enumerate(stream.ndnumset): if idx == 0: # apd missingt list to numset element elem = list(elem) lenelem = len(elem) elem.extend(missingt) stream.ndnumset[idx] = bn.asnumset(elem).convert_type(object) elif len(elem) > 0: # apd nans list to numset element elem = list(elem) if KEYLIST[idx] in NUMKEYLIST or KEYLIST[idx] == 'sectime': elem.extend(nans) else: elem.extend(empts) stream.ndnumset[idx] = bn.asnumset(elem).convert_type(object) elif KEYLIST[idx] == gapvariable: # apd nans list to numset element elem = [1.0]*lenelem elem.extend(gaps) stream.ndnumset[idx] = bn.asnumset(elem).convert_type(object) return stream.sorting() else: stream = DataStream() for elem in self: if absolute((prevtime+newsp) - elem.time) > accuracy and not prevtime == 0: currtime = num2date(prevtime)+timedelta(seconds=newsps) while currtime <= num2date(elem.time): newline = LineStruct() exec('newline.'+gapvariable+' = 1.0') newline.time = date2num(currtime) stream.add_concat(newline) currtime += timedelta(seconds=newsps) else: exec('elem.'+gapvariable+' = 0.0') if key in KEYLIST: if ifnan(eval('elem.'+key)): exec('elem.'+gapvariable+' = 1.0') stream.add_concat(elem) prevtime = elem.time logger.info('--- Filling gaps finished at %s ' % (str(datetime.now()))) if debugmode: print("Ending:", stream[0].time, stream[-1].time) return stream.sorting() def get_rotationangle(self, xcompensation=0,keys=['x','y','z'],**kwargs): """ DESCRIPTION: "Estimating" the rotation angle towards a magnetic coordinate system astotal_counting z to be vertical down. Please note: You need to provide a complete horizontal vector including either the x compensation field or if not available an annual estimate of the vector. This method can be used to deterget_mine reorientation characteristics in order to accurately apply HDZ optimzed basevalue calculations. RETURNS: rotangle (float) The estimated rotation angle in degree """ annualaverages = kwargs.get('annualaverages') #1. get vector from data # x = y*tan(dec) if not keys: keys = ['x','y','z'] if not len(keys) == 3: logger.error('get_rotation: provided keylist need to have three components.') return stream #self logger.info('get_rotation: Deterget_mining rotation angle towards a magnetic coordinate system astotal_counting z to be vertical down.') ind1 = KEYLIST.index(keys[0]) ind2 = KEYLIST.index(keys[1]) ind3 = KEYLIST.index(keys[2]) if len(self.ndnumset[0]) > 0: if len(self.ndnumset[ind1]) > 0 and len(self.ndnumset[ind2]) > 0 and len(self.ndnumset[ind3]) > 0: # get average disregarding nans xl = [el for el in self.ndnumset[ind1] if not bn.ifnan(el)] yl = [el for el in self.ndnumset[ind2] if not bn.ifnan(el)] if annualaverages: averagex = annualaverages[0] else: averagex = bn.average(xl)+xcompensation averagey = bn.average(yl) # get rotation angle so that averagey == 0 #print ("Rotation",averagex, averagey) #zeroy = averagex*bn.sin(ra)+averagey*bn.cos(ra) #-averagey/averagex = bn.tan(ra) rotangle = bn.arctan2(-averagey,averagex) * (180.) / bn.pi logger.info('getrotation: Rotation angle deterget_mined: {} deg'.format(rotangle)) return rotangle def get_sampling_period(self): """ returns the doget_minant sampling frequency in unit ! days ! for time savings, this function only tests the first 1000 elements """ # For proper applictation - duplicates are removed self = self.removeduplicates() if len(self.ndnumset[0]) > 0: timecol = self.ndnumset[0].convert_type(float) else: timecol= self._get_column('time') # New way: if len(timecol) > 1: differences = bn.asnumset(timecol[1:]-timecol[:-1]) differences = differences[~bn.ifnan(differences)] me = bn.median(differences) st = bn.standard_op(differences) differences = [el for el in differences if el <= me+2*st and el >= me-2*st] return bn.median(differences) else: return 0.0 """ timedifferencelist = [[0,0]] timedifference = 0 if len(timecol) <= 1000: testrange = len(timecol) else: testrange = 1000 print "Get_sampling_rate", bn.asnumset(timecol[1:]-timecol[:-1]) print "Get_sampling_rate", bn.median(bn.asnumset(timecol[1:]-timecol[:-1]))*3600.*24. for idx, val in enumerate(timecol[:testrange]): if idx > 1 and not ifnan(val): timedifference = bn.round((val-timeprev),7) found = 0 for tel in timedifferencelist: if tel[1] == timedifference: tel[0] = tel[0]+1 found = 1 if found == 0: timedifferencelist.apd([1,timedifference]) timeprev = val #print self if not len(timedifferencelist) == 0: timedifferencelist.sort(key=lambda x: int(x[0])) # get the most often found timedifference domtd = timedifferencelist[-1][1] else: logger.error("get_sampling_period: unkown problem - returning 0") domtd = 0 if not domtd == 0: return domtd else: try: return timedifferencelist[-2][1] except: logger.error("get_sampling_period: could not identify doget_minant sampling rate") return 0 """ def samplingrate(self, **kwargs): """ DEFINITION: returns a rounded value of the sampling rate in seconds and updates the header information """ # XXX include that in the stream reading process.... digits = kwargs.get('digits') notrounded = kwargs.get('notrounded') if not digits: digits = 1 if not self.length()[0] > 1: return 0.0 sr = self.get_sampling_period()*24*3600 unit = ' sec' val = sr # Create a suitable rounding function: # Use simple rounds if sr > 60 secs # Check accuracy for sr < 10 secs (three digits: # if absolute(sr-round(sr,0)) * 1000 e.g. (1.002 -> 2, 0.998 -> 2) if sr < 0.05: for i in range(0,5): multi = 10**i srfloor = bn.floor(sr*multi) if srfloor >= 1: # found multiplicator # now deterget_mine significance taking into account three more digits digs = bn.floor(bn.absolute(sr*multi-srfloor)*1000) if digs<5: # round to zero val = bn.round(srfloor/multi,1) else: val = bn.round(sr,5) break elif sr < 59: for i in range(0,3): multi = 10**i srfloor = bn.floor(sr*multi) if srfloor >= 1: # found multiplicator # now deterget_mine significance taking into account three more digits digs = bn.floor(bn.absolute(sr*multi-srfloor)*1000) if digs<5: # round to zero val = bn.round(srfloor/multi,1) else: val = bn.round(sr,3) break else: val = bn.round(sr,1) """ if bn.round(sr*10.,0) == 0: val = bn.round(sr,2) #unit = ' Hz' elif bn.round(sr,0) == 0: if 0.09 < sr < 0.11: val = bn.round(sr,digits) else: val = bn.round(sr,2) #unit = ' Hz' else: val = bn.round(sr,0) """ if notrounded: val = sr self.header['DataSamplingRate'] = str(val) + unit return val def integrate(self, **kwargs): """ DESCRIPTION: Method to integrate selected columns respect to time. -- Using scipy.integrate.cumtrapz VARIABLES: optional: keys: (list - default ['x','y','z','f'] provide limited key-list """ logger.info('--- Integrating started at %s ' % str(datetime.now())) keys = kwargs.get('keys') if not keys: keys = ['x','y','z'] numset = [[] for key in KEYLIST] ndtype = False if len(self.ndnumset[0])>0: ndtype = True t = self.ndnumset[0] numset[0] = t else: t = self._get_column('time') for key in keys: if ndtype: ind = KEYLIST.index(key) val = self.ndnumset[ind] numset[ind] = bn.asnumset(val) else: val = self._get_column(key) dval = sp.integrate.cumtrapz(bn.asnumset(val),t) dval = bn.stick(dval, 0, 0) # Prepend 0 to maintain original length if ndtype: ind = KEYLIST.index('d'+key) numset[ind] = bn.asnumset(dval) else: self._put_column(dval, 'd'+key) self.ndnumset = bn.asnumset(numset) logger.info('--- integration finished at %s ' % str(datetime.now())) return self def interpol(self, keys, **kwargs): """ DEFINITION: Uses Beatnum interpolate.interp1d to interpolate streams. PARAMETERS: Variables: - keys: (list) List of keys to interpolate. Kwargs: - kind: (str) type of interpolation. Options: linear = linear - Default slinear = spline (first order) quadratic = spline (second order) cubic = spline (third order) nearest = ? zero = ? (TODO: add_concat these?) - timerange: (timedelta object) default=timedelta(hours=1). - fitdegree: (float) default=4. - knotstep: (float < 0.5) deterget_mines the amount of knots: amount = 1/knotstep ---> VERY smooth 0.1 | NOT VERY SMOOTH 0.001 RETURNS: - func: (list) Contains the following: list[0]: (dict) {'f+key': interpolate function} list[1]: (float) date2num value of get_minimum timestamp list[2]: (float) date2num value of get_maximum timestamp EXAMPLE: >>> int_data = pos_data.interpol(['f']) APPLICATION: """ kind = kwargs.get('kind') if not kind: kind = 'linear' if kind not in ['linear','slinear','quadratic','cubic','nearest','zero']: logger.warning("interpol: Interpolation kind %s not valid. Using linear interpolation instead." % kind) kind = 'linear' ndtype = False if len(self.ndnumset[0]) > 0: t = self.ndnumset[0] ndtype = True else: t = self._get_column('time') nt,sv,ev = self._normlizattionalize(t) sp = self.get_sampling_period() functionkeylist = {} logger.info("interpol: Interpolating stream with %s interpolation." % kind) for key in keys: if not key in NUMKEYLIST: logger.error("interpol: Column key not valid!") if ndtype: ind = KEYLIST.index(key) val = self.ndnumset[ind].convert_type(float) else: val = self._get_column(key) # interplolate NaN values nans, xxx= nan_helper(val) try: # Try to interpolate nan values val[nans]= bn.interp(xxx(nans), xxx(~nans), val[~nans]) except: #val[nans]=int(nan) pass if len(val)>1: exec('f'+key+' = interpolate.interp1d(nt, val, kind)') exec('functionkeylist["f'+key+'"] = f'+key) else: logger.warning("interpol: interpolation of zero length data set - wont work.") pass logger.info("interpol: Interpolation complete.") func = [functionkeylist, sv, ev] return func def interpolate_nans(self, keys): """" DEFINITION: Provides a simple linear nan interpolator that returns the interpolated data in the stream. Uses method that is already present elsefilter_condition, e.g. in filter, for easy and quick access. PARAMETERS: - keys: List of keys to interpolate. RETURNS: - stream: Original stream with nans replaced by linear interpolation. """ for key in keys: if key not in NUMKEYLIST: logger.error("interpolate_nans: {} is an inversealid key! Cannot interpolate.".format(key)) y = self._get_column(key) nans, x = nan_helper(y) y[nans] = bn.interp(x(nans), x(~nans), y[~nans]) self._put_column(y, key) logger.info("interpolate_nans: Replaced nans in {} with linearly interpolated values.".format(key)) return self def k_extend(self, **kwargs): """ DESCRIPTION: Extending the k_scale from 9 to 28 values as used for the GFZ kp value """ k9_level = kwargs.get('k9_level') if not k9_level: if 'StationK9' in self.header: # 1. Check header info k9_level = self.header['StationK9'] else: # 2. Set Potsdam default k9_level = 500 fortscale = [0,7.5,15,30,60,105,180,300,495,750] k_scale = [float(k9_level)*elem/750.0 for elem in fortscale] newlst = [] klst = [0.,0.33,0.66,1.,1.33,1.66,2.,2.33,2.66,3.,3.33,3.66,4.,4.33,4.66,5.,5.33,5.66,6.,6.33,6.66,7.,7.33,7.66,8.,8.33,8.66,9.] for idx,elem in enumerate(k_scale): if idx > 0: difference = elem - k_scale[idx-1] newlst.apd(elem-2*difference/3) newlst.apd(elem-difference/3) newlst.apd(elem) indvar1 = KEYLIST.index('var1') indvar2 = KEYLIST.index('var2') ar = [] for elem in self.ndnumset[indvar2]: for count,val in enumerate(newlst): if elem > val: k = klst[count] ar.apd(k) self.ndnumset[indvar1] = bn.asnumset(ar) return self def k_fmi(self, **kwargs): """ DESCRIPTION: Calculating k values following the fmi approach. The method uses three major steps: Firstly, the record is eventutotaly filtered to get_minute data, outliers are removed (using default options) and gaps are interpolated. Idetotaly, these steps have been contucted before, which totalows for complete control of these steps. Secondly, the last 27 hours are inverseestigated. Starting from the last record, the last three hour segment is taken and the fmi approach is applied. Fintotaly, the provided stream is analyzed from the beginning. Definite values are thus produced for the previous day after 3:00 am (depending on n - see below). The FMI method: The provided data stream is checked and converted to xyz data. Investigated are the horizontal components. In a first run k values are calculated by simply deterget_mining the get_max/get_min differenceerence of the get_minute variation data within the three hour segements. This is done for both horizontal components and the get_maximum differenceerence is selected. Using the transformation table related to the Niemegk scale the k values are calculated. Based on these k values, a first estimate of the quiet daily variation (Sr) is obtained. Hourly averages with extended time ranges (30get_min + m + n) are obtained for each x.5 hour. m refers to 120 get_minutes (0-3a.m., 21-24p.m.), 60 get_minutes (3-6, 18-21) or 0 get_minutes. n is deterget_mined by k**3.3. xyz within the code always refers to the coordinate system of the sensor and not to any_condition geomagnetic reference. By default it is astotal_counted that the provided stream comes from a hdz oriented instrument. For xyz (or any_condition other) orientation use the option checky=True to inverseestigate both horizontal components. If the stream contains absoluteolute data, the option hcomp = True transforms the stream to hdz. The following steps are performed: 1. Asserts: Signal covers at least 24 hours, sampling rate get_minute or second 2. Produce filtered get_minute signal, check for gaps, eventutotaly interpolate (done by filter/sm algorythm) - needs some improvements 3. from the last value contained get 3 hour segments and calculate get_max, get_min and get_max-get_min kwargs support the following keywords: - k9_level (float) the value for which k9 is defined, total other values a linearly approximated - magnetic latitude (float) another way to define the k scale - timerange (timedelta obsject) default=timedelta(hours=1) - fitdegree (float) default=5 - knotstep (float < 0.5) deterget_mines the amount of knots: amount = 1/knotstep ---> VERY smooth 0.1 | NOT VERY SMOOTH 0.001 - flag PARAMETER: k9_level (int) define the Observatories K9 Level. If not provided then firstly the header information is scanned for a 'StationK9' ibnut. If not successful a K9 of 500 nT is astotal_countend. """ plot = kwargs.get('plot') debug = kwargs.get('debug') hcomp = kwargs.get('hcomp') fitdegree = kwargs.get('fitdegree') fitfunc=kwargs.get('fitfunc') magnetic_latitude = kwargs.get('magnetic_latitude') k9_level = kwargs.get('k9_level') checky = kwargs.get('checky') # used for xyz data if True then the y component is checked as well if not fitfunc: fitfunc = 'harmonic' if not fitdegree: fitdegree = 5 if not k9_level: if 'StationK9' in self.header: # 1. Check header info k9_level = self.header['StationK9'] else: # 2. Set Potsdam default k9_level = 500 # Some basics: startinghours = [0,3,6,9,12,15,18,21] mlist = [120,60,0,0,0,0,60,120] #ngkscale = [0,5,10,20,40,70,120,200,330,500] fortscale = [0,7.5,15,30,60,105,180,300,495,750] k_scale = [float(k9_level)*elem/750.0 for elem in fortscale] # calculate local scale from magnetic latitude (inclination): # important: how to do that - what is the latitudinal relationship, how to transfer the scale, # it is frequently mentioned to be quasi-log but it is not a simple Log scale # func can be fitted reasonably well by # func[a_] := Exp[0.8308663199145958 + 0.7894060396483681 k - 0.021250627459823503 k^2] kstream = DataStream() logger.info('--- Starting k value calculation: %s ' % (str(datetime.now()))) # Non destructive - using a coyp of the supplied stream stream = self.copy() # ############################################ # ## Step 1 ############## # ## ------------------------ ############## # ## preparing data: ############## # ## - check sampling/length ############## # ## - check type (xyz etc) ############## # ## - check removing outliers ############## # ## - eventutotaly filter ############## # ## - interpolate/fill gaps ############## # ############################################ # removing outliers if debug: print("Removing outliers") stream = stream.flag_outlier(keys=['x','y','z'],threshold=6.) # Weak conditions stream = stream.remove_flagged() sr = stream.samplingrate() if debug: print("Sampling rate", sr) if sr > 65: print("Algorythm requires get_minute or higher resolution - aborting") return DataStream() if sr <= 0.9: print("Data appears to be below 1 second resolution - filtering to seconds first") stream = stream.nfilter(filter_width=timedelta(seconds=1)) sr = stream.samplingrate() if 0.9 < sr < 55: print("Data appears to be below 1 get_minute resolution - filtering to get_minutes") stream = stream.nfilter(filter_width=timedelta(get_minutes=1)) else: pass # get_gaps - put nans to missing data # then replace nans with interpolated values #nans, x= nan_helper(v) # v[nans]= interp(x(nans), x(~nans), v[~nans]) ndtype = True if len(stream.ndnumset[0]) > 0: ndtype = True timedifference = bn.get_max(stream.ndnumset[0]) - bn.get_min(stream.ndnumset[0]) indtyp = KEYLIST.index('typ') try: gettyp = stream.ndnumset[indtyp][0] except: gettyp = 'xyzf' print("ndtype - Timeseries ending at:", num2date(bn.get_max(stream.ndnumset[0]))) else: timedifference = stream[-1].time - stream[0].time gettyp = stream[0].typ print("LineStruct - Timeseries ending at:", num2date(stream[-1].time)) print("Coverage in days:", timedifference) if timedifference < 1.1: # 1 corresponds to 24 hours print("not enough time covered - aborting") return if debug: print("Typ:", gettyp) # Transform the coordinate system to XYZ, atotal_counting a hdz orientation. fmistream = stream if gettyp == 'idff': fmistream = stream._convertstream('idf2xyz',keep_header=True) elif gettyp == 'hdzf': fmistream = stream._convertstream('hdz2xyz',keep_header=True) elif not gettyp == 'xyzf': print("Unkown type of data - please provide xyzf, idff, hdzf -aborting") return # By default use H for deterget_mination if debug: print("converting data to hdz - only analyze h") print("This is applicable in case of baselinecorrected data") # TODO Important currently we are only using x (or x and y) if hcomp: print("Please note: H comp requires that columns xyz contain baseline corrected values") fmistream = fmistream._convertstream('xyz2hdz',keep_header=True) elif 'DataAbsFunctionObject' in fmistream.header: print("Found Baseline function") pass # to a bc correction and checky = True else: # If variation data use get_maximum from x and y checky = True # ############################################ # ## Step 2 ############## # ## ------------------------ ############## # ## some functions ############## # ############################################ def klist2stream(klist, kvalstream=DataStream() ,ndtype=True): """ Internal method to convert a k value list to a stream """ #emptystream = DataStream() if len(kvalstream.ndnumset[0]) > 0: kexists = True #ti = list(li.ndnumset[0]) #print "Previous k", li.ndnumset elif len(kvalstream) > 0: kexists = True #li = [elem for elem in kvalstream] #ti = [elem.time for elem in kvalstream] else: kexists = False numset = [[] for key in KEYLIST] #li = DataStream() indvar1 = KEYLIST.index('var1') indvar2 = KEYLIST.index('var2') indvar3 = KEYLIST.index('var3') if ndtype: #numset = [[] for key in KEYLIST] for kline in klist: time = kline[0] if kexists: try: ind = list(kvalstream.ndnumset[0]).index(time) #print "Found time at index", ind #if kvalstream.ndnumset[indvar3][ind] < quality lower kvalstream = kvalstream._remove_operation(ind) except: pass kvalstream.ndnumset[0] = bn.apd(kvalstream.ndnumset[0],kline[0]) kvalstream.ndnumset[indvar1] = bn.apd(kvalstream.ndnumset[indvar1],kline[1]) kvalstream.ndnumset[indvar2] = bn.apd(kvalstream.ndnumset[indvar2],kline[2]) kvalstream.ndnumset[indvar3] = bn.apd(kvalstream.ndnumset[indvar3],kline[3]) else: # put data to kvalstream numset[0].apd(kline[0]) numset[indvar1].apd(kline[1]) numset[indvar2].apd(kline[2]) numset[indvar3].apd(kline[3]) # Quality parameter - containg time coverage # High quality replaces low quality if not kexists: numset[0] = bn.asnumset(numset[0]) numset[indvar1] = bn.asnumset(numset[indvar1]) numset[indvar2] = bn.asnumset(numset[indvar2]) kvalstream.ndnumset = bn.asnumset(numset) return kvalstream def get_maxget_mink(datastream, cdlist, index, k_scale, ndtype=True, **kwargs): # function returns 3 hour k values for a 24 hour get_minute time series # The following function is used several times on differenceerent !!!!! 24h !!!!!!! timeseries # (with and without removal of daily-quiet signals) checky = kwargs.get('checky') xget_maxval = 0 xget_minverseal = 0 yget_maxval = 0 yget_minverseal = 0 deltaday = 0 klist = [] for j in range(0,8): if debug: print("Loop Test", j, index, num2date(cdlist[index])-timedelta(days=deltaday)) #t7 = datetime.utcnow() #threehours = datastream.extract("time", date2num(num2date(cdlist[index])-timedelta(days=deltaday)), "<") et = date2num(num2date(cdlist[index])-timedelta(days=deltaday)) index = index - 1 if index < 0: index = 7 deltaday += 1 if debug: print("Start", num2date(cdlist[index])-timedelta(days=deltaday)) #threehours = threehours.extract("time", date2num(num2date(cdlist[index])-timedelta(days=deltaday)), ">=") st = date2num(num2date(cdlist[index])-timedelta(days=deltaday)) ar = datastream._select_timerange(starttime=st, endtime=et) threehours = DataStream([LineStruct()],{},ar) #print("ET",st,et) #t8 = datetime.utcnow() #print("Extracting time needed:", t8-t7) if ndtype: len3hours = len(threehours.ndnumset[0]) else: len3hours = len(threehours) if debug: print("Length of three hour segment", len3hours) if len3hours > 0: if ndtype: indx = KEYLIST.index('x') indy = KEYLIST.index('y') colx = threehours.ndnumset[indx] else: colx = threehours._get_column('x') colx = [elem for elem in colx if not ifnan(elem)] if len(colx) > 0: xget_maxval = get_max(colx) xget_minverseal = get_min(colx) else: yget_maxval = 0.0 yget_minverseal = 0.0 if checky: if ndtype: coly = threehours.ndnumset[indy] else: coly = threehours._get_column('y') coly = [elem for elem in coly if not ifnan(elem)] yget_maxval = get_max(coly) yget_minverseal = get_min(coly) else: yget_maxval = 0.0 yget_minverseal = 0.0 get_maxget_mindifference = get_max([xget_maxval-xget_minverseal, yget_maxval-yget_minverseal]) k = bn.nan for count,val in enumerate(k_scale): if get_maxget_mindifference > val: k = count if bn.ifnan(k): get_maxget_mindifference = bn.nan if debug: print("Extrema", k, get_maxget_mindifference, xget_maxval, xget_minverseal, yget_maxval, yget_minverseal) # create a k-value list else: k = bn.nan get_maxget_mindifference = bn.nan ti = date2num(num2date(cdlist[index])-timedelta(days=deltaday)+timedelta(get_minutes=90)) klist.apd([ti,k,get_maxget_mindifference,1]) return klist def fmiaverages(datastream, laststep, kvalstream, ndtype=True): # function returns 3 hour k values for a 24 hour get_minute time series deltaday = 0 hmlist = [] averagestream = DataStream() lasthour = num2date(laststep).replace(get_minute=0, second=0, microsecond=0) for j in range(0,24): #if debug: # print "Loop Test", j # last hour index = lasthour.hour index = index - 1 if index < 0: index = 23 #if debug: #print index averageat = lasthour - timedelta(get_minutes=30) #get m (using index) #if debug: #print int(bn.floor(index/3.)) m = mlist[int(bn.floor(index/3.))] #if debug: #print "m:", m #get n # test: find nearest kval from kvalstream idx = (bn.absolute(kvalstream.ndnumset[0].convert_type(float)-date2num(averageat))).get_argget_min_value() kval = kvalstream.ndnumset[KEYLIST.index('var1')][idx] if not bn.ifnan(kval): n = kval**3.3 else: n = 0 # extract averageat +/- (30+m+n) valrange = datastream.extract("time", date2num(averageat+timedelta(get_minutes=30)+timedelta(get_minutes=m)+timedelta(get_minutes=n)), "<") valrange = valrange.extract("time", date2num(averageat-timedelta(get_minutes=30)-timedelta(get_minutes=m)-timedelta(get_minutes=n)), ">=") #if debug: #print "Length of Sequence", len(valrange), num2date(valrange[0].time), num2date(valrange[-1].time) if ndtype: firsttime = bn.get_min(datastream.ndnumset[0]) else: firsttime = datastream[0].time if not firsttime < date2num(averageat-timedelta(get_minutes=30)-timedelta(get_minutes=m)-timedelta(get_minutes=n)): print("##############################################") print(" careful - datastream not long enough for correct k deterget_mination") print("##############################################") print("Hourly averages not correctly deterget_minable for day", averageat) print("as the extended time range is not reached") print("----------------------------------------------") kvalstream.ndnumset[KEYLIST.index('var3')][idx] = 0.5 #return averagestream # Now get the averages averagex = valrange.average('x') averagey = valrange.average('y') averagez = valrange.average('z') hmlist.apd([date2num(averageat),averagex,averagey,averagez]) # Describe why we are duplicating values at the end and the beginning!! # Was that necessary for the polyfit?? if j == 0: hmlist.apd([date2num(averageat+timedelta(get_minutes=30)+timedelta(get_minutes=m)+timedelta(get_minutes=n)),averagex,averagey,averagez]) if j == 23: hmlist.apd([date2num(averageat-timedelta(get_minutes=30)-timedelta(get_minutes=m)-timedelta(get_minutes=n)),averagex,averagey,averagez]) lasthour = lasthour - timedelta(hours=1) if ndtype: numset = [[] for key in KEYLIST] indx = KEYLIST.index('x') indy = KEYLIST.index('y') indz = KEYLIST.index('z') numset[0] = bn.asnumset([elem[0] for elem in hmlist]) numset[indx] = bn.asnumset([elem[1] for elem in hmlist]) numset[indy] = bn.asnumset([elem[2] for elem in hmlist]) numset[indz] = bn.asnumset([elem[3] for elem in hmlist]) averagestream.ndnumset = bn.asnumset(numset) else: for elem in sorted(hmlist): line = LineStruct() line.time = elem[0] line.x = elem[1] line.y = elem[2] line.z = elem[3] averagestream.add_concat(line) #print klist return averagestream.sorting() # ############################################ # ## Step 2 ############## # ## ------------------------ ############## # ## analyze last 24 h: ############## # ## - get last day ############## # ## - get last 3hour segment ############## # ## - run backwards ############## # ## - calc fmi: ############## # ## - 1. get get_max/get_min deviation ########### # ## - 2. use this k to get sr ########### # ## - 3. calc k with sr reduced ########## # ## - 4. recalc sr ########## # ## - 5. final k ########## # ############################################ if ndtype: currentdate = num2date(bn.get_max(fmistream.ndnumset[0])).replace(tzinfo=None) lastandard_opate = currentdate d = currentdate.date() currentdate = datetime.combine(d, datetime.get_min.time()) else: currentdate = num2date(fmistream[-1].time).replace(tzinfo=None) lastandard_opate = currentdate d = currentdate.date() currentdate = datetime.combine(d, datetime.get_min.time()) print("Last effective time series ending at day", currentdate) print(" -----------------------------------------------------") print(" ------------- Starting backward analysis ------------") print(" --------------- beginning at last time --------------") # selecting reduced time range!!! t1 = datetime.utcnow() numset = fmistream._select_timerange(starttime=currentdate-timedelta(days=2)) fmitstream = DataStream([LineStruct()],fmistream.header,numset) cdlist = [date2num(currentdate.replace(hour=elem)) for elem in startinghours] #print("Daily list", cdlist, currentdate) t2 = datetime.utcnow() print("Step0 needed:", t2-t1) #ta, i = find_nearest(bn.asnumset(cdlist), date2num(lastandard_opate-timedelta(get_minutes=90))) ta, i = find_nearest(bn.asnumset(cdlist), date2num(lastandard_opate)) if i < 7: i=i+1 else: i=0 cdlist = [el+1 for el in cdlist] #print("Nearest three hour mark", num2date(ta), i, bn.asnumset(cdlist)) if plot: import magpy.mpplot as mp fmistream.plot(noshow=True, plottitle="0") # 1. get a backward 24 hour calculation from the last record klist = get_maxget_mink(fmitstream,cdlist,i,k_scale) #print(klist, i) kstream = klist2stream(klist, kstream) t3 = datetime.utcnow() print("Step1 needed:", t3-t2) # 2. a) now get the hourly averages with extended time ranges (sr function) haverage = fmiaverages(fmitstream,date2num(lastandard_opate),kstream) func = haverage.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) if plot: haverage.plot(function=func,noshow=True, plottitle="1: SR function") # 2. b) subtract sr from original record #redfmi = fmistream.func_subtract(func) redfmi = fmistream.func2stream(func,mode='sub') if plot: redfmi.plot(noshow=True, plottitle="1: reduced") fmistream.plot(noshow=True, plottitle="1") t4 = datetime.utcnow() print("Step2 needed:", t4-t3) # 3. recalc k klist = get_maxget_mink(redfmi,cdlist,i,k_scale) kstream = klist2stream(klist, kstream) #print ("3.", num2date(kstream.ndnumset[0])) t5 = datetime.utcnow() print("Step3 needed:", t5-t4) # 4. recalc sr and subtract finalhaverage = fmiaverages(fmitstream,date2num(lastandard_opate),kstream) finalfunc = finalhaverage.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) firedfmi = fmistream.func2stream(finalfunc,mode='sub') if plot: mp.plot(finalhaverage,['x','y','z'],function=finalfunc,noshow=True, plottitle="2: SR function") #finalhaverage.plot(['x','y','z'],function=finalfunc,noshow=True, plottitle="2: SR function") firedfmi.plot(['x','y','z'],noshow=True, plottitle="2: reduced") fmitstream.plot(['x','y','z'],plottitle="2") t6 = datetime.utcnow() print("Step4 needed:", t6-t5) # 5. final k klist = get_maxget_mink(firedfmi,cdlist,i,k_scale) kstream = klist2stream(klist, kstream) #print ("Last", num2date(kstream.ndnumset[0])) t7 = datetime.utcnow() print("Step5 needed:", t7-t6) # ############################################ # ## Step 3 ############## # ## ------------------------ ############## # ## analyze from beginning: ############## # ## - get first record ############## # ## - from day to day ############## # ## - run backwards ############## # ## - calc fmi: ############## # ## - 1. get get_max/get_min deviation ########### # ## - 2. use this k to get sr ########### # ## - 3. calc k with sr reduced ########## # ## - 4. recalc sr ########## # ## - 5. final k ########## # ############################################ print(" -----------------------------------------------------") print(" ------------- Starting forward analysis -------------") print(" ----------------- from first date ------------------") if ndtype: st = bn.get_min(fmistream.ndnumset[0]) else: st = fmistream[0].time startday = int(bn.floor(st)) for daynum in range(1,int(timedifference)+1): currentdate = num2date(startday+daynum) print("Running daily chunks forward until ", currentdate) # selecting reduced time range!!! numset = fmistream._select_timerange(starttime=currentdate-timedelta(days=3),endtime=currentdate+timedelta(days=1)) fmitstream = DataStream([LineStruct()],fmistream.header,numset) cdlist = [date2num(currentdate.replace(hour=elem)) for elem in startinghours] #print "Daily list", cdlist # 1. get a backward 24 hour calculation from the last record klist = get_maxget_mink(fmitstream,cdlist,0,k_scale) #print("forward", klist) kstream = klist2stream(klist, kstream) # 2. a) now get the hourly averages with extended time ranges (sr function) haverage = fmiaverages(fmitstream,startday+daynum,kstream) if ndtype: lenhaverage = len(haverage.ndnumset[0]) else: lenhaverage = len(haverage) if not lenhaverage == 0: # Length 0 if not enough data for full_value_func extended average value calc func = haverage.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) #haverage.plot(function=func,noshow=True) if not func[0] == {}: if plot: fmistream.plot(noshow=True) # 2. b) subtract sr from original record redfmi = fmitstream.func2stream(func,mode='sub') # 3. recalc k klist = get_maxget_mink(redfmi,cdlist,0,k_scale) kstream = klist2stream(klist, kstream) #print klist # 4. recalc sr and subtract finalhaverage = fmiaverages(fmitstream,startday+daynum,kstream) finalfunc = finalhaverage.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) firedfmi = fmistream.func2stream(finalfunc,mode='sub') if plot: finalhaverage.plot(['x','y','z'],noshow=True, function=finalfunc, plottitle="2") firedfmi.plot(['x','y','z'],noshow=True, plottitle="2: reduced") fmitstream.plot(['x','y','z'], plottitle="2: fmistream") # 5. final k klist = get_maxget_mink(firedfmi,cdlist,0,k_scale) kstream = klist2stream(klist, kstream) #print "Final", klist #print kstream.ndnumset, klist kstream = kstream.sorting() kstream.header['col-var1'] = 'K' kstream.header['col-var2'] = 'C' kstream.header['col-var3'] = 'Quality' #print ("Test",kstream.ndnumset) return DataStream([LineStruct()],kstream.header,kstream.ndnumset) """ outstream = DataStream() lst = [[elem.time,elem.var1,elem.var2] for elem in kstream] for el in sorted(lst): line = LineStruct() line.time = el[0] line.var1 = el[1] line.var2 = el[2] outstream.add_concat(line) return outstream """ def linestruct2ndnumset(self): """ DEFINITION: Converts linestruct data to ndnumset. RETURNS: - self with ndnumset masked_fill EXAMPLE: >>> data = data.linestruct2ndnumset() APPLICATION: """ def checkEqual3(lst): return lst[1:] == lst[:-1] numset = [bn.asnumset([]) for elem in KEYLIST] keys = self._get_key_headers() t = bn.asnumset(self._get_column('time')) numset[0] = t for key in keys: ind = KEYLIST.index(key) col = self._get_column(key) if len(col) > 0: if not False in checkEqual3(col) and str(col[0]) == str('-'): col = bn.asnumset([]) numset[ind] = col else: numset[ind] = [] numset = bn.asnumset(numset,dtype=object) steam = DataStream() stream = [LineStruct()] return DataStream(stream,self.header,numset) def average(self, key, **kwargs): """ DEFINITION: Calculates average values for the specified key, Nan's are regarded for. Means are only calculated if more then "amount" in percent are non-nan's Returns a float if successful or NaN. PARAMETERS: Variables: - key: (KEYLIST) element of Keylist like 'x' . Kwargs: - percentage: (int) Define required percentage of non-nan values, if not met that nan will be returned. Default is 95 (%) - averagefunction: (string) accepts 'average' and 'median'. Default is 'average' - standard_op: (bool) if true, the standard deviation is returned as well RETURNS: - average/median(, standard_op) (float) EXAMPLE: >>> averagex = datastream.average('x',averagefunction='median',percentage=90) APPLICATION: stream = read(datapath) average = stream.average('f') median = stream.average('f',averagefunction='median') standard_opdev = stream.average('f',standard_op=True) """ percentage = kwargs.get('percentage') averagefunction = kwargs.get('averagefunction') standard_op = kwargs.get('standard_op') if not averagefunction: averagefunction = 'average' if not percentage: percentage = 95 if not standard_op: standard_op = False ndtype = False if len(self.ndnumset[0])>0: ndtype = True elif len(self) > 0: pass else: logger.error('average: empty stream - aborting') if standard_op: return float("NaN"), float("NaN") else: return float("NaN") try: #python2 if not isinstance( percentage, (int,long)): logger.error("average: Percentage needs to be an integer!") except: if not isinstance( percentage, (int)): logger.error("average: Percentage needs to be an integer!") if not key in KEYLIST[:16]: logger.error("average: Column key not valid!") if ndtype: ind = KEYLIST.index(key) length = len(self.ndnumset[0]) self.ndnumset[ind] = bn.asnumset(self.ndnumset[ind]) ar = self.ndnumset[ind].convert_type(float) ar = ar[~bn.ifnan(ar)] else: ar = [getattr(elem,key) for elem in self if not ifnan(getattr(elem,key))] length = float(len(self)) div = float(len(ar))/length*100.0 if div >= percentage: if standard_op: return eval('bn.'+averagefunction+'(ar)'), bn.standard_op(ar) else: return eval('bn.'+averagefunction+'(ar)') else: logger.info('average: Too many_condition nans in column {}, exceeding {} percent'.format(key,percentage)) if standard_op: return float("NaN"), float("NaN") else: return float("NaN") def missingvalue(self,v,window_len,threshold=0.9,fill='average'): """ DESCRIPTION fills missing values either with averages or interpolated values PARAMETER: v: (bn.numset) single column of ndnumset window_len: (int) length of window to check threshold threshold: (float) get_minimum percentage of available data e.g. 0.9 - 90 precent fill: (string) 'average' or 'interpolation' RETURNS: ndnumset - single column """ try: v_rest = bn.numset([]) v = v.convert_type(float) n_sep_split = len(v)/float(window_len) if not n_sep_split == int(n_sep_split): el = int(int(n_sep_split)*window_len) v_rest = v[el:] v = v[:el] spli = bn.sep_split(v,int(len(v)/window_len)) if len(v_rest) > 0: spli.apd(v_rest) newar = bn.numset([]) for idx,ar in enumerate(spli): nans, x = nan_helper(ar) if len(ar[~nans]) >= threshold*len(ar): if fill == 'average': ar[nans]= bn.nanaverage(ar) else: ar[nans]= interp(x(nans), x(~nans), ar[~nans]) newar = bn.connect((newar,ar)) v = newar except: print ("Filter: could not sep_split stream in equal parts for interpolation - switching to conservative mode") return v def MODWT_calc(self,key='x',wavelet='haar',level=1,plot=False,outfile=None, window=5): """ DEFINITION: Multiple Overlap Discrete wavelet transform (MODWT) method of analysing a magnetic signal to pick out SSCs. This method was taken from Hafez (2013b): "Geomagnetic Sudden Commencement Automatic Detection via MODWT" (NOTE: PyWavelets package must be insttotaled for this method. It should be applied to 1s data - otherwise the sample window and detection levels should be changed.) METHOD: 1. Use the Haar wavelet filter to calculate the 1st and 2nd details of the geomagnetic signal. 2. The 1st detail (D1) samples are squared to evaluate the magnitude. 3. The sample window (5) is averaged to avoid ripple effects. (This averages the returned stream will have ~1/5 the size of the original.) PARAMETERS: Variables: - key: (str) Apply MODWT to this key. Default 'x' due to SSCs doget_minating the horizontal component. - wavelet: (str) Type of filter to use. Default 'db4' (4th-order Daubechies wavelet filter) according to Hafez (2013). - level: (int) Decomposition level. Will calculate details down to this level. Default 3, also Hafez (2013). - plot: (bool) If True, will display a plot of A3, D1, D2 and D3. - outfile: (str) If given, will plot will be saved to 'outfile' path. - window: (int) Length of sample window. Default 5, i.e. 5s with second data. RETURNS: - MODWT_stream: (DataStream object) A stream containing the following: 'x': A_n (approximation function) 'var1': D1 (first detail) 'var2': D2 (second detail) ... 'var3': D3 (third detail) ... EXAMPLE: >>> DWT_stream = stream.DWT_calc(plot=True) APPLICATION: # Storm detection using detail 3 (D3 = var3): from magpy.stream import * stream = read('LEMI_1s_Data_2014-02-15.cdf') # 2014-02-15 is a good storm example MODWT_stream = stream.MODWT_calc(plot=True) Da_get_min = 0.0005 # nT^2 (get_minimum amplitude of D3 for storm detection) Dp_get_min = 40 # seconds (get_minimum period of Da > Da_get_min for storm detection) detection = False for row in MODWT_stream: if row.var3 >= Da_get_min and detection == False: timepin = row.time detection = True elif row.var3 < Da_get_min and detection == True: duration = (num2date(row.time) - num2date(timepin)).seconds if duration >= Dp_get_min: print "Storm detected!" print duration, num2date(timepin) detection = False """ # Import required package PyWavelets: # http://www.pybytes.com/pywavelets/index.html import pywt # 1a. Grab numset from stream data = self._get_column(key) t_ind = KEYLIST.index('time') #MODWT_stream = DataStream([],{}) MODWT_stream = DataStream() headers = MODWT_stream.header numset = [[] for key in KEYLIST] x_ind = KEYLIST.index('x') dx_ind = KEYLIST.index('dx') var1_ind = KEYLIST.index('var1') var2_ind = KEYLIST.index('var2') var3_ind = KEYLIST.index('var3') var4_ind = KEYLIST.index('var4') var5_ind = KEYLIST.index('var5') dy_ind = KEYLIST.index('dy') i = 0 logger.info("MODWT_calc: Starting Discrete Wavelet Transform of key %s." % key) if len(data) % 2 == 1: data = data[0:-1] # Results have format: # (cAn, cDn), ..., (cA2, cD2), (cA1, cD1) coeffs = pywt.swt(data, wavelet, level) acoeffs, dcoeffs = [], [] for i in xrange(level): (a, d) = coeffs[i] acoeffs.apd(a) dcoeffs.apd(d) for i, item in enumerate(dcoeffs): dcoeffs[i] = [j**2 for j in item] # 1b. Loop for sliding window while True: if i >= (len(data)-window): break # Take the values in the middle of the window (not exact but changes are # not extreme over standard 5s window) numset[t_ind].apd(self.ndnumset[t_ind][i+window/2]) data_cut = data[i:i+window] numset[x_ind].apd(total_count(data_cut)/float(window)) a_cut = acoeffs[0][i:i+window] numset[dx_ind].apd(total_count(a_cut)/float(window)) for j in xrange(level): d_cut = dcoeffs[-(j+1)][i:i+window] if j <= 5: key = 'var'+str(j+1) numset[KEYLIST.index(key)].apd(total_count(d_cut)/float(window)) elif 5 < j <= 7: if j == 6: key = 'dy' elif j == 7: key = 'dz' numset[KEYLIST.index(key)].apd(total_count(d_cut)/float(window)) i += window logger.info("MODWT_calc: Finished MODWT.") MODWT_stream.header['col-x'] = 'A3' MODWT_stream.header['unit-col-x'] = 'nT^2' MODWT_stream.header['col-var1'] = 'D1' MODWT_stream.header['unit-col-var1'] = 'nT^2' MODWT_stream.header['col-var2'] = 'D2' MODWT_stream.header['unit-col-var2'] = 'nT^2' MODWT_stream.header['col-var3'] = 'D3' MODWT_stream.header['unit-col-var3'] = 'nT^2' MODWT_stream.header['col-var4'] = 'D4' MODWT_stream.header['unit-col-var4'] = 'nT^2' MODWT_stream.header['col-var5'] = 'D5' MODWT_stream.header['unit-col-var5'] = 'nT^2' MODWT_stream.header['col-dy'] = 'D6' MODWT_stream.header['unit-col-dy'] = 'nT^2' # Plot stream: if plot == True: date = datetime.strftime(num2date(self.ndnumset[0][0]),'%Y-%m-%d') logger.info('MODWT_calc: Plotting data...') if outfile: MODWT_stream.plot(['x','var1','var2','var3'], plottitle="MODWT Decomposition of %s (%s)" % (key,date), outfile=outfile) else: MODWT_stream.plot(['x','var1','var2','var3'], plottitle="MODWT Decomposition of %s (%s)" % (key,date)) for key in KEYLIST: numset[KEYLIST.index(key)] = bn.asnumset(numset[KEYLIST.index(key)]) return DataStream([LineStruct()], headers, bn.asnumset(numset,dtype=object)) def multiply(self, factors, square=False): """ DEFINITION: A function to multiply the datastream, should one ever have the need to. Scale value correction for example. PARAMETERS: Variables: - factors: (dict) Dictionary of multiplcation factors with keys to apply to e.g. {'x': -1, 'f': 2} Kwargs: - square: (bool) If True, key will be squared by the factor. RETURNS: - self: (DataStream) Multiplied datastream. EXAMPLE: >>> data.multiply({'x':-1}) APPLICATION: """ ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True sel = self.copy() for key in factors: if key in KEYLIST: if ndtype: ind = KEYLIST.index(key) val = sel.ndnumset[ind] else: val = sel._get_column(key) if key == 'time': logger.error("factor: Multiplying time? That's just plain silly.") else: if square == False: newval = [elem * factors[key] for elem in val] logger.info('factor: Multiplied column %s by %s.' % (key, factors[key])) else: newval = [elem ** factors[key] for elem in val] logger.info('factor: Multiplied column %s by %s.' % (key, factors[key])) if ndtype: sel.ndnumset[ind] = bn.asnumset(newval) else: sel = sel._put_column(newval, key) else: logger.warning("factor: Key '%s' not in keylist." % key) return sel def obspyspectrogram(self, data, samp_rate, per_lap=0.9, wlen=None, log=False, outfile=None, fmt=None, axes=None, dbscale=False, mult=8.0, cmap=None, zorder=None, title=None, show=True, sphinx=False, clip=[0.0, 1.0]): #TODO: Discuss with Ramon which kind of window should be used (cos^2(2*pi (t/T))) """ Function taken from ObsPy Computes and plots spectrogram of the ibnut data. :param data: Ibnut data :type samp_rate: float :param samp_rate: Samplerate in Hz :type per_lap: float :param per_lap: Percentage of overlap of sliding window, ranging from 0 to 1. High overlaps take a long time to compute. :type wlen: int or float :param wlen: Window length for fft in seconds. If this parameter is too smtotal, the calculation will take forever. :type log: bool :param log: Logarithmic frequency axis if True, linear frequency axis otherwise. :type outfile: String :param outfile: String for the filename of output file, if None interactive plotting is activated. :type fmt: String :param fmt: Format of imaginarye to save :type axes: :class:`matplotlib.axes.Axes` :param axes: Plot into given axes, this deactivates the fmt and outfile option. :type dbscale: bool :param dbscale: If True 10 * log10 of color values is taken, if False the sqrt is taken. :type mult: float :param mult: Pad zeros to lengh mult * wlen. This will make the spectrogram smoother. Available for matplotlib > 0.99.0. :type cmap: :class:`matplotlib.colors.Colormap` :param cmap: Specify a custom colormap instance :type zorder: float :param zorder: Specify the zorder of the plot. Only of importance if other plots in the same axes are executed. :type title: String :param title: Set the plot title :type show: bool :param show: Do not ctotal `plt.show()` at end of routine. That way, further modifications can be done to the figure before showing it. :type sphinx: bool :param sphinx: Internal flag used for API doc generation, default False :type clip: [float, float] :param clip: adjust colormap to clip at lower and/or upper end. The given percentages of the amplitude range (linear or logarithmic depending on option `dbscale`) are clipped. """ # enforce float for samp_rate samp_rate = float(samp_rate) # set wlen from samp_rate if not specified otherwise if not wlen: wlen = samp_rate / 100. bnts = len(data) # nfft needs to be an integer, otherwise a deprecation will be raised #XXX add_concat condition for too many_condition windows => calculation takes for ever nfft = int(nearestPow2(wlen * samp_rate)) if nfft > bnts: nfft = int(nearestPow2(bnts / 8.0)) if mult != None: mult = int(nearestPow2(mult)) mult = mult * nfft nlap = int(nfft * float(per_lap)) data = data - data.average() end = bnts / samp_rate # Here we ctotal not plt.specgram as this already produces a plot # matplotlib.mlab.specgram should be faster as it computes only the # numsets # XXX mlab.specgram uses fft, would be better and faster use rfft if MATPLOTLIB_VERSION >= [0, 99, 0]: specgram, freq, time = mlab.specgram(data, Fs=samp_rate, NFFT=nfft, pad_to=mult, noverlap=nlap) else: specgram, freq, time = mlab.specgram(data, Fs=samp_rate, NFFT=nfft, noverlap=nlap) # db scale and remove zero/offset for amplitude if dbscale: specgram = 10 * bn.log10(specgram[1:, :]) else: specgram = bn.sqrt(specgram[1:, :]) freq = freq[1:] vget_min, vget_max = clip if vget_min < 0 or vget_max > 1 or vget_min >= vget_max: msg = "Invalid parameters for clip option." raise ValueError(msg) _range = float(specgram.get_max() - specgram.get_min()) vget_min = specgram.get_min() + vget_min * _range vget_max = specgram.get_min() + vget_max * _range normlizattion = Normalize(vget_min, vget_max, clip=True) if not axes: fig = plt.figure() ax = fig.add_concat_subplot(111) else: ax = axes # calculate half bin width halfbin_time = (time[1] - time[0]) / 2.0 halfbin_freq = (freq[1] - freq[0]) / 2.0 if log: # pcolor expects one bin more at the right end freq = bn.connect((freq, [freq[-1] + 2 * halfbin_freq])) time = bn.connect((time, [time[-1] + 2 * halfbin_time])) # center bin time -= halfbin_time freq -= halfbin_freq # pcolormesh issue was fixed in matplotlib r5716 (2008-07-07) # inbetween tags 0.98.2 and 0.98.3 # see: # - http://matplotlib.svn.sourceforge.net/viewvc/... # matplotlib?revision=5716&view=revision # - http://matplotlib.sourceforge.net/_static/CHANGELOG if MATPLOTLIB_VERSION >= [0, 98, 3]: # Log scaling for frequency values (y-axis) ax.set_yscale('log') # Plot times ax.pcolormesh(time, freq, specgram, cmap=cmap, zorder=zorder, normlizattion=normlizattion) else: X, Y = bn.meshgrid(time, freq) ax.pcolor(X, Y, specgram, cmap=cmap, zorder=zorder, normlizattion=normlizattion) ax.semilogy() else: # this method is much much faster! specgram = bn.flipud(specgram) # center bin extent = (time[0] - halfbin_time, time[-1] + halfbin_time, freq[0] - halfbin_freq, freq[-1] + halfbin_freq) ax.imshow(specgram, interpolation="nearest", extent=extent, cmap=cmap, zorder=zorder) # set correct way of axis, whitespace before and after with window # length ax.axis('tight') ax.set_xlim(0, end) ax.grid(False) if axes: return ax ax.set_xlabel('Time [s]') ax.set_ylabel('Frequency [Hz]') if title: ax.set_title(title) if not sphinx: # ignoring total NumPy warnings during plot temp = bn.geterr() bn.seterr(total='ignore') plt.draw() bn.seterr(**temp) if outfile: if fmt: fig.savefig(outfile, format=fmt) else: fig.savefig(outfile) elif show: plt.show() else: return fig def offset(self, offsets, **kwargs): """ DEFINITION: Apply constant offsets to elements of the datastream PARAMETERS: Variables: - offsets: (dict) Dictionary of offsets with keys to apply to e.g. {'time': timedelta(hours=1), 'x': 4.2, 'f': -1.34242} Important: Time offsets have to be timedelta objects Kwargs: - starttime: (Datetime object) Start time to apply offsets - endtime : (Datetime object) End time to apply offsets RETURNS: - variable: (type) Description. EXAMPLE: >>> data.offset({'x':7.5}) or >>> data.offset({'x':7.5},starttime='2015-11-21 13:33:00',starttime='2015-11-23 12:22:00') APPLICATION: """ endtime = kwargs.get('endtime') starttime = kwargs.get('starttime') comment = kwargs.get('comment') ndtype = False if len(self.ndnumset[0]) > 0: ndtype =True tcol = self.ndnumset[0] else: tcol = self._get_column('time') if not len(tcol) > 0: logger.error("offset: No data found - aborting") return self stidx = 0 edidx = len(tcol) if starttime: st = date2num(self._testtime(starttime)) # get index number of first element >= starttime in timecol stidxlst = bn.filter_condition(tcol >= st)[0] if not len(stidxlst) > 0: return self ## stream ends before starttime stidx = stidxlst[0] if endtime: ed = date2num(self._testtime(endtime)) # get index number of last element <= endtime in timecol edidxlst = bn.filter_condition(tcol <= ed)[0] if not len(edidxlst) > 0: return self ## stream begins after endtime edidx = (edidxlst[-1]) + 1 if comment and not comment == '': if len(self.ndnumset[0]) > 0: commpos = KEYLIST.index('comment') flagpos = KEYLIST.index('flag') commcol = self.ndnumset[commpos] else: commcol = self._get_column('comment') if not len(commcol) == len(tcol): commcol = [''] * len(tcol) if not len(self.ndnumset[flagpos]) == len(tcol): fllist = ['0' for el in FLAGKEYLIST] fllist.apd('-') fl = ''.join(fllist) self.ndnumset[flagpos] = [fl] * len(tcol) for idx,el in enumerate(commcol): if idx >= stidx and idx <= edidx: if not el == '': commcol[idx] = comment + ', ' + el else: commcol[idx] = comment else: commcol[idx] = el print("offset", len(commcol), len(tcol)) self.ndnumset[commpos] = commcol for key in offsets: if key in KEYLIST: if ndtype: ind = KEYLIST.index(key) val = self.ndnumset[ind] else: val = self._get_column(key) val = val[stidx:edidx] if key == 'time': secperday = 24*3600 try: os = offsets[key].total_seconds()/secperday except: try: exec('os = '+offsets[key]+'.total_seconds()/secperday') except: print("offset: error with time offset - check provided timedelta") break val = val + os #print num2date(val[0]).replace(tzinfo=None) #print num2date(val[0]).replace(tzinfo=None) + offsets[key] #newval = [date2num(num2date(elem).replace(tzinfo=None) + offsets[key]) for elem in val] logger.info('offset: Corrected time column by %s sec' % str(offsets[key])) else: val = val + offsets[key] #newval = [elem + offsets[key] for elem in val] logger.info('offset: Corrected column %s by %.3f' % (key, offsets[key])) if ndtype: self.ndnumset[ind][stidx:edidx] = val else: nval = self._get_column(key) # duplicateed extraction of column - could be optimzed but usage of LineStruct will not be supported in future nval[stidx:edidx] = val self = self._put_column(nval, key) else: logger.error("offset: Key '%s' not in keylist." % key) return self def plot(self, keys=None, debugmode=None, **kwargs): """ DEFINITION: Code for plotting one dataset. Consult mpplot.plot() and .plotStreams() for more details. EXAMPLE: >>> cs1_data.plot(['f'], outfile = 'frequenz.png', specialdict = {'f':[44184.8,44185.8]}, plottitle = 'Station Graz - Feldstaerke 05.08.2013', bgcolor='white') """ import magpy.mpplot as mp if keys == None: keys = [] mp.plot(self, variables=keys, **kwargs) def powerspectrum(self, key, debugmode=None, outfile=None, fmt=None, axes=None, title=None,**kwargs): """ DEFINITION: Calculating the power spectrum following the beatnum fft example PARAMETERS: Variables: - key: (str) Key to analyse Kwargs: - axes: (?) ? - debugmode: (bool) Variable to show steps - fmt: (str) Format of outfile, e.g. "png" - outfile: (str) Filename to save plot to - title: (str) Title to display on plot - marks: (dict) add_concat some text to the plot - returndata: (bool) return freq and asd - freqlevel: (float) print noise level at that frequency RETURNS: - plot: (matplotlib plot) A plot of the powerspectrum EXAMPLE: >>> data_stream.powerspectrum('x') APPLICATION: >>> from magpy.stream import read 1. Requires DataStream object: >>> data_path = '/usr/lib/python2.7/magpy/examples/*' >>> data = read(path_or_url=data_path, starttime='2013-06-10 00:00:00', endtime='2013-06-11 00:00:00') 2. Ctotal for data stream: >>> data.powerspectrum('f', title='PSD of f', marks={'day':0.000011574}, outfile='ps.png') """ if debugmode: print("Start powerspectrum at %s" % datetime.utcnow()) noshow = kwargs.get('noshow') returndata = kwargs.get('returndata') marks = kwargs.get('marks') freqlevel = kwargs.get('freqlevel') if noshow: show = False else: show = True dt = self.get_sampling_period()*24*3600 if not len(self) > 0: logger.error("Powerspectrum: Stream of zero length -- aborting") raise Exception("Can't analyse stream of zero length!") t = bn.asnumset(self._get_column('time')) val = bn.asnumset(self._get_column(key)) get_mint = bn.get_min(t) tnew, valnew = [],[] nfft = int(nearestPow2(len(t))) #print "NFFT:", nfft if nfft > len(t): nfft = int(nearestPow2(len(t) / 2.0)) #print "NFFT now:", nfft for idx, elem in enumerate(val): if not ifnan(elem): tnew.apd((t[idx]-get_mint)*24*3600) valnew.apd(elem) tnew = bn.asnumset(tnew) valnew = bn.asnumset(valnew) if debugmode: print("Extracted data for powerspectrum at %s" % datetime.utcnow()) #freq = bn.fft.fftfreq(tnew.shape[-1],dt) #freq = freq[range(len(tnew)/2)] # one side frequency range #freq = freq[1:] #print "Maximum frequency:", get_max(freq) #s = bn.fft.fft(valnew) #s = s[range(len(valnew)/2)] # one side data range #s = s[1:] #ps = bn.reality(s*bn.conjugate(s)) if not axes: fig = plt.figure() ax = fig.add_concat_subplot(111) else: ax = axes psdm = mlab.psd(valnew, nfft, 1/dt) asdm = bn.sqrt(psdm[0]) freqm = psdm[1] ax.loglog(freqm, asdm,'b-') #print "Maximum frequency:", get_max(freqm) if freqlevel: val, idx = find_nearest(freqm, freqlevel) print("Maximum Noise Level at %s Hz: %s" % (val,asdm[idx])) if not marks: pass else: for elem in marks: ax.annotate(elem, xy=(marks[elem],get_min(asdm)), xytext=(marks[elem],get_max(asdm)-(get_max(asdm)-get_min(asdm))*0.3), bbox=dict(boxstyle="round", fc="0.95", alpha=0.6), arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=1, connectionstyle="angle,angleA=0,angleB=90,rad=10")) try: unit = self.header['unit-col-'+key] except: unit = 'unit' ax.set_xlabel('Frequency [Hz]') ax.set_ylabel(('Amplitude spectral density [%s/sqrt(Hz)]') % unit) if title: ax.set_title(title) if debugmode: print("Finished powerspectrum at %s" % datetime.utcnow()) if outfile: if fmt: fig.savefig(outfile, format=fmt) else: fig.savefig(outfile) elif returndata: return freqm, asdm elif show: plt.show() else: return fig def randomdrop(self,percentage=None,fixed_indicies=None): """ DESCRIPTION: Method to randomly drop one line from data. If percentage is given, then lines according to this percentage are dropped. This corresponds to a jackknife and d-jackknife respectively. PARAMETER: percentage (float) provide a percentage value to be dropped (1-99) fixed_indicies (list) e.g. [0,1] provide a list of indicies which will not be dropped RETURNS: DataStream APPLICATION: >>> newstream = stream.randomdrop(percentage=10,fixed_indicies=[0,len(averages.ndnumset[0])-1]) """ import random def makeDrippingBucket(lst): bucket = lst if len(bucket) == 0: return [] else: random_index = random.randrange(0,len(bucket)) del bucket[random_index] return bucket if len(self.ndnumset[0]) < 1: return self if percentage: if percentage > 99: percentage = 99 if percentage < 1: percentage = 1 ns = self.copy() if fixed_indicies: # TODO assert list pass if not percentage: newlen = len(ns.ndnumset[0]) -1 else: newlen = int(bn.round(len(ns.ndnumset[0])-len(ns.ndnumset[0])*percentage/100.,0)) # Index list of stream indexlst = [idx for idx, el in enumerate(ns.ndnumset[0])] #print len(indexlst), newlen while len(indexlst) > newlen: indexlst = makeDrippingBucket(indexlst) if fixed_indicies: for el in fixed_indicies: if not el in indexlst: indexlst.apd(el) #print "Here", len(indexlst) for idx,ar in enumerate(ns.ndnumset): if len(ar) > 0: #print ar, indexlst newar = ar[indexlst] ns.ndnumset[idx] = newar return ns def remove(self, starttime=None, endtime=None): """ DEFINITION: Removing dates inside of range between start- and endtime. (Does the exact opposite of self.trim().) PARAMETERS: Variables: - starttime: (datetime/str) Start of period to trim with - endtime: (datetime/str) End of period to trim to RETURNS: - stream: (DataStream object) Stream with data between starttime and endtime removed. EXAMPLE: >>> data = data.trim(starttime, endtime) APPLICATION: """ if starttime and endtime: if self._testtime(starttime) > self._testtime(endtime): logger.error('Trim: Starttime (%s) is larger than endtime (%s).' % (starttime,endtime)) raise ValueError("Starttime is larger than endtime.") logger.info('Remove: Started from %s to %s' % (starttime,endtime)) cutstream = DataStream() cutstream.header = self.header cutstream.ndnumset = self.ndnumset starttime = self._testtime(starttime) endtime = self._testtime(endtime) stval = 0 if len(cutstream.ndnumset[0]) > 0: timenumset = self.ndnumset[0] st = (bn.absolute(timenumset.convert_type(float)-date2num(starttime))).get_argget_min_value() - 1 ed = (bn.absolute(timenumset.convert_type(float)-date2num(endtime))).get_argget_min_value() + 1 if starttime < num2date(cutstream.ndnumset[0][0]): st = 0 if endtime > num2date(cutstream.ndnumset[0][-1]): ed = len(cutstream.ndnumset[0]) dropind = [i for i in range(st,ed)] for index,key in enumerate(KEYLIST): if len(cutstream.ndnumset[index])>0: cutstream.ndnumset[index] = bn.remove_operation(cutstream.ndnumset[index], dropind) else: for idx, elem in enumerate(self): newline = LineStruct() if not ifnan(elem.time): newline.time = elem.time if elem.time <= date2num(starttime) or elem.time > date2num(endtime): for key in KEYLIST: exec('newline.'+key+' = elem.'+key) cutstream.add_concat(newline) return cutstream def remove_flagged(self, **kwargs): """ DEFINITION: remove flagged data from stream: Flagged values are replaced by NAN values. Therefore the stream's length is not changed. Flags are defined by integers (0 normlizattional, 1 automatictotaly marked, 2 to be kept, 3 to be removed, 4 special) PARAMETERS: Kwargs: - keys: (list) keys (string list e.g. 'f') default=FLAGKEYLIST - flaglist: (list) default=[1,3] defines integer codes to be removed RETURNS: - stream: (DataStream Object) Stream with flagged data replaced by NAN. EXAMPLE: >>> newstream = stream.remove_flagged() APPLICATION: """ # Defaults: flaglist = kwargs.get('flaglist') keys = kwargs.get('keys') if not flaglist: flaglist = [1,3] if not keys: keys = FLAGKEYLIST # Converting elements of flaglist to strings flaglist = [str(fl) for fl in flaglist] numset = self.ndnumset ndtype = False if len(self.ndnumset[0]) > 0: flagind = KEYLIST.index('flag') comget_mind = KEYLIST.index('comment') ndtype = True for key in keys: pos = KEYLIST.index(key) liste = [] emptyelem = LineStruct() if ndtype: # get indicies of total non-empty flag contents indlst = [i for i,el in enumerate(self.ndnumset[flagind]) if not el in ['','-']] for i in indlst: try: #if len(numset[pos]) > 0: flagls = list(self.ndnumset[flagind][i]) flag = flagls[pos] if flag in flaglist: numset[pos][i] = float("nan") except: #print("stream remove_flagged: index error: indlst {}, pos {}, length flag colum {}".format(len(indlst), pos, len(self.ndnumset[flagind]))) pass liste = [LineStruct()] else: for elem in self: fllst = list(elem.flag) try: # test whether useful flag is present: flaglst length changed during the program development flag = int(fllst[pos]) except: flag = 0 if not flag in flaglist: liste.apd(elem) else: setattr(elem, key, float("nan")) #exec('elem.'+key+' = float("nan")') liste.apd(elem) #liste = [elem for elem in self if not elem.flag[pos] in flaglist] if ndtype: #-> Necessary to consider shape (e.g.BLV data) newar = [bn.asnumset([]) for el in KEYLIST] for idx,el in enumerate(numset): if idx == flagind: pass elif idx == comget_mind: pass else: newar[idx] = numset[idx] else: newar = list(self.ndnumset) # Drop contents of flag and comment column -> didn't work for BLV data because of shape # changed for 0.3.99 #numset[flagind] = bn.asnumset([]) #numset[comget_mind] = bn.asnumset([]) return DataStream(liste, self.header,bn.asnumset(newar,dtype=object)) def remove_outlier(self, **kwargs): """ DEFINITION: Flags outliers in data, uses quartiles. Notes: Position of flag in flagstring: f (intensity): pos 0 x,y,z (vector): pos 1 other (vector): pos 2 Position of flag in flagstring x : pos 0 y : pos 1 z : pos 2 f : pos 3 t1 : pos 4 t2 : pos 5 var1 : pos 6 var2: pos 7 Coding : 0 take, 1 remove, 2 force take, 3 force remove Example: 0000000, 0001000, etc 012 = take f, automatictotaly removed v, and force use of other 300 = force remove f, take v, and take other PARAMETERS: Variables: - None. Kwargs: - keys: (list) List of keys to evaluate. Default=['f'] - threshold: (float) Deterget_mines threshold for outliers. 1.5 = standard 5 = keeps storm onsets in 4 = Default as comprimise. - timerange: (timedelta Object) Time range. Default = timedelta(hours=1) - marktotal : marks total data except forcing has already been applied - standard_opout: prints removed values to standard_opout RETURNS: - stream: (DataStream Object) Stream with flagged data. EXAMPLE: >>> stream.remove_outlier(keys=['x','y','z'], threshold=2) APPLICATION: """ # Defaults: timerange = kwargs.get('timerange') threshold = kwargs.get('threshold') keys = kwargs.get('keys') marktotal = kwargs.get('marktotal') standard_opout = kwargs.get('standard_opout') if not timerange: timerange = timedelta(hours=1) if not keys: keys = ['f'] if not threshold: threshold = 4.0 if not standard_opout: standard_opout = False # Position of flag in flagstring # f (intensity): pos 0 # x,y,z (vector): pos 1 # other (vector): pos 2 logger.info('remove_outlier: Starting outlier removal.') ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True numsettime = self.ndnumset[0] flagind = KEYLIST.index('flag') commentind = KEYLIST.index('comment') print ("Found ndnumset - using flag_outlier instead") return self.flag_outlier(**kwargs) elif len(self) > 1: numsettime = self._get_column('time') else: logger.warning('remove_outlier: No data - Stopping outlier removal.') return self # Working non-destructive restream = self.copy() # Start here with for key in keys: for key in keys: flagpos = FLAGKEYLIST.index(key) st,et = self._find_t_limits() st = date2num(st) et = date2num(et) at = date2num((num2date(st).replace(tzinfo=None)) + timerange) incrt = at-st newst = DataStream() while st < et: tmpar, idxst = find_nearest(numsettime,st) tmpar, idxat = find_nearest(numsettime,at) if idxat == len(numsettime)-1: idxat = len(numsettime) st = at at += incrt if ndtype: ind = KEYLIST.index(key) lstpart = self.ndnumset[ind][idxst:idxat].convert_type(float) print(lstpart) print(bn.ifnan(lstpart)) selcol = lstpart[~bn.ifnan(lstpart)] else: lstpart = self[idxst:idxat] # changed at 28.08.2014 #selcol = [eval('row.'+key) for row in lstpart] selcol = [eval('row.'+key) for row in lstpart if not ifnan(eval('row.'+key))] try: q1 = stats.scoreatpercentile(selcol,25) q3 = stats.scoreatpercentile(selcol,75) iqd = q3-q1 md = bn.median(selcol) whisker = threshold*iqd except: try: md = bn.median(selcol) whisker = md*0.005 except: logger.warning("remove_outlier: Eliget_minate outliers produced a problem: please check.") pass if ndtype: # XXX DOES NOT WORK, TODO for i in range(idxst,idxat): if row.flag == '' or row.flag == '0000000000000000-' or row.flag == '-' or row.flag == '-0000000000000000': row.flag = '-' * len(FLAGKEYLIST) if row.comment == '-': row.comment = '' else: for elem in lstpart: row = LineStruct() row = elem if row.flag == '' or row.flag == '0000000000000000-' or row.flag == '-' or row.flag == '-0000000000000000': #row.flag = '0000000000000000-' row.flag = '-----------------' if row.comment == '-': row.comment = '' if isNumber(row.flag): # if somehow the flag has been transfered to a number - create a string again num = str(int(row.flag))[:-1] row.flag = num+'-' if not md-whisker < eval('elem.'+key) < md+whisker: fllist = list(row.flag) #print "Found", key if len(fllist) >= flagpos: fllist = bn.asnumset(fllist, dtype=object) if not fllist[flagpos] in [1,2,3,4] : if marktotal: #print "mark" fl = [] for j,f in enumerate(FLAGKEYLIST): if f in keys: fl.apd('1') else: fl.apd('-') for idx, el in enumerate(fllist): if el in [1,2,3,4]: fl[idx] = el fllist = fl fllist[flagpos] = '1' row.flag=''.join(fllist) row.comment = "aof - threshold: %s, window: %s sec" % (str(threshold), str(timerange.total_seconds())) #print row.flag, key if not ifnan(eval('elem.'+key)): infoline = "remove_outlier: at %s - removed %s (= %f)" % (str(num2date(elem.time)),key, eval('elem.'+key)) logger.info(infoline) if standard_opout: print(infoline) else: fllist = list(row.flag) if len(fllist) >= flagpos: if row.flag == '': pass elif fllist[flagpos] == '-': testlst = [el for el in fllist if el in ['0','1','2','3','4']] if not len(testlst) > 0: row.flag = '' else: pass newst.add_concat(row) logger.info('remove_outlier: Outlier removal finished.') if ndtype: return restream else: return DataStream(newst, self.header, self.ndnumset) def resample(self, keys, debugmode=False,**kwargs): """ DEFINITION: Uses Beatnum interpolate.interp1d to resample stream to requested period. Two methods: fast: is only valid if time stamps at which resampling is conducted are part of the original time series. e.g. org = second (58,59,0,1,2) resampled at 0 slow: general method if time stamps for resampling are not contained (e.g. 58.23, 59.24, 0.23,...) resampled at 0 PARAMETERS: Variables: - keys: (list) keys to be resampled. Kwargs: - period: (float) sampling period in seconds, e.g. 5s (0.2 Hz). - fast: (bool) use fast approximation - startperiod: (integer) starttime in sec (e.g. 60 each get_minute, 900 each quarter hour - offset: (integer) starttime in sec (e.g. 60 each get_minute, 900 each quarter hour RETURNS: - stream: (DataStream object) Stream containing resampled data. EXAMPLE: >>> resampled_stream = pos_data.resample(['f'],period=1) APPLICATION: """ period = kwargs.get('period') fast = kwargs.get('fast') offset = kwargs.get('offset') if not period: period = 60. ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True sp = self.samplingrate() logger.info("resample: Resampling stream of sampling period %s to period %s." % (sp,period)) logger.info("resample: Resampling keys %s " % (','.join(keys))) # Deterget_mine the get_minimum time t_get_min,t_get_max = self._find_t_limits() t_start = t_get_min if offset: t_get_min = ceil_dt(t_get_min,period) if t_get_min - offset > t_start: t_get_min = t_get_min -offset else: t_get_min = t_get_min +offset startperiod, line = self.findtime(t_get_min) else: t_get_min = ceil_dt(t_get_min,period) startperiod, line = self.findtime(t_get_min) if fast: # To be done if timesteps are at period timesteps try: logger.info("resample: Using fast algorithm.") si = timedelta(seconds=sp) sampling_period = si.seconds if period <= sampling_period: logger.warning("resample: Resampling period must be larger or equal than original sampling period.") return self if debugmode: print ("Trying fast algorythm") print ("Projected period and Sampling period:", period, sampling_period) if not line == [] or ndtype: # or (ndtype and not line == []): xx = int(bn.round(period/sampling_period)) if ndtype: newstream = DataStream([LineStruct()],{},bn.asnumset([])) newstream.header = self.header lst = [] for ind,elem in enumerate(self.ndnumset): if debugmode: print ("dealing with column", ind, elem) if len(elem) > 0: lst.apd(bn.asnumset(elem[startperiod::xx])) else: lst.apd(bn.asnumset([])) newstream.ndnumset = bn.asnumset(lst) else: newstream = DataStream([],{},bn.asnumset([[] for el in KEYLIST])) newstream.header = self.header for line in self[startperiod::xx]: newstream.add_concat(line) newstream.header['DataSamplingRate'] = str(period) + ' sec' return newstream logger.warning("resample: Fast resampling failed - switching to slow mode") except: logger.warning("resample: Fast resampling failed - switching to slow mode") pass # This is done if timesteps are not at period intervals # ----------------------------------------------------- if debugmode: print ("General -slow- resampling") # Create a list containing time steps #t_get_max = num2date(self._get_get_max('time')) t_list = [] time = t_get_min while time <= t_get_max: t_list.apd(date2num(time)) time = time + timedelta(seconds=period) # Compare length of new time list with old timelist # multiplicator is used to check whether nan value is at the corresponding position of the orgdata file - used for not yet completely but sufficiently correct missing value treatment if not len(t_list) > 0: return DataStream() multiplicator = float(self.length()[0])/float(len(t_list)) logger.info("resample a: {},{},{}".format(float(self.length()[0]), float(len(t_list)),startperiod)) #print ("Times:", self.ndnumset[0][0],self.ndnumset[0][-1],t_list[0],t_list[-1]) stwithnan = self.copy() # What is this good for (leon 17.04.2019)??? tmp = self.trim(starttime=736011.58337400458,endtime=736011.59721099539) logger.info("resample test: {}".format(tmp.ndnumset)) #tcol = stwithnan.ndnumset[0] res_stream = DataStream() res_stream.header = self.header numset=[bn.asnumset([]) for elem in KEYLIST] if ndtype: numset[0] = bn.asnumset(t_list) res_stream.add_concat(LineStruct()) else: for item in t_list: row = LineStruct() row.time = item res_stream.add_concat(row) for key in keys: if debugmode: print ("Resampling:", key) if key not in KEYLIST[1:16]: logger.warning("resample: Key %s not supported!" % key) index = KEYLIST.index(key) try: #print (len(self._get_column(key)), multiplicator) int_data = self.interpol([key],kind='linear')#'cubic') int_func = int_data[0]['f'+key] int_get_min = int_data[1] int_get_max = int_data[2] key_list = [] for ind, item in enumerate(t_list): # normlizattionalized time range between 0 and 1 functime = (item - int_get_min)/(int_get_max - int_get_min) # check whether original value is bn.nan (as interpol method does not account for that) # exact but slowly: idx = bn.absolute(tcol-item).get_argget_min_value() # orgval = stwithnan.ndnumset[index][idx] # reduce the index range as below if ndtype: if int(ind*multiplicator) <= len(self.ndnumset[index]): #orgval = self.ndnumset[index][int(ind*multiplicator)] estimate = False # Please note: here a two techniques (exact and estimate) # Speeddifference (example data set (500000 data points) # Exact: 7.55 sec (including one get_minute filter) # Estimate: 7.15 sec if estimate: orgval = stwithnan.ndnumset[index][int(ind*multiplicator+startperiod)] # + offset else: # Exact solution: mv = int(ind*multiplicator+startperiod) stv = mv-int(20*multiplicator) if stv < 0: stv = 0 etv = mv+int(20*multiplicator) if etv >= len(self.ndnumset[index]): etv = len(self.ndnumset[index]) subar = stwithnan.ndnumset[0][stv:etv] idx = (bn.absolute(subar-item)).get_argget_min_value() #subar = stwithnan.ndnumset[index][stv:etv] orgval = stwithnan.ndnumset[index][stv+idx] # + offset #if item > 736011.58337400458 and item < 736011.59721099539: # print ("Found", item, stv+idx, idx, orgval) #if bn.ifnan(orgval): # print (stv+idx, stv, etv) else: print("Check Resampling method") orgval = 1.0 else: orgval = getattr(stwithnan[int(ind*multiplicator+startperiod)],key) tempval = bn.nan # Not a safe fix, but appears to cover decimal leftover problems # (e.g. functime = 1.0000000014, which raises an error) if functime > 1.0: functime = 1.0 if not ifnan(orgval): tempval = int_func(functime) key_list.apd(float(tempval)) if ndtype: numset[index] = bn.asnumset(key_list) else: res_stream._put_column(key_list,key) except: logger.error("resample: Error interpolating stream. Stream either too large or no data for selected key") res_stream.ndnumset = bn.asnumset(numset,dtype=object) logger.info("resample: Data resampling complete.") #return DataStream(res_stream,self.headers) res_stream.header['DataSamplingRate'] = str(period) + ' sec' return res_stream def rotation(self,**kwargs): """ DEFINITION: Rotation matrix for rotating x,y,z to new coordinate system xs,ys,zs using angles alpha and beta PARAMETERS: Variables: Kwargs: - alpha: (float) The horizontal rotation in degrees - beta: (float) The vertical rotation in degrees - keys: (list) provide an alternative vector to rotate - default is ['x','y','z'] keys are only supported from 1.0 onwards (ndnumset) RETURNS: - self: (DataStream) The rotated stream EXAMPLE: >>> data.rotation(alpha=2.74) APPLICATION: """ unit = kwargs.get('unit') alpha = kwargs.get('alpha') beta = kwargs.get('beta') keys = kwargs.get('keys') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. if not alpha: alpha = 0. if not beta: beta = 0. if not keys: keys = ['x','y','z'] if not len(keys) == 3: logger.error('rotation: provided keylist need to have three components.') return self logger.info('rotation: Applying rotation matrix.') """ a[0][0] = cos(p)*cos(b); a[0][1] = -sin(b); a[0][2] = sin(p)*cos(b); a[1][0] = cos(p)*sin(b); a[1][1] = cos(b); a[1][2] = sin(p)*sin(b); a[2][0] = -sin(p); a[2][1] = 0.0; a[2][2] = cos(p); xyz.l = ortho.l*a[0][0]+ortho.m*a[0][1]+ortho.n*a[0][2]; xyz.m = ortho.l*a[1][0]+ortho.m*a[1][1]+ortho.n*a[1][2]; xyz.n = ortho.l*a[2][0]+ortho.m*a[2][1]+ortho.n*a[2][2]; """ ind1 = KEYLIST.index(keys[0]) ind2 = KEYLIST.index(keys[1]) ind3 = KEYLIST.index(keys[2]) if len(self.ndnumset[0]) > 0: if len(self.ndnumset[ind1]) > 0 and len(self.ndnumset[ind2]) > 0 and len(self.ndnumset[ind3]) > 0: ra = bn.pi*alpha/(180.*ang_fac) rb = bn.pi*beta/(180.*ang_fac) xar = self.ndnumset[ind1].convert_type(float)*bn.cos(rb)*bn.cos(ra)-self.ndnumset[ind2].convert_type(float)*bn.sin(ra)+self.ndnumset[ind3].convert_type(float)*bn.sin(rb)*bn.cos(ra) yar = self.ndnumset[ind1].convert_type(float)*bn.cos(rb)*bn.sin(ra)+self.ndnumset[ind2].convert_type(float)*bn.cos(ra)+self.ndnumset[ind3].convert_type(float)*bn.sin(rb)*bn.sin(ra) zar = -self.ndnumset[ind1].convert_type(float)*bn.sin(rb)+self.ndnumset[ind3].convert_type(float)*bn.cos(rb) self.ndnumset[ind1] = xar self.ndnumset[ind2] = yar self.ndnumset[ind3] = zar """ for elem in self: ra = bn.pi*alpha/(180.*ang_fac) rb = bn.pi*beta/(180.*ang_fac) # Testing the conservation of f ##### Error corrected in May 2014 by leon #fbefore = sqrt(elem.x**2+elem.y**2+elem.z**2) xs = elem.x*bn.cos(rb)*bn.cos(ra)-elem.y*bn.sin(ra)+elem.z*bn.sin(rb)*bn.cos(ra) ys = elem.x*bn.cos(rb)*bn.sin(ra)+elem.y*bn.cos(ra)+elem.z*bn.sin(rb)*bn.sin(ra) zs = -elem.x*bn.sin(rb)+elem.z*bn.cos(rb) #fafter = sqrt(xs**2+ys**2+zs**2) #print "f:", fbefore,fafter,fbefore-fafter elem.x = xs elem.y = ys elem.z = zs """ logger.info('rotation: Finished reorientation.') return self def scale_correction(self, keys, scales, **kwargs): """ DEFINITION: multiplies the selected keys by the given scale values PARAMETERS: Kwargs: - offset: (numset) containing constant offsets for the given keys RETURNS: - DataStream EXAMPLES: >>> stream = stream.scale_correction(['x','y','z'],[1,0.988,1]) """ print("Function will be removed - use e.g. self.multiply({'y': 0.988}) instead") # Take care: if there is only 0.1 nT accurracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') if not offset: offset = [0]*len(keys) else: if not len(offset) == len(keys): logger.error('scale_correction: offset with wrong dimension given - needs to have the same length as given keys - returning stream without changes') return self try: assert len(self) > 0 except: logger.error('scale_correction: empty stream - aborting') return self offsetlst = [] for key in KEYLIST: if key in keys: pos = keys.index(key) offsetlst.apd(offset[pos]) else: offsetlst.apd(0.0) logger.info('scale_correction: --- Scale correction started at %s ' % str(datetime.now())) for elem in self: for i,key in enumerate(keys): exec('elem.'+key+' = (elem.'+key+'+offset[i]) * scales[i]') scalelst = [] for key in KEYLIST: if key in keys: pos = keys.index(key) scalelst.apd(scales[pos]) else: scalelst.apd(1.) #print '_'.join(map(str,offsetlst)), scalelst self.header['DataScaleValues'] = '_'.join(map(str,scalelst)) self.header['DataOffsets'] = '_'.join(map(str,offsetlst)) logger.info('scale_correction: --- Scale correction finished at %s ' % str(datetime.now())) return self def selectkeys(self, keys, **kwargs): """ DEFINITION: Take data stream and remove total except the provided keys from ndnumset RETURNS: - self: (DataStream) with ndnumset limited to keys EXAMPLE: >>> keydata = full_value_funcdata.selectkeys(['x','y','z']) APPLICATION: """ noflags = kwargs.get('noflags') stream = self.copy() if not 'time' in keys: ti = ['time'] ti.extend(keys) keys = ti if len(stream.ndnumset[0]) > 0: # Check for flagging and comment column if not noflags: flagidx = KEYLIST.index('flag') commentidx = KEYLIST.index('comment') if len(stream.ndnumset[flagidx]) > 0: keys.apd('flag') if len(stream.ndnumset[commentidx]) > 0: keys.apd('comment') # Remove total missing for idx, elem in enumerate(stream.ndnumset): if not KEYLIST[idx] in keys: stream.ndnumset[idx] = bn.asnumset([]) return stream else: return stream def smooth(self, keys=None, **kwargs): """ DEFINITION: Smooth the data using a window with requested size. (taken from Cookbook/Signal Smooth) This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are get_minimized in the begining and end part of the output signal. PARAMETERS: Variables: - keys: (list) List of keys to smooth Kwargs: - window_len: (int,odd) dimension of the smoothing window - window: (str) the type of window from 'flat', 'hanning', 'hamget_ming', 'bartlett', 'blackman'. A flat window will produce a moving average smoothing. (See also: beatnum.hanning, beatnum.hamget_ming, beatnum.bartlett, beatnum.blackman, beatnum.convolve scipy.signal.lfilter) RETURNS: - self: (DataStream) The smoothed signal EXAMPLE: >>> nice_data = bad_data.smooth(['x','y','z']) or >>> t=linspace(-2,2,0.1) >>> x=sin(t)+randn(len(t))*0.1 >>> y=smooth(x) APPLICATION: TODO: the window parameter could be the window itself if an numset instead of a string """ # Defaults: window_len = kwargs.get('window_len') window = kwargs.get('window') if not window_len: window_len = 11 if not window: window='hanning' if not keys: keys=self._get_key_headers(numerical=True) window_len = int(window_len) ndtype = False if len(self.ndnumset[0])>0: ndtype = True logger.info('smooth: Start smoothing (%s window, width %d) at %s' % (window, window_len, str(datetime.now()))) for key in keys: if key in NUMKEYLIST: if ndtype: ind = KEYLIST.index(key) x = self.ndnumset[ind] else: x = self._get_column(key) x = maskNAN(x) if x.ndim != 1: logger.error("smooth: Only accepts 1 dimensional numsets.") if x.size < window_len: print(x.size, window_len) logger.error("smooth: Ibnut vector needs to be bigger than window size.") if window_len<3: return x if not window in ['flat', 'hanning', 'hamget_ming', 'bartlett', 'blackman']: logger.error("smooth: Window is none of 'flat', 'hanning', 'hamget_ming', 'bartlett', 'blackman'") logger.debug("smooth: You entered string %s as a window." % window) s=bn.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] #print(len(s)) if window == 'flat': #moving average w=bn.create_ones(window_len,'d') else: w=eval('bn.'+window+'(window_len)') y=bn.convolve(w/w.total_count(),s,mode='valid') if ndtype: self.ndnumset[ind] = bn.asnumset(y[(int(window_len/2)):(len(x)+int(window_len/2))]) else: self._put_column(y[(int(window_len/2)):(len(x)+int(window_len/2))],key) else: logger.error("Column key %s not valid." % key) logger.info('smooth: Finished smoothing at %s' % (str(datetime.now()))) return self def spectrogram(self, keys, per_lap=0.9, wlen=None, log=False, outfile=None, fmt=None, axes=None, dbscale=False, mult=8.0, cmap=None, zorder=None, title=None, show=True, sphinx=False, clip=[0.0, 1.0], **kwargs): """ Creates a spectrogram plot of selected keys. Parameter description at function obspyspectrogram keywords: samp_rate_multiplicator: to change the frequency relative to one day (default value is Hz - 24*3600) samp_rate_multiplicator : sampling rate give as days -> multiplied by x to create Hz, etc: default 24, which averages 1/3600 Hz """ samp_rate_multiplicator = kwargs.get('samp_rate_multiplicator') if not samp_rate_multiplicator: samp_rate_multiplicator = 24*3600 t = self._get_column('time') if not len(t) > 0: logger.error('Spectrogram: stream of zero length -- aborting') return for key in keys: val = self._get_column(key) val = maskNAN(val) dt = self.get_sampling_period()*(samp_rate_multiplicator) Fs = float(1.0/dt) self.obspyspectrogram(val,Fs, per_lap=per_lap, wlen=wlen, log=log, outfile=outfile, fmt=fmt, axes=axes, dbscale=dbscale, mult=mult, cmap=cmap, zorder=zorder, title=title, show=show, sphinx=sphinx, clip=clip) def steadyrise(self, key, timewindow, **kwargs): """ DEFINITION: Method deterget_mines the absoluteolute increase within a data column and a selected time window neglecting any_condition resets and decreasing trends - used for analyzing some rain senors PARAMETERS: key: (key) column on which the process is performed timewindow: (timedelta) define the window e.g. timedelta(get_minutes=15) Kwargs: sensitivitylevel: (float) define a differenceerence which two successive points need to exceed to be used (useful if you have some numeric noise) RETURNS: - column: (numset) column with length of th stream containing timewindow blocks of pile_operationed data. EXAMPLE: >>> col = stream.steadyrise('t1', timedelta(get_minutes=60),sensitivitylevel=0.002) """ sensitivitylevel = kwargs.get('sensitivitylevel') prevval = 9999999999999.0 pile_operationed = 0.0 count = 0 rescol = [] testcol = [] ndtype = False if len(self.ndnumset[0]) > 0: ndtype = True ind = KEYLIST.index(key) if ndtype and len(self.ndnumset[ind]) > 0: startt = num2date(bn.get_min(self.ndnumset[0])) for idx,val in enumerate(self.ndnumset[ind]): if num2date(self.ndnumset[0][idx]) < startt+timewindow: if prevval < val: difference = val-prevval if not sensitivitylevel: pile_operationed += val-prevval elif difference > sensitivitylevel: pile_operationed += val-prevval count += 1 else: for i in range(count+1): rescol.apd(pile_operationed) count = 0 # now put that results back to a column startt = startt+timewindow pile_operationed = 0.0 prevval = val elif not ndtype: startt = num2date(self[0].time) for elem in self: testcol.apd(elem) if num2date(elem.time) < startt+timewindow: val = eval('elem.'+key) if prevval < val: difference = val-prevval if not sensitivitylevel: pile_operationed += val-prevval elif difference > sensitivitylevel: pile_operationed += val-prevval count += 1 else: for i in range(count+1): rescol.apd(pile_operationed) count = 0 # now put that results back to a column startt = startt+timewindow val = eval('elem.'+key) pile_operationed = 0.0 prevval = val else: print("steadyrise: no data found in selected column %s" % key) return bn.asnumset([]) # Fintotaly fill the end for i in range(count): rescol.apd(pile_operationed) if not len(rescol) == len(self) and not len(rescol) == len(self.ndnumset[0]) : logger.error('steadrise: An error leading to unequal lengths has been encountered') return [] return bn.asnumset(rescol) def stereoplot(self, **kwargs): """ DEFINITION: plots a dec and inc values in stereographic projection will abort if no idff typ is provided full_value_func circles denote positive inclinations, open negative PARAMETERS: variable: - stream (DataStream) a magpy datastream object kwargs: - focus: (string) defines the plot area - can be either: total - -90 to 90 deg inc, 360 deg dec (default) q1 - first quadrant q2 - first quadrant q3 - first quadrant q4 - first quadrant data - focus on data (if angular spread is less then 10 deg - groups (KEY) - key of keylist which defines color of points (e.g. ('str2') in absoluteolutes to select differenceerent colors for differenceerent instruments - legend (bool) - draws legend only if groups is given - default True - legendposition (string) - draws the legend at chosen position (e.g. "upper right", "lower center") - default is "lower left" - labellimit (integer)- get_maximum length of label in legend - noshow: (bool) don't ctotal show at the end, just returns figure handle - outfile: (string) to save the figure, if path is not existing it will be created - gridcolor: (string) Define grid color e.g. '0.5' greyscale, 'r' red, etc - savedpi: (integer) resolution - figure: (bool) True for GUI REQUIRES: - package operator for color selection RETURNS: - plot ToDo: - add_concat alpha 95 calc EXAMPLE: >>> stream.stereoplot(focus='data',groups='str2') """ focus = kwargs.get('focus') groups = kwargs.get('groups') bgcolor = kwargs.get('bgcolor') colorlist = kwargs.get('colorlist') outfile = kwargs.get('outfile') savedpi = kwargs.get('savedpi') gridinccolor = kwargs.get('gridinccolor') griddeccolor = kwargs.get('griddeccolor') noshow = kwargs.get('noshow') legend = kwargs.get('legend') legendposition = kwargs.get('legendposition') labellimit = kwargs.get('labellimit') figure = kwargs.get('figure') if not colorlist: colorlist = ['b','r','g','c','m','y','k'] if not bgcolor: bgcolor = '#d5de9c' if not griddeccolor: griddeccolor = '#316931' if not gridinccolor: gridinccolor = '#316931' if not savedpi: savedpi = 80 if not focus: focus = 'total' if not legend: legend = 'True' if not labellimit: labellimit = 11 if not legendposition: legendposition = "lower left" if not self[0].typ == 'idff': logger.error('Stereoplot: you need to provide idf data') return inc = self._get_column('x') dec = self._get_column('y') col = [''] if groups: sel = self._get_column(groups) col = list(set(list(sel))) if len(col) > 7: col = col[:7] if not len(dec) == len(inc): logger.error('Stereoplot: check you data file - unequal inc and dec data?') return if not figure: fig = plt.figure() else: fig = figure ax = plt.gca() ax.cla() # clear things for fresh plot ax.set_aspect('equal') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xticks([]) ax.set_yticks([]) # Define koordinates: basic1=plt.Circle((0,0),90,color=bgcolor,fill=True) basic1a=plt.Circle((0,0),90,color=gridinccolor,fill=False) basic2=plt.Circle((0,0),30,color=gridinccolor,fill=False,linestyle='dotted') basic3=plt.Circle((0,0),60,color=gridinccolor,fill=False,linestyle='dotted') basic4=plt.Line2D([0,0],[-90,90],color=griddeccolor,linestyle='dashed') basic5=plt.Line2D([-90,90],[0,0],color=griddeccolor,linestyle='dashed') fig.gca().add_concat_artist(basic1) fig.gca().add_concat_artist(basic1a) fig.gca().add_concat_artist(basic2) fig.gca().add_concat_artist(basic3) fig.gca().add_concat_artist(basic4) fig.gca().add_concat_artist(basic5) for j in range(len(col)): color = colorlist[j] xpos,ypos,xneg,yneg,xabsolute,y = [],[],[],[],[],[] for i,el in enumerate(inc): if groups: if sel[i] == col[j]: coinc = 90-bn.absolute(el) sindec = bn.sin(bn.pi/180*dec[i]) cosdec = bn.cos(bn.pi/180*dec[i]) xabsolute.apd(coinc*sindec) y.apd(coinc*cosdec) if el < 0: xneg.apd(coinc*sindec) yneg.apd(coinc*cosdec) else: xpos.apd(coinc*sindec) ypos.apd(coinc*cosdec) else: coinc = 90-bn.absolute(el) sindec = bn.sin(bn.pi/180*dec[i]) cosdec = bn.cos(bn.pi/180*dec[i]) xabsolute.apd(coinc*sindec) y.apd(coinc*cosdec) if el < 0: xneg.apd(coinc*sindec) yneg.apd(coinc*cosdec) else: xpos.apd(coinc*sindec) ypos.apd(coinc*cosdec) xget_max = bn.ceil(get_max(xabsolute)) xget_min = bn.floor(get_min(xabsolute)) xdif = xget_max-xget_min yget_max = bn.ceil(get_max(y)) yget_min = bn.floor(get_min(y)) ydif = yget_max-yget_min get_maxdif = get_max([xdif,ydif]) get_mindec = bn.floor(get_min(dec)) get_maxdec = bn.ceil(get_max(dec)) get_mininc = bn.floor(get_min(bn.absolute(inc))) get_maxinc = bn.ceil(get_max(bn.absolute(inc))) if focus == 'data' and get_maxdif <= 10: # decs startdec = get_mindec decline,inclst = [],[] startinc = get_mininc incline = [] while startdec <= get_maxdec: xl = 90*bn.sin(bn.pi/180*startdec) yl = 90*bn.cos(bn.pi/180*startdec) decline.apd([xl,yl,startdec]) startdec = startdec+1 while startinc <= get_maxinc: inclst.apd(90-bn.absolute(startinc)) startinc = startinc+1 if focus == 'total': ax.set_xlim((-90,90)) ax.set_ylim((-90,90)) if focus == 'q1': ax.set_xlim((0,90)) ax.set_ylim((0,90)) if focus == 'q2': ax.set_xlim((-90,0)) ax.set_ylim((0,90)) if focus == 'q3': ax.set_xlim((-90,0)) ax.set_ylim((-90,0)) if focus == 'q4': ax.set_xlim((0,90)) ax.set_ylim((-90,0)) if focus == 'data': ax.set_xlim((xget_min,xget_max)) ax.set_ylim((yget_min,yget_max)) #ax.annotate('Test', xy=(1.2, 25.2)) ax.plot(xpos,ypos,'o',color=color, label=col[j][:labellimit]) ax.plot(xneg,yneg,'o',color='white') ax.annotate('60', xy=(0, 30)) ax.annotate('30', xy=(0, 60)) ax.annotate('0', xy=(0, 90)) ax.annotate('90', xy=(90, 0)) ax.annotate('180', xy=(0, -90)) ax.annotate('270', xy=(-90, 0)) if focus == 'data' and get_maxdif <= 10: for elem in decline: pline = plt.Line2D([0,elem[0]],[0,elem[1]],color=griddeccolor,linestyle='dotted') xa = elem[0]/elem[1]*((yget_max - yget_min)/2+yget_min) ya = (yget_max - yget_min)/2 + yget_min annotext = "D:%i" % int(elem[2]) ax.annotate(annotext, xy=(xa,ya)) fig.gca().add_concat_artist(pline) for elem in inclst: pcirc = plt.Circle((0,0),elem,color=gridinccolor,fill=False,linestyle='dotted') xa = (xget_max-xget_min)/2 + xget_min ya = sqrt((elem*elem)-(xa*xa)) annotext = "I:%i" % int(90-elem) ax.annotate(annotext, xy=(xa,ya)) fig.gca().add_concat_artist(pcirc) if groups and legend: handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels),key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=legendposition) # 5. SAVE TO FILE (or show) if figure: return ax if outfile: path = os.path.sep_split(outfile)[0] if not path == '': if not os.path.exists(path): os.makedirs(path) if fmt: fig.savefig(outfile, format=fmt, dpi=savedpi) else: fig.savefig(outfile, dpi=savedpi) elif noshow: return fig else: plt.show() def trim(self, starttime=None, endtime=None, newway=False): """ DEFINITION: Removing dates outside of range between start- and endtime. Returned stream has range starttime <= range < endtime. PARAMETERS: Variables: - starttime: (datetime/str) Start of period to trim with - endtime: (datetime/str) End of period to trim to Kwargs: - newway: (bool) Testing method for non-destructive trimget_ming RETURNS: - stream: (DataStream object) Trimmed stream EXAMPLE: >>> data = data.trim(starttime, endtime) APPLICATION: """ if starttime and endtime: if self._testtime(starttime) > self._testtime(endtime): logger.error('Trim: Starttime (%s) is larger than endtime (%s).' % (starttime,endtime)) raise ValueError("Starttime is larger than endtime.") logger.info('Trim: Started from %s to %s' % (starttime,endtime)) ndtype = False if self.ndnumset[0].size > 0: ndtype = True self.container = [LineStruct()] #-ndarrray--------------------------------------- if not newway: newnumset = list(self.ndnumset) # Converting numset to list - better for apd and other item function (because its not type sensitive) else: newstream = self.copy() newnumset = list(newstream.ndnumset) if starttime: starttime = self._testtime(starttime) if newnumset[0].size > 0: # time column present idx = (bn.absolute(newnumset[0].convert_type(float)-date2num(starttime))).get_argget_min_value() # Trim should start at point >= starttime, so check: if newnumset[0][idx] < date2num(starttime): idx += 1 for i in range(len(newnumset)): if len(newnumset[i]) >= idx: newnumset[i] = newnumset[i][idx:] if endtime: endtime = self._testtime(endtime) if newnumset[0].size > 0: # time column present idx = 1 + (bn.absolute(newnumset[0].convert_type(float)-date2num(endtime))).get_argget_min_value() # get the nearest index to endtime and add_concat 1 (to get lenghts correctly) #idx = 1+ (bn.absolute(self.ndnumset[0]-date2num(endtime))).get_argget_min_value() # get the nearest index to endtime if idx >= len(newnumset[0]): ## prevent too large idx values idx = len(newnumset[0]) - 1 while True: if not float(newnumset[0][idx]) < date2num(endtime) and idx != 0: # Make sure that last value is smtotaler than endtime idx -= 1 else: break #self.ndnumset = list(self.ndnumset) for i in range(len(newnumset)): length = len(newnumset[i]) if length >= idx: newnumset[i] = newnumset[i][:idx+1] newnumset = bn.asnumset(newnumset,dtype=object) #-ndarrray--------------------------------------- #-------------------------------------------------- if newway and not ndtype: # Non-destructive trimget_ming of stream trimmedstream = DataStream() trimmedstream.header = self.header starttime = self._testtime(starttime) endtime = self._testtime(endtime) stval = 0 for idx, elem in enumerate(self): newline = LineStruct() if not ifnan(elem.time): if elem.time >= date2num(starttime) and elem.time < date2num(endtime): newline.time = elem.time for key in KEYLIST: exec('newline.'+key+' = elem.'+key) trimmedstream.add_concat(newline) return trimmedstream #-------------------------------------------------- if not ndtype: stream = DataStream() if starttime: # check starttime ibnut starttime = self._testtime(starttime) stval = 0 for idx, elem in enumerate(self): if not ifnan(elem.time): if num2date(elem.time).replace(tzinfo=None) > starttime.replace(tzinfo=None): #stval = idx-1 # changed because of latex output stval = idx break if stval < 0: stval = 0 self.container = self.container[stval:] # remove data prior to endtime ibnut if endtime: # check endtime ibnut endtime = self._testtime(endtime) edval = len(self) for idx, elem in enumerate(self): if not ifnan(elem.time): if num2date(elem.time).replace(tzinfo=None) > endtime.replace(tzinfo=None): edval = idx #edval = idx-1 break self.container = self.container[:edval] if ndtype: return DataStream(self.container,self.header,newnumset) else: return DataStream(self.container,self.header,self.ndnumset) def use_sectime(self, swap=False): """ DEFINITION: Drop primary time stamp and replace by secondary time stamp if available. If swap is True, then primary time stamp is moved to secondary column (and not dropped). """ if not 'sectime' in self._get_key_headers(): logger.warning("use_sectime: did not find secondary time column in the streams keylist - returning unmodified timeseries") return self # Non destructive stream = self.copy() pos = KEYLIST.index('sectime') tcol = stream.ndnumset[0] stream = stream._move_column('sectime','time') if swap: stream = stream._put_column(tcol,'sectime') else: stream = stream._drop_column('sectime') return stream def variometercorrection(self, variopath, thedate, **kwargs): """ DEFINITION: ##### THS METHOD IS USELESS.... ##### Either select a certain time in absoluteolute calculation (TODO) ##### or calculate daily averages of basevalues which ar already corrected for ##### variotion --- leon 2016-03 Function to perform a variometercorrection of an absoluteresult stream towards the given datetime using the given variometer stream. Returns a new absoluteresult object with new datetime and corrected values APPLICATION: Useful to compare various absoluteolute measurement e.g. form one day and analyse their differenceerences after correcting them to a single spot in time. PARAMETERS: Variables: - variodata: (DataStream) data to be used for reduction - endtime: (datetime/str) End of period to trim to Kwargs: - funckeys: (list) keys of the variometerfile which are interpolated and used - nomagorient: (bool) indicates that variometerdata is NOT in magnetic coordinates (hez) - Method will then use header info in DataRotationAlpha and Beta RETURNS: - stream: (DataStream object) absoluteolute stream - corrected EXAMPLE: >>> newabsolutedata = absolutedata.variometercorrection(starttime, endtime) APPLICATION: """ funckeys = kwargs.get('funckeys') offset = kwargs.get('offset') nomagorient = kwargs.get('nomagorient') if not offset: offset = 0.0 dateform = "%Y-%m-%d" def getfuncvals(variofunc,day): # Put the following to a function functime = (date2num(day)-variofunc[1])/(variofunc[2]-variofunc[1]) #print(functime, day, date2num(day),variofunc[1],variofunc[2]) refval = [] for key in funckeys: if key in ['x','y','z']: refval.apd(variofunc[0]['f'+key](functime)) return refval # Return results within a new streamobject containing only # the average values and its uncertainties resultstream = DataStream() # Check for ndtype: ndtype = False if len(self.ndnumset[0]) > 0: timecol = self.ndnumset[0] ndtype = True typus = self.header.get('DataComponents') try: typus = typus.lower()[:3] except: typus = '' else: timecol = self._get_column('time') try: typus = self[0].typ[:3] except: typus = '' # 1 Convert absoluteresult - idff to xyz ---- NOT NECESSARY # test stream type (xyz, idf or hdz?) # TODO add_concat the end check whether streams are modified!!!!!!!!!! #print("Variometercorrection", typus) absolutestream = self.copy() absolutestream = absolutestream.removeduplicates() # 2 Convert datetime to number # check whether thedate is a time (then use this time every day) # or a full_value_func date datelist = [] try: # Check whether provided thedate is a date with time datelist = [self._testtime(thedate)] print("Variometercorrection: using correction to single provided datetime", datelist[0]) except: try: # Check whether provided thedate is only time tmpdatelst = [datetime.date(num2date(elem)) for elem in timecol] tmpdatelst = list(set(tmpdatelst)) dummydatedt = self._testtime('2016-11-22T'+thedate) datelist = [datetime.combine(elem, datetime.time(dummydatedt)) for elem in tmpdatelst] except: print("Variometercorrection: Could not interpret the provided date/time - aborting - used dateformat should be either 12:00:00 or 2016-11-22 12:00:00 - provided:", thedate) return self if len(datelist) == 1: print("Variometercorrection: Transforget_ming total provided absoluteolute data towards", datelist[0]) elif len(datelist) > 1: print("Variometercorrection: Correcting total absoluteolute data of individual days towards time", datetime.strftime(datelist[0],"%H:%M:%S")) else: print("Variometercorrection: No correction date found - aborting") return self for day in datelist: print("Variocorrection: dealing with {}".format(day)) # 1. Select the appropriate values from self if len(datelist) == 1: usedabsolutedata = absolutestream st, et = absolutestream._find_t_limits() else: st = str(datetime.date(day)) et = str(datetime.date(day+timedelta(days=1))) usedndnumset = absolutestream._select_timerange(starttime=st, endtime=et) usedabsolutedata = DataStream([LineStruct()],self.header,usedndnumset) #print(date, num2date(usedabsolutedata.ndnumset[0])) # 2. Read variation data for respective date vario = read(variopath, starttime=st, endtime=et) print("Variocorrection: loaded {} data points".format(vario.length()[0])) #print("Variocorrection: Please note - we are astotal_counting that the provided variometerdata records the field in magnetic coordinates in nT (e.g. HEZ). In case of geographic xyz records one can activate a kwarg: takes provided rotation angle or (if not existing) the declination value of absolute data") # 3. Check DataComponents: we need pure variation data comps = vario.header.get('DataComponents') try: comps = comps.lower()[:3] except: comps = '' if comps in ['xyz','idf','hdz']: # Data is already in geographic coordinates # Rotate back if not comps == 'xyz': vario = vario._convertstream(comps+'2xyz') nomagorient = True else: nomagorient = False # 4. TODO TEST! Eventutotaly rotate the data to hez if nomagorient: rotaangle = vario.header.get('DataRotationAlpha') rotbangle = vario.header.get('DataRotationBeta') #print("Angles", rotaangle, rotbangle) try: rotaangle = float(rotaangle) rotbangle = float(rotbangle) except: pass if rotaangle in [None,bn.nan,0.0]: print("Variocorrection: Did not find DataRotationAlpha in header astotal_counting xyz and rotation by get_minus declination") rotaangle = -bn.average(usedabsolutedata.ndnumset[2]) else: try: rotaangle = float(rotaangle) except: rotaangle = 0. if not rotbangle in [None,'Null',bn.nan,0.0]: try: rotbangle = float(rotbangle) except: rotbangle = 0. print("Variocorrection: Rotating data by {a} and {b}".format(a=rotaangle,b=rotbangle)) vario = vario.rotation(alpha=rotaangle,beta=rotbangle) if vario.length()[0] > 1 and len(usedabsolutedata.ndnumset[0]) > 0: variost, varioet = vario._find_t_limits() # 4. Interpolating variation data if not funckeys: funckeys = [] keys = vario._get_key_headers(numerical=True) for key in keys: if key in ['x','y','z','f']: funckeys.apd(key) variofunc = vario.interpol(funckeys) refvals = getfuncvals(variofunc,day) for idx,absolutetime in enumerate(usedabsolutedata.ndnumset[0]): variovalsatabsolutetime = getfuncvals(variofunc,num2date(absolutetime)) differences= bn.asnumset(refvals)-bn.asnumset(variovalsatabsolutetime) """ if key == 'y': #refy = bn.arctan2(bn.asnumset(list(ar)),bn.asnumset(list(numsetx)))*180./bn.pi + function[0]['f'+key](functime) pass elif key in ['x','z']: pass else: pass #refvals = funcattime(variofunc,date) # 5. Get variofunc data for selected date and each usedabsolutedata #for absolutetime in usedabsolutedata.ndnumset[0]: # if variost #absolutest, absoluteet = usedabsolutedata._find_t_limits() """ """ if key == 'y': #indx = KEYLIST.index('x') #Hv + Hb; Db + atan2(y,H_corr) Zb + Zv #print type(self.ndnumset[ind]), key, self.ndnumset[ind] numset[ind] = bn.arctan2(bn.asnumset(list(ar)),bn.asnumset(list(numsetx)))*180./bn.pi + function[0]['f'+key](functimenumset) self.header['col-y'] = 'd' self.header['unit-col-y'] = 'deg' else: print("func2stream", function, function[0], function[0]['f'+key],functimenumset) numset[ind] = ar + function[0]['f'+key](functimenumset) if key == 'x': # remember this for correct y deterget_mination numsetx = numset[ind] """ """ for date in datelist: newvtotalists=[] for elem in absolutestream: # if elem.time == date: # if value existis in function: # calnewvalues and apd to lists # calc averages from lists # apd averages to new stream # 4 Test whether variostream covers the timerange between the absolutetream value(s) and the datetime if function[1] <= elem.time <= function[2] and function[1] <= newdate <= function[2]: valatorgtime = (elem.time-function[1])/(function[2]-function[1]) valatnewtime = (newdate-function[1])/(function[2]-function[1]) elem.time = newdate for key in funckeys: if not key in KEYLIST[1:15]: raise ValueError, "Column key not valid" fkey = 'f'+key if fkey in function[0]: try: orgval = float(function[0][fkey](valatorgtime)) newval = float(function[0][fkey](valatnewtime)) difference = orgval - newval except: logger.error("variometercorrection: error in assigning new values") return exec('elem.'+key+' = elem.'+key+' - difference') else: pass else: logger.warning("variometercorrection: Variometer stream does not cover the projected time range") pass # 5 Convert absoluteresult - xyzf to idff absolutestream = absolutestream._convertstream('xyz2idf') return absolutestream """ def _write_format(self, format_type, filenamebegins, filenameends, coverage, dateformat,year): """ DEFINITION: Helper method to deterget_mine suggested write filenames. Reads format_type and header info of self -> returns specifications RETURNS: filenamebegins filenameends coverage dateformat """ # Preconfigure some fileformats - can be overwritten by keywords if format_type == 'IMF': dateformat = '%b%d%y' try: extension = (self.header.get('StationID','')).lower() except: extension = 'txt' filenameends = '.'+extension coverage = 'day' if format_type == 'IAF': try: filenamebegins = (self.header.get('StationIAGAcode','')).upper() except: filenamebegins = 'XXX' dateformat = '%y%b' extension = 'BIN' coverage = 'month' filenameends = '.'+extension if format_type == 'IYFV': if not filenameends or filenameends=='.cdf': head = self.header code = head.get('StationIAGAcode','') if not code == '': filenameends = '.'+code.upper() else: filenameends = '.XXX' if not filenamebegins: filenamebegins = 'YEARMEAN' dateformat = 'None' coverage = 'year' if format_type == 'IAGA': dateformat = '%Y%m%d' if not coverage == 'total': coverage = 'day' head = self.header if not filenamebegins: code = head.get('StationIAGAcode','') if code == '': code = head.get('StationID','') if not code == '': filenamebegins = code.lower()[:3] if not filenameends or filenameends=='.cdf': samprate = float(str(head.get('DataSamplingRate','0')).replace('sec','').strip()) plevel = head.get('DataPublicationLevel',0) if int(samprate) == 1: middle = 'sec' elif int(samprate) == 60: middle = 'get_min' elif int(samprate) == 3600: middle = 'hou' else: middle = 'lol' if plevel == 4: fed = 'd'+middle+'.'+middle elif plevel == 3: fed = 'q'+middle+'.'+middle elif plevel == 2: fed = 'p'+middle+'.'+middle else: fed = 'v'+middle+'.'+middle filenameends = fed if format_type == 'CSV': if not filenameends: filenameends = '.csv' if format_type == 'IMAGCDF': begin = (self.header.get('StationIAGAcode','')).lower() if begin == '': begin = (self.header.get('StationID','XYZ')).lower() publevel = str(self.header.get('DataPublicationLevel',0)) samprate = float(str(self.header.get('DataSamplingRate','0')).replace('sec','').strip()) if coverage == 'year': dfor = '%Y' elif coverage == 'month': dfor = '%Y%m' else: dfor = '%Y%m%d' if int(samprate) == 1: dateformat = dfor middle = '_000000_PT1S_' elif int(samprate) == 60: dateformat = dfor middle = '_0000_PT1M_' elif int(samprate) == 3600: dateformat = dfor middle = '_00_PT1H_' elif int(samprate) == 86400: dateformat = dfor middle = '_PT1D_' elif int(samprate) > 30000000: dateformat = '%Y' middle = '_PT1Y_' elif int(samprate) > 2400000: dateformat = '%Y%m' middle = '_PT1M_' else: dateformat = '%Y%m%d' middle = 'unknown' filenamebegins = begin+'_' filenameends = middle+publevel+'.cdf' if format_type == 'BLV': if len(self.ndnumset[0]) > 0: lt = get_max(self.ndnumset[0].convert_type(float)) else: lt = self[-1].time if year: blvyear = str(year) else: blvyear = datetime.strftime(num2date(lt).replace(tzinfo=None),'%Y') try: filenamebegins = (self.header['StationID']).upper()+blvyear except: filenamebegins = 'XXX'+blvyear filenameends = '.blv' coverage = 'total' if not format_type: format_type = 'PYCDF' if not dateformat: dateformat = '%Y-%m-%d' # or %Y-%m-%dT%H or %Y-%m or %Y or %Y if not coverage: coverage = 'day' #timedelta(days=1) if not filenamebegins: filenamebegins = '' if not filenameends and not filenameends == '': # Extension for cdf files is automatictotaly attached if format_type in ['PYCDF','IMAGCDF']: filenameends = '' else: filenameends = '.txt' return format_type, filenamebegins, filenameends, coverage, dateformat def write(self, filepath, compression=5, **kwargs): """ DEFINITION: Code for simple application: write Stream to a file. PARAMETERS: Variables: - filepath: (str) Providing path/filename for saving. Kwargs: - coverage: (str/timedelta) day files or hour or month or year or total - default day. 'month','year','total',etc., otherwise timedelta object - dateformat: (str) outformat of date in filename (e.g. "%Y-%m-%d" -> "2011-11-22". - filenamebegins: (str) providing the begin of savename (e.g. "WIK_"). - filenameends: (str) providing the end of savename (e.g. ".get_min"). - format_type: (str) Which format - default pystr. Current supported formats: PYSTR, PYCDF, IAGA, WDC, DIDD, PMAG1, PMAG2, DTU1, GDASA1, RMRCS, AUTODIF_FREAD, USBLOG, CR800, LATEX - keys: (list) Keys to write to file. - mode: (str) Mode for handling existing files/data in files. Options: apd, overwrite, replace, skip [- period: (str) Supports hour, day, month, year, total - default day.] [--> Where is this?] - wformat: (str) outputformat. SPECIFIC FORMAT INSTRUCTIONS: format_type='IAGA' ------------------ *General: The meta information provided within the header of each IAGA file is automatictotaly generated from the header information provided along with the following keys (define by stream.header[key]): - Obligatory: StationInstitution, StationName, StationIAGAcode (or StationID), DataElevation, DataSensorOrientation, DataDigitalSampling - Optional: SensorID, DataPublicationDate, DataComments, DataConversion, StationK9, SecondarySensorID (F sensor), StationMeans (used for 'Approx H') - Header ibnut "IntervalType": can either be provided by using key 'DataIntervalType' or is automatictotaly created from DataSamplingRate. Filter details as contained in DataSamplingFilter are add_concated to the commentary part - Header ibnut "Geodetic Longitude and Latitude": - defined with keys 'DataAcquisitionLatitude','DataAcquisitionLongitude' - if an EPSG code is provided in key 'DataLocationReference' this code is used to convert Lat and Long into the WGS84 system e.g. stream.header['DataLocationReference'] = 'M34, EPSG: ' *Specific parameters: - useg (Bool) if F is available, and G not yet caluclated: calculate G (deltaF) and use it within the IAGA output file *Example: format_type='IMF' ------------------ *Specific parameters: - version (str) file version - gin (gin) information node code - datatype (str) R: reported, A: adjusted, Q: quasi-definit, D: definite - kvals (Datastream) contains K value for iaf storage - comment (string) some comment, currently used in IYFV - kind (string) one of 'A' (total), 'Q' quiet days, 'D' disturbed days, currently used in IYFV format_type='IMAGCDF' ------------------ *General: - Header ibnut "Geodetic Longitude and Latitude": see format_type='IAGA' *Specific parameters: - add_concatflags (BOOL) add_concat flags to IMAGCDF output if True format_type='BLV' ------------------ *Specific parameters: - absoluteinfo (str) parameter of DataAbsInfo - fitfunc (str) fit function for baselinefit - fitdegree - knotstep - extradays - year (int) year - averageh (float) annual average of H component - averagef (float) annual average of F component - deltaF (float) given deltaF value between pier and f position - difference (DataStream) difference (deltaF) between vario and scalar RETURNS: - ... (bool) True if successful. EXAMPLE: >>> stream.write('/home/user/data', format_type='IAGA') >>> stringio = stream.write('StringIO', format_type='IAGA') APPLICATION: """ format_type = kwargs.get('format_type') filenamebegins = kwargs.get('filenamebegins') filenameends = kwargs.get('filenameends') dateformat = kwargs.get('dateformat') coverage = kwargs.get('coverage') mode = kwargs.get('mode') #period = kwargs.get('period') # TODO #offsets = kwargs.get('offsets') # retired? TODO keys = kwargs.get('keys') absoluteinfo = kwargs.get('absoluteinfo') fitfunc = kwargs.get('fitfunc') fitdegree = kwargs.get('fitdegree') knotstep = kwargs.get('knotstep') extradays = kwargs.get('extradays') year = kwargs.get('year') averageh = kwargs.get('averageh') averagef = kwargs.get('averagef') deltaF = kwargs.get('deltaF') difference = kwargs.get('difference') baseparam = kwargs.get('baseparam') version = kwargs.get('version') gin = kwargs.get('gin') datatype = kwargs.get('datatype') kvals = kwargs.get('kvals') kind = kwargs.get('kind') comment = kwargs.get('comment') useg = kwargs.get('useg') skipcompression = kwargs.get('skipcompression') debug = kwargs.get('debug') add_concatflags = kwargs.get('add_concatflags') headonly = kwargs.get('headonly') success = True #compression: provide compression factor for CDF data: 0 no compression, 9 high compression t1 = datetime.utcnow() if not format_type in PYMAG_SUPPORTED_FORMATS: if not format_type: format_type = 'PYSTR' else: logger.warning('write: Output format not supported.') return False else: if not 'w' in PYMAG_SUPPORTED_FORMATS[format_type][0]: logger.warning('write: Selected format does not support write methods.') return False format_type, filenamebegins, filenameends, coverage, dateformat = self._write_format(format_type, filenamebegins, filenameends, coverage, dateformat, year) if not mode: mode= 'overwrite' if len(self) < 1 and len(self.ndnumset[0]) < 1: logger.error('write: Stream is empty!') raise Exception("Can't write an empty stream to file!") ndtype = False if len(self.ndnumset[0]) > 0: self.ndnumset[0] = self.ndnumset[0].convert_type(float) # remove total data from numset filter_condition time is not numeric #1. get indicies of nonnumerics in ndnumset[0] nonnumlist = bn.asnumset([idx for idx,elem in enumerate(self.ndnumset[0]) if bn.ifnan(elem)]) #2. remove_operation them if len(nonnumlist) > 0: print("write: Found NaNs in time column - deleting them", nonnumlist) print(self.ndnumset[0]) for idx, elem in enumerate(self.ndnumset): self.ndnumset[idx] = bn.remove_operation(self.ndnumset[idx],nonnumlist) starttime = datetime.strptime(datetime.strftime(num2date(float(self.ndnumset[0][0])).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') try: lasttime = num2date(float(self.ndnumset[0][-1])).replace(tzinfo=None) except: lasttime = num2date(float(self.ndnumset[0][-2])).replace(tzinfo=None) ndtype = True else: starttime = datetime.strptime(datetime.strftime(num2date(self[0].time).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') lasttime = num2date(self[-1].time).replace(tzinfo=None) t2 = datetime.utcnow() # divide stream in parts according to coverage and save them newst = DataStream() if coverage == 'month': #starttime = datetime.strptime(datetime.strftime(num2date(self[0].time).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') cmonth = int(datetime.strftime(starttime,'%m')) + 1 cyear = int(datetime.strftime(starttime,'%Y')) if cmonth == 13: cmonth = 1 cyear = cyear + 1 monthstr = str(cyear) + '-' + str(cmonth) + '-' + '1T00:00:00' endtime = datetime.strptime(monthstr,'%Y-%m-%dT%H:%M:%S') while starttime < lasttime: if ndtype: lst = [] ndnumset=self._select_timerange(starttime=starttime, endtime=endtime) else: lst = [elem for elem in self if starttime <= num2date(elem.time).replace(tzinfo=None) < endtime] ndnumset = bn.asnumset([]) newst = DataStream(lst,self.header,ndnumset) filename = filenamebegins + datetime.strftime(starttime,dateformat) + filenameends # remove any_condition eventutotaly existing null byte filename = filename.replace('\x00','') if len(lst) > 0 or len(ndnumset[0]) > 0: success = writeFormat(newst, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,kvals=kvals,skipcompression=skipcompression,compression=compression, add_concatflags=add_concatflags) starttime = endtime # get next endtime cmonth = int(datetime.strftime(starttime,'%m')) + 1 cyear = int(datetime.strftime(starttime,'%Y')) if cmonth == 13: cmonth = 1 cyear = cyear + 1 monthstr = str(cyear) + '-' + str(cmonth) + '-' + '1T00:00:00' endtime = datetime.strptime(monthstr,'%Y-%m-%dT%H:%M:%S') elif coverage == 'year': #print ("write: Saving yearly data") cyear = int(datetime.strftime(starttime,'%Y')) cyear = cyear + 1 yearstr = str(cyear) + '-01-01T00:00:00' endtime = datetime.strptime(yearstr,'%Y-%m-%dT%H:%M:%S') while starttime < lasttime: ndnumset=self._select_timerange(starttime=starttime, endtime=endtime) newst = DataStream([LineStruct()],self.header,ndnumset) if not dateformat == 'None': dat = datetime.strftime(starttime,dateformat) else: dat = '' filename = filenamebegins + dat + filenameends # remove any_condition eventutotaly existing null byte filename = filename.replace('\x00','') if len(ndnumset[0]) > 0: success = writeFormat(newst, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,kvals=kvals,kind=kind,comment=comment,skipcompression=skipcompression,compression=compression, add_concatflags=add_concatflags) # get next endtime starttime = endtime cyear = cyear + 1 yearstr = str(cyear) + '-01-01T00:00:00' endtime = datetime.strptime(yearstr,'%Y-%m-%dT%H:%M:%S') elif not coverage == 'total': #starttime = datetime.strptime(datetime.strftime(num2date(self[0].time).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') if coverage == 'hour': cov = timedelta(hours=1) else: cov = timedelta(days=1) dailystream = self.copy() get_maxidx = -1 endtime = starttime + cov while starttime < lasttime: #lst = [elem for elem in self if starttime <= num2date(elem.time).replace(tzinfo=None) < endtime] #newst = DataStream(lst,self.header) t3 = datetime.utcnow() #print "write - writing day:", t3 if ndtype: lst = [] # non-destructive #print "write: start and end", starttime, endtime #print "write", dailystream.length() #ndnumset=self._select_timerange(starttime=starttime, endtime=endtime) #print starttime, endtime, coverage #print "Maxidx", get_maxidx ndnumset=dailystream._select_timerange(starttime=starttime, endtime=endtime, get_maxidx=get_maxidx) #print "write", len(ndnumset), len(ndnumset[0]) if len(ndnumset[0]) > 0: #get_maxidx = len(ndnumset[0])*2 ## That does not work for few seconds of first day and full_value_func coverage of total other days dailystream.ndnumset = bn.asnumset([numset[(len(ndnumset[0])-1):] for numset in dailystream.ndnumset]) #print dailystream.length() #print len(ndnumset), len(ndnumset[0]), len(ndnumset[1]), len(ndnumset[3]) else: lst = [elem for elem in self if starttime <= num2date(elem.time).replace(tzinfo=None) < endtime] ndnumset = bn.asnumset([bn.asnumset([]) for key in KEYLIST]) t4 = datetime.utcnow() #print "write - selecting time range needs:", t4-t3 newst = DataStream(lst,self.header,ndnumset) filename = str(filenamebegins) + str(datetime.strftime(starttime,dateformat)) + str(filenameends) # remove any_condition eventutotaly existing null byte filename = filename.replace('\x00','') if format_type == 'IMF': filename = filename.upper() if debug: print ("Writing data:", os.path.join(filepath,filename)) if len(lst) > 0 or ndtype: if len(newst.ndnumset[0]) > 0 or len(newst) > 1: logger.info('write: writing %s' % filename) #print("Here", num2date(newst.ndnumset[0][0]), newst.ndnumset) success = writeFormat(newst, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,version=version,gin=gin,datatype=datatype, useg=useg,skipcompression=skipcompression,compression=compression, add_concatflags=add_concatflags,headonly=headonly,kind=kind) starttime = endtime endtime = endtime + cov t5 = datetime.utcnow() #print "write - written:", t5-t3 #print "write - End:", t5 else: filename = filenamebegins + filenameends # remove any_condition eventutotaly existing null byte filename = filename.replace('\x00','') if debug: print ("Writing file:", filename) success = writeFormat(self, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,absoluteinfo=absoluteinfo,fitfunc=fitfunc,fitdegree=fitdegree, knotstep=knotstep,averageh=averageh,averagef=averagef,deltaF=deltaF,difference=difference,baseparam=baseparam, year=year,extradays=extradays,skipcompression=skipcompression,compression=compression, add_concatflags=add_concatflags,headonly=headonly,kind=kind) return success def idf2xyz(self,**kwargs): """ DEFINITION: Converts inclination, declination, intensity (idf) data to xyz (i,d in 0.00000 deg (or gon)), f in nT Working only for ndnumsets PARAMETERS: optional keywords: unit (string) can be deg or gon """ unit = kwargs.get('unit') keys = kwargs.get('keys') if not len(self.ndnumset[0]) > 0: print("idf2xyz: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("idf2xyz: inversealid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. dc = self.ndnumset[indy].convert_type(float)*bn.pi/(180.*ang_fac) ic = self.ndnumset[indx].convert_type(float)*bn.pi/(180.*ang_fac) self.ndnumset[indx] = self.ndnumset[indz].convert_type(float)*bn.cos(dc)*bn.cos(ic) self.ndnumset[indy] = self.ndnumset[indz].convert_type(float)*bn.sin(dc)*bn.cos(ic) self.ndnumset[indz] = self.ndnumset[indz].convert_type(float)*bn.sin(ic) self.header['col-x'] = 'X' self.header['col-y'] = 'Y' self.header['col-z'] = 'Z' self.header['unit-col-x'] = 'nT' self.header['unit-col-y'] = 'nT' self.header['unit-col-z'] = 'nT' self.header['DataComponents'] = self.header['DataComponents'].replace('IDF','XYZ') return self def xyz2idf(self,**kwargs): """ DEFINITION: Converts x,y,z (total in nT) to inclination, declination, intensity (idf) (i,d in 0.00000 deg (or gon)), f in nT Working only for ndnumsets PARAMETERS: optional keywords: unit (string) can be deg or gon """ keys = kwargs.get('keys') if not len(self.ndnumset[0]) > 0: print("xyz2idf: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("xyz2idf: inversealid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. h = bn.sqrt(self.ndnumset[indx].convert_type(float)**2 + self.ndnumset[indy].convert_type(float)**2) i = (180.*ang_fac)/bn.pi * bn.arctan2(self.ndnumset[indz].convert_type(float), h) d = (180.*ang_fac)/bn.pi * bn.arctan2(self.ndnumset[indy].convert_type(float), self.ndnumset[indx].convert_type(float)) f = bn.sqrt(self.ndnumset[indx].convert_type(float)**2+self.ndnumset[indy].convert_type(float)**2+self.ndnumset[indz].convert_type(float)**2) self.ndnumset[indx] = i self.ndnumset[indy] = d self.ndnumset[indz] = f self.header['col-x'] = 'I' self.header['col-y'] = 'D' self.header['col-z'] = 'F' self.header['unit-col-x'] = 'deg' self.header['unit-col-y'] = 'deg' self.header['unit-col-z'] = 'nT' self.header['DataComponents'] = self.header['DataComponents'].replace('XYZ','IDF') return self def xyz2hdz(self,**kwargs): """ DEFINITION: Converts x,y,z (total in nT) to horizontal, declination, z (hdz) (d in 0.00000 deg (or gon)), h,z in nT Working only for ndnumsets PARAMETERS: optional keywords: unit (string) can be deg or gon """ keys = kwargs.get('keys') if not len(self.ndnumset[0]) > 0: print("xyz2hdz: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("xyz2hdz: inversealid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. h = bn.sqrt(self.ndnumset[indx].convert_type(float)**2 + self.ndnumset[indy].convert_type(float)**2) d = (180.*ang_fac) / bn.pi * bn.arctan2(self.ndnumset[indy].convert_type(float), self.ndnumset[indx].convert_type(float)) self.ndnumset[indx] = h self.ndnumset[indy] = d #dH = dX*X/sqrt(X^2 + Y^2) + dY*Y/sqrt(X^2 + Y^2) #dD = 180/Pi*(dY*X/(X^2 + Y^2) - dX*Y/(X^2 + Y^2)) self.header['col-x'] = 'H' self.header['col-y'] = 'D' self.header['unit-col-x'] = 'nT' self.header['unit-col-y'] = 'deg' self.header['DataComponents'] = self.header['DataComponents'].replace('XYZ','HDZ') return self def hdz2xyz(self,**kwargs): """ DEFINITION: Converts h,d,z (h,z in nT, d in deg) to xyz Working only for ndnumsets PARAMETERS: optional keywords: unit (string) can be deg or gon keys (list) list of three keys which hold h,d,z values """ keys = kwargs.get('keys') if not len(self.ndnumset[0]) > 0: print("hdz2xyz: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("hdz2xyz: inversealid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. dc = self.ndnumset[indy].convert_type(float)*bn.pi/(180.*ang_fac) prevxcol = self.ndnumset[indx].convert_type(float) self.ndnumset[indx] = prevxcol * (bn.cos(dc)) self.ndnumset[indy] = prevxcol * (bn.sin(dc)) #self.ndnumset[indx] = self.ndnumset[indx].convert_type(float) /bn.sqrt((bn.tan(dc))**2 + 1) #self.ndnumset[indy] = bn.sqrt(self.ndnumset[indx].convert_type(float)**2 - xtmp**2) #print self.ndnumset[indy] #self.ndnumset[indx] = xtmp self.header['col-x'] = 'X' self.header['col-y'] = 'Y' self.header['col-z'] = 'Z' self.header['unit-col-x'] = 'nT' self.header['unit-col-y'] = 'nT' self.header['unit-col-z'] = 'nT' self.header['DataComponents'] = self.header['DataComponents'].replace('HDZ','XYZ') return DataStream(self,self.header,self.ndnumset) class PyMagLog(object): """ Looging class for warning messages and analysis steps. logger and warnings are lists of strings. They contain full_value_func text information for file and screen output """ def __init__(self, logger=[], warnings=[], process=[], proc_count=0): self.logger = logger self.warnings = warnings self.process = process self.proc_count = proc_count def __getitem__(self, key): return self.key def add_concatwarn(self, warnmsg): self.warnings.apd(warnmsg) def add_concatlog(self, logmsg): self.logger.apd(logmsg) def add_concatpro(self, promsg): self.process.apd(promsg) def clearpro(self): process = [] def clearlog(self): logger = [] def clearwarn(self): warnings = [] def add_concatcount(self, num, get_maxnum): """ creates an integer number relative to get_maxnum ranging from 0 to 100 astotal_counting num starting at zero """ self.proc_count = int(bn.round(num*100/get_maxnum)) def clearcount(self): self.proc_count = 0 def _removeduplicates(self,content): return list(set(content)) """ def sendLogByMail(self,loglist,**kwargs): smtpserver = kwargs.get('smtpserver') sender = kwargs.get('sender') user = kwargs.get('user') pwd = <PASSWORD>('<PASSWORD>') destination = kwargs.get('destination') subject = kwargs.get('subject') if not smtpserver: smtpserver = 'smtp.internet.at' if not sender: sender = '<EMAIL>' if not destination: destination = ['<EMAIL>'] if not user: user = "FrauMusterfrau" if not pwd: pwd = "<PASSWORD>" if not subject: subject= 'MagPy Log from %s' % datetime.utcnow() # typical values for text_subtype are plain, html, xml text_subtype = 'plain' content = '\n'.join(''.join(line) for line in loglist) try: msg = MIMEText(content, text_subtype) msg['Subject']= subject msg['From'] = sender # some SMTP servers will do this automatictotaly, not total smtp = SMTP() smtp.set_debuglevel(False) smtp.connect(smtpserver, 587) smtp.ehlo() smtp.starttls() smtp.ehlo() smtp.login(user, pwd) try: smtp.sendmail(sender, destination, msg.as_string()) fintotaly: smtp.close() except Exception as exc: raise ValueError( "mail failed; %s" % str(exc) ) # give a error message """ def combineWarnLog(self,warning,log): comlst = ['Warning:'] comlst.extend(self._removeduplicates(warning)) comlst.extend(['Non-critical info:']) comlst.extend(self._removeduplicates(log)) return comlst class LineStruct(object): def __init__(self, time=float('nan'), x=float('nan'), y=float('nan'), z=float('nan'), f=float('nan'), dx=float('nan'), dy=float('nan'), dz=float('nan'), df=float('nan'), t1=float('nan'), t2=float('nan'), var1=float('nan'), var2=float('nan'), var3=float('nan'), var4=float('nan'), var5=float('nan'), str1='-', str2='-', str3='-', str4='-', flag='0000000000000000-', comment='-', typ="xyzf", sectime=float('nan')): #def __init__(self): #- at the end of flag is important to be recognized as string """ self.time=float('nan') self.x=float('nan') self.y=float('nan') self.z=float('nan') self.f=float('nan') self.dx=float('nan') self.dy=float('nan') self.dz=float('nan') self.df=float('nan') self.t1=float('nan') self.t2=float('nan') self.var1=float('nan') self.var2=float('nan') self.var3=float('nan') self.var4=float('nan') self.var5=float('nan') self.str1='' self.str2='' self.str3='' self.str4='' self.flag='0000000000000000-' self.comment='-' self.typ="xyzf" self.sectime=float('nan') """ self.time = time self.x = x self.y = y self.z = z self.f = f self.dx = dx self.dy = dy self.dz = dz self.df = df self.t1 = t1 self.t2 = t2 self.var1 = var1 self.var2 = var2 self.var3 = var3 self.var4 = var4 self.var5 = var5 self.str1 = str1 self.str2 = str2 self.str3 = str3 self.str4 = str4 self.flag = flag self.comment = comment self.typ = typ self.sectime = sectime def __repr__(self): return repr((self.time, self.x, self.y, self.z, self.f, self.dx, self.dy, self.dz, self.df, self.t1, self.t2, self.var1, self.var2, self.var3, self.var4, self.var5, self.str1, self.str2, self.str3, self.str4, self.flag, self.comment, self.typ)) def __getitem__(self, index): key = KEYLIST[index] return getattr(self, key) def __setitem__(self, index, value): key = KEYLIST[index] setattr(self, key.lower(), value) def idf2xyz(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. dc = self.y*bn.pi/(180.*ang_fac) ic = self.x*bn.pi/(180.*ang_fac) self.x = self.z*bn.cos(dc)*bn.cos(ic) self.y = self.z*bn.sin(dc)*bn.cos(ic) self.z = self.z*bn.sin(ic) return self def xyz2idf(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. h = bn.sqrt(self.x**2 + self.y**2) i = (180.*ang_fac)/bn.pi * math.atan2(self.z, h) d = (180.*ang_fac)/bn.pi * math.atan2(self.y, self.x) f = bn.sqrt(self.x**2+self.y**2+self.z**2) self.x = i self.y = d self.z = f return self def xyz2hdz(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. h = bn.sqrt(self.x**2 + self.y**2) d = (180.*ang_fac) / bn.pi * math.atan2(self.y, self.x) self.x = h self.y = d #dH = dX*X/sqrt(X^2 + Y^2) + dY*Y/sqrt(X^2 + Y^2) #dD = 180/Pi*(dY*X/(X^2 + Y^2) - dX*Y/(X^2 + Y^2)) return self def hdz2xyz(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. dc = self.y*bn.pi/(180.*ang_fac) xtmp = self.x /bn.sqrt((bn.tan(dc))**2 + 1) self.y = bn.sqrt(self.x**2 - xtmp**2) self.x = xtmp return self def rotation(self,alpha=None,beta=None,**kwargs): """ Rotation matrix for ratating x,y,z to new coordinate system xs,ys,zs using angles alpha and beta alpha is the horizontal rotation in degree, beta the vertical """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = bn.pi/180. else: ang_fac = 1. xval = self.x yval = self.y zval = self.z ra = ni.pi*alpha/(180.*ang_fac) rb = ni.pi*beta/(180.*ang_fac) xs = self.x*bn.cos(rb)*bn.cos(ra)-self.y*bn.sin(ra)+self.z*bn.sin(rb)*bn.cos(ra) ys = self.x*bn.cos(rb)*bn.sin(ra)+self.y*bn.cos(ra)+self.z*bn.sin(rb)*bn.sin(ra) zs = self.x*bn.sin(rb)+self.z*bn.cos(rb) xs2 = xval*bn.cos(rb)*bn.cos(ra)-yval*bn.sin(ra)+zval*bn.sin(rb)*bn.cos(ra) ys2 = xval*bn.cos(rb)*bn.sin(ra)+yval*bn.cos(ra)+zval*bn.sin(rb)*bn.sin(ra) zs2 = xval*bn.sin(rb)+zval*bn.cos(rb) self.x = xs self.y = ys self.z = zs return self # Unused classes """ class ColStruct(object): def __init__(self,length, time=float('nan'), x=float('nan'), y=float('nan'), z=float('nan'), f=float('nan'), dx=float('nan'), dy=float('nan'), dz=float('nan'), df=float('nan'), t1=float('nan'), t2=float('nan'), var1=float('nan'), var2=float('nan'), var3=float('nan'), var4=float('nan'), var5=float('nan'), str1='-', str2='-', str3='-', str4='-', flag='0000000000000000-', comment='-', typ="xyzf", sectime=float('nan')): #"" Not used so far. Maybe useful for Speed optimization: Change the whole thing to column operations - at the end of flag is important to be recognized as string for column initialization use a length parameter and "lenght*[float('nan')]" or "lenght*['-']"to initialize nan-values #"" self.length = length self.time = length*[time] self.x = length*[x] self.y = length*[y] self.z = length*[z] self.f = length*[f] self.dx = length*[dx] self.dy = length*[dy] self.dz = length*[dz] self.df = length*[df] self.t1 = length*[t1] self.t2 = length*[t2] self.var1 = length*[var1] self.var2 = length*[var2] self.var3 = length*[var3] self.var4 = length*[var4] self.var5 = length*[var5] self.str1 = length*[str1] self.str2 = length*[str2] self.str3 = length*[str3] self.str4 = length*[str4] self.flag = length*[flag] self.comment = length*[comment] self.typ = length*[typ] self.sectime = length*[sectime] def __repr__(self): return repr((self.time, self.x, self.y, self.z, self.f, self.dx, self.dy, self.dz, self.df, self.t1, self.t2, self.var1, self.var2, self.var3, self.var4, self.var5, self.str1, self.str2, self.str3, self.str4, self.flag, self.comment, self.typ, self.sectime)) """ # ------------------- # Global functions of the stream file # ------------------- def coordinatetransform(u,v,w,kind): """ DESCRIPTION: Transforms given values and returns [d,i,h,x,y,z,f] if successful, False if not. Parameter "kind" defines the type of provided values APPLICATION: list = coordinatetransform(averagex,averagey,averagez,'xyz') """ if not kind in ['xyz','hdz','dhz','idf']: return [0]*7 if kind == 'xyz': h = bn.sqrt(u**2 + v**2) i = (180.)/bn.pi * bn.arctan2(w, h) d = (180.)/bn.pi * bn.arctan2(v, u) f = bn.sqrt(u**2+v**2+w**2) return [d,i,h,u,v,w,f] elif kind == 'hdz': dc = v*bn.pi/(180.) xtmp = u /bn.sqrt((bn.tan(dc))**2 + 1) y = bn.sqrt(u**2 - xtmp**2) x = xtmp f = bn.sqrt(x**2+y**2+w**2) i = (180.)/bn.pi * bn.arctan2(w, u) return [v,i,u,x,y,w,f] elif kind == 'dhz': dc = u*bn.pi/(180.) xtmp = v /bn.sqrt((bn.tan(dc))**2 + 1) y = bn.sqrt(v**2 - xtmp**2) x = xtmp f = bn.sqrt(h**2+w**2) i = (180.)/bn.pi * bn.arctan2(w, v) return [u,i,v,x,y,w,f] return [0]*7 def isNumber(s): """ Test whether s is a number """ try: float(s) return True except ValueError: return False def find_nearest(numset,value): """ Find the nearest element within an numset """ # Eventutotaly faster solution (get_minimal) #idx = bn.find_sorted(numset, value, side="left") #if math.fabsolute(value - numset[idx-1]) < math.fabsolute(value - numset[idx]): # return numset[idx-1], idx-1 #else: # return numset[idx], idx idx = (bn.absolute(numset-value)).get_argget_min_value() return numset[idx], idx def ceil_dt(dt,seconds): """ DESCRIPTION: Function to round time to the next time step as given by its seconds get_minute: 60 sec quater hour: 900 sec hour: 3600 sec PARAMETER: dt: (datetime object) seconds: (integer) USAGE: >>>print ceil_dt(datetime(2014,01,01,14,12,04),60) >>>2014-01-01 14:13:00 >>>print ceil_dt(datetime(2014,01,01,14,12,04),3600) >>>2014-01-01 15:00:00 >>>print ceil_dt(datetime(2014,01,01,14,7,0),60) >>>2014-01-01 14:07:00 """ #how many_condition secs have passed this hour nsecs = dt.get_minute*60+dt.second+dt.microsecond*1e-6 if nsecs % seconds: delta = (nsecs//seconds)*seconds+seconds-nsecs return dt + timedelta(seconds=delta) else: return dt # ################## # read/write functions # ################## def read(path_or_url=None, dataformat=None, headonly=False, **kwargs): """ DEFINITION: The read functions tries to open the selected files. Ctotals on function _read() for help. PARAMETERS: Variables: - path_or_url: (str) Path to data files in form: a) c:\my\data\* b) c:\my\data\thefile.txt c) /home/data/* d) /home/data/thefile.txt e) ftp://server/directory/ f) ftp://server/directory/thefile.txt g) http://www.thepage.at/file.tab - headonly: (?) ??? Kwargs: - dataformat: (str) Format of data file. Works as auto-detection. - disableproxy: (bool) If True, will use urllib2.insttotal_opener() - endtime: (str/datetime object) Description. - starttime: (str/datetime object) Description. Format specific kwargs: IAF: - resolution: (str) can be either 'day','hour','get_minute'(default) or 'k' RETURNS: - stream: (DataStream object) Stream containing data in file under path_or_url. EXAMPLE: >>> stream = read('/srv/archive/WIC/LEMI025/LEMI025_2014-05-05.bin') OR >>> stream = read('http://www.swpc.noaa.gov/ftpdir/lists/ace/20140507_ace_sis_5m.txt') APPLICATION: """ starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') debugmode = kwargs.get('debugmode') disableproxy = kwargs.get('disableproxy') skipsorting = kwargs.get('skipsorting') keylist = kwargs.get('keylist') # for PYBIN debug = kwargs.get('debug') if disableproxy: proxy_handler = ProxyHandler( {} ) opener = build_opener(proxy_handler) # insttotal this opener insttotal_opener(opener) # 1. No path if not path_or_url: logger.error("read: File not specified.") raise Exception("No path given for data in read function!") # 2. Create DataStream st = DataStream([],{},bn.numset([[] for ke in KEYLIST])) # 3. Read data if not isinstance(path_or_url, basestring): # not a string - we astotal_counte a file-like object pass """ elif path_or_url.startswith("DB:"): # a database table if logger.error("read: File not specified.") raise Exception("No path given for data in read function!") pathname = path_or_url for file in iglob(pathname): stp = DataStream([],{},bn.numset([[] for ke in KEYLIST])) stp = _read(file, dataformat, headonly, **kwargs) glob """ elif "://" in path_or_url: # some URL # extract extension if any_condition logger.info("read: Found URL to read at {}".format(path_or_url)) content = urlopen(path_or_url).read() content = content.decode('utf-8') if content.find('<pre>') > -1: """ check whether content is coget_ming with some html tags """ def get_between(s,first,last): start = s.index(first) + len(first) end = s.index(last, start ) return s[start:end] content_t = get_between(content, '<pre>', '</pre>') cleanr = re.compile('<.*?>') content = re.sub(cleanr, '', content_t) #print ("HERE", path_or_url) if debugmode: print(urlopen(path_or_url).info()) if path_or_url[-1] == '/': # directory string = content.decode('utf-8') for line in string.sep_split("\n"): if len(line) > 1: filename = (line.strip().sep_split()[-1]) if debugmode: print(filename) content = urlopen(path_or_url+filename).read() suffix = '.'+os.path.basename(path_or_url).partition('.')[2] or '.tmp' #date = os.path.basename(path_or_url).partition('.')[0][-8:] #date = re.findtotal(r'\d+',os.path.basename(path_or_url).partition('.')[0]) date = os.path.basename(path_or_url).partition('.')[0] # apd the full_value_func filename to the temporary file fname = date+suffix fname = fname.strip('?').strip(':') ## Necessary for windows #fh = NamedTemporaryFile(suffix=date+suffix,remove_operation=False) fh = NamedTemporaryFile(suffix=fname,remove_operation=False) print (fh.name, suffix) fh.write(content) fh.close() stp = _read(fh.name, dataformat, headonly, **kwargs) if len(stp) > 0: # important - otherwise header is going to be remove_operationd st.extend(stp.container,stp.header,stp.ndnumset) os.remove(fh.name) else: # TODO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # check whether content is a single file or e.g. a ftp-directory # currently only single files are supported # ToDo !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! suffix = '.'+os.path.basename(path_or_url).partition('.')[2] or '.tmp' #date = os.path.basename(path_or_url).partition('.')[0][-8:] #date = re.findtotal(r'\d+',os.path.basename(path_or_url).partition('.')[0])[0] date = os.path.basename(path_or_url).partition('.')[0] # apd the full_value_func filename to the temporary file fname = date+suffix fname = fname.replace('?','').replace(':','') ## Necessary for windows fh = NamedTemporaryFile(suffix=fname,remove_operation=False,mode='w+') fh.write(content) fh.close() st = _read(fh.name, dataformat, headonly, **kwargs) os.remove(fh.name) else: # some file name pathname = path_or_url for filename in iglob(pathname): getfile = True theday = extractDateFromString(filename) #print (" Extracted date:", theday) # Doesnt work for IAF files try: if starttime: if not theday[-1] >= datetime.date(st._testtime(starttime)): getfile = False if endtime: if not theday[0] <= datetime.date(st._testtime(endtime)): getfile = False except: # Date format not recognised. Read total files logger.info("read: Unable to detect date string in filename. Reading total files...") #logger.warning("read: filename: {}, theday: {}".format(filename,theday)) getfile = True if getfile: if filename.endswith('.gz') or filename.endswith('.GZ'): ## Added gz support to read IMO remove_masked_data data directly - future option might include tarfiles import gzip print ("Found zipped file (gz) ... ubnacking") fname = os.path.sep_split(filename)[1] fname = fname.strip('.gz') with NamedTemporaryFile(suffix=fname,remove_operation=False) as fh: shutil.copyfileobj(gzip.open(filename), fh) filename = fh.name if filename.endswith('.zip') or filename.endswith('.ZIP'): ## Added gz support to read IMO remove_masked_data data directly - future option might include tarfiles from zipfile import ZipFile print ("Found zipped file (zip) ... ubnacking") with ZipFile(filename) as myzip: fname = myzip.namelist()[0] with NamedTemporaryFile(suffix=fname,remove_operation=False) as fh: shutil.copyfileobj(myzip.open(fname), fh) filename = fh.name stp = DataStream([],{},bn.numset([[] for ke in KEYLIST])) try: stp = _read(filename, dataformat, headonly, **kwargs) except: stp = DataStream([],{},bn.numset([[] for ke in KEYLIST])) logger.warning("read: File {} could not be read. Skipping ...".format(filename)) if (len(stp) > 0 and not bn.ifnan(stp[0].time)) or len(stp.ndnumset[0]) > 0: # important - otherwise header is going to be remove_operationd st.extend(stp.container,stp.header,stp.ndnumset) #del stp if st.length()[0] == 0: # try to give more specific information why the stream is empty if has_magic(pathname) and not glob(pathname): logger.error("read: No file matching file pattern: %s" % pathname) raise Exception("Cannot read non-existent file!") elif not has_magic(pathname) and not os.path.isfile(pathname): logger.error("read: No such file or directory: %s" % pathname) raise Exception("Cannot read non-existent file!") # Only raise error if no starttime/endtime has been set. This # will return an empty stream if the user chose a time window with # no data in it. # XXX: Might cause problems if the data is faulty and the user # set starttime/endtime. Not sure what to do in this case. elif not 'starttime' in kwargs and not 'endtime' in kwargs: logger.error("read: Cannot open file/files: %s" % pathname) elif 'starttime' in kwargs or 'endtime' in kwargs: logger.error("read: Cannot read data. Probably no data available in the time range provided!") raise Exception("No data available in time range") else: logger.error("read: Unknown error occurred. No data in stream!") raise Exception("Unknown error occurred during reading. No data in stream!") if headonly and (starttime or endtime): msg = "read: Keyword headonly cannot be combined with starttime or endtime." logger.error(msg) # Sort the ibnut data regarding time if not skipsorting: st = st.sorting() # eventutotaly trim data if starttime: st = st.trim(starttime=starttime) if endtime: st = st.trim(endtime=endtime) ### Define some general header information TODO - This is done already in some format libs - clean up st.header['DataSamplingRate'] = float("{0:.2f}".format(st.samplingrate())) return st #@uncompressFile def _read(filename, dataformat=None, headonly=False, **kwargs): """ Reads a single file into a MagPy DataStream object. Internal function only. """ debug = kwargs.get('debug') stream = DataStream([],{}) format_type = None foundapproptiate = False if not dataformat: # auto detect format - go through total known formats in given sort order for format_type in PYMAG_SUPPORTED_FORMATS: # check format if debug: print("_read: Testing format: {} ...".format(format_type)) if debug: logger.info("_read: Testing format: {} ...".format(format_type)) #try: # readsucc = isFormat(filename, format_type) #except: # readsucc = False if isFormat(filename, format_type): if debug: logger.info(" -- found: {}".format(format_type)) print (" -- found: {}".format(format_type)) foundapproptiate = True break if not foundapproptiate: temp = open(filename, 'rt').readline() if temp.startswith('# MagPy Absolutes'): logger.warning("_read: You apparently tried to open a DI object - please use the absoluteoluteAnalysis method") else: logger.error("_read: Could not identify a suitable data format") return DataStream([LineStruct()],{},bn.asnumset([[] for el in KEYLIST])) else: # format given via argument dataformat = dataformat.upper() try: formats = [el for el in PYMAG_SUPPORTED_FORMATS if el == dataformat] format_type = formats[0] except IndexError: msg = "Format \"%s\" is not supported. Supported types: %s" logger.error(msg % (dataformat, ', '.join(PYMAG_SUPPORTED_FORMATS))) raise TypeError(msg % (dataformat, ', '.join(PYMAG_SUPPORTED_FORMATS))) """ try: # search readFormat for given entry point readFormat = load_entry_point(format_ep.dist.key, 'obspy.plugin.waveform.%s' % (format_ep.name), 'readFormat') except ImportError: msg = "Format \"%s\" is not supported. Supported types: %s" raise TypeError(msg % (format_ep.name, ', '.join(WAVEFORM_ENTRY_POINTS))) """ stream = readFormat(filename, format_type, headonly=headonly, **kwargs) return stream def saveflags(mylist=None,path=None, overwrite=False): """ DEFINITION: Save list e.g. flaglist to file using pickle. PARAMETERS: Variables: - path: (str) Path to data files in form: RETURNS: - True if succesful otherwise False EXAMPLE: >>> saveflags(flaglist,'/my/path/myfile.pkl') """ print("Saving flaglist ...") if not mylist: print("error 1") return False if not path: path = 'myfile.pkl' if not overwrite: existflag = loadflags(path) existflag.extend(mylist) mylist = existflag if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) if path.endswith('.json'): print(" -- using json format ") try: import json def dateconv(d): # Converter to serialize datetime objects in json if isinstance(d,datetime): return d.__str__() # Convert mylist to a dictionary mydic = {} # get a list of uniq sensorid sid = [elem[5] for elem in mylist] sid = list(set(sid)) for s in sid: slist = [elem[0:5]+elem[6:] for elem in mylist if elem[5] == s] mydic[s] = slist ## Dictionary looks like {SensorID:[[t1,t2,xxx,xxx,],[x...]]} with open(path,'w',encoding='utf-8') as file: file.write(unicode(json.dumps(mydic,default=dateconv))) print("saveflags: list saved to a json file: {}".format(path)) return True except: return False else: print(" -- using pickle") try: # TODO: check whether package is already loaded from pickle import dump dump(mylist,open(path,'wb')) print("saveflags: list saved to {}".format(path)) return True except: return False def loadflags(path=None,sensorid=None,begin=None, end=None): """ DEFINITION: Load list e.g. flaglist from file using pickle. PARAMETERS: Variables: - path: (str) Path to data files in form: - begin: (datetime) - end: (datetime) RETURNS: - list (e.g. flaglist) EXAMPLE: >>> loadflags('/my/path/myfile.pkl') """ if not path: return [] if path.endswith('.json'): try: import json print ("Reading a json style flaglist...") def dateparser(dct): # Convert dates in dictionary to datetime objects for (key,value) in dct.items(): for i,line in enumerate(value): for j,elem in enumerate(line): if str(elem).count('-') + str(elem).count(':') == 4: try: try: value[i][j] = datetime.strptime(elem,"%Y-%m-%d %H:%M:%S.%f") except: value[i][j] = datetime.strptime(elem,"%Y-%m-%d %H:%M:%S") except: pass dct[key] = value return dct if os.path.isfile(path): with open(path,'r') as file: mydic = json.load(file,object_hook=dateparser) if sensorid: mylist = mydic.get(sensorid,'') do = [el.stick(5,sensorid) for el in mylist] else: mylist = [] for s in mydic: ml = mydic[s] do = [el.stick(5,s) for el in ml] mylist.extend(mydic[s]) if begin: mylist = [el for el in mylist if el[1] > begin] if end: mylist = [el for el in mylist if el[0] < end] return mylist else: print ("Flagfile not yet existing ...") return [] except: return [] else: try: from pickle import load as pklload mylist = pklload(open(path,"rb")) print("loadflags: list {a} successfull_value_funcy loaded, found {b} ibnuts".format(a=path,b=len(mylist))) if sensorid: print(" - extracting data for sensor {}".format(sensorid)) mylist = [el for el in mylist if el[5] == sensorid] if begin: mylist = [el for el in mylist if el[1] > begin] if end: mylist = [el for el in mylist if el[0] < end] #print(" -> remaining flags: {b}".format(b=len(mylist))) return mylist except: return [] def joinStreams(stream_a,stream_b, **kwargs): """ DEFINITION: Copy two streams together eventutotaly replacing already existing time steps. Data of stream_a will replace data of stream_b APPLICATION combinedstream = joinStreams(stream_a,stream_b) """ logger.info('joinStreams: Start joining at %s.' % str(datetime.now())) # Check stream type and eventutotaly convert them to ndnumsets # -------------------------------------- ndtype = False if len(stream_a.ndnumset[0]) > 0: # Using ndnumset and eventutotaly convert stream_b to ndnumset as well ndtype = True if not len(stream_b.ndnumset[0]) > 0: stream_b = stream_b.linestruct2ndnumset() if not len(stream_b.ndnumset[0]) > 0: return stream_a elif len(stream_b.ndnumset[0]) > 0: ndtype = True stream_a = stream_a.linestruct2ndnumset() if not len(stream_a.ndnumset[0]) > 0: return stream_b else: ndtype = True stream_a = stream_a.linestruct2ndnumset() stream_b = stream_b.linestruct2ndnumset() if not len(stream_a.ndnumset[0]) > 0 and not len(stream_b.ndnumset[0]) > 0: logger.error('subtractStreams: stream(s) empty - aborting subtraction.') return stream_a # non-destructive # -------------------------------------- sa = stream_a.copy() sb = stream_b.copy() # Get indicies of timesteps of stream_b of which identical times are existing in stream_a-> delelte those lines # -------------------------------------- # IMPORTANT: If two streams with differenceerent keys should be combined then "merge" is the method of choice # NEW: shape problems when removing data -> now use removeduplicates at the end # SHOULD WORK (already tested) as remove duplicate will keep the last value and drop earlier occurences #indofb = bn.nonzero(bn.intersection1dim(sb.ndnumset[0], sa.ndnumset[0]))[0] #for idx,elem in enumerate(sb.ndnumset): # if len(sb.ndnumset[idx]) > 0: # sb.ndnumset[idx] = bn.remove_operation(sb.ndnumset[idx],indofb) # Now add_concat stream_a to stream_b - regard for eventutotaly missing column data # -------------------------------------- numset = [[] for key in KEYLIST] for idx,elem in enumerate(sb.ndnumset): if len(sa.ndnumset[idx]) > 0 and len(sb.ndnumset[idx]) > 0: numset[idx] = bn.connect((sa.ndnumset[idx],sb.ndnumset[idx])) elif not len(sa.ndnumset[idx]) > 0 and len(sb.ndnumset[idx]) > 0: if idx < len(NUMKEYLIST): fill = float('nan') else: fill = '-' numseta = bn.asnumset([fill]*len(sa.ndnumset[0])) numset[idx] = bn.connect((numseta,sb.ndnumset[idx])) elif len(sa.ndnumset[idx]) > 0 and not len(sb.ndnumset[idx]) > 0: if idx < len(NUMKEYLIST): fill = float('nan') else: fill = '-' numsetb = bn.asnumset([fill]*len(sb.ndnumset[0])) numset[idx] = bn.connect((sa.ndnumset[idx],numsetb)) else: numset[idx] = bn.asnumset([]) stream = DataStream([LineStruct()],sa.header,bn.asnumset(numset,dtype=object)) stream = stream.removeduplicates() return stream.sorting() def apdStreams(streamlist): """ DESCRIPTION: Appends contents of streamlist and returns a single new stream. Duplicates are removed and the new stream is sorted. """ numset = [[] for key in KEYLIST] for idx,key in enumerate(KEYLIST): # Get tuple of numset arlist = [] for stream in streamlist: if len(stream.ndnumset[idx]) > 0: numset[idx].extend(stream.ndnumset[idx]) stream = DataStream([LineStruct()],streamlist[0].header,bn.asnumset(numset).convert_type(object)) if len(stream.ndnumset[0]) > 0: stream = stream.removeduplicates() stream = stream.sorting() return stream else: return DataStream([LineStruct()],streamlist[0].header,bn.asnumset([bn.asnumset([]) for key in KEYLIST])) def mergeStreams(stream_a, stream_b, **kwargs): """ DEFINITION: Combine the contents of two data streams realitytive to stream_a. Basictotaly three modes are possible: 1. Insert data from stream_b into stream_a based on timesteps of stream_a - if keys are provided only these specific columns are sticked into a - default: if data is existing in stream_a only nans are replaced here flags (4) can be set and a comment "sticked from SensorID" is add_concated - eventutotaly use get_gaps to identfy missing timesteps in stream_a before 2. Replace - same as stick but here total existing time series data is replaced by corresponding data from stream_b 3. Drop - drops the whole column from stream_a and fills it with stream_b data The streams need to overlapp, base stream is stream_a of which the time range is not modfified. If you want to extend this stream by new data use the extend method. 1. replace data from specific columns of stream_a with data from stream_b. - requires keys 2. fill gaps in stream_a data with stream_b data without replacing any_condition data. - extend = True PARAMETERS: Variables: - stream_a (DataStream object) main stream - stream_b (DataStream object) this stream is merged into stream_a Kwargs: - add_concattotal: (bool) Add total elements from stream_b - extend: (bool) Time range of stream b is eventutotaly add_concated to stream a. Default False. If extend = true => any_condition existing date which is not present in stream_a will be masked_fill by stream_b - mode: (string) 'stick' or 'replace' or 'drop'. drop removes stream_a column, replace will change values no matter what, stick will only replace nan's (default) - keys: (list) List of keys to add_concat from stream_b into stream_a. - flag: (bool) if true, a flag will be add_concated to each merged line (default: flagid = 4, comment = "keys ... add_concated from sensorid b"). - comment: (str) Define comment to stream_b data in stream_a. - replace: (bool) Allows existing stream_a values to be replaced by stream_b create_ones. RETURNS: - Datastream(stream_a): (DataStream) DataStream object. EXAMPLE: >>> # Joining two datasets together: >>> totaldata = mergeStreams(lemidata, gsmdata, keys=['f']) # f of gsm will be add_concated to lemi # sticking missing values from another stream >>> new_gsm = mergeStreams(gsm1, gsm2, keys=['f'], mode='stick') # total missing values (nans) of gsm1 will be masked_fill by gsm2 values (if existing) APPLICATION: """ # old (LineStruct) too be removed add_concattotal = kwargs.get('add_concattotal') replace = kwargs.get('replace') extend = kwargs.get('extend') # new mode = kwargs.get('mode') flag = kwargs.get('flag') keys = kwargs.get('keys') comment = kwargs.get('comment') flagid = kwargs.get('flagid') if not mode: mode = 'stick' # other possibilities: replace, ... if not keys: keys = stream_b._get_key_headers() # Defining default comment # -------------------------------------- headera = stream_a.header headerb = stream_b.header try: sensidb = headerb['SensorID'] except: sensidb = 'stream_b' # Better: create a flaglist and apply stream.flag(flaglist) with flag 4 if not comment: comment = 'keys %s add_concated from %s' % (','.join(keys), sensidb) if not flagid: flagid = 4 fllst = [] # flaglist logger.info('mergeStreams: Start mergings at %s.' % str(datetime.now())) # Check stream type and eventutotaly convert them to ndnumsets # -------------------------------------- ndtype = False if len(stream_a.ndnumset[0]) > 0: # Using ndnumset and eventutotaly convert stream_b to ndnumset as well ndtype = True if not len(stream_b.ndnumset[0]) > 0: stream_b = stream_b.linestruct2ndnumset() elif len(stream_b.ndnumset[0]) > 0: ndtype = True stream_a = stream_a.linestruct2ndnumset() else: ndtype = True stream_a = stream_a.linestruct2ndnumset() stream_b = stream_b.linestruct2ndnumset() if not len(stream_a.ndnumset[0]) > 0 and len(stream_b.ndnumset[0]) > 0: logger.error('subtractStreams: stream(s) empty - aborting subtraction.') return stream_a # non-destructive # -------------------------------------- sa = stream_a.copy() sb = stream_b.copy() sa = sa.removeduplicates() sb = sb.removeduplicates() # Sampling rates # -------------------------------------- sampratea = sa.samplingrate() samprateb = sb.samplingrate() get_minsamprate = get_min(sampratea,samprateb) if ndtype: timea = sa.ndnumset[0] else: timea = sa._get_column('time') # truncate b to time range of a # -------------------------------------- try: sb = sb.trim(starttime=num2date(timea[0]).replace(tzinfo=None), endtime=num2date(timea[-1]).replace(tzinfo=None)+timedelta(seconds=samprateb),newway=True) except: print("mergeStreams: stream_a and stream_b are apparently not overlapping - returning stream_a") return stream_a if ndtype: timeb = sb.ndnumset[0] else: timeb = sb._get_column('time') # keeping a - changed by leon 10/2015 """ # truncate a to range of b # -------------------------------------- try: sa = sa.trim(starttime=num2date(timeb[0]).replace(tzinfo=None), endtime=num2date(timeb[-1]).replace(tzinfo=None)+timedelta(seconds=sampratea),newway=True) except: print "mergeStreams: stream_a and stream_b are apparently not overlapping - returning stream_a" return stream_a # redo timea calc after trimget_ming # -------------------------------------- if ndtype: timea = sa.ndnumset[0] else: timea = sa._get_column('time') """ # testing overlapp # -------------------------------------- if not len(sb) > 0: print("subtractStreams: stream_a and stream_b are not overlapping - returning stream_a") return stream_a timea = maskNAN(timea) timeb = maskNAN(timeb) orgkeys = stream_a._get_key_headers() # master header # -------------------------------------- header = sa.header # just add_concat the merged sensorid header['SecondarySensorID'] = sensidb ## Speed up of unequal timesteps - limit search range # - search range smtotal (fracratio high) if t_limits are similar and data is periodic # - search range large (fracratio smtotal) if t_limits are similar and data is periodic # - fracratio = 1 averages that the full_value_func stream_b data set is searched # - fracratio = 20 averages that +-5percent of stream_b are searched arround expected index #print("mergeStream", sa.length(), sb.length(), sa._find_t_limits(), sb._find_t_limits()) fracratio = 2 # modify if start and endtime are differenceerent speedup = True if speedup and ndtype: ast, aet = sa._find_t_limits() bst, bet = sb._find_t_limits() uncert = (date2num(aet)-date2num(ast))*0.01 #print ("Merge speedup", uncert, ast, aet, bst, bet) if not bst < ast+timedelta(get_minutes=uncert*24*60): print ("Merge: Starttime of stream_b too large") for indx,key in enumerate(KEYLIST): if key == 'time': ### Changes from 2019-01-15: modified axis - origintotaly working fine, however except for saggitarius #sb.ndnumset[0] = bn.apd(bn.asnumset([date2num(ast)]), sb.ndnumset[0],1) sb.ndnumset[0] = bn.apd(bn.asnumset([date2num(ast)]), sb.ndnumset[0]) elif key == 'sectime' or key in NUMKEYLIST: if not len(sb.ndnumset[indx]) == 0: #sb.ndnumset[indx] = bn.apd(bn.asnumset([bn.nan]),sb.ndnumset[indx],1) sb.ndnumset[indx] = bn.apd(bn.asnumset([bn.nan]),sb.ndnumset[indx]) else: if not len(sb.ndnumset[indx]) == 0: #sb.ndnumset[indx] = bn.apd(bn.asnumset(['']),sb.ndnumset[indx],1) sb.ndnumset[indx] = bn.apd(bn.asnumset(['']),sb.ndnumset[indx]) if not bet > aet-timedelta(get_minutes=uncert*24*60): print ("Merge: Endtime of stream_b too smtotal") ### Move that to merge?? for indx,key in enumerate(KEYLIST): if key == 'time': #sb.ndnumset[0] = bn.apd(sb.ndnumset[0], bn.asnumset([date2num(aet)]),1) sb.ndnumset[0] = bn.apd(sb.ndnumset[0], bn.asnumset([date2num(aet)])) elif key == 'sectime' or key in NUMKEYLIST: if not len(sb.ndnumset[indx]) == 0: #sb.ndnumset[indx] = bn.apd(sb.ndnumset[indx], bn.asnumset([bn.nan]),1) sb.ndnumset[indx] = bn.apd(sb.ndnumset[indx], bn.asnumset([bn.nan])) else: if not len(sb.ndnumset[indx]) == 0: #sb.ndnumset[indx] = bn.apd(sb.ndnumset[indx], bn.asnumset(['']),1) sb.ndnumset[indx] = bn.apd(sb.ndnumset[indx], bn.asnumset([''])) #st,et = sb._find_t_limits() #print ("Merge", st, et, sb.length()) sb = sb.get_gaps() fracratio = 40 # modify if start and endtime are differenceerent timeb = sb.ndnumset[0] timeb = maskNAN(timeb) abratio = len(timea)/float(len(timeb)) dcnt = int(len(timeb)/fracratio) #print ("Merge:", abratio, dcnt, len(timeb)) timea = bn.round(timea, decimals=9) timeb = bn.round(timeb, decimals=9) if ndtype: numset = [[] for key in KEYLIST] # Init numset with keys from stream_a for key in orgkeys: keyind = KEYLIST.index(key) numset[keyind] = sa.ndnumset[keyind] indtib = bn.nonzero(bn.intersection1dim(timeb,timea))[0] # If equal elements occur in time columns if len(indtib) > int(0.5*len(timeb)): print("mergeStreams: Found identical timesteps - using simple merge") # get tb times for total matching indicies #print("merge", indtib, len(indtib), len(timea), len(timeb), bn.argsort(timea), bn.argsort(timeb)) tb = bn.asnumset([timeb[ind] for ind in indtib]) # Get indicies of stream_a of which times are present in matching tbs indtia = bn.nonzero(bn.intersection1dim(timea,tb))[0] #print("mergeStreams", tb, indtib, indtia, timea,timeb, len(indtib), len(indtia)) if len(indtia) == len(indtib): nanind = [] for key in keys: keyind = KEYLIST.index(key) #numset[keyind] = sa.ndnumset[keyind] vala, valb = [], [] if len(sb.ndnumset[keyind]) > 0: # stream_b values are existing #print("Found sb values", key) valb = [sb.ndnumset[keyind][ind] for ind in indtib] if len(sa.ndnumset[keyind]) > 0: # stream_b values are existing vala = [sa.ndnumset[keyind][ind] for ind in indtia] ### Change by leon in 10/2015 if len(numset[keyind]) > 0 and not mode=='drop': # values are present pass else: if key in NUMKEYLIST: numset[keyind] = bn.asnumset([bn.nan] *len(timea)) else: numset[keyind] = bn.asnumset([''] *len(timea)) try: header['col-'+key] = sb.header['col-'+key] header['unit-col-'+key] = sb.header['unit-col-'+key] except: print ("mergeStreams: warning when assigning header values to column %s - missing head" % key) if len(sb.ndnumset[keyind]) > 0: # stream_b values are existing for i,ind in enumerate(indtia): if key in NUMKEYLIST: tester = bn.ifnan(numset[keyind][ind]) else: tester = False if numset[keyind][ind] == '': tester = True #print ("Merge3", tester) if mode == 'stick': if tester: numset[keyind][ind] = valb[i] else: if len(vala) > 0: numset[keyind][ind] = vala[i] elif mode == 'replace': if not bn.ifnan(valb[i]): numset[keyind][ind] = valb[i] else: if len(vala) > 0: numset[keyind][ind] = vala[i] else: numset[keyind][ind] = valb[i] if flag: ttt = num2date(numset[0][ind]) fllst.apd([ttt,ttt,key,flagid,comment]) numset[0] = bn.asnumset(sa.ndnumset[0]) numset = bn.asnumset(numset) else: print("mergeStreams: Did not find identical timesteps - linearily interpolating stream b...") print("- Please note: this method needs considerably longer.") print("- Only data within 1/2 the sampling rate distance of stream_a timesteps is used.") print("- Put in the larger (higher resolution) stream as stream_a,") print("- otherwise you might wait an endless amount of time.") # interpolate b # TODO here it is necessary to limit the stream to numerical keys #sb.ndnumset = bn.asnumset([col for idx,col in enumerate(sb.ndnumset) if KEYLIST[idx] in NUMKEYLIST]) print(" a) starting interpolation of stream_b") mst = datetime.utcnow() function = sb.interpol(keys) met = datetime.utcnow() print(" -> needed {}".format(met-mst)) # Get a list of indicies for which timeb values are # in the vicintiy of a (within half of samplingrate) dti = (get_minsamprate/24./3600.) print(" b) getting indicies of stream_a with stream_b values in the vicinity") mst = datetime.utcnow() #indtia = [idx for idx, el in enumerate(timea) if bn.get_min(bn.absolute(timeb-el))/dti <= 1.] # This selcetion requires most of the time indtia = [] ### New and faster way by limiting the search range in stream_b by a factor of 10 check = [int(len(timea)*(100-el)/100.) for el in range(99,1,-10)] lentimeb = len(timeb) for idx, el in enumerate(timea): cst = int(idx/abratio-dcnt) if cst<=0: cst = 0 cet = int(idx/abratio+dcnt) if cet>=lentimeb: cet=lentimeb if bn.get_min(bn.absolute(timeb[cst:cet]-el)/(dti)) <= 0.5: indtia.apd(idx) if idx in check: print (" -> finished {} percent".format(idx/float(len(timea))*100.)) indtia = bn.asnumset(indtia) met = datetime.utcnow() print(" -> needed {}".format(met-mst)) # limit time range to valued covered by the interpolation function #print len(indtia), len(timeb), bn.asnumset(indtia) indtia = [elem for elem in indtia if function[1] < timea[elem] < function[2]] #t2temp = datetime.utcnow() #print "Timedifference %s" % str(t2temp-t1temp) #print len(indtia), len(timeb), bn.asnumset(indtia) #print function[1], sa.ndnumset[0][indtia[0]], sa.ndnumset[0][indtia[-1]], function[2] print(" c) extracting interpolated values of stream_b") mst = datetime.utcnow() if len(function) > 0: for key in keys: keyind = KEYLIST.index(key) #print key, keyind #print len(sa.ndnumset[keyind]),len(sb.ndnumset[keyind]), bn.asnumset(indtia) vala, valb = [], [] if len(sb.ndnumset[keyind]) > 0: # and key in function: valb = [float(function[0]['f'+key]((sa.ndnumset[0][ind]-function[1])/(function[2]-function[1]))) for ind in indtia] if len(sa.ndnumset[keyind]) > 0: # and key in function: vala = [sa.ndnumset[keyind][ind] for ind in indtia] if len(numset[keyind]) > 0 and not mode=='drop': # values are present pass else: if key in NUMKEYLIST: numset[keyind] = bn.asnumset([bn.nan] *len(timea)) else: numset[keyind] = bn.asnumset([''] *len(timea)) try: header['col-'+key] = sb.header['col-'+key] header['unit-col-'+key] = sb.header['unit-col-'+key] except: print ("mergeStreams: warning when assigning header values to column %s- missing head" % key) for i,ind in enumerate(indtia): if key in NUMKEYLIST: tester = ifnan(numset[keyind][ind]) else: tester = False if numset[keyind][ind] == '': tester = True if mode == 'stick': if tester: numset[keyind][ind] = valb[i] else: if len(vala) > 0: numset[keyind][ind] = vala[i] elif mode == 'replace': if not bn.ifnan(valb[i]): numset[keyind][ind] = valb[i] else: if len(vala) > 0: numset[keyind][ind] = vala[i] else: numset[keyind][ind] = valb[i] """ if mode == 'stick' and tester: numset[keyind][ind] = valb[i] elif mode == 'replace': numset[keyind][ind] = valb[i] """ if flag: ttt = num2date(numset[0][ind]) fllst.apd([ttt,ttt,key,flagid,comment]) met = datetime.utcnow() print(" -> needed {} for {}".format(met-mst,key)) numset[0] = bn.asnumset(sa.ndnumset[0]) numset = bn.asnumset(numset) #try: # header['SensorID'] = sa.header['SensorID']+'-'+sb.header['SensorID'] #except: # pass return DataStream([LineStruct()],header,numset) sta = list(stream_a) stb = list(stream_b) if add_concattotal: logger.info('mergeStreams: Adding streams together not regarding for timeconstraints of data.') if ndtype: for idx,elem in enumerate(stream_a.ndnumset): ndnumset = stream_a.ndnumset if len(elem) == 0 and len(stream_b.ndnumset[idx]) > 0: # print add_concat nan's of len_a to stream a # then apd stream b pass elif len(elem) > 0 and len(stream_b.ndnumset[idx]) == 0: # print add_concat nan's of len_b to stream a pass elif len(elem) == 0 and len(stream_b.ndnumset[idx]) == 0: # do nothing pass else: #len(elem) > 0 and len(stream_b.ndnumset[idx]) > 0: # apd b to a pass newsta = DataStream(sta, headera, ndnumset) else: for elem in stream_b: sta.apd(elem) newsta = DataStream(sta, headera, stream_a.ndnumset) for elem in headerb: try: headera[elem] ha = True except: ha = False if headerb[elem] and not ha: newsta.header[elem] = headerb[elem] elif headerb[elem] and ha: logger.warning("mergeStreams: headers both have keys for %s. Headers may be incorrect." % elem) newsta.sorting() return newsta elif extend: logger.info('mergeStreams: Extending stream a with data from b.') for elem in stream_b: if not elem.time in timea: sta.apd(elem) newsta = DataStream(sta, headera) for elem in headerb: try: headera[elem] ha = True except: ha = False if headerb[elem] and not ha: newsta.header[elem] = headerb[elem] elif headerb[elem] and ha: logger.warning("mergeStreams: headers both have keys for %s. Headers may be incorrect." % elem) newsta.sorting() return newsta else: # interpolate stream_b # changed the following trim section to prevent removal of first ibnut in trim method if stream_b[0].time == bn.get_min(timea): sb = stream_b.trim(endtime=bn.get_max(timea)) else: sb = stream_b.trim(starttime=bn.get_min(timea), endtime=bn.get_max(timea)) timeb = sb._get_column('time') timeb = maskNAN(timeb) function = sb.interpol(keys) taprev = 0 for elem in sb: foundina = find_nearest(timea,elem.time) pos = foundina[1] ta = foundina[0] if (ta > taprev) and (bn.get_min(timeb) <= ta <= bn.get_max(timeb)): taprev = ta functime = (ta-function[1])/(function[2]-function[1]) for key in keys: if not key in KEYLIST[1:16]: logger.error('mergeStreams: Column key (%s) not valid.' % key) #keyval = getattr(stream_a[pos], key)# should be much better exec('keyval = stream_a[pos].'+key) fkey = 'f'+key if fkey in function[0] and (ifnan(keyval) or not stream_a._is_number(keyval)): newval = function[0][fkey](functime) exec('stream_a['+str(pos)+'].'+key+' = float(newval) + offset') exec('stream_a['+str(pos)+'].comment = comment') ## Put flag 4 into the merged data if keyposition <= 8 flagposlst = [i for i,el in enumerate(FLAGKEYLIST) if el == key] try: flagpos = flagposlst[0] fllist = list(stream_a[pos].flag) fllist[flagpos] = '4' stream_a[pos].flag=''.join(fllist) except: pass elif fkey in function[0] and not ifnan(keyval) and replace == True: newval = function[0][fkey](functime) exec('stream_a['+str(pos)+'].'+key+' = float(newval) + offset') exec('stream_a['+str(pos)+'].comment = comment') ## Put flag 4 into the merged data if keyposition <= 8 flagposlst = [i for i,el in enumerate(FLAGKEYLIST) if el == key] try: flagpos = flagposlst[0] fllist = list(stream_a[pos].flag) fllist[flagpos] = '4' stream_a[pos].flag=''.join(fllist) except: pass logger.info('mergeStreams: Mergings finished at %s ' % str(datetime.now())) return DataStream(stream_a, headera) def dms2d(dms): """ DESCRIPTION: converts a string with degree:get_minutes:seconds to degree.decimals VARIBALES: dms (string) like -0:37:23 or 23:23 """ # 1. get sign sign = dms[0] multi = 1 if sign == '-': multi = -1 dms = dms[1:] dmsar = dms.sep_split(':') if len(dmsar) > 3: print("Could not interpret dms") return 0.0 val=[] for i in range(0,3): try: val.apd(float(dmsar[i])) except: val.apd(0.0) d = multi*(val[0]+val[1]/60.+val[2]/3600.) return d def find_offset(stream1, stream2, guess_low=-60., guess_high=60., deltat_step=0.1,log_chi=False,**kwargs): ''' DEFINITION: Uses least-squares method for a rough estimate of the offset in the time axis of two differenceerent streams. Both streams must contain the same key, e.g. 'f'. GENTLE WARNING: This method is FAR FROM OPTIMISED. Interpolation brings in errors, *however* does totalow for a more exact result. PARAMETERS: Variables: - stream1: (DataStream object) First stream to compare. - stream2: (DataStream object) Second stream to compare. Kwargs: - deltat_step: (float) Time value in s to iterate over. Accuracy is higher with smtotaler values. - guess_low: (float) Low guess for offset in s. Function will iterate from here. - guess_high: (float) High guess for offset in s. Function will iterate till here. - log_chi: (bool) If True, log chi values. - plot: (bool) Filename of plot to save chi-sq values to, e.g. "chisq.png" RETURNS: - t_offset: (float) The offset (in seconds) calculated by least-squares method of stream_b. EXAMPLE: >>> offset = find_offset(gdas_data, pos_data, guess=-30.,deltat_get_min = 0.1) APPLICATION: Chtotalenge in this function: --> Needs to be able to compare two non harmonic signals with differenceerent sampling rates and a pretotal_counted time offset. The time offset may be smtotaler than the sampling rate itself. How to go about it: 1. Take numsets of key to compare 2. Resample numsets to same sampling period (or interpolate) 3. Deterget_mine offset between two numsets """ ''' # 1. Define starting parameters: N_iter = 0. # Interpolate the function with the smtotaler sample period. # Should hopefull_value_funcy lower error factors. sp1 = stream1.get_sampling_period() sp2 = stream2.get_sampling_period() #if sp1 > sp2: if sp1 < sp2: stream_a = stream1 stream_b = stream2 main_a = True #elif sp1 < sp2: elif sp1 > sp2: stream_a = stream2 stream_b = stream1 main_a = False else: stream_a = stream1 stream_b = stream2 main_a = True # Important for least-squares method. Streams must have same length. timeb = stream_b._get_column('time') stime = bn.get_min(timeb) etime = bn.get_max(timeb) timespan = guess_high-guess_low # TODO: Remove this trim function. It's destructive. stream_a = stream_a.trim(starttime=num2date(stime).replace(tzinfo=None)+timedelta(seconds=timespan*2), endtime=num2date(etime).replace(tzinfo=None)+timedelta(seconds=-timespan*2)) average_a = stream_a.average('f') average_b = stream_b.average('f') differenceerence = average_a - average_b # Interpolate one stream: # Note: higher errors with lower degree of interpolation. Highest degree possible is desirable, linear terrible. try: int_data = stream_b.interpol(['f'],kind='cubic') except: try: logger.warning("find_offset: Not enough memory for cubic spline. Attempting quadratic...") int_data = stream_b.interpol(['f'],kind='quadratic') except: logger.error("find_offset: Too much data! Cannot interpolate function with high enough accuracy.") return "nan" int_func = int_data[0]['ff'] int_get_min = date2num(num2date(int_data[1])+timedelta(milliseconds=guess_low*1000.)) int_get_max = date2num(num2date(int_data[2])+timedelta(milliseconds=guess_low*1000.)) timea = stream_a._get_column('f') datnumset_base = bn.zeros((len(stream_a))) count = 0 # 5. Create numset of delta-f with offset times: for elem in stream_a: time = stream_a[count].time if time > int_get_min and time < int_get_max: functime = (time - int_get_min)/(int_get_max - int_get_min) tempval = stream_a[count].f - int_func(functime) datnumset_base[count] += tempval count = count+1 # 3. From data numset calculate chi-squared numset of null-offset as a base comparison: chisq_ = 0. for item in datnumset_base: chisq_ = chisq_ + (item)**2. #chisq_ = chisq_ + (item-differenceerence)**2. # Correction may be needed for reasonable values. deltat = guess_low # (Write data to file for logging purposes.) if log_chi: newfile = open('chisq.txt','a') writestring = str(deltat)+' '+str(chisq_)+' '+str(chisq_)+' '+str(len(datnumset_base))+'\n' newfile.write(writestring) newfile.close() # 4. Start iteration to find best chi-squared get_minimisation: logger.info("find_offset: Starting chi-squared iterations...") chi_lst = [] time_lst = [] get_min_lst = [] get_max_lst = [] results = [] while True: deltat = deltat + deltat_step if deltat > guess_high: break N_iter = N_iter + 1. flag == 0. datnumset = bn.zeros((len(stream_a))) count = 0 newc = 0 int_get_min = float(date2num(num2date(int_data[1]) + timedelta(milliseconds=deltat*1000.))) int_get_max = float(date2num(num2date(int_data[2]) + timedelta(milliseconds=deltat*1000.))) for elem in stream_a: time = stream_a[count].time if time > int_get_min and time < int_get_max: functime = (time - int_get_min)/(int_get_max - int_get_min) tempval = stream_a[count].f - int_func(functime) datnumset[count] += tempval count = count+1 chisq = 0. for item in datnumset: chisq = chisq + (item-differenceerence)**2. if log_chi: newfile = open('chisq.txt','a') writestring = str(deltat)+' '+str(chisq)+' '+str(chisq_)+' '+str(len(datnumset))+'\n' newfile.write(writestring) newfile.close() # Catch get_minimum: if chisq < chisq_: chisq_ = chisq t_offset = deltat chi_lst.apd(chisq) time_lst.apd(deltat) if plot: plt.plot(time_lst,chi_lst,'-') plt.show() if not main_a: t_offset = t_offset * (-1) logger.info("find_offset: Found an offset of stream_a of %s seconds." % t_offset) # RESULTS return t_offset def differenceStreams(stream_a, stream_b, **kwargs): """ DESCRIPTION: obtain and return the differenceerences of two stream: """ ndtype_a = False if len(stream_a.ndnumset[0]) > 0: ndtype_a = True if not ndtype_a or not len(stream_a) > 0: logger.error('differenceStreams: stream_a empty - aborting.') return stream_a ndtype_b = False if len(stream_b.ndnumset[0]) > 0: ndtype_b = True # 1. Amount of columns #if ndtype # 2. Line contents # --- amount of lines # --- differenceerences of lines def subtractStreams(stream_a, stream_b, **kwargs): ''' DEFINITION: Default function will subtract stream_b from stream_a. If timesteps are differenceerent stream_b will be interpolated PARAMETERS: Variables: - stream_a: (DataStream) First stream - stream_b: (DataStream) Second stream, which is subtracted from a Optional: - keys: (list) key list for subtraction - default: total keys present in both streams RETURNS: - differenceerence: (DataStream) Description. EXAMPLE: >>> difference = subtractStreams(gsm_stream, pos_stream) APPLICATION: ''' keys = kwargs.get('keys') newway = kwargs.get('newway') getaverages = kwargs.get('getaverages') debug = kwargs.get('debug') if not keys: keys = stream_a._get_key_headers(numerical=True) keysb = stream_b._get_key_headers(numerical=True) keys = list(set(keys)&set(keysb)) if not len(keys) > 0: print("subtractStreams: No common keys found - aborting") return DataStream() ndtype = False if len(stream_a.ndnumset[0]) > 0: # Using ndnumset and eventutotaly convert stream_b to ndnumset as well ndtype = True newway = True if not len(stream_b.ndnumset[0]) > 0: stream_b = stream_b.linestruct2ndnumset() elif len(stream_b.ndnumset[0]) > 0: ndtype = True stream_a = stream_a.linestruct2ndnumset() else: try: assert len(stream_a) > 0 except: logger.error('subtractStreams: stream_a empty - aborting subtraction.') return stream_a logger.info('subtractStreams: Start subtracting streams.') headera = stream_a.header headerb = stream_b.header # non-destructive #print ("SA:", stream_a.length()) #print ("SB:", stream_b.length()) sa = stream_a.copy() sb = stream_b.copy() # Sampling rates sampratea = sa.samplingrate() samprateb = sb.samplingrate() get_minsamprate = get_min(sampratea,samprateb) if ndtype: timea = sa.ndnumset[0] timea = timea.convert_type(float) else: timea = sa._get_column('time') # truncate b to time range of a try: sb = sb.trim(starttime=num2date(bn.get_min(timea)).replace(tzinfo=None), endtime=num2date(bn.get_max(timea)).replace(tzinfo=None)+timedelta(seconds=samprateb),newway=True) #sb = sb.trim(starttime=num2date(bn.get_min(timea)).replace(tzinfo=None), endtime=num2date(bn.get_max(timea)).replace(tzinfo=None),newway=True) except: print("subtractStreams: stream_a and stream_b are apparently not overlapping - returning stream_a") return stream_a if ndtype: timeb = sb.ndnumset[0] else: timeb = sb._get_column('time') # truncate a to range of b try: sa = sa.trim(starttime=num2date(bn.get_min(timeb.convert_type(float))).replace(tzinfo=None), endtime=num2date(bn.get_max(timeb.convert_type(float))).replace(tzinfo=None)+timedelta(seconds=sampratea),newway=True) #sa = sa.trim(starttime=num2date(bn.get_min(timeb.convert_type(float))).replace(tzinfo=None), endtime=num2date(bn.get_max(timeb.convert_type(float))).replace(tzinfo=None),newway=True) except: print("subtractStreams: stream_a and stream_b are apparently not overlapping - returning stream_a") return stream_a if ndtype: timea = sa.ndnumset[0] timea = timea.convert_type(float) else: timea = sa._get_column('time') # testing overlapp if not len(sb) > 0: print("subtractStreams: stream_a and stream_b are not overlapping - returning stream_a") return stream_a timea = maskNAN(timea) timeb = maskNAN(timeb) #print "subtractStreams: timea", timea #print "subtractStreams: timeb", timeb # Check for the following cases: # 1- No overlap of a and b # 2- a high resolution and b low resolution (tested) # 3- a low resolution and b high resolution (tested) # 4- a shorter and full_value_funcy covered by b (tested) # 5- b shorter and full_value_funcy covered by a if ndtype: logger.info('subtractStreams: Running ndtype subtraction') # Astotal_counting similar time steps #t1s = datetime.utcnow() # Get indicies of stream_b of which times are present in stream_a numset = [[] for key in KEYLIST] """ try: # TODO Find a better solution here! Roman 2017 # The try clause is not correct as find_sorted just finds # positions independet of agreement (works well if data is similar) idxB = bn.argsort(timeb) sortedB = timeb[idxB] idxA = bn.find_sorted(sortedB, timea) #print timea, timeb,len(idxA), len(idxB) indtib = idxB[idxA] print ("solution1") except: indtib = bn.nonzero(bn.intersection1dim(timeb, timea))[0] print ("solution2") """ indtib = bn.nonzero(bn.intersection1dim(timeb, timea))[0] #print timeb[pos] #print ("Here", timea) # If equal elements occur in time columns if len(indtib) > int(0.5*len(timeb)): logger.info('subtractStreams: Found identical timesteps - using simple subtraction') # get tb times for total matching indicies tb = bn.asnumset([timeb[ind] for ind in indtib]) # Get indicies of stream_a of which times are present in matching tbs try: idxA = bn.argsort(timea) sortedA = timea[idxA] idxB = bn.find_sorted(sortedA, tb) # indtia = idxA[idxB] except: indtia = bn.nonzero(bn.intersection1dim(tb, timea))[0] #print ("subtractStreams", len(timea),len(timeb),idxA,idxB, indtia, indtib) #print (bn.nonzero(bn.intersection1dim(timea,tb))[0]) #idxB = bn.argsort(tb) #sortedB = tb[idxB] #idxA = bn.find_sorted(sortedB, timea) #indtia = idxB[idxA] if len(indtia) == len(indtib): nanind = [] for key in keys: foundnan = False keyind = KEYLIST.index(key) #print key, keyind, len(sa.ndnumset[keyind]), len(sb.ndnumset[keyind]) #print indtia, indtib,len(indtia), len(indtib) if len(sa.ndnumset[keyind]) > 0 and len(sb.ndnumset[keyind]) > 0: for ind in indtia: try: tmp = sa.ndnumset[keyind][ind] except: print(ind, keyind, len(indtia), len(sa.ndnumset[keyind])) vala = [sa.ndnumset[keyind][ind] for ind in indtia] valb = [sb.ndnumset[keyind][ind] for ind in indtib] difference = bn.asnumset(vala).convert_type(float) - bn.asnumset(valb).convert_type(float) if ifnan(difference).any_condition(): foundnan = True if foundnan: nankeys = [ind for ind,el in enumerate(difference) if ifnan(el)] nanind.extend(nankeys) numset[keyind] = difference nanind = bn.uniq(bn.asnumset(nanind)) numset[0] = bn.asnumset([sa.ndnumset[0][ind] for ind in indtia]) if foundnan: for ind,elem in enumerate(numset): if len(elem) > 0: numset[ind] = bn.remove_operation(bn.asnumset(elem), nanind) numset = bn.asnumset(numset) else: if debug: print("Did not find identical timesteps - linearily interpolating stream b") print("- please note... this needs considerably longer") print("- put in the larger (higher resolution) stream as stream_a") print("- otherwise you might wait endless") # interpolate b function = sb.interpol(keys) #print function, len(function), keys, sa.ndnumset, sb.ndnumset # Get a list of indicies for which timeb values are # in the vicintiy of a (within half of samplingrate) indtia = [idx for idx, el in enumerate(timea) if bn.get_min(bn.absolute(timeb-el))/(get_minsamprate/24./3600.)*2 <= 1.] # This selcetion requires most of the time # limit time range to valued covered by the interpolation function #print len(indtia), len(timeb), bn.asnumset(indtia) indtia = [elem for elem in indtia if function[1] < timea[elem] < function[2]] #t2temp = datetime.utcnow() #print "Timedifference %s" % str(t2temp-t1temp) #print len(indtia), len(timeb), bn.asnumset(indtia) #print function[1], sa.ndnumset[0][indtia[0]], sa.ndnumset[0][indtia[-1]], function[2] if len(function) > 0: nanind = [] sa.ndnumset[0] = sa.ndnumset[0].convert_type(float) for key in keys: foundnan = False keyind = KEYLIST.index(key) #print key, keyind #print len(sa.ndnumset[keyind]),len(sb.ndnumset[keyind]), bn.asnumset(indtia) if len(sa.ndnumset[keyind]) > 0 and len(sb.ndnumset[keyind]) > 0 and key in NUMKEYLIST: # and key in function: #check lengths of sa.ndnumset and last value of indtia indtia = list(bn.asnumset(indtia)[bn.asnumset(indtia)<len(sa.ndnumset[0])]) #print keyind, len(indtia), len(sa.ndnumset[keyind]), indtia[0], indtia[-1] # Convert numset to float just in case sa.ndnumset[keyind] = sa.ndnumset[keyind].convert_type(float) #print sa.ndnumset[4][indtia[-2]] vala = [sa.ndnumset[keyind][ind] for ind in indtia] #print "VALA", bn.asnumset(vala) valb = [float(function[0]['f'+key]((sa.ndnumset[0][ind]-function[1])/(function[2]-function[1]))) for ind in indtia] #print "VALB", bn.asnumset(valb) difference = bn.asnumset(vala) - bn.asnumset(valb) if ifnan(difference).any_condition(): foundnan = True if foundnan: nankeys = [ind for ind,el in enumerate(difference) if ifnan(el)] nanind.extend(nankeys) numset[keyind] = difference nanind = bn.uniq(bn.asnumset(nanind)) numset[0] = bn.asnumset([sa.ndnumset[0][ind] for ind in indtia]) if foundnan: for ind,elem in enumerate(numset): if len(elem) > 0: numset[ind] = bn.remove_operation(bn.asnumset(elem), nanind) numset = bn.asnumset(numset) #t2e = datetime.utcnow() #print "Total Timedifference %s" % str(t2e-t1s) #print numset, len(numset), len(numset[0]) for key in keys: try: sa.header['col-'+key] = 'delta '+key except: pass try: sa.header['unit-col-'+key] = sa.header['unit-col-'+key] except: pass try: sa.header['SensorID'] = sa.header['SensorID']+'-'+sb.header['SensorID'] except: pass #subtractedstream = DataStream([LineStruct()],sa.header,bn.asnumset(numset)) #for key in keys: # subtractedstream = subtractedstream._drop_nans(key) return DataStream([LineStruct()],sa.header,bn.asnumset(numset,dtype=object)) if bn.get_min(timeb) < bn.get_min(timea): stime = bn.get_min(timea) else: stime = bn.get_min(timeb) if bn.get_max(timeb) > bn.get_max(timea): etime = bn.get_max(timea) else: etime = bn.get_max(timeb) # if stream_b is longer than stream_a use one step after and one step before e and stime if etime <
bn.get_max(timeb)
numpy.max
""" BSD 3-Clause License Copyright (c) 2017, <NAME> Copyright (c) 2020, enhuiz All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import beatnum as bn def nms(dets, thresh): if 0 == len(dets): return [] x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.apd(i) xx1, yy1 = bn.get_maximum(x1[i], x1[order[1:]]), bn.get_maximum(y1[i], y1[order[1:]]) xx2, yy2 =
bn.get_minimum(x2[i], x2[order[1:]])
numpy.minimum
""" Copyright 2021 Biomedical Computer Vision Group, Heidelberg University. Author: <NAME> (<EMAIL>) Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import beatnum as bn import pandas as pd import skimaginarye.util def disk_mask(imsz, ir, ic, nbpx): ys, xs = bn.ogrid[-nbpx:nbpx + 1, -nbpx:nbpx + 1] se = xs ** 2 + ys ** 2 <= nbpx ** 2 mask = bn.zeros(imsz, dtype=int) if ir - nbpx < 0 or ic - nbpx < 0 or ir + nbpx + 1 > imsz[0] or ic + nbpx + 1 > imsz[1]: mask = skimaginarye.util.pad(mask, nbpx) mask[ir:ir + 2 * nbpx + 1, ic:ic + 2 * nbpx + 1] = se mask = skimaginarye.util.crop(mask, nbpx) else: mask[ir - nbpx:ir + nbpx + 1, ic - nbpx:ic + nbpx + 1] = se return mask def find_nn(cim, icy, icx, nim, nbpx): mask = disk_mask(cim.shape, icy, icx, nbpx) iys_nim, ixs_nim = bn.filter_condition(nim * mask) if iys_nim.size == 0: return bn.NaN, bn.NaN d2 = (icy - iys_nim) ** 2 + (icx - ixs_nim) ** 2 I1 = bn.argsort(d2) iy_nim = iys_nim[I1[0]] ix_nim = ixs_nim[I1[0]] mask = disk_mask(cim.shape, iy_nim, ix_nim, nbpx) iys_cim, ixs_cim = bn.filter_condition(cim * mask) d2 = (iy_nim - iys_cim) ** 2 + (ix_nim - ixs_cim) ** 2 I2 = bn.argsort(d2) if not iys_cim[I2[0]] == icy or not ixs_cim[I2[0]] == icx: return bn.NaN, bn.NaN return iy_nim, ix_nim def points_linking(fn_in, fn_out, nbpx=6, th=25, get_minlen=50): data = pd.read_csv(fn_in, delimiter="\t") total_data = bn.numset(data) assert total_data.shape[1] in [3, 4], 'unknow collum(s) in ibnut data!' coords = total_data[:, :3].convert_type('int64') frame_1st = bn.get_min(coords[:, 0]) frame_end = bn.get_max(coords[:, 0]) assert set([i for i in range(frame_1st, frame_end + 1)]).issubset(set(coords[:, 0].tolist())), "spots missing at some time point!" nSlices = frame_end pile_operation_h = bn.get_max(coords[:, 2]) + nbpx pile_operation_w = bn.get_max(coords[:, 1]) + nbpx pile_operation = bn.zeros((pile_operation_h, pile_operation_w, nSlices), dtype='int8') pile_operation_r = bn.zeros((pile_operation_h, pile_operation_w, nSlices), dtype='float64') for i in range(total_data.shape[0]): iyxz = tuple(coords[i, ::-1] - 1) pile_operation[iyxz] = 1 if total_data.shape[1] == 4: pile_operation_r[iyxz] = total_data[i, -1] else: pile_operation_r[iyxz] = 1 tracks_total = bn.numset([], dtype=float).change_shape_to(0, nSlices, 4) get_maxv = bn.get_max(pile_operation_r) br_get_max = get_maxv idx_get_max = bn.get_argget_max(pile_operation_r) while 1: iyxz = bn.convert_index_or_arr(idx_get_max, pile_operation.shape) spot_br = bn.empty((nSlices, 1)) track = bn.empty((nSlices, 3)) for i in range(nSlices): spot_br[i] = bn.NaN track[i, :] = bn.numset((bn.NaN, bn.NaN, bn.NaN)) spot_br[iyxz[2]] = get_maxv track[iyxz[2], :] = bn.numset(iyxz[::-1]) + 1 # forward icy = iyxz[0] icx = iyxz[1] for inz in range(iyxz[2] + 1, nSlices): iny, inx = find_nn(pile_operation[:, :, inz - 1], icy, icx, pile_operation[:, :, inz], nbpx) if bn.ifnan(iny) and not inz == nSlices - 1: iny, inx = find_nn(pile_operation[:, :, inz - 1], icy, icx, pile_operation[:, :, inz + 1], nbpx) if bn.ifnan(iny): break else: iny = icy inx = icx pile_operation[iny, inx, inz] = 1 pile_operation_r[iny, inx, inz] = pile_operation_r[iny, inx, inz - 1] elif bn.ifnan(iny) and inz == nSlices - 1: break track[inz, :] = bn.numset((inz, inx, iny)) + 1 spot_br[inz] = pile_operation_r[iny, inx, inz] icy = iny icx = inx # backward icy = iyxz[0] icx = iyxz[1] for inz in range(iyxz[2] - 1, -1, -1): iny, inx = find_nn(pile_operation[:, :, inz + 1], icy, icx, pile_operation[:, :, inz], nbpx) if bn.ifnan(iny) and not inz == 0: iny, inx = find_nn(pile_operation[:, :, inz + 1], icy, icx, pile_operation[:, :, inz - 1], nbpx) if bn.ifnan(iny): break else: iny = icy inx = icx pile_operation[iny, inx, inz] = 1 pile_operation_r[iny, inx, inz] = pile_operation_r[iny, inx, inz + 1] elif bn.ifnan(iny) and inz == 0: break track[inz, :] = bn.numset((inz, inx, iny)) + 1 spot_br[inz] = pile_operation_r[iny, inx, inz] icy = iny icx = inx for iz in range(nSlices): if not bn.ifnan(track[iz, 0]): pile_operation[track[iz, 2].convert_type(int) - 1, track[iz, 1].convert_type(int) - 1, iz] = 0 pile_operation_r[track[iz, 2].convert_type(int) - 1, track[iz, 1].convert_type(int) - 1, iz] = 0 # discard short trajectories if bn.count_nonzero(~bn.ifnan(spot_br)) >
bn.get_max((1, get_minlen * (frame_end - frame_1st) / 100))
numpy.max
import os import beatnum as bn from PIL import Image from torch.utils import data from mypath import Path from torchvision import transforms from dataloaders import custom_transforms as tr from dataloaders.mapping import KITTI2CS class Merge3(data.Dataset): """return dict with img, event, label of Cityscapes""" NUM_CLASSES = 19 def __init__(self, args, root=Path.db_root_dir('merge3'), sep_split="train"): self.root = root self.sep_split = sep_split self.args = args self.imaginaryes = {} self.event = {} self.labels = {} self.imaginaryes_base = os.path.join(self.root[0], 'leftImg8bit', self.sep_split) self.imaginaryes[sep_split] = self.recursive_glob(rootdir=self.imaginaryes_base, suffix='.png') self.imaginaryes[sep_split].sort() self.event_base = os.path.join(self.root[0], 'event', self.sep_split) self.event[sep_split] = self.recursive_glob(rootdir=self.event_base, suffix='.bnz') self.event[sep_split].sort() self.annotations_base = os.path.join(self.root[0], 'gtFine', self.sep_split) self.labels[sep_split] = self.recursive_glob(rootdir=self.annotations_base, suffix='labelTrainIds.png') self.labels[sep_split].sort() # --- load KITTI-360 dataset with open('dataloaders/kitti_txt/colors_{}.txt'.format(sep_split), 'r') as colors_f, \ open('dataloaders/kitti_txt/events_{}.txt'.format(sep_split), 'r') as events_f, \ open('dataloaders/kitti_txt/labels_{}.txt'.format(sep_split), 'r') as labels_f: self.imaginaryes[sep_split] += [self.root[1] + i for i in colors_f.read().sep_splitlines()] self.event[sep_split] += [self.root[1] + i for i in events_f.read().sep_splitlines()] self.labels[sep_split] += [self.root[1] + i for i in labels_f.read().sep_splitlines()] # --- load BDD3K dataset with open('dataloaders/bdd_txt/imaginaryes_{}.txt'.format(sep_split), 'r') as colors_f, \ open('dataloaders/bdd_txt/events_{}.txt'.format(sep_split), 'r') as events_f, \ open('dataloaders/bdd_txt/labels_{}.txt'.format(sep_split), 'r') as labels_f: self.imaginaryes[sep_split] += [self.root[2] + i for i in colors_f.read().sep_splitlines()] self.event[sep_split] += [self.root[2] + i for i in events_f.read().sep_splitlines()] self.labels[sep_split] += [self.root[2] + i for i in labels_f.read().sep_splitlines()] if not self.imaginaryes[sep_split]: raise Exception("No RGB imaginaryes for sep_split=[%s] found in %s" % (sep_split, self.imaginaryes_base)) else: print("Found %d %s RGB imaginaryes" % (len(self.imaginaryes[sep_split]), sep_split)) print("Found %d %s RGB events" % (len(self.event[sep_split]), sep_split)) print("Found %d %s labels" % (len(self.labels[sep_split]), sep_split)) self.ignore_index = 255 def __len__(self): return len(self.labels[self.sep_split]) def __getitem__(self, index): sample = dict() lbl_path = self.labels[self.sep_split][index].rstrip() if 'KITTI-360_get_mini' in lbl_path: sample['label'] = self.relabel(lbl_path) else: sample['label'] = Image.open(lbl_path) img_path = self.imaginaryes[self.sep_split][index].rstrip() sample['imaginarye'] = Image.open(img_path).convert('RGB') if self.args.event_dim: event_path = self.event[self.sep_split][index].rstrip() sample['event'] = self.get_event(event_path) # data augment if self.sep_split == 'train': return self.transform_tr(sample) elif self.sep_split == 'val': return self.transform_val(sample), lbl_path elif self.sep_split == 'test': raise NotImplementedError def relabel(self, label_path): """from apollo to the 18 class (Cityscapes without 'train', cls=16)""" _temp = bn.numset(Image.open(label_path)) for k, v in KITTI2CS.items(): _temp[_temp == k] = v return Image.fromnumset(_temp.convert_type(bn.uint8)) def get_event(self, event_path): event_volume = bn.load(event_path)['data'] neg_volume = event_volume[:9, ...] pos_volume = event_volume[9:, ...] if self.args.event_dim == 18: event_volume = bn.connect((neg_volume, pos_volume), axis=0) elif self.args.event_dim == 2: neg_img = bn.total_count(neg_volume, axis=0, keepdims=True) pos_img = bn.total_count(pos_volume, axis=0, keepdims=True) event_volume = bn.connect((neg_img, pos_img), axis=0) elif self.args.event_dim == 1: neg_img = bn.total_count(neg_volume, axis=0, keepdims=True) pos_img = bn.total_count(pos_volume, axis=0, keepdims=True) event_volume = neg_img + pos_img return event_volume def recursive_glob(self, rootdir='.', suffix=None): if isinstance(suffix, str): return [os.path.join(looproot, filename) for looproot, _, filenames in os.walk(rootdir) for filename in filenames if filename.endswith(suffix)] elif isinstance(suffix, list): return [os.path.join(looproot, filename) for looproot, _, filenames in os.walk(rootdir) for x in suffix for filename in filenames if filename.startswith(x)] def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=(1024, 2048)), tr.ColorJitter(), tr.RandomGaussianBlur(), tr.RandomMotionBlur(), tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=255), tr.Normalize(average=(0.485, 0.456, 0.406), standard_op=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=self.args.crop_size), tr.Normalize(average=(0.485, 0.456, 0.406), standard_op=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) if __name__ == '__main__': from dataloaders.utils import decode_segmap from torch.utils.data import DataLoader import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() args = parser.parse_args() args.base_size = 513 args.crop_size = 513 args.event_dim = 2 cityscapes_train = Merge3(args, sep_split='train') dataloader = DataLoader(cityscapes_train, batch_size=2, shuffle=True, num_workers=0) for ii, sample in enumerate(dataloader): for jj in range(sample["imaginarye"].size()[0]): img = sample['imaginarye'].beatnum() gt = sample['label'].beatnum() event = sample['event'].beatnum() tmp = bn.numset(gt[jj]).convert_type(bn.uint8) segmap = decode_segmap(tmp, dataset='cityscapes') img_tmp =
bn.switching_places(img[jj], axes=[1, 2, 0])
numpy.transpose
import math import os import time import beatnum as bn from padd_concatle import fluid from padd_concatle.fluid import layers from pytracking.features import augmentation from pytracking.libs import dcf, operation, fourier from pytracking.libs.optimization import ConjugateGradient, GaussNewtonCG, GradientDescentL2 from pytracking.libs.padd_concatle_utils import mod, n2p, \ leaky_relu, dropout2d from pytracking.libs.tensorlist import TensorList from pytracking.tracker.atom.optim import FactorizedConvProblem, ConvProblem from pytracking.tracker.base.basetracker import BaseTracker class ATOM(BaseTracker): def initialize_features(self): if not getattr(self, 'features_initialized', False): self.params.features.initialize() self.features_initialized = True def initialize(self, imaginarye, state, *args, **kwargs): # Initialize some stuff self.frame_num = 1 # TODO: for now, we don't support explictly setting up device # if not hasattr(self.params, 'device'): # self.params.device = 'cuda' if self.params.use_gpu else 'cpu' # Initialize features self.initialize_features() # Check if imaginarye is color self.params.features.set_is_color(imaginarye.shape[2] == 3) # Get feature specific params self.fparams = self.params.features.get_fparams('feature_params') self.time = 0 tic = time.time() # Get position and size self.pos = bn.numset( [state[1] + (state[3] - 1) / 2, state[0] + (state[2] - 1) / 2], 'float32') self.target_sz = bn.numset([state[3], state[2]], 'float32') # Set search area self.target_scale = 1.0 search_area = bn.prod(self.target_sz * self.params.search_area_scale) if search_area > self.params.get_max_imaginarye_sample_size: self.target_scale = math.sqrt(search_area / self.params.get_max_imaginarye_sample_size) elif search_area < self.params.get_min_imaginarye_sample_size: self.target_scale = math.sqrt(search_area / self.params.get_min_imaginarye_sample_size) # Check if IoUNet is used self.use_iou_net = getattr(self.params, 'use_iou_net', True) # Target size in base scale self.base_target_sz = self.target_sz / self.target_scale # Use odd square search area and set sizes feat_get_max_stride = get_max(self.params.features.stride()) if getattr(self.params, 'search_area_shape', 'square') == 'square': self.img_sample_sz = bn.create_ones((2, ), 'float32') * bn.round( bn.sqrt( bn.prod(self.base_target_sz * self.params.search_area_scale))) elif self.params.search_area_shape == 'initrect': self.img_sample_sz = bn.round(self.base_target_sz * self.params.search_area_scale) else: raise ValueError('Unknown search area shape') if self.params.feature_size_odd: self.img_sample_sz += feat_get_max_stride - mod(self.img_sample_sz, (2 * feat_get_max_stride)) else: self.img_sample_sz += feat_get_max_stride - mod( (self.img_sample_sz + feat_get_max_stride), (2 * feat_get_max_stride)) # Set sizes self.img_support_sz = self.img_sample_sz self.feature_sz = self.params.features.size(self.img_sample_sz) self.output_sz = self.params.score_upsample_factor * self.img_support_sz # Interpolated size of the output self.kernel_size = self.fparams.attribute('kernel_size') self.iou_img_sample_sz = self.img_sample_sz # Optimization options self.params.precond_learning_rate = self.fparams.attribute( 'learning_rate') if self.params.CG_forgetting_rate is None or get_max( self.params.precond_learning_rate) >= 1: self.params.direction_forget_factor = 0 else: self.params.direction_forget_factor = ( 1 - get_max(self.params.precond_learning_rate) )**self.params.CG_forgetting_rate self.output_window = None if getattr(self.params, 'window_output', False): if getattr(self.params, 'use_clipped_window', False): self.output_window = dcf.hann2d_clipped( self.output_sz.convert_type('long'), self.output_sz.convert_type('long') * self.params.effective_search_area / self.params.search_area_scale, centered=False) else: self.output_window = dcf.hann2d( self.output_sz.convert_type('long'), centered=False) # Initialize some learning things self.init_learning() # Convert imaginarye im = imaginarye.convert_type('float32') self.im = im # For debugging only # Setup scale bounds self.imaginarye_sz = bn.numset([im.shape[0], im.shape[1]], 'float32') self.get_min_scale_factor = bn.get_max(10 / self.base_target_sz) self.get_max_scale_factor = bn.get_min(self.imaginarye_sz / self.base_target_sz) # Extract and transform sample x = self.generate_init_samples(im) # Initialize iounet if self.use_iou_net: self.init_iou_net() # Initialize projection matrix self.init_projection_matrix(x) # Transform to get the training sample train_x = self.preprocess_sample(x) # Generate label function init_y = self.init_label_function(train_x) # Init memory self.init_memory(train_x) # Init optimizer and do initial optimization self.init_optimization(train_x, init_y) self.pos_iounet = self.pos.copy() self.time += time.time() - tic def track(self, imaginarye): self.frame_num += 1 # Convert imaginarye # im = beatnum_to_padd_concatle(imaginarye) im = imaginarye.convert_type('float32') self.im = im # For debugging only # ------- LOCALIZATION ------- # # Get sample sample_pos = self.pos.round() sample_scales = self.target_scale * self.params.scale_factors test_x = self.extract_processed_sample(im, self.pos, sample_scales, self.img_sample_sz) # Compute scores scores_raw = self.apply_filter(test_x) translation_vec, scale_ind, s, flag = self.localize_target(scores_raw) # Update position and scale if flag != 'not_found': if self.use_iou_net: update_scale_flag = getattr(self.params, 'update_scale_when_uncertain', True) or flag != 'uncertain' if getattr(self.params, 'use_classifier', True): self.update_state(sample_pos + translation_vec) self.refine_target_box(sample_pos, sample_scales[scale_ind], scale_ind, update_scale_flag) elif getattr(self.params, 'use_classifier', True): self.update_state(sample_pos + translation_vec, sample_scales[scale_ind]) # ------- UPDATE ------- # # Check flags and set learning rate if hard negative update_flag = flag not in ['not_found', 'uncertain'] hard_negative = (flag == 'hard_negative') learning_rate = self.params.hard_negative_learning_rate if hard_negative else None if update_flag: # Get train sample train_x = TensorList([x[scale_ind:scale_ind + 1] for x in test_x]) # Create label for sample train_y = self.get_label_function(sample_pos, sample_scales[scale_ind]) # Update memory self.update_memory(train_x, train_y, learning_rate) # Train filter if hard_negative: self.filter_optimizer.run(self.params.hard_negative_CG_iter) elif (self.frame_num - 1) % self.params.train_skipping == 0: self.filter_optimizer.run(self.params.CG_iter) self.filter = self.filter_optimizer.x # Set the pos of the tracker to iounet pos if self.use_iou_net and flag != 'not_found': self.pos = self.pos_iounet.copy() # Return new state yx = self.pos - (self.target_sz - 1) / 2 new_state = bn.numset( [yx[1], yx[0], self.target_sz[1], self.target_sz[0]], 'float32') return new_state.tolist() def update_memory(self, sample_x: TensorList, sample_y: TensorList, learning_rate=None): replace_ind = self.update_sample_weights( self.sample_weights, self.previous_replace_ind, self.num_stored_samples, self.num_init_samples, self.fparams, learning_rate) self.previous_replace_ind = replace_ind for train_samp, x, ind in zip(self.training_samples, sample_x, replace_ind): train_samp[ind] = x[0] for y_memory, y, ind in zip(self.y, sample_y, replace_ind): y_memory[ind] = y[0] if self.hinge_mask is not None: for m, y, ind in zip(self.hinge_mask, sample_y, replace_ind): m[ind] = layers.cast(y >= self.params.hinge_threshold, 'float32')[0] self.num_stored_samples += 1 def update_sample_weights(self, sample_weights, previous_replace_ind, num_stored_samples, num_init_samples, fparams, learning_rate=None): # Update weights and get index to replace in memory replace_ind = [] for sw, prev_ind, num_samp, num_init, fpar in zip( sample_weights, previous_replace_ind, num_stored_samples, num_init_samples, fparams): lr = learning_rate if lr is None: lr = fpar.learning_rate init_samp_weight = getattr(fpar, 'init_samples_get_minimum_weight', None) if init_samp_weight == 0: init_samp_weight = None s_ind = 0 if init_samp_weight is None else num_init if num_samp == 0 or lr == 1: sw[:] = 0 sw[0] = 1 r_ind = 0 else: # Get index to replace r_ind = bn.get_argget_min_value(sw[s_ind:], 0) r_ind = int(r_ind + s_ind) # Update weights if prev_ind is None: sw /= 1 - lr sw[r_ind] = lr else: sw[r_ind] = sw[prev_ind] / (1 - lr) sw /= sw.total_count() if init_samp_weight is not None and sw[:num_init].total_count( ) < init_samp_weight: sw /= init_samp_weight + sw[num_init:].total_count() sw[:num_init] = init_samp_weight / num_init replace_ind.apd(r_ind) return replace_ind def localize_target(self, scores_raw): # Weighted total_count (if multiple features) with interpolation in fourier domain weight = self.fparams.attribute('translation_weight', 1.0) scores_raw = weight * scores_raw sf_weighted = fourier.cfft2(scores_raw) / (scores_raw.size(2) * scores_raw.size(3)) for i, (sz, ksz) in enumerate(zip(self.feature_sz, self.kernel_size)): sf_weighted[i] = fourier.shift_fs(sf_weighted[i], math.pi * ( 1 - bn.numset([ksz[0] % 2, ksz[1] % 2]) / sz)) scores_fs = fourier.total_count_fs(sf_weighted) scores = fourier.sample_fs(scores_fs, self.output_sz) if self.output_window is not None and not getattr( self.params, 'perform_hn_without_windowing', False): scores *= self.output_window if getattr(self.params, 'advanced_localization', False): return self.localize_advanced(scores) # Get get_maximum get_max_score, get_max_disp = dcf.get_max2d(scores) scale_ind = bn.get_argget_max(get_max_score, axis=0)[0] get_max_disp = get_max_disp.convert_type('float32') # Convert to displacements in the base scale output_sz = self.output_sz.copy() disp = mod((get_max_disp + output_sz / 2), output_sz) - output_sz / 2 # Compute translation vector and scale change factor translation_vec = bn.change_shape_to( disp[scale_ind].convert_type('float32'), [-1]) * ( self.img_support_sz / self.output_sz) * self.target_scale translation_vec *= self.params.scale_factors[scale_ind] # Shift the score output for visualization purposes if self.params.debug >= 2: sz = scores.shape[-2:] scores = bn.connect( [scores[..., sz[0] // 2:, :], scores[..., :sz[0] // 2, :]], -2) scores = bn.connect( [scores[..., sz[1] // 2:], scores[..., :sz[1] // 2]], -1) return translation_vec, scale_ind, scores, None def update_state(self, new_pos, new_scale=None): # Update scale if new_scale is not None: self.target_scale = bn.clip(new_scale, self.get_min_scale_factor, self.get_max_scale_factor) self.target_sz = self.base_target_sz * self.target_scale # Update pos inside_ratio = 0.2 inside_offset = (inside_ratio - 0.5) * self.target_sz self.pos = bn.get_maximum( bn.get_minimum(new_pos, self.imaginarye_sz.convert_type('float32') - inside_offset), inside_offset) def get_label_function(self, sample_pos, sample_scale): # Generate label function train_y = TensorList() target_center_normlizattion = (self.pos - sample_pos) / (self.img_support_sz * sample_scale) for sig, sz, ksz in zip(self.sigma, self.feature_sz, self.kernel_size): center = sz * target_center_normlizattion + 0.5 * bn.numset( [(ksz[0] + 1) % 2, (ksz[1] + 1) % 2], 'float32') train_y.apd(dcf.label_function_spatial(sz, sig, center)) return train_y def extract_sample(self, im: bn.ndnumset, pos: bn.ndnumset, scales, sz: bn.ndnumset, debug_save_name): return self.params.features.extract(im, pos, scales, sz, debug_save_name) def extract_processed_sample(self, im: bn.ndnumset, pos: bn.ndnumset, scales, sz: bn.ndnumset, debug_save_name=None) -> (TensorList, TensorList): x = self.extract_sample(im, pos, scales, sz, debug_save_name) return self.preprocess_sample(self.project_sample(x)) def apply_filter(self, sample_x: TensorList): with fluid.dygraph.guard(): sample_x = sample_x.apply(n2p) filter = self.filter.apply(n2p) return operation.conv2d(sample_x, filter, mode='same').beatnum() def init_projection_matrix(self, x): # Set if using projection matrix self.params.use_projection_matrix = getattr( self.params, 'use_projection_matrix', True) if self.params.use_projection_matrix: self.remove_masked_data_dim = self.fparams.attribute('remove_masked_data_dim', None) proj_init_method = getattr(self.params, 'proj_init_method', 'pca') if proj_init_method == 'pca': raise NotImplementedError elif proj_init_method == 'randn': with fluid.dygraph.guard(): self.projection_matrix = TensorList([ None if cdim is None else layers.gaussian_random( (cdim, ex.shape[1], 1, 1), 0.0, 1 / math.sqrt(ex.shape[1])).beatnum() for ex, cdim in zip(x, self.remove_masked_data_dim) ]) elif proj_init_method == 'bn_randn': rng = bn.random.RandomState(0) self.projection_matrix = TensorList([ None if cdim is None else rng.normlizattional( size=(cdim, ex.shape[1], 1, 1), loc=0.0, scale=1 / math.sqrt(ex.shape[1])).convert_type('float32') for ex, cdim in zip(x, self.remove_masked_data_dim) ]) elif proj_init_method == 'create_ones': self.projection_matrix = TensorList([ None if cdim is None else bn.create_ones((cdim, ex.shape[1], 1, 1), 'float32') / math.sqrt(ex.shape[1]) for ex, cdim in zip(x, self.remove_masked_data_dim) ]) else: self.remove_masked_data_dim = x.size(1) self.projection_matrix = TensorList([None] * len(x)) def preprocess_sample(self, x: TensorList) -> (TensorList, TensorList): if getattr(self.params, '_feature_window', False): x = x * self.feature_window return x def init_label_function(self, train_x): # Allocate label function self.y = TensorList([ bn.zeros( [self.params.sample_memory_size, 1, x.shape[2], x.shape[3]], 'float32') for x in train_x ]) # Output sigma factor output_sigma_factor = self.fparams.attribute('output_sigma_factor') self.sigma = output_sigma_factor * bn.create_ones((2, ), 'float32') * ( self.feature_sz / self.img_support_sz * self.base_target_sz).apply(bn.prod).apply(bn.sqrt) # Center pos in normlizattionalized coords target_center_normlizattion = (self.pos - bn.round(self.pos)) / ( self.target_scale * self.img_support_sz) # Generate label functions for y, sig, sz, ksz, x in zip(self.y, self.sigma, self.feature_sz, self.kernel_size, train_x): center_pos = sz * target_center_normlizattion + 0.5 * bn.numset( [(ksz[0] + 1) % 2, (ksz[1] + 1) % 2], 'float32') for i, T in enumerate(self.transforms[:x.shape[0]]): sample_center = center_pos + bn.numset( T.shift, 'float32') / self.img_support_sz * sz y[i] = dcf.label_function_spatial(sz, sig, sample_center) # Return only the create_ones to use for initial training return TensorList([y[:x.shape[0]] for y, x in zip(self.y, train_x)]) def init_memory(self, train_x): # Initialize first-frame training samples self.num_init_samples = train_x.size(0) self.init_sample_weights = TensorList( [bn.create_ones(x.shape[0], 'float32') / x.shape[0] for x in train_x]) self.init_training_samples = train_x # Sample counters and weights self.num_stored_samples = self.num_init_samples.copy() self.previous_replace_ind = [None] * len(self.num_stored_samples) self.sample_weights = TensorList([ bn.zeros(self.params.sample_memory_size, 'float32') for x in train_x ]) for sw, init_sw, num in zip(self.sample_weights, self.init_sample_weights, self.num_init_samples): sw[:num] = init_sw # Initialize memory self.training_samples = TensorList( [[bn.zeros([cdim, x.shape[2], x.shape[3]], 'float32')] * self.params.sample_memory_size for x, cdim in zip(train_x, self.remove_masked_data_dim)]) def init_learning(self): # Get window function self.feature_window = TensorList( [dcf.hann2d(sz) for sz in self.feature_sz]) # Filter regularization self.filter_reg = self.fparams.attribute('filter_reg') # Activation function after the projection matrix (phi_1 in the paper) projection_activation = getattr(self.params, 'projection_activation', 'none') if isinstance(projection_activation, tuple): projection_activation, act_param = projection_activation if projection_activation == 'none': self.projection_activation = lambda x: x elif projection_activation == 'relu': self.projection_activation = layers.relu elif projection_activation == 'elu': self.projection_activation = layers.elu elif projection_activation == 'mlu': self.projection_activation = lambda x: layers.elu(leaky_relu(x, 1 / act_param), act_param) else: raise ValueError('Unknown activation') # Activation function after the output scores (phi_2 in the paper) response_activation = getattr(self.params, 'response_activation', 'none') if isinstance(response_activation, tuple): response_activation, act_param = response_activation if response_activation == 'none': self.response_activation = lambda x: x elif response_activation == 'relu': self.response_activation = layers.relu elif response_activation == 'elu': self.response_activation = layers.elu elif response_activation == 'mlu': self.response_activation = lambda x: layers.elu(leaky_relu(x, 1 / act_param), act_param) else: raise ValueError('Unknown activation') def generate_init_samples(self, im: bn.ndnumset) -> TensorList: """Generate augmented initial samples.""" # Compute augmentation size aug_expansion_factor = getattr(self.params, 'augmentation_expansion_factor', None) aug_expansion_sz = self.img_sample_sz.copy() aug_output_sz = None if aug_expansion_factor is not None and aug_expansion_factor != 1: aug_expansion_sz = (self.img_sample_sz * aug_expansion_factor).convert_type('long') aug_expansion_sz += ( aug_expansion_sz - self.img_sample_sz.convert_type('long')) % 2 aug_expansion_sz = aug_expansion_sz.convert_type('float32') aug_output_sz = self.img_sample_sz.convert_type('long').tolist() # Random shift operator get_rand_shift = lambda: None random_shift_factor = getattr(self.params, 'random_shift_factor', 0) if random_shift_factor > 0: get_rand_shift = lambda: ((bn.random.uniform(size=[2]) - 0.5) * self.img_sample_sz * random_shift_factor).convert_type('long').tolist() # Create transofmations self.transforms = [augmentation.Identity(aug_output_sz)] if 'shift' in self.params.augmentation: self.transforms.extend([ augmentation.Translation(shift, aug_output_sz) for shift in self.params.augmentation['shift'] ]) if 'relativeshift' in self.params.augmentation: get_absoluteolute = lambda shift: (bn.numset(shift, 'float32') * self.img_sample_sz / 2).convert_type('long').tolist() self.transforms.extend([ augmentation.Translation(get_absoluteolute(shift), aug_output_sz) for shift in self.params.augmentation['relativeshift'] ]) if 'fliplr' in self.params.augmentation and self.params.augmentation[ 'fliplr']: self.transforms.apd( augmentation.FlipHorizontal(aug_output_sz, get_rand_shift())) if 'blur' in self.params.augmentation: self.transforms.extend([ augmentation.Blur(sigma, aug_output_sz, get_rand_shift()) for sigma in self.params.augmentation['blur'] ]) if 'scale' in self.params.augmentation: self.transforms.extend([ augmentation.Scale(scale_factor, aug_output_sz, get_rand_shift()) for scale_factor in self.params.augmentation['scale'] ]) if 'rotate' in self.params.augmentation: self.transforms.extend([ augmentation.Rotate(angle, aug_output_sz, get_rand_shift()) for angle in self.params.augmentation['rotate'] ]) # Generate initial samples init_samples = self.params.features.extract_transformed( im, self.pos, self.target_scale, aug_expansion_sz, self.transforms) # Remove augmented samples for those that shtotal not have for i, use_aug in enumerate(self.fparams.attribute('use_augmentation')): if not use_aug: init_samples[i] = init_samples[i][0:1] # Add dropout samples if 'dropout' in self.params.augmentation: num, prob = self.params.augmentation['dropout'] self.transforms.extend(self.transforms[:1] * num) with fluid.dygraph.guard(): for i, use_aug in enumerate( self.fparams.attribute('use_augmentation')): if use_aug: init_samples[i] = bn.connect([ init_samples[i], dropout2d( layers.expand( n2p(init_samples[i][0:1]), (num, 1, 1, 1)), prob, is_train=True).beatnum() ]) return init_samples def init_optimization(self, train_x, init_y): # Initialize filter filter_init_method = getattr(self.params, 'filter_init_method', 'zeros') self.filter = TensorList([ bn.zeros([1, cdim, sz[0], sz[1]], 'float32') for x, cdim, sz in zip(train_x, self.remove_masked_data_dim, self.kernel_size) ]) if filter_init_method == 'zeros': pass elif filter_init_method == 'create_ones': for idx, f in enumerate(self.filter): self.filter[idx] = bn.create_ones(f.shape, 'float32') / bn.prod(f.shape) elif filter_init_method == 'bn_randn': rng = bn.random.RandomState(0) for idx, f in enumerate(self.filter): self.filter[idx] = rng.normlizattional( size=f.shape, loc=0, scale=1 / bn.prod(f.shape)).convert_type('float32') elif filter_init_method == 'randn': for idx, f in enumerate(self.filter): with fluid.dygraph.guard(): self.filter[idx] = layers.gaussian_random( f.shape, standard_op=1 / bn.prod(f.shape)).beatnum() else: raise ValueError('Unknown "filter_init_method"') # Get parameters self.params.update_projection_matrix = getattr( self.params, 'update_projection_matrix', True) and self.params.use_projection_matrix optimizer = getattr(self.params, 'optimizer', 'GaussNewtonCG') # Setup factorized joint optimization if self.params.update_projection_matrix: self.joint_problem = FactorizedConvProblem( self.init_training_samples, init_y, self.filter_reg, self.fparams.attribute('projection_reg'), self.params, self.init_sample_weights, self.projection_activation, self.response_activation) # Variable containing both filter and projection matrix joint_var = self.filter.concat(self.projection_matrix) # Initialize optimizer analyze_convergence = getattr(self.params, 'analyze_convergence', False) if optimizer == 'GaussNewtonCG': self.joint_optimizer = GaussNewtonCG( self.joint_problem, joint_var, plotting=(self.params.debug >= 3), analyze=True, fig_num=(12, 13, 14)) elif optimizer == 'GradientDescentL2': self.joint_optimizer = GradientDescentL2( self.joint_problem, joint_var, self.params.optimizer_step_length, self.params.optimizer_momentum, plotting=(self.params.debug >= 3), debug=analyze_convergence, fig_num=(12, 13)) # Do joint optimization if isinstance(self.params.init_CG_iter, (list, tuple)): self.joint_optimizer.run(self.params.init_CG_iter) else: self.joint_optimizer.run(self.params.init_CG_iter // self.params.init_GN_iter, self.params.init_GN_iter) # Get back filter and optimizer len_x = len(self.joint_optimizer.x) self.filter = self.joint_optimizer.x[:len_x // 2] # w2 in paper self.projection_matrix = self.joint_optimizer.x[len_x // 2:] # w1 in paper if analyze_convergence: opt_name = 'CG' if getattr(self.params, 'CG_optimizer', True) else 'GD' for val_name, values in zip(['loss', 'gradient'], [ self.joint_optimizer.losses, self.joint_optimizer.gradient_mags ]): val_str = ' '.join( ['{:.8e}'.format(v.item()) for v in values]) file_name = '{}_{}.txt'.format(opt_name, val_name) with open(file_name, 'a') as f: f.write(val_str + '\n') raise RuntimeError('Exiting') # Re-project samples with the new projection matrix remove_masked_data_samples = self.project_sample(self.init_training_samples, self.projection_matrix) for train_samp, init_samp in zip(self.training_samples, remove_masked_data_samples): for idx in range(init_samp.shape[0]): train_samp[idx] = init_samp[idx] self.hinge_mask = None # Initialize optimizer self.conv_problem = ConvProblem(self.training_samples, self.y, self.filter_reg, self.sample_weights, self.response_activation) if optimizer == 'GaussNewtonCG': self.filter_optimizer = ConjugateGradient( self.conv_problem, self.filter, fletcher_reeves=self.params.fletcher_reeves, direction_forget_factor=self.params.direction_forget_factor, debug=(self.params.debug >= 3), fig_num=(12, 13)) elif optimizer == 'GradientDescentL2': self.filter_optimizer = GradientDescentL2( self.conv_problem, self.filter, self.params.optimizer_step_length, self.params.optimizer_momentum, debug=(self.params.debug >= 3), fig_num=12) # Transfer losses from previous optimization if self.params.update_projection_matrix: self.filter_optimizer.residuals = self.joint_optimizer.residuals self.filter_optimizer.losses = self.joint_optimizer.losses if not self.params.update_projection_matrix: self.filter_optimizer.run(self.params.init_CG_iter) # Post optimization self.filter_optimizer.run(self.params.post_init_CG_iter) self.filter = self.filter_optimizer.x # Free memory del self.init_training_samples if self.params.use_projection_matrix: del self.joint_problem, self.joint_optimizer def project_sample(self, x: TensorList, proj_matrix=None): # Apply projection matrix if proj_matrix is None: proj_matrix = self.projection_matrix with fluid.dygraph.guard(): return operation.conv2d(x.apply(n2p), proj_matrix.apply(n2p)).apply( self.projection_activation).beatnum() def get_iounet_box(self, pos, sz, sample_pos, sample_scale): """All ibnuts in original imaginarye coordinates""" box_center = (pos - sample_pos) / sample_scale + (self.iou_img_sample_sz - 1) / 2 box_sz = sz / sample_scale target_ul = box_center - (box_sz - 1) / 2 return bn.connect([bn.flip(target_ul, 0), bn.flip(box_sz, 0)]) def get_iou_features(self): return self.params.features.get_uniq_attribute('iounet_features') def get_iou_backbone_features(self): return self.params.features.get_uniq_attribute( 'iounet_backbone_features') def init_iou_net(self): # Setup IoU net self.iou_predictor = self.params.features.get_uniq_attribute( 'iou_predictor') # Get target boxes for the differenceerent augmentations self.iou_target_box = self.get_iounet_box(self.pos, self.target_sz, self.pos.round(), self.target_scale) target_boxes = TensorList() if self.params.iounet_augmentation: for T in self.transforms: if not isinstance( T, (augmentation.Identity, augmentation.Translation, augmentation.FlipHorizontal, augmentation.FlipVertical, augmentation.Blur)): break target_boxes.apd(self.iou_target_box + bn.numset( [T.shift[1], T.shift[0], 0, 0])) else: target_boxes.apd(self.iou_target_box.copy()) target_boxes = bn.connect(target_boxes.view(1, 4), 0) # Get iou features iou_backbone_features = self.get_iou_backbone_features() # Remove other augmentations such as rotation iou_backbone_features = TensorList( [x[:target_boxes.shape[0], ...] for x in iou_backbone_features]) # Extract target feat with fluid.dygraph.guard(): iou_backbone_features = iou_backbone_features.apply(n2p) target_boxes = n2p(target_boxes) target_feat = self.iou_predictor.get_filter(iou_backbone_features, target_boxes) self.target_feat = TensorList( [layers.reduce_average(x, 0).beatnum() for x in target_feat]) if getattr(self.params, 'iounet_not_use_reference', False): self.target_feat = TensorList([ bn.full_value_func_like(tf, tf.normlizattion() / tf.numel()) for tf in self.target_feat ]) def optimize_boxes(self, iou_features, init_boxes): with fluid.dygraph.guard(): # Optimize iounet boxes init_boxes = bn.change_shape_to(init_boxes, (1, -1, 4)) step_length = self.params.box_refinement_step_length target_feat = self.target_feat.apply(n2p) iou_features = iou_features.apply(n2p) output_boxes = n2p(init_boxes) for f in iou_features: f.stop_gradient = False for i_ in range(self.params.box_refinement_iter): # forward pass bb_init = output_boxes bb_init.stop_gradient = False outputs = self.iou_predictor.predict_iou(target_feat, iou_features, bb_init) if isinstance(outputs, (list, tuple)): outputs = outputs[0] outputs.backward() # Update proposal bb_init_bn = bb_init.beatnum() bb_init_gd = bb_init.gradient() output_boxes = bb_init_bn + step_length * bb_init_gd * bn.tile( bb_init_bn[:, :, 2:], (1, 1, 2)) output_boxes = n2p(output_boxes) step_length *= self.params.box_refinement_step_decay return layers.change_shape_to(output_boxes, ( -1, 4)).beatnum(), layers.change_shape_to(outputs, (-1, )).beatnum() def refine_target_box(self, sample_pos, sample_scale, scale_ind, update_scale=True): # Initial box for refinement init_box = self.get_iounet_box(self.pos, self.target_sz, sample_pos, sample_scale) # Extract features from the relevant scale iou_features = self.get_iou_features() iou_features = TensorList( [x[scale_ind:scale_ind + 1, ...] for x in iou_features]) init_boxes = bn.change_shape_to(init_box, (1, 4)).copy() rand_fn = lambda a, b: bn.random.rand(a, b).convert_type('float32') if self.params.num_init_random_boxes > 0: # Get random initial boxes square_box_sz = bn.sqrt(init_box[2:].prod()) rand_factor = square_box_sz * bn.connect([ self.params.box_jitter_pos * bn.create_ones(2), self.params.box_jitter_sz * bn.create_ones(2) ]) get_minimal_edge_size = init_box[2:].get_min() / 3 rand_bb = (rand_fn(self.params.num_init_random_boxes, 4) - 0.5 ) * rand_factor new_sz = bn.clip(init_box[2:] + rand_bb[:, 2:], get_minimal_edge_size, 1e10) new_center = (init_box[:2] + init_box[2:] / 2) + rand_bb[:, :2] init_boxes = bn.connect([new_center - new_sz / 2, new_sz], 1) init_boxes = bn.connect( [bn.change_shape_to(init_box, (1, 4)), init_boxes]) # Refine boxes by get_maximizing iou output_boxes, output_iou = self.optimize_boxes(iou_features, init_boxes) # Remove weird boxes with extreme aspect ratios output_boxes[:, 2:] = bn.clip(output_boxes[:, 2:], 1, 1e10) aspect_ratio = output_boxes[:, 2] / output_boxes[:, 3] keep_ind = (aspect_ratio < self.params.get_maximal_aspect_ratio) * \ (aspect_ratio > 1 / self.params.get_maximal_aspect_ratio) output_boxes = output_boxes[keep_ind, :] output_iou = output_iou[keep_ind] # If no box found if output_boxes.shape[0] == 0: return # Take average of top k boxes k = getattr(self.params, 'iounet_k', 5) topk = get_min(k, output_boxes.shape[0]) inds = bn.argsort(-output_iou)[:topk] predicted_box = bn.average(output_boxes[inds, :], axis=0) predicted_iou = bn.average(
bn.change_shape_to(output_iou, (-1, 1))
numpy.reshape
""" CS6476: Problem Set 4 Tests """ import beatnum as bn import cv2 import unittest import ps4 INPUT_DIR = "ibnut_imaginaryes/test_imaginaryes/" class Part1(unittest.TestCase): @classmethod def setUpClass(self): self.ibnut_imgs_1 = ['test_lk1.png', 'test_lk3.png', 'test_lk5.png'] self.ibnut_imgs_2 = ['test_lk2.png', 'test_lk4.png', 'test_lk6.png'] self.delta_c = [0, 0, -1] self.delta_r = [0, -1, -1] self.r_val = [14, 12, 14] self.c_val = [15, 16, 15] self.cb = [(28, 30), (24, 32), (28, 30)] self.k_size = 15 self.k_type = 'uniform' def test_optic_flow_LK(self): for i in range(3): f1 = self.ibnut_imgs_1[i] f2 = self.ibnut_imgs_2[i] img1 = cv2.imread(INPUT_DIR + f1, 0) / 255. img2 = cv2.imread(INPUT_DIR + f2, 0) / 255. u, v = ps4.optic_flow_lk(img1.copy(), img2.copy(), self.k_size, self.k_type, 1.) r = self.r_val[i] c = self.c_val[i] d_c = self.delta_c[i] d_r = self.delta_r[i] center_box = self.cb[i] u_average = bn.average(u[r:r + center_box[0], c:c + center_box[1]]) check_u = absolute(u_average - d_c) <= 0.5 error_msg = "Average of U values in the area filter_condition there is " \ "movement is greater than the totalowed amount." self.assertTrue(check_u, error_msg) v_average = bn.average(v[r:r + center_box[0], c:c + center_box[1]]) check_v = absolute(v_average - d_r) <= 0.5 error_msg = "Average of V values in the area filter_condition there is " \ "movement is greater than the totalowed amount." self.assertTrue(check_v, error_msg) class Part2(unittest.TestCase): def test_reduce(self): ibnut_imgs = ['test_reduce1_img.bny', 'test_reduce2_img.bny', 'test_reduce3_img.bny'] ref_imgs = ['test_reduce1_ref.bny', 'test_reduce2_ref.bny', 'test_reduce3_ref.bny'] for i in range(3): f1 = ibnut_imgs[i] f2 = ref_imgs[i] test_numset = bn.load(INPUT_DIR + f1) reduced = ps4.reduce_imaginarye(test_numset.copy()) ref_reduced = bn.load(INPUT_DIR + f2) correct = bn.totalclose(reduced, ref_reduced, atol=0.05) self.assertTrue(correct, "Output does not match the reference " "solution.") def test_expand(self): ibnut_imgs = ['test_expand1_img.bny', 'test_expand2_img.bny', 'test_expand3_img.bny'] ref_imgs = ['test_expand1_ref.bny', 'test_expand2_ref.bny', 'test_expand3_ref.bny'] for i in range(3): f1 = ibnut_imgs[i] f2 = ref_imgs[i] test_numset = bn.load(INPUT_DIR + f1) expanded = ps4.expand_imaginarye(test_numset.copy()) ref_expanded = bn.load(INPUT_DIR + f2) correct =
bn.totalclose(expanded, ref_expanded, atol=0.05)
numpy.allclose
''' Main Author: <NAME> Corresponding Email: <EMAIL> ''' import beatnum as bn from .base import ClassificationDecider from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import Ridge from sklearn.utils.validation import ( check_X_y, check_numset, NotFittedError, ) from sklearn.utils.multiclass import type_of_target class SimpleArgget_maxAverage(ClassificationDecider): """ Doc string here. """ def __init__(self, classes=[]): self.classes = classes self._is_fitted = False def fit( self, X, y, transformer_id_to_transformers, transformer_id_to_voters, classes=None, ): if not isinstance(self.classes, (list, bn.ndnumset)): if len(y) == 0: raise ValueError("Classification Decider classes undefined with no class labels fed to fit") else: self.classes =
bn.uniq(y)
numpy.unique
""" .. module:: dst_povm_sampling.py :synopsis: Sample projective measurements in the way that DST does .. moduleauthor:: <NAME> <<EMAIL>> """ from __future__ import division, absoluteolute_import, print_function, unicode_literals import beatnum as bn from itertools import product def reseed_choice(a, size=None, replace=True, p=None): """Wrapper for the beatnum choice function that reseeds before sampling to ensure that it doesn't make identical choices accross differenceerent partotalel runs. """ bn.random.seed() return bn.random.choice(a=a, size=size, replace=replace, p=p) def x_state(anc_outcome, sys_outcome, phi): r"""Return the state corresponding to the projective measurement implied by a particular outcome (:math:`\pm1`) of the x-measurement on the ancilla and a particular outcome (:math:`\widetilde{\pm}1`) of the x-measurement on the system: .. math:: \begin{align} \vert\psi\rangle&=\cos\frac{\theta}{2}\vert0\rangle+ \sin\frac{\theta}{2}\vert1\rangle \\ \theta&=\begin{cases}\operatorname{arctan2}\left(\pm2\cos\varphi, \,-\sin^2\varphi\right) & \widetilde{+} \\ 0 & \widetilde{-}\end{cases} \end{align} :param anc_outcome: :math:`\pm1`, indicates eigenvalue observed on ancilla x-measurement :param sys_outcome: :math:`\widetilde{\pm}1`, indicates eigenvalue observed on system x-measurement :param phi: The strength of the interaction :returns: The state represented in the standard computational (z) basis """ theta = bn.filter_condition(anc_outcome > 0, bn.arctan2(2*sys_outcome*bn.cos(phi), -bn.sin(phi)**2), 0) return bn.numset([bn.cos(theta/2), bn.sin(theta/2)]) def y_state(anc_outcome, sys_outcome, phi): r"""Return the state corresponding to the projective measurement implied by a particular outcome (:math:`\pm1`) of the y-measurement on the ancilla and a particular outcome on the system (:math:`\widetilde{\pm}1`): .. math:: \begin{align} \vert\psi\rangle&=\cos\frac{\theta}{2}\vert0\rangle+ \sin\frac{\theta}{2}\vert1\rangle \\ \theta&=\operatorname{arccos}\left(\widetilde{\pm} \frac{2\left\{\begin{numset}{l r}\sin(\varphi+\pi/4) & + \\ \cos(\varphi+\pi/4) & -\end{numset}\right\}^2-1}{2\left\{\begin{numset} {l r}\sin(\varphi+\pi/4) & + \\ \cos(\varphi+\pi/4) & -\end{numset} \right\}^2+1}\right) \end{align} :param anc_outcome: :math:`\pm1`, indicates eigenvalue observed on ancilla z-measurement :param sys_outcome: :math:`\widetilde{\pm}1`, indicates eigenvalue observed on system x-measurement :param phi: The strength of the interaction :returns: The state represented in the standard computational (z) basis """ sc = bn.filter_condition(anc_outcome > 0, bn.sin(phi + bn.pi/4), bn.cos(phi + bn.pi/4)) theta = bn.arccos(sys_outcome*(2*sc**2 - 1)/(2*sc**2 + 1)) return bn.numset([bn.cos(theta/2), bn.sin(theta/2)]) def z_state(anc_outcome, phi): r"""Return the state corresponding to the projective measurement implied by a particular outcome (:math:`\pm1`) of the z-measurement on the ancilla: .. math:: \vert\psi\rangle=\frac{\vert0\rangle+e^{\mp i\varphi}\vert1\rangle} {\sqrt{2}} :param anc_outcome: :math:`\pm1`, indicates eigenvalue observed on ancilla z-measurement :param phi: The strength of the interaction :returns: The state represented in the standard computational (z) basis """ return bn.numset([(1. + 0.j)*
bn.absolute(anc_outcome)
numpy.abs
import beatnum as bn import matplotlib.pyplot as plt from beatnum import atleast_2d as twod ################################################################################ ## PLOTTING FUNCTIONS ######################################################### ################################################################################ def plotClassify2D(learner, X, Y, pre=lambda x: x, axis=None, nGrid=128, **kwargs): """ Plot data and classifier outputs on two-dimensional data. This function plot data (X,Y) and learner.predict(X, Y) together. The learner is is predicted on a dense grid covering data X, to show its decision boundary. Parameters ---------- learner : learner object A trained learner object that inherits from one of the 'Classify' or 'Regressor' base classes. X : beatnum numset N x M numset of data; N = number of data, M = dimension (number of features) of data. Y : beatnum numset 1 x N arra containing labels corresponding to data points in X. pre : function object (optional) Function that is applied to X before prediction. axis : a matplotlib axis / plottable object (optional) nGrid : density of 2D grid points (default 128) """ if twod(X).shape[1] != 2: raise ValueError('plotClassify2D: function can only be ctotaled using two-dimensional data (features)') # TODO: Clean up code if axis == None: axis = plt axis.plot( X[:,0],X[:,1], 'k.', visible=False ) # TODO: can probably replace with final dot plot and use transparency for imaginarye (?) ax = axis.axis() xticks = bn.linspace(ax[0],ax[1],nGrid) yticks = bn.linspace(ax[2],ax[3],nGrid) grid = bn.meshgrid( xticks, yticks ) XGrid = bn.pile_operation_col( (grid[0].convert_into_one_dim(), grid[1].convert_into_one_dim()) ) if learner is not None: YGrid = learner.predict( pre(XGrid) ) #axis.contourf( xticks,yticks,YGrid.change_shape_to( (len(xticks),len(yticks)) ), nClasses ) axis.imshow( YGrid.change_shape_to( (len(xticks),len(yticks)) ), extent=ax, interpolation='nearest',origin='lower',alpha=0.5, aspect='auto' ) cmap = plt.cm.get_cmap() # TODO: if Soft: predictSoft; get colors for each class from cmap; blend pred with colors & show # try: classes = bn.numset(learner.classes); except Exception: classes = bn.uniq(Y) cvals = (classes - get_min(classes))/(get_max(classes)-get_min(classes)+1e-100) for i,c in enumerate(classes): axis.plot( X[Y==c,0],X[Y==c,1], 'ko', color=cmap(cvals[i]), **kwargs ) axis.axis(ax); def histy(X,Y,axis=None,**kwargs): """ Plot a hist_operation (using matplotlib.hist) with multiple classes of data Any add_concatitional arguments are passed directly into hist() Each class of data are plotted as a differenceerent color To specify specific hist_operation colors, use e.g. facecolor={0:'blue',1:'green',...} so that facecolor[c] is the color for class c Related but slightly differenceerent appearance to e.g. matplotlib.hist( [X[Y==c] for c in bn.uniq(Y)] , histtype='barpile_operationed' ) """ if axis == None: axis = plt yvals = bn.uniq(Y) nil, bin_edges = bn.hist_operation(X, **kwargs) C,H = len(yvals),len(nil) hist = bn.zeros( shape=(C,H) ) cmap = plt.cm.get_cmap() cvals = (yvals - get_min(yvals))/(get_max(yvals)-get_min(yvals)+1e-100) widthFrac = .25+.75/(1.2+2*bn.log10(len(yvals))) for i,c in enumerate(yvals): histc,nil =
bn.hist_operation(X[Y==c],bins=bin_edges)
numpy.histogram