url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.42B
1.84B
| node_id
stringlengths 18
19
| number
int64 5.16k
6.14k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 3
33.9k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5986 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5986/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5986/comments | https://api.github.com/repos/huggingface/datasets/issues/5986/events | https://github.com/huggingface/datasets/pull/5986 | 1,772,233,111 | PR_kwDODunzps5TygOZ | 5,986 | Make IterableDataset.from_spark more efficient | {
"login": "mathewjacob1002",
"id": 134338709,
"node_id": "U_kgDOCAHYlQ",
"avatar_url": "https://avatars.githubusercontent.com/u/134338709?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mathewjacob1002",
"html_url": "https://github.com/mathewjacob1002",
"followers_url": "https://api.github.com/users/mathewjacob1002/followers",
"following_url": "https://api.github.com/users/mathewjacob1002/following{/other_user}",
"gists_url": "https://api.github.com/users/mathewjacob1002/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mathewjacob1002/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mathewjacob1002/subscriptions",
"organizations_url": "https://api.github.com/users/mathewjacob1002/orgs",
"repos_url": "https://api.github.com/users/mathewjacob1002/repos",
"events_url": "https://api.github.com/users/mathewjacob1002/events{/privacy}",
"received_events_url": "https://api.github.com/users/mathewjacob1002/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"@lhoestq would you be able to review this please and also approve the workflow?",
"Sounds good to me :) feel free to run `make style` to apply code formatting",
"_The documentation is not available anymore as the PR was closed or merged._",
"cool ! I think we can merge once all comments have been addressed",
"@lhoestq I just addressed the comments and I think we can move ahead with this! \r\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007734 / 0.011353 (-0.003619) | 0.004608 / 0.011008 (-0.006400) | 0.094466 / 0.038508 (0.055958) | 0.086477 / 0.023109 (0.063368) | 0.410311 / 0.275898 (0.134413) | 0.455560 / 0.323480 (0.132080) | 0.006112 / 0.007986 (-0.001874) | 0.003845 / 0.004328 (-0.000483) | 0.072506 / 0.004250 (0.068256) | 0.066721 / 0.037052 (0.029669) | 0.409967 / 0.258489 (0.151478) | 0.460480 / 0.293841 (0.166639) | 0.036700 / 0.128546 (-0.091847) | 0.009854 / 0.075646 (-0.065792) | 0.320936 / 0.419271 (-0.098335) | 0.061002 / 0.043533 (0.017469) | 0.413963 / 0.255139 (0.158824) | 0.426787 / 0.283200 (0.143588) | 0.029182 / 0.141683 (-0.112501) | 1.685136 / 1.452155 (0.232981) | 1.754590 / 1.492716 (0.261873) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222698 / 0.018006 (0.204692) | 0.505929 / 0.000490 (0.505440) | 0.005291 / 0.000200 (0.005091) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032527 / 0.037411 (-0.004884) | 0.094842 / 0.014526 (0.080317) | 0.110138 / 0.176557 (-0.066418) | 0.193786 / 0.737135 (-0.543349) | 0.112593 / 0.296338 (-0.183745) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441671 / 0.215209 (0.226461) | 4.392961 / 2.077655 (2.315306) | 2.161111 / 1.504120 (0.656991) | 1.967080 / 1.541195 (0.425885) | 2.065411 / 1.468490 (0.596920) | 0.561080 / 4.584777 (-4.023697) | 4.159612 / 3.745712 (0.413900) | 6.435248 / 5.269862 (1.165386) | 3.732338 / 4.565676 (-0.833339) | 0.066156 / 0.424275 (-0.358119) | 0.008030 / 0.007607 (0.000423) | 0.532182 / 0.226044 (0.306137) | 5.315142 / 2.268929 (3.046213) | 2.680157 / 55.444624 (-52.764467) | 2.303799 / 6.876477 (-4.572677) | 2.530911 / 2.142072 (0.388838) | 0.669504 / 4.805227 (-4.135723) | 0.151940 / 6.500664 (-6.348724) | 0.066999 / 0.075469 (-0.008470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.424275 / 1.841788 (-0.417513) | 21.550742 / 8.074308 (13.476434) | 16.031414 / 10.191392 (5.840022) | 0.194681 / 0.680424 (-0.485743) | 0.020389 / 0.534201 (-0.513812) | 0.429808 / 0.579283 (-0.149475) | 0.457503 / 0.434364 (0.023139) | 0.511522 / 0.540337 (-0.028816) | 0.682621 / 1.386936 (-0.704315) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007519 / 0.011353 (-0.003834) | 0.004445 / 0.011008 (-0.006563) | 0.071946 / 0.038508 (0.033438) | 0.082982 / 0.023109 (0.059873) | 0.459938 / 0.275898 (0.184040) | 0.504875 / 0.323480 (0.181395) | 0.005805 / 0.007986 (-0.002181) | 0.003740 / 0.004328 (-0.000589) | 0.071998 / 0.004250 (0.067747) | 0.062580 / 0.037052 (0.025527) | 0.462263 / 0.258489 (0.203774) | 0.506355 / 0.293841 (0.212514) | 0.036321 / 0.128546 (-0.092225) | 0.009830 / 0.075646 (-0.065816) | 0.079810 / 0.419271 (-0.339461) | 0.055291 / 0.043533 (0.011758) | 0.464093 / 0.255139 (0.208954) | 0.481109 / 0.283200 (0.197910) | 0.026909 / 0.141683 (-0.114774) | 1.652538 / 1.452155 (0.200383) | 1.750713 / 1.492716 (0.257997) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267552 / 0.018006 (0.249546) | 0.502021 / 0.000490 (0.501531) | 0.001635 / 0.000200 (0.001435) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033747 / 0.037411 (-0.003665) | 0.104242 / 0.014526 (0.089716) | 0.113829 / 0.176557 (-0.062728) | 0.176242 / 0.737135 (-0.560893) | 0.117002 / 0.296338 (-0.179336) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.476731 / 0.215209 (0.261522) | 4.727054 / 2.077655 (2.649399) | 2.589396 / 1.504120 (1.085276) | 2.511180 / 1.541195 (0.969985) | 2.634122 / 1.468490 (1.165632) | 0.563840 / 4.584777 (-4.020937) | 4.140212 / 3.745712 (0.394500) | 6.188789 / 5.269862 (0.918928) | 3.716897 / 4.565676 (-0.848780) | 0.065823 / 0.424275 (-0.358452) | 0.007705 / 0.007607 (0.000098) | 0.566580 / 0.226044 (0.340535) | 5.653306 / 2.268929 (3.384377) | 3.028756 / 55.444624 (-52.415868) | 2.592319 / 6.876477 (-4.284158) | 2.614250 / 2.142072 (0.472178) | 0.667135 / 4.805227 (-4.138093) | 0.153455 / 6.500664 (-6.347209) | 0.069321 / 0.075469 (-0.006148) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.541978 / 1.841788 (-0.299810) | 21.747360 / 8.074308 (13.673052) | 15.963657 / 10.191392 (5.772265) | 0.192843 / 0.680424 (-0.487581) | 0.020702 / 0.534201 (-0.513499) | 0.433620 / 0.579283 (-0.145663) | 0.467327 / 0.434364 (0.032963) | 0.507398 / 0.540337 (-0.032940) | 0.692797 / 1.386936 (-0.694140) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#396cf9419d12e3150e2051793b10f2c813780a90 \"CML watermark\")\n"
] | 2023-06-23T22:18:20 | 2023-07-07T10:05:58 | 2023-07-07T09:56:09 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5986",
"html_url": "https://github.com/huggingface/datasets/pull/5986",
"diff_url": "https://github.com/huggingface/datasets/pull/5986.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5986.patch",
"merged_at": "2023-07-07T09:56:09"
} | Moved the code from using collect() to using toLocalIterator, which allows for prefetching partitions that will be selected next, thus allowing for better performance when iterating. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5986/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5986/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5985 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5985/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5985/comments | https://api.github.com/repos/huggingface/datasets/issues/5985/events | https://github.com/huggingface/datasets/issues/5985 | 1,771,588,158 | I_kwDODunzps5pmEo- | 5,985 | Cannot reuse tokenizer object for dataset map | {
"login": "vikigenius",
"id": 12724810,
"node_id": "MDQ6VXNlcjEyNzI0ODEw",
"avatar_url": "https://avatars.githubusercontent.com/u/12724810?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vikigenius",
"html_url": "https://github.com/vikigenius",
"followers_url": "https://api.github.com/users/vikigenius/followers",
"following_url": "https://api.github.com/users/vikigenius/following{/other_user}",
"gists_url": "https://api.github.com/users/vikigenius/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vikigenius/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vikigenius/subscriptions",
"organizations_url": "https://api.github.com/users/vikigenius/orgs",
"repos_url": "https://api.github.com/users/vikigenius/repos",
"events_url": "https://api.github.com/users/vikigenius/events{/privacy}",
"received_events_url": "https://api.github.com/users/vikigenius/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892865,
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate",
"name": "duplicate",
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists"
}
] | closed | false | null | [] | null | [
"This is a known issue: https://github.com/huggingface/datasets/issues/3847.\r\n\r\nFixing this requires significant work - rewriting the `tokenizers` lib to make them immutable.\r\n\r\nThe current solution is to pass `cache_file_name` to `map` to use that file for caching or calling a tokenizer before `map` (with the same set of parameters as the ones in the map transform)",
"Closing since this is a duplicate"
] | 2023-06-23T14:45:31 | 2023-07-21T14:09:14 | 2023-07-21T14:09:14 | NONE | null | null | null | ### Describe the bug
Related to https://github.com/huggingface/transformers/issues/24441. Not sure if this is a tokenizer issue or caching issue, so filing in both.
Passing the tokenizer to the dataset map function causes the tokenizer to be fingerprinted weirdly. After calling the tokenizer with arguments like padding and truncation the tokenizer object changes interanally, even though the hash remains the same.
But dumps is able to detect that internal change which causes the tokenizer object's fingerprint to change.
### Steps to reproduce the bug
```python
from transformers import AutoTokenizer
from datasets.utils.py_utils import dumps # Huggingface datasets
t = AutoTokenizer.from_pretrained('bert-base-uncased')
t.save_pretrained("tok1")
th1 = hash(dumps(t))
text = "This is an example text"
ttext = t(text, max_length=512, padding="max_length", truncation=True)
t.save_pretrained("tok2")
th2 = hash(dumps(t))
assert th1 == th2 # Assertion Error
```
But if you use just the hash of the object without dumps, the hashes don't change
```python
from transformers import AutoTokenizer
from datasets.utils.py_utils import dumps # Huggingface datasets
t = AutoTokenizer.from_pretrained('bert-base-uncased')
th1 = hash(t) # Just hash no dumps
text = "This is an example text"
ttext = t(text, max_length=512, padding="max_length", truncation=True)
th2 = hash(t) # Just hash no dumps
assert th1 == th2 # This is OK
```
This causes situations such as the following
1. Create a text file like this `yes "This is an example text" | head -n 10000 > lines.txt`
```python
from transformers import AutoTokenizer
import datasets
class TokenizeMapper(object):
"""Mapper for tokenizer.
This is needed because the caching mechanism of HuggingFace does not work on
lambdas. Each time a new lambda will be created by a new process which will
lead to a different hash.
This way we can have a universal mapper object in init and reuse it with the same
hash for each process.
"""
def __init__(self, tokenizer):
"""Initialize the tokenizer."""
self.tokenizer = tokenizer
def __call__(self, examples, **kwargs):
"""Run the mapper."""
texts = examples["text"]
tt = self.tokenizer(texts, max_length=256, padding="max_length", truncation=True)
batch_outputs = {
"input_ids": tt.input_ids,
"attention_mask": tt.attention_mask,
}
return batch_outputs
t = AutoTokenizer.from_pretrained('bert-base-uncased')
mapper = TokenizeMapper(t)
ds = datasets.load_dataset("text", data_files="lines.txt")
mds1 = ds.map(
mapper,
batched=False,
remove_columns=["text"],
).with_format("torch")
mds2 = ds.map(
mapper,
batched=False,
remove_columns=["text"],
).with_format("torch")
```
The second call to map should reuse the cached processed dataset from mds1, but it instead it redoes the tokenization because of the behavior of dumps.
### Expected behavior
We should be able to initialize a tokenizer. And reusing it should let us reuse the same map computation for the same dataset.
The second call to map should reuse the cached processed dataset from mds1, but it instead it redoes the tokenization because of the behavior of dumps.
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-6.1.31_1-x86_64-with-glibc2.36
- Python version: 3.9.16
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5985/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5985/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5984 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5984/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5984/comments | https://api.github.com/repos/huggingface/datasets/issues/5984/events | https://github.com/huggingface/datasets/issues/5984 | 1,771,571,458 | I_kwDODunzps5pmAkC | 5,984 | AutoSharding IterableDataset's when num_workers > 1 | {
"login": "mathephysicist",
"id": 25594384,
"node_id": "MDQ6VXNlcjI1NTk0Mzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/25594384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mathephysicist",
"html_url": "https://github.com/mathephysicist",
"followers_url": "https://api.github.com/users/mathephysicist/followers",
"following_url": "https://api.github.com/users/mathephysicist/following{/other_user}",
"gists_url": "https://api.github.com/users/mathephysicist/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mathephysicist/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mathephysicist/subscriptions",
"organizations_url": "https://api.github.com/users/mathephysicist/orgs",
"repos_url": "https://api.github.com/users/mathephysicist/repos",
"events_url": "https://api.github.com/users/mathephysicist/events{/privacy}",
"received_events_url": "https://api.github.com/users/mathephysicist/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"For this to be possible, we would have to switch from the \"Streaming\" Arrow format to the \"Random Access\" (IPC/Feather) format, which allows reading arbitrary record batches (explained [here](https://arrow.apache.org/docs/python/ipc.html)). We could then use these batches to construct shards.\r\n\r\n@lhoestq @albertvillanova Do you think this use case is worth the switch? Also, we currently shard files, not inner row groups/chunks. Should we also support sharding row groups (e.g. if the number of input files is 1)?\r\n\r\nPS: I don't expect significant speed-up for local, uncompressed Arrow files.",
"Alternatively we could support multiprocessing map for iterable datasets and let the user do the CPU intensive task there ?\r\n\r\nThis way it would work on arrow data but also on any iterable dataset",
"> For this to be possible, we would have to switch from the \"Streaming\" Arrow format to the \"Random Access\" (IPC/Feather) format, which allows reading arbitrary record batches (explained [here](https://arrow.apache.org/docs/python/ipc.html)). We could then use these batches to construct shards.\r\n> \r\n> @lhoestq @albertvillanova Do you think this use case is worth the switch? Also, we currently shard files, not inner row groups/chunks. Should we also support sharding row groups (e.g. if the number of input files is 1)?\r\n> \r\n> PS: I don't expect significant speed-up for local, uncompressed Arrow files.\r\n\r\nCould you explain why you'd need to change the arrow format?\r\n\r\nWhen we use streaming datasets we simply determine the number of worker shards and then add some modulo logic at the appropriate place. Worst case scenario, you'd skip streaming entries according to the number of shards.\r\n\r\nFor PyTorch, I'd be happy to provide an implementation or a sketch thereof, if you point me toward what the testing requirements would be for such a PR.",
"> Could you explain why you'd need to change the arrow format?\r\n\r\nThis way workers have random access to the location of the file where its dataset subset starts. Currently we're using the Arrow streaming format which doesn't include the metadata of the record batches offsets. This is needed here to efficiently split a dataset made of one single file.",
"> > Could you explain why you'd need to change the arrow format?\r\n> \r\n> This way workers have random access to the location of the file where its dataset subset starts. Currently we're using the Arrow streaming format which doesn't include the metadata of the record batches offsets. This is needed here to efficiently split a dataset made of one single file.\r\n\r\nI guess I don't understand why you'd need to subset the dataset in the first place. \r\nIt seems sufficient to figure out how to offset or skip rows.\r\n\r\nFor instance, using pyArrow, you could use RecordBatchStreamReader to zero-copy iterate over records with read_next_batch and then only initiate the next step for records modulo worker shard.\r\nThat's one way to do it, where of course you'd need to account for gpu sharding as well.\r\n\r\n\r\nOtherwise, how did you implement worker/node/GPU sharding for iterable/streaming data where you do not have index information or prior splits (e.g. files)?",
"> For instance, using pyArrow, you could use RecordBatchStreamReader to zero-copy iterate over records with read_next_batch and then only initiate the next step for records modulo worker shard.\r\n\r\nThat works indeed ! And what we meant is that you can make it even faster to instantiate. Indeed using RecordBatchStreamReader you need to get the list of all the record batches in each worker, whereas you could just get the list of record batches per worker if you use the record batches locations in the Arrow IPC file footer. This would be especially appreciated to have a fast instantiation in case you have tens of thousands of Arrow files for example."
] | 2023-06-23T14:34:20 | 2023-07-04T17:03:56 | null | NONE | null | null | null | ### Feature request
Minimal Example
```
import torch
from datasets import IterableDataset
d = IterableDataset.from_file(<file_name>)
dl = torch.utils.data.dataloader.DataLoader(d,num_workers=3)
for sample in dl:
print(sample)
```
Warning:
Too many dataloader workers: 2 (max is dataset.n_shards=1). Stopping 1 dataloader workers.
To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary to have a number of workers greater than dataset.n_shards=1. To enable more parallelism, please split the dataset in more files than 1.
Expected Behavior:
Dataset is sharded each cpu uses subset (contiguously - so you can do checkpoint loading/saving)
### Motivation
I have a lot of unused cpu's and would like to be able to shard iterable datasets with pytorch's dataloader when num_workers > 1. This is for a very large single file. I am aware that we can use the `split_dataset_by_node` to ensure that each node (for distributed) gets different shards, but we should extend it so that this also continues for multiple workers.
### Your contribution
If someone points me to what needs to change, I can create a PR. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5984/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5984/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5983 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5983/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5983/comments | https://api.github.com/repos/huggingface/datasets/issues/5983/events | https://github.com/huggingface/datasets/pull/5983 | 1,770,578,804 | PR_kwDODunzps5TtDdy | 5,983 | replaced PathLike as a variable for save_to_disk for dataset_path wit… | {
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-06-23T00:57:05 | 2023-06-23T00:57:05 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5983",
"html_url": "https://github.com/huggingface/datasets/pull/5983",
"diff_url": "https://github.com/huggingface/datasets/pull/5983.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5983.patch",
"merged_at": null
} | …h str like that of load_from_disk | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5983/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5983/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5982 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5982/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5982/comments | https://api.github.com/repos/huggingface/datasets/issues/5982/events | https://github.com/huggingface/datasets/issues/5982 | 1,770,333,296 | I_kwDODunzps5phSRw | 5,982 | 404 on Datasets Documentation Page | {
"login": "kmulka-bloomberg",
"id": 118509387,
"node_id": "U_kgDOBxBPSw",
"avatar_url": "https://avatars.githubusercontent.com/u/118509387?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kmulka-bloomberg",
"html_url": "https://github.com/kmulka-bloomberg",
"followers_url": "https://api.github.com/users/kmulka-bloomberg/followers",
"following_url": "https://api.github.com/users/kmulka-bloomberg/following{/other_user}",
"gists_url": "https://api.github.com/users/kmulka-bloomberg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kmulka-bloomberg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kmulka-bloomberg/subscriptions",
"organizations_url": "https://api.github.com/users/kmulka-bloomberg/orgs",
"repos_url": "https://api.github.com/users/kmulka-bloomberg/repos",
"events_url": "https://api.github.com/users/kmulka-bloomberg/events{/privacy}",
"received_events_url": "https://api.github.com/users/kmulka-bloomberg/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This wasn’t working for me a bit earlier, but it looks to be back up now",
"We had a minor issue updating the docs after the latest release. It should work now :)."
] | 2023-06-22T20:14:57 | 2023-06-26T15:45:03 | 2023-06-26T15:45:03 | NONE | null | null | null | ### Describe the bug
Getting a 404 from the Hugging Face Datasets docs page:
https://huggingface.co/docs/datasets/index
### Steps to reproduce the bug
1. Go to URL https://huggingface.co/docs/datasets/index
2. Notice 404 not found
### Expected behavior
URL should either show docs or redirect to new location
### Environment info
hugginface.co | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5982/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5982/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5981 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5981/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5981/comments | https://api.github.com/repos/huggingface/datasets/issues/5981/events | https://github.com/huggingface/datasets/issues/5981 | 1,770,310,087 | I_kwDODunzps5phMnH | 5,981 | Only two cores are getting used in sagemaker with pytorch 3.10 kernel | {
"login": "mmr-crexi",
"id": 107141022,
"node_id": "U_kgDOBmLXng",
"avatar_url": "https://avatars.githubusercontent.com/u/107141022?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mmr-crexi",
"html_url": "https://github.com/mmr-crexi",
"followers_url": "https://api.github.com/users/mmr-crexi/followers",
"following_url": "https://api.github.com/users/mmr-crexi/following{/other_user}",
"gists_url": "https://api.github.com/users/mmr-crexi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mmr-crexi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mmr-crexi/subscriptions",
"organizations_url": "https://api.github.com/users/mmr-crexi/orgs",
"repos_url": "https://api.github.com/users/mmr-crexi/repos",
"events_url": "https://api.github.com/users/mmr-crexi/events{/privacy}",
"received_events_url": "https://api.github.com/users/mmr-crexi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I think it's more likely that this issue is related to PyTorch than Datasets, as PyTorch (on import) registers functions to execute when forking a process. Maybe this is the culprit: https://github.com/pytorch/pytorch/issues/99625",
"From reading that ticket, it may be down in mkl? Is it worth hotfixing in the meantime, with the express intention of turning it off? I know that's a horribly crufty solution, but it's also deeply frustrating to be limited to 2 cores for operations as simple as filtration.",
"This is too specific and unrelated to `datasets`, so this shouldn't be fixed here."
] | 2023-06-22T19:57:31 | 2023-07-24T11:54:52 | 2023-07-24T11:54:52 | NONE | null | null | null | ### Describe the bug
When using the newer pytorch 3.10 kernel, only 2 cores are being used by huggingface filter and map functions. The Pytorch 3.9 kernel would use as many cores as specified in the num_proc field.
We have solved this in our own code by placing the following snippet in the code that is called inside subprocesses:
```os.sched_setaffinity(0, {i for i in range(1000)})```
The problem, as near as we can tell, us that once upon a time, cpu affinity was set using a bitmask ("0xfffff" and the like), and affinity recently changed to a list of processors rather than to using the mask. As such, only processors 1 and 17 are shown to be working in htop.
![Selection_072](https://github.com/huggingface/datasets/assets/107141022/04c5a824-5321-4531-afca-7bc84dff36b4)
When running functions via `map`, the above resetting of affinity works to spread across the cores. When using `filter`, however, only two cores are active.
### Steps to reproduce the bug
Repro steps:
1. Create an aws sagemaker instance
2. use the pytorch 3_10 kernel
3. Load a dataset
4. run a filter operation
5. watch as only 2 cores are used when num_proc > 2
6. run a map operation
7. watch as only 2 cores are used when num_proc > 2
8. run a map operation with processor affinity reset inside the function called via map
9. Watch as all cores run
### Expected behavior
All specified cores are used via the num_proc argument.
### Environment info
AWS sagemaker with the following init script run in the terminal after instance creation:
conda init bash
bash
conda activate pytorch_p310
pip install Wand PyPDF pytesseract datasets seqeval pdfplumber transformers pymupdf sentencepiece timm donut-python accelerate optimum xgboost
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
sudo yum -y install htop
sudo yum -y update
sudo yum -y install wget libstdc++ autoconf automake libtool autoconf-archive pkg-config gcc gcc-c++ make libjpeg-devel libpng-devel libtiff-devel zlib-devel | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5981/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5981/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5980 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5980/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5980/comments | https://api.github.com/repos/huggingface/datasets/issues/5980/events | https://github.com/huggingface/datasets/issues/5980 | 1,770,255,973 | I_kwDODunzps5pg_Zl | 5,980 | Viewing dataset card returns “502 Bad Gateway” | {
"login": "tbenthompson",
"id": 4241811,
"node_id": "MDQ6VXNlcjQyNDE4MTE=",
"avatar_url": "https://avatars.githubusercontent.com/u/4241811?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tbenthompson",
"html_url": "https://github.com/tbenthompson",
"followers_url": "https://api.github.com/users/tbenthompson/followers",
"following_url": "https://api.github.com/users/tbenthompson/following{/other_user}",
"gists_url": "https://api.github.com/users/tbenthompson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tbenthompson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tbenthompson/subscriptions",
"organizations_url": "https://api.github.com/users/tbenthompson/orgs",
"repos_url": "https://api.github.com/users/tbenthompson/repos",
"events_url": "https://api.github.com/users/tbenthompson/events{/privacy}",
"received_events_url": "https://api.github.com/users/tbenthompson/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Can you try again? Maybe there was a minor outage.",
"Yes, it seems to be working now. In case it's helpful, the outage lasted several days. It was failing as late as yesterday morning. ",
"we fixed something on the server side, glad it's fixed now"
] | 2023-06-22T19:14:48 | 2023-06-27T08:38:19 | 2023-06-26T14:42:45 | NONE | null | null | null | The url is: https://huggingface.co/datasets/Confirm-Labs/pile_ngrams_trigrams
I am able to successfully view the “Files and versions” tab: [Confirm-Labs/pile_ngrams_trigrams at main](https://huggingface.co/datasets/Confirm-Labs/pile_ngrams_trigrams/tree/main)
Any help would be appreciated! Thanks! I hope this is the right place to report an issue like this.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5980/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5980/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5979 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5979/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5979/comments | https://api.github.com/repos/huggingface/datasets/issues/5979/events | https://github.com/huggingface/datasets/pull/5979 | 1,770,198,250 | PR_kwDODunzps5TrxS_ | 5,979 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5979). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008087 / 0.011353 (-0.003266) | 0.004691 / 0.011008 (-0.006317) | 0.121545 / 0.038508 (0.083037) | 0.057436 / 0.023109 (0.034326) | 0.368864 / 0.275898 (0.092966) | 0.457199 / 0.323480 (0.133719) | 0.006745 / 0.007986 (-0.001241) | 0.003689 / 0.004328 (-0.000640) | 0.090480 / 0.004250 (0.086229) | 0.071368 / 0.037052 (0.034316) | 0.372788 / 0.258489 (0.114299) | 0.429894 / 0.293841 (0.136053) | 0.037544 / 0.128546 (-0.091002) | 0.010142 / 0.075646 (-0.065505) | 0.420467 / 0.419271 (0.001196) | 0.064359 / 0.043533 (0.020826) | 0.370345 / 0.255139 (0.115206) | 0.405220 / 0.283200 (0.122020) | 0.028410 / 0.141683 (-0.113273) | 1.824845 / 1.452155 (0.372690) | 1.888109 / 1.492716 (0.395392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234585 / 0.018006 (0.216578) | 0.499965 / 0.000490 (0.499476) | 0.000461 / 0.000200 (0.000261) | 0.000064 / 0.000054 (0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032294 / 0.037411 (-0.005117) | 0.131769 / 0.014526 (0.117243) | 0.146472 / 0.176557 (-0.030085) | 0.210035 / 0.737135 (-0.527100) | 0.145600 / 0.296338 (-0.150739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507455 / 0.215209 (0.292246) | 5.080090 / 2.077655 (3.002435) | 2.506104 / 1.504120 (1.001984) | 2.297655 / 1.541195 (0.756460) | 2.324920 / 1.468490 (0.856430) | 0.645003 / 4.584777 (-3.939774) | 4.677856 / 3.745712 (0.932144) | 2.254179 / 5.269862 (-3.015683) | 1.280663 / 4.565676 (-3.285013) | 0.078809 / 0.424275 (-0.345466) | 0.014059 / 0.007607 (0.006452) | 0.628053 / 0.226044 (0.402009) | 6.327289 / 2.268929 (4.058360) | 2.957918 / 55.444624 (-52.486706) | 2.571568 / 6.876477 (-4.304909) | 2.708766 / 2.142072 (0.566694) | 0.772868 / 4.805227 (-4.032360) | 0.164835 / 6.500664 (-6.335829) | 0.075334 / 0.075469 (-0.000135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471930 / 1.841788 (-0.369858) | 17.917340 / 8.074308 (9.843032) | 15.719327 / 10.191392 (5.527935) | 0.191999 / 0.680424 (-0.488424) | 0.022464 / 0.534201 (-0.511737) | 0.511038 / 0.579283 (-0.068245) | 0.512050 / 0.434364 (0.077686) | 0.608711 / 0.540337 (0.068373) | 0.749660 / 1.386936 (-0.637276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008028 / 0.011353 (-0.003325) | 0.004908 / 0.011008 (-0.006100) | 0.092294 / 0.038508 (0.053786) | 0.053051 / 0.023109 (0.029942) | 0.453862 / 0.275898 (0.177964) | 0.512548 / 0.323480 (0.189068) | 0.004817 / 0.007986 (-0.003168) | 0.005330 / 0.004328 (0.001002) | 0.095600 / 0.004250 (0.091350) | 0.068763 / 0.037052 (0.031710) | 0.453654 / 0.258489 (0.195165) | 0.504995 / 0.293841 (0.211154) | 0.038123 / 0.128546 (-0.090423) | 0.010650 / 0.075646 (-0.064996) | 0.102854 / 0.419271 (-0.316417) | 0.062973 / 0.043533 (0.019440) | 0.430420 / 0.255139 (0.175281) | 0.465448 / 0.283200 (0.182248) | 0.029736 / 0.141683 (-0.111947) | 1.844225 / 1.452155 (0.392070) | 1.934685 / 1.492716 (0.441968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227797 / 0.018006 (0.209791) | 0.467868 / 0.000490 (0.467378) | 0.004531 / 0.000200 (0.004331) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035632 / 0.037411 (-0.001780) | 0.145943 / 0.014526 (0.131417) | 0.151944 / 0.176557 (-0.024613) | 0.220519 / 0.737135 (-0.516616) | 0.159732 / 0.296338 (-0.136606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.520641 / 0.215209 (0.305432) | 5.184740 / 2.077655 (3.107086) | 2.538751 / 1.504120 (1.034631) | 2.316571 / 1.541195 (0.775377) | 2.387898 / 1.468490 (0.919408) | 0.614515 / 4.584777 (-3.970262) | 4.573142 / 3.745712 (0.827430) | 4.657052 / 5.269862 (-0.612809) | 2.159664 / 4.565676 (-2.406013) | 0.079713 / 0.424275 (-0.344562) | 0.014462 / 0.007607 (0.006855) | 0.656611 / 0.226044 (0.430566) | 6.481630 / 2.268929 (4.212702) | 3.135047 / 55.444624 (-52.309577) | 2.757502 / 6.876477 (-4.118975) | 2.851488 / 2.142072 (0.709415) | 0.790795 / 4.805227 (-4.014432) | 0.172358 / 6.500664 (-6.328306) | 0.080255 / 0.075469 (0.004786) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.571391 / 1.841788 (-0.270396) | 19.025224 / 8.074308 (10.950916) | 17.079230 / 10.191392 (6.887838) | 0.172823 / 0.680424 (-0.507601) | 0.021845 / 0.534201 (-0.512356) | 0.522286 / 0.579283 (-0.056998) | 0.510406 / 0.434364 (0.076042) | 0.604830 / 0.540337 (0.064493) | 0.735466 / 1.386936 (-0.651471) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4084609bdc40d173d1daa74ad2fe98f3ead72f8e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010025 / 0.011353 (-0.001328) | 0.005699 / 0.011008 (-0.005310) | 0.134194 / 0.038508 (0.095686) | 0.056154 / 0.023109 (0.033045) | 0.470091 / 0.275898 (0.194193) | 0.539225 / 0.323480 (0.215745) | 0.006659 / 0.007986 (-0.001326) | 0.004468 / 0.004328 (0.000140) | 0.110040 / 0.004250 (0.105790) | 0.074172 / 0.037052 (0.037119) | 0.497450 / 0.258489 (0.238961) | 0.535048 / 0.293841 (0.241207) | 0.051195 / 0.128546 (-0.077352) | 0.014926 / 0.075646 (-0.060721) | 0.461334 / 0.419271 (0.042062) | 0.073773 / 0.043533 (0.030240) | 0.450741 / 0.255139 (0.195602) | 0.474853 / 0.283200 (0.191653) | 0.036372 / 0.141683 (-0.105311) | 1.982873 / 1.452155 (0.530719) | 1.989912 / 1.492716 (0.497196) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287817 / 0.018006 (0.269811) | 0.613415 / 0.000490 (0.612926) | 0.007082 / 0.000200 (0.006882) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031119 / 0.037411 (-0.006292) | 0.129886 / 0.014526 (0.115361) | 0.143492 / 0.176557 (-0.033065) | 0.208536 / 0.737135 (-0.528600) | 0.147081 / 0.296338 (-0.149257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.668312 / 0.215209 (0.453103) | 6.568609 / 2.077655 (4.490955) | 2.708788 / 1.504120 (1.204668) | 2.366737 / 1.541195 (0.825542) | 2.392598 / 1.468490 (0.924108) | 0.967582 / 4.584777 (-3.617195) | 5.582743 / 3.745712 (1.837031) | 3.021607 / 5.269862 (-2.248255) | 1.866402 / 4.565676 (-2.699275) | 0.115998 / 0.424275 (-0.308277) | 0.015571 / 0.007607 (0.007964) | 0.820069 / 0.226044 (0.594025) | 8.229725 / 2.268929 (5.960797) | 3.437068 / 55.444624 (-52.007557) | 2.902312 / 6.876477 (-3.974164) | 3.025874 / 2.142072 (0.883802) | 1.230359 / 4.805227 (-3.574868) | 0.237341 / 6.500664 (-6.263323) | 0.089923 / 0.075469 (0.014453) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670970 / 1.841788 (-0.170818) | 19.667167 / 8.074308 (11.592859) | 21.624423 / 10.191392 (11.433031) | 0.231683 / 0.680424 (-0.448741) | 0.029145 / 0.534201 (-0.505056) | 0.543441 / 0.579283 (-0.035842) | 0.617510 / 0.434364 (0.183146) | 0.612662 / 0.540337 (0.072324) | 0.790589 / 1.386936 (-0.596347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010324 / 0.011353 (-0.001029) | 0.005339 / 0.011008 (-0.005669) | 0.104762 / 0.038508 (0.066254) | 0.052631 / 0.023109 (0.029522) | 0.485864 / 0.275898 (0.209966) | 0.595768 / 0.323480 (0.272288) | 0.007417 / 0.007986 (-0.000569) | 0.005229 / 0.004328 (0.000900) | 0.100775 / 0.004250 (0.096524) | 0.067144 / 0.037052 (0.030092) | 0.522269 / 0.258489 (0.263780) | 0.592597 / 0.293841 (0.298756) | 0.051101 / 0.128546 (-0.077446) | 0.015277 / 0.075646 (-0.060369) | 0.115530 / 0.419271 (-0.303741) | 0.071922 / 0.043533 (0.028390) | 0.490208 / 0.255139 (0.235069) | 0.578936 / 0.283200 (0.295736) | 0.040382 / 0.141683 (-0.101301) | 1.986059 / 1.452155 (0.533904) | 2.040600 / 1.492716 (0.547883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300399 / 0.018006 (0.282393) | 0.624702 / 0.000490 (0.624212) | 0.004908 / 0.000200 (0.004708) | 0.000155 / 0.000054 (0.000100) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038031 / 0.037411 (0.000619) | 0.140353 / 0.014526 (0.125828) | 0.152600 / 0.176557 (-0.023956) | 0.219165 / 0.737135 (-0.517970) | 0.154232 / 0.296338 (-0.142106) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698855 / 0.215209 (0.483646) | 7.125543 / 2.077655 (5.047889) | 3.251222 / 1.504120 (1.747102) | 2.953404 / 1.541195 (1.412209) | 3.051108 / 1.468490 (1.582618) | 0.962068 / 4.584777 (-3.622709) | 5.789579 / 3.745712 (2.043867) | 5.193271 / 5.269862 (-0.076591) | 2.757886 / 4.565676 (-1.807790) | 0.111865 / 0.424275 (-0.312410) | 0.014684 / 0.007607 (0.007077) | 0.875967 / 0.226044 (0.649923) | 8.818359 / 2.268929 (6.549430) | 4.165216 / 55.444624 (-51.279408) | 3.372059 / 6.876477 (-3.504418) | 3.486886 / 2.142072 (1.344813) | 1.232276 / 4.805227 (-3.572951) | 0.238967 / 6.500664 (-6.261697) | 0.091584 / 0.075469 (0.016115) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.850755 / 1.841788 (0.008968) | 20.058756 / 8.074308 (11.984448) | 23.761271 / 10.191392 (13.569879) | 0.231826 / 0.680424 (-0.448598) | 0.030119 / 0.534201 (-0.504082) | 0.532614 / 0.579283 (-0.046669) | 0.628968 / 0.434364 (0.194604) | 0.628403 / 0.540337 (0.088066) | 0.745648 / 1.386936 (-0.641288) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a8a797cc92e860c8d0df71e0aa826f4d2690713e \"CML watermark\")\n"
] | 2023-06-22T18:32:14 | 2023-06-22T18:42:22 | 2023-06-22T18:32:22 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5979",
"html_url": "https://github.com/huggingface/datasets/pull/5979",
"diff_url": "https://github.com/huggingface/datasets/pull/5979.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5979.patch",
"merged_at": "2023-06-22T18:32:22"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5979/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5979/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5978 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5978/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5978/comments | https://api.github.com/repos/huggingface/datasets/issues/5978/events | https://github.com/huggingface/datasets/pull/5978 | 1,770,187,053 | PR_kwDODunzps5Tru2_ | 5,978 | Release: 2.13.1 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006173 / 0.011353 (-0.005180) | 0.003773 / 0.011008 (-0.007235) | 0.099499 / 0.038508 (0.060991) | 0.037918 / 0.023109 (0.014809) | 0.321329 / 0.275898 (0.045431) | 0.379739 / 0.323480 (0.056259) | 0.004664 / 0.007986 (-0.003322) | 0.002943 / 0.004328 (-0.001385) | 0.077759 / 0.004250 (0.073509) | 0.055271 / 0.037052 (0.018219) | 0.329428 / 0.258489 (0.070939) | 0.378731 / 0.293841 (0.084890) | 0.027737 / 0.128546 (-0.100810) | 0.008566 / 0.075646 (-0.067081) | 0.313220 / 0.419271 (-0.106052) | 0.047101 / 0.043533 (0.003568) | 0.316211 / 0.255139 (0.061072) | 0.341826 / 0.283200 (0.058626) | 0.020838 / 0.141683 (-0.120845) | 1.550064 / 1.452155 (0.097909) | 1.706518 / 1.492716 (0.213801) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203093 / 0.018006 (0.185087) | 0.425345 / 0.000490 (0.424856) | 0.004800 / 0.000200 (0.004600) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024590 / 0.037411 (-0.012821) | 0.098115 / 0.014526 (0.083589) | 0.108274 / 0.176557 (-0.068282) | 0.170804 / 0.737135 (-0.566332) | 0.110560 / 0.296338 (-0.185778) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425251 / 0.215209 (0.210042) | 4.239075 / 2.077655 (2.161421) | 1.955601 / 1.504120 (0.451481) | 1.774796 / 1.541195 (0.233602) | 1.826641 / 1.468490 (0.358150) | 0.558777 / 4.584777 (-4.026000) | 3.361697 / 3.745712 (-0.384015) | 1.764468 / 5.269862 (-3.505394) | 1.032280 / 4.565676 (-3.533396) | 0.067872 / 0.424275 (-0.356403) | 0.010998 / 0.007607 (0.003391) | 0.525682 / 0.226044 (0.299637) | 5.254356 / 2.268929 (2.985427) | 2.384332 / 55.444624 (-53.060292) | 2.045578 / 6.876477 (-4.830898) | 2.170914 / 2.142072 (0.028841) | 0.674782 / 4.805227 (-4.130445) | 0.135351 / 6.500664 (-6.365314) | 0.066591 / 0.075469 (-0.008878) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209181 / 1.841788 (-0.632606) | 14.044518 / 8.074308 (5.970210) | 13.184705 / 10.191392 (2.993313) | 0.130836 / 0.680424 (-0.549588) | 0.016582 / 0.534201 (-0.517619) | 0.360005 / 0.579283 (-0.219279) | 0.379519 / 0.434364 (-0.054845) | 0.422174 / 0.540337 (-0.118164) | 0.515546 / 1.386936 (-0.871390) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006293 / 0.011353 (-0.005060) | 0.003784 / 0.011008 (-0.007224) | 0.079248 / 0.038508 (0.040739) | 0.038452 / 0.023109 (0.015343) | 0.444727 / 0.275898 (0.168829) | 0.500535 / 0.323480 (0.177055) | 0.003455 / 0.007986 (-0.004531) | 0.002873 / 0.004328 (-0.001455) | 0.077439 / 0.004250 (0.073189) | 0.047855 / 0.037052 (0.010803) | 0.448049 / 0.258489 (0.189560) | 0.509517 / 0.293841 (0.215676) | 0.028359 / 0.128546 (-0.100188) | 0.008503 / 0.075646 (-0.067143) | 0.084961 / 0.419271 (-0.334310) | 0.042880 / 0.043533 (-0.000653) | 0.436628 / 0.255139 (0.181489) | 0.456574 / 0.283200 (0.173375) | 0.019539 / 0.141683 (-0.122144) | 1.561273 / 1.452155 (0.109118) | 1.572018 / 1.492716 (0.079301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230250 / 0.018006 (0.212244) | 0.415189 / 0.000490 (0.414700) | 0.003213 / 0.000200 (0.003013) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025541 / 0.037411 (-0.011871) | 0.102326 / 0.014526 (0.087800) | 0.110258 / 0.176557 (-0.066298) | 0.162488 / 0.737135 (-0.574647) | 0.112782 / 0.296338 (-0.183556) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457936 / 0.215209 (0.242727) | 4.581503 / 2.077655 (2.503848) | 2.237659 / 1.504120 (0.733540) | 2.029960 / 1.541195 (0.488765) | 2.082911 / 1.468490 (0.614421) | 0.556485 / 4.584777 (-4.028292) | 3.384418 / 3.745712 (-0.361295) | 1.748809 / 5.269862 (-3.521053) | 1.034759 / 4.565676 (-3.530917) | 0.067500 / 0.424275 (-0.356776) | 0.011425 / 0.007607 (0.003818) | 0.561340 / 0.226044 (0.335295) | 5.623629 / 2.268929 (3.354701) | 2.733587 / 55.444624 (-52.711038) | 2.401578 / 6.876477 (-4.474899) | 2.524569 / 2.142072 (0.382496) | 0.673170 / 4.805227 (-4.132057) | 0.136681 / 6.500664 (-6.363983) | 0.068060 / 0.075469 (-0.007409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318651 / 1.841788 (-0.523137) | 14.362123 / 8.074308 (6.287815) | 14.385964 / 10.191392 (4.194572) | 0.149914 / 0.680424 (-0.530510) | 0.016877 / 0.534201 (-0.517324) | 0.358406 / 0.579283 (-0.220877) | 0.394349 / 0.434364 (-0.040015) | 0.422471 / 0.540337 (-0.117866) | 0.513807 / 1.386936 (-0.873129) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b9ce11d1b94e6178df663ff5fcad029849d10fb \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006272 / 0.011353 (-0.005080) | 0.003903 / 0.011008 (-0.007105) | 0.100180 / 0.038508 (0.061672) | 0.037799 / 0.023109 (0.014690) | 0.385627 / 0.275898 (0.109729) | 0.446518 / 0.323480 (0.123038) | 0.004811 / 0.007986 (-0.003175) | 0.003032 / 0.004328 (-0.001296) | 0.077063 / 0.004250 (0.072812) | 0.055564 / 0.037052 (0.018512) | 0.397346 / 0.258489 (0.138857) | 0.443242 / 0.293841 (0.149401) | 0.027904 / 0.128546 (-0.100642) | 0.008386 / 0.075646 (-0.067260) | 0.315013 / 0.419271 (-0.104259) | 0.047943 / 0.043533 (0.004410) | 0.378443 / 0.255139 (0.123304) | 0.411472 / 0.283200 (0.128272) | 0.020465 / 0.141683 (-0.121218) | 1.526594 / 1.452155 (0.074439) | 1.547018 / 1.492716 (0.054301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219377 / 0.018006 (0.201370) | 0.430254 / 0.000490 (0.429764) | 0.003218 / 0.000200 (0.003018) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023667 / 0.037411 (-0.013744) | 0.099143 / 0.014526 (0.084617) | 0.106044 / 0.176557 (-0.070513) | 0.166186 / 0.737135 (-0.570949) | 0.108736 / 0.296338 (-0.187603) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437971 / 0.215209 (0.222762) | 4.363675 / 2.077655 (2.286021) | 2.011993 / 1.504120 (0.507873) | 1.845189 / 1.541195 (0.303994) | 1.831848 / 1.468490 (0.363358) | 0.562402 / 4.584777 (-4.022375) | 3.365259 / 3.745712 (-0.380453) | 1.781491 / 5.269862 (-3.488371) | 1.023454 / 4.565676 (-3.542223) | 0.067857 / 0.424275 (-0.356418) | 0.011076 / 0.007607 (0.003469) | 0.532267 / 0.226044 (0.306223) | 5.340344 / 2.268929 (3.071415) | 2.388649 / 55.444624 (-53.055976) | 2.055373 / 6.876477 (-4.821104) | 2.205047 / 2.142072 (0.062975) | 0.672909 / 4.805227 (-4.132318) | 0.135244 / 6.500664 (-6.365420) | 0.066184 / 0.075469 (-0.009285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206838 / 1.841788 (-0.634950) | 13.967075 / 8.074308 (5.892767) | 13.143971 / 10.191392 (2.952579) | 0.143991 / 0.680424 (-0.536433) | 0.016673 / 0.534201 (-0.517527) | 0.376180 / 0.579283 (-0.203103) | 0.386550 / 0.434364 (-0.047814) | 0.440590 / 0.540337 (-0.099747) | 0.529974 / 1.386936 (-0.856962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006299 / 0.011353 (-0.005054) | 0.003784 / 0.011008 (-0.007224) | 0.077875 / 0.038508 (0.039367) | 0.038689 / 0.023109 (0.015580) | 0.421684 / 0.275898 (0.145786) | 0.472649 / 0.323480 (0.149169) | 0.003570 / 0.007986 (-0.004415) | 0.004448 / 0.004328 (0.000120) | 0.077867 / 0.004250 (0.073616) | 0.049514 / 0.037052 (0.012462) | 0.375983 / 0.258489 (0.117494) | 0.470632 / 0.293841 (0.176791) | 0.028238 / 0.128546 (-0.100308) | 0.008462 / 0.075646 (-0.067185) | 0.082452 / 0.419271 (-0.336819) | 0.043617 / 0.043533 (0.000084) | 0.400874 / 0.255139 (0.145735) | 0.426191 / 0.283200 (0.142992) | 0.020602 / 0.141683 (-0.121081) | 1.567658 / 1.452155 (0.115504) | 1.572610 / 1.492716 (0.079893) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246144 / 0.018006 (0.228138) | 0.419402 / 0.000490 (0.418913) | 0.001691 / 0.000200 (0.001491) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026105 / 0.037411 (-0.011306) | 0.104734 / 0.014526 (0.090208) | 0.110257 / 0.176557 (-0.066300) | 0.161429 / 0.737135 (-0.575706) | 0.114367 / 0.296338 (-0.181972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453352 / 0.215209 (0.238143) | 4.537924 / 2.077655 (2.460269) | 2.196193 / 1.504120 (0.692073) | 2.002087 / 1.541195 (0.460892) | 2.041722 / 1.468490 (0.573231) | 0.561643 / 4.584777 (-4.023134) | 3.449108 / 3.745712 (-0.296605) | 2.862800 / 5.269862 (-2.407062) | 1.387895 / 4.565676 (-3.177782) | 0.068076 / 0.424275 (-0.356199) | 0.011568 / 0.007607 (0.003961) | 0.559279 / 0.226044 (0.333235) | 5.598738 / 2.268929 (3.329809) | 2.676649 / 55.444624 (-52.767975) | 2.334588 / 6.876477 (-4.541889) | 2.376215 / 2.142072 (0.234142) | 0.673109 / 4.805227 (-4.132118) | 0.137587 / 6.500664 (-6.363077) | 0.069131 / 0.075469 (-0.006338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.307332 / 1.841788 (-0.534456) | 14.536036 / 8.074308 (6.461728) | 14.173734 / 10.191392 (3.982342) | 0.145143 / 0.680424 (-0.535281) | 0.016662 / 0.534201 (-0.517539) | 0.366901 / 0.579283 (-0.212383) | 0.394498 / 0.434364 (-0.039866) | 0.430546 / 0.540337 (-0.109792) | 0.518950 / 1.386936 (-0.867986) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#682d21e94ab1e64c11b583de39dc4c93f0101c5a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008122 / 0.011353 (-0.003231) | 0.005585 / 0.011008 (-0.005424) | 0.121219 / 0.038508 (0.082711) | 0.047616 / 0.023109 (0.024507) | 0.440576 / 0.275898 (0.164678) | 0.491053 / 0.323480 (0.167573) | 0.004774 / 0.007986 (-0.003211) | 0.006758 / 0.004328 (0.002430) | 0.103852 / 0.004250 (0.099602) | 0.071560 / 0.037052 (0.034508) | 0.463107 / 0.258489 (0.204618) | 0.516904 / 0.293841 (0.223063) | 0.048052 / 0.128546 (-0.080494) | 0.013679 / 0.075646 (-0.061968) | 0.428383 / 0.419271 (0.009112) | 0.069468 / 0.043533 (0.025936) | 0.432593 / 0.255139 (0.177454) | 0.471810 / 0.283200 (0.188611) | 0.037541 / 0.141683 (-0.104142) | 1.823490 / 1.452155 (0.371335) | 1.922558 / 1.492716 (0.429842) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252315 / 0.018006 (0.234309) | 0.541757 / 0.000490 (0.541267) | 0.000373 / 0.000200 (0.000173) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030361 / 0.037411 (-0.007050) | 0.125928 / 0.014526 (0.111402) | 0.145102 / 0.176557 (-0.031455) | 0.209798 / 0.737135 (-0.527337) | 0.147349 / 0.296338 (-0.148990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627554 / 0.215209 (0.412345) | 5.917422 / 2.077655 (3.839767) | 2.491083 / 1.504120 (0.986963) | 2.147078 / 1.541195 (0.605883) | 2.167511 / 1.468490 (0.699021) | 0.903061 / 4.584777 (-3.681716) | 5.518537 / 3.745712 (1.772825) | 2.654348 / 5.269862 (-2.615514) | 1.645121 / 4.565676 (-2.920556) | 0.103782 / 0.424275 (-0.320493) | 0.013048 / 0.007607 (0.005441) | 0.756732 / 0.226044 (0.530687) | 7.622873 / 2.268929 (5.353945) | 3.122689 / 55.444624 (-52.321936) | 2.537735 / 6.876477 (-4.338742) | 2.640090 / 2.142072 (0.498018) | 1.128635 / 4.805227 (-3.676593) | 0.228089 / 6.500664 (-6.272575) | 0.086207 / 0.075469 (0.010738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561591 / 1.841788 (-0.280197) | 18.110299 / 8.074308 (10.035991) | 20.718017 / 10.191392 (10.526625) | 0.225741 / 0.680424 (-0.454682) | 0.031738 / 0.534201 (-0.502463) | 0.530789 / 0.579283 (-0.048495) | 0.607364 / 0.434364 (0.173000) | 0.581593 / 0.540337 (0.041256) | 0.726033 / 1.386936 (-0.660903) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009323 / 0.011353 (-0.002030) | 0.005360 / 0.011008 (-0.005649) | 0.103608 / 0.038508 (0.065100) | 0.050158 / 0.023109 (0.027049) | 0.499906 / 0.275898 (0.224008) | 0.561005 / 0.323480 (0.237525) | 0.005093 / 0.007986 (-0.002892) | 0.008285 / 0.004328 (0.003956) | 0.103446 / 0.004250 (0.099196) | 0.061478 / 0.037052 (0.024426) | 0.494016 / 0.258489 (0.235527) | 0.537550 / 0.293841 (0.243709) | 0.048829 / 0.128546 (-0.079717) | 0.017032 / 0.075646 (-0.058614) | 0.107748 / 0.419271 (-0.311524) | 0.065607 / 0.043533 (0.022074) | 0.488709 / 0.255139 (0.233570) | 0.512023 / 0.283200 (0.228823) | 0.032067 / 0.141683 (-0.109616) | 1.907585 / 1.452155 (0.455431) | 1.960994 / 1.492716 (0.468278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278378 / 0.018006 (0.260371) | 0.551474 / 0.000490 (0.550985) | 0.006886 / 0.000200 (0.006686) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030674 / 0.037411 (-0.006737) | 0.135179 / 0.014526 (0.120654) | 0.133703 / 0.176557 (-0.042853) | 0.198923 / 0.737135 (-0.538212) | 0.155108 / 0.296338 (-0.141231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.690566 / 0.215209 (0.475357) | 6.789594 / 2.077655 (4.711940) | 2.940668 / 1.504120 (1.436549) | 2.562431 / 1.541195 (1.021236) | 2.554232 / 1.468490 (1.085742) | 0.888470 / 4.584777 (-3.696307) | 5.672318 / 3.745712 (1.926606) | 2.741626 / 5.269862 (-2.528236) | 1.818336 / 4.565676 (-2.747340) | 0.110434 / 0.424275 (-0.313841) | 0.014114 / 0.007607 (0.006507) | 0.830632 / 0.226044 (0.604588) | 8.270787 / 2.268929 (6.001859) | 3.723486 / 55.444624 (-51.721139) | 2.993671 / 6.876477 (-3.882806) | 2.918273 / 2.142072 (0.776201) | 1.105337 / 4.805227 (-3.699891) | 0.222976 / 6.500664 (-6.277688) | 0.085290 / 0.075469 (0.009820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816027 / 1.841788 (-0.025760) | 18.496850 / 8.074308 (10.422541) | 20.457032 / 10.191392 (10.265640) | 0.243533 / 0.680424 (-0.436891) | 0.027044 / 0.534201 (-0.507157) | 0.500752 / 0.579283 (-0.078531) | 0.620963 / 0.434364 (0.186599) | 0.607995 / 0.540337 (0.067658) | 0.722915 / 1.386936 (-0.664021) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#682d21e94ab1e64c11b583de39dc4c93f0101c5a \"CML watermark\")\n"
] | 2023-06-22T18:23:11 | 2023-06-22T18:40:24 | 2023-06-22T18:30:16 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5978",
"html_url": "https://github.com/huggingface/datasets/pull/5978",
"diff_url": "https://github.com/huggingface/datasets/pull/5978.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5978.patch",
"merged_at": "2023-06-22T18:30:16"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5978/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5978/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5976 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5976/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5976/comments | https://api.github.com/repos/huggingface/datasets/issues/5976/events | https://github.com/huggingface/datasets/pull/5976 | 1,768,503,913 | PR_kwDODunzps5TmAFp | 5,976 | Avoid stuck map operation when subprocesses crashes | {
"login": "pappacena",
"id": 1213561,
"node_id": "MDQ6VXNlcjEyMTM1NjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1213561?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pappacena",
"html_url": "https://github.com/pappacena",
"followers_url": "https://api.github.com/users/pappacena/followers",
"following_url": "https://api.github.com/users/pappacena/following{/other_user}",
"gists_url": "https://api.github.com/users/pappacena/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pappacena/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pappacena/subscriptions",
"organizations_url": "https://api.github.com/users/pappacena/orgs",
"repos_url": "https://api.github.com/users/pappacena/repos",
"events_url": "https://api.github.com/users/pappacena/events{/privacy}",
"received_events_url": "https://api.github.com/users/pappacena/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! Do you think this can be fixed at the Pool level ? Ideally it should be the Pool responsibility to handle this, not the `map` code. We could even subclass Pool if needed (at least the one from `multiprocess`)",
"@lhoestq it makes sense to me. Just pushed a refactoring creating a `class ProcessPool(multiprocess.pool.Pool)` to keep track of the PID changes.",
"_The documentation is not available anymore as the PR was closed or merged._",
"I managed to raise an error without subclassing Pool with two additions to `iflatmap_unordered`:\r\n\r\n1. at the beggining\r\n```python\r\noriginal_pool = list(pool._pool)\r\n```\r\n\r\n2. in the loop\r\n```python\r\nif any(async_result._pool != original_pool for async_result in async_results) and queue.empty():\r\n raise RuntimeError(\r\n \"One of the subprocesses has abruptly died during map operation.\"\r\n \"To debug the error, disable multiprocessing.\"\r\n )\r\n```\r\n\r\nIt's still a fix that only works for `iflatmap_unordered` (so not for map, imap etc) but is maybe simpler that subclassing. It also works for both multiprocessing.Pool and multiprocess.Pool",
"@lhoestq sorry for the delay. Busy weeks here. \r\n\r\nI just pushed the change you requested. It looks closer to the original proposal, actually.\r\n\r\nIt seems that `map` actually uses `iflatmap_unordered` ([here](https://github.com/huggingface/datasets/blob/819bb4346434912eb405ce3f3e9f21dc25a2fe85/src/datasets/arrow_dataset.py#L1509)). I think this solution works fine for the `map` method (which is the one being tested by the new `tests/test_arrow_dataset.py::BaseDatasetTest::test_map_crash_subprocess`, right?).",
"Yes fixing iflatmap_unordered does fix Dataset.map, but it won't fix any Pool.map that we may use elsewhere so we'll have to keep this in mind.",
"It looks all good to me, feel free to fix code formatting by running `make style` and we can merge :)",
"> Yes fixing iflatmap_unordered does fix Dataset.map, but it won't fix any Pool.map that we may use elsewhere so we'll have to keep this in mind.\r\n\r\nRight, I agree. The best way moving forward is probably not using the buggy `multiprocess.Pool` anymore, and replace it with `concurrent.futures.ProcessPoolExecutor` as much as possible.\r\n\r\nAnyway, I've run `make style` now. Thanks for the support!",
"It looks like checking the async_result._pool doesn't always work - sorry about that. We might just go back to your original solution then. Would also be cool to open an issue in `multiprocess` to ask if they have a solution or if they plan to fix this.",
"@lhoestq no problem! Reverted to the previous version.\r\n\r\nTBH, given the discussions [in this python issue](https://github.com/python/cpython/issues/66587), I don't think the error in `multiprocess` will be merged upstream any time soon...",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006060 / 0.011353 (-0.005293) | 0.003695 / 0.011008 (-0.007313) | 0.080484 / 0.038508 (0.041976) | 0.061894 / 0.023109 (0.038785) | 0.312510 / 0.275898 (0.036612) | 0.352398 / 0.323480 (0.028918) | 0.004638 / 0.007986 (-0.003348) | 0.002918 / 0.004328 (-0.001410) | 0.062932 / 0.004250 (0.058681) | 0.050859 / 0.037052 (0.013807) | 0.316812 / 0.258489 (0.058323) | 0.357684 / 0.293841 (0.063843) | 0.027622 / 0.128546 (-0.100924) | 0.008012 / 0.075646 (-0.067634) | 0.260970 / 0.419271 (-0.158302) | 0.045807 / 0.043533 (0.002275) | 0.321235 / 0.255139 (0.066096) | 0.343162 / 0.283200 (0.059962) | 0.021136 / 0.141683 (-0.120547) | 1.465886 / 1.452155 (0.013731) | 1.500216 / 1.492716 (0.007500) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187286 / 0.018006 (0.169279) | 0.428724 / 0.000490 (0.428235) | 0.003029 / 0.000200 (0.002829) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022703 / 0.037411 (-0.014708) | 0.072740 / 0.014526 (0.058215) | 0.083436 / 0.176557 (-0.093120) | 0.144559 / 0.737135 (-0.592577) | 0.083958 / 0.296338 (-0.212380) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435729 / 0.215209 (0.220520) | 4.351146 / 2.077655 (2.273491) | 2.316627 / 1.504120 (0.812508) | 2.144587 / 1.541195 (0.603393) | 2.209182 / 1.468490 (0.740692) | 0.501131 / 4.584777 (-4.083646) | 3.077085 / 3.745712 (-0.668627) | 4.353706 / 5.269862 (-0.916156) | 2.621523 / 4.565676 (-1.944154) | 0.058976 / 0.424275 (-0.365299) | 0.006467 / 0.007607 (-0.001141) | 0.506690 / 0.226044 (0.280646) | 5.085787 / 2.268929 (2.816858) | 2.731336 / 55.444624 (-52.713289) | 2.419451 / 6.876477 (-4.457025) | 2.583649 / 2.142072 (0.441577) | 0.589869 / 4.805227 (-4.215359) | 0.131040 / 6.500664 (-6.369624) | 0.061332 / 0.075469 (-0.014137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.220542 / 1.841788 (-0.621245) | 18.169643 / 8.074308 (10.095335) | 13.251704 / 10.191392 (3.060312) | 0.142952 / 0.680424 (-0.537472) | 0.016639 / 0.534201 (-0.517562) | 0.334851 / 0.579283 (-0.244432) | 0.361865 / 0.434364 (-0.072499) | 0.380933 / 0.540337 (-0.159404) | 0.527374 / 1.386936 (-0.859562) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006319 / 0.011353 (-0.005034) | 0.003778 / 0.011008 (-0.007231) | 0.062388 / 0.038508 (0.023880) | 0.062228 / 0.023109 (0.039119) | 0.373727 / 0.275898 (0.097829) | 0.399442 / 0.323480 (0.075962) | 0.005434 / 0.007986 (-0.002551) | 0.003020 / 0.004328 (-0.001308) | 0.062774 / 0.004250 (0.058524) | 0.052784 / 0.037052 (0.015732) | 0.376428 / 0.258489 (0.117939) | 0.405039 / 0.293841 (0.111198) | 0.027884 / 0.128546 (-0.100662) | 0.008086 / 0.075646 (-0.067561) | 0.067078 / 0.419271 (-0.352194) | 0.042927 / 0.043533 (-0.000606) | 0.372142 / 0.255139 (0.117003) | 0.389604 / 0.283200 (0.106405) | 0.021582 / 0.141683 (-0.120101) | 1.473332 / 1.452155 (0.021177) | 1.536018 / 1.492716 (0.043302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184729 / 0.018006 (0.166723) | 0.421065 / 0.000490 (0.420575) | 0.002681 / 0.000200 (0.002481) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026067 / 0.037411 (-0.011344) | 0.077138 / 0.014526 (0.062612) | 0.085178 / 0.176557 (-0.091379) | 0.139681 / 0.737135 (-0.597454) | 0.087528 / 0.296338 (-0.208810) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444899 / 0.215209 (0.229690) | 4.459168 / 2.077655 (2.381513) | 2.408792 / 1.504120 (0.904672) | 2.237243 / 1.541195 (0.696048) | 2.296298 / 1.468490 (0.827808) | 0.498508 / 4.584777 (-4.086269) | 3.067064 / 3.745712 (-0.678648) | 4.470577 / 5.269862 (-0.799284) | 2.701972 / 4.565676 (-1.863705) | 0.057711 / 0.424275 (-0.366564) | 0.006443 / 0.007607 (-0.001164) | 0.524046 / 0.226044 (0.298002) | 5.229928 / 2.268929 (2.961000) | 2.862101 / 55.444624 (-52.582523) | 2.545972 / 6.876477 (-4.330504) | 2.606459 / 2.142072 (0.464387) | 0.593285 / 4.805227 (-4.211942) | 0.124913 / 6.500664 (-6.375751) | 0.061942 / 0.075469 (-0.013527) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322162 / 1.841788 (-0.519625) | 18.745796 / 8.074308 (10.671488) | 13.955443 / 10.191392 (3.764051) | 0.145610 / 0.680424 (-0.534814) | 0.016817 / 0.534201 (-0.517384) | 0.331180 / 0.579283 (-0.248103) | 0.343019 / 0.434364 (-0.091345) | 0.379459 / 0.540337 (-0.160878) | 0.526403 / 1.386936 (-0.860533) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aca4cdcc79f16ec5157a2a3a665fdef0e3aa176d \"CML watermark\")\n"
] | 2023-06-21T21:18:31 | 2023-07-10T09:58:39 | 2023-07-10T09:50:07 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5976",
"html_url": "https://github.com/huggingface/datasets/pull/5976",
"diff_url": "https://github.com/huggingface/datasets/pull/5976.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5976.patch",
"merged_at": "2023-07-10T09:50:07"
} | I've been using Dataset.map() with `num_proc=os.cpu_count()` to leverage multicore processing for my datasets, but from time to time I get stuck processes waiting forever. Apparently, when one of the subprocesses is abruptly killed (OOM killer, segfault, SIGKILL, etc), the main process keeps waiting for the async task sent to that child process to finish.
It seems to be easy to reproduce the issue with the following script:
```
import os
from datasets import Dataset, Features, Value
def do_stuck(item):
os.kill(os.getpid(), 9)
data = {
"col1": list(range(5)),
"col2": list(range(5)),
}
ds = Dataset.from_dict(
data,
features=Features({
"col1": Value("int64"),
"col2": Value("int64"),
}),
)
print(ds.map(do_stuck, num_proc=4))
```
This is an old behavior in Python, which apparently was fixed a few years ago in `concurrent.futures.ProcessPoolExecutor` ([ref](https://bugs.python.org/issue9205)), but not in `multiprocessing.pool.Pool` / `multiprocess.pool.Pool`, which is used by `Dataset.map` ([ref](https://bugs.python.org/issue22393)).
This PR is an idea to try to detect when a child process gets killed, and raises a `RuntimeError` warning the dataset.map() caller.
EDIT: Related proposal for future improvement: https://github.com/huggingface/datasets/discussions/5977 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5976/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5976/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5975 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5975/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5975/comments | https://api.github.com/repos/huggingface/datasets/issues/5975/events | https://github.com/huggingface/datasets/issues/5975 | 1,768,271,343 | I_kwDODunzps5pZa3v | 5,975 | Streaming Dataset behind Proxy - FileNotFoundError | {
"login": "Veluchs",
"id": 135350576,
"node_id": "U_kgDOCBFJMA",
"avatar_url": "https://avatars.githubusercontent.com/u/135350576?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Veluchs",
"html_url": "https://github.com/Veluchs",
"followers_url": "https://api.github.com/users/Veluchs/followers",
"following_url": "https://api.github.com/users/Veluchs/following{/other_user}",
"gists_url": "https://api.github.com/users/Veluchs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Veluchs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Veluchs/subscriptions",
"organizations_url": "https://api.github.com/users/Veluchs/orgs",
"repos_url": "https://api.github.com/users/Veluchs/repos",
"events_url": "https://api.github.com/users/Veluchs/events{/privacy}",
"received_events_url": "https://api.github.com/users/Veluchs/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Duplicate of #",
"Hi ! can you try to set the upper case environment variables `HTTP_PROXY` and `HTTPS_PROXY` ?\r\n\r\nWe use `aiohttp` for streaming and it uses case sensitive environment variables",
"Hi, thanks for the quick reply.\r\n\r\nI set the uppercase env variables with\r\n\r\n`\r\nos.environ['HTTP_PROXY'] = \"http://example.com:xxxx\" \r\nos.environ['HTTPS_PROXY'] = \"http://example.com:xxxx\" \r\n`\r\n\r\nHowever, I still get the same error.\r\n\r\nOne thing that could be helpfull: When downloading a dataset without streaming i get the following message:\r\n_HF google storage unreachable. Downloading and preparing it from source_.\r\nThe download does however work as expected.\r\n",
"Are you able to use `aiohttp` to get the file at `https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json` using your proxy ?",
"It only works when passing trust_env=True when creating the ClientSession, as well as setting ssl=False.\r\n\r\nWorking Example:\r\n\r\n```\r\nimport os\r\n\r\nos.environ['HTTP_PROXY'] = \"xyz\"\r\nos.environ['HTTPS_PROXY'] = \"xyz\"\r\n\r\nimport asyncio\r\nimport aiohttp\r\n\r\nasync def download_pep(url):\r\n async with aiohttp.ClientSession(trust_env=True) as session:\r\n print(\"1\")\r\n async with session.get(url, ssl=False) as resp:\r\n print(\"2\")\r\n content = await resp.text()\r\n print(content)\r\n return content\r\n\r\nasyncio.run(download_pep(\"https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json\"))\r\n```\r\n\r\n\r\n\r\nSSL Verification has been a problem with other packages as well. Usually I circumvent the problem by setting\r\n```\r\nimport ssl\r\nssl._create_default_https_context = ssl._create_unverified_context\r\n```\r\n(probably not the best idea for security), although here aiohttp does not seem to use this default context.",
"We do pass `trust_env` as well. Could you share the full stack trace you get when streaming using `datasets` ? That could help locate where we might have forgotten to pass `trust_env`",
"Is there a way to disable ssl verification when streaming a dataset. I suspect this might be the isssue with my proxy.\r\n\r\n\r\nHere you go:\r\n\r\n```\r\nFileNotFoundError Traceback (most recent call last)\r\nCell In[8], line 3\r\n 1 from datasets import load_dataset\r\n----> 3 ds = load_dataset(\"facebook/voxpopuli\", name=\"de\", streaming=True)\r\n 5 sample = next(iter(ds))\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/load.py:1790](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/load.py:1790), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1788 # Return iterable dataset in case of streaming\r\n 1789 if streaming:\r\n-> 1790 return builder_instance.as_streaming_dataset(split=split)\r\n 1792 # Some datasets are already processed on the HF google storage\r\n 1793 # Don't try downloading from Google storage for the packaged datasets as text, json, csv or pandas\r\n 1794 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/builder.py:1281](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/builder.py:1281), in DatasetBuilder.as_streaming_dataset(self, split, base_path)\r\n 1274 dl_manager = StreamingDownloadManager(\r\n 1275 base_path=base_path or self.base_path,\r\n 1276 download_config=DownloadConfig(use_auth_token=self.use_auth_token, storage_options=self.storage_options),\r\n 1277 dataset_name=self.name,\r\n 1278 data_dir=self.config.data_dir,\r\n 1279 )\r\n 1280 self._check_manual_download(dl_manager)\r\n-> 1281 splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)}\r\n 1282 # By default, return all splits\r\n 1283 if split is None:\r\n\r\nFile [~/.cache/huggingface/modules/datasets_modules/datasets/facebook--voxpopuli/b5ff837284f0778eefe0f642734e142d8c3f574eba8c9c8a4b13602297f73604/voxpopuli.py:120](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.cache/huggingface/modules/datasets_modules/datasets/facebook--voxpopuli/b5ff837284f0778eefe0f642734e142d8c3f574eba8c9c8a4b13602297f73604/voxpopuli.py:120), in Voxpopuli._split_generators(self, dl_manager)\r\n 118 def _split_generators(self, dl_manager):\r\n 119 n_shards_path = dl_manager.download_and_extract(_N_SHARDS_FILE)\r\n--> 120 with open(n_shards_path) as f:\r\n 121 n_shards = json.load(f)\r\n 123 if self.config.name == \"en_accented\":\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/streaming.py:71](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/streaming.py:71), in extend_module_for_streaming..wrap_auth..wrapper(*args, **kwargs)\r\n 69 @wraps(function)\r\n 70 def wrapper(*args, **kwargs):\r\n---> 71 return function(*args, use_auth_token=use_auth_token, **kwargs)\r\n\r\nFile [~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:517](https://vscode-remote+ssh-002dremote-002bml-002er-002dsoftware-002eat.vscode-resource.vscode-cdn.net/home/wrsbri/projects/audio_course/~/.conda/envs/audio_hf/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:517), in xopen(file, mode, use_auth_token, *args, **kwargs)\r\n 515 except FileNotFoundError:\r\n 516 if file.startswith(config.HF_ENDPOINT):\r\n--> 517 raise FileNotFoundError(\r\n 518 file + \"\\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`.\"\r\n 519 ) from None\r\n 520 else:\r\n 521 raise\r\n\r\nFileNotFoundError: https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json\r\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`.\r\n```",
"> Is there a way to disable ssl verification when streaming a dataset.\r\n\r\nI don't think so.\r\n\r\nWe use `fsspec` HTTPFileSystem implementation that is based on `aiohttp`. If you register a subclass of HTTPFileSystem that has SSL disabled by default it could work, but I wouldn't recommended it because it can raise security issues.",
"Okay thanks for your help! I guess I have to figure out how to improve the proxy environment / see if I can make it work with ssl connections."
] | 2023-06-21T19:10:02 | 2023-06-30T05:55:39 | 2023-06-30T05:55:38 | NONE | null | null | null | ### Describe the bug
When trying to stream a dataset i get the following error after a few minutes of waiting.
```
FileNotFoundError: https://huggingface.co/datasets/facebook/voxpopuli/resolve/main/data/n_files.json
If the repo is private or gated, make sure to log in with `huggingface-cli login`.
```
I have already set the proxy environment variables. Downloading a Dataset without streaming works as expected.
Still i suspect that this is connected to being behind a proxy.
Is there a way to set the proxy for streaming datasets? Possibly a keyword argument that gets passed to ffspec?
### Steps to reproduce the bug
This is the code i use.
```
import os
os.environ['http_proxy'] = "http://example.com:xxxx"
os.environ['https_proxy'] = "http://example.com:xxxx"
from datasets import load_dataset
ds = load_dataset("facebook/voxpopuli", name="de", streaming=True)
```
### Expected behavior
I would expect the streaming functionality to use the set proxy settings.
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-5.15.0-73-generic-x86_64-with-glibc2.35
- Python version: 3.10.11
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5975/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5975/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5974 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5974/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5974/comments | https://api.github.com/repos/huggingface/datasets/issues/5974/events | https://github.com/huggingface/datasets/pull/5974 | 1,767,981,231 | PR_kwDODunzps5TkXCb | 5,974 | Deprecate `errors` param in favor of `encoding_errors` in text builder | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006518 / 0.011353 (-0.004835) | 0.004121 / 0.011008 (-0.006887) | 0.103350 / 0.038508 (0.064842) | 0.045030 / 0.023109 (0.021920) | 0.351670 / 0.275898 (0.075772) | 0.408110 / 0.323480 (0.084630) | 0.003883 / 0.007986 (-0.004102) | 0.003352 / 0.004328 (-0.000977) | 0.078786 / 0.004250 (0.074535) | 0.063977 / 0.037052 (0.026925) | 0.369759 / 0.258489 (0.111270) | 0.415103 / 0.293841 (0.121262) | 0.033069 / 0.128546 (-0.095477) | 0.008863 / 0.075646 (-0.066783) | 0.353660 / 0.419271 (-0.065611) | 0.055714 / 0.043533 (0.012181) | 0.350458 / 0.255139 (0.095319) | 0.369505 / 0.283200 (0.086305) | 0.022822 / 0.141683 (-0.118861) | 1.537588 / 1.452155 (0.085433) | 1.590569 / 1.492716 (0.097853) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206826 / 0.018006 (0.188819) | 0.471625 / 0.000490 (0.471135) | 0.005188 / 0.000200 (0.004988) | 0.000316 / 0.000054 (0.000261) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028148 / 0.037411 (-0.009263) | 0.111941 / 0.014526 (0.097415) | 0.122106 / 0.176557 (-0.054451) | 0.181127 / 0.737135 (-0.556009) | 0.127534 / 0.296338 (-0.168805) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409520 / 0.215209 (0.194311) | 4.098455 / 2.077655 (2.020800) | 1.852447 / 1.504120 (0.348327) | 1.657036 / 1.541195 (0.115842) | 1.709624 / 1.468490 (0.241134) | 0.542806 / 4.584777 (-4.041970) | 3.809352 / 3.745712 (0.063640) | 1.855412 / 5.269862 (-3.414449) | 1.109180 / 4.565676 (-3.456497) | 0.066801 / 0.424275 (-0.357474) | 0.011832 / 0.007607 (0.004225) | 0.518338 / 0.226044 (0.292293) | 5.190108 / 2.268929 (2.921179) | 2.320602 / 55.444624 (-53.124023) | 1.991416 / 6.876477 (-4.885060) | 2.106989 / 2.142072 (-0.035084) | 0.668914 / 4.805227 (-4.136313) | 0.145325 / 6.500664 (-6.355340) | 0.065145 / 0.075469 (-0.010324) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254706 / 1.841788 (-0.587082) | 14.707264 / 8.074308 (6.632956) | 14.615423 / 10.191392 (4.424031) | 0.170764 / 0.680424 (-0.509659) | 0.017905 / 0.534201 (-0.516296) | 0.435606 / 0.579283 (-0.143677) | 0.434648 / 0.434364 (0.000284) | 0.520813 / 0.540337 (-0.019524) | 0.633902 / 1.386936 (-0.753034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007212 / 0.011353 (-0.004141) | 0.004301 / 0.011008 (-0.006707) | 0.080767 / 0.038508 (0.042258) | 0.051949 / 0.023109 (0.028840) | 0.398473 / 0.275898 (0.122575) | 0.465038 / 0.323480 (0.141558) | 0.005580 / 0.007986 (-0.002406) | 0.003556 / 0.004328 (-0.000773) | 0.080682 / 0.004250 (0.076431) | 0.059517 / 0.037052 (0.022464) | 0.421171 / 0.258489 (0.162682) | 0.459752 / 0.293841 (0.165911) | 0.032960 / 0.128546 (-0.095586) | 0.009107 / 0.075646 (-0.066539) | 0.086382 / 0.419271 (-0.332889) | 0.056053 / 0.043533 (0.012520) | 0.393357 / 0.255139 (0.138218) | 0.412972 / 0.283200 (0.129772) | 0.031115 / 0.141683 (-0.110568) | 1.576961 / 1.452155 (0.124806) | 1.627249 / 1.492716 (0.134533) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227618 / 0.018006 (0.209612) | 0.444640 / 0.000490 (0.444150) | 0.004376 / 0.000200 (0.004176) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030826 / 0.037411 (-0.006586) | 0.117587 / 0.014526 (0.103062) | 0.127467 / 0.176557 (-0.049089) | 0.184440 / 0.737135 (-0.552695) | 0.133664 / 0.296338 (-0.162675) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443183 / 0.215209 (0.227974) | 4.408312 / 2.077655 (2.330658) | 2.132487 / 1.504120 (0.628367) | 1.923632 / 1.541195 (0.382438) | 1.967882 / 1.468490 (0.499392) | 0.552954 / 4.584777 (-4.031823) | 3.777701 / 3.745712 (0.031989) | 1.857686 / 5.269862 (-3.412176) | 1.104847 / 4.565676 (-3.460829) | 0.068350 / 0.424275 (-0.355925) | 0.012437 / 0.007607 (0.004830) | 0.559258 / 0.226044 (0.333214) | 5.593258 / 2.268929 (3.324330) | 2.648059 / 55.444624 (-52.796565) | 2.277428 / 6.876477 (-4.599049) | 2.351685 / 2.142072 (0.209612) | 0.678750 / 4.805227 (-4.126477) | 0.145550 / 6.500664 (-6.355114) | 0.066556 / 0.075469 (-0.008913) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.327128 / 1.841788 (-0.514659) | 15.649079 / 8.074308 (7.574771) | 14.478659 / 10.191392 (4.287267) | 0.147633 / 0.680424 (-0.532791) | 0.018502 / 0.534201 (-0.515699) | 0.438556 / 0.579283 (-0.140727) | 0.433381 / 0.434364 (-0.000983) | 0.514367 / 0.540337 (-0.025970) | 0.618347 / 1.386936 (-0.768589) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#16aa1c886c5b499641a4bb3d8ce4a4f7de8244b7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006078 / 0.011353 (-0.005275) | 0.003914 / 0.011008 (-0.007095) | 0.102039 / 0.038508 (0.063531) | 0.037660 / 0.023109 (0.014551) | 0.348963 / 0.275898 (0.073065) | 0.407284 / 0.323480 (0.083804) | 0.004661 / 0.007986 (-0.003324) | 0.003253 / 0.004328 (-0.001076) | 0.078276 / 0.004250 (0.074025) | 0.054144 / 0.037052 (0.017091) | 0.376715 / 0.258489 (0.118225) | 0.418499 / 0.293841 (0.124658) | 0.027627 / 0.128546 (-0.100919) | 0.008494 / 0.075646 (-0.067152) | 0.316894 / 0.419271 (-0.102377) | 0.046560 / 0.043533 (0.003027) | 0.339835 / 0.255139 (0.084696) | 0.374628 / 0.283200 (0.091428) | 0.020729 / 0.141683 (-0.120954) | 1.502769 / 1.452155 (0.050615) | 1.548756 / 1.492716 (0.056040) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229192 / 0.018006 (0.211186) | 0.426245 / 0.000490 (0.425756) | 0.005190 / 0.000200 (0.004990) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024271 / 0.037411 (-0.013140) | 0.098869 / 0.014526 (0.084343) | 0.105079 / 0.176557 (-0.071477) | 0.164707 / 0.737135 (-0.572428) | 0.110337 / 0.296338 (-0.186002) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426593 / 0.215209 (0.211383) | 4.293977 / 2.077655 (2.216323) | 1.928502 / 1.504120 (0.424382) | 1.728623 / 1.541195 (0.187428) | 1.792084 / 1.468490 (0.323594) | 0.568737 / 4.584777 (-4.016040) | 3.438534 / 3.745712 (-0.307178) | 1.797798 / 5.269862 (-3.472063) | 1.054078 / 4.565676 (-3.511598) | 0.068711 / 0.424275 (-0.355564) | 0.011250 / 0.007607 (0.003643) | 0.529299 / 0.226044 (0.303255) | 5.283965 / 2.268929 (3.015037) | 2.358274 / 55.444624 (-53.086350) | 2.012818 / 6.876477 (-4.863659) | 2.109923 / 2.142072 (-0.032149) | 0.679556 / 4.805227 (-4.125671) | 0.138346 / 6.500664 (-6.362318) | 0.066349 / 0.075469 (-0.009120) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193994 / 1.841788 (-0.647794) | 14.073158 / 8.074308 (5.998850) | 13.488525 / 10.191392 (3.297133) | 0.144536 / 0.680424 (-0.535888) | 0.016748 / 0.534201 (-0.517453) | 0.362703 / 0.579283 (-0.216580) | 0.389511 / 0.434364 (-0.044853) | 0.427296 / 0.540337 (-0.113041) | 0.513227 / 1.386936 (-0.873709) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006215 / 0.011353 (-0.005138) | 0.003834 / 0.011008 (-0.007174) | 0.078001 / 0.038508 (0.039493) | 0.036537 / 0.023109 (0.013428) | 0.369724 / 0.275898 (0.093826) | 0.426761 / 0.323480 (0.103281) | 0.003602 / 0.007986 (-0.004383) | 0.003001 / 0.004328 (-0.001327) | 0.075989 / 0.004250 (0.071739) | 0.048618 / 0.037052 (0.011566) | 0.374296 / 0.258489 (0.115807) | 0.430330 / 0.293841 (0.136489) | 0.028299 / 0.128546 (-0.100247) | 0.008537 / 0.075646 (-0.067109) | 0.083275 / 0.419271 (-0.335997) | 0.043136 / 0.043533 (-0.000397) | 0.359072 / 0.255139 (0.103933) | 0.387391 / 0.283200 (0.104192) | 0.021202 / 0.141683 (-0.120481) | 1.520832 / 1.452155 (0.068677) | 1.567030 / 1.492716 (0.074313) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230944 / 0.018006 (0.212938) | 0.422159 / 0.000490 (0.421669) | 0.003447 / 0.000200 (0.003247) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025442 / 0.037411 (-0.011969) | 0.103944 / 0.014526 (0.089418) | 0.110577 / 0.176557 (-0.065979) | 0.161393 / 0.737135 (-0.575743) | 0.113482 / 0.296338 (-0.182857) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.485765 / 0.215209 (0.270556) | 4.845737 / 2.077655 (2.768083) | 2.556732 / 1.504120 (1.052612) | 2.348638 / 1.541195 (0.807443) | 2.379289 / 1.468490 (0.910799) | 0.561261 / 4.584777 (-4.023516) | 3.482468 / 3.745712 (-0.263244) | 3.061319 / 5.269862 (-2.208543) | 1.483938 / 4.565676 (-3.081738) | 0.067584 / 0.424275 (-0.356691) | 0.011333 / 0.007607 (0.003726) | 0.594342 / 0.226044 (0.368297) | 5.935477 / 2.268929 (3.666548) | 3.025029 / 55.444624 (-52.419595) | 2.687032 / 6.876477 (-4.189445) | 2.752470 / 2.142072 (0.610398) | 0.674470 / 4.805227 (-4.130757) | 0.136777 / 6.500664 (-6.363887) | 0.068335 / 0.075469 (-0.007134) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336456 / 1.841788 (-0.505332) | 14.376007 / 8.074308 (6.301699) | 14.171375 / 10.191392 (3.979983) | 0.159620 / 0.680424 (-0.520804) | 0.016685 / 0.534201 (-0.517516) | 0.364344 / 0.579283 (-0.214939) | 0.395358 / 0.434364 (-0.039006) | 0.424876 / 0.540337 (-0.115461) | 0.513267 / 1.386936 (-0.873669) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6ed837325cb539a5deb99129e5ad181d0269e050 \"CML watermark\")\n"
] | 2023-06-21T16:31:38 | 2023-06-26T10:34:43 | 2023-06-26T10:27:40 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5974",
"html_url": "https://github.com/huggingface/datasets/pull/5974",
"diff_url": "https://github.com/huggingface/datasets/pull/5974.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5974.patch",
"merged_at": "2023-06-26T10:27:40"
} | For consistency with the JSON builder and Pandas | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5974/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5974/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5972 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5972/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5972/comments | https://api.github.com/repos/huggingface/datasets/issues/5972/events | https://github.com/huggingface/datasets/pull/5972 | 1,767,897,485 | PR_kwDODunzps5TkE7K | 5,972 | Filter unsupported extensions | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006983 / 0.011353 (-0.004369) | 0.004473 / 0.011008 (-0.006535) | 0.105158 / 0.038508 (0.066650) | 0.048973 / 0.023109 (0.025864) | 0.358771 / 0.275898 (0.082873) | 0.432389 / 0.323480 (0.108909) | 0.005689 / 0.007986 (-0.002297) | 0.003584 / 0.004328 (-0.000744) | 0.080852 / 0.004250 (0.076601) | 0.066133 / 0.037052 (0.029081) | 0.370981 / 0.258489 (0.112492) | 0.406942 / 0.293841 (0.113101) | 0.032123 / 0.128546 (-0.096424) | 0.009313 / 0.075646 (-0.066333) | 0.355220 / 0.419271 (-0.064051) | 0.055768 / 0.043533 (0.012235) | 0.370545 / 0.255139 (0.115406) | 0.375619 / 0.283200 (0.092419) | 0.024258 / 0.141683 (-0.117425) | 1.559073 / 1.452155 (0.106918) | 1.616520 / 1.492716 (0.123804) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277893 / 0.018006 (0.259887) | 0.535447 / 0.000490 (0.534957) | 0.004877 / 0.000200 (0.004677) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029444 / 0.037411 (-0.007968) | 0.114366 / 0.014526 (0.099841) | 0.130957 / 0.176557 (-0.045599) | 0.189604 / 0.737135 (-0.547531) | 0.131682 / 0.296338 (-0.164656) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412315 / 0.215209 (0.197106) | 4.093879 / 2.077655 (2.016225) | 1.856169 / 1.504120 (0.352050) | 1.655358 / 1.541195 (0.114164) | 1.758190 / 1.468490 (0.289699) | 0.545829 / 4.584777 (-4.038948) | 3.871436 / 3.745712 (0.125724) | 1.938244 / 5.269862 (-3.331618) | 1.122727 / 4.565676 (-3.442950) | 0.067107 / 0.424275 (-0.357168) | 0.012012 / 0.007607 (0.004405) | 0.518868 / 0.226044 (0.292824) | 5.235081 / 2.268929 (2.966153) | 2.335115 / 55.444624 (-53.109509) | 2.013074 / 6.876477 (-4.863402) | 2.219808 / 2.142072 (0.077735) | 0.674602 / 4.805227 (-4.130626) | 0.147051 / 6.500664 (-6.353613) | 0.068444 / 0.075469 (-0.007025) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245600 / 1.841788 (-0.596188) | 15.537727 / 8.074308 (7.463419) | 15.074300 / 10.191392 (4.882908) | 0.194217 / 0.680424 (-0.486207) | 0.018536 / 0.534201 (-0.515665) | 0.437085 / 0.579283 (-0.142198) | 0.441123 / 0.434364 (0.006759) | 0.530681 / 0.540337 (-0.009657) | 0.649154 / 1.386936 (-0.737782) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007243 / 0.011353 (-0.004110) | 0.004688 / 0.011008 (-0.006320) | 0.079809 / 0.038508 (0.041301) | 0.046915 / 0.023109 (0.023805) | 0.415144 / 0.275898 (0.139246) | 0.474867 / 0.323480 (0.151388) | 0.004550 / 0.007986 (-0.003435) | 0.004585 / 0.004328 (0.000257) | 0.080837 / 0.004250 (0.076587) | 0.061667 / 0.037052 (0.024614) | 0.411321 / 0.258489 (0.152832) | 0.464195 / 0.293841 (0.170354) | 0.032510 / 0.128546 (-0.096037) | 0.009306 / 0.075646 (-0.066340) | 0.086637 / 0.419271 (-0.332635) | 0.053335 / 0.043533 (0.009802) | 0.402302 / 0.255139 (0.147163) | 0.424864 / 0.283200 (0.141664) | 0.026573 / 0.141683 (-0.115110) | 1.566793 / 1.452155 (0.114639) | 1.628118 / 1.492716 (0.135401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317802 / 0.018006 (0.299796) | 0.544593 / 0.000490 (0.544103) | 0.005690 / 0.000200 (0.005490) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033015 / 0.037411 (-0.004397) | 0.121940 / 0.014526 (0.107414) | 0.132920 / 0.176557 (-0.043637) | 0.191481 / 0.737135 (-0.545655) | 0.139139 / 0.296338 (-0.157199) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.460382 / 0.215209 (0.245173) | 4.610046 / 2.077655 (2.532392) | 2.296573 / 1.504120 (0.792453) | 2.099735 / 1.541195 (0.558540) | 2.213913 / 1.468490 (0.745423) | 0.544871 / 4.584777 (-4.039906) | 3.814174 / 3.745712 (0.068462) | 3.246397 / 5.269862 (-2.023464) | 1.480236 / 4.565676 (-3.085440) | 0.068464 / 0.424275 (-0.355811) | 0.012651 / 0.007607 (0.005043) | 0.564989 / 0.226044 (0.338944) | 5.639188 / 2.268929 (3.370259) | 2.827601 / 55.444624 (-52.617023) | 2.473743 / 6.876477 (-4.402734) | 2.567413 / 2.142072 (0.425340) | 0.674351 / 4.805227 (-4.130876) | 0.146248 / 6.500664 (-6.354416) | 0.067553 / 0.075469 (-0.007916) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346703 / 1.841788 (-0.495085) | 16.494787 / 8.074308 (8.420479) | 15.179487 / 10.191392 (4.988095) | 0.181864 / 0.680424 (-0.498560) | 0.018857 / 0.534201 (-0.515344) | 0.437787 / 0.579283 (-0.141496) | 0.431770 / 0.434364 (-0.002594) | 0.507116 / 0.540337 (-0.033221) | 0.608899 / 1.386936 (-0.778037) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0fd5b7412f907675e76b183a6e39ef6d176fdcc0 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005963 / 0.011353 (-0.005390) | 0.003743 / 0.011008 (-0.007265) | 0.098519 / 0.038508 (0.060011) | 0.037392 / 0.023109 (0.014283) | 0.322706 / 0.275898 (0.046808) | 0.380032 / 0.323480 (0.056552) | 0.004694 / 0.007986 (-0.003292) | 0.002897 / 0.004328 (-0.001432) | 0.078664 / 0.004250 (0.074414) | 0.052646 / 0.037052 (0.015594) | 0.335523 / 0.258489 (0.077034) | 0.375464 / 0.293841 (0.081623) | 0.027537 / 0.128546 (-0.101010) | 0.008452 / 0.075646 (-0.067194) | 0.313844 / 0.419271 (-0.105427) | 0.047368 / 0.043533 (0.003835) | 0.313833 / 0.255139 (0.058694) | 0.342284 / 0.283200 (0.059085) | 0.021136 / 0.141683 (-0.120547) | 1.544764 / 1.452155 (0.092610) | 1.563850 / 1.492716 (0.071134) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188609 / 0.018006 (0.170603) | 0.421686 / 0.000490 (0.421196) | 0.003336 / 0.000200 (0.003136) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023678 / 0.037411 (-0.013733) | 0.099191 / 0.014526 (0.084665) | 0.105819 / 0.176557 (-0.070738) | 0.169654 / 0.737135 (-0.567481) | 0.110240 / 0.296338 (-0.186099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425497 / 0.215209 (0.210288) | 4.237165 / 2.077655 (2.159510) | 1.902953 / 1.504120 (0.398833) | 1.699012 / 1.541195 (0.157818) | 1.751107 / 1.468490 (0.282617) | 0.563326 / 4.584777 (-4.021451) | 3.394189 / 3.745712 (-0.351523) | 2.706129 / 5.269862 (-2.563732) | 1.361522 / 4.565676 (-3.204155) | 0.067776 / 0.424275 (-0.356499) | 0.010959 / 0.007607 (0.003352) | 0.530905 / 0.226044 (0.304860) | 5.322467 / 2.268929 (3.053538) | 2.384356 / 55.444624 (-53.060269) | 2.044196 / 6.876477 (-4.832281) | 2.119837 / 2.142072 (-0.022235) | 0.682236 / 4.805227 (-4.122991) | 0.136921 / 6.500664 (-6.363743) | 0.066784 / 0.075469 (-0.008685) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210642 / 1.841788 (-0.631146) | 13.804572 / 8.074308 (5.730264) | 13.309229 / 10.191392 (3.117837) | 0.154356 / 0.680424 (-0.526068) | 0.016833 / 0.534201 (-0.517368) | 0.366503 / 0.579283 (-0.212780) | 0.385201 / 0.434364 (-0.049163) | 0.426713 / 0.540337 (-0.113624) | 0.516795 / 1.386936 (-0.870141) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006144 / 0.011353 (-0.005209) | 0.003723 / 0.011008 (-0.007285) | 0.077427 / 0.038508 (0.038919) | 0.037636 / 0.023109 (0.014527) | 0.375048 / 0.275898 (0.099150) | 0.442254 / 0.323480 (0.118774) | 0.003506 / 0.007986 (-0.004480) | 0.003751 / 0.004328 (-0.000577) | 0.076771 / 0.004250 (0.072521) | 0.047915 / 0.037052 (0.010862) | 0.378918 / 0.258489 (0.120429) | 0.435300 / 0.293841 (0.141459) | 0.028317 / 0.128546 (-0.100230) | 0.008413 / 0.075646 (-0.067233) | 0.082774 / 0.419271 (-0.336497) | 0.043211 / 0.043533 (-0.000321) | 0.362022 / 0.255139 (0.106883) | 0.404928 / 0.283200 (0.121728) | 0.020692 / 0.141683 (-0.120991) | 1.527303 / 1.452155 (0.075148) | 1.596091 / 1.492716 (0.103375) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225537 / 0.018006 (0.207530) | 0.399901 / 0.000490 (0.399412) | 0.000424 / 0.000200 (0.000224) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026483 / 0.037411 (-0.010928) | 0.104373 / 0.014526 (0.089847) | 0.111271 / 0.176557 (-0.065286) | 0.163872 / 0.737135 (-0.573264) | 0.113991 / 0.296338 (-0.182347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456484 / 0.215209 (0.241275) | 4.572652 / 2.077655 (2.494998) | 2.374908 / 1.504120 (0.870788) | 2.207855 / 1.541195 (0.666661) | 2.260009 / 1.468490 (0.791519) | 0.562678 / 4.584777 (-4.022099) | 3.441778 / 3.745712 (-0.303934) | 1.729006 / 5.269862 (-3.540855) | 1.024937 / 4.565676 (-3.540739) | 0.068707 / 0.424275 (-0.355568) | 0.011334 / 0.007607 (0.003727) | 0.564293 / 0.226044 (0.338248) | 5.638367 / 2.268929 (3.369438) | 2.665654 / 55.444624 (-52.778970) | 2.320033 / 6.876477 (-4.556444) | 2.328706 / 2.142072 (0.186634) | 0.677433 / 4.805227 (-4.127794) | 0.137190 / 6.500664 (-6.363474) | 0.068585 / 0.075469 (-0.006885) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312476 / 1.841788 (-0.529312) | 14.206685 / 8.074308 (6.132377) | 14.217928 / 10.191392 (4.026536) | 0.143416 / 0.680424 (-0.537007) | 0.016647 / 0.534201 (-0.517554) | 0.361228 / 0.579283 (-0.218055) | 0.396185 / 0.434364 (-0.038178) | 0.423275 / 0.540337 (-0.117063) | 0.512966 / 1.386936 (-0.873970) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b424648fd68bd0b5279eb916cec4836d1220e268 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008913 / 0.011353 (-0.002440) | 0.005142 / 0.011008 (-0.005866) | 0.133958 / 0.038508 (0.095449) | 0.049180 / 0.023109 (0.026071) | 0.389169 / 0.275898 (0.113270) | 0.481513 / 0.323480 (0.158033) | 0.006555 / 0.007986 (-0.001430) | 0.003806 / 0.004328 (-0.000522) | 0.102056 / 0.004250 (0.097806) | 0.083259 / 0.037052 (0.046207) | 0.392536 / 0.258489 (0.134047) | 0.447503 / 0.293841 (0.153662) | 0.047472 / 0.128546 (-0.081074) | 0.014748 / 0.075646 (-0.060899) | 0.475619 / 0.419271 (0.056348) | 0.107306 / 0.043533 (0.063773) | 0.421942 / 0.255139 (0.166803) | 0.419736 / 0.283200 (0.136536) | 0.044195 / 0.141683 (-0.097488) | 1.793840 / 1.452155 (0.341686) | 1.960204 / 1.492716 (0.467488) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252046 / 0.018006 (0.234040) | 0.627725 / 0.000490 (0.627236) | 0.007435 / 0.000200 (0.007235) | 0.000526 / 0.000054 (0.000472) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034656 / 0.037411 (-0.002755) | 0.114534 / 0.014526 (0.100008) | 0.135804 / 0.176557 (-0.040753) | 0.209309 / 0.737135 (-0.527826) | 0.140369 / 0.296338 (-0.155969) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.636736 / 0.215209 (0.421527) | 6.039985 / 2.077655 (3.962330) | 2.640141 / 1.504120 (1.136021) | 2.284492 / 1.541195 (0.743297) | 2.324956 / 1.468490 (0.856466) | 0.934499 / 4.584777 (-3.650278) | 5.673415 / 3.745712 (1.927703) | 5.184584 / 5.269862 (-0.085278) | 2.661911 / 4.565676 (-1.903766) | 0.150420 / 0.424275 (-0.273855) | 0.015655 / 0.007607 (0.008048) | 0.748290 / 0.226044 (0.522246) | 7.579755 / 2.268929 (5.310827) | 3.346732 / 55.444624 (-52.097892) | 2.708212 / 6.876477 (-4.168264) | 2.682423 / 2.142072 (0.540351) | 1.170389 / 4.805227 (-3.634838) | 0.215775 / 6.500664 (-6.284889) | 0.076360 / 0.075469 (0.000891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.516794 / 1.841788 (-0.324993) | 18.709117 / 8.074308 (10.634809) | 22.492542 / 10.191392 (12.301150) | 0.237978 / 0.680424 (-0.442446) | 0.027828 / 0.534201 (-0.506373) | 0.499968 / 0.579283 (-0.079315) | 0.645899 / 0.434364 (0.211535) | 0.548599 / 0.540337 (0.008262) | 0.675428 / 1.386936 (-0.711508) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008469 / 0.011353 (-0.002884) | 0.005420 / 0.011008 (-0.005589) | 0.093340 / 0.038508 (0.054832) | 0.045896 / 0.023109 (0.022786) | 0.533267 / 0.275898 (0.257369) | 0.596034 / 0.323480 (0.272555) | 0.004816 / 0.007986 (-0.003170) | 0.004379 / 0.004328 (0.000051) | 0.096356 / 0.004250 (0.092106) | 0.058339 / 0.037052 (0.021287) | 0.574464 / 0.258489 (0.315975) | 0.649301 / 0.293841 (0.355461) | 0.047599 / 0.128546 (-0.080947) | 0.013759 / 0.075646 (-0.061887) | 0.104672 / 0.419271 (-0.314599) | 0.061658 / 0.043533 (0.018125) | 0.560956 / 0.255139 (0.305817) | 0.585328 / 0.283200 (0.302128) | 0.034137 / 0.141683 (-0.107546) | 1.844528 / 1.452155 (0.392373) | 1.971398 / 1.492716 (0.478682) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278666 / 0.018006 (0.260660) | 0.577342 / 0.000490 (0.576853) | 0.005496 / 0.000200 (0.005296) | 0.000131 / 0.000054 (0.000076) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029863 / 0.037411 (-0.007549) | 0.161703 / 0.014526 (0.147177) | 0.132279 / 0.176557 (-0.044277) | 0.227345 / 0.737135 (-0.509791) | 0.138047 / 0.296338 (-0.158291) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.651535 / 0.215209 (0.436326) | 7.077949 / 2.077655 (5.000295) | 2.926990 / 1.504120 (1.422871) | 2.598872 / 1.541195 (1.057678) | 2.614192 / 1.468490 (1.145702) | 0.913845 / 4.584777 (-3.670932) | 5.704301 / 3.745712 (1.958589) | 2.796914 / 5.269862 (-2.472948) | 1.836096 / 4.565676 (-2.729580) | 0.106294 / 0.424275 (-0.317981) | 0.012705 / 0.007607 (0.005098) | 0.836336 / 0.226044 (0.610291) | 8.234079 / 2.268929 (5.965150) | 3.836410 / 55.444624 (-51.608215) | 3.116752 / 6.876477 (-3.759724) | 3.154258 / 2.142072 (1.012186) | 1.195794 / 4.805227 (-3.609434) | 0.240491 / 6.500664 (-6.260173) | 0.087913 / 0.075469 (0.012444) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.724723 / 1.841788 (-0.117064) | 19.492194 / 8.074308 (11.417885) | 21.443341 / 10.191392 (11.251949) | 0.245819 / 0.680424 (-0.434605) | 0.027024 / 0.534201 (-0.507177) | 0.481071 / 0.579283 (-0.098212) | 0.596359 / 0.434364 (0.161995) | 0.646462 / 0.540337 (0.106124) | 0.706380 / 1.386936 (-0.680556) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#67ca664e6d5ef137127b238aae1d0aff54e22db2 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006634 / 0.011353 (-0.004719) | 0.004003 / 0.011008 (-0.007005) | 0.097874 / 0.038508 (0.059365) | 0.043528 / 0.023109 (0.020419) | 0.302293 / 0.275898 (0.026395) | 0.357041 / 0.323480 (0.033561) | 0.003761 / 0.007986 (-0.004225) | 0.004312 / 0.004328 (-0.000016) | 0.076253 / 0.004250 (0.072003) | 0.062807 / 0.037052 (0.025755) | 0.316737 / 0.258489 (0.058248) | 0.356722 / 0.293841 (0.062881) | 0.030816 / 0.128546 (-0.097730) | 0.008691 / 0.075646 (-0.066955) | 0.328366 / 0.419271 (-0.090906) | 0.062299 / 0.043533 (0.018766) | 0.293877 / 0.255139 (0.038738) | 0.319832 / 0.283200 (0.036632) | 0.024996 / 0.141683 (-0.116687) | 1.473912 / 1.452155 (0.021758) | 1.565439 / 1.492716 (0.072723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208428 / 0.018006 (0.190422) | 0.435618 / 0.000490 (0.435128) | 0.000695 / 0.000200 (0.000495) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026253 / 0.037411 (-0.011158) | 0.106908 / 0.014526 (0.092382) | 0.117075 / 0.176557 (-0.059482) | 0.177969 / 0.737135 (-0.559166) | 0.123400 / 0.296338 (-0.172938) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424970 / 0.215209 (0.209761) | 4.203233 / 2.077655 (2.125578) | 2.009679 / 1.504120 (0.505559) | 1.825691 / 1.541195 (0.284496) | 1.870639 / 1.468490 (0.402149) | 0.530758 / 4.584777 (-4.054019) | 3.718791 / 3.745712 (-0.026921) | 1.800206 / 5.269862 (-3.469656) | 1.071651 / 4.565676 (-3.494025) | 0.065126 / 0.424275 (-0.359149) | 0.011312 / 0.007607 (0.003704) | 0.532503 / 0.226044 (0.306458) | 5.353950 / 2.268929 (3.085021) | 2.463548 / 55.444624 (-52.981076) | 2.139832 / 6.876477 (-4.736645) | 2.238722 / 2.142072 (0.096650) | 0.655736 / 4.805227 (-4.149492) | 0.141689 / 6.500664 (-6.358975) | 0.063282 / 0.075469 (-0.012187) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.183523 / 1.841788 (-0.658265) | 14.146428 / 8.074308 (6.072120) | 14.312883 / 10.191392 (4.121491) | 0.169286 / 0.680424 (-0.511138) | 0.017343 / 0.534201 (-0.516858) | 0.397934 / 0.579283 (-0.181349) | 0.417791 / 0.434364 (-0.016573) | 0.463639 / 0.540337 (-0.076698) | 0.562787 / 1.386936 (-0.824149) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006594 / 0.011353 (-0.004759) | 0.004086 / 0.011008 (-0.006922) | 0.075122 / 0.038508 (0.036614) | 0.041849 / 0.023109 (0.018740) | 0.362645 / 0.275898 (0.086747) | 0.464350 / 0.323480 (0.140870) | 0.003760 / 0.007986 (-0.004226) | 0.003327 / 0.004328 (-0.001001) | 0.076154 / 0.004250 (0.071904) | 0.053232 / 0.037052 (0.016180) | 0.407863 / 0.258489 (0.149374) | 0.460787 / 0.293841 (0.166946) | 0.031917 / 0.128546 (-0.096630) | 0.008770 / 0.075646 (-0.066876) | 0.082612 / 0.419271 (-0.336660) | 0.051311 / 0.043533 (0.007779) | 0.354508 / 0.255139 (0.099369) | 0.419533 / 0.283200 (0.136334) | 0.023980 / 0.141683 (-0.117703) | 1.491255 / 1.452155 (0.039100) | 1.536101 / 1.492716 (0.043384) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178261 / 0.018006 (0.160255) | 0.444680 / 0.000490 (0.444190) | 0.013761 / 0.000200 (0.013561) | 0.000117 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027875 / 0.037411 (-0.009536) | 0.111269 / 0.014526 (0.096744) | 0.121096 / 0.176557 (-0.055461) | 0.174387 / 0.737135 (-0.562749) | 0.124714 / 0.296338 (-0.171624) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445422 / 0.215209 (0.230213) | 4.435877 / 2.077655 (2.358222) | 2.221895 / 1.504120 (0.717775) | 2.030571 / 1.541195 (0.489376) | 2.074863 / 1.468490 (0.606373) | 0.543331 / 4.584777 (-4.041446) | 3.753615 / 3.745712 (0.007903) | 3.317074 / 5.269862 (-1.952787) | 1.630390 / 4.565676 (-2.935286) | 0.066726 / 0.424275 (-0.357549) | 0.011556 / 0.007607 (0.003949) | 0.546985 / 0.226044 (0.320941) | 5.460634 / 2.268929 (3.191705) | 2.705945 / 55.444624 (-52.738679) | 2.373425 / 6.876477 (-4.503052) | 2.401472 / 2.142072 (0.259399) | 0.663225 / 4.805227 (-4.142002) | 0.143694 / 6.500664 (-6.356970) | 0.065283 / 0.075469 (-0.010186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264804 / 1.841788 (-0.576983) | 14.803228 / 8.074308 (6.728919) | 14.178514 / 10.191392 (3.987122) | 0.162651 / 0.680424 (-0.517772) | 0.017586 / 0.534201 (-0.516615) | 0.398740 / 0.579283 (-0.180543) | 0.414478 / 0.434364 (-0.019886) | 0.465442 / 0.540337 (-0.074895) | 0.563450 / 1.386936 (-0.823486) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#76f75a9a3b2aaad05ea0ea5ab77e01fd2ca66760 \"CML watermark\")\n"
] | 2023-06-21T15:43:01 | 2023-06-22T14:23:29 | 2023-06-22T14:16:26 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5972",
"html_url": "https://github.com/huggingface/datasets/pull/5972",
"diff_url": "https://github.com/huggingface/datasets/pull/5972.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5972.patch",
"merged_at": "2023-06-22T14:16:26"
} | I used a regex to filter the data files based on their extension for packaged builders.
I tried and a regex is 10x faster that using `in` to check if the extension is in the list of supported extensions.
Supersedes https://github.com/huggingface/datasets/pull/5850
Close https://github.com/huggingface/datasets/issues/5849
I also did a small change to favor the parquet module in case of a draw in the extension counter. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5972/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5972/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5971 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5971/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5971/comments | https://api.github.com/repos/huggingface/datasets/issues/5971/events | https://github.com/huggingface/datasets/issues/5971 | 1,767,053,635 | I_kwDODunzps5pUxlD | 5,971 | Docs: make "repository structure" easier to find | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] | open | false | {
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Loading a local dataset also works the same way when `data_files` are not specified, so I agree we should make this info easier to discover \r\n\r\ncc @stevhliu ",
"Is this issue open? If so, I will self assign. ",
"@benjaminbrown038 Yes, it is. Maybe @stevhliu can give some pointers on improving this doc page's discoverability.",
"I think we can add a version of the [Main use-case](https://huggingface.co/docs/datasets/repository_structure#main-usecase) section to the [Share a dataset to the Hub](https://huggingface.co/docs/datasets/upload_dataset) tutorial. \r\n\r\nCurrently, it doesn't tell you *how* to structure the repository; it only tells you how to create it. So adding the \"main use-case\" will help bridge the gap and make it easier to find. We should also add a link to the [Structure your repository](https://huggingface.co/docs/datasets/repository_structure) guide for users who want to learn about the other options.",
"#self-assign"
] | 2023-06-21T08:26:44 | 2023-07-05T06:51:38 | null | CONTRIBUTOR | null | null | null | The page https://huggingface.co/docs/datasets/repository_structure explains how to create a simple repository structure without a dataset script.
It's the simplest way to create a dataset and should be easier to find, particularly on the docs' first pages. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5971/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5971/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5970 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5970/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5970/comments | https://api.github.com/repos/huggingface/datasets/issues/5970/events | https://github.com/huggingface/datasets/issues/5970 | 1,766,010,356 | I_kwDODunzps5pQy30 | 5,970 | description disappearing from Info when Uploading a Dataset Created with `from_dict` | {
"login": "balisujohn",
"id": 20377292,
"node_id": "MDQ6VXNlcjIwMzc3Mjky",
"avatar_url": "https://avatars.githubusercontent.com/u/20377292?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/balisujohn",
"html_url": "https://github.com/balisujohn",
"followers_url": "https://api.github.com/users/balisujohn/followers",
"following_url": "https://api.github.com/users/balisujohn/following{/other_user}",
"gists_url": "https://api.github.com/users/balisujohn/gists{/gist_id}",
"starred_url": "https://api.github.com/users/balisujohn/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/balisujohn/subscriptions",
"organizations_url": "https://api.github.com/users/balisujohn/orgs",
"repos_url": "https://api.github.com/users/balisujohn/repos",
"events_url": "https://api.github.com/users/balisujohn/events{/privacy}",
"received_events_url": "https://api.github.com/users/balisujohn/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Here's a minimal way to reproduce the bug, for the sake of convenience.\r\n````\r\nfrom datasets import Dataset, DatasetInfo, load_dataset\r\n\r\n\r\nepisodes_dict = {\"test\":[1,2,3],\"test2\": [1,2,4]}\r\n\r\nhugging_face_dataset = Dataset.from_dict(\r\n episodes_dict, info=DatasetInfo(description=\"test_str\")\r\n)\r\nprint(hugging_face_dataset.info)\r\n\r\nhugging_face_dataset.push_to_hub(\"balisujohn/minari_test\", private=True)\r\n\r\nredownloaded_dataset= load_dataset(\"balisujohn/minari_test\")[\"train\"]\r\n\r\n\r\nprint(redownloaded_dataset.info)\r\n````\r\n",
"Thanks for reporting !\r\n\r\nFor now I would recommend uploading a separate JSON file for your metadata.\r\n\r\nAlternatively you can upload a second configuration of the dataset containing your metadata but this feature is not released yet (though you can already use it from [here](https://github.com/huggingface/datasets/pull/5331), it will be released soon)"
] | 2023-06-20T19:18:26 | 2023-06-22T14:23:56 | null | NONE | null | null | null | ### Describe the bug
When uploading a dataset created locally using `from_dict` with a specified `description` field. It appears before upload, but is missing after upload and re-download.
### Steps to reproduce the bug
I think the most relevant pattern in the code might be the following lines:
```
description_json_str = json.dumps(
{
"dataset_id": dataset.spec.dataset_id,
"env_name": dataset.spec.env_spec.id,
"action_space": serialize_space(dataset.spec.action_space),
"observation_space": serialize_space(dataset.spec.observation_space),
}
)
hugging_face_dataset = Dataset.from_dict(
episodes_dict, info=DatasetInfo(description=description_json_str)
)
```
Which comes from this function https://github.com/balisujohn/minarai/blob/8e023727f0a8488c4451651d9f7a79b981412c40/minari/integrations/hugging_face.py#L39
To replicate,
clone this branch of my Minari fork https://github.com/balisujohn/minarai/tree/dev-huggingface then run
```
python3.8 -m venv env
source env/bin/activate
python3 -m pip install -e .
python3 -m pip install pytest
```
The change the hugging face repo path in the test called `test_hugging_face_push_and_pull_dataset` in `tests/integrations/test_hugging_face.py` to one you have permissions to write to.
Then run:
```
pytest tests/integrations/test_hugging_face.py::test_hugging_face_push_and_pull_dataset
```
### Expected behavior
DATASET INFO BEFORE UPLOADING
DatasetInfo(description='{"dataset_id": "dummy-combo-test-v0", "env_name": "DummyComboEnv-v0", "action_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}]}", "observation_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"component_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [-1.0], \\"high\\": [1.0]}, \\"component_2\\": {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"subcomponent_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, \\"subcomponent_2\\": {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}, {\\"type\\": \\"Discrete\\", \\"dtype\\": \\"int64\\", \\"start\\": 0, \\"n\\": 10}]}}}}}]}]}"}', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None)
...
DATASET INFO AFTER UPLOADING AND DOWNLOADING
DatasetInfo(description='', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits={'train': SplitInfo(name='train', num_bytes=4846, num_examples=60, shard_lengths=None, dataset_name='parquet')}, download_checksums={'https://huggingface.co/datasets/balisujohn/minari_test/resolve/8217b614ff9ba5edc1a30c7df430e92a46f65363/data/train-00000-of-00001-7c5900b93b35745e.parquet': {'num_bytes': 9052, 'checksum': None}}, download_size=9052, post_processing_size=None, dataset_size=4846, size_in_bytes=13898)
...
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5970/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5970/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5969 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5969/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5969/comments | https://api.github.com/repos/huggingface/datasets/issues/5969/events | https://github.com/huggingface/datasets/pull/5969 | 1,765,529,905 | PR_kwDODunzps5Tcgq4 | 5,969 | Add `encoding` and `errors` params to JSON loader | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006770 / 0.011353 (-0.004583) | 0.004143 / 0.011008 (-0.006865) | 0.098928 / 0.038508 (0.060420) | 0.044893 / 0.023109 (0.021783) | 0.302630 / 0.275898 (0.026732) | 0.368173 / 0.323480 (0.044693) | 0.005631 / 0.007986 (-0.002354) | 0.003397 / 0.004328 (-0.000931) | 0.075748 / 0.004250 (0.071497) | 0.062582 / 0.037052 (0.025530) | 0.329586 / 0.258489 (0.071097) | 0.362625 / 0.293841 (0.068784) | 0.033250 / 0.128546 (-0.095296) | 0.008880 / 0.075646 (-0.066766) | 0.329683 / 0.419271 (-0.089588) | 0.054426 / 0.043533 (0.010893) | 0.297940 / 0.255139 (0.042801) | 0.319796 / 0.283200 (0.036597) | 0.023296 / 0.141683 (-0.118387) | 1.462142 / 1.452155 (0.009987) | 1.495796 / 1.492716 (0.003079) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201771 / 0.018006 (0.183765) | 0.454514 / 0.000490 (0.454024) | 0.003333 / 0.000200 (0.003133) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028084 / 0.037411 (-0.009327) | 0.109452 / 0.014526 (0.094926) | 0.119200 / 0.176557 (-0.057357) | 0.180302 / 0.737135 (-0.556834) | 0.125653 / 0.296338 (-0.170686) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409819 / 0.215209 (0.194610) | 4.055117 / 2.077655 (1.977462) | 1.855279 / 1.504120 (0.351159) | 1.655281 / 1.541195 (0.114086) | 1.687938 / 1.468490 (0.219448) | 0.528352 / 4.584777 (-4.056425) | 3.750250 / 3.745712 (0.004538) | 3.386741 / 5.269862 (-1.883121) | 1.572036 / 4.565676 (-2.993640) | 0.065125 / 0.424275 (-0.359150) | 0.011259 / 0.007607 (0.003652) | 0.513449 / 0.226044 (0.287405) | 5.139421 / 2.268929 (2.870492) | 2.316973 / 55.444624 (-53.127651) | 1.984109 / 6.876477 (-4.892368) | 2.127915 / 2.142072 (-0.014158) | 0.653238 / 4.805227 (-4.151989) | 0.142686 / 6.500664 (-6.357978) | 0.063666 / 0.075469 (-0.011803) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.185174 / 1.841788 (-0.656614) | 14.790282 / 8.074308 (6.715974) | 13.089222 / 10.191392 (2.897830) | 0.146055 / 0.680424 (-0.534369) | 0.017835 / 0.534201 (-0.516366) | 0.399598 / 0.579283 (-0.179685) | 0.425296 / 0.434364 (-0.009068) | 0.478552 / 0.540337 (-0.061786) | 0.579702 / 1.386936 (-0.807234) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006750 / 0.011353 (-0.004603) | 0.004156 / 0.011008 (-0.006853) | 0.074948 / 0.038508 (0.036440) | 0.043368 / 0.023109 (0.020259) | 0.355389 / 0.275898 (0.079491) | 0.429167 / 0.323480 (0.105687) | 0.003911 / 0.007986 (-0.004075) | 0.004340 / 0.004328 (0.000012) | 0.075940 / 0.004250 (0.071689) | 0.054293 / 0.037052 (0.017241) | 0.400317 / 0.258489 (0.141827) | 0.432001 / 0.293841 (0.138160) | 0.032340 / 0.128546 (-0.096206) | 0.008876 / 0.075646 (-0.066770) | 0.082284 / 0.419271 (-0.336987) | 0.050819 / 0.043533 (0.007286) | 0.351994 / 0.255139 (0.096855) | 0.375917 / 0.283200 (0.092717) | 0.022466 / 0.141683 (-0.119217) | 1.538824 / 1.452155 (0.086669) | 1.563995 / 1.492716 (0.071279) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227330 / 0.018006 (0.209323) | 0.446380 / 0.000490 (0.445890) | 0.000408 / 0.000200 (0.000208) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028534 / 0.037411 (-0.008878) | 0.113467 / 0.014526 (0.098941) | 0.123590 / 0.176557 (-0.052966) | 0.174309 / 0.737135 (-0.562827) | 0.130631 / 0.296338 (-0.165707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441020 / 0.215209 (0.225811) | 4.386564 / 2.077655 (2.308909) | 2.100704 / 1.504120 (0.596584) | 1.901484 / 1.541195 (0.360289) | 1.963494 / 1.468490 (0.495004) | 0.536838 / 4.584777 (-4.047939) | 3.739071 / 3.745712 (-0.006642) | 3.278981 / 5.269862 (-1.990881) | 1.515476 / 4.565676 (-3.050201) | 0.066388 / 0.424275 (-0.357887) | 0.011857 / 0.007607 (0.004250) | 0.545507 / 0.226044 (0.319463) | 5.441479 / 2.268929 (3.172550) | 2.602144 / 55.444624 (-52.842480) | 2.235583 / 6.876477 (-4.640894) | 2.293458 / 2.142072 (0.151385) | 0.658535 / 4.805227 (-4.146692) | 0.141327 / 6.500664 (-6.359337) | 0.063726 / 0.075469 (-0.011743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.247819 / 1.841788 (-0.593968) | 15.234524 / 8.074308 (7.160216) | 14.592700 / 10.191392 (4.401308) | 0.141952 / 0.680424 (-0.538472) | 0.017747 / 0.534201 (-0.516454) | 0.396819 / 0.579283 (-0.182465) | 0.415902 / 0.434364 (-0.018462) | 0.464619 / 0.540337 (-0.075718) | 0.560866 / 1.386936 (-0.826070) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4b7f6c59deb868e21f295917548fa2df10dd0158 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008278 / 0.011353 (-0.003075) | 0.005044 / 0.011008 (-0.005964) | 0.123382 / 0.038508 (0.084874) | 0.054039 / 0.023109 (0.030929) | 0.382338 / 0.275898 (0.106440) | 0.453287 / 0.323480 (0.129807) | 0.006342 / 0.007986 (-0.001644) | 0.003930 / 0.004328 (-0.000398) | 0.094039 / 0.004250 (0.089789) | 0.076525 / 0.037052 (0.039472) | 0.394066 / 0.258489 (0.135577) | 0.445600 / 0.293841 (0.151759) | 0.039348 / 0.128546 (-0.089199) | 0.010485 / 0.075646 (-0.065161) | 0.433730 / 0.419271 (0.014459) | 0.082671 / 0.043533 (0.039138) | 0.375250 / 0.255139 (0.120111) | 0.416269 / 0.283200 (0.133070) | 0.038397 / 0.141683 (-0.103286) | 1.864834 / 1.452155 (0.412680) | 2.010453 / 1.492716 (0.517737) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240008 / 0.018006 (0.222002) | 0.470975 / 0.000490 (0.470485) | 0.004001 / 0.000200 (0.003801) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031107 / 0.037411 (-0.006304) | 0.129371 / 0.014526 (0.114846) | 0.141559 / 0.176557 (-0.034997) | 0.205571 / 0.737135 (-0.531564) | 0.144611 / 0.296338 (-0.151728) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506972 / 0.215209 (0.291763) | 5.055951 / 2.077655 (2.978296) | 2.397438 / 1.504120 (0.893318) | 2.170435 / 1.541195 (0.629240) | 2.240296 / 1.468490 (0.771806) | 0.641559 / 4.584777 (-3.943218) | 4.644772 / 3.745712 (0.899060) | 4.064200 / 5.269862 (-1.205662) | 1.946991 / 4.565676 (-2.618685) | 0.086413 / 0.424275 (-0.337862) | 0.015082 / 0.007607 (0.007475) | 0.670413 / 0.226044 (0.444369) | 6.331346 / 2.268929 (4.062418) | 2.965813 / 55.444624 (-52.478812) | 2.547952 / 6.876477 (-4.328524) | 2.718390 / 2.142072 (0.576318) | 0.796657 / 4.805227 (-4.008571) | 0.173229 / 6.500664 (-6.327435) | 0.079606 / 0.075469 (0.004137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.568761 / 1.841788 (-0.273026) | 18.485432 / 8.074308 (10.411124) | 15.758513 / 10.191392 (5.567121) | 0.170427 / 0.680424 (-0.509997) | 0.021421 / 0.534201 (-0.512780) | 0.518623 / 0.579283 (-0.060660) | 0.525887 / 0.434364 (0.091523) | 0.640331 / 0.540337 (0.099993) | 0.766748 / 1.386936 (-0.620188) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007680 / 0.011353 (-0.003673) | 0.005289 / 0.011008 (-0.005719) | 0.093773 / 0.038508 (0.055265) | 0.054997 / 0.023109 (0.031888) | 0.456277 / 0.275898 (0.180379) | 0.500642 / 0.323480 (0.177162) | 0.005935 / 0.007986 (-0.002050) | 0.004375 / 0.004328 (0.000047) | 0.094131 / 0.004250 (0.089881) | 0.063399 / 0.037052 (0.026347) | 0.470546 / 0.258489 (0.212057) | 0.504989 / 0.293841 (0.211148) | 0.038541 / 0.128546 (-0.090006) | 0.010403 / 0.075646 (-0.065244) | 0.102469 / 0.419271 (-0.316802) | 0.063105 / 0.043533 (0.019572) | 0.466005 / 0.255139 (0.210866) | 0.458677 / 0.283200 (0.175477) | 0.028407 / 0.141683 (-0.113276) | 1.893829 / 1.452155 (0.441675) | 1.917954 / 1.492716 (0.425238) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272760 / 0.018006 (0.254754) | 0.476159 / 0.000490 (0.475669) | 0.008467 / 0.000200 (0.008267) | 0.000146 / 0.000054 (0.000091) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035755 / 0.037411 (-0.001656) | 0.145038 / 0.014526 (0.130512) | 0.148322 / 0.176557 (-0.028235) | 0.210193 / 0.737135 (-0.526943) | 0.156547 / 0.296338 (-0.139792) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.541204 / 0.215209 (0.325995) | 5.382746 / 2.077655 (3.305091) | 2.704229 / 1.504120 (1.200109) | 2.468422 / 1.541195 (0.927227) | 2.522672 / 1.468490 (1.054182) | 0.644899 / 4.584777 (-3.939878) | 4.654401 / 3.745712 (0.908689) | 2.159223 / 5.269862 (-3.110638) | 1.280098 / 4.565676 (-3.285578) | 0.080053 / 0.424275 (-0.344222) | 0.014383 / 0.007607 (0.006776) | 0.662770 / 0.226044 (0.436725) | 6.617651 / 2.268929 (4.348722) | 3.234347 / 55.444624 (-52.210277) | 2.861417 / 6.876477 (-4.015059) | 2.888928 / 2.142072 (0.746856) | 0.792854 / 4.805227 (-4.012374) | 0.172553 / 6.500664 (-6.328111) | 0.078402 / 0.075469 (0.002933) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565351 / 1.841788 (-0.276436) | 18.681916 / 8.074308 (10.607608) | 17.264473 / 10.191392 (7.073081) | 0.168461 / 0.680424 (-0.511963) | 0.021353 / 0.534201 (-0.512848) | 0.517843 / 0.579283 (-0.061440) | 0.519907 / 0.434364 (0.085543) | 0.623687 / 0.540337 (0.083350) | 0.761796 / 1.386936 (-0.625140) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bbf58747f734a46e75937bdbcbc05b06ade0224a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006750 / 0.011353 (-0.004603) | 0.004268 / 0.011008 (-0.006741) | 0.098644 / 0.038508 (0.060136) | 0.044643 / 0.023109 (0.021534) | 0.309420 / 0.275898 (0.033522) | 0.379294 / 0.323480 (0.055815) | 0.005729 / 0.007986 (-0.002256) | 0.003615 / 0.004328 (-0.000714) | 0.076086 / 0.004250 (0.071835) | 0.068994 / 0.037052 (0.031942) | 0.325653 / 0.258489 (0.067164) | 0.375187 / 0.293841 (0.081347) | 0.032546 / 0.128546 (-0.096000) | 0.009089 / 0.075646 (-0.066557) | 0.329905 / 0.419271 (-0.089366) | 0.066832 / 0.043533 (0.023300) | 0.299247 / 0.255139 (0.044108) | 0.323460 / 0.283200 (0.040260) | 0.034226 / 0.141683 (-0.107457) | 1.475659 / 1.452155 (0.023505) | 1.556234 / 1.492716 (0.063518) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292305 / 0.018006 (0.274299) | 0.542584 / 0.000490 (0.542094) | 0.003047 / 0.000200 (0.002847) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030096 / 0.037411 (-0.007315) | 0.112341 / 0.014526 (0.097815) | 0.124965 / 0.176557 (-0.051591) | 0.183159 / 0.737135 (-0.553976) | 0.131885 / 0.296338 (-0.164453) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426437 / 0.215209 (0.211228) | 4.260984 / 2.077655 (2.183330) | 2.078358 / 1.504120 (0.574238) | 1.877644 / 1.541195 (0.336449) | 2.044036 / 1.468490 (0.575546) | 0.532980 / 4.584777 (-4.051797) | 3.749573 / 3.745712 (0.003860) | 1.944155 / 5.269862 (-3.325706) | 1.090307 / 4.565676 (-3.475370) | 0.065445 / 0.424275 (-0.358830) | 0.011237 / 0.007607 (0.003630) | 0.521448 / 0.226044 (0.295403) | 5.213118 / 2.268929 (2.944189) | 2.507829 / 55.444624 (-52.936795) | 2.177179 / 6.876477 (-4.699297) | 2.351161 / 2.142072 (0.209088) | 0.656775 / 4.805227 (-4.148452) | 0.141207 / 6.500664 (-6.359457) | 0.063286 / 0.075469 (-0.012183) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190281 / 1.841788 (-0.651506) | 15.327424 / 8.074308 (7.253116) | 13.300695 / 10.191392 (3.109303) | 0.190484 / 0.680424 (-0.489939) | 0.017984 / 0.534201 (-0.516217) | 0.405714 / 0.579283 (-0.173569) | 0.435915 / 0.434364 (0.001551) | 0.494083 / 0.540337 (-0.046254) | 0.600616 / 1.386936 (-0.786320) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006740 / 0.011353 (-0.004613) | 0.004289 / 0.011008 (-0.006719) | 0.076532 / 0.038508 (0.038024) | 0.043305 / 0.023109 (0.020196) | 0.356111 / 0.275898 (0.080213) | 0.434121 / 0.323480 (0.110641) | 0.005599 / 0.007986 (-0.002387) | 0.003461 / 0.004328 (-0.000868) | 0.077097 / 0.004250 (0.072847) | 0.055369 / 0.037052 (0.018317) | 0.367093 / 0.258489 (0.108604) | 0.418801 / 0.293841 (0.124960) | 0.032057 / 0.128546 (-0.096489) | 0.009048 / 0.075646 (-0.066599) | 0.082897 / 0.419271 (-0.336374) | 0.050287 / 0.043533 (0.006754) | 0.352060 / 0.255139 (0.096921) | 0.376278 / 0.283200 (0.093078) | 0.023924 / 0.141683 (-0.117759) | 1.522780 / 1.452155 (0.070626) | 1.578938 / 1.492716 (0.086222) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287317 / 0.018006 (0.269311) | 0.508490 / 0.000490 (0.508000) | 0.000431 / 0.000200 (0.000231) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031139 / 0.037411 (-0.006272) | 0.113927 / 0.014526 (0.099401) | 0.128147 / 0.176557 (-0.048409) | 0.179712 / 0.737135 (-0.557424) | 0.134364 / 0.296338 (-0.161975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452834 / 0.215209 (0.237625) | 4.507944 / 2.077655 (2.430289) | 2.287758 / 1.504120 (0.783638) | 2.091145 / 1.541195 (0.549951) | 2.196228 / 1.468490 (0.727738) | 0.539306 / 4.584777 (-4.045471) | 3.838941 / 3.745712 (0.093228) | 1.908801 / 5.269862 (-3.361060) | 1.139235 / 4.565676 (-3.426442) | 0.066677 / 0.424275 (-0.357599) | 0.011422 / 0.007607 (0.003815) | 0.562966 / 0.226044 (0.336921) | 5.633712 / 2.268929 (3.364784) | 2.788622 / 55.444624 (-52.656002) | 2.438465 / 6.876477 (-4.438012) | 2.523479 / 2.142072 (0.381407) | 0.668730 / 4.805227 (-4.136498) | 0.143977 / 6.500664 (-6.356687) | 0.064661 / 0.075469 (-0.010808) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291708 / 1.841788 (-0.550080) | 15.573316 / 8.074308 (7.499008) | 14.435099 / 10.191392 (4.243707) | 0.147745 / 0.680424 (-0.532679) | 0.017602 / 0.534201 (-0.516599) | 0.401560 / 0.579283 (-0.177723) | 0.429861 / 0.434364 (-0.004502) | 0.469800 / 0.540337 (-0.070538) | 0.567515 / 1.386936 (-0.819421) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#79c340f5dcfd06340f180f6c6ea2d5ef81f49d98 \"CML watermark\")\n"
] | 2023-06-20T14:28:35 | 2023-06-21T13:39:50 | 2023-06-21T13:32:22 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5969",
"html_url": "https://github.com/huggingface/datasets/pull/5969",
"diff_url": "https://github.com/huggingface/datasets/pull/5969.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5969.patch",
"merged_at": "2023-06-21T13:32:22"
} | "Requested" in https://discuss.huggingface.co/t/utf-16-for-datasets/43828/3.
`pd.read_json` also has these parameters, so it makes sense to be consistent. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5969/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5969/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5968 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5968/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5968/comments | https://api.github.com/repos/huggingface/datasets/issues/5968/events | https://github.com/huggingface/datasets/issues/5968 | 1,765,252,561 | I_kwDODunzps5pN53R | 5,968 | Common Voice datasets still need `use_auth_token=True` | {
"login": "patrickvonplaten",
"id": 23423619,
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/patrickvonplaten",
"html_url": "https://github.com/patrickvonplaten",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"cc @pcuenca as well. \r\n\r\nNot super urgent btw",
"The issue commes from the dataset itself and is not related to the `datasets` lib\r\n\r\nsee https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1/blob/2c475b3b88e0f2e5828f830a4b91618a25ff20b7/common_voice_6_1.py#L148-L152",
"Let's remove these lines in the dataset no? cc @anton-l @Vaibhavs10 ",
"Addressed in:\r\n\r\n* `mozilla-foundation/common_voice_1_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_1_0/discussions/4)\r\n* `mozilla-foundation/common_voice_2_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_2_0/discussions/3)\r\n* `mozilla-foundation/common_voice_3_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_3_0/discussions/3)\r\n* `mozilla-foundation/common_voice_4_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_4_0/discussions/3)\r\n* `mozilla-foundation/common_voice_5_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_5_0/discussions/3)\r\n* `mozilla-foundation/common_voice_5_1` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_5_1/discussions/3)\r\n* `mozilla-foundation/common_voice_6_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_6_0/discussions/3)\r\n* `mozilla-foundation/common_voice_6_1` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1/discussions/3)\r\n* `mozilla-foundation/common_voice_7_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0/discussions/3)\r\n* `mozilla-foundation/common_voice_8_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0/discussions/7)\r\n* `mozilla-foundation/common_voice_9_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0/discussions/8)\r\n* `mozilla-foundation/common_voice_10_0` [PR](https://huggingface.co/datasets/mozilla-foundation/common_voice_10_0/discussions/7)"
] | 2023-06-20T11:58:37 | 2023-07-29T16:08:59 | 2023-07-29T16:08:58 | MEMBER | null | null | null | ### Describe the bug
We don't need to pass `use_auth_token=True` anymore to download gated datasets or models, so the following should work if correctly logged in.
```py
from datasets import load_dataset
load_dataset("mozilla-foundation/common_voice_6_1", "tr", split="train+validation")
```
However it throws an error - probably because something weird is hardcoded into the dataset loading script.
### Steps to reproduce the bug
1.)
```
huggingface-cli login
```
2.) Make sure that you have accepted the license here:
https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1
3.) Run:
```py
from datasets import load_dataset
load_dataset("mozilla-foundation/common_voice_6_1", "tr", split="train+validation")
```
4.) You'll get:
```
File ~/hf/lib/python3.10/site-packages/datasets/builder.py:963, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
961 split_dict = SplitDict(dataset_name=self.name)
962 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 963 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
965 # Checksums verification
966 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
File ~/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_6_1/f4d7854c466f5bd4908988dbd39044ec4fc634d89e0515ab0c51715c0127ffe3/common_voice_6_1.py:150, in CommonVoice._split_generators(self, dl_manager)
148 hf_auth_token = dl_manager.download_config.use_auth_token
149 if hf_auth_token is None:
--> 150 raise ConnectionError(
151 "Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset"
152 )
154 bundle_url_template = STATS["bundleURLTemplate"]
155 bundle_version = bundle_url_template.split("/")[0]
ConnectionError: Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset
```
### Expected behavior
One should not have to pass `use_auth_token=True`. Also see discussion here: https://github.com/huggingface/blog/pull/1243#discussion_r1235131150
### Environment info
```
- `datasets` version: 2.13.0
- Platform: Linux-6.2.0-76060200-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.16.0.dev0
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5968/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5968/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5967 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5967/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5967/comments | https://api.github.com/repos/huggingface/datasets/issues/5967/events | https://github.com/huggingface/datasets/issues/5967 | 1,763,926,520 | I_kwDODunzps5pI2H4 | 5,967 | Config name / split name lost after map with multiproc | {
"login": "sanchit-gandhi",
"id": 93869735,
"node_id": "U_kgDOBZhWpw",
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanchit-gandhi",
"html_url": "https://github.com/sanchit-gandhi",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"This must be due to DatasetInfo.from_merge which drops them and is used in `concatenate_datasets`.\r\n\r\nAnd you're experiencing this issue because multiprocessing does concatenate the resulting datasets from each process.\r\n\r\nMaybe they should be kept if all the subdatasets share the same values for config_name and split",
"That sounds like a clean workaround!"
] | 2023-06-19T17:27:36 | 2023-06-28T08:55:25 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Performing a `.map` method on a dataset loses it's config name / split name only if run with multiproc
### Steps to reproduce the bug
```python
from datasets import Audio, load_dataset
from transformers import AutoFeatureExtractor
import numpy as np
# load dummy dataset
libri = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean")
# make train / test splits
libri = libri["validation"].train_test_split(seed=42, shuffle=True, test_size=0.1)
# example feature extractor
model_id = "ntu-spml/distilhubert"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, do_normalize=True, return_attention_mask=True)
sampling_rate = feature_extractor.sampling_rate
libri = libri.cast_column("audio", Audio(sampling_rate=sampling_rate))
max_duration = 30.0
def preprocess_function(examples):
audio_arrays = [x["array"] for x in examples["audio"]]
inputs = feature_extractor(
audio_arrays,
sampling_rate=feature_extractor.sampling_rate,
max_length=int(feature_extractor.sampling_rate * max_duration),
truncation=True,
return_attention_mask=True,
)
return inputs
# single proc map
libri_encoded = libri.map(
preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=1
)
print(10 * "=" ,"Single processing", 10 * "=")
print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split)
print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split)
# multi proc map
libri_encoded = libri.map(
preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=2
)
print(10 * "=" ,"Multi processing", 10 * "=")
print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split)
print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split)
```
**Print Output:**
```
========== Single processing ==========
Config name before: clean Split name before: validation
Config name after: clean Split name after: validation
========== Multi processing ==========
Config name before: clean Split name before: validation
Config name after: None Split name after: None
```
=> we can see that the config/split names are lost in the multiprocessing setting
### Expected behavior
Should retain both config / split names in the multiproc setting
### Environment info
- `datasets` version: 2.13.1.dev0
- Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5967/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5967/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5966 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5966/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5966/comments | https://api.github.com/repos/huggingface/datasets/issues/5966/events | https://github.com/huggingface/datasets/pull/5966 | 1,763,885,914 | PR_kwDODunzps5TXBLP | 5,966 | Fix JSON generation in benchmarks CI | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006186 / 0.011353 (-0.005167) | 0.003744 / 0.011008 (-0.007264) | 0.097295 / 0.038508 (0.058787) | 0.037106 / 0.023109 (0.013997) | 0.424154 / 0.275898 (0.148256) | 0.474536 / 0.323480 (0.151057) | 0.003454 / 0.007986 (-0.004532) | 0.003865 / 0.004328 (-0.000463) | 0.077348 / 0.004250 (0.073097) | 0.051728 / 0.037052 (0.014675) | 0.437120 / 0.258489 (0.178631) | 0.478379 / 0.293841 (0.184538) | 0.028939 / 0.128546 (-0.099608) | 0.008376 / 0.075646 (-0.067270) | 0.312002 / 0.419271 (-0.107270) | 0.053723 / 0.043533 (0.010190) | 0.424815 / 0.255139 (0.169676) | 0.446203 / 0.283200 (0.163004) | 0.026553 / 0.141683 (-0.115130) | 1.479983 / 1.452155 (0.027828) | 1.530613 / 1.492716 (0.037896) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196627 / 0.018006 (0.178620) | 0.422361 / 0.000490 (0.421871) | 0.003442 / 0.000200 (0.003242) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022913 / 0.037411 (-0.014499) | 0.096011 / 0.014526 (0.081485) | 0.104091 / 0.176557 (-0.072466) | 0.163273 / 0.737135 (-0.573862) | 0.109142 / 0.296338 (-0.187197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431032 / 0.215209 (0.215823) | 4.314391 / 2.077655 (2.236737) | 2.003812 / 1.504120 (0.499692) | 1.799538 / 1.541195 (0.258344) | 1.830026 / 1.468490 (0.361536) | 0.560131 / 4.584777 (-4.024646) | 3.368997 / 3.745712 (-0.376715) | 1.703032 / 5.269862 (-3.566830) | 1.026949 / 4.565676 (-3.538727) | 0.067507 / 0.424275 (-0.356768) | 0.010910 / 0.007607 (0.003303) | 0.532606 / 0.226044 (0.306562) | 5.345179 / 2.268929 (3.076250) | 2.368077 / 55.444624 (-53.076548) | 2.028913 / 6.876477 (-4.847564) | 2.147621 / 2.142072 (0.005549) | 0.675696 / 4.805227 (-4.129531) | 0.134902 / 6.500664 (-6.365762) | 0.065004 / 0.075469 (-0.010465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.233412 / 1.841788 (-0.608376) | 13.767465 / 8.074308 (5.693157) | 13.933653 / 10.191392 (3.742261) | 0.129010 / 0.680424 (-0.551414) | 0.016708 / 0.534201 (-0.517493) | 0.362341 / 0.579283 (-0.216942) | 0.390902 / 0.434364 (-0.043462) | 0.429156 / 0.540337 (-0.111182) | 0.521166 / 1.386936 (-0.865770) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006169 / 0.011353 (-0.005184) | 0.003839 / 0.011008 (-0.007169) | 0.078784 / 0.038508 (0.040276) | 0.040218 / 0.023109 (0.017109) | 0.360439 / 0.275898 (0.084541) | 0.423957 / 0.323480 (0.100477) | 0.003456 / 0.007986 (-0.004529) | 0.002900 / 0.004328 (-0.001428) | 0.078820 / 0.004250 (0.074569) | 0.047240 / 0.037052 (0.010187) | 0.372081 / 0.258489 (0.113592) | 0.424263 / 0.293841 (0.130422) | 0.027977 / 0.128546 (-0.100569) | 0.008400 / 0.075646 (-0.067246) | 0.084399 / 0.419271 (-0.334872) | 0.043303 / 0.043533 (-0.000230) | 0.361583 / 0.255139 (0.106444) | 0.394987 / 0.283200 (0.111787) | 0.020006 / 0.141683 (-0.121677) | 1.520208 / 1.452155 (0.068053) | 1.587335 / 1.492716 (0.094619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223847 / 0.018006 (0.205840) | 0.402194 / 0.000490 (0.401704) | 0.000384 / 0.000200 (0.000184) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024902 / 0.037411 (-0.012509) | 0.099076 / 0.014526 (0.084550) | 0.108041 / 0.176557 (-0.068516) | 0.159385 / 0.737135 (-0.577750) | 0.111442 / 0.296338 (-0.184896) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446232 / 0.215209 (0.231023) | 4.464927 / 2.077655 (2.387272) | 2.155234 / 1.504120 (0.651114) | 1.953645 / 1.541195 (0.412450) | 1.965991 / 1.468490 (0.497501) | 0.553473 / 4.584777 (-4.031304) | 3.321397 / 3.745712 (-0.424315) | 1.693761 / 5.269862 (-3.576101) | 1.006299 / 4.565676 (-3.559378) | 0.067013 / 0.424275 (-0.357262) | 0.011116 / 0.007607 (0.003509) | 0.555014 / 0.226044 (0.328970) | 5.535694 / 2.268929 (3.266765) | 2.598339 / 55.444624 (-52.846285) | 2.249298 / 6.876477 (-4.627179) | 2.243419 / 2.142072 (0.101347) | 0.667603 / 4.805227 (-4.137624) | 0.133322 / 6.500664 (-6.367343) | 0.065473 / 0.075469 (-0.009996) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293051 / 1.841788 (-0.548737) | 14.103731 / 8.074308 (6.029423) | 14.215204 / 10.191392 (4.023812) | 0.143990 / 0.680424 (-0.536434) | 0.016805 / 0.534201 (-0.517396) | 0.363264 / 0.579283 (-0.216019) | 0.392769 / 0.434364 (-0.041594) | 0.425291 / 0.540337 (-0.115046) | 0.515479 / 1.386936 (-0.871457) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e03a58f3f5d7e6f07279fb833e62d859a0babaad \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006346 / 0.011353 (-0.005006) | 0.004130 / 0.011008 (-0.006878) | 0.096898 / 0.038508 (0.058390) | 0.042564 / 0.023109 (0.019455) | 0.343748 / 0.275898 (0.067850) | 0.412515 / 0.323480 (0.089035) | 0.006153 / 0.007986 (-0.001833) | 0.003345 / 0.004328 (-0.000984) | 0.075314 / 0.004250 (0.071064) | 0.061478 / 0.037052 (0.024426) | 0.362948 / 0.258489 (0.104459) | 0.401533 / 0.293841 (0.107692) | 0.032363 / 0.128546 (-0.096184) | 0.008780 / 0.075646 (-0.066867) | 0.328691 / 0.419271 (-0.090580) | 0.054253 / 0.043533 (0.010721) | 0.340783 / 0.255139 (0.085644) | 0.360705 / 0.283200 (0.077505) | 0.023183 / 0.141683 (-0.118500) | 1.484078 / 1.452155 (0.031924) | 1.528581 / 1.492716 (0.035865) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208732 / 0.018006 (0.190726) | 0.452572 / 0.000490 (0.452082) | 0.002936 / 0.000200 (0.002737) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024616 / 0.037411 (-0.012795) | 0.107547 / 0.014526 (0.093021) | 0.114492 / 0.176557 (-0.062065) | 0.171770 / 0.737135 (-0.565365) | 0.122538 / 0.296338 (-0.173800) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406140 / 0.215209 (0.190930) | 4.062391 / 2.077655 (1.984736) | 1.865962 / 1.504120 (0.361842) | 1.682236 / 1.541195 (0.141041) | 1.738119 / 1.468490 (0.269629) | 0.532244 / 4.584777 (-4.052533) | 3.816421 / 3.745712 (0.070709) | 2.981205 / 5.269862 (-2.288656) | 1.519497 / 4.565676 (-3.046179) | 0.065904 / 0.424275 (-0.358371) | 0.011277 / 0.007607 (0.003670) | 0.512789 / 0.226044 (0.286745) | 5.107618 / 2.268929 (2.838690) | 2.419399 / 55.444624 (-53.025226) | 2.079262 / 6.876477 (-4.797214) | 2.150447 / 2.142072 (0.008375) | 0.696737 / 4.805227 (-4.108490) | 0.142497 / 6.500664 (-6.358167) | 0.063521 / 0.075469 (-0.011949) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180692 / 1.841788 (-0.661095) | 14.343084 / 8.074308 (6.268776) | 13.303719 / 10.191392 (3.112327) | 0.164234 / 0.680424 (-0.516190) | 0.017439 / 0.534201 (-0.516762) | 0.399712 / 0.579283 (-0.179571) | 0.428248 / 0.434364 (-0.006115) | 0.471909 / 0.540337 (-0.068428) | 0.573853 / 1.386936 (-0.813083) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006210 / 0.011353 (-0.005143) | 0.004104 / 0.011008 (-0.006905) | 0.075140 / 0.038508 (0.036632) | 0.044647 / 0.023109 (0.021538) | 0.370120 / 0.275898 (0.094222) | 0.452936 / 0.323480 (0.129457) | 0.003943 / 0.007986 (-0.004042) | 0.003285 / 0.004328 (-0.001043) | 0.075267 / 0.004250 (0.071017) | 0.055517 / 0.037052 (0.018465) | 0.396385 / 0.258489 (0.137896) | 0.447870 / 0.293841 (0.154029) | 0.031342 / 0.128546 (-0.097204) | 0.008720 / 0.075646 (-0.066926) | 0.082702 / 0.419271 (-0.336570) | 0.051010 / 0.043533 (0.007477) | 0.350546 / 0.255139 (0.095407) | 0.425395 / 0.283200 (0.142195) | 0.024483 / 0.141683 (-0.117200) | 1.467341 / 1.452155 (0.015186) | 1.537187 / 1.492716 (0.044471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218067 / 0.018006 (0.200061) | 0.441603 / 0.000490 (0.441114) | 0.003711 / 0.000200 (0.003512) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028669 / 0.037411 (-0.008742) | 0.112941 / 0.014526 (0.098415) | 0.122584 / 0.176557 (-0.053972) | 0.176494 / 0.737135 (-0.560641) | 0.129369 / 0.296338 (-0.166970) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434543 / 0.215209 (0.219334) | 4.344056 / 2.077655 (2.266401) | 2.079286 / 1.504120 (0.575166) | 1.887264 / 1.541195 (0.346069) | 1.910386 / 1.468490 (0.441896) | 0.538824 / 4.584777 (-4.045953) | 3.844786 / 3.745712 (0.099074) | 2.902091 / 5.269862 (-2.367770) | 1.270852 / 4.565676 (-3.294824) | 0.066324 / 0.424275 (-0.357951) | 0.011346 / 0.007607 (0.003739) | 0.537122 / 0.226044 (0.311078) | 5.367354 / 2.268929 (3.098426) | 2.533672 / 55.444624 (-52.910952) | 2.203260 / 6.876477 (-4.673217) | 2.224310 / 2.142072 (0.082237) | 0.663806 / 4.805227 (-4.141422) | 0.142758 / 6.500664 (-6.357906) | 0.063870 / 0.075469 (-0.011599) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260487 / 1.841788 (-0.581301) | 14.800106 / 8.074308 (6.725798) | 13.993488 / 10.191392 (3.802096) | 0.165829 / 0.680424 (-0.514595) | 0.017347 / 0.534201 (-0.516854) | 0.401819 / 0.579283 (-0.177464) | 0.424577 / 0.434364 (-0.009787) | 0.475161 / 0.540337 (-0.065176) | 0.574659 / 1.386936 (-0.812277) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02e1e9ab6df4720f57b2d08c0b800cecac79a7c8 \"CML watermark\")\n"
] | 2023-06-19T16:56:06 | 2023-06-19T17:29:11 | 2023-06-19T17:22:10 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5966",
"html_url": "https://github.com/huggingface/datasets/pull/5966",
"diff_url": "https://github.com/huggingface/datasets/pull/5966.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5966.patch",
"merged_at": "2023-06-19T17:22:10"
} | Related to changes made in https://github.com/iterative/dvc/pull/9475 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5966/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5966/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5965 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5965/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5965/comments | https://api.github.com/repos/huggingface/datasets/issues/5965/events | https://github.com/huggingface/datasets/issues/5965 | 1,763,648,540 | I_kwDODunzps5pHyQc | 5,965 | "Couldn't cast array of type" in complex datasets | {
"login": "piercefreeman",
"id": 1712066,
"node_id": "MDQ6VXNlcjE3MTIwNjY=",
"avatar_url": "https://avatars.githubusercontent.com/u/1712066?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/piercefreeman",
"html_url": "https://github.com/piercefreeman",
"followers_url": "https://api.github.com/users/piercefreeman/followers",
"following_url": "https://api.github.com/users/piercefreeman/following{/other_user}",
"gists_url": "https://api.github.com/users/piercefreeman/gists{/gist_id}",
"starred_url": "https://api.github.com/users/piercefreeman/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/piercefreeman/subscriptions",
"organizations_url": "https://api.github.com/users/piercefreeman/orgs",
"repos_url": "https://api.github.com/users/piercefreeman/repos",
"events_url": "https://api.github.com/users/piercefreeman/events{/privacy}",
"received_events_url": "https://api.github.com/users/piercefreeman/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting! \r\n\r\nSpecifying the target features explicitly should avoid this error:\r\n```python\r\ndataset = dataset.map(\r\n batch_process,\r\n batched=True,\r\n batch_size=1,\r\n num_proc=1,\r\n remove_columns=dataset.column_names,\r\n features=datasets.Features({\"texts\": datasets.Sequence(datasets.Value(\"string\"))})\r\n)\r\n```\r\n\r\nThis error stems from our type promotion not handling the nested case. But this promotion/casting allocates memory in most scenarios, which can be problematic for large datasets, so explicitly passing the features is the optimal solution.",
"Hi @mariosasko thanks for the context, this is helpful to know. Would it be worth having some logic to generate this explicit feature specification automatically if a type annotation for a .map returns a dataclass that can be inferred?\r\n\r\nFeels like something that would be easy to implement and could save memory / deal with this case in a standardized way.",
"> . Would it be worth having some logic to generate this explicit feature specification automatically if a type annotation for a .map returns a dataclass that can be inferred?\r\n\r\nInteresting proposal! Yes, we could consider doing this if the (return) type hint is `TypedDict`, and raise an error that type hints are incorrect if the cast using the inferred types fails.",
"@mariosasko Put up an initial PR to implement this proposal. Let me know your thoughts on direction and what else should be in-scope here."
] | 2023-06-19T14:16:14 | 2023-07-26T15:13:53 | 2023-07-26T15:13:53 | NONE | null | null | null | ### Describe the bug
When doing a map of a dataset with complex types, sometimes `datasets` is unable to interpret the valid schema of a returned datasets.map() function. This often comes from conflicting types, like when both empty lists and filled lists are competing for the same field value.
This is prone to happen in batch mapping, when the mapper returns a sequence of null/empty values and other batches are non-null. A workaround is to manually cast the new batch to a pyarrow table (like implemented in this [workaround](https://github.com/piercefreeman/lassen/pull/3)) but it feels like this ideally should be solved at the core library level.
Note that the reproduction case only throws this error if the first datapoint has the empty list. If it is processed later, datasets already detects its representation as list-type and therefore allows the empty list to be provided.
### Steps to reproduce the bug
A trivial reproduction case:
```python
from typing import Iterator, Any
import pandas as pd
from datasets import Dataset
def batch_to_examples(batch: dict[str, list[Any]]) -> Iterator[dict[str, Any]]:
for i in range(next(iter(lengths))):
yield {feature: values[i] for feature, values in batch.items()}
def examples_to_batch(examples) -> dict[str, list[Any]]:
batch = {}
for example in examples:
for feature, value in example.items():
if feature not in batch:
batch[feature] = []
batch[feature].append(value)
return batch
def batch_process(examples, explicit_schema: bool):
new_examples = []
for example in batch_to_examples(examples):
new_examples.append(dict(texts=example["raw_text"].split()))
return examples_to_batch(new_examples)
df = pd.DataFrame(
[
{"raw_text": ""},
{"raw_text": "This is a test"},
{"raw_text": "This is another test"},
]
)
dataset = Dataset.from_pandas(df)
# datasets won't be able to typehint a dataset that starts with an empty example.
with pytest.raises(TypeError, match="Couldn't cast array of type"):
dataset = dataset.map(
batch_process,
batched=True,
batch_size=1,
num_proc=1,
remove_columns=dataset.column_names,
)
```
This results in crashes like:
```bash
File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 1819, in wrapper
return func(array, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 2109, in cast_array_to_feature
return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 1819, in wrapper
return func(array, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 1998, in array_cast
raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}")
TypeError: Couldn't cast array of type string to null
```
### Expected behavior
The code should successfully map and create a new dataset without error.
### Environment info
Mac OSX, Linux | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5965/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5965/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5964 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5964/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5964/comments | https://api.github.com/repos/huggingface/datasets/issues/5964/events | https://github.com/huggingface/datasets/pull/5964 | 1,763,513,574 | PR_kwDODunzps5TVweZ | 5,964 | Always return list in `list_datasets` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006795 / 0.011353 (-0.004558) | 0.004170 / 0.011008 (-0.006838) | 0.098698 / 0.038508 (0.060190) | 0.045393 / 0.023109 (0.022284) | 0.309205 / 0.275898 (0.033307) | 0.361333 / 0.323480 (0.037853) | 0.006009 / 0.007986 (-0.001977) | 0.003334 / 0.004328 (-0.000995) | 0.075071 / 0.004250 (0.070821) | 0.062587 / 0.037052 (0.025535) | 0.322395 / 0.258489 (0.063906) | 0.360499 / 0.293841 (0.066659) | 0.032243 / 0.128546 (-0.096303) | 0.008768 / 0.075646 (-0.066878) | 0.329799 / 0.419271 (-0.089472) | 0.062261 / 0.043533 (0.018728) | 0.298112 / 0.255139 (0.042973) | 0.322815 / 0.283200 (0.039615) | 0.032348 / 0.141683 (-0.109335) | 1.445807 / 1.452155 (-0.006347) | 1.528768 / 1.492716 (0.036051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195701 / 0.018006 (0.177695) | 0.437042 / 0.000490 (0.436552) | 0.003867 / 0.000200 (0.003667) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026713 / 0.037411 (-0.010698) | 0.109548 / 0.014526 (0.095022) | 0.119216 / 0.176557 (-0.057341) | 0.178947 / 0.737135 (-0.558188) | 0.125224 / 0.296338 (-0.171114) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400885 / 0.215209 (0.185676) | 3.991223 / 2.077655 (1.913568) | 1.818449 / 1.504120 (0.314329) | 1.609285 / 1.541195 (0.068090) | 1.666675 / 1.468490 (0.198184) | 0.531486 / 4.584777 (-4.053291) | 3.770142 / 3.745712 (0.024430) | 3.057189 / 5.269862 (-2.212673) | 1.517491 / 4.565676 (-3.048186) | 0.065782 / 0.424275 (-0.358493) | 0.011251 / 0.007607 (0.003644) | 0.504277 / 0.226044 (0.278233) | 5.038979 / 2.268929 (2.770050) | 2.254717 / 55.444624 (-53.189908) | 1.929743 / 6.876477 (-4.946734) | 2.080051 / 2.142072 (-0.062022) | 0.656831 / 4.805227 (-4.148396) | 0.142860 / 6.500664 (-6.357804) | 0.063057 / 0.075469 (-0.012412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208819 / 1.841788 (-0.632969) | 14.456966 / 8.074308 (6.382658) | 12.839799 / 10.191392 (2.648407) | 0.164361 / 0.680424 (-0.516063) | 0.017330 / 0.534201 (-0.516871) | 0.397384 / 0.579283 (-0.181899) | 0.422704 / 0.434364 (-0.011660) | 0.472065 / 0.540337 (-0.068273) | 0.576960 / 1.386936 (-0.809976) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004012 / 0.011008 (-0.006997) | 0.076050 / 0.038508 (0.037542) | 0.046646 / 0.023109 (0.023537) | 0.353813 / 0.275898 (0.077915) | 0.417111 / 0.323480 (0.093631) | 0.005422 / 0.007986 (-0.002564) | 0.003356 / 0.004328 (-0.000972) | 0.076662 / 0.004250 (0.072411) | 0.055018 / 0.037052 (0.017966) | 0.371561 / 0.258489 (0.113072) | 0.410471 / 0.293841 (0.116630) | 0.031860 / 0.128546 (-0.096686) | 0.008754 / 0.075646 (-0.066893) | 0.083192 / 0.419271 (-0.336079) | 0.050479 / 0.043533 (0.006946) | 0.351725 / 0.255139 (0.096586) | 0.371596 / 0.283200 (0.088396) | 0.023042 / 0.141683 (-0.118641) | 1.480533 / 1.452155 (0.028379) | 1.545970 / 1.492716 (0.053254) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220095 / 0.018006 (0.202089) | 0.441550 / 0.000490 (0.441061) | 0.000375 / 0.000200 (0.000175) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029527 / 0.037411 (-0.007884) | 0.111645 / 0.014526 (0.097119) | 0.125732 / 0.176557 (-0.050825) | 0.177322 / 0.737135 (-0.559813) | 0.128620 / 0.296338 (-0.167718) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432415 / 0.215209 (0.217206) | 4.314381 / 2.077655 (2.236726) | 2.079450 / 1.504120 (0.575331) | 1.893139 / 1.541195 (0.351944) | 1.951363 / 1.468490 (0.482873) | 0.531466 / 4.584777 (-4.053311) | 3.716860 / 3.745712 (-0.028852) | 1.850111 / 5.269862 (-3.419750) | 1.100676 / 4.565676 (-3.465000) | 0.066247 / 0.424275 (-0.358028) | 0.011503 / 0.007607 (0.003896) | 0.537208 / 0.226044 (0.311164) | 5.367560 / 2.268929 (3.098631) | 2.543697 / 55.444624 (-52.900927) | 2.221670 / 6.876477 (-4.654806) | 2.252009 / 2.142072 (0.109937) | 0.658509 / 4.805227 (-4.146718) | 0.142345 / 6.500664 (-6.358319) | 0.064701 / 0.075469 (-0.010768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266442 / 1.841788 (-0.575346) | 15.105953 / 8.074308 (7.031645) | 14.288229 / 10.191392 (4.096837) | 0.161182 / 0.680424 (-0.519242) | 0.017074 / 0.534201 (-0.517127) | 0.399464 / 0.579283 (-0.179819) | 0.419459 / 0.434364 (-0.014905) | 0.467553 / 0.540337 (-0.072784) | 0.566337 / 1.386936 (-0.820599) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53ac2d9662f9e5923ae7c52199eaa620d82f0043 \"CML watermark\")\n"
] | 2023-06-19T13:07:08 | 2023-06-19T17:29:37 | 2023-06-19T17:22:41 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5964",
"html_url": "https://github.com/huggingface/datasets/pull/5964",
"diff_url": "https://github.com/huggingface/datasets/pull/5964.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5964.patch",
"merged_at": "2023-06-19T17:22:41"
} | Fix #5925
Plus, deprecate `list_datasets`/`inspect_dataset` in favor of `huggingface_hub.list_datasets`/"git clone workflow" (downloads data files) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5964/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5964/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5963 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5963/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5963/comments | https://api.github.com/repos/huggingface/datasets/issues/5963/events | https://github.com/huggingface/datasets/issues/5963 | 1,762,774,457 | I_kwDODunzps5pEc25 | 5,963 | Got an error _pickle.PicklingError use Dataset.from_spark. | {
"login": "yanzia12138",
"id": 112800614,
"node_id": "U_kgDOBrkzZg",
"avatar_url": "https://avatars.githubusercontent.com/u/112800614?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yanzia12138",
"html_url": "https://github.com/yanzia12138",
"followers_url": "https://api.github.com/users/yanzia12138/followers",
"following_url": "https://api.github.com/users/yanzia12138/following{/other_user}",
"gists_url": "https://api.github.com/users/yanzia12138/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yanzia12138/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yanzia12138/subscriptions",
"organizations_url": "https://api.github.com/users/yanzia12138/orgs",
"repos_url": "https://api.github.com/users/yanzia12138/repos",
"events_url": "https://api.github.com/users/yanzia12138/events{/privacy}",
"received_events_url": "https://api.github.com/users/yanzia12138/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"i got error using method from_spark when using multi-node Spark cluster. seems could only use \"from_spark\" in local?",
"@lhoestq ",
"cc @maddiedawson it looks like there an issue with `_validate_cache_dir` ?\r\n\r\nIt looks like the function passed to mapPartitions has a reference to the Spark dataset builder, and therefore contains the SparkContext itself.\r\n\r\nI think it can be fixed by defining `create_cache_and_write_probe` outside the Spark dataset builder, and pass a `partial(create_cache_and_write_probe, cache_dir=self._cache_dir)` to `mapPartitions`",
"Just saw this; thanks for flagging! Your proposed solution sounds good. I can prepare a PR",
"@maddiedawson can you show me the demo ,so i can test in local .before your PR"
] | 2023-06-19T05:30:35 | 2023-07-24T11:55:46 | 2023-07-24T11:55:46 | NONE | null | null | null | python 3.9.2
Got an error _pickle.PicklingError use Dataset.from_spark.
Did the dataset import load data from spark dataframe using multi-node Spark cluster
df = spark.read.parquet(args.input_data).repartition(50)
ds = Dataset.from_spark(df, keep_in_memory=True,
cache_dir="/pnc-data/data/nuplan/t5_spark/cache_data")
ds.save_to_disk(args.output_data)
Error :
_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma
tion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)
_Originally posted by @yanzia12138 in https://github.com/huggingface/datasets/issues/5701#issuecomment-1594674306_
W
Traceback (most recent call last):
File "/home/work/main.py", line 100, in <module>
run(args)
File "/home/work/main.py", line 80, in run
ds = Dataset.from_spark(df1, keep_in_memory=True,
File "/home/work/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 1281, in from_spark
return SparkDatasetReader(
File "/home/work/.local/lib/python3.9/site-packages/datasets/io/spark.py", line 53, in read
self.builder.download_and_prepare(
File "/home/work/.local/lib/python3.9/site-packages/datasets/builder.py", line 909, in download_and_prepare
self._download_and_prepare(
File "/home/work/.local/lib/python3.9/site-packages/datasets/builder.py", line 1004, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/work/.local/lib/python3.9/site-packages/datasets/packaged_modules/spark/spark.py", line 254, in _prepare_split
self._validate_cache_dir()
File "/home/work/.local/lib/python3.9/site-packages/datasets/packaged_modules/spark/spark.py", line 122, in _validate_cache_dir
self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(create_cache_and_write_probe).collect()
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 950, in collect
sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2951, in _jrdd
wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer,
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2830, in _wrap_function
pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command)
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2816, in _prepare_for_python_RDD
pickled_command = ser.dumps(command)
File "/home/work/.local/lib/python3.9/site-packages/pyspark/serializers.py", line 447, in dumps
raise pickle.PicklingError(msg)
_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. S
parkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
23/06/19 13:51:21 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5963/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5963/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5962 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5962/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5962/comments | https://api.github.com/repos/huggingface/datasets/issues/5962/events | https://github.com/huggingface/datasets/issues/5962 | 1,761,589,882 | I_kwDODunzps5o_7p6 | 5,962 | Issue with train_test_split maintaining the same underlying PyArrow Table | {
"login": "Oziel14",
"id": 70730520,
"node_id": "MDQ6VXNlcjcwNzMwNTIw",
"avatar_url": "https://avatars.githubusercontent.com/u/70730520?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Oziel14",
"html_url": "https://github.com/Oziel14",
"followers_url": "https://api.github.com/users/Oziel14/followers",
"following_url": "https://api.github.com/users/Oziel14/following{/other_user}",
"gists_url": "https://api.github.com/users/Oziel14/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Oziel14/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Oziel14/subscriptions",
"organizations_url": "https://api.github.com/users/Oziel14/orgs",
"repos_url": "https://api.github.com/users/Oziel14/repos",
"events_url": "https://api.github.com/users/Oziel14/events{/privacy}",
"received_events_url": "https://api.github.com/users/Oziel14/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-06-17T02:19:58 | 2023-06-17T02:19:58 | null | NONE | null | null | null | ### Describe the bug
I've been using the train_test_split method in the datasets module to split my HuggingFace Dataset into separate training, validation, and testing subsets. However, I've noticed an issue where the split datasets appear to maintain the same underlying PyArrow Table.
### Steps to reproduce the bug
1. Load any dataset ```dataset = load_dataset("lhoestq/demo1")```
2. Try the next code:
```python
from datasets import Dataset, DatasetDict
train_size = 0.6
split_train = dataset["train"].train_test_split(
train_size=train_size,
)
separate_dataset_dict = DatasetDict({
"train": split_train["train"],
"test": split_train["test"],
})
```
3. The next code ```print(separate_dataset_dict)``` when printing the dataset it gives the indication that they have 3 and 2 rows respectively.
4. But the next code:
```python
print(len(separate_dataset_dict["train"].data['id']))
print(len(separate_dataset_dict["test"].data['id']))
```
Indicates that both tables still have 5 rows.
### Expected behavior
However, I've noticed that train_test_split["train"].data, test_val_split["train"].data, and test_val_split["test"].data are identical, suggesting that they all point to the same underlying PyArrow Table. This means that the split datasets are not independent, as I expected.
I believe this is a bug in the train_test_split implementation, as I would expect this function to return datasets with separate underlying PyArrow Tables. Could you please help me understand if this is expected behavior, or if there's a workaround to create truly independent split datasets?
I would appreciate any assistance with this issue. Thank you.
### Environment info
I tried in Colab:
- `datasets` version: 2.13.0
- Platform: Windows-10-10.0.22621-SP0
- Python version: 3.10.11
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.1
and my PC:
- `datasets` version: 2.13.0
- Platform: Linux-5.15.107+-x86_64-with-glibc2.31
- Python version: 3.10.12
- Huggingface_hub version: 0.15.1
- PyArrow version: 9.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5962/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5962/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5961 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5961/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5961/comments | https://api.github.com/repos/huggingface/datasets/issues/5961/events | https://github.com/huggingface/datasets/issues/5961 | 1,758,525,111 | I_kwDODunzps5o0Pa3 | 5,961 | IterableDataset: split by node and map may preprocess samples that will be skipped anyway | {
"login": "johnchienbronci",
"id": 27708347,
"node_id": "MDQ6VXNlcjI3NzA4MzQ3",
"avatar_url": "https://avatars.githubusercontent.com/u/27708347?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/johnchienbronci",
"html_url": "https://github.com/johnchienbronci",
"followers_url": "https://api.github.com/users/johnchienbronci/followers",
"following_url": "https://api.github.com/users/johnchienbronci/following{/other_user}",
"gists_url": "https://api.github.com/users/johnchienbronci/gists{/gist_id}",
"starred_url": "https://api.github.com/users/johnchienbronci/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/johnchienbronci/subscriptions",
"organizations_url": "https://api.github.com/users/johnchienbronci/orgs",
"repos_url": "https://api.github.com/users/johnchienbronci/repos",
"events_url": "https://api.github.com/users/johnchienbronci/events{/privacy}",
"received_events_url": "https://api.github.com/users/johnchienbronci/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Does \"number of shards\" refer to the total number of data?\r\n\r\nmy config:\r\nnproc_per_node=2\r\nds=ds['train'] = load_dataset(streaming=True).take(50000)\r\n\r\nI'm test again: in prepare_data(), data have the same for each GPU\r\n",
"The number of shards is `ds.n_shards`. It corresponds generally to the number of files the dataset is made of, to be able to distribute to several nodes.\r\n\r\n**You don't end up with the same data per GPU**. But all the samples are going through your preprocessing function you pass to map. They are just skipped afterwards to only keep 1 sample out of n(GPUs)",
"For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end. \r\nIs my understanding correct?\r\n\r\nWhere can I print the actual training data for each GPU?",
"> For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\nIs my understanding correct?\r\n\r\nYes exactly :)\r\n\r\n> Where can I print the actual training data for each GPU?\r\n\r\nYou should call print in the data_collator",
"I print out n_shards, and under multiple GPUs, this value is always 1.\r\nIs this value correct?",
"Yes it's correct, and it explains why you always have the same data passed to your map function (the data can't be split).\r\n\r\nBut after being passed to `map`, each GPU keeps one example out of n(GPUs) so that you don't end up with duplicate data across GPUs",
"> > For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\n> > Is my understanding correct?\r\n> \r\n> Yes exactly :)\r\n> \r\n> > Where can I print the actual training data for each GPU?\r\n> \r\n> You should call print in the data_collator\r\n\r\nOK, when printing the train data in the data collator, each GPU sees different data.\r\n\r\nThanks for your reply"
] | 2023-06-15T10:29:10 | 2023-06-20T01:30:40 | null | NONE | null | null | null | There are two ways an iterable dataset can be split by node:
1. if the number of shards is a factor of number of GPUs: in that case the shards are evenly distributed per GPU
2. otherwise, each GPU iterate on the data and at the end keeps 1 sample out of n(GPUs) - skipping the others.
In case 2. it's therefore possible to have the same examples passed to `prepare_dataset` for each GPU.
This doesn't sound optimized though, because it runs the preprocessing on samples that won't be used in the end.
Could you open a new issue so that we can discuss about this and find a solution ?
_Originally posted by @lhoestq in https://github.com/huggingface/datasets/issues/5360#issuecomment-1592729051_
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5961/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5961/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5959 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5959/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5959/comments | https://api.github.com/repos/huggingface/datasets/issues/5959/events | https://github.com/huggingface/datasets/issues/5959 | 1,757,397,507 | I_kwDODunzps5ov8ID | 5,959 | read metric glue.py from local file | {
"login": "JiazhaoLi",
"id": 31148397,
"node_id": "MDQ6VXNlcjMxMTQ4Mzk3",
"avatar_url": "https://avatars.githubusercontent.com/u/31148397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JiazhaoLi",
"html_url": "https://github.com/JiazhaoLi",
"followers_url": "https://api.github.com/users/JiazhaoLi/followers",
"following_url": "https://api.github.com/users/JiazhaoLi/following{/other_user}",
"gists_url": "https://api.github.com/users/JiazhaoLi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JiazhaoLi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JiazhaoLi/subscriptions",
"organizations_url": "https://api.github.com/users/JiazhaoLi/orgs",
"repos_url": "https://api.github.com/users/JiazhaoLi/repos",
"events_url": "https://api.github.com/users/JiazhaoLi/events{/privacy}",
"received_events_url": "https://api.github.com/users/JiazhaoLi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Sorry, I solve this by call `evaluate.load('glue_metric.py','sst-2')`\r\n"
] | 2023-06-14T17:59:35 | 2023-06-14T18:04:16 | 2023-06-14T18:04:16 | NONE | null | null | null | ### Describe the bug
Currently, The server is off-line. I am using the glue metric from the local file downloaded from the hub.
I download / cached datasets using `load_dataset('glue','sst2', cache_dir='/xxx')` to cache them and then in the off-line mode, I use `load_dataset('xxx/glue.py','sst2', cache_dir='/xxx')`. I can successfully reuse cached datasets.
My problem is about the load_metric.
When I run `load_dataset('xxx/glue_metric.py','sst2',cache_dir='/xxx')` , it returns
` File "xx/lib64/python3.9/site-packages/datasets/utils/deprecation_utils.py", line 46, in wrapper
return deprecated_function(*args, **kwargs)
File "xx//lib64/python3.9/site-packages/datasets/load.py", line 1392, in load_metric
metric = metric_cls(
TypeError: 'NoneType' object is not callable`
Thanks in advance for help!
### Steps to reproduce the bug
N/A
### Expected behavior
N/A
### Environment info
`datasets == 2.12.0` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5959/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5959/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5958 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5958/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5958/comments | https://api.github.com/repos/huggingface/datasets/issues/5958/events | https://github.com/huggingface/datasets/pull/5958 | 1,757,265,971 | PR_kwDODunzps5TA3__ | 5,958 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5958). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006232 / 0.011353 (-0.005121) | 0.003788 / 0.011008 (-0.007220) | 0.100014 / 0.038508 (0.061506) | 0.036488 / 0.023109 (0.013379) | 0.306255 / 0.275898 (0.030357) | 0.363337 / 0.323480 (0.039857) | 0.004765 / 0.007986 (-0.003221) | 0.002935 / 0.004328 (-0.001394) | 0.078897 / 0.004250 (0.074647) | 0.052221 / 0.037052 (0.015169) | 0.315169 / 0.258489 (0.056680) | 0.353050 / 0.293841 (0.059209) | 0.029059 / 0.128546 (-0.099488) | 0.008599 / 0.075646 (-0.067047) | 0.318770 / 0.419271 (-0.100502) | 0.046631 / 0.043533 (0.003098) | 0.303728 / 0.255139 (0.048589) | 0.332379 / 0.283200 (0.049180) | 0.021164 / 0.141683 (-0.120519) | 1.576963 / 1.452155 (0.124808) | 1.629575 / 1.492716 (0.136859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204246 / 0.018006 (0.186240) | 0.426600 / 0.000490 (0.426110) | 0.004336 / 0.000200 (0.004136) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024039 / 0.037411 (-0.013372) | 0.098240 / 0.014526 (0.083715) | 0.108889 / 0.176557 (-0.067668) | 0.170827 / 0.737135 (-0.566308) | 0.111288 / 0.296338 (-0.185051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418103 / 0.215209 (0.202894) | 4.190759 / 2.077655 (2.113104) | 1.875978 / 1.504120 (0.371858) | 1.679198 / 1.541195 (0.138003) | 1.737965 / 1.468490 (0.269474) | 0.556660 / 4.584777 (-4.028117) | 3.413800 / 3.745712 (-0.331912) | 3.004999 / 5.269862 (-2.264862) | 1.464030 / 4.565676 (-3.101647) | 0.067338 / 0.424275 (-0.356937) | 0.011486 / 0.007607 (0.003879) | 0.522589 / 0.226044 (0.296544) | 5.214653 / 2.268929 (2.945724) | 2.316903 / 55.444624 (-53.127722) | 1.991941 / 6.876477 (-4.884536) | 2.110601 / 2.142072 (-0.031471) | 0.665400 / 4.805227 (-4.139828) | 0.135755 / 6.500664 (-6.364910) | 0.065980 / 0.075469 (-0.009489) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197269 / 1.841788 (-0.644519) | 14.085205 / 8.074308 (6.010897) | 14.083360 / 10.191392 (3.891968) | 0.148054 / 0.680424 (-0.532369) | 0.016548 / 0.534201 (-0.517653) | 0.371538 / 0.579283 (-0.207745) | 0.391068 / 0.434364 (-0.043296) | 0.430589 / 0.540337 (-0.109748) | 0.529319 / 1.386936 (-0.857617) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006214 / 0.011353 (-0.005138) | 0.003846 / 0.011008 (-0.007162) | 0.078559 / 0.038508 (0.040051) | 0.037855 / 0.023109 (0.014745) | 0.437479 / 0.275898 (0.161581) | 0.497588 / 0.323480 (0.174108) | 0.003491 / 0.007986 (-0.004494) | 0.003900 / 0.004328 (-0.000428) | 0.078443 / 0.004250 (0.074193) | 0.048019 / 0.037052 (0.010967) | 0.452076 / 0.258489 (0.193587) | 0.494597 / 0.293841 (0.200756) | 0.028127 / 0.128546 (-0.100419) | 0.008549 / 0.075646 (-0.067098) | 0.082977 / 0.419271 (-0.336295) | 0.043133 / 0.043533 (-0.000400) | 0.441342 / 0.255139 (0.186203) | 0.464339 / 0.283200 (0.181139) | 0.020110 / 0.141683 (-0.121573) | 1.485181 / 1.452155 (0.033026) | 1.532019 / 1.492716 (0.039302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228014 / 0.018006 (0.210007) | 0.416887 / 0.000490 (0.416397) | 0.001133 / 0.000200 (0.000933) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026452 / 0.037411 (-0.010960) | 0.104328 / 0.014526 (0.089802) | 0.110045 / 0.176557 (-0.066511) | 0.164725 / 0.737135 (-0.572410) | 0.116348 / 0.296338 (-0.179990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483502 / 0.215209 (0.268293) | 4.829814 / 2.077655 (2.752159) | 2.505271 / 1.504120 (1.001151) | 2.305819 / 1.541195 (0.764624) | 2.348633 / 1.468490 (0.880143) | 0.562316 / 4.584777 (-4.022461) | 3.426425 / 3.745712 (-0.319287) | 1.737934 / 5.269862 (-3.531927) | 1.042616 / 4.565676 (-3.523061) | 0.068088 / 0.424275 (-0.356187) | 0.011735 / 0.007607 (0.004128) | 0.586339 / 0.226044 (0.360295) | 5.861283 / 2.268929 (3.592354) | 2.953956 / 55.444624 (-52.490668) | 2.626611 / 6.876477 (-4.249865) | 2.687978 / 2.142072 (0.545906) | 0.672748 / 4.805227 (-4.132479) | 0.137231 / 6.500664 (-6.363433) | 0.068149 / 0.075469 (-0.007320) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.323139 / 1.841788 (-0.518649) | 14.503102 / 8.074308 (6.428794) | 14.092102 / 10.191392 (3.900710) | 0.165395 / 0.680424 (-0.515028) | 0.016898 / 0.534201 (-0.517303) | 0.366905 / 0.579283 (-0.212378) | 0.396671 / 0.434364 (-0.037692) | 0.421831 / 0.540337 (-0.118506) | 0.514075 / 1.386936 (-0.872861) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9d4238c132dd44b9a6e1dfe7101228bdeb538d57 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007778 / 0.011353 (-0.003575) | 0.004624 / 0.011008 (-0.006384) | 0.123426 / 0.038508 (0.084918) | 0.052209 / 0.023109 (0.029100) | 0.341084 / 0.275898 (0.065186) | 0.421905 / 0.323480 (0.098425) | 0.005768 / 0.007986 (-0.002217) | 0.003647 / 0.004328 (-0.000682) | 0.085569 / 0.004250 (0.081319) | 0.070473 / 0.037052 (0.033421) | 0.356626 / 0.258489 (0.098136) | 0.407413 / 0.293841 (0.113572) | 0.038800 / 0.128546 (-0.089746) | 0.010289 / 0.075646 (-0.065357) | 0.462707 / 0.419271 (0.043436) | 0.060390 / 0.043533 (0.016858) | 0.349805 / 0.255139 (0.094666) | 0.355288 / 0.283200 (0.072088) | 0.025364 / 0.141683 (-0.116318) | 1.745720 / 1.452155 (0.293565) | 1.852764 / 1.492716 (0.360048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290582 / 0.018006 (0.272576) | 0.480044 / 0.000490 (0.479554) | 0.007658 / 0.000200 (0.007458) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031529 / 0.037411 (-0.005882) | 0.130441 / 0.014526 (0.115915) | 0.147653 / 0.176557 (-0.028904) | 0.215935 / 0.737135 (-0.521200) | 0.149871 / 0.296338 (-0.146467) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461662 / 0.215209 (0.246453) | 4.570353 / 2.077655 (2.492698) | 2.104416 / 1.504120 (0.600297) | 1.936974 / 1.541195 (0.395779) | 2.139167 / 1.468490 (0.670677) | 0.645100 / 4.584777 (-3.939677) | 4.361536 / 3.745712 (0.615824) | 2.155960 / 5.269862 (-3.113902) | 1.207854 / 4.565676 (-3.357822) | 0.080162 / 0.424275 (-0.344113) | 0.014265 / 0.007607 (0.006658) | 0.606294 / 0.226044 (0.380250) | 5.928093 / 2.268929 (3.659165) | 2.701811 / 55.444624 (-52.742813) | 2.344490 / 6.876477 (-4.531987) | 2.435997 / 2.142072 (0.293925) | 0.761020 / 4.805227 (-4.044207) | 0.165860 / 6.500664 (-6.334804) | 0.075666 / 0.075469 (0.000197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.427318 / 1.841788 (-0.414469) | 17.327468 / 8.074308 (9.253160) | 15.323065 / 10.191392 (5.131673) | 0.178518 / 0.680424 (-0.501905) | 0.020888 / 0.534201 (-0.513313) | 0.497891 / 0.579283 (-0.081393) | 0.487717 / 0.434364 (0.053353) | 0.581430 / 0.540337 (0.041093) | 0.703430 / 1.386936 (-0.683506) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007954 / 0.011353 (-0.003399) | 0.004442 / 0.011008 (-0.006566) | 0.090950 / 0.038508 (0.052442) | 0.054282 / 0.023109 (0.031173) | 0.424474 / 0.275898 (0.148576) | 0.531770 / 0.323480 (0.208290) | 0.004492 / 0.007986 (-0.003493) | 0.004745 / 0.004328 (0.000416) | 0.088213 / 0.004250 (0.083962) | 0.063967 / 0.037052 (0.026914) | 0.454256 / 0.258489 (0.195767) | 0.502870 / 0.293841 (0.209029) | 0.038203 / 0.128546 (-0.090343) | 0.010327 / 0.075646 (-0.065319) | 0.097809 / 0.419271 (-0.321463) | 0.062136 / 0.043533 (0.018604) | 0.426148 / 0.255139 (0.171009) | 0.467812 / 0.283200 (0.184612) | 0.029148 / 0.141683 (-0.112535) | 1.762307 / 1.452155 (0.310152) | 1.814238 / 1.492716 (0.321521) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195676 / 0.018006 (0.177670) | 0.475382 / 0.000490 (0.474892) | 0.003070 / 0.000200 (0.002870) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033945 / 0.037411 (-0.003466) | 0.134666 / 0.014526 (0.120140) | 0.147585 / 0.176557 (-0.028971) | 0.209472 / 0.737135 (-0.527664) | 0.154471 / 0.296338 (-0.141867) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.518132 / 0.215209 (0.302923) | 5.103423 / 2.077655 (3.025768) | 2.565207 / 1.504120 (1.061087) | 2.389454 / 1.541195 (0.848259) | 2.391706 / 1.468490 (0.923216) | 0.606463 / 4.584777 (-3.978314) | 4.392227 / 3.745712 (0.646515) | 2.067121 / 5.269862 (-3.202741) | 1.217551 / 4.565676 (-3.348125) | 0.074304 / 0.424275 (-0.349971) | 0.013418 / 0.007607 (0.005811) | 0.623327 / 0.226044 (0.397282) | 6.340233 / 2.268929 (4.071304) | 3.153948 / 55.444624 (-52.290677) | 2.824548 / 6.876477 (-4.051929) | 2.938402 / 2.142072 (0.796329) | 0.774305 / 4.805227 (-4.030922) | 0.170681 / 6.500664 (-6.329983) | 0.075895 / 0.075469 (0.000426) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.473491 / 1.841788 (-0.368296) | 17.372294 / 8.074308 (9.297986) | 15.550201 / 10.191392 (5.358809) | 0.191402 / 0.680424 (-0.489022) | 0.021401 / 0.534201 (-0.512800) | 0.484377 / 0.579283 (-0.094906) | 0.488844 / 0.434364 (0.054480) | 0.563336 / 0.540337 (0.022999) | 0.694210 / 1.386936 (-0.692726) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b96da7f51d81e52d7b587685f820b5e55f71e07d \"CML watermark\")\n"
] | 2023-06-14T16:26:34 | 2023-06-14T16:34:55 | 2023-06-14T16:26:51 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5958",
"html_url": "https://github.com/huggingface/datasets/pull/5958",
"diff_url": "https://github.com/huggingface/datasets/pull/5958.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5958.patch",
"merged_at": "2023-06-14T16:26:51"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5958/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5958/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5957 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5957/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5957/comments | https://api.github.com/repos/huggingface/datasets/issues/5957/events | https://github.com/huggingface/datasets/pull/5957 | 1,757,252,466 | PR_kwDODunzps5TA1EB | 5,957 | Release: 2.13.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006498 / 0.011353 (-0.004855) | 0.003970 / 0.011008 (-0.007038) | 0.099242 / 0.038508 (0.060734) | 0.044363 / 0.023109 (0.021254) | 0.313900 / 0.275898 (0.038002) | 0.386562 / 0.323480 (0.063082) | 0.003837 / 0.007986 (-0.004149) | 0.004203 / 0.004328 (-0.000125) | 0.076191 / 0.004250 (0.071940) | 0.058823 / 0.037052 (0.021771) | 0.333838 / 0.258489 (0.075349) | 0.368235 / 0.293841 (0.074394) | 0.030774 / 0.128546 (-0.097772) | 0.008787 / 0.075646 (-0.066860) | 0.326474 / 0.419271 (-0.092798) | 0.050903 / 0.043533 (0.007370) | 0.303928 / 0.255139 (0.048789) | 0.321532 / 0.283200 (0.038333) | 0.024162 / 0.141683 (-0.117520) | 1.479662 / 1.452155 (0.027507) | 1.520300 / 1.492716 (0.027584) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212403 / 0.018006 (0.194397) | 0.448019 / 0.000490 (0.447529) | 0.005465 / 0.000200 (0.005265) | 0.000388 / 0.000054 (0.000334) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027533 / 0.037411 (-0.009878) | 0.117477 / 0.014526 (0.102952) | 0.121182 / 0.176557 (-0.055374) | 0.181150 / 0.737135 (-0.555985) | 0.128557 / 0.296338 (-0.167782) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397763 / 0.215209 (0.182554) | 3.959460 / 2.077655 (1.881805) | 1.822057 / 1.504120 (0.317937) | 1.627020 / 1.541195 (0.085826) | 1.695394 / 1.468490 (0.226904) | 0.536848 / 4.584777 (-4.047929) | 3.765205 / 3.745712 (0.019493) | 3.196300 / 5.269862 (-2.073561) | 1.623583 / 4.565676 (-2.942094) | 0.065823 / 0.424275 (-0.358452) | 0.011062 / 0.007607 (0.003455) | 0.500428 / 0.226044 (0.274384) | 5.008816 / 2.268929 (2.739888) | 2.314660 / 55.444624 (-53.129965) | 2.007429 / 6.876477 (-4.869047) | 2.141438 / 2.142072 (-0.000635) | 0.656697 / 4.805227 (-4.148530) | 0.143555 / 6.500664 (-6.357109) | 0.063928 / 0.075469 (-0.011541) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.169038 / 1.841788 (-0.672750) | 15.027186 / 8.074308 (6.952878) | 13.571484 / 10.191392 (3.380092) | 0.166437 / 0.680424 (-0.513986) | 0.017656 / 0.534201 (-0.516545) | 0.397725 / 0.579283 (-0.181558) | 0.451019 / 0.434364 (0.016655) | 0.469134 / 0.540337 (-0.071203) | 0.575885 / 1.386936 (-0.811051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006887 / 0.011353 (-0.004465) | 0.004166 / 0.011008 (-0.006842) | 0.077137 / 0.038508 (0.038629) | 0.055631 / 0.023109 (0.032522) | 0.397658 / 0.275898 (0.121760) | 0.473981 / 0.323480 (0.150502) | 0.005365 / 0.007986 (-0.002621) | 0.003401 / 0.004328 (-0.000928) | 0.076481 / 0.004250 (0.072231) | 0.056014 / 0.037052 (0.018961) | 0.415253 / 0.258489 (0.156764) | 0.457620 / 0.293841 (0.163779) | 0.031850 / 0.128546 (-0.096696) | 0.008869 / 0.075646 (-0.066777) | 0.083475 / 0.419271 (-0.335796) | 0.049232 / 0.043533 (0.005699) | 0.392947 / 0.255139 (0.137808) | 0.417243 / 0.283200 (0.134043) | 0.024554 / 0.141683 (-0.117129) | 1.508081 / 1.452155 (0.055926) | 1.541845 / 1.492716 (0.049129) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228470 / 0.018006 (0.210464) | 0.450933 / 0.000490 (0.450443) | 0.001508 / 0.000200 (0.001308) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030189 / 0.037411 (-0.007222) | 0.118853 / 0.014526 (0.104327) | 0.124809 / 0.176557 (-0.051747) | 0.175066 / 0.737135 (-0.562069) | 0.129819 / 0.296338 (-0.166519) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.451830 / 0.215209 (0.236621) | 4.505352 / 2.077655 (2.427698) | 2.309303 / 1.504120 (0.805183) | 2.120983 / 1.541195 (0.579789) | 2.198808 / 1.468490 (0.730317) | 0.543836 / 4.584777 (-4.040940) | 3.836650 / 3.745712 (0.090938) | 1.872293 / 5.269862 (-3.397568) | 1.122335 / 4.565676 (-3.443342) | 0.067463 / 0.424275 (-0.356812) | 0.012143 / 0.007607 (0.004536) | 0.553674 / 0.226044 (0.327630) | 5.572101 / 2.268929 (3.303173) | 2.772151 / 55.444624 (-52.672473) | 2.451557 / 6.876477 (-4.424920) | 2.521241 / 2.142072 (0.379169) | 0.665799 / 4.805227 (-4.139428) | 0.143842 / 6.500664 (-6.356822) | 0.065373 / 0.075469 (-0.010096) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271013 / 1.841788 (-0.570775) | 15.290054 / 8.074308 (7.215746) | 14.807044 / 10.191392 (4.615652) | 0.163767 / 0.680424 (-0.516657) | 0.017383 / 0.534201 (-0.516818) | 0.393046 / 0.579283 (-0.186237) | 0.423056 / 0.434364 (-0.011308) | 0.459193 / 0.540337 (-0.081145) | 0.559964 / 1.386936 (-0.826972) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#011b75f044ef7fa6b8981ef3496615296aeb315b \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006112 / 0.011353 (-0.005241) | 0.003712 / 0.011008 (-0.007297) | 0.099996 / 0.038508 (0.061488) | 0.037526 / 0.023109 (0.014417) | 0.305834 / 0.275898 (0.029936) | 0.361368 / 0.323480 (0.037888) | 0.004849 / 0.007986 (-0.003136) | 0.002912 / 0.004328 (-0.001417) | 0.077729 / 0.004250 (0.073479) | 0.053203 / 0.037052 (0.016151) | 0.318088 / 0.258489 (0.059599) | 0.371745 / 0.293841 (0.077904) | 0.029384 / 0.128546 (-0.099162) | 0.008504 / 0.075646 (-0.067142) | 0.318472 / 0.419271 (-0.100799) | 0.046043 / 0.043533 (0.002510) | 0.310418 / 0.255139 (0.055279) | 0.335044 / 0.283200 (0.051844) | 0.020364 / 0.141683 (-0.121319) | 1.503201 / 1.452155 (0.051047) | 1.556408 / 1.492716 (0.063692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210245 / 0.018006 (0.192239) | 0.418918 / 0.000490 (0.418428) | 0.002552 / 0.000200 (0.002352) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022295 / 0.037411 (-0.015116) | 0.099534 / 0.014526 (0.085008) | 0.106432 / 0.176557 (-0.070124) | 0.165110 / 0.737135 (-0.572026) | 0.109851 / 0.296338 (-0.186488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423947 / 0.215209 (0.208738) | 4.232978 / 2.077655 (2.155323) | 2.004849 / 1.504120 (0.500729) | 1.814345 / 1.541195 (0.273151) | 1.809192 / 1.468490 (0.340702) | 0.561146 / 4.584777 (-4.023631) | 3.385043 / 3.745712 (-0.360669) | 1.708265 / 5.269862 (-3.561597) | 1.030290 / 4.565676 (-3.535387) | 0.067095 / 0.424275 (-0.357180) | 0.011052 / 0.007607 (0.003445) | 0.522416 / 0.226044 (0.296371) | 5.207003 / 2.268929 (2.938075) | 2.367067 / 55.444624 (-53.077558) | 1.998705 / 6.876477 (-4.877772) | 2.068633 / 2.142072 (-0.073439) | 0.672396 / 4.805227 (-4.132831) | 0.135818 / 6.500664 (-6.364846) | 0.065229 / 0.075469 (-0.010240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187079 / 1.841788 (-0.654709) | 13.893153 / 8.074308 (5.818845) | 13.951328 / 10.191392 (3.759936) | 0.142519 / 0.680424 (-0.537905) | 0.016546 / 0.534201 (-0.517655) | 0.364008 / 0.579283 (-0.215275) | 0.385957 / 0.434364 (-0.048407) | 0.425218 / 0.540337 (-0.115120) | 0.519586 / 1.386936 (-0.867350) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005914 / 0.011353 (-0.005439) | 0.003619 / 0.011008 (-0.007389) | 0.077806 / 0.038508 (0.039298) | 0.037254 / 0.023109 (0.014144) | 0.378976 / 0.275898 (0.103078) | 0.433620 / 0.323480 (0.110140) | 0.003291 / 0.007986 (-0.004694) | 0.004523 / 0.004328 (0.000194) | 0.077604 / 0.004250 (0.073353) | 0.047493 / 0.037052 (0.010441) | 0.396027 / 0.258489 (0.137538) | 0.453345 / 0.293841 (0.159504) | 0.028170 / 0.128546 (-0.100376) | 0.008431 / 0.075646 (-0.067215) | 0.083985 / 0.419271 (-0.335286) | 0.045149 / 0.043533 (0.001617) | 0.369364 / 0.255139 (0.114225) | 0.407191 / 0.283200 (0.123991) | 0.024033 / 0.141683 (-0.117649) | 1.516838 / 1.452155 (0.064683) | 1.564260 / 1.492716 (0.071544) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200848 / 0.018006 (0.182842) | 0.407818 / 0.000490 (0.407328) | 0.003971 / 0.000200 (0.003771) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025033 / 0.037411 (-0.012378) | 0.103585 / 0.014526 (0.089059) | 0.108741 / 0.176557 (-0.067816) | 0.161061 / 0.737135 (-0.576075) | 0.112763 / 0.296338 (-0.183576) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479913 / 0.215209 (0.264704) | 4.801904 / 2.077655 (2.724249) | 2.511433 / 1.504120 (1.007313) | 2.307523 / 1.541195 (0.766328) | 2.338343 / 1.468490 (0.869853) | 0.557731 / 4.584777 (-4.027046) | 3.386261 / 3.745712 (-0.359451) | 2.999978 / 5.269862 (-2.269883) | 1.463058 / 4.565676 (-3.102619) | 0.067645 / 0.424275 (-0.356630) | 0.011224 / 0.007607 (0.003617) | 0.596854 / 0.226044 (0.370810) | 5.940946 / 2.268929 (3.672017) | 2.980194 / 55.444624 (-52.464430) | 2.634961 / 6.876477 (-4.241516) | 2.648160 / 2.142072 (0.506088) | 0.669728 / 4.805227 (-4.135499) | 0.135536 / 6.500664 (-6.365128) | 0.066865 / 0.075469 (-0.008604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.287151 / 1.841788 (-0.554637) | 14.491681 / 8.074308 (6.417373) | 14.185752 / 10.191392 (3.994360) | 0.129391 / 0.680424 (-0.551032) | 0.016650 / 0.534201 (-0.517551) | 0.380111 / 0.579283 (-0.199172) | 0.392877 / 0.434364 (-0.041487) | 0.439402 / 0.540337 (-0.100935) | 0.530865 / 1.386936 (-0.856071) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9aaee6fd0b2bcbe18e4829602084bcd83d669c5e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011446 / 0.011353 (0.000093) | 0.006623 / 0.011008 (-0.004386) | 0.131915 / 0.038508 (0.093407) | 0.047364 / 0.023109 (0.024255) | 0.369203 / 0.275898 (0.093305) | 0.451509 / 0.323480 (0.128029) | 0.006265 / 0.007986 (-0.001720) | 0.004072 / 0.004328 (-0.000257) | 0.098626 / 0.004250 (0.094375) | 0.079523 / 0.037052 (0.042470) | 0.406038 / 0.258489 (0.147549) | 0.450564 / 0.293841 (0.156723) | 0.050793 / 0.128546 (-0.077753) | 0.014667 / 0.075646 (-0.060979) | 0.401359 / 0.419271 (-0.017913) | 0.072299 / 0.043533 (0.028767) | 0.404456 / 0.255139 (0.149317) | 0.396223 / 0.283200 (0.113023) | 0.037048 / 0.141683 (-0.104635) | 1.869123 / 1.452155 (0.416968) | 1.953621 / 1.492716 (0.460905) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237246 / 0.018006 (0.219240) | 0.533207 / 0.000490 (0.532717) | 0.007392 / 0.000200 (0.007192) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029458 / 0.037411 (-0.007954) | 0.112438 / 0.014526 (0.097912) | 0.139115 / 0.176557 (-0.037441) | 0.215225 / 0.737135 (-0.521911) | 0.134440 / 0.296338 (-0.161898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616783 / 0.215209 (0.401574) | 6.113925 / 2.077655 (4.036270) | 2.403465 / 1.504120 (0.899345) | 1.967523 / 1.541195 (0.426329) | 2.042144 / 1.468490 (0.573654) | 0.927447 / 4.584777 (-3.657330) | 5.280413 / 3.745712 (1.534701) | 2.715335 / 5.269862 (-2.554527) | 1.755640 / 4.565676 (-2.810036) | 0.114370 / 0.424275 (-0.309905) | 0.013583 / 0.007607 (0.005976) | 0.761701 / 0.226044 (0.535657) | 7.466049 / 2.268929 (5.197120) | 3.041943 / 55.444624 (-52.402682) | 2.314477 / 6.876477 (-4.562000) | 2.469285 / 2.142072 (0.327213) | 1.216055 / 4.805227 (-3.589172) | 0.214205 / 6.500664 (-6.286459) | 0.080901 / 0.075469 (0.005432) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565185 / 1.841788 (-0.276603) | 18.387986 / 8.074308 (10.313678) | 19.665109 / 10.191392 (9.473717) | 0.226670 / 0.680424 (-0.453754) | 0.028430 / 0.534201 (-0.505771) | 0.510526 / 0.579283 (-0.068757) | 0.623178 / 0.434364 (0.188814) | 0.592039 / 0.540337 (0.051702) | 0.728462 / 1.386936 (-0.658474) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009161 / 0.011353 (-0.002192) | 0.004891 / 0.011008 (-0.006117) | 0.106502 / 0.038508 (0.067994) | 0.048234 / 0.023109 (0.025125) | 0.451173 / 0.275898 (0.175275) | 0.557948 / 0.323480 (0.234468) | 0.005350 / 0.007986 (-0.002635) | 0.004559 / 0.004328 (0.000230) | 0.110393 / 0.004250 (0.106142) | 0.060624 / 0.037052 (0.023572) | 0.459265 / 0.258489 (0.200776) | 0.575302 / 0.293841 (0.281461) | 0.051379 / 0.128546 (-0.077167) | 0.015576 / 0.075646 (-0.060070) | 0.116650 / 0.419271 (-0.302621) | 0.065534 / 0.043533 (0.022001) | 0.461431 / 0.255139 (0.206292) | 0.487677 / 0.283200 (0.204477) | 0.037773 / 0.141683 (-0.103910) | 1.992416 / 1.452155 (0.540261) | 1.991280 / 1.492716 (0.498564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233607 / 0.018006 (0.215601) | 0.507539 / 0.000490 (0.507049) | 0.001307 / 0.000200 (0.001107) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032897 / 0.037411 (-0.004514) | 0.126549 / 0.014526 (0.112023) | 0.137893 / 0.176557 (-0.038663) | 0.192124 / 0.737135 (-0.545012) | 0.147300 / 0.296338 (-0.149038) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.679371 / 0.215209 (0.464162) | 6.673249 / 2.077655 (4.595595) | 2.979141 / 1.504120 (1.475022) | 2.568789 / 1.541195 (1.027594) | 2.537540 / 1.468490 (1.069050) | 0.973555 / 4.584777 (-3.611222) | 5.313536 / 3.745712 (1.567824) | 2.693283 / 5.269862 (-2.576579) | 1.819483 / 4.565676 (-2.746194) | 0.111644 / 0.424275 (-0.312631) | 0.013218 / 0.007607 (0.005611) | 0.776114 / 0.226044 (0.550070) | 7.758907 / 2.268929 (5.489978) | 3.417611 / 55.444624 (-52.027013) | 2.859502 / 6.876477 (-4.016975) | 2.927726 / 2.142072 (0.785653) | 1.163671 / 4.805227 (-3.641556) | 0.228636 / 6.500664 (-6.272028) | 0.082077 / 0.075469 (0.006607) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.746150 / 1.841788 (-0.095637) | 17.961955 / 8.074308 (9.887647) | 21.590545 / 10.191392 (11.399153) | 0.210017 / 0.680424 (-0.470406) | 0.028435 / 0.534201 (-0.505766) | 0.509253 / 0.579283 (-0.070030) | 0.606993 / 0.434364 (0.172629) | 0.587189 / 0.540337 (0.046851) | 0.684023 / 1.386936 (-0.702913) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9aaee6fd0b2bcbe18e4829602084bcd83d669c5e \"CML watermark\")\n"
] | 2023-06-14T16:17:26 | 2023-06-14T16:33:39 | 2023-06-14T16:24:39 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5957",
"html_url": "https://github.com/huggingface/datasets/pull/5957",
"diff_url": "https://github.com/huggingface/datasets/pull/5957.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5957.patch",
"merged_at": "2023-06-14T16:24:39"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5957/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5957/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5956 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5956/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5956/comments | https://api.github.com/repos/huggingface/datasets/issues/5956/events | https://github.com/huggingface/datasets/pull/5956 | 1,756,959,367 | PR_kwDODunzps5S_1o2 | 5,956 | Fix ArrowExamplesIterable.shard_data_sources | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005893 / 0.011353 (-0.005460) | 0.003682 / 0.011008 (-0.007327) | 0.098358 / 0.038508 (0.059850) | 0.028130 / 0.023109 (0.005020) | 0.305960 / 0.275898 (0.030062) | 0.334869 / 0.323480 (0.011390) | 0.003522 / 0.007986 (-0.004463) | 0.003683 / 0.004328 (-0.000645) | 0.079418 / 0.004250 (0.075168) | 0.037662 / 0.037052 (0.000609) | 0.310893 / 0.258489 (0.052404) | 0.341347 / 0.293841 (0.047506) | 0.027450 / 0.128546 (-0.101096) | 0.008381 / 0.075646 (-0.067265) | 0.316020 / 0.419271 (-0.103252) | 0.045079 / 0.043533 (0.001546) | 0.307806 / 0.255139 (0.052667) | 0.331804 / 0.283200 (0.048604) | 0.091806 / 0.141683 (-0.049877) | 1.492611 / 1.452155 (0.040457) | 1.551762 / 1.492716 (0.059046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201640 / 0.018006 (0.183634) | 0.422776 / 0.000490 (0.422286) | 0.003734 / 0.000200 (0.003535) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025429 / 0.037411 (-0.011982) | 0.104699 / 0.014526 (0.090173) | 0.110505 / 0.176557 (-0.066051) | 0.171252 / 0.737135 (-0.565883) | 0.113131 / 0.296338 (-0.183208) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419914 / 0.215209 (0.204705) | 4.184414 / 2.077655 (2.106760) | 1.999263 / 1.504120 (0.495143) | 1.828669 / 1.541195 (0.287474) | 1.940366 / 1.468490 (0.471876) | 0.556939 / 4.584777 (-4.027838) | 3.389164 / 3.745712 (-0.356548) | 1.796323 / 5.269862 (-3.473538) | 1.048843 / 4.565676 (-3.516833) | 0.067315 / 0.424275 (-0.356960) | 0.011531 / 0.007607 (0.003923) | 0.517226 / 0.226044 (0.291182) | 5.167255 / 2.268929 (2.898326) | 2.431129 / 55.444624 (-53.013495) | 2.133913 / 6.876477 (-4.742564) | 2.359021 / 2.142072 (0.216948) | 0.666390 / 4.805227 (-4.138838) | 0.135147 / 6.500664 (-6.365517) | 0.064855 / 0.075469 (-0.010614) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.166530 / 1.841788 (-0.675258) | 14.060551 / 8.074308 (5.986242) | 14.171663 / 10.191392 (3.980271) | 0.285821 / 0.680424 (-0.394603) | 0.016867 / 0.534201 (-0.517334) | 0.369102 / 0.579283 (-0.210181) | 0.393580 / 0.434364 (-0.040784) | 0.423721 / 0.540337 (-0.116616) | 0.512559 / 1.386936 (-0.874377) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006674 / 0.011353 (-0.004679) | 0.004006 / 0.011008 (-0.007002) | 0.080160 / 0.038508 (0.041652) | 0.032508 / 0.023109 (0.009399) | 0.378168 / 0.275898 (0.102270) | 0.417796 / 0.323480 (0.094316) | 0.003706 / 0.007986 (-0.004280) | 0.002995 / 0.004328 (-0.001333) | 0.079275 / 0.004250 (0.075025) | 0.043690 / 0.037052 (0.006638) | 0.377717 / 0.258489 (0.119228) | 0.439801 / 0.293841 (0.145961) | 0.028438 / 0.128546 (-0.100108) | 0.008661 / 0.075646 (-0.066985) | 0.085280 / 0.419271 (-0.333991) | 0.043716 / 0.043533 (0.000183) | 0.370086 / 0.255139 (0.114947) | 0.403763 / 0.283200 (0.120563) | 0.095022 / 0.141683 (-0.046661) | 1.534376 / 1.452155 (0.082221) | 1.597658 / 1.492716 (0.104942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240229 / 0.018006 (0.222223) | 0.496281 / 0.000490 (0.495792) | 0.002165 / 0.000200 (0.001965) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025330 / 0.037411 (-0.012081) | 0.102414 / 0.014526 (0.087888) | 0.112733 / 0.176557 (-0.063824) | 0.161181 / 0.737135 (-0.575955) | 0.114196 / 0.296338 (-0.182143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456808 / 0.215209 (0.241599) | 4.534937 / 2.077655 (2.457283) | 2.318834 / 1.504120 (0.814714) | 2.074085 / 1.541195 (0.532890) | 2.117409 / 1.468490 (0.648919) | 0.559110 / 4.584777 (-4.025667) | 3.371695 / 3.745712 (-0.374017) | 2.543154 / 5.269862 (-2.726708) | 1.360552 / 4.565676 (-3.205125) | 0.067602 / 0.424275 (-0.356674) | 0.011396 / 0.007607 (0.003789) | 0.561666 / 0.226044 (0.335622) | 5.607666 / 2.268929 (3.338737) | 2.802775 / 55.444624 (-52.641849) | 2.486162 / 6.876477 (-4.390315) | 2.390885 / 2.142072 (0.248813) | 0.667407 / 4.805227 (-4.137820) | 0.135948 / 6.500664 (-6.364717) | 0.067272 / 0.075469 (-0.008197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279664 / 1.841788 (-0.562124) | 15.188099 / 8.074308 (7.113791) | 14.380355 / 10.191392 (4.188963) | 0.140344 / 0.680424 (-0.540080) | 0.016832 / 0.534201 (-0.517369) | 0.364631 / 0.579283 (-0.214652) | 0.400306 / 0.434364 (-0.034058) | 0.430793 / 0.540337 (-0.109545) | 0.525923 / 1.386936 (-0.861013) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#48ca19cf1f4d1c99765a1f847c1f6b849496d99d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008502 / 0.011353 (-0.002851) | 0.005946 / 0.011008 (-0.005062) | 0.131279 / 0.038508 (0.092771) | 0.035400 / 0.023109 (0.012291) | 0.423240 / 0.275898 (0.147342) | 0.470248 / 0.323480 (0.146768) | 0.004949 / 0.007986 (-0.003037) | 0.004544 / 0.004328 (0.000215) | 0.106856 / 0.004250 (0.102605) | 0.046579 / 0.037052 (0.009527) | 0.441135 / 0.258489 (0.182646) | 0.470401 / 0.293841 (0.176561) | 0.047231 / 0.128546 (-0.081315) | 0.017278 / 0.075646 (-0.058368) | 0.401937 / 0.419271 (-0.017335) | 0.067151 / 0.043533 (0.023619) | 0.453908 / 0.255139 (0.198769) | 0.422171 / 0.283200 (0.138971) | 0.123583 / 0.141683 (-0.018100) | 1.852895 / 1.452155 (0.400740) | 1.827282 / 1.492716 (0.334566) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246419 / 0.018006 (0.228413) | 0.576930 / 0.000490 (0.576440) | 0.007511 / 0.000200 (0.007312) | 0.000165 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032732 / 0.037411 (-0.004680) | 0.130266 / 0.014526 (0.115740) | 0.150537 / 0.176557 (-0.026019) | 0.218554 / 0.737135 (-0.518582) | 0.148572 / 0.296338 (-0.147766) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598611 / 0.215209 (0.383402) | 6.181219 / 2.077655 (4.103564) | 2.473468 / 1.504120 (0.969348) | 2.206374 / 1.541195 (0.665179) | 2.216707 / 1.468490 (0.748217) | 0.981295 / 4.584777 (-3.603482) | 5.716384 / 3.745712 (1.970672) | 5.882327 / 5.269862 (0.612466) | 2.761081 / 4.565676 (-1.804595) | 0.113544 / 0.424275 (-0.310731) | 0.015131 / 0.007607 (0.007524) | 0.850939 / 0.226044 (0.624894) | 8.046611 / 2.268929 (5.777682) | 3.340542 / 55.444624 (-52.104083) | 2.673692 / 6.876477 (-4.202785) | 2.926330 / 2.142072 (0.784257) | 1.176164 / 4.805227 (-3.629064) | 0.226745 / 6.500664 (-6.273919) | 0.085910 / 0.075469 (0.010441) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483792 / 1.841788 (-0.357995) | 18.895009 / 8.074308 (10.820701) | 20.982461 / 10.191392 (10.791069) | 0.253085 / 0.680424 (-0.427339) | 0.031284 / 0.534201 (-0.502917) | 0.516569 / 0.579283 (-0.062714) | 0.635781 / 0.434364 (0.201417) | 0.604359 / 0.540337 (0.064022) | 0.725278 / 1.386936 (-0.661658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009220 / 0.011353 (-0.002133) | 0.005792 / 0.011008 (-0.005216) | 0.099795 / 0.038508 (0.061287) | 0.033812 / 0.023109 (0.010703) | 0.459386 / 0.275898 (0.183488) | 0.518067 / 0.323480 (0.194587) | 0.005083 / 0.007986 (-0.002902) | 0.004145 / 0.004328 (-0.000183) | 0.103506 / 0.004250 (0.099255) | 0.050429 / 0.037052 (0.013377) | 0.478149 / 0.258489 (0.219660) | 0.531280 / 0.293841 (0.237440) | 0.047373 / 0.128546 (-0.081173) | 0.013647 / 0.075646 (-0.061999) | 0.115174 / 0.419271 (-0.304098) | 0.061099 / 0.043533 (0.017566) | 0.455002 / 0.255139 (0.199863) | 0.507765 / 0.283200 (0.224565) | 0.112219 / 0.141683 (-0.029464) | 1.873591 / 1.452155 (0.421436) | 1.952061 / 1.492716 (0.459345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283587 / 0.018006 (0.265581) | 0.587562 / 0.000490 (0.587073) | 0.001252 / 0.000200 (0.001052) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004705) | 0.137715 / 0.014526 (0.123189) | 0.131932 / 0.176557 (-0.044625) | 0.200042 / 0.737135 (-0.537094) | 0.159327 / 0.296338 (-0.137011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624061 / 0.215209 (0.408852) | 6.386235 / 2.077655 (4.308580) | 2.908786 / 1.504120 (1.404666) | 2.589855 / 1.541195 (1.048660) | 2.387988 / 1.468490 (0.919498) | 0.952625 / 4.584777 (-3.632152) | 5.571641 / 3.745712 (1.825929) | 2.711154 / 5.269862 (-2.558708) | 1.788015 / 4.565676 (-2.777662) | 0.104488 / 0.424275 (-0.319787) | 0.015213 / 0.007607 (0.007606) | 0.798446 / 0.226044 (0.572401) | 8.011614 / 2.268929 (5.742686) | 3.711951 / 55.444624 (-51.732673) | 2.896881 / 6.876477 (-3.979595) | 3.172116 / 2.142072 (1.030043) | 1.136816 / 4.805227 (-3.668411) | 0.239254 / 6.500664 (-6.261410) | 0.081136 / 0.075469 (0.005667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.798246 / 1.841788 (-0.043542) | 19.497108 / 8.074308 (11.422800) | 23.450258 / 10.191392 (13.258866) | 0.250021 / 0.680424 (-0.430403) | 0.029138 / 0.534201 (-0.505063) | 0.532984 / 0.579283 (-0.046299) | 0.638161 / 0.434364 (0.203797) | 0.615720 / 0.540337 (0.075382) | 0.770621 / 1.386936 (-0.616315) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7d8345c5f8a844ff44cfbb30cbda514ffe89bfd7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009120 / 0.011353 (-0.002233) | 0.005381 / 0.011008 (-0.005627) | 0.139719 / 0.038508 (0.101211) | 0.037229 / 0.023109 (0.014120) | 0.414633 / 0.275898 (0.138734) | 0.480313 / 0.323480 (0.156833) | 0.005027 / 0.007986 (-0.002959) | 0.005015 / 0.004328 (0.000687) | 0.108513 / 0.004250 (0.104263) | 0.056167 / 0.037052 (0.019115) | 0.407588 / 0.258489 (0.149099) | 0.518899 / 0.293841 (0.225058) | 0.048857 / 0.128546 (-0.079689) | 0.013694 / 0.075646 (-0.061952) | 0.418035 / 0.419271 (-0.001237) | 0.067755 / 0.043533 (0.024222) | 0.417740 / 0.255139 (0.162601) | 0.478622 / 0.283200 (0.195422) | 0.118290 / 0.141683 (-0.023393) | 1.901473 / 1.452155 (0.449319) | 1.978126 / 1.492716 (0.485409) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271960 / 0.018006 (0.253954) | 0.602745 / 0.000490 (0.602255) | 0.005371 / 0.000200 (0.005171) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029620 / 0.037411 (-0.007791) | 0.122402 / 0.014526 (0.107877) | 0.132645 / 0.176557 (-0.043911) | 0.212635 / 0.737135 (-0.524500) | 0.136901 / 0.296338 (-0.159438) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.644017 / 0.215209 (0.428808) | 6.597151 / 2.077655 (4.519496) | 2.454471 / 1.504120 (0.950351) | 2.151357 / 1.541195 (0.610163) | 2.290748 / 1.468490 (0.822258) | 0.970194 / 4.584777 (-3.614583) | 5.475275 / 3.745712 (1.729563) | 2.772658 / 5.269862 (-2.497204) | 1.785311 / 4.565676 (-2.780366) | 0.114503 / 0.424275 (-0.309772) | 0.015374 / 0.007607 (0.007767) | 0.768413 / 0.226044 (0.542368) | 7.956219 / 2.268929 (5.687290) | 3.272138 / 55.444624 (-52.172486) | 2.539638 / 6.876477 (-4.336839) | 2.713526 / 2.142072 (0.571454) | 1.181221 / 4.805227 (-3.624006) | 0.236327 / 6.500664 (-6.264337) | 0.089815 / 0.075469 (0.014345) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.521805 / 1.841788 (-0.319983) | 18.196529 / 8.074308 (10.122221) | 20.287324 / 10.191392 (10.095932) | 0.256959 / 0.680424 (-0.423465) | 0.028846 / 0.534201 (-0.505355) | 0.522354 / 0.579283 (-0.056929) | 0.600216 / 0.434364 (0.165852) | 0.607668 / 0.540337 (0.067331) | 0.762101 / 1.386936 (-0.624835) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009227 / 0.011353 (-0.002126) | 0.005398 / 0.011008 (-0.005610) | 0.094998 / 0.038508 (0.056490) | 0.036633 / 0.023109 (0.013524) | 0.493317 / 0.275898 (0.217419) | 0.517216 / 0.323480 (0.193736) | 0.005510 / 0.007986 (-0.002476) | 0.004249 / 0.004328 (-0.000079) | 0.107936 / 0.004250 (0.103685) | 0.050223 / 0.037052 (0.013171) | 0.580275 / 0.258489 (0.321786) | 0.551477 / 0.293841 (0.257636) | 0.048758 / 0.128546 (-0.079788) | 0.013954 / 0.075646 (-0.061692) | 0.107021 / 0.419271 (-0.312250) | 0.064416 / 0.043533 (0.020884) | 0.485225 / 0.255139 (0.230086) | 0.513862 / 0.283200 (0.230663) | 0.118848 / 0.141683 (-0.022835) | 1.755396 / 1.452155 (0.303241) | 1.970349 / 1.492716 (0.477633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290743 / 0.018006 (0.272737) | 0.603293 / 0.000490 (0.602803) | 0.006814 / 0.000200 (0.006614) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029862 / 0.037411 (-0.007550) | 0.136530 / 0.014526 (0.122005) | 0.133728 / 0.176557 (-0.042829) | 0.194709 / 0.737135 (-0.542427) | 0.151080 / 0.296338 (-0.145258) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649202 / 0.215209 (0.433993) | 6.637578 / 2.077655 (4.559923) | 3.040135 / 1.504120 (1.536015) | 2.671308 / 1.541195 (1.130113) | 2.722412 / 1.468490 (1.253922) | 0.953029 / 4.584777 (-3.631748) | 5.805002 / 3.745712 (2.059290) | 5.049939 / 5.269862 (-0.219922) | 2.284053 / 4.565676 (-2.281623) | 0.130399 / 0.424275 (-0.293876) | 0.014726 / 0.007607 (0.007119) | 0.932570 / 0.226044 (0.706526) | 8.576693 / 2.268929 (6.307765) | 4.032738 / 55.444624 (-51.411886) | 3.274715 / 6.876477 (-3.601762) | 3.513788 / 2.142072 (1.371716) | 1.130624 / 4.805227 (-3.674603) | 0.219597 / 6.500664 (-6.281067) | 0.081425 / 0.075469 (0.005956) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.735312 / 1.841788 (-0.106476) | 18.438587 / 8.074308 (10.364279) | 21.582310 / 10.191392 (11.390918) | 0.224040 / 0.680424 (-0.456384) | 0.027590 / 0.534201 (-0.506611) | 0.503598 / 0.579283 (-0.075685) | 0.624379 / 0.434364 (0.190015) | 0.571911 / 0.540337 (0.031574) | 0.723215 / 1.386936 (-0.663721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e40d28f2b0060a429c70827191fa5ff3ce8cf27 \"CML watermark\")\n"
] | 2023-06-14T13:50:38 | 2023-06-14T14:43:12 | 2023-06-14T14:33:45 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5956",
"html_url": "https://github.com/huggingface/datasets/pull/5956",
"diff_url": "https://github.com/huggingface/datasets/pull/5956.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5956.patch",
"merged_at": "2023-06-14T14:33:45"
} | ArrowExamplesIterable.shard_data_sources was outdated
I also fixed a warning message by not using format_type= in with_format() | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5956/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5956/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5955 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5955/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5955/comments | https://api.github.com/repos/huggingface/datasets/issues/5955/events | https://github.com/huggingface/datasets/issues/5955 | 1,756,827,133 | I_kwDODunzps5otw39 | 5,955 | Strange bug in loading local JSON files, using load_dataset | {
"login": "Night-Quiet",
"id": 73934131,
"node_id": "MDQ6VXNlcjczOTM0MTMx",
"avatar_url": "https://avatars.githubusercontent.com/u/73934131?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Night-Quiet",
"html_url": "https://github.com/Night-Quiet",
"followers_url": "https://api.github.com/users/Night-Quiet/followers",
"following_url": "https://api.github.com/users/Night-Quiet/following{/other_user}",
"gists_url": "https://api.github.com/users/Night-Quiet/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Night-Quiet/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Night-Quiet/subscriptions",
"organizations_url": "https://api.github.com/users/Night-Quiet/orgs",
"repos_url": "https://api.github.com/users/Night-Quiet/repos",
"events_url": "https://api.github.com/users/Night-Quiet/events{/privacy}",
"received_events_url": "https://api.github.com/users/Night-Quiet/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This is the actual error:\r\n```\r\nFailed to read file '/home/lakala/hjc/code/pycode/glm/temp.json' with error <class 'pyarrow.lib.ArrowInvalid'>: cannot mix list and non-list, non-null values\r\n```\r\nWhich means some samples are incorrectly formatted.\r\n\r\nPyArrow, a storage backend that we use under the hood, requires that all the list elements have the same level of nesting (same number of dimensions) or are `None`.\r\n```python\r\nimport pyarrow as pa\r\npa.array([[1, 2, 3], 2]) # ArrowInvalid: cannot mix list and non-list, non-null values\r\npa.array([[1, 2, 3], [2]]) # works\r\n``` ",
"@mariosasko \r\nI used the same operation to check the original data before and after slicing.\r\nThis is reflected in my code.\r\n160000 is not a specific number.\r\nI can also get output using 150000.\r\nThis doesn't seem to align very well with what you said.\r\nBecause if only some sample formats are incorrect.\r\nSo there should be an error in one of the front and back slices.\r\nthank you for your reply.",
"Our JSON loader does the following in your case:\r\n\r\n```python\r\nimport json\r\nimport pyarrow as pa\r\n\r\nwith open(file, encoding=\"utf-8\") as f:\r\n dataset = json.load(f)\r\nkeys = set().union(*[row.keys() for row in dataset])\r\nmapping = {col: [row.get(col) for row in dataset] for col in keys}\r\npa_table = pa.Table.from_pydict(mapping) # the ArrowInvalid error comes from here\r\n```\r\n\r\nSo if this code throws an error with correctly-formatted JSON, then this is an Arrow bug and should be reported in their repo.\r\n\r\n> I used the same operation to check the original data before and after slicing.\r\nThis is reflected in my code.\r\n160000 is not a specific number.\r\nI can also get output using 150000.\r\nThis doesn't seem to align very well with what you said.\r\nBecause if only some sample formats are incorrect.\r\nSo there should be an error in one of the front and back slices.\r\n\r\nYou should shuffle the data to make sure that's not the case",
"@mariosasko \r\nThank you.\r\nI will try again."
] | 2023-06-14T12:46:00 | 2023-06-21T14:42:15 | 2023-06-21T14:42:15 | NONE | null | null | null | ### Describe the bug
I am using 'load_dataset 'loads a JSON file, but I found a strange bug: an error will be reported when the length of the JSON file exceeds 160000 (uncertain exact number). I have checked the data through the following code and there are no issues. So I cannot determine the true reason for this error.
The data is a list containing a dictionary. As follows:
[
{'input': 'someting...', 'target': 'someting...', 'type': 'someting...', 'history': ['someting...', ...]},
...
]
### Steps to reproduce the bug
```
import json
from datasets import load_dataset
path = "target.json"
temp_path = "temp.json"
with open(path, "r") as f:
data = json.load(f)
print(f"\n-------the JSON file length is: {len(data)}-------\n")
with open(temp_path, "w") as f:
json.dump(data[:160000], f)
dataset = load_dataset("json", data_files=temp_path)
print("\n-------This works when the JSON file length is 160000-------\n")
with open(temp_path, "w") as f:
json.dump(data[160000:], f)
dataset = load_dataset("json", data_files=temp_path)
print("\n-------This works and eliminates data issues-------\n")
with open(temp_path, "w") as f:
json.dump(data[:170000], f)
dataset = load_dataset("json", data_files=temp_path)
```
### Expected behavior
```
-------the JSON file length is: 173049-------
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-acf3c7f418c5f4b4/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...
Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 3328.81it/s]
Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 639.47it/s]
Dataset json downloaded and prepared to /root/.cache/huggingface/datasets/json/default-acf3c7f418c5f4b4/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4. Subsequent calls will reuse this data.
100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 265.85it/s]
-------This works when the JSON file length is 160000-------
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-a42f04b263ceea6a/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...
Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 2038.05it/s]
Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 794.83it/s]
Dataset json downloaded and prepared to /root/.cache/huggingface/datasets/json/default-a42f04b263ceea6a/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4. Subsequent calls will reuse this data.
100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 681.00it/s]
-------This works and eliminates data issues-------
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-63f391c89599c7b0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...
Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 3682.44it/s]
Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 788.70it/s]
Generating train split: 0 examples [00:00, ? examples/s]Failed to read file '/home/lakala/hjc/code/pycode/glm/temp.json' with error <class 'pyarrow.lib.ArrowInvalid'>: cannot mix list and non-list, non-null values
Traceback (most recent call last):
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
for _, table in generator:
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 146, in _generate_tables
raise ValueError(f"Not able to read records in the JSON file at {file}.") from None
ValueError: Not able to read records in the JSON file at /home/lakala/hjc/code/pycode/glm/temp.json.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/lakala/hjc/code/pycode/glm/test.py", line 22, in <module>
dataset = load_dataset("json", data_files=temp_path)
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/load.py", line 1797, in load_dataset
builder_instance.download_and_prepare(
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 890, in download_and_prepare
self._download_and_prepare(
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 985, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 1746, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 1891, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Environment info
```
Ubuntu==22.04
python==3.8
pytorch-transformers==1.2.0
transformers== 4.27.1
datasets==2.12.0
numpy==1.24.3
pandas==1.5.3
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5955/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5955/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5954 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5954/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5954/comments | https://api.github.com/repos/huggingface/datasets/issues/5954/events | https://github.com/huggingface/datasets/pull/5954 | 1,756,572,994 | PR_kwDODunzps5S-hSP | 5,954 | Better filenotfound for gated | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006374 / 0.011353 (-0.004979) | 0.004100 / 0.011008 (-0.006909) | 0.104031 / 0.038508 (0.065523) | 0.035186 / 0.023109 (0.012076) | 0.328904 / 0.275898 (0.053006) | 0.361409 / 0.323480 (0.037929) | 0.003855 / 0.007986 (-0.004130) | 0.004140 / 0.004328 (-0.000189) | 0.080406 / 0.004250 (0.076156) | 0.045658 / 0.037052 (0.008606) | 0.341133 / 0.258489 (0.082644) | 0.372688 / 0.293841 (0.078847) | 0.032025 / 0.128546 (-0.096521) | 0.008877 / 0.075646 (-0.066769) | 0.354784 / 0.419271 (-0.064488) | 0.068874 / 0.043533 (0.025341) | 0.335441 / 0.255139 (0.080302) | 0.356498 / 0.283200 (0.073298) | 0.113367 / 0.141683 (-0.028316) | 1.522458 / 1.452155 (0.070304) | 1.608046 / 1.492716 (0.115329) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231653 / 0.018006 (0.213647) | 0.446678 / 0.000490 (0.446188) | 0.003246 / 0.000200 (0.003046) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025299 / 0.037411 (-0.012112) | 0.111440 / 0.014526 (0.096914) | 0.118758 / 0.176557 (-0.057799) | 0.175037 / 0.737135 (-0.562098) | 0.124583 / 0.296338 (-0.171755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418694 / 0.215209 (0.203484) | 4.174695 / 2.077655 (2.097041) | 1.890323 / 1.504120 (0.386203) | 1.683300 / 1.541195 (0.142106) | 1.781954 / 1.468490 (0.313464) | 0.546131 / 4.584777 (-4.038645) | 3.768055 / 3.745712 (0.022343) | 1.839878 / 5.269862 (-3.429983) | 1.111877 / 4.565676 (-3.453800) | 0.068568 / 0.424275 (-0.355707) | 0.011950 / 0.007607 (0.004343) | 0.527469 / 0.226044 (0.301425) | 5.274887 / 2.268929 (3.005958) | 2.391274 / 55.444624 (-53.053351) | 2.063837 / 6.876477 (-4.812640) | 2.140627 / 2.142072 (-0.001445) | 0.681508 / 4.805227 (-4.123719) | 0.148203 / 6.500664 (-6.352461) | 0.064456 / 0.075469 (-0.011013) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221478 / 1.841788 (-0.620310) | 14.713705 / 8.074308 (6.639397) | 14.674184 / 10.191392 (4.482792) | 0.148411 / 0.680424 (-0.532012) | 0.017858 / 0.534201 (-0.516343) | 0.436166 / 0.579283 (-0.143117) | 0.437290 / 0.434364 (0.002926) | 0.521994 / 0.540337 (-0.018343) | 0.635488 / 1.386936 (-0.751448) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006108 / 0.011353 (-0.005245) | 0.003888 / 0.011008 (-0.007120) | 0.078424 / 0.038508 (0.039916) | 0.033618 / 0.023109 (0.010509) | 0.376284 / 0.275898 (0.100386) | 0.396957 / 0.323480 (0.073477) | 0.003799 / 0.007986 (-0.004187) | 0.003160 / 0.004328 (-0.001168) | 0.078358 / 0.004250 (0.074107) | 0.045597 / 0.037052 (0.008545) | 0.386396 / 0.258489 (0.127907) | 0.412985 / 0.293841 (0.119144) | 0.031610 / 0.128546 (-0.096936) | 0.008720 / 0.075646 (-0.066926) | 0.085944 / 0.419271 (-0.333328) | 0.050780 / 0.043533 (0.007247) | 0.378099 / 0.255139 (0.122960) | 0.381894 / 0.283200 (0.098694) | 0.098926 / 0.141683 (-0.042756) | 1.513842 / 1.452155 (0.061688) | 1.595040 / 1.492716 (0.102323) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208169 / 0.018006 (0.190163) | 0.431653 / 0.000490 (0.431163) | 0.000935 / 0.000200 (0.000735) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029600 / 0.037411 (-0.007812) | 0.116936 / 0.014526 (0.102410) | 0.125603 / 0.176557 (-0.050953) | 0.177007 / 0.737135 (-0.560129) | 0.130602 / 0.296338 (-0.165736) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457158 / 0.215209 (0.241949) | 4.563254 / 2.077655 (2.485599) | 2.303549 / 1.504120 (0.799429) | 2.107269 / 1.541195 (0.566074) | 2.130861 / 1.468490 (0.662371) | 0.548931 / 4.584777 (-4.035846) | 3.745578 / 3.745712 (-0.000134) | 1.820372 / 5.269862 (-3.449490) | 1.099316 / 4.565676 (-3.466361) | 0.068218 / 0.424275 (-0.356057) | 0.012336 / 0.007607 (0.004728) | 0.569721 / 0.226044 (0.343676) | 5.691312 / 2.268929 (3.422384) | 2.797483 / 55.444624 (-52.647141) | 2.422621 / 6.876477 (-4.453855) | 2.426187 / 2.142072 (0.284115) | 0.674777 / 4.805227 (-4.130451) | 0.144855 / 6.500664 (-6.355809) | 0.065805 / 0.075469 (-0.009664) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305078 / 1.841788 (-0.536709) | 14.874315 / 8.074308 (6.800007) | 14.541301 / 10.191392 (4.349909) | 0.175818 / 0.680424 (-0.504606) | 0.018169 / 0.534201 (-0.516032) | 0.435836 / 0.579283 (-0.143447) | 0.458397 / 0.434364 (0.024033) | 0.506232 / 0.540337 (-0.034106) | 0.605306 / 1.386936 (-0.781630) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e0c1ceab96821c7c6557482d25a9bd2078d716a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006138 / 0.011353 (-0.005215) | 0.003792 / 0.011008 (-0.007216) | 0.099417 / 0.038508 (0.060908) | 0.028739 / 0.023109 (0.005630) | 0.302835 / 0.275898 (0.026937) | 0.336397 / 0.323480 (0.012918) | 0.003537 / 0.007986 (-0.004449) | 0.002973 / 0.004328 (-0.001355) | 0.077461 / 0.004250 (0.073211) | 0.039493 / 0.037052 (0.002440) | 0.302367 / 0.258489 (0.043878) | 0.344936 / 0.293841 (0.051095) | 0.027813 / 0.128546 (-0.100733) | 0.008591 / 0.075646 (-0.067055) | 0.318975 / 0.419271 (-0.100297) | 0.045971 / 0.043533 (0.002438) | 0.301672 / 0.255139 (0.046533) | 0.328202 / 0.283200 (0.045003) | 0.091400 / 0.141683 (-0.050282) | 1.487215 / 1.452155 (0.035060) | 1.557730 / 1.492716 (0.065014) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208343 / 0.018006 (0.190336) | 0.426764 / 0.000490 (0.426275) | 0.001196 / 0.000200 (0.000996) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024332 / 0.037411 (-0.013079) | 0.101861 / 0.014526 (0.087335) | 0.108669 / 0.176557 (-0.067888) | 0.172042 / 0.737135 (-0.565093) | 0.113048 / 0.296338 (-0.183290) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421419 / 0.215209 (0.206210) | 4.200816 / 2.077655 (2.123162) | 1.913516 / 1.504120 (0.409396) | 1.712167 / 1.541195 (0.170972) | 1.762129 / 1.468490 (0.293639) | 0.561616 / 4.584777 (-4.023161) | 3.398122 / 3.745712 (-0.347590) | 1.744323 / 5.269862 (-3.525538) | 1.036023 / 4.565676 (-3.529653) | 0.067658 / 0.424275 (-0.356617) | 0.011145 / 0.007607 (0.003538) | 0.522803 / 0.226044 (0.296759) | 5.226245 / 2.268929 (2.957317) | 2.355148 / 55.444624 (-53.089476) | 2.014939 / 6.876477 (-4.861538) | 2.140028 / 2.142072 (-0.002044) | 0.695049 / 4.805227 (-4.110178) | 0.138428 / 6.500664 (-6.362236) | 0.066721 / 0.075469 (-0.008748) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219610 / 1.841788 (-0.622177) | 14.239576 / 8.074308 (6.165268) | 14.381955 / 10.191392 (4.190563) | 0.131208 / 0.680424 (-0.549216) | 0.016698 / 0.534201 (-0.517503) | 0.361373 / 0.579283 (-0.217910) | 0.382560 / 0.434364 (-0.051804) | 0.419427 / 0.540337 (-0.120911) | 0.508314 / 1.386936 (-0.878622) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006174 / 0.011353 (-0.005179) | 0.003893 / 0.011008 (-0.007115) | 0.079614 / 0.038508 (0.041106) | 0.028685 / 0.023109 (0.005576) | 0.368627 / 0.275898 (0.092729) | 0.411599 / 0.323480 (0.088119) | 0.003573 / 0.007986 (-0.004413) | 0.002989 / 0.004328 (-0.001340) | 0.078653 / 0.004250 (0.074402) | 0.041146 / 0.037052 (0.004094) | 0.362387 / 0.258489 (0.103898) | 0.417234 / 0.293841 (0.123393) | 0.027958 / 0.128546 (-0.100589) | 0.008695 / 0.075646 (-0.066952) | 0.084637 / 0.419271 (-0.334635) | 0.044188 / 0.043533 (0.000655) | 0.358514 / 0.255139 (0.103375) | 0.392314 / 0.283200 (0.109114) | 0.093986 / 0.141683 (-0.047697) | 1.535366 / 1.452155 (0.083212) | 1.605978 / 1.492716 (0.113262) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196215 / 0.018006 (0.178209) | 0.429403 / 0.000490 (0.428913) | 0.003736 / 0.000200 (0.003536) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025281 / 0.037411 (-0.012130) | 0.104325 / 0.014526 (0.089799) | 0.111548 / 0.176557 (-0.065009) | 0.162326 / 0.737135 (-0.574809) | 0.113853 / 0.296338 (-0.182486) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447600 / 0.215209 (0.232391) | 4.463422 / 2.077655 (2.385767) | 2.168028 / 1.504120 (0.663908) | 1.968699 / 1.541195 (0.427504) | 2.035531 / 1.468490 (0.567041) | 0.564575 / 4.584777 (-4.020202) | 3.435338 / 3.745712 (-0.310374) | 2.981930 / 5.269862 (-2.287932) | 1.492172 / 4.565676 (-3.073505) | 0.067981 / 0.424275 (-0.356294) | 0.011254 / 0.007607 (0.003647) | 0.544385 / 0.226044 (0.318340) | 5.441694 / 2.268929 (3.172765) | 2.650168 / 55.444624 (-52.794456) | 2.333974 / 6.876477 (-4.542503) | 2.383424 / 2.142072 (0.241351) | 0.669814 / 4.805227 (-4.135414) | 0.135456 / 6.500664 (-6.365209) | 0.067067 / 0.075469 (-0.008402) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.313275 / 1.841788 (-0.528513) | 14.527636 / 8.074308 (6.453328) | 14.470957 / 10.191392 (4.279565) | 0.144361 / 0.680424 (-0.536063) | 0.016847 / 0.534201 (-0.517354) | 0.365158 / 0.579283 (-0.214125) | 0.393809 / 0.434364 (-0.040555) | 0.428527 / 0.540337 (-0.111810) | 0.515816 / 1.386936 (-0.871120) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7845d4c3c301226b3f8941ac90aaa123bfd7c69e \"CML watermark\")\n"
] | 2023-06-14T10:33:10 | 2023-06-14T12:33:27 | 2023-06-14T12:26:31 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5954",
"html_url": "https://github.com/huggingface/datasets/pull/5954",
"diff_url": "https://github.com/huggingface/datasets/pull/5954.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5954.patch",
"merged_at": "2023-06-14T12:26:31"
} | close https://github.com/huggingface/datasets/issues/5953
<img width="1292" alt="image" src="https://github.com/huggingface/datasets/assets/42851186/270fe5bc-1739-4878-b7bc-ab6d35336d4d">
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5954/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5954/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5953 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5953/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5953/comments | https://api.github.com/repos/huggingface/datasets/issues/5953/events | https://github.com/huggingface/datasets/issues/5953 | 1,756,520,523 | I_kwDODunzps5osmBL | 5,953 | Bad error message when trying to download gated dataset | {
"login": "patrickvonplaten",
"id": 23423619,
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/patrickvonplaten",
"html_url": "https://github.com/patrickvonplaten",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"cc @sanchit-gandhi @Vaibhavs10 @lhoestq - this is mainly for demos that use Common Voice datasets as done here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms#-transformers\r\n",
"Hi ! the error for me is\r\n\r\n```\r\nFileNotFoundError: Couldn't find a dataset script at /content/mozilla-foundation/common_voice_13_0/common_voice_13_0.py or any data file in the same directory. Couldn't find 'mozilla-foundation/common_voice_13_0' on the Hugging Face Hub either: FileNotFoundError: Dataset 'mozilla-foundation/common_voice_13_0' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.\r\n```\r\n\r\nAnd tbh idk how you managed to get your error. \"n_shards.json\" is not even a thing in `datasets`",
"Okay, I am able to reproduce @patrickvonplaten's original error: https://github.com/Vaibhavs10/scratchpad/blob/main/cv13_datasets_test.ipynb\r\n\r\nAlso not sure why it looks for `n_shards.json`",
"Ok I see, this file is downloaded from the CV dataset script - let me investigate",
"Ok I see: when you log out you no longer have access to the repository.\r\n\r\nTherefore the dataset script is loaded from cache:\r\n```\r\nWARNING:datasets.load:Using the latest cached version of the module from /root/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_13_0/22809012aac1fc9803eaffc44122e4149043748e93933935d5ea19898587e4d7 (last modified on Wed Jun 14 10:13:17 2023) since it couldn't be found locally at mozilla-foundation/common_voice_13_0., or remotely on the Hugging Face Hub.\r\n```\r\n\r\nand the script tries to download the n_shards.json but fails",
"Is this ok for you https://github.com/huggingface/datasets/pull/5954 ?\r\n\r\nI'll do a release this afternoon",
"Cool! ",
"this is included in the new release 2.13.0"
] | 2023-06-14T10:03:39 | 2023-06-14T16:36:51 | 2023-06-14T12:26:32 | MEMBER | null | null | null | ### Describe the bug
When I attempt to download a model from the Hub that is gated without being logged in, I get a nice error message. E.g.:
E.g.
```sh
Repository Not Found for url: https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0.
Please make sure you specified the correct `repo_id` and `repo_type`.
If you are trying to access a private or gated repo, make sure you are authenticated.
Invalid username or password..
Will try to load from local cache.
```
If I do the same for a gated dataset on the Hub, I'm not gated a nice error message IMO:
```sh
File ~/hf/lib/python3.10/site-packages/fsspec/implementations/http.py:430, in HTTPFileSystem._info(self, url, **kwargs)
427 except Exception as exc:
428 if policy == "get":
429 # If get failed, then raise a FileNotFoundError
--> 430 raise FileNotFoundError(url) from exc
431 logger.debug(str(exc))
433 return {"name": url, "size": None, **info, "type": "file"}
FileNotFoundError: https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0/resolve/main/n_shards.json
```
### Steps to reproduce the bug
```
huggingface-cli logout
```
and then:
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# Swahili
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "sw", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
sw_sample = next(iter(stream_data))["audio"]["array"]
```
### Expected behavior
Better error message
### Environment info
Copy-and-paste the text below in your GitHub issue.
- `datasets` version: 2.12.0
- Platform: Linux-6.2.0-76060200-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.16.0.dev0
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5953/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5953/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5952 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5952/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5952/comments | https://api.github.com/repos/huggingface/datasets/issues/5952/events | https://github.com/huggingface/datasets/pull/5952 | 1,756,481,591 | PR_kwDODunzps5S-OIh | 5,952 | Add Arrow builder docs | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006522 / 0.011353 (-0.004831) | 0.004319 / 0.011008 (-0.006690) | 0.099280 / 0.038508 (0.060772) | 0.033117 / 0.023109 (0.010007) | 0.339392 / 0.275898 (0.063494) | 0.366219 / 0.323480 (0.042739) | 0.003896 / 0.007986 (-0.004090) | 0.003412 / 0.004328 (-0.000916) | 0.076655 / 0.004250 (0.072404) | 0.045203 / 0.037052 (0.008150) | 0.355800 / 0.258489 (0.097311) | 0.372533 / 0.293841 (0.078692) | 0.032318 / 0.128546 (-0.096229) | 0.009030 / 0.075646 (-0.066616) | 0.328701 / 0.419271 (-0.090571) | 0.052891 / 0.043533 (0.009358) | 0.341131 / 0.255139 (0.085992) | 0.351593 / 0.283200 (0.068393) | 0.105136 / 0.141683 (-0.036546) | 1.475953 / 1.452155 (0.023798) | 1.566074 / 1.492716 (0.073357) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216671 / 0.018006 (0.198664) | 0.446952 / 0.000490 (0.446462) | 0.006340 / 0.000200 (0.006140) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028293 / 0.037411 (-0.009118) | 0.112298 / 0.014526 (0.097773) | 0.118634 / 0.176557 (-0.057923) | 0.175542 / 0.737135 (-0.561593) | 0.124773 / 0.296338 (-0.171565) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435209 / 0.215209 (0.220000) | 4.344361 / 2.077655 (2.266706) | 2.128943 / 1.504120 (0.624823) | 1.945465 / 1.541195 (0.404271) | 2.049932 / 1.468490 (0.581442) | 0.547126 / 4.584777 (-4.037651) | 3.768698 / 3.745712 (0.022986) | 1.924441 / 5.269862 (-3.345420) | 1.146364 / 4.565676 (-3.419312) | 0.067466 / 0.424275 (-0.356809) | 0.011175 / 0.007607 (0.003568) | 0.540978 / 0.226044 (0.314933) | 5.393120 / 2.268929 (3.124191) | 2.639027 / 55.444624 (-52.805597) | 2.327216 / 6.876477 (-4.549261) | 2.500532 / 2.142072 (0.358460) | 0.679120 / 4.805227 (-4.126107) | 0.148824 / 6.500664 (-6.351840) | 0.064195 / 0.075469 (-0.011274) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.158387 / 1.841788 (-0.683401) | 14.880751 / 8.074308 (6.806443) | 14.725249 / 10.191392 (4.533857) | 0.149785 / 0.680424 (-0.530639) | 0.017338 / 0.534201 (-0.516863) | 0.390980 / 0.579283 (-0.188303) | 0.425611 / 0.434364 (-0.008753) | 0.458851 / 0.540337 (-0.081487) | 0.559209 / 1.386936 (-0.827727) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006835 / 0.011353 (-0.004518) | 0.004318 / 0.011008 (-0.006690) | 0.076715 / 0.038508 (0.038207) | 0.033528 / 0.023109 (0.010419) | 0.411986 / 0.275898 (0.136087) | 0.438752 / 0.323480 (0.115272) | 0.004039 / 0.007986 (-0.003947) | 0.003509 / 0.004328 (-0.000819) | 0.077924 / 0.004250 (0.073673) | 0.049519 / 0.037052 (0.012467) | 0.420595 / 0.258489 (0.162106) | 0.450536 / 0.293841 (0.156695) | 0.032817 / 0.128546 (-0.095729) | 0.008963 / 0.075646 (-0.066684) | 0.083818 / 0.419271 (-0.335454) | 0.057591 / 0.043533 (0.014058) | 0.404605 / 0.255139 (0.149466) | 0.423661 / 0.283200 (0.140462) | 0.110698 / 0.141683 (-0.030984) | 1.512515 / 1.452155 (0.060361) | 1.569207 / 1.492716 (0.076490) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200795 / 0.018006 (0.182789) | 0.448853 / 0.000490 (0.448363) | 0.003657 / 0.000200 (0.003457) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031612 / 0.037411 (-0.005799) | 0.116712 / 0.014526 (0.102186) | 0.126162 / 0.176557 (-0.050395) | 0.180522 / 0.737135 (-0.556614) | 0.129768 / 0.296338 (-0.166570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433797 / 0.215209 (0.218588) | 4.353099 / 2.077655 (2.275444) | 2.117582 / 1.504120 (0.613462) | 1.934487 / 1.541195 (0.393292) | 2.016988 / 1.468490 (0.548498) | 0.531387 / 4.584777 (-4.053390) | 3.843520 / 3.745712 (0.097807) | 1.879560 / 5.269862 (-3.390301) | 1.129445 / 4.565676 (-3.436231) | 0.065952 / 0.424275 (-0.358323) | 0.011566 / 0.007607 (0.003959) | 0.533949 / 0.226044 (0.307904) | 5.327447 / 2.268929 (3.058518) | 2.572202 / 55.444624 (-52.872422) | 2.240723 / 6.876477 (-4.635753) | 2.329290 / 2.142072 (0.187217) | 0.662162 / 4.805227 (-4.143066) | 0.143191 / 6.500664 (-6.357473) | 0.065273 / 0.075469 (-0.010196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274945 / 1.841788 (-0.566843) | 15.444511 / 8.074308 (7.370203) | 14.793524 / 10.191392 (4.602132) | 0.175607 / 0.680424 (-0.504817) | 0.017324 / 0.534201 (-0.516877) | 0.396172 / 0.579283 (-0.183111) | 0.437334 / 0.434364 (0.002970) | 0.472621 / 0.540337 (-0.067716) | 0.574888 / 1.386936 (-0.812048) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b4ab1b3ed7257b0e0ad075d7271a51835f320a5e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006976 / 0.011353 (-0.004377) | 0.004541 / 0.011008 (-0.006467) | 0.106085 / 0.038508 (0.067577) | 0.029148 / 0.023109 (0.006039) | 0.306386 / 0.275898 (0.030488) | 0.351474 / 0.323480 (0.027994) | 0.003924 / 0.007986 (-0.004062) | 0.004588 / 0.004328 (0.000260) | 0.090479 / 0.004250 (0.086229) | 0.041195 / 0.037052 (0.004142) | 0.346020 / 0.258489 (0.087531) | 0.362526 / 0.293841 (0.068685) | 0.041020 / 0.128546 (-0.087526) | 0.012536 / 0.075646 (-0.063110) | 0.333247 / 0.419271 (-0.086024) | 0.059786 / 0.043533 (0.016253) | 0.318094 / 0.255139 (0.062955) | 0.343879 / 0.283200 (0.060679) | 0.110083 / 0.141683 (-0.031600) | 1.514027 / 1.452155 (0.061872) | 1.551435 / 1.492716 (0.058719) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235401 / 0.018006 (0.217395) | 0.544292 / 0.000490 (0.543803) | 0.005284 / 0.000200 (0.005084) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025008 / 0.037411 (-0.012403) | 0.102235 / 0.014526 (0.087709) | 0.105523 / 0.176557 (-0.071034) | 0.180846 / 0.737135 (-0.556289) | 0.107078 / 0.296338 (-0.189261) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502374 / 0.215209 (0.287165) | 5.224254 / 2.077655 (3.146600) | 1.987193 / 1.504120 (0.483073) | 1.694680 / 1.541195 (0.153485) | 1.663907 / 1.468490 (0.195417) | 0.786470 / 4.584777 (-3.798307) | 4.977895 / 3.745712 (1.232183) | 4.713451 / 5.269862 (-0.556410) | 2.298763 / 4.565676 (-2.266913) | 0.090225 / 0.424275 (-0.334051) | 0.011427 / 0.007607 (0.003820) | 0.640686 / 0.226044 (0.414641) | 6.351727 / 2.268929 (4.082798) | 2.636912 / 55.444624 (-52.807712) | 2.075566 / 6.876477 (-4.800911) | 2.080260 / 2.142072 (-0.061812) | 0.952727 / 4.805227 (-3.852500) | 0.188651 / 6.500664 (-6.312013) | 0.068997 / 0.075469 (-0.006472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258878 / 1.841788 (-0.582910) | 15.444724 / 8.074308 (7.370416) | 17.521918 / 10.191392 (7.330526) | 0.189732 / 0.680424 (-0.490692) | 0.031084 / 0.534201 (-0.503117) | 0.445150 / 0.579283 (-0.134133) | 0.575844 / 0.434364 (0.141480) | 0.498162 / 0.540337 (-0.042176) | 0.635885 / 1.386936 (-0.751051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007402 / 0.011353 (-0.003951) | 0.005058 / 0.011008 (-0.005950) | 0.077659 / 0.038508 (0.039151) | 0.034934 / 0.023109 (0.011825) | 0.373139 / 0.275898 (0.097241) | 0.411857 / 0.323480 (0.088377) | 0.003751 / 0.007986 (-0.004235) | 0.003634 / 0.004328 (-0.000695) | 0.075914 / 0.004250 (0.071663) | 0.037555 / 0.037052 (0.000503) | 0.387482 / 0.258489 (0.128993) | 0.434407 / 0.293841 (0.140566) | 0.040540 / 0.128546 (-0.088006) | 0.013458 / 0.075646 (-0.062189) | 0.096129 / 0.419271 (-0.323143) | 0.055369 / 0.043533 (0.011836) | 0.386564 / 0.255139 (0.131425) | 0.410417 / 0.283200 (0.127218) | 0.093265 / 0.141683 (-0.048418) | 1.432841 / 1.452155 (-0.019314) | 1.533180 / 1.492716 (0.040463) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281051 / 0.018006 (0.263045) | 0.547635 / 0.000490 (0.547146) | 0.004434 / 0.000200 (0.004234) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026409 / 0.037411 (-0.011002) | 0.098586 / 0.014526 (0.084060) | 0.109223 / 0.176557 (-0.067334) | 0.165958 / 0.737135 (-0.571177) | 0.111751 / 0.296338 (-0.184587) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.542717 / 0.215209 (0.327508) | 5.530075 / 2.077655 (3.452420) | 2.351141 / 1.504120 (0.847022) | 2.021659 / 1.541195 (0.480464) | 1.964900 / 1.468490 (0.496410) | 0.819698 / 4.584777 (-3.765079) | 4.917412 / 3.745712 (1.171700) | 2.425149 / 5.269862 (-2.844712) | 1.561953 / 4.565676 (-3.003724) | 0.098417 / 0.424275 (-0.325858) | 0.012594 / 0.007607 (0.004986) | 0.717212 / 0.226044 (0.491168) | 6.994833 / 2.268929 (4.725904) | 2.997347 / 55.444624 (-52.447277) | 2.388366 / 6.876477 (-4.488111) | 2.502913 / 2.142072 (0.360841) | 1.030545 / 4.805227 (-3.774682) | 0.184844 / 6.500664 (-6.315820) | 0.076889 / 0.075469 (0.001420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.371647 / 1.841788 (-0.470141) | 15.522995 / 8.074308 (7.448687) | 17.349823 / 10.191392 (7.158431) | 0.229709 / 0.680424 (-0.450714) | 0.023303 / 0.534201 (-0.510898) | 0.413874 / 0.579283 (-0.165409) | 0.567552 / 0.434364 (0.133188) | 0.491722 / 0.540337 (-0.048615) | 0.590640 / 1.386936 (-0.796296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1911ffa5d1f58f509d04fe1ddeb9d00a63f94d5 \"CML watermark\")\n"
] | 2023-06-14T09:42:46 | 2023-06-14T14:42:31 | 2023-06-14T14:34:39 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5952",
"html_url": "https://github.com/huggingface/datasets/pull/5952",
"diff_url": "https://github.com/huggingface/datasets/pull/5952.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5952.patch",
"merged_at": "2023-06-14T14:34:39"
} | following https://github.com/huggingface/datasets/pull/5944 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5952/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5952/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5951 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5951/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5951/comments | https://api.github.com/repos/huggingface/datasets/issues/5951/events | https://github.com/huggingface/datasets/issues/5951 | 1,756,363,546 | I_kwDODunzps5or_sa | 5,951 | What is the Right way to use discofuse dataset?? | {
"login": "akesh1235",
"id": 125154243,
"node_id": "U_kgDOB3Wzww",
"avatar_url": "https://avatars.githubusercontent.com/u/125154243?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/akesh1235",
"html_url": "https://github.com/akesh1235",
"followers_url": "https://api.github.com/users/akesh1235/followers",
"following_url": "https://api.github.com/users/akesh1235/following{/other_user}",
"gists_url": "https://api.github.com/users/akesh1235/gists{/gist_id}",
"starred_url": "https://api.github.com/users/akesh1235/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/akesh1235/subscriptions",
"organizations_url": "https://api.github.com/users/akesh1235/orgs",
"repos_url": "https://api.github.com/users/akesh1235/repos",
"events_url": "https://api.github.com/users/akesh1235/events{/privacy}",
"received_events_url": "https://api.github.com/users/akesh1235/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for opening https://huggingface.co/datasets/discofuse/discussions/3, let's continue the discussion over there if you don't mind",
"I have posted there also sir, please check\r\n@lhoestq"
] | 2023-06-14T08:38:39 | 2023-06-14T13:25:06 | 2023-06-14T12:10:16 | NONE | null | null | null | [Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
**Below is the following way, as per my understanding , Is it correct :question: :question:**
The **columns/features from `DiscoFuse dataset`** that will be the **input to the `encoder` and `decoder`** are:
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
1. **coherent_first_sentence**
2. **coherent_second_sentence**
3. **incoherent_first_sentence**
4. **incoherent_second_sentence**
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
The **`encoder` will take these four columns as input and encode them into a sequence of hidden states. The `decoder` will then take these hidden states as input and decode them into a new sentence that fuses the two original sentences together.**
The **discourse type, connective_string, has_coref_type_pronoun, and has_coref_type_nominal columns will not be used as input to the encoder or decoder.** These columns are used to provide additional information about the dataset, but they are not necessary for the task of sentence fusion.
Please correct me if I am wrong; otherwise, if this understanding is right, how shall I implement this task practically? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5951/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5951/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5950 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5950/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5950/comments | https://api.github.com/repos/huggingface/datasets/issues/5950/events | https://github.com/huggingface/datasets/issues/5950 | 1,755,197,946 | I_kwDODunzps5onjH6 | 5,950 | Support for data with instance-wise dictionary as features | {
"login": "richardwth",
"id": 33274336,
"node_id": "MDQ6VXNlcjMzMjc0MzM2",
"avatar_url": "https://avatars.githubusercontent.com/u/33274336?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/richardwth",
"html_url": "https://github.com/richardwth",
"followers_url": "https://api.github.com/users/richardwth/followers",
"following_url": "https://api.github.com/users/richardwth/following{/other_user}",
"gists_url": "https://api.github.com/users/richardwth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/richardwth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/richardwth/subscriptions",
"organizations_url": "https://api.github.com/users/richardwth/orgs",
"repos_url": "https://api.github.com/users/richardwth/repos",
"events_url": "https://api.github.com/users/richardwth/events{/privacy}",
"received_events_url": "https://api.github.com/users/richardwth/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"Hi ! We use the Arrow columnar format under the hood, which doesn't support such dictionaries: each field must have a fixed type and exist in each sample.\r\n\r\nInstead you can restructure your data like\r\n```\r\n{\r\n \"index\": 0,\r\n \"keys\": [\"2 * x + y >= 3\"],\r\n \"values\": [[\"2 * x + y >= 3\", \"4 * x + 2 * y >= 6\"]],\r\n }\r\n},\r\n...\r\n{\r\n \"index\": 9999,\r\n \"keys\": [\"x >= 6\"],\r\n \"values\": [[\"x >= 6\", \"x >= 0\", \"x >= -1\"]],\r\n},\r\n...\r\n```"
] | 2023-06-13T15:49:00 | 2023-06-14T12:13:38 | null | NONE | null | null | null | ### Feature request
I notice that when loading data instances with feature type of python dictionary, the dictionary keys would be broadcast so that every instance has the same set of keys. Please see an example in the Motivation section.
It is possible to avoid this behavior, i.e., load dictionary features as it is and do not broadcast the keys among instances? Please note that these dictionaries would have to be processed dynamically at each training iteration into strings (and tokenized).
### Motivation
I am trying to load a dataset from a json file. Each instance of the dataset has a feature that is a dictionary but its keys depend on the instance. Every two instances may have different keys. For example, imagine a dataset that contains a set of math expressions from a bunch of mutually redundant expressions:
```
{
"index": 0,
"feature": {
"2 * x + y >= 3": ["2 * x + y >= 3", "4 * x + 2 * y >= 6"],
...
}
},
...
{
"index": 9999,
"feature": {
"x >= 6": ["x >= 6", "x >= 0", "x >= -1"],
...
}
},
...
```
When directly loading the dataset using `data = load_dataset("json", data_files=file_paths, split='train')`, each instance would have all the keys from other instances and None as values. That is, instance of index 0 becomes:
```
{
"index": 0,
"feature": {
"2 * x + y >= 3": ["2 * x + y >= 3", "4 * x + 2 * y >= 6"],
...
"x >= 6": None, # keys from other instances
...
}
},
```
This is not desirable. Moreover, issue would be raised if I attempt to combine two such datasets using `data = concatenate_datasets(multi_datasets)`, perhaps because their dictionary features contain different keys.
A solution I can think of is to store the dictionary features as a long string, and evaluate it later. Please kindly suggest any other solution using existing methods of datasets.
### Your contribution
N/A | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5950/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5950/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5949 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5949/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5949/comments | https://api.github.com/repos/huggingface/datasets/issues/5949/events | https://github.com/huggingface/datasets/pull/5949 | 1,754,843,717 | PR_kwDODunzps5S4oPC | 5,949 | Replace metadata utils with `huggingface_hub`'s RepoCard API | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006635 / 0.011353 (-0.004718) | 0.004439 / 0.011008 (-0.006570) | 0.107831 / 0.038508 (0.069323) | 0.035664 / 0.023109 (0.012555) | 0.393733 / 0.275898 (0.117835) | 0.418336 / 0.323480 (0.094856) | 0.005739 / 0.007986 (-0.002247) | 0.005737 / 0.004328 (0.001408) | 0.079820 / 0.004250 (0.075569) | 0.045402 / 0.037052 (0.008349) | 0.396108 / 0.258489 (0.137619) | 0.422951 / 0.293841 (0.129110) | 0.030506 / 0.128546 (-0.098040) | 0.009785 / 0.075646 (-0.065861) | 0.375302 / 0.419271 (-0.043969) | 0.054355 / 0.043533 (0.010823) | 0.399652 / 0.255139 (0.144513) | 0.410825 / 0.283200 (0.127625) | 0.109238 / 0.141683 (-0.032445) | 1.687532 / 1.452155 (0.235378) | 1.736829 / 1.492716 (0.244113) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226514 / 0.018006 (0.208508) | 0.487010 / 0.000490 (0.486520) | 0.006436 / 0.000200 (0.006236) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029097 / 0.037411 (-0.008315) | 0.122979 / 0.014526 (0.108453) | 0.129454 / 0.176557 (-0.047103) | 0.194006 / 0.737135 (-0.543129) | 0.137968 / 0.296338 (-0.158370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466425 / 0.215209 (0.251216) | 4.627307 / 2.077655 (2.549652) | 2.108840 / 1.504120 (0.604720) | 1.882547 / 1.541195 (0.341353) | 1.891077 / 1.468490 (0.422587) | 0.590646 / 4.584777 (-3.994131) | 4.176918 / 3.745712 (0.431205) | 2.071475 / 5.269862 (-3.198386) | 1.173815 / 4.565676 (-3.391862) | 0.075330 / 0.424275 (-0.348945) | 0.012944 / 0.007607 (0.005337) | 0.587080 / 0.226044 (0.361036) | 5.827053 / 2.268929 (3.558125) | 2.694258 / 55.444624 (-52.750366) | 2.276997 / 6.876477 (-4.599480) | 2.329678 / 2.142072 (0.187605) | 0.721860 / 4.805227 (-4.083367) | 0.159238 / 6.500664 (-6.341426) | 0.073013 / 0.075469 (-0.002456) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345396 / 1.841788 (-0.496391) | 16.619283 / 8.074308 (8.544975) | 14.754754 / 10.191392 (4.563362) | 0.180784 / 0.680424 (-0.499639) | 0.020376 / 0.534201 (-0.513825) | 0.451010 / 0.579283 (-0.128273) | 0.481524 / 0.434364 (0.047160) | 0.564777 / 0.540337 (0.024440) | 0.683232 / 1.386936 (-0.703704) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007243 / 0.011353 (-0.004110) | 0.005262 / 0.011008 (-0.005746) | 0.084090 / 0.038508 (0.045581) | 0.037429 / 0.023109 (0.014320) | 0.404038 / 0.275898 (0.128140) | 0.445040 / 0.323480 (0.121560) | 0.006220 / 0.007986 (-0.001766) | 0.004256 / 0.004328 (-0.000072) | 0.083794 / 0.004250 (0.079544) | 0.052655 / 0.037052 (0.015603) | 0.414083 / 0.258489 (0.155594) | 0.458190 / 0.293841 (0.164349) | 0.032719 / 0.128546 (-0.095828) | 0.010063 / 0.075646 (-0.065583) | 0.092281 / 0.419271 (-0.326990) | 0.053888 / 0.043533 (0.010355) | 0.407813 / 0.255139 (0.152674) | 0.431692 / 0.283200 (0.148493) | 0.119799 / 0.141683 (-0.021884) | 1.709853 / 1.452155 (0.257698) | 1.771592 / 1.492716 (0.278876) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246540 / 0.018006 (0.228534) | 0.483199 / 0.000490 (0.482709) | 0.002514 / 0.000200 (0.002315) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031576 / 0.037411 (-0.005835) | 0.130020 / 0.014526 (0.115495) | 0.140285 / 0.176557 (-0.036272) | 0.196164 / 0.737135 (-0.540972) | 0.143924 / 0.296338 (-0.152414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488549 / 0.215209 (0.273340) | 4.888055 / 2.077655 (2.810400) | 2.389163 / 1.504120 (0.885043) | 2.184626 / 1.541195 (0.643431) | 2.260227 / 1.468490 (0.791737) | 0.601331 / 4.584777 (-3.983446) | 4.386159 / 3.745712 (0.640447) | 3.345814 / 5.269862 (-1.924048) | 1.734360 / 4.565676 (-2.831317) | 0.073199 / 0.424275 (-0.351076) | 0.012397 / 0.007607 (0.004790) | 0.601411 / 0.226044 (0.375366) | 6.135000 / 2.268929 (3.866072) | 2.930169 / 55.444624 (-52.514456) | 2.532631 / 6.876477 (-4.343845) | 2.619351 / 2.142072 (0.477279) | 0.740954 / 4.805227 (-4.064274) | 0.162936 / 6.500664 (-6.337728) | 0.073885 / 0.075469 (-0.001585) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502493 / 1.841788 (-0.339294) | 17.026756 / 8.074308 (8.952448) | 15.880958 / 10.191392 (5.689566) | 0.167261 / 0.680424 (-0.513163) | 0.020347 / 0.534201 (-0.513854) | 0.452902 / 0.579283 (-0.126381) | 0.481614 / 0.434364 (0.047250) | 0.539893 / 0.540337 (-0.000445) | 0.653401 / 1.386936 (-0.733535) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6a5781212e968e2515afdf29370a6eab6f657120 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008268 / 0.011353 (-0.003084) | 0.005538 / 0.011008 (-0.005470) | 0.126136 / 0.038508 (0.087628) | 0.046100 / 0.023109 (0.022991) | 0.366882 / 0.275898 (0.090984) | 0.408912 / 0.323480 (0.085432) | 0.007090 / 0.007986 (-0.000895) | 0.004820 / 0.004328 (0.000491) | 0.091432 / 0.004250 (0.087181) | 0.058390 / 0.037052 (0.021338) | 0.368787 / 0.258489 (0.110298) | 0.419429 / 0.293841 (0.125588) | 0.034958 / 0.128546 (-0.093588) | 0.010526 / 0.075646 (-0.065120) | 0.463063 / 0.419271 (0.043791) | 0.070544 / 0.043533 (0.027011) | 0.366182 / 0.255139 (0.111043) | 0.390851 / 0.283200 (0.107652) | 0.128377 / 0.141683 (-0.013306) | 1.819385 / 1.452155 (0.367231) | 1.928834 / 1.492716 (0.436117) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228413 / 0.018006 (0.210407) | 0.485511 / 0.000490 (0.485021) | 0.005395 / 0.000200 (0.005195) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035209 / 0.037411 (-0.002203) | 0.144492 / 0.014526 (0.129967) | 0.150467 / 0.176557 (-0.026089) | 0.223861 / 0.737135 (-0.513274) | 0.156363 / 0.296338 (-0.139975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517751 / 0.215209 (0.302542) | 5.150438 / 2.077655 (3.072783) | 2.483601 / 1.504120 (0.979481) | 2.279786 / 1.541195 (0.738592) | 2.374510 / 1.468490 (0.906020) | 0.637547 / 4.584777 (-3.947230) | 4.845393 / 3.745712 (1.099681) | 2.241554 / 5.269862 (-3.028307) | 1.290105 / 4.565676 (-3.275572) | 0.079791 / 0.424275 (-0.344484) | 0.014915 / 0.007607 (0.007308) | 0.640468 / 0.226044 (0.414423) | 6.394810 / 2.268929 (4.125881) | 3.012748 / 55.444624 (-52.431876) | 2.625565 / 6.876477 (-4.250912) | 2.792435 / 2.142072 (0.650363) | 0.782284 / 4.805227 (-4.022944) | 0.171628 / 6.500664 (-6.329036) | 0.081714 / 0.075469 (0.006245) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.592411 / 1.841788 (-0.249377) | 18.999604 / 8.074308 (10.925295) | 18.469946 / 10.191392 (8.278554) | 0.200878 / 0.680424 (-0.479546) | 0.021595 / 0.534201 (-0.512606) | 0.519247 / 0.579283 (-0.060036) | 0.534940 / 0.434364 (0.100576) | 0.656325 / 0.540337 (0.115987) | 0.789658 / 1.386936 (-0.597278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008093 / 0.011353 (-0.003260) | 0.005524 / 0.011008 (-0.005484) | 0.092339 / 0.038508 (0.053831) | 0.045619 / 0.023109 (0.022510) | 0.449376 / 0.275898 (0.173478) | 0.478587 / 0.323480 (0.155107) | 0.006978 / 0.007986 (-0.001007) | 0.004622 / 0.004328 (0.000294) | 0.090618 / 0.004250 (0.086368) | 0.059321 / 0.037052 (0.022269) | 0.450989 / 0.258489 (0.192500) | 0.491652 / 0.293841 (0.197811) | 0.033308 / 0.128546 (-0.095238) | 0.010677 / 0.075646 (-0.064969) | 0.099836 / 0.419271 (-0.319435) | 0.055937 / 0.043533 (0.012404) | 0.440560 / 0.255139 (0.185421) | 0.475305 / 0.283200 (0.192105) | 0.130829 / 0.141683 (-0.010854) | 1.857943 / 1.452155 (0.405789) | 1.989534 / 1.492716 (0.496818) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244715 / 0.018006 (0.226709) | 0.482866 / 0.000490 (0.482377) | 0.001100 / 0.000200 (0.000900) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036288 / 0.037411 (-0.001124) | 0.147903 / 0.014526 (0.133377) | 0.154141 / 0.176557 (-0.022416) | 0.221863 / 0.737135 (-0.515272) | 0.162319 / 0.296338 (-0.134019) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.536972 / 0.215209 (0.321763) | 5.382866 / 2.077655 (3.305211) | 2.719575 / 1.504120 (1.215456) | 2.516596 / 1.541195 (0.975401) | 2.699602 / 1.468490 (1.231112) | 0.639886 / 4.584777 (-3.944891) | 5.109746 / 3.745712 (1.364034) | 2.260206 / 5.269862 (-3.009656) | 1.305506 / 4.565676 (-3.260170) | 0.080262 / 0.424275 (-0.344013) | 0.014801 / 0.007607 (0.007194) | 0.661228 / 0.226044 (0.435184) | 6.596485 / 2.268929 (4.327557) | 3.226114 / 55.444624 (-52.218510) | 2.859776 / 6.876477 (-4.016701) | 3.059355 / 2.142072 (0.917282) | 0.793413 / 4.805227 (-4.011814) | 0.176521 / 6.500664 (-6.324143) | 0.084062 / 0.075469 (0.008593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.642085 / 1.841788 (-0.199703) | 20.355459 / 8.074308 (12.281151) | 17.979620 / 10.191392 (7.788228) | 0.229329 / 0.680424 (-0.451094) | 0.025681 / 0.534201 (-0.508520) | 0.534142 / 0.579283 (-0.045141) | 0.623439 / 0.434364 (0.189075) | 0.621938 / 0.540337 (0.081601) | 0.759038 / 1.386936 (-0.627898) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6a98ff43225df344139023a5b7eb9caef610b677 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007703 / 0.011353 (-0.003649) | 0.005362 / 0.011008 (-0.005646) | 0.113111 / 0.038508 (0.074602) | 0.038891 / 0.023109 (0.015782) | 0.348938 / 0.275898 (0.073040) | 0.398079 / 0.323480 (0.074599) | 0.006707 / 0.007986 (-0.001278) | 0.004489 / 0.004328 (0.000160) | 0.087194 / 0.004250 (0.082943) | 0.054268 / 0.037052 (0.017216) | 0.359949 / 0.258489 (0.101460) | 0.402959 / 0.293841 (0.109118) | 0.032508 / 0.128546 (-0.096038) | 0.010224 / 0.075646 (-0.065422) | 0.387007 / 0.419271 (-0.032264) | 0.058971 / 0.043533 (0.015439) | 0.345085 / 0.255139 (0.089946) | 0.384306 / 0.283200 (0.101107) | 0.122253 / 0.141683 (-0.019430) | 1.706353 / 1.452155 (0.254199) | 1.840780 / 1.492716 (0.348063) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254374 / 0.018006 (0.236368) | 0.497387 / 0.000490 (0.496897) | 0.012294 / 0.000200 (0.012094) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030902 / 0.037411 (-0.006509) | 0.132098 / 0.014526 (0.117573) | 0.140311 / 0.176557 (-0.036245) | 0.205887 / 0.737135 (-0.531249) | 0.143992 / 0.296338 (-0.152347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467367 / 0.215209 (0.252158) | 4.669936 / 2.077655 (2.592281) | 2.155358 / 1.504120 (0.651238) | 1.984132 / 1.541195 (0.442937) | 2.102352 / 1.468490 (0.633861) | 0.607014 / 4.584777 (-3.977763) | 4.396479 / 3.745712 (0.650767) | 4.666056 / 5.269862 (-0.603806) | 2.176649 / 4.565676 (-2.389028) | 0.072657 / 0.424275 (-0.351619) | 0.012367 / 0.007607 (0.004759) | 0.569706 / 0.226044 (0.343661) | 5.749083 / 2.268929 (3.480154) | 2.640824 / 55.444624 (-52.803801) | 2.310253 / 6.876477 (-4.566224) | 2.486748 / 2.142072 (0.344676) | 0.737891 / 4.805227 (-4.067336) | 0.163507 / 6.500664 (-6.337157) | 0.075776 / 0.075469 (0.000307) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362710 / 1.841788 (-0.479078) | 17.010705 / 8.074308 (8.936396) | 15.084231 / 10.191392 (4.892839) | 0.218274 / 0.680424 (-0.462150) | 0.019555 / 0.534201 (-0.514646) | 0.456013 / 0.579283 (-0.123270) | 0.502772 / 0.434364 (0.068408) | 0.581480 / 0.540337 (0.041142) | 0.686952 / 1.386936 (-0.699984) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007976 / 0.011353 (-0.003377) | 0.005141 / 0.011008 (-0.005868) | 0.086629 / 0.038508 (0.048121) | 0.039553 / 0.023109 (0.016444) | 0.433028 / 0.275898 (0.157130) | 0.463444 / 0.323480 (0.139964) | 0.006967 / 0.007986 (-0.001018) | 0.005814 / 0.004328 (0.001485) | 0.086266 / 0.004250 (0.082015) | 0.055384 / 0.037052 (0.018332) | 0.428733 / 0.258489 (0.170243) | 0.475670 / 0.293841 (0.181829) | 0.032872 / 0.128546 (-0.095674) | 0.010664 / 0.075646 (-0.064983) | 0.094357 / 0.419271 (-0.324915) | 0.058386 / 0.043533 (0.014854) | 0.431114 / 0.255139 (0.175975) | 0.441728 / 0.283200 (0.158528) | 0.131942 / 0.141683 (-0.009740) | 1.782214 / 1.452155 (0.330060) | 1.843185 / 1.492716 (0.350469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247047 / 0.018006 (0.229041) | 0.488931 / 0.000490 (0.488441) | 0.002657 / 0.000200 (0.002457) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033893 / 0.037411 (-0.003518) | 0.131021 / 0.014526 (0.116495) | 0.142892 / 0.176557 (-0.033665) | 0.200955 / 0.737135 (-0.536180) | 0.151329 / 0.296338 (-0.145010) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521138 / 0.215209 (0.305929) | 5.085207 / 2.077655 (3.007552) | 2.652901 / 1.504120 (1.148781) | 2.401545 / 1.541195 (0.860350) | 2.553461 / 1.468490 (1.084971) | 0.615347 / 4.584777 (-3.969430) | 4.448038 / 3.745712 (0.702326) | 2.049997 / 5.269862 (-3.219865) | 1.190602 / 4.565676 (-3.375075) | 0.073356 / 0.424275 (-0.350919) | 0.013685 / 0.007607 (0.006078) | 0.626705 / 0.226044 (0.400660) | 6.391941 / 2.268929 (4.123012) | 3.218864 / 55.444624 (-52.225760) | 2.858808 / 6.876477 (-4.017669) | 3.005808 / 2.142072 (0.863736) | 0.740725 / 4.805227 (-4.064502) | 0.161904 / 6.500664 (-6.338760) | 0.073727 / 0.075469 (-0.001742) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.488623 / 1.841788 (-0.353164) | 17.584367 / 8.074308 (9.510059) | 16.281818 / 10.191392 (6.090426) | 0.164482 / 0.680424 (-0.515942) | 0.020197 / 0.534201 (-0.514003) | 0.456750 / 0.579283 (-0.122533) | 0.501156 / 0.434364 (0.066792) | 0.549779 / 0.540337 (0.009442) | 0.650156 / 1.386936 (-0.736780) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b6cc63b868ea4ee60502845ebec68abb943958b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008337 / 0.011353 (-0.003016) | 0.005911 / 0.011008 (-0.005097) | 0.129037 / 0.038508 (0.090529) | 0.046071 / 0.023109 (0.022962) | 0.418657 / 0.275898 (0.142759) | 0.490340 / 0.323480 (0.166860) | 0.006387 / 0.007986 (-0.001598) | 0.004724 / 0.004328 (0.000396) | 0.097953 / 0.004250 (0.093702) | 0.069025 / 0.037052 (0.031972) | 0.431178 / 0.258489 (0.172689) | 0.458363 / 0.293841 (0.164522) | 0.049341 / 0.128546 (-0.079205) | 0.014637 / 0.075646 (-0.061009) | 0.439800 / 0.419271 (0.020529) | 0.069905 / 0.043533 (0.026373) | 0.406775 / 0.255139 (0.151636) | 0.441989 / 0.283200 (0.158790) | 0.046009 / 0.141683 (-0.095674) | 1.847630 / 1.452155 (0.395475) | 1.904067 / 1.492716 (0.411351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288305 / 0.018006 (0.270299) | 0.594547 / 0.000490 (0.594058) | 0.005600 / 0.000200 (0.005400) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033847 / 0.037411 (-0.003564) | 0.125139 / 0.014526 (0.110613) | 0.147982 / 0.176557 (-0.028574) | 0.208396 / 0.737135 (-0.528739) | 0.144005 / 0.296338 (-0.152334) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669175 / 0.215209 (0.453966) | 6.605289 / 2.077655 (4.527634) | 2.720468 / 1.504120 (1.216348) | 2.341355 / 1.541195 (0.800160) | 2.402069 / 1.468490 (0.933578) | 0.939303 / 4.584777 (-3.645474) | 5.718545 / 3.745712 (1.972833) | 2.856235 / 5.269862 (-2.413627) | 1.821555 / 4.565676 (-2.744121) | 0.105473 / 0.424275 (-0.318802) | 0.014490 / 0.007607 (0.006883) | 0.774349 / 0.226044 (0.548305) | 8.065048 / 2.268929 (5.796120) | 3.508482 / 55.444624 (-51.936143) | 2.822881 / 6.876477 (-4.053596) | 2.962947 / 2.142072 (0.820875) | 1.138944 / 4.805227 (-3.666284) | 0.248414 / 6.500664 (-6.252250) | 0.095665 / 0.075469 (0.020196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.688231 / 1.841788 (-0.153557) | 18.673305 / 8.074308 (10.598997) | 22.768663 / 10.191392 (12.577271) | 0.211238 / 0.680424 (-0.469186) | 0.031380 / 0.534201 (-0.502821) | 0.517175 / 0.579283 (-0.062108) | 0.626437 / 0.434364 (0.192073) | 0.624225 / 0.540337 (0.083888) | 0.743746 / 1.386936 (-0.643191) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008888 / 0.011353 (-0.002464) | 0.005491 / 0.011008 (-0.005517) | 0.105013 / 0.038508 (0.066505) | 0.049456 / 0.023109 (0.026347) | 0.528989 / 0.275898 (0.253091) | 0.651871 / 0.323480 (0.328391) | 0.006683 / 0.007986 (-0.001302) | 0.004365 / 0.004328 (0.000037) | 0.098161 / 0.004250 (0.093911) | 0.075615 / 0.037052 (0.038563) | 0.543746 / 0.258489 (0.285257) | 0.650855 / 0.293841 (0.357014) | 0.050220 / 0.128546 (-0.078327) | 0.014471 / 0.075646 (-0.061175) | 0.115903 / 0.419271 (-0.303368) | 0.065925 / 0.043533 (0.022392) | 0.527797 / 0.255139 (0.272658) | 0.543834 / 0.283200 (0.260634) | 0.043005 / 0.141683 (-0.098678) | 1.842846 / 1.452155 (0.390691) | 1.970615 / 1.492716 (0.477899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287350 / 0.018006 (0.269343) | 0.591139 / 0.000490 (0.590649) | 0.006423 / 0.000200 (0.006223) | 0.000107 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034594 / 0.037411 (-0.002818) | 0.137155 / 0.014526 (0.122629) | 0.154662 / 0.176557 (-0.021894) | 0.217834 / 0.737135 (-0.519301) | 0.159642 / 0.296338 (-0.136696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.664288 / 0.215209 (0.449079) | 6.926912 / 2.077655 (4.849257) | 3.028957 / 1.504120 (1.524837) | 2.625178 / 1.541195 (1.083983) | 2.725316 / 1.468490 (1.256826) | 1.015715 / 4.584777 (-3.569062) | 5.834694 / 3.745712 (2.088982) | 5.105269 / 5.269862 (-0.164593) | 2.316194 / 4.565676 (-2.249483) | 0.113802 / 0.424275 (-0.310473) | 0.014079 / 0.007607 (0.006472) | 0.893727 / 0.226044 (0.667683) | 8.577701 / 2.268929 (6.308772) | 3.706907 / 55.444624 (-51.737717) | 3.087530 / 6.876477 (-3.788947) | 3.295004 / 2.142072 (1.152931) | 1.204172 / 4.805227 (-3.601055) | 0.248720 / 6.500664 (-6.251944) | 0.107208 / 0.075469 (0.031739) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.800058 / 1.841788 (-0.041730) | 19.253646 / 8.074308 (11.179338) | 22.590804 / 10.191392 (12.399412) | 0.270687 / 0.680424 (-0.409737) | 0.028678 / 0.534201 (-0.505522) | 0.534670 / 0.579283 (-0.044613) | 0.642881 / 0.434364 (0.208518) | 0.615521 / 0.540337 (0.075184) | 0.723733 / 1.386936 (-0.663203) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2591cd45a002a06bd551343ec785abf16f1433e2 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.017236 / 0.011353 (0.005883) | 0.005341 / 0.011008 (-0.005667) | 0.131471 / 0.038508 (0.092963) | 0.048868 / 0.023109 (0.025758) | 0.448942 / 0.275898 (0.173044) | 0.498721 / 0.323480 (0.175241) | 0.006825 / 0.007986 (-0.001161) | 0.004587 / 0.004328 (0.000259) | 0.104142 / 0.004250 (0.099891) | 0.075521 / 0.037052 (0.038469) | 0.439538 / 0.258489 (0.181049) | 0.498720 / 0.293841 (0.204879) | 0.051352 / 0.128546 (-0.077194) | 0.015070 / 0.075646 (-0.060576) | 0.441752 / 0.419271 (0.022480) | 0.089166 / 0.043533 (0.045633) | 0.428909 / 0.255139 (0.173770) | 0.446648 / 0.283200 (0.163448) | 0.042371 / 0.141683 (-0.099312) | 1.993948 / 1.452155 (0.541793) | 2.065756 / 1.492716 (0.573039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257279 / 0.018006 (0.239273) | 0.575453 / 0.000490 (0.574964) | 0.004120 / 0.000200 (0.003920) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034012 / 0.037411 (-0.003399) | 0.141737 / 0.014526 (0.127211) | 0.145241 / 0.176557 (-0.031316) | 0.226196 / 0.737135 (-0.510939) | 0.149526 / 0.296338 (-0.146813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665762 / 0.215209 (0.450553) | 6.683737 / 2.077655 (4.606083) | 2.869485 / 1.504120 (1.365365) | 2.462808 / 1.541195 (0.921613) | 2.526808 / 1.468490 (1.058318) | 0.957518 / 4.584777 (-3.627259) | 5.926261 / 3.745712 (2.180548) | 5.027822 / 5.269862 (-0.242040) | 2.643185 / 4.565676 (-1.922491) | 0.117014 / 0.424275 (-0.307261) | 0.015142 / 0.007607 (0.007535) | 0.835694 / 0.226044 (0.609650) | 8.427356 / 2.268929 (6.158427) | 3.649597 / 55.444624 (-51.795027) | 2.989607 / 6.876477 (-3.886870) | 3.043160 / 2.142072 (0.901088) | 1.158872 / 4.805227 (-3.646355) | 0.240456 / 6.500664 (-6.260208) | 0.089196 / 0.075469 (0.013726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.689361 / 1.841788 (-0.152427) | 18.842158 / 8.074308 (10.767850) | 22.604249 / 10.191392 (12.412857) | 0.248487 / 0.680424 (-0.431936) | 0.029668 / 0.534201 (-0.504533) | 0.536283 / 0.579283 (-0.043001) | 0.663253 / 0.434364 (0.228890) | 0.622973 / 0.540337 (0.082635) | 0.735297 / 1.386936 (-0.651639) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009296 / 0.011353 (-0.002057) | 0.005955 / 0.011008 (-0.005053) | 0.105723 / 0.038508 (0.067215) | 0.051184 / 0.023109 (0.028074) | 0.527095 / 0.275898 (0.251197) | 0.631697 / 0.323480 (0.308217) | 0.006577 / 0.007986 (-0.001408) | 0.004452 / 0.004328 (0.000124) | 0.105921 / 0.004250 (0.101670) | 0.071951 / 0.037052 (0.034899) | 0.572518 / 0.258489 (0.314029) | 0.623957 / 0.293841 (0.330116) | 0.050861 / 0.128546 (-0.077686) | 0.014897 / 0.075646 (-0.060749) | 0.122013 / 0.419271 (-0.297258) | 0.067194 / 0.043533 (0.023661) | 0.530352 / 0.255139 (0.275213) | 0.563912 / 0.283200 (0.280712) | 0.034756 / 0.141683 (-0.106927) | 1.961580 / 1.452155 (0.509425) | 2.052412 / 1.492716 (0.559696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304996 / 0.018006 (0.286990) | 0.584899 / 0.000490 (0.584409) | 0.010444 / 0.000200 (0.010244) | 0.000134 / 0.000054 (0.000080) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032540 / 0.037411 (-0.004871) | 0.137349 / 0.014526 (0.122823) | 0.146233 / 0.176557 (-0.030323) | 0.206978 / 0.737135 (-0.530157) | 0.154380 / 0.296338 (-0.141959) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.705438 / 0.215209 (0.490229) | 7.042159 / 2.077655 (4.964504) | 3.285501 / 1.504120 (1.781381) | 2.904710 / 1.541195 (1.363515) | 2.952838 / 1.468490 (1.484348) | 0.987784 / 4.584777 (-3.596993) | 5.949550 / 3.745712 (2.203838) | 2.927148 / 5.269862 (-2.342714) | 1.870054 / 4.565676 (-2.695622) | 0.119548 / 0.424275 (-0.304727) | 0.014565 / 0.007607 (0.006958) | 0.858311 / 0.226044 (0.632266) | 8.721679 / 2.268929 (6.452750) | 4.100825 / 55.444624 (-51.343800) | 3.358093 / 6.876477 (-3.518383) | 3.499637 / 2.142072 (1.357564) | 1.208932 / 4.805227 (-3.596295) | 0.232961 / 6.500664 (-6.267703) | 0.089727 / 0.075469 (0.014258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.780143 / 1.841788 (-0.061645) | 19.074991 / 8.074308 (11.000683) | 21.218487 / 10.191392 (11.027095) | 0.258690 / 0.680424 (-0.421734) | 0.029514 / 0.534201 (-0.504687) | 0.541764 / 0.579283 (-0.037519) | 0.640603 / 0.434364 (0.206239) | 0.635336 / 0.540337 (0.094999) | 0.756309 / 1.386936 (-0.630627) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b525c199e6352aa8aac55f1dcddeb55a80db373 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009619 / 0.011353 (-0.001734) | 0.005683 / 0.011008 (-0.005325) | 0.136971 / 0.038508 (0.098463) | 0.051607 / 0.023109 (0.028497) | 0.439716 / 0.275898 (0.163818) | 0.486193 / 0.323480 (0.162713) | 0.006304 / 0.007986 (-0.001681) | 0.004489 / 0.004328 (0.000160) | 0.103837 / 0.004250 (0.099587) | 0.082954 / 0.037052 (0.045901) | 0.447286 / 0.258489 (0.188797) | 0.495434 / 0.293841 (0.201593) | 0.049244 / 0.128546 (-0.079302) | 0.015176 / 0.075646 (-0.060470) | 0.444406 / 0.419271 (0.025134) | 0.074766 / 0.043533 (0.031233) | 0.438585 / 0.255139 (0.183446) | 0.438232 / 0.283200 (0.155032) | 0.043372 / 0.141683 (-0.098311) | 2.057286 / 1.452155 (0.605131) | 2.049540 / 1.492716 (0.556824) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298038 / 0.018006 (0.280031) | 0.630771 / 0.000490 (0.630281) | 0.008287 / 0.000200 (0.008087) | 0.000123 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033637 / 0.037411 (-0.003775) | 0.128327 / 0.014526 (0.113801) | 0.150672 / 0.176557 (-0.025885) | 0.228521 / 0.737135 (-0.508614) | 0.142733 / 0.296338 (-0.153606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629072 / 0.215209 (0.413863) | 6.612047 / 2.077655 (4.534392) | 2.715594 / 1.504120 (1.211474) | 2.327823 / 1.541195 (0.786628) | 2.417508 / 1.468490 (0.949018) | 0.959134 / 4.584777 (-3.625643) | 5.669921 / 3.745712 (1.924209) | 2.977920 / 5.269862 (-2.291941) | 1.814564 / 4.565676 (-2.751112) | 0.120233 / 0.424275 (-0.304042) | 0.015859 / 0.007607 (0.008252) | 0.822618 / 0.226044 (0.596574) | 8.440306 / 2.268929 (6.171377) | 3.721611 / 55.444624 (-51.723013) | 2.954867 / 6.876477 (-3.921610) | 3.135364 / 2.142072 (0.993292) | 1.226475 / 4.805227 (-3.578752) | 0.246658 / 6.500664 (-6.254006) | 0.093920 / 0.075469 (0.018451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665631 / 1.841788 (-0.176157) | 19.136369 / 8.074308 (11.062061) | 23.659564 / 10.191392 (13.468172) | 0.273430 / 0.680424 (-0.406994) | 0.028180 / 0.534201 (-0.506021) | 0.559588 / 0.579283 (-0.019695) | 0.649203 / 0.434364 (0.214840) | 0.647113 / 0.540337 (0.106776) | 0.737978 / 1.386936 (-0.648958) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009104 / 0.011353 (-0.002249) | 0.006838 / 0.011008 (-0.004171) | 0.104516 / 0.038508 (0.066008) | 0.047986 / 0.023109 (0.024877) | 0.521849 / 0.275898 (0.245951) | 0.586281 / 0.323480 (0.262801) | 0.006225 / 0.007986 (-0.001760) | 0.005713 / 0.004328 (0.001384) | 0.111507 / 0.004250 (0.107257) | 0.072320 / 0.037052 (0.035267) | 0.551061 / 0.258489 (0.292572) | 0.628034 / 0.293841 (0.334193) | 0.055417 / 0.128546 (-0.073129) | 0.019613 / 0.075646 (-0.056034) | 0.123958 / 0.419271 (-0.295314) | 0.066132 / 0.043533 (0.022600) | 0.504461 / 0.255139 (0.249322) | 0.560428 / 0.283200 (0.277229) | 0.036098 / 0.141683 (-0.105585) | 1.927398 / 1.452155 (0.475243) | 2.015952 / 1.492716 (0.523235) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313065 / 0.018006 (0.295059) | 0.609174 / 0.000490 (0.608684) | 0.008755 / 0.000200 (0.008555) | 0.000120 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040042 / 0.037411 (0.002630) | 0.136053 / 0.014526 (0.121527) | 0.143406 / 0.176557 (-0.033150) | 0.213080 / 0.737135 (-0.524055) | 0.154730 / 0.296338 (-0.141609) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.692706 / 0.215209 (0.477497) | 6.952968 / 2.077655 (4.875314) | 3.232023 / 1.504120 (1.727903) | 2.835450 / 1.541195 (1.294256) | 2.933821 / 1.468490 (1.465331) | 0.984712 / 4.584777 (-3.600065) | 6.127651 / 3.745712 (2.381939) | 2.956781 / 5.269862 (-2.313081) | 1.879928 / 4.565676 (-2.685748) | 0.111069 / 0.424275 (-0.313206) | 0.014598 / 0.007607 (0.006991) | 0.871486 / 0.226044 (0.645442) | 8.588500 / 2.268929 (6.319572) | 3.910740 / 55.444624 (-51.533885) | 3.115781 / 6.876477 (-3.760695) | 3.222367 / 2.142072 (1.080294) | 1.229680 / 4.805227 (-3.575547) | 0.232092 / 6.500664 (-6.268572) | 0.097717 / 0.075469 (0.022248) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774193 / 1.841788 (-0.067595) | 19.863087 / 8.074308 (11.788779) | 24.058856 / 10.191392 (13.867464) | 0.214917 / 0.680424 (-0.465507) | 0.028771 / 0.534201 (-0.505430) | 0.544548 / 0.579283 (-0.034735) | 0.655882 / 0.434364 (0.221518) | 0.629110 / 0.540337 (0.088773) | 0.749246 / 1.386936 (-0.637690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f4a5ea6a42dcfef1577288b51beeccc0eb124cee \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007075 / 0.011353 (-0.004278) | 0.005195 / 0.011008 (-0.005813) | 0.113043 / 0.038508 (0.074535) | 0.038442 / 0.023109 (0.015333) | 0.336310 / 0.275898 (0.060412) | 0.381888 / 0.323480 (0.058409) | 0.005990 / 0.007986 (-0.001996) | 0.003893 / 0.004328 (-0.000435) | 0.093123 / 0.004250 (0.088872) | 0.058449 / 0.037052 (0.021397) | 0.359463 / 0.258489 (0.100974) | 0.427485 / 0.293841 (0.133644) | 0.041454 / 0.128546 (-0.087092) | 0.013016 / 0.075646 (-0.062630) | 0.372849 / 0.419271 (-0.046422) | 0.059386 / 0.043533 (0.015853) | 0.381398 / 0.255139 (0.126259) | 0.367603 / 0.283200 (0.084403) | 0.033907 / 0.141683 (-0.107775) | 1.628903 / 1.452155 (0.176749) | 1.764131 / 1.492716 (0.271415) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298329 / 0.018006 (0.280322) | 0.593030 / 0.000490 (0.592540) | 0.007653 / 0.000200 (0.007453) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025445 / 0.037411 (-0.011966) | 0.112062 / 0.014526 (0.097536) | 0.119863 / 0.176557 (-0.056693) | 0.178389 / 0.737135 (-0.558746) | 0.129934 / 0.296338 (-0.166404) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.532834 / 0.215209 (0.317625) | 5.250908 / 2.077655 (3.173253) | 2.086920 / 1.504120 (0.582800) | 1.799745 / 1.541195 (0.258550) | 1.909648 / 1.468490 (0.441158) | 0.825382 / 4.584777 (-3.759395) | 5.268304 / 3.745712 (1.522592) | 2.533347 / 5.269862 (-2.736515) | 1.730187 / 4.565676 (-2.835490) | 0.099824 / 0.424275 (-0.324451) | 0.012969 / 0.007607 (0.005362) | 0.732234 / 0.226044 (0.506189) | 6.989066 / 2.268929 (4.720138) | 2.873486 / 55.444624 (-52.571138) | 2.274351 / 6.876477 (-4.602125) | 2.311060 / 2.142072 (0.168987) | 1.125366 / 4.805227 (-3.679861) | 0.214522 / 6.500664 (-6.286142) | 0.077579 / 0.075469 (0.002110) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670950 / 1.841788 (-0.170838) | 18.131528 / 8.074308 (10.057220) | 21.277823 / 10.191392 (11.086431) | 0.238807 / 0.680424 (-0.441617) | 0.032251 / 0.534201 (-0.501950) | 0.503859 / 0.579283 (-0.075424) | 0.604825 / 0.434364 (0.170461) | 0.555623 / 0.540337 (0.015286) | 0.647301 / 1.386936 (-0.739635) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010857 / 0.011353 (-0.000496) | 0.005581 / 0.011008 (-0.005427) | 0.094346 / 0.038508 (0.055838) | 0.053084 / 0.023109 (0.029975) | 0.457586 / 0.275898 (0.181688) | 0.545475 / 0.323480 (0.221995) | 0.006761 / 0.007986 (-0.001225) | 0.005094 / 0.004328 (0.000765) | 0.095509 / 0.004250 (0.091258) | 0.077182 / 0.037052 (0.040130) | 0.498717 / 0.258489 (0.240228) | 0.542433 / 0.293841 (0.248592) | 0.051547 / 0.128546 (-0.076999) | 0.014633 / 0.075646 (-0.061014) | 0.106843 / 0.419271 (-0.312428) | 0.068459 / 0.043533 (0.024926) | 0.435793 / 0.255139 (0.180654) | 0.475484 / 0.283200 (0.192285) | 0.039495 / 0.141683 (-0.102188) | 1.684906 / 1.452155 (0.232751) | 1.798693 / 1.492716 (0.305976) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.279853 / 0.018006 (0.261847) | 0.601016 / 0.000490 (0.600526) | 0.002055 / 0.000200 (0.001855) | 0.000219 / 0.000054 (0.000165) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030935 / 0.037411 (-0.006477) | 0.121197 / 0.014526 (0.106671) | 0.143360 / 0.176557 (-0.033197) | 0.200862 / 0.737135 (-0.536274) | 0.138656 / 0.296338 (-0.157683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613904 / 0.215209 (0.398695) | 6.155422 / 2.077655 (4.077767) | 2.777238 / 1.504120 (1.273118) | 2.473045 / 1.541195 (0.931851) | 2.604470 / 1.468490 (1.135980) | 0.898871 / 4.584777 (-3.685906) | 5.739666 / 3.745712 (1.993954) | 4.719822 / 5.269862 (-0.550040) | 2.727354 / 4.565676 (-1.838322) | 0.108232 / 0.424275 (-0.316043) | 0.013632 / 0.007607 (0.006025) | 0.771802 / 0.226044 (0.545757) | 7.987466 / 2.268929 (5.718537) | 3.609856 / 55.444624 (-51.834768) | 2.974421 / 6.876477 (-3.902056) | 2.956567 / 2.142072 (0.814495) | 1.093792 / 4.805227 (-3.711435) | 0.213369 / 6.500664 (-6.287295) | 0.084486 / 0.075469 (0.009017) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.693855 / 1.841788 (-0.147933) | 18.055027 / 8.074308 (9.980719) | 21.397964 / 10.191392 (11.206571) | 0.240549 / 0.680424 (-0.439875) | 0.031212 / 0.534201 (-0.502989) | 0.513657 / 0.579283 (-0.065626) | 0.651348 / 0.434364 (0.216985) | 0.603740 / 0.540337 (0.063402) | 0.752287 / 1.386936 (-0.634649) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6f3f38d00dd40a444ae54c18caa28304ae36b9c3 \"CML watermark\")\n"
] | 2023-06-13T13:03:19 | 2023-06-27T16:47:51 | 2023-06-27T16:38:32 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5949",
"html_url": "https://github.com/huggingface/datasets/pull/5949",
"diff_url": "https://github.com/huggingface/datasets/pull/5949.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5949.patch",
"merged_at": "2023-06-27T16:38:32"
} | Use `huggingface_hub`'s RepoCard API instead of `DatasetMetadata` for modifying the card's YAML, and deprecate `datasets.utils.metadata` and `datasets.utils.readme`.
After removing these modules, we can also delete `datasets.utils.resources` since the moon landing repo now stores its own version of these resources for the metadata UI.
PS: this change requires bumping `huggingface_hub` to 0.13.0 (Transformers requires 0.14.0, so should be ok) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5949/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5949/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5948 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5948/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5948/comments | https://api.github.com/repos/huggingface/datasets/issues/5948/events | https://github.com/huggingface/datasets/pull/5948 | 1,754,794,611 | PR_kwDODunzps5S4dUt | 5,948 | Fix sequence of array support for most dtype | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007220 / 0.011353 (-0.004133) | 0.004558 / 0.011008 (-0.006451) | 0.116647 / 0.038508 (0.078139) | 0.046845 / 0.023109 (0.023736) | 0.352429 / 0.275898 (0.076531) | 0.429739 / 0.323480 (0.106259) | 0.006620 / 0.007986 (-0.001366) | 0.003731 / 0.004328 (-0.000597) | 0.088683 / 0.004250 (0.084433) | 0.070583 / 0.037052 (0.033530) | 0.366699 / 0.258489 (0.108210) | 0.420730 / 0.293841 (0.126889) | 0.037342 / 0.128546 (-0.091204) | 0.010041 / 0.075646 (-0.065605) | 0.383477 / 0.419271 (-0.035795) | 0.060279 / 0.043533 (0.016746) | 0.349988 / 0.255139 (0.094849) | 0.371423 / 0.283200 (0.088224) | 0.026725 / 0.141683 (-0.114958) | 1.736886 / 1.452155 (0.284731) | 1.812874 / 1.492716 (0.320157) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253256 / 0.018006 (0.235250) | 0.563470 / 0.000490 (0.562980) | 0.010475 / 0.000200 (0.010275) | 0.000164 / 0.000054 (0.000110) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030518 / 0.037411 (-0.006893) | 0.133324 / 0.014526 (0.118798) | 0.137095 / 0.176557 (-0.039461) | 0.202227 / 0.737135 (-0.534909) | 0.144195 / 0.296338 (-0.152143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480870 / 0.215209 (0.265661) | 4.822713 / 2.077655 (2.745058) | 2.124183 / 1.504120 (0.620064) | 1.910733 / 1.541195 (0.369538) | 1.970266 / 1.468490 (0.501776) | 0.624695 / 4.584777 (-3.960082) | 4.459659 / 3.745712 (0.713947) | 2.210123 / 5.269862 (-3.059739) | 1.300520 / 4.565676 (-3.265157) | 0.077096 / 0.424275 (-0.347180) | 0.013333 / 0.007607 (0.005726) | 0.596841 / 0.226044 (0.370797) | 5.917397 / 2.268929 (3.648469) | 2.699397 / 55.444624 (-52.745228) | 2.274833 / 6.876477 (-4.601644) | 2.525376 / 2.142072 (0.383304) | 0.755718 / 4.805227 (-4.049510) | 0.163587 / 6.500664 (-6.337077) | 0.072817 / 0.075469 (-0.002653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.524306 / 1.841788 (-0.317481) | 18.843312 / 8.074308 (10.769004) | 15.694644 / 10.191392 (5.503252) | 0.177400 / 0.680424 (-0.503024) | 0.020104 / 0.534201 (-0.514097) | 0.466421 / 0.579283 (-0.112862) | 0.537274 / 0.434364 (0.102910) | 0.576920 / 0.540337 (0.036583) | 0.718889 / 1.386936 (-0.668047) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007671 / 0.011353 (-0.003682) | 0.004850 / 0.011008 (-0.006158) | 0.090085 / 0.038508 (0.051576) | 0.052023 / 0.023109 (0.028914) | 0.508575 / 0.275898 (0.232677) | 0.590024 / 0.323480 (0.266544) | 0.004564 / 0.007986 (-0.003422) | 0.005345 / 0.004328 (0.001017) | 0.087904 / 0.004250 (0.083653) | 0.064446 / 0.037052 (0.027394) | 0.525625 / 0.258489 (0.267136) | 0.584307 / 0.293841 (0.290466) | 0.037221 / 0.128546 (-0.091325) | 0.010588 / 0.075646 (-0.065059) | 0.098612 / 0.419271 (-0.320659) | 0.059597 / 0.043533 (0.016064) | 0.488064 / 0.255139 (0.232925) | 0.522330 / 0.283200 (0.239131) | 0.030004 / 0.141683 (-0.111679) | 1.732512 / 1.452155 (0.280357) | 1.809027 / 1.492716 (0.316310) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218741 / 0.018006 (0.200735) | 0.494946 / 0.000490 (0.494456) | 0.004580 / 0.000200 (0.004380) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034916 / 0.037411 (-0.002495) | 0.133695 / 0.014526 (0.119169) | 0.147964 / 0.176557 (-0.028592) | 0.213210 / 0.737135 (-0.523926) | 0.148850 / 0.296338 (-0.147488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.508855 / 0.215209 (0.293646) | 5.065088 / 2.077655 (2.987433) | 2.473110 / 1.504120 (0.968990) | 2.259765 / 1.541195 (0.718570) | 2.359189 / 1.468490 (0.890699) | 0.639082 / 4.584777 (-3.945695) | 4.768195 / 3.745712 (1.022482) | 2.253803 / 5.269862 (-3.016059) | 1.442996 / 4.565676 (-3.122680) | 0.078761 / 0.424275 (-0.345514) | 0.013936 / 0.007607 (0.006329) | 0.625977 / 0.226044 (0.399933) | 6.260817 / 2.268929 (3.991888) | 3.149640 / 55.444624 (-52.294985) | 2.753555 / 6.876477 (-4.122921) | 2.831872 / 2.142072 (0.689799) | 0.781294 / 4.805227 (-4.023933) | 0.169109 / 6.500664 (-6.331555) | 0.075810 / 0.075469 (0.000341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.533282 / 1.841788 (-0.308506) | 19.460579 / 8.074308 (11.386271) | 17.250424 / 10.191392 (7.059032) | 0.193485 / 0.680424 (-0.486939) | 0.020650 / 0.534201 (-0.513551) | 0.472110 / 0.579283 (-0.107173) | 0.532276 / 0.434364 (0.097912) | 0.613152 / 0.540337 (0.072814) | 0.684684 / 1.386936 (-0.702252) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#650a86ee122209d4a8c8e8068c01ebfd3ba553f5 \"CML watermark\")\n"
] | 2023-06-13T12:38:59 | 2023-06-14T15:11:55 | 2023-06-14T15:03:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5948",
"html_url": "https://github.com/huggingface/datasets/pull/5948",
"diff_url": "https://github.com/huggingface/datasets/pull/5948.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5948.patch",
"merged_at": "2023-06-14T15:03:33"
} | Fixes #5936
Also, a related fix to #5927 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5948/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5948/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5947 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5947/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5947/comments | https://api.github.com/repos/huggingface/datasets/issues/5947/events | https://github.com/huggingface/datasets/issues/5947 | 1,754,359,316 | I_kwDODunzps5okWYU | 5,947 | Return the audio filename when decoding fails due to corrupt files | {
"login": "wetdog",
"id": 8949105,
"node_id": "MDQ6VXNlcjg5NDkxMDU=",
"avatar_url": "https://avatars.githubusercontent.com/u/8949105?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wetdog",
"html_url": "https://github.com/wetdog",
"followers_url": "https://api.github.com/users/wetdog/followers",
"following_url": "https://api.github.com/users/wetdog/following{/other_user}",
"gists_url": "https://api.github.com/users/wetdog/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wetdog/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wetdog/subscriptions",
"organizations_url": "https://api.github.com/users/wetdog/orgs",
"repos_url": "https://api.github.com/users/wetdog/repos",
"events_url": "https://api.github.com/users/wetdog/events{/privacy}",
"received_events_url": "https://api.github.com/users/wetdog/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"Hi ! The audio data don't always exist as files on disk - the blobs are often stored in the Arrow files. For now I'd suggest disabling decoding with `.cast_column(\"audio\", Audio(decode=False))` and apply your own decoding that handles corrupted files (maybe to filter them out ?)\r\n\r\ncc @sanchit-gandhi since it's related to our discussion about allowing users to make decoding return `None` and show a warning when there are corrupted files",
"Thanks @lhoestq, I wasn't aware of the decode flag. It makes more sense as you say to show a warning when there are corrupted files together with some metadata of the file that allows to filter them from the dataset.\r\n\r\nMy workaround was to catch the LibsndfileError and generate a dummy audio with an unsual sample rate to filter it later. However returning `None` seems better. \r\n\r\n`try:\r\n array, sampling_rate = sf.read(file)\r\nexcept sf.LibsndfileError:\r\n print(\"bad file\")\r\n array = np.array([0.0])\r\n sampling_rate = 99.000` \r\n\r\n"
] | 2023-06-13T08:44:09 | 2023-06-14T12:45:01 | null | NONE | null | null | null | ### Feature request
Return the audio filename when the audio decoding fails. Although currently there are some checks for mp3 and opus formats with the library version there are still cases when the audio decoding could fail, eg. Corrupt file.
### Motivation
When you try to load an object file dataset and the decoding fails you can't know which file is corrupt
```
raise LibsndfileError(err, prefix="Error opening {0!r}: ".format(self.name))
soundfile.LibsndfileError: Error opening <_io.BytesIO object at 0x7f5ab7e38290>: Format not recognised.
```
### Your contribution
Make a PR to Add exceptions for LIbsndfileError to return the audio filename or path when soundfile decoding fails. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5947/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5947/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5946 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5946/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5946/comments | https://api.github.com/repos/huggingface/datasets/issues/5946/events | https://github.com/huggingface/datasets/issues/5946 | 1,754,234,469 | I_kwDODunzps5oj35l | 5,946 | IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ?? | {
"login": "syngokhan",
"id": 70565543,
"node_id": "MDQ6VXNlcjcwNTY1NTQz",
"avatar_url": "https://avatars.githubusercontent.com/u/70565543?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/syngokhan",
"html_url": "https://github.com/syngokhan",
"followers_url": "https://api.github.com/users/syngokhan/followers",
"following_url": "https://api.github.com/users/syngokhan/following{/other_user}",
"gists_url": "https://api.github.com/users/syngokhan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/syngokhan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/syngokhan/subscriptions",
"organizations_url": "https://api.github.com/users/syngokhan/orgs",
"repos_url": "https://api.github.com/users/syngokhan/repos",
"events_url": "https://api.github.com/users/syngokhan/events{/privacy}",
"received_events_url": "https://api.github.com/users/syngokhan/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"https://colab.research.google.com/#scrollTo=AQ_HCYruWIHU&fileId=https%3A//huggingface.co/dfurman/falcon-40b-chat-oasst1/blob/main/finetune_falcon40b_oasst1_with_bnb_peft.ipynb\r\n\r\nI ran the same administration exactly the same but got the same error",
"Looks related to https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/4?u=lhoestq",
"> Looks related to https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/4?u=lhoestq\n\nThe problem has not been solved, I have tried this before, but the problem is the same",
"> \r\n\r\n@syngokhan did u solve it? \r\nI am desperate ",
"data = data[\"train\"].shuffle().map(generate_and_tokenize_prompt, batched = False) # change this line to -\r\n\r\ndata[\"train\"] = data[\"train\"].shuffle().map(generate_and_tokenize_prompt, batched = False)\r\nAfter doing this change you code should run fine.",
"> > \r\n> \r\n> @syngokhan did u solve it? I am desperate\r\n\r\nrefer to my earlier comment. you will find the solution."
] | 2023-06-13T07:34:15 | 2023-07-14T12:04:48 | null | NONE | null | null | null | ### Describe the bug
in <cell line: 1>:1 │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │
│ │
│ 1534 │ │ inner_training_loop = find_executable_batch_size( │
│ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │
│ 1536 │ │ ) │
│ ❱ 1537 │ │ return inner_training_loop( │
│ 1538 │ │ │ args=args, │
│ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │
│ 1540 │ │ │ trial=trial, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │
│ │
│ 1786 │ │ │ │ rng_to_sync = True │
│ 1787 │ │ │ │
│ 1788 │ │ │ step = -1 │
│ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │
│ 1790 │ │ │ │ total_batched_samples += 1 │
│ 1791 │ │ │ │ if rng_to_sync: │
│ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │
│ │
│ 374 │ │ dataloader_iter = super().__iter__() │
│ 375 │ │ # We iterate one batch ahead to check when we are at the end │
│ 376 │ │ try: │
│ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │
│ 378 │ │ except StopIteration: │
│ 379 │ │ │ yield │
│ 380 │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │
│ │
│ 630 │ │ │ if self._sampler_iter is None: │
│ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │
│ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │
│ ❱ 633 │ │ │ data = self._next_data() │
│ 634 │ │ │ self._num_yielded += 1 │
│ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │
│ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │
│ │
│ 674 │ │
│ 675 │ def _next_data(self): │
│ 676 │ │ index = self._next_index() # may raise StopIteration │
│ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │
│ 678 │ │ if self._pin_memory: │
│ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │
│ 680 │ │ return data │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │
│ │
│ 46 │ def fetch(self, possibly_batched_index): │
│ 47 │ │ if self.auto_collation: │
│ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │
│ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │
│ 50 │ │ │ else: │
│ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │
│ 52 │ │ else: │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │
│ │
│ 2779 │ │
│ 2780 │ def __getitems__(self, keys: List) -> List: │
│ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │
│ ❱ 2782 │ │ batch = self.__getitem__(keys) │
│ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │
│ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │
│ 2785 │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │
│ │
│ 2775 │ │
│ 2776 │ def __getitem__(self, key): # noqa: F811 │
│ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │
│ ❱ 2778 │ │ return self._getitem(key) │
│ 2779 │ │
│ 2780 │ def __getitems__(self, keys: List) -> List: │
│ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │
│ │
│ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │
│ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │
│ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │
│ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │
│ 2763 │ │ formatted_output = format_table( │
│ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │
│ 2765 │ │ ) │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │
│ │
│ 575 │ │ _check_valid_column_key(key, table.column_names) │
│ 576 │ else: │
│ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │
│ ❱ 578 │ │ _check_valid_index_key(key, size) │
│ 579 │ # Query the main table │
│ 580 │ if indices is None: │
│ 581 │ │ pa_subtable = _query_table(table, key) │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │
│ _check_valid_index_key │
│ │
│ 528 │ │ │ _check_valid_index_key(min(key), size=size) │
│ 529 │ elif isinstance(key, Iterable): │
│ 530 │ │ if len(key) > 0: │
│ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │
│ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │
│ 533 │ else: │
│ 534 │ │ _raise_bad_key_type(key) │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │
│ _check_valid_index_key │
│ │
│ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │
│ 519 │ if isinstance(key, int): │
│ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │
│ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │
│ 522 │ │ return │
│ 523 │ elif isinstance(key, slice): │
│ 524 │ │ pass
### Steps to reproduce the bug
``
import json
import os
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import Dataset,load_dataset
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
MODEL_NAME = "tiiuae/falcon-7b"
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map = "auto",
trust_remote_code = True,
quantization_config = bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
config = LoraConfig(
r = 16,
lora_alpha = 32,
target_modules = ["query_key_value"],
lora_dropout = 0.05,
bias = "none",
task_type = "CASUAL_LM"
)
model = get_peft_model(model,config)
print_trainable_parameters(model)
def generate_prompt(data_point):
return f"""
<human>: {data_point["question"]}
<assistant>: {data_point["answer"]}
""".strip()
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(data_point)
tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None)
return dict({
"input_ids" : tokenized_full_prompt["input_ids"],
"attention_mask" : tokenized_full_prompt["attention_mask"]
})
data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False)
OUTPUT_DIR = "experiments"
trainings_args = transformers.TrainingArguments(
per_device_train_batch_size = 1,
gradient_accumulation_steps = 4,
num_train_epochs = 1,
learning_rate = 2e-4,
fp16 = True,
save_total_limit = 3,
logging_steps = 1,
output_dir = OUTPUT_DIR,
max_steps = 80,
optim = "paged_adamw_8bit",
lr_scheduler_type = "cosine",
warmup_ratio = 0.05,
#remove_unused_columns=True
)
trainer = transformers.Trainer(
model = model,
train_dataset = data,
args = trainings_args,
data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train()
IndexError: Invalid key: 32 is out of bounds for size 0
DataSet Format is like :
[{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ]
### Expected behavior
-
### Environment info
!pip install -q pip
!pip install -q bitsandbytes==0.39.0
!pip install -q torch==2.0.1
!pip install -q git+https://github.com/huggingface/transformers.git
!pip install -q git+https://github.com/huggingface/peft.git
!pip install -q git+https://github.com/huggingface/accelerate.git
!pip install -q datasets
!pip install -q loralib==0.1.1
!pip install -q einops==0.6.1
import json
import os
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import Dataset,load_dataset
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5946/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5946/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5945 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5945/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5945/comments | https://api.github.com/repos/huggingface/datasets/issues/5945/events | https://github.com/huggingface/datasets/issues/5945 | 1,754,084,577 | I_kwDODunzps5ojTTh | 5,945 | Failing to upload dataset to the hub | {
"login": "Ar770",
"id": 77382661,
"node_id": "MDQ6VXNlcjc3MzgyNjYx",
"avatar_url": "https://avatars.githubusercontent.com/u/77382661?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Ar770",
"html_url": "https://github.com/Ar770",
"followers_url": "https://api.github.com/users/Ar770/followers",
"following_url": "https://api.github.com/users/Ar770/following{/other_user}",
"gists_url": "https://api.github.com/users/Ar770/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Ar770/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Ar770/subscriptions",
"organizations_url": "https://api.github.com/users/Ar770/orgs",
"repos_url": "https://api.github.com/users/Ar770/repos",
"events_url": "https://api.github.com/users/Ar770/events{/privacy}",
"received_events_url": "https://api.github.com/users/Ar770/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! Feel free to re-run your code later, it will resume automatically where you left",
"Tried many times in the last 2 weeks, problem remains.",
"Alternatively you can save your dataset in parquet files locally and upload them to the hub manually\r\n\r\n```python\r\nfrom tqdm import tqdm\r\nnum_shards = 60\r\nfor index in tqdm(range(num_shards)):\r\n ds.shard(num_shards=num_shards, index=index, contiguous=True).to_parquet(f\"{index:05d}.parquet\")\r\n````"
] | 2023-06-13T05:46:46 | 2023-07-24T11:56:40 | 2023-07-24T11:56:40 | NONE | null | null | null | ### Describe the bug
Trying to upload a dataset of hundreds of thousands of audio samples (the total volume is not very large, 60 gb) to the hub with push_to_hub, it doesn't work.
From time to time one piece of the data (parquet) gets pushed and then I get RemoteDisconnected even though my internet is stable.
Please help.
I'm trying to upload the dataset for almost a week.
Thanks
### Steps to reproduce the bug
not relevant
### Expected behavior
Be able to upload thedataset
### Environment info
python: 3.9 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5945/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5945/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5944 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5944/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5944/comments | https://api.github.com/repos/huggingface/datasets/issues/5944/events | https://github.com/huggingface/datasets/pull/5944 | 1,752,882,200 | PR_kwDODunzps5Sx7O4 | 5,944 | Arrow dataset builder to be able to load and stream Arrow datasets | {
"login": "mariusz-jachimowicz-83",
"id": 10278877,
"node_id": "MDQ6VXNlcjEwMjc4ODc3",
"avatar_url": "https://avatars.githubusercontent.com/u/10278877?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariusz-jachimowicz-83",
"html_url": "https://github.com/mariusz-jachimowicz-83",
"followers_url": "https://api.github.com/users/mariusz-jachimowicz-83/followers",
"following_url": "https://api.github.com/users/mariusz-jachimowicz-83/following{/other_user}",
"gists_url": "https://api.github.com/users/mariusz-jachimowicz-83/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariusz-jachimowicz-83/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariusz-jachimowicz-83/subscriptions",
"organizations_url": "https://api.github.com/users/mariusz-jachimowicz-83/orgs",
"repos_url": "https://api.github.com/users/mariusz-jachimowicz-83/repos",
"events_url": "https://api.github.com/users/mariusz-jachimowicz-83/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariusz-jachimowicz-83/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"@lhoestq tips applied. Thanks for a review. :smile: It's a lot of fun to improve this project. ",
"Let's add some documentation in a subsequent PR :)\r\n\r\nIn particular @mariosasko and I think it's important to note to users that local arrow data are copied to cache according to the way load_dataset works, but if they want they can use Dataset.from_file instead",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006384 / 0.011353 (-0.004969) | 0.003788 / 0.011008 (-0.007220) | 0.098524 / 0.038508 (0.060016) | 0.031786 / 0.023109 (0.008677) | 0.307799 / 0.275898 (0.031901) | 0.337329 / 0.323480 (0.013849) | 0.003650 / 0.007986 (-0.004336) | 0.003731 / 0.004328 (-0.000598) | 0.076816 / 0.004250 (0.072566) | 0.041888 / 0.037052 (0.004835) | 0.310702 / 0.258489 (0.052213) | 0.343846 / 0.293841 (0.050005) | 0.027841 / 0.128546 (-0.100705) | 0.008312 / 0.075646 (-0.067334) | 0.320230 / 0.419271 (-0.099042) | 0.047378 / 0.043533 (0.003845) | 0.308683 / 0.255139 (0.053544) | 0.335129 / 0.283200 (0.051930) | 0.096294 / 0.141683 (-0.045389) | 1.485521 / 1.452155 (0.033366) | 1.559868 / 1.492716 (0.067152) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197376 / 0.018006 (0.179370) | 0.430461 / 0.000490 (0.429972) | 0.004152 / 0.000200 (0.003953) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023660 / 0.037411 (-0.013751) | 0.103128 / 0.014526 (0.088602) | 0.107549 / 0.176557 (-0.069008) | 0.175934 / 0.737135 (-0.561201) | 0.112210 / 0.296338 (-0.184129) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415804 / 0.215209 (0.200595) | 4.216333 / 2.077655 (2.138679) | 1.910354 / 1.504120 (0.406234) | 1.712689 / 1.541195 (0.171494) | 1.754705 / 1.468490 (0.286215) | 0.554647 / 4.584777 (-4.030130) | 3.393592 / 3.745712 (-0.352120) | 1.737504 / 5.269862 (-3.532358) | 1.021213 / 4.565676 (-3.544464) | 0.066908 / 0.424275 (-0.357367) | 0.011446 / 0.007607 (0.003839) | 0.524630 / 0.226044 (0.298585) | 5.243005 / 2.268929 (2.974077) | 2.349685 / 55.444624 (-53.094939) | 2.027457 / 6.876477 (-4.849020) | 2.131053 / 2.142072 (-0.011020) | 0.669070 / 4.805227 (-4.136157) | 0.136317 / 6.500664 (-6.364347) | 0.065924 / 0.075469 (-0.009545) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254102 / 1.841788 (-0.587686) | 13.790492 / 8.074308 (5.716184) | 14.197772 / 10.191392 (4.006380) | 0.143989 / 0.680424 (-0.536434) | 0.016577 / 0.534201 (-0.517624) | 0.375437 / 0.579283 (-0.203846) | 0.398995 / 0.434364 (-0.035369) | 0.445287 / 0.540337 (-0.095050) | 0.538632 / 1.386936 (-0.848304) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006251 / 0.011353 (-0.005101) | 0.004019 / 0.011008 (-0.006989) | 0.077985 / 0.038508 (0.039477) | 0.028705 / 0.023109 (0.005596) | 0.417360 / 0.275898 (0.141462) | 0.463964 / 0.323480 (0.140484) | 0.003489 / 0.007986 (-0.004497) | 0.003032 / 0.004328 (-0.001296) | 0.077953 / 0.004250 (0.073702) | 0.040104 / 0.037052 (0.003051) | 0.405242 / 0.258489 (0.146753) | 0.475029 / 0.293841 (0.181188) | 0.028113 / 0.128546 (-0.100433) | 0.008610 / 0.075646 (-0.067036) | 0.084847 / 0.419271 (-0.334424) | 0.048227 / 0.043533 (0.004694) | 0.417235 / 0.255139 (0.162096) | 0.450470 / 0.283200 (0.167270) | 0.096978 / 0.141683 (-0.044705) | 1.514688 / 1.452155 (0.062533) | 1.560205 / 1.492716 (0.067488) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235125 / 0.018006 (0.217119) | 0.409904 / 0.000490 (0.409414) | 0.002474 / 0.000200 (0.002275) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025152 / 0.037411 (-0.012259) | 0.103517 / 0.014526 (0.088991) | 0.110154 / 0.176557 (-0.066402) | 0.161431 / 0.737135 (-0.575704) | 0.114891 / 0.296338 (-0.181448) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456077 / 0.215209 (0.240868) | 4.541171 / 2.077655 (2.463517) | 2.297912 / 1.504120 (0.793792) | 2.079337 / 1.541195 (0.538143) | 2.121291 / 1.468490 (0.652801) | 0.560172 / 4.584777 (-4.024605) | 3.421122 / 3.745712 (-0.324590) | 1.764675 / 5.269862 (-3.505186) | 1.043482 / 4.565676 (-3.522195) | 0.067652 / 0.424275 (-0.356623) | 0.011181 / 0.007607 (0.003574) | 0.557232 / 0.226044 (0.331188) | 5.607851 / 2.268929 (3.338922) | 2.783715 / 55.444624 (-52.660909) | 2.380943 / 6.876477 (-4.495534) | 2.378316 / 2.142072 (0.236244) | 0.674356 / 4.805227 (-4.130871) | 0.135912 / 6.500664 (-6.364752) | 0.067009 / 0.075469 (-0.008460) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.309002 / 1.841788 (-0.532786) | 14.464073 / 8.074308 (6.389765) | 14.418727 / 10.191392 (4.227335) | 0.148486 / 0.680424 (-0.531938) | 0.016650 / 0.534201 (-0.517551) | 0.368786 / 0.579283 (-0.210497) | 0.395026 / 0.434364 (-0.039338) | 0.433565 / 0.540337 (-0.106772) | 0.526603 / 1.386936 (-0.860333) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#443fc92700b4f9e12421e8082e205535314a67d5 \"CML watermark\")\n"
] | 2023-06-12T14:21:49 | 2023-06-13T17:36:02 | 2023-06-13T17:29:01 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5944",
"html_url": "https://github.com/huggingface/datasets/pull/5944",
"diff_url": "https://github.com/huggingface/datasets/pull/5944.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5944.patch",
"merged_at": "2023-06-13T17:29:01"
} | This adds a Arrow dataset builder to be able to load and stream from already preprocessed Arrow files.
It's related to https://github.com/huggingface/datasets/issues/3035 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5944/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5944/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5942 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5942/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5942/comments | https://api.github.com/repos/huggingface/datasets/issues/5942/events | https://github.com/huggingface/datasets/pull/5942 | 1,752,021,681 | PR_kwDODunzps5Su-V4 | 5,942 | Pass datasets-cli additional args as kwargs to DatasetBuilder in `run_beam.py` | {
"login": "graelo",
"id": 84066822,
"node_id": "MDQ6VXNlcjg0MDY2ODIy",
"avatar_url": "https://avatars.githubusercontent.com/u/84066822?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/graelo",
"html_url": "https://github.com/graelo",
"followers_url": "https://api.github.com/users/graelo/followers",
"following_url": "https://api.github.com/users/graelo/following{/other_user}",
"gists_url": "https://api.github.com/users/graelo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/graelo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/graelo/subscriptions",
"organizations_url": "https://api.github.com/users/graelo/orgs",
"repos_url": "https://api.github.com/users/graelo/repos",
"events_url": "https://api.github.com/users/graelo/events{/privacy}",
"received_events_url": "https://api.github.com/users/graelo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-06-12T06:50:50 | 2023-06-30T09:15:00 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5942",
"html_url": "https://github.com/huggingface/datasets/pull/5942",
"diff_url": "https://github.com/huggingface/datasets/pull/5942.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5942.patch",
"merged_at": null
} | Hi,
Following this <https://discuss.huggingface.co/t/how-to-preprocess-a-wikipedia-dataset-using-dataflowrunner/41991/3>, here is a simple PR to pass any additional args to datasets-cli as kwargs in the DatasetBuilder in `run_beam.py`.
I also took the liberty to add missing setup steps to the `beam.mdx` docs in order to help everyone.
@lhoestq | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5942/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5942/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5941 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5941/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5941/comments | https://api.github.com/repos/huggingface/datasets/issues/5941/events | https://github.com/huggingface/datasets/issues/5941 | 1,751,838,897 | I_kwDODunzps5oavCx | 5,941 | Load Data Sets Too Slow In Train Seq2seq Model | {
"login": "xyx361100238",
"id": 19569322,
"node_id": "MDQ6VXNlcjE5NTY5MzIy",
"avatar_url": "https://avatars.githubusercontent.com/u/19569322?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/xyx361100238",
"html_url": "https://github.com/xyx361100238",
"followers_url": "https://api.github.com/users/xyx361100238/followers",
"following_url": "https://api.github.com/users/xyx361100238/following{/other_user}",
"gists_url": "https://api.github.com/users/xyx361100238/gists{/gist_id}",
"starred_url": "https://api.github.com/users/xyx361100238/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/xyx361100238/subscriptions",
"organizations_url": "https://api.github.com/users/xyx361100238/orgs",
"repos_url": "https://api.github.com/users/xyx361100238/repos",
"events_url": "https://api.github.com/users/xyx361100238/events{/privacy}",
"received_events_url": "https://api.github.com/users/xyx361100238/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! you can speed it up using multiprocessing by passing `num_proc=` to `load_dataset()`",
"already did,but not useful for step Generating train split,it works in step \"Resolving data files\" & \"Downloading data files\" ",
"@mariosasko some advice , thanks!",
"I met the same problem, terrible experience",
"@mariosasko ",
"We need more info about the issue to provide help. \r\n\r\nCan you interrupt the process (with `num_proc=None`) after the `load_dataset` call when the slowdown occurs? So we can know what part of the code is causing it.\r\n\r\nThe `audiofolder` \\ `imagefolder` with metadata is not performant for large datasets. Luckily, we can make them much faster if drop the nested metadata files feature (not that useful). I plan to work on this soon.\r\n\r\nIn the meantime, it's better to use `Dataset.from_generator` (requires replacing the `load_dataset` calls in the transformers script with `Dataset.from_generator`) or write a dataset loading script for large datasets.",
"Can you interrupt the process (with num_proc=None) after the load_dataset call when the slowdown occurs? So we can know what part of the code is causing it.\r\n(I'll try this operation)\r\nThe audiofolder \\ imagefolder with metadata is not performant for large datasets. Luckily, we can make them much faster if drop the nested metadata files feature (not that useful). I plan to work on this soon.\r\n(My data is indeed a bit large, exceeding 10000 hours of audio data. Looking forward to your improvement work very much)\r\n\r\nIn the meantime, it's better to use Dataset.from_generator (requires replacing the load_dataset calls in the transformers script with Dataset.from_generator) or write a dataset loading script for large datasets.\r\n(I want to use Dataset.from_generator instead of load_dataset ,where can i found sample code to load audio&label dataset, I was to do asr task)",
"Can you interrupt the process (with num_proc=None) after the load_dataset call when the slowdown occurs? So we can know what part of the code is causing it.\r\n================================================================================\r\nHere is the log:\r\n[load_dataset.log](https://github.com/huggingface/datasets/files/12169362/load_dataset.log)\r\n(The larger my training data, the slower it loads)\r\n![image](https://github.com/huggingface/datasets/assets/19569322/381b73e4-0a54-4240-b95e-cb8164584047)\r\n\r\n",
"In the meantime, it's better to use Dataset.from_generator (requires replacing the load_dataset calls in the transformers script with Dataset.from_generator) or write a dataset loading script for large datasets.\r\n================================================================================\r\nI tried ‘Dataset. from_generator’ implements data loading, but the testing results show no improvement"
] | 2023-06-12T03:58:43 | 2023-07-26T07:49:35 | null | NONE | null | null | null | ### Describe the bug
step 'Generating train split' in load_dataset is too slow:
![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8)
### Steps to reproduce the bug
Data: own data,16K16B Mono wav
Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py)
Add Code:
if data_args.data_path is not None:
print(data_args.data_path)
raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir)
raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000))
raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True)
(change cache_dir to other path ,ex:/DATA/cache)
### Expected behavior
load data fast,at least 1000+
`Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]`
### Environment info
- `transformers` version: 4.28.0.dev0
- Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid
- Python version: 3.7.16
- Huggingface_hub version: 0.13.2
- PyTorch version (GPU?): 1.13.1+cu116 (True)
- Tensorflow version (GPU?): not installed (NA)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in> | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5941/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5941/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5990 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5990/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5990/comments | https://api.github.com/repos/huggingface/datasets/issues/5990/events | https://github.com/huggingface/datasets/issues/5990 | 1,774,389,854 | I_kwDODunzps5pwwpe | 5,990 | Pushing a large dataset on the hub consistently hangs | {
"login": "AntreasAntoniou",
"id": 10792502,
"node_id": "MDQ6VXNlcjEwNzkyNTAy",
"avatar_url": "https://avatars.githubusercontent.com/u/10792502?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/AntreasAntoniou",
"html_url": "https://github.com/AntreasAntoniou",
"followers_url": "https://api.github.com/users/AntreasAntoniou/followers",
"following_url": "https://api.github.com/users/AntreasAntoniou/following{/other_user}",
"gists_url": "https://api.github.com/users/AntreasAntoniou/gists{/gist_id}",
"starred_url": "https://api.github.com/users/AntreasAntoniou/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AntreasAntoniou/subscriptions",
"organizations_url": "https://api.github.com/users/AntreasAntoniou/orgs",
"repos_url": "https://api.github.com/users/AntreasAntoniou/repos",
"events_url": "https://api.github.com/users/AntreasAntoniou/events{/privacy}",
"received_events_url": "https://api.github.com/users/AntreasAntoniou/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | open | false | null | [] | null | [
"Hi @AntreasAntoniou , sorry to know you are facing this issue. To help debugging it, could you tell me:\r\n- What is the total dataset size?\r\n- Is it always failing on the same shard or is the hanging problem happening randomly?\r\n- Were you able to save the dataset as parquet locally? This would help us determine if the problem comes from the upload or the file generation.\r\n\r\nI'm cc-ing @lhoestq who might have some insights from a `datasets` perspective.",
"One trick that can also help is to check the traceback when you kill your python process: it will show where in the code it was hanging",
"Right. So I did the trick @lhoestq suggested. Here is where things seem to hang\r\n\r\n```\r\nError while uploading 'data/train-00120-of-00195-466c2dbab2eb9989.parquet' to the Hub. \r\nPushing split train to the Hub. \r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.15s/ba]\r\nUpload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:52<00:00, 52.12s/it]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.08s/ba]\r\nUpload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:45<00:00, 45.54s/it]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.08s/ba]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.03s/ba^Upload 1 LFS files: 0%| | 0/1 [\r\n21:27:35<?, ?it/s] \r\nPushing dataset shards to the dataset hub: 63%|█████████████████████████████████████████████████████████████▎ | 122/195 [23:37:11<14:07:59, 696.98s/it]\r\n^CError in sys.excepthook: \r\nTraceback (most recent call last): \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1699, in print \r\n extend(render(renderable, render_options)) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1335, in render \r\n yield from self.render(render_output, _options) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1331, in render \r\n for render_output in iter_render: \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/constrain.py\", line 29, in __rich_console__ \r\n yield from console.render(self.renderable, child_options) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1331, in render \r\n for render_output in iter_render: \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/panel.py\", line 220, in __rich_console__ \r\n lines = console.render_lines(renderable, child_options, style=style) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1371, in render_lines \r\n lines = list( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py\", line 292, in split_and_crop_lines \r\n for segment in segments: \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1331, in render \r\n for render_output in iter_render: \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/padding.py\", line 97, in __rich_console__ \r\n lines = console.render_lines( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1371, in render_lines \r\n lines = list( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py\", line 292, in split_and_crop_lines \r\n for segment in segments: \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1335, in render \r\n yield from self.render(render_output, _options) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py\", line 1331, in render \r\n for render_output in iter_render: \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/syntax.py\", line 611, in __rich_console__ \r\n segments = Segments(self._get_syntax(console, options)) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py\", line 668, in __init__ \r\n self.segments = list(segments) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/syntax.py\", line 674, in _get_syntax \r\n lines: Union[List[Text], Lines] = text.split(\"\\n\", allow_blank=ends_on_nl) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py\", line 1042, in split \r\n lines = Lines( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/containers.py\", line 70, in __init__ \r\n self._lines: List[\"Text\"] = list(lines) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py\", line 1043, in <genexpr> \r\n line for line in self.divide(flatten_spans()) if line.plain != separator \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py\", line 385, in plain \r\n if len(self._text) != 1: \r\nKeyboardInterrupt \r\n \r\nOriginal exception was: \r\nTraceback (most recent call last): \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py\", line 51, in _executor_map \r\n return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/std.py\", line 1178, in __iter__ \r\n for obj in iterable: \r\n File \"/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py\", line 621, in result_iterator \r\n yield _result_or_cancel(fs.pop()) \r\n File \"/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py\", line 319, in _result_or_cancel \r\n return fut.result(timeout) \r\n File \"/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py\", line 453, in result \r\n self._condition.wait(timeout) \r\n File \"/opt/conda/envs/main/lib/python3.10/threading.py\", line 320, in wait \r\n waiter.acquire() \r\nKeyboardInterrupt \r\n \r\nDuring handling of the above exception, another exception occurred: \r\n \r\nTraceback (most recent call last): \r\n File \"/TALI/tali/scripts/validate_dataset.py\", line 127, in <module> \r\n train_dataset.push_to_hub(repo_id=\"Antreas/TALI-base\", max_shard_size=\"5GB\") \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/datasets/dataset_dict.py\", line 1583, in push_to_hub \r\n repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py\", line 5275, in _push_parquet_shards_to_hub \r\n _retry( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/datasets/utils/file_utils.py\", line 282, in _retry \r\n return func(*func_args, **func_kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn \r\n return fn(*args, **kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 826, in _inner \r\n return fn(self, *args, **kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 3205, in upload_file \r\n commit_info = self.create_commit( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn \r\n return fn(*args, **kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 826, in _inner \r\n return fn(self, *args, **kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 2680, in create_commit \r\n upload_lfs_files( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn \r\n return fn(*args, **kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/_commit_api.py\", line 353, in upload_lfs_files \r\n thread_map( \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py\", line 69, in thread_map \r\n return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) \r\n File \"/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py\", line 49, in _executor_map \r\n with PoolExecutor(max_workers=max_workers, initializer=tqdm_class.set_lock, \r\n File \"/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py\", line 649, in __exit__ \r\n self.shutdown(wait=True) \r\n File \"/opt/conda/envs/main/lib/python3.10/concurrent/futures/thread.py\", line 235, in shutdown \r\n t.join() \r\n File \"/opt/conda/envs/main/lib/python3.10/threading.py\", line 1096, in join \r\n self._wait_for_tstate_lock() \r\n File \"/opt/conda/envs/main/lib/python3.10/threading.py\", line 1116, in _wait_for_tstate_lock \r\n if lock.acquire(block, timeout): \r\nKeyboardInterrupt \r\n```",
"@Wauplin \r\n\r\n>What is the total dataset size?\r\n\r\nThere are three variants, and the random hanging happens on all three. The sizes are 2TB, 1TB, and 200GB. \r\n\r\n>Is it always failing on the same shard or is the hanging problem happening randomly?\r\n\r\nIt seems to be very much random, as restarting can help move past the previous hang, only to find a new one, or not. \r\n\r\n>Were you able to save the dataset as parquet locally? This would help us determine if the problem comes from the upload or the file generation.\r\n\r\nYes. The dataset seems to be locally stored as parquet. ",
"Hmm it looks like an issue with TQDM lock. Maybe you can try updating TQDM ?",
"I am using the latest version of tqdm\r\n\r\n```\r\n⬢ [Docker] ❯ pip install tqdm --upgrade\r\nRequirement already satisfied: tqdm in /opt/conda/envs/main/lib/python3.10/site-packages (4.65.0)\r\nWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\r\n```",
"I tried trying to catch the hanging issue in action again\r\n\r\n```\r\nPushing dataset shards to the dataset hub: 65%|█████████████████████████████████████████████████████████████████▊ | 127/195 [2:28:02<1:19:15, 69.94s/it] \r\nError while uploading 'data/train-00127-of-00195-3f8d036ade107c27.parquet' to the Hub. \r\nPushing split train to the Hub. \r\nPushing dataset shards to the dataset hub: 64%|████████████████████████████████████████████████████████████████▏ | 124/195 [2:06:10<1:12:14, 61.05s/it]C^[^C^C^C \r\n╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ \r\n│ /TALI/tali/scripts/validate_dataset.py:127 in <module> │ \r\n│ │ \r\n│ 124 │ │ \r\n│ 125 │ while not succesful_competion: │ \r\n│ 126 │ │ try: │ \r\n│ ❱ 127 │ │ │ train_dataset.push_to_hub(repo_id=\"Antreas/TALI-base\", max_shard_size=\"5GB\") │ \r\n│ 128 │ │ │ succesful_competion = True │ \r\n│ 129 │ │ except Exception as e: │ \r\n│ 130 │ │ │ print(e) │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/dataset_dict.py:1583 in push_to_hub │ \r\n│ │ \r\n│ 1580 │ │ for split in self.keys(): │ \r\n│ 1581 │ │ │ logger.warning(f\"Pushing split {split} to the Hub.\") │ \r\n│ 1582 │ │ │ # The split=key needs to be removed before merging │ \r\n│ ❱ 1583 │ │ │ repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parq │ \r\n│ 1584 │ │ │ │ repo_id, │ \r\n│ 1585 │ │ │ │ split=split, │ \r\n│ 1586 │ │ │ │ private=private, │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:5263 in │ \r\n│ _push_parquet_shards_to_hub │ \r\n│ │ \r\n│ 5260 │ │ │ \r\n│ 5261 │ │ uploaded_size = 0 │ \r\n│ 5262 │ │ shards_path_in_repo = [] │ \r\n│ ❱ 5263 │ │ for index, shard in logging.tqdm( │ \r\n│ 5264 │ │ │ enumerate(itertools.chain([first_shard], shards_iter)), │ \r\n│ 5265 │ │ │ desc=\"Pushing dataset shards to the dataset hub\", │ \r\n│ 5266 │ │ │ total=num_shards, │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/tqdm/std.py:1178 in __iter__ │ \r\n│ │ \r\n│ 1175 │ │ time = self._time │ \r\n│ 1176 │ │ │ \r\n│ 1177 │ │ try: │\r\n│ ❱ 1178 │ │ │ for obj in iterable: │\r\n│ 1179 │ │ │ │ yield obj │\r\n│ 1180 │ │ │ │ # Update and possibly print the progressbar. │\r\n│ 1181 │ │ │ │ # Note: does not call self.update(1) for speed optimisation. │\r\n│ │\r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:5238 in │\r\n│ shards_with_embedded_external_files │\r\n│ │\r\n│ 5235 │ │ │ │ for shard in shards: │\r\n│ 5236 │ │ │ │ │ format = shard.format │\r\n│ 5237 │ │ │ │ │ shard = shard.with_format(\"arrow\") │\r\n│ ❱ 5238 │ │ │ │ │ shard = shard.map( │\r\n│ 5239 │ │ │ │ │ │ embed_table_storage, │\r\n│ 5240 │ │ │ │ │ │ batched=True, │\r\n│ 5241 │ │ │ │ │ │ batch_size=1000, │\r\n│ │\r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:578 in wrapper │\r\n│ │\r\n│ 575 │ │ else: │\r\n│ 576 │ │ │ self: \"Dataset\" = kwargs.pop(\"self\") │\r\n│ 577 │ │ # apply actual function │\r\n│ ❱ 578 │ │ out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs) │ \r\n│ 579 │ │ datasets: List[\"Dataset\"] = list(out.values()) if isinstance(out, dict) else [ou │ \r\n│ 580 │ │ for dataset in datasets: │ \r\n│ 581 │ │ │ # Remove task templates if a column mapping of the template is no longer val │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:543 in wrapper │ \r\n│ │ \r\n│ 540 │ │ │ \"output_all_columns\": self._output_all_columns, │ \r\n│ 541 │ │ } │ \r\n│ 542 │ │ # apply actual function │ \r\n│ ❱ 543 │ │ out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs) │ \r\n│ 544 │ │ datasets: List[\"Dataset\"] = list(out.values()) if isinstance(out, dict) else [ou │ \r\n│ 545 │ │ # re-apply format to the output │ \r\n│ 546 │ │ for dataset in datasets: │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:3073 in map │ \r\n│ │ \r\n│ 3070 │ │ │ │ │ leave=False, │ \r\n│ 3071 │ │ │ │ │ desc=desc or \"Map\", │ \r\n│ 3072 │ │ │ │ ) as pbar: │ \r\n│ ❱ 3073 │ │ │ │ │ for rank, done, content in Dataset._map_single(**dataset_kwargs): │ \r\n│ 3074 │ │ │ │ │ │ if done: │ \r\n│ 3075 │ │ │ │ │ │ │ shards_done += 1 │ \r\n│ 3076 │ │ │ │ │ │ │ logger.debug(f\"Finished processing shard number {rank} of {n │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:3464 in _map_single │ \r\n│ │ \r\n│ 3461 │ │ │ │ │ │ │ │ buf_writer, writer, tmp_file = init_buffer_and_writer() │ \r\n│ 3462 │ │ │ │ │ │ │ │ stack.enter_context(writer) │ \r\n│ 3463 │ │ │ │ │ │ │ if isinstance(batch, pa.Table): │ \r\n│ ❱ 3464 │ │ │ │ │ │ │ │ writer.write_table(batch) │ \r\n│ 3465 │ │ │ │ │ │ │ else: │ \r\n│ 3466 │ │ │ │ │ │ │ │ writer.write_batch(batch) │ \r\n│ 3467 │ │ │ │ │ │ num_examples_progress_update += num_examples_in_batch │ \r\n│ │ \r\n│ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_writer.py:567 in write_table │ \r\n│ │ \r\n│ 564 │ │ │ writer_batch_size = self.writer_batch_size │ \r\n│ 565 │ │ if self.pa_writer is None: │ \r\n│ 566 │ │ │ self._build_writer(inferred_schema=pa_table.schema) │ \r\n│ ❱ 567 │ │ pa_table = pa_table.combine_chunks() │ \r\n│ 568 │ │ pa_table = table_cast(pa_table, self._schema) │ \r\n│ 569 │ │ if self.embed_local_files: │ \r\n│ 570 │ │ │ pa_table = embed_table_storage(pa_table) │ \r\n╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ \r\nKeyboardInterrupt \r\n```",
"I'm on my phone so can't help that much. What I'd advice to do is to [save_to_disk](https://huggingface.co/docs/datasets/package_reference/main_classes#save_to_disk) if it's not already done and then upload the files/folder to the Hub separately. You can find what you need in the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload). It might not help finding the exact issue for now but at least it can unblock you. ",
"In your last stacktrace it interrupted while embedding external content - in case your dataset in made of images or audio files that live on your disk. Is it the case ?",
"Yeah, the dataset has images, audio, video and text. ",
"It's maybe related to https://github.com/apache/arrow/issues/34455: are you using ArrayND features ?\r\n\r\nAlso what's your `pyarrow` version ? Could you try updating to >= 12.0.1 ?",
"I was using pyarrow == 12.0.0\r\n\r\nI am not explicitly using ArrayND features, unless the hub API automatically converts my files to such. ",
"I have now updated to pyarrow == 12.0.1 and retrying",
"You can also try to reduce the `max_shard_size` - Sometimes parquet has a hard time working with data bigger than 2GB",
"So, updating the pyarrow seems to help. It can still throw errors here and there but I can retry when that happens. It's better than hanging. \r\n\r\nHowever, I am a bit confused about something. I have uploaded my datasets, but while earlier I could see all three sets, now I can only see 1. What's going on? \r\nhttps://huggingface.co/datasets/Antreas/TALI-base\r\n\r\nI have seen this happen before as well, so I deleted and reuploaded, but this dataset is way too large for me to do this. ",
"It's a bug on our side, I'll update the dataset viewer ;)\r\n\r\nThanks for reporting !",
"Apparently this happened because of bad modifications in the README.md split metadata.\r\n\r\nI fixed them in this PR: https://huggingface.co/datasets/Antreas/TALI-base/discussions/1",
"@lhoestq It's a bit odd that when uploading a dataset, one set at a time \"train\", \"val\", \"test\", the push_to_hub function overwrites the readme and removes differently named sets from previous commits. i.e., you push \"val\", all is well. Then you push \"test\", and the \"val\" entry disappears from the readme, while the data remain intact. ",
"Also, just found another related issue. One of the many that make things hang or fail when pushing to hub. \r\n\r\nIn the following code:\r\n\r\n```python\r\ntrain_generator = lambda: data_generator(\"train\", percentage=1.0)\r\n val_generator = lambda: data_generator(\"val\")\r\n test_generator = lambda: data_generator(\"test\")\r\n\r\n train_data = datasets.Dataset.from_generator(\r\n train_generator,\r\n num_proc=mp.cpu_count(),\r\n writer_batch_size=5000,\r\n cache_dir=tali_dataset_dir,\r\n )\r\n\r\n val_data = datasets.Dataset.from_generator(\r\n val_generator,\r\n writer_batch_size=5000,\r\n num_proc=mp.cpu_count(),\r\n cache_dir=tali_dataset_dir,\r\n )\r\n\r\n test_data = datasets.Dataset.from_generator(\r\n test_generator,\r\n writer_batch_size=5000,\r\n num_proc=mp.cpu_count(),\r\n cache_dir=tali_dataset_dir,\r\n )\r\n\r\n print(f\"Pushing TALI-large to hub\")\r\n\r\n dataset = datasets.DatasetDict(\r\n {\"train\": train_data, \"val\": val_data, \"test\": test_data}\r\n )\r\n succesful_competion = False\r\n\r\n while not succesful_competion:\r\n try:\r\n dataset.push_to_hub(repo_id=\"Antreas/TALI-large\", max_shard_size=\"2GB\")\r\n succesful_competion = True\r\n except Exception as e:\r\n print(e)\r\n ```\r\n \r\n \r\n Things keep failing in the push_to_repo step, at random places, with the following error:\r\n \r\n ```bash\r\n Pushing dataset shards to the dataset hub: 7%|██████████▋ | 67/950 [42:41<9:22:37, 38.23s/it]\r\nError while uploading 'data/train-00067-of-00950-a4d179ed5a593486.parquet' to the Hub.\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.81ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.20s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.48ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:15<00:00, 15.30s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.39ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.52s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.47ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.39s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.26ba/s]\r\nUpload 1 LFS files: 0%| | 0/1 [16:38<?, ?it/s]\r\nPushing dataset shards to the dataset hub: 7%|███████████▎ | 71/950 [44:37<9:12:28, 37.71s/it]\r\nError while uploading 'data/train-00071-of-00950-72bab6e5cb223aee.parquet' to the Hub.\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.18ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.94s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.36ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.67s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.57ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.16s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.68ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.63s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.36ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.67s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.37ba/s]\r\nUpload 1 LFS files: 0%| | 0/1 [16:39<?, ?it/s]\r\nPushing dataset shards to the dataset hub: 8%|████████████ | 76/950 [46:21<8:53:08, 36.60s/it]\r\nError while uploading 'data/train-00076-of-00950-b90e4e3b433db179.parquet' to the Hub.\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.21ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:25<00:00, 25.40s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.56ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.40s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.49ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.53s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.27ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.25s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.42ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.03s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.39ba/s]\r\nUpload 1 LFS files: 0%| | 0/1 [16:39<?, ?it/s]\r\nPushing dataset shards to the dataset hub: 9%|████████████▊ | 81/950 [48:30<8:40:22, 35.93s/it]\r\nError while uploading 'data/train-00081-of-00950-84b0450a1df093a9.parquet' to the Hub.\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.18ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.65s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.92ba/s]\r\nUpload 1 LFS files: 0%| | 0/1 [16:38<?, ?it/s]\r\nPushing dataset shards to the dataset hub: 9%|█████████████ | 82/950 [48:55<8:37:57, 35.80s/it]\r\nError while uploading 'data/train-00082-of-00950-0a1f52da35653e08.parquet' to the Hub.\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:26<00:00, 26.29s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.42ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.57s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.64ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.35s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.64ba/s]\r\nUpload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.74s/it]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31ba/s]\r\nUpload 1 LFS files: 0%| | 0/1 [16:40<?, ?it/s]\r\nPushing dataset shards to the dataset hub: 9%|█████████████▋ | 86/950 [50:48<8:30:25, 35.45s/it]\r\nError while uploading 'data/train-00086-of-00950-e1cc80dd17191b20.parquet' to the Hub.\r\n```\r\n\r\nI have a while loop that forces retries, but it seems that the progress itself is randomly getting lost as well. Any ideas on how to improve this? It has been blocking me for way too long. \r\n\r\nShould I build the parquet manually and then push manually as well? If I do things manually, how can I ensure my dataset works properly with \"stream=True\"? \r\n\r\nThank you for your help and time. ",
"> @lhoestq It's a bit odd that when uploading a dataset, one set at a time \"train\", \"val\", \"test\", the push_to_hub function overwrites the readme and removes differently named sets from previous commits. i.e., you push \"val\", all is well. Then you push \"test\", and the \"val\" entry disappears from the readme, while the data remain intact.\r\n\r\nHmm this shouldn't happen. What code did you run exactly ? Using which version of `datasets` ?",
"> I have a while loop that forces retries, but it seems that the progress itself is randomly getting lost as well. Any ideas on how to improve this? It has been blocking me for way too long.\r\n\r\nCould you also print the cause of the error (`e.__cause__`) ? Or show the full stack trace when the error happens ?\r\nThis would give more details about why it failed and would help investigate.",
"> Should I build the parquet manually and then push manually as well? If I do things manually, how can I ensure my dataset works properly with \"stream=True\"?\r\n\r\nParquet is supported out of the box ^^\r\n\r\nIf you want to make sure it works as expected you can try locally first:\r\n```python\r\nds = load_dataset(\"path/to/local\", streaming=True)\r\n```",
"@lhoestq @AntreasAntoniou I transferred this issue to the `datasets` repository as the questions and answers are more related to this repo. Hope it can help other users find the bug and fixes more easily (like updating [tqdm](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120204) and [pyarrow](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120278) or [setting a lower `max_shard_size`](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120328)).\r\n\r\n~For the initial \"pushing large dataset consistently hangs\"-issue, I still think it's best to try to `save_to_disk` first and then upload it manually/with a script (see [upload_folder](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder)). It's not the most satisfying solution but at least it would confirm from where the problem comes from.~\r\n\r\n**EDIT:** removed suggestion about saving to disk first (see https://github.com/huggingface/datasets/issues/5990#issuecomment-1607186914).",
"> @lhoestq @AntreasAntoniou I transferred this issue to the datasets repository as the questions and answers are more related to this repo. Hope it can help other users find the bug and fixes more easily (like updating https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120204 and https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120278 or https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120328).\r\n\r\nthanks :)\r\n\r\n> For the initial \"pushing large dataset consistently hangs\"-issue, I still think it's best to try to save_to_disk first and then upload it manually/with a script (see [upload_folder](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder)). It's not the most satisfying solution but at least it would confirm from where the problem comes from.\r\n\r\nAs I've already said in other discussions, I would not recommend pushing files saved with `save_to_disk` to the Hub but save to parquet shards and upload them instead. The Hub does not support datasets saved with `save_to_disk`, which is meant for disk only.",
"> As I've already said in other discussions, I would not recommend pushing files saved with save_to_disk to the Hub but save to parquet shards and upload them instead. The Hub does not support datasets saved with save_to_disk, which is meant for disk only.\r\n\r\nWell noted, thanks. That part was not clear to me :)",
"Sorry for not replying in a few days, I was on leave. :) \r\n\r\nSo, here are more information as to the error that causes some of the delay\r\n\r\n```bash\r\nPushing Antreas/TALI-tiny to hub\r\nAttempting to push to hub\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.06s/ba]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.15s/ba]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:26<00:00, 4.45s/ba]\r\n/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/lfs.py:310: UserWarning: hf_transfer is enabled but does not support uploading from bytes or BinaryIO, falling back to regular upload\r\n warnings.warn(\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:25<00:00, 4.26s/ba]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:27<00:00, 4.58s/ba]\r\nCreating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.10s/ba]\r\nPushing dataset shards to the dataset hub: 22%|████████████████████████▎ | 5/23 [52:23<3:08:37, 628.74s/it]\r\nException: Error while uploading 'data/train-00005-of-00023-e224d901fd65e062.parquet' to the Hub., with stacktrace: <traceback object at 0x7f745458d0c0>, and type: <class 'RuntimeError'>, and \r\ncause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: \r\n/lfs.huggingface.co/repos/7c/d3/7cd385d9324302dc13e3986331d72d9be6fa0174c63dcfe0e08cd474f7f1e8b7/3415166ae28c0beccbbc692f38742b8dea2c197f5c805321104e888d21d7eb90?X-Amz-Algorithm=AWS4-HMAC-SHA256\r\n&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230627%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230627T003349Z&X-Amz-Expires=86400&X-Amz-Signature=5a12ff96f2\r\n91f644134170992a6628e5f3c4e7b2e7fc3e940b4378fe11ae5390&X-Amz-SignedHeaders=host&partNumber=1&uploadId=JSsK8r63XSF.VlKQx3Vf8OW4DEVp5YIIY7LPnuapNIegsxs5EHgM1p4u0.Nn6_wlPlQnvxm8HKMxZhczKE9KB74t0etB\r\noLcxqBIvsgey3uXBTZMAEGwU6y7CDUADiEIO&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)')))\r\nPush failed, retrying\r\nAttempting to push to hub\r\nPushing split train to the Hub.\r\n```\r\n\r\nOne issue is that the uploading does not continue from the chunk it failed off. It often continues from a very old chunk. e.g. if it failed on chunk 192/250, it will continue from say 53/250, and this behaviour appears almost random. ",
"Are you using a proxy of some sort ?",
"I am using a kubernetes cluster built into a university VPN. ",
"So, other than the random connection drops here and there, any idea why the progress does not continue where it left off?\r\n\r\n```bash\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 10.79ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.65ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.39ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.04ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.52ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 12.28ba/s]\r\nPushing dataset shards to the dataset hub: 20%|██████████████████████ | 75/381 [1:34:39<6:26:11, 75.72s/it]\r\nException: Error while uploading 'data/train-00075-of-00381-1614bc251b778766.parquet' to the Hub., with stacktrace: <traceback object at 0x7fab6d9a4980>, and type: <class 'RuntimeError'>, and \r\ncause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: \r\n/lfs.huggingface.co/repos/3b/31/3b311464573d8d63b137fcd5b40af1e7a5b1306843c88e80372d0117157504e5/ed8dae933fb79ae1ef5fb1f698f5125d3e1c02977ac69438631f152bb3bfdd1e?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-\r\nAmz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230629%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230629T053004Z&X-Amz-Expires=86400&X-Amz-Signature=da2b26270edfd6d0\r\nd069c015a5a432031107a8664c3f0917717e5e40c688183c&X-Amz-SignedHeaders=host&partNumber=1&uploadId=2erWGHTh3ICqBLU_QvHfnygZ2tkMWbL0rEqpJdYohCKHUHnfwMjvoBIg0TI_KSGn4rSKxUxOyqSIzFUFSRSzixZeLeneaXJOw.Qx8\r\nzLKSV5xV7HRQDj4RBesNve6cSoo&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)')))\r\nPush failed, retrying\r\nAttempting to push to hub\r\nPushing split train to the Hub.\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 12.09ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 11.51ba/s]\r\nCreating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 10.77ba/s]\r\nPushing dataset shards to the dataset hub: 20%|██████████████████████▋ | 77/381 [1:32:50<6:06:34, 72.35s/it]\r\nException: Error while uploading 'data/train-00077-of-00381-368b2327a9908aab.parquet' to the Hub., with stacktrace: <traceback object at 0x7fab45b27f80>, and type: <class 'RuntimeError'>, and \r\ncause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: \r\n/lfs.huggingface.co/repos/3b/31/3b311464573d8d63b137fcd5b40af1e7a5b1306843c88e80372d0117157504e5/9462ff2c5e61283b53b091984a22de2f41a2f6e37b681171e2eca4a998f979cb?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-\r\nAmz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230629%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230629T070510Z&X-Amz-Expires=86400&X-Amz-Signature=9ab8487b93d443cd\r\n21f05476405855d46051a0771b4986bbb20f770ded21b1a4&X-Amz-SignedHeaders=host&partNumber=1&uploadId=UiHX1B.DcoAO2QmIHpWpCuNPwhXU_o1dsTkTGPqZt1P51o9k0yz.EsFD9eKpQMwgAST3jOatRG78I_JWRBeLBDYYVNp8r0TpIdeSg\r\neUg8uwPZOCPw9y5mWOw8MWJrnBo&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)')))\r\nPush failed, retrying\r\nAttempting to push to hub\r\nPushing split train to the Hub.\r\nPushing dataset shards to the dataset hub: 8%|████████▋ | 29/381 [27:39<5:50:03, 59.67s/it]\r\nMap: 36%|████████████████████████████████████████████████████ | 1000/2764 [00:35<00:34, 51.63 examples/Map: 72%|████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 2000/2764 [00:40<00:15, 49.06 examples/Map: 72%|████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 2000/2764 [00:55<00:15, 49.06 examples/Map: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2764/2764 [00:56<00:00, 48.82 examples/Pushing dataset shards to the dataset hub: 8%|████████▉ | 30/381 [28:35<5:43:03, 58.64s/iPushing dataset shards to the dataset hub: 8%|█████████▎ | 31/381 [29:40<5:52:18, 60.40s/iPushing dataset shards to the dataset hub: 8%|█████████▌ | 32/381 [30:46<6:02:20, 62.29s/it] \r\nMap: 36%|███████████████████████████████████████████████████▎ \r\n```\r\n\r\nThis is actually the issue that wastes the most time for me, and I need it fixed. Please advice on how I can go about it.\r\n\r\nNotice how the progress goes from \r\n| 77/381 to 30/381",
"If the any shard is missing on the Hub, it will re-upload it. It looks like the 30th shard was missing on the Hub in your case. \r\n\r\nIt also means that the other files up to the 77th that were successfully uploaded won't be uploaded again.\r\n\r\ncc @mariosasko who might know better"
] | 2023-06-10T14:46:47 | 2023-07-24T18:40:06 | null | NONE | null | null | null | ### Describe the bug
Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help.
I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it.
### Reproduction
```python
import multiprocessing as mp
import pathlib
from math import ceil
import datasets
import numpy as np
from tqdm.auto import tqdm
from tali.data.data import select_subtitles_between_timestamps
from tali.utils import load_json
tali_dataset_dir = "/data/"
if __name__ == "__main__":
full_dataset = datasets.load_dataset(
"Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir
)
def data_generator(set_name, percentage: float = 1.0):
dataset = full_dataset[set_name]
for item in tqdm(dataset):
video_list = item["youtube_content_video"]
video_list = np.random.choice(
video_list, int(ceil(len(video_list) * percentage))
)
if len(video_list) == 0:
continue
captions = item["youtube_subtitle_text"]
captions = select_subtitles_between_timestamps(
subtitle_dict=load_json(
captions.replace(
"/data/",
tali_dataset_dir,
)
),
starting_timestamp=0,
ending_timestamp=100000000,
)
for video_path in video_list:
temp_path = video_path.replace("/data/", tali_dataset_dir)
video_path_actual: pathlib.Path = pathlib.Path(temp_path)
if video_path_actual.exists():
item["youtube_content_video"] = open(video_path_actual, "rb").read()
item["youtube_subtitle_text"] = captions
yield item
train_generator = lambda: data_generator("train", percentage=0.1)
val_generator = lambda: data_generator("val")
test_generator = lambda: data_generator("test")
train_data = datasets.Dataset.from_generator(
train_generator,
num_proc=mp.cpu_count(),
writer_batch_size=5000,
cache_dir=tali_dataset_dir,
)
val_data = datasets.Dataset.from_generator(
val_generator,
writer_batch_size=5000,
num_proc=mp.cpu_count(),
cache_dir=tali_dataset_dir,
)
test_data = datasets.Dataset.from_generator(
test_generator,
writer_batch_size=5000,
num_proc=mp.cpu_count(),
cache_dir=tali_dataset_dir,
)
dataset = datasets.DatasetDict(
{
"train": train_data,
"val": val_data,
"test": test_data,
}
)
succesful_competion = False
while not succesful_competion:
try:
dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB")
succesful_competion = True
except Exception as e:
print(e)
```
### Logs
```shell
Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it]
Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub.
Pushing split train to the Hub.
Resuming upload of the dataset shards.
Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it]
Pushing split val to the Hub.
Resuming upload of the dataset shards.
Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s]
Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it]
Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s]
Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it]
Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s]
Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it]
Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s]
Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it]
Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s]
Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^
Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s]
Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it]
That's where it got stuck
```
### System info
```shell
- huggingface_hub version: 0.15.1
- Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35
- Python version: 3.10.11
- Running in iPython ?: No
- Running in notebook ?: No
- Running in Google Colab ?: No
- Token path ?: /root/.cache/huggingface/token
- Has saved token ?: True
- Who am I ?: Antreas
- Configured git credential helpers: store
- FastAI: N/A
- Tensorflow: N/A
- Torch: 2.1.0.dev20230606+cu121
- Jinja2: 3.1.2
- Graphviz: N/A
- Pydot: N/A
- Pillow: 9.5.0
- hf_transfer: N/A
- gradio: N/A
- numpy: 1.24.3
- ENDPOINT: https://huggingface.co
- HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub
- HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets
- HF_TOKEN_PATH: /root/.cache/huggingface/token
- HF_HUB_OFFLINE: False
- HF_HUB_DISABLE_TELEMETRY: False
- HF_HUB_DISABLE_PROGRESS_BARS: None
- HF_HUB_DISABLE_SYMLINKS_WARNING: False
- HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False
- HF_HUB_DISABLE_IMPLICIT_TOKEN: False
- HF_HUB_ENABLE_HF_TRANSFER: False
```
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5990/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5990/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5939 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5939/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5939/comments | https://api.github.com/repos/huggingface/datasets/issues/5939/events | https://github.com/huggingface/datasets/issues/5939 | 1,749,955,883 | I_kwDODunzps5oTjUr | 5,939 | . | {
"login": "flckv",
"id": 103381497,
"node_id": "U_kgDOBil5-Q",
"avatar_url": "https://avatars.githubusercontent.com/u/103381497?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/flckv",
"html_url": "https://github.com/flckv",
"followers_url": "https://api.github.com/users/flckv/followers",
"following_url": "https://api.github.com/users/flckv/following{/other_user}",
"gists_url": "https://api.github.com/users/flckv/gists{/gist_id}",
"starred_url": "https://api.github.com/users/flckv/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/flckv/subscriptions",
"organizations_url": "https://api.github.com/users/flckv/orgs",
"repos_url": "https://api.github.com/users/flckv/repos",
"events_url": "https://api.github.com/users/flckv/events{/privacy}",
"received_events_url": "https://api.github.com/users/flckv/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-06-09T14:01:34 | 2023-06-12T12:19:34 | 2023-06-12T12:19:19 | NONE | null | null | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5939/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5939/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5938 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5938/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5938/comments | https://api.github.com/repos/huggingface/datasets/issues/5938/events | https://github.com/huggingface/datasets/pull/5938 | 1,749,462,851 | PR_kwDODunzps5SmbkI | 5,938 | Make get_from_cache use custom temp filename that is locked | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007241 / 0.011353 (-0.004112) | 0.004574 / 0.011008 (-0.006434) | 0.120481 / 0.038508 (0.081973) | 0.040492 / 0.023109 (0.017383) | 0.391399 / 0.275898 (0.115501) | 0.422844 / 0.323480 (0.099365) | 0.004441 / 0.007986 (-0.003545) | 0.004544 / 0.004328 (0.000216) | 0.089482 / 0.004250 (0.085231) | 0.052939 / 0.037052 (0.015887) | 0.393649 / 0.258489 (0.135160) | 0.433852 / 0.293841 (0.140011) | 0.035882 / 0.128546 (-0.092664) | 0.010172 / 0.075646 (-0.065474) | 0.410331 / 0.419271 (-0.008940) | 0.061481 / 0.043533 (0.017948) | 0.405066 / 0.255139 (0.149927) | 0.417732 / 0.283200 (0.134532) | 0.121647 / 0.141683 (-0.020035) | 1.790624 / 1.452155 (0.338469) | 1.863398 / 1.492716 (0.370681) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250650 / 0.018006 (0.232644) | 0.489044 / 0.000490 (0.488554) | 0.010421 / 0.000200 (0.010222) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030340 / 0.037411 (-0.007071) | 0.128318 / 0.014526 (0.113792) | 0.140463 / 0.176557 (-0.036093) | 0.205762 / 0.737135 (-0.531373) | 0.147996 / 0.296338 (-0.148342) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.493158 / 0.215209 (0.277949) | 4.858346 / 2.077655 (2.780691) | 2.242942 / 1.504120 (0.738822) | 2.010092 / 1.541195 (0.468897) | 2.076765 / 1.468490 (0.608275) | 0.636669 / 4.584777 (-3.948108) | 4.478027 / 3.745712 (0.732314) | 2.157843 / 5.269862 (-3.112019) | 1.305133 / 4.565676 (-3.260543) | 0.079220 / 0.424275 (-0.345055) | 0.013858 / 0.007607 (0.006251) | 0.604501 / 0.226044 (0.378457) | 5.950071 / 2.268929 (3.681143) | 2.738373 / 55.444624 (-52.706251) | 2.380275 / 6.876477 (-4.496201) | 2.517108 / 2.142072 (0.375035) | 0.772249 / 4.805227 (-4.032979) | 0.169874 / 6.500664 (-6.330790) | 0.078026 / 0.075469 (0.002557) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.450200 / 1.841788 (-0.391588) | 17.810965 / 8.074308 (9.736657) | 15.518998 / 10.191392 (5.327606) | 0.200469 / 0.680424 (-0.479954) | 0.020777 / 0.534201 (-0.513424) | 0.504556 / 0.579283 (-0.074727) | 0.518493 / 0.434364 (0.084129) | 0.615335 / 0.540337 (0.074998) | 0.754065 / 1.386936 (-0.632871) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007224 / 0.011353 (-0.004129) | 0.004663 / 0.011008 (-0.006345) | 0.092151 / 0.038508 (0.053643) | 0.038359 / 0.023109 (0.015250) | 0.486413 / 0.275898 (0.210515) | 0.521596 / 0.323480 (0.198116) | 0.004207 / 0.007986 (-0.003778) | 0.003745 / 0.004328 (-0.000583) | 0.089840 / 0.004250 (0.085589) | 0.050996 / 0.037052 (0.013943) | 0.498090 / 0.258489 (0.239601) | 0.533647 / 0.293841 (0.239806) | 0.035151 / 0.128546 (-0.093395) | 0.010293 / 0.075646 (-0.065354) | 0.099056 / 0.419271 (-0.320215) | 0.057365 / 0.043533 (0.013833) | 0.470652 / 0.255139 (0.215513) | 0.509801 / 0.283200 (0.226602) | 0.115650 / 0.141683 (-0.026033) | 1.810860 / 1.452155 (0.358705) | 1.896775 / 1.492716 (0.404059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261887 / 0.018006 (0.243880) | 0.489919 / 0.000490 (0.489430) | 0.006117 / 0.000200 (0.005917) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035033 / 0.037411 (-0.002378) | 0.141093 / 0.014526 (0.126567) | 0.152613 / 0.176557 (-0.023943) | 0.218351 / 0.737135 (-0.518785) | 0.158366 / 0.296338 (-0.137972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.542219 / 0.215209 (0.327010) | 5.479358 / 2.077655 (3.401703) | 2.749586 / 1.504120 (1.245466) | 2.537686 / 1.541195 (0.996491) | 2.582351 / 1.468490 (1.113861) | 0.636750 / 4.584777 (-3.948027) | 4.537501 / 3.745712 (0.791789) | 2.141392 / 5.269862 (-3.128469) | 1.279711 / 4.565676 (-3.285965) | 0.079227 / 0.424275 (-0.345048) | 0.014141 / 0.007607 (0.006534) | 0.662070 / 0.226044 (0.436025) | 6.572144 / 2.268929 (4.303215) | 3.321349 / 55.444624 (-52.123275) | 2.928219 / 6.876477 (-3.948258) | 3.002732 / 2.142072 (0.860659) | 0.773808 / 4.805227 (-4.031419) | 0.166017 / 6.500664 (-6.334647) | 0.076424 / 0.075469 (0.000955) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.584325 / 1.841788 (-0.257463) | 18.359247 / 8.074308 (10.284938) | 16.977875 / 10.191392 (6.786483) | 0.195381 / 0.680424 (-0.485043) | 0.021048 / 0.534201 (-0.513153) | 0.512237 / 0.579283 (-0.067047) | 0.511435 / 0.434364 (0.077071) | 0.592856 / 0.540337 (0.052518) | 0.711905 / 1.386936 (-0.675031) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d536e37b21a6dd5c122b6d8113994ec50846c5b5 \"CML watermark\")\n"
] | 2023-06-09T09:01:13 | 2023-06-14T13:35:38 | 2023-06-14T13:27:24 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5938",
"html_url": "https://github.com/huggingface/datasets/pull/5938",
"diff_url": "https://github.com/huggingface/datasets/pull/5938.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5938.patch",
"merged_at": "2023-06-14T13:27:24"
} | This PR ensures that the temporary filename created is the same as the one that is locked, while writing to the cache.
This PR stops using `tempfile` to generate the temporary filename.
Additionally, the behavior now is aligned for both `resume_download` `True` and `False`.
Refactor temp_file_manager so that it uses the filename that is locked:
- Use: `cache_path + ".incomplete"`, when the locked one is `cache_path + ".lock"`
Before it was using `tempfile` inside `cache_dir`, which was not locked: although very improbable name collision (8 random characters), this was not impossible when huge number of multiple processes.
Maybe related to "Stale file handle" issues caused by `tempfile`:
- [ ] https://huggingface.co/datasets/tapaco/discussions/4
- [ ] https://huggingface.co/datasets/xcsr/discussions/1
- [ ] https://huggingface.co/datasets/covost2/discussions/3
```
Error code: ConfigNamesError
Exception: OSError
Message: [Errno 116] Stale file handle
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 61, in compute_config_names_response
for config in sorted(get_dataset_config_names(path=dataset, use_auth_token=use_auth_token))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 323, in get_dataset_config_names
dataset_module = dataset_module_factory(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1219, in dataset_module_factory
raise e1 from None
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1188, in dataset_module_factory
return HubDatasetModuleFactoryWithScript(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 907, in get_module
dataset_readme_path = self.download_dataset_readme_file()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 896, in download_dataset_readme_file
return cached_path(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 183, in cached_path
output_path = get_from_cache(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 611, in get_from_cache
http_get(
File "/usr/local/lib/python3.9/tempfile.py", line 496, in __exit__
result = self.file.__exit__(exc, value, tb)
OSError: [Errno 116] Stale file handle
```
- the stale file handle error can be raised when `tempfile` tries to close (when exiting its context manager) a filename that has been already closed by other process
- note that `tempfile` filenames are randomly generated but not locked in our code
CC: @severo | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5938/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5938/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5937 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5937/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5937/comments | https://api.github.com/repos/huggingface/datasets/issues/5937/events | https://github.com/huggingface/datasets/pull/5937 | 1,749,388,597 | PR_kwDODunzps5SmLIs | 5,937 | Avoid parallel redownload in cache | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006157 / 0.011353 (-0.005196) | 0.003790 / 0.011008 (-0.007219) | 0.097889 / 0.038508 (0.059381) | 0.029038 / 0.023109 (0.005929) | 0.306918 / 0.275898 (0.031020) | 0.339637 / 0.323480 (0.016157) | 0.003526 / 0.007986 (-0.004460) | 0.003102 / 0.004328 (-0.001227) | 0.076908 / 0.004250 (0.072658) | 0.039254 / 0.037052 (0.002201) | 0.309197 / 0.258489 (0.050708) | 0.345635 / 0.293841 (0.051794) | 0.027954 / 0.128546 (-0.100593) | 0.008510 / 0.075646 (-0.067136) | 0.314674 / 0.419271 (-0.104598) | 0.057102 / 0.043533 (0.013569) | 0.307495 / 0.255139 (0.052356) | 0.329501 / 0.283200 (0.046302) | 0.098450 / 0.141683 (-0.043233) | 1.480102 / 1.452155 (0.027948) | 1.550554 / 1.492716 (0.057838) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207440 / 0.018006 (0.189434) | 0.426560 / 0.000490 (0.426071) | 0.003250 / 0.000200 (0.003050) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023777 / 0.037411 (-0.013634) | 0.103905 / 0.014526 (0.089379) | 0.108324 / 0.176557 (-0.068233) | 0.167223 / 0.737135 (-0.569913) | 0.113529 / 0.296338 (-0.182810) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426770 / 0.215209 (0.211561) | 4.251806 / 2.077655 (2.174151) | 2.010426 / 1.504120 (0.506306) | 1.858630 / 1.541195 (0.317435) | 1.941318 / 1.468490 (0.472828) | 0.558056 / 4.584777 (-4.026721) | 3.399107 / 3.745712 (-0.346606) | 1.758386 / 5.269862 (-3.511476) | 1.036305 / 4.565676 (-3.529372) | 0.067094 / 0.424275 (-0.357182) | 0.011167 / 0.007607 (0.003560) | 0.526705 / 0.226044 (0.300661) | 5.250319 / 2.268929 (2.981390) | 2.496723 / 55.444624 (-52.947902) | 2.154013 / 6.876477 (-4.722464) | 2.394724 / 2.142072 (0.252652) | 0.669723 / 4.805227 (-4.135504) | 0.136367 / 6.500664 (-6.364297) | 0.067080 / 0.075469 (-0.008389) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269700 / 1.841788 (-0.572088) | 14.099775 / 8.074308 (6.025467) | 14.422936 / 10.191392 (4.231544) | 0.132344 / 0.680424 (-0.548080) | 0.016744 / 0.534201 (-0.517457) | 0.378286 / 0.579283 (-0.200997) | 0.392282 / 0.434364 (-0.042082) | 0.437648 / 0.540337 (-0.102689) | 0.528554 / 1.386936 (-0.858382) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006086 / 0.011353 (-0.005267) | 0.003769 / 0.011008 (-0.007239) | 0.077414 / 0.038508 (0.038906) | 0.027806 / 0.023109 (0.004697) | 0.360333 / 0.275898 (0.084434) | 0.404725 / 0.323480 (0.081245) | 0.003443 / 0.007986 (-0.004543) | 0.004434 / 0.004328 (0.000106) | 0.077309 / 0.004250 (0.073059) | 0.040441 / 0.037052 (0.003388) | 0.358627 / 0.258489 (0.100138) | 0.415246 / 0.293841 (0.121405) | 0.027718 / 0.128546 (-0.100829) | 0.008495 / 0.075646 (-0.067151) | 0.082874 / 0.419271 (-0.336397) | 0.042323 / 0.043533 (-0.001210) | 0.354895 / 0.255139 (0.099756) | 0.390032 / 0.283200 (0.106832) | 0.092377 / 0.141683 (-0.049306) | 1.492817 / 1.452155 (0.040662) | 1.551859 / 1.492716 (0.059143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198921 / 0.018006 (0.180915) | 0.417699 / 0.000490 (0.417209) | 0.001349 / 0.000200 (0.001149) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026349 / 0.037411 (-0.011062) | 0.105712 / 0.014526 (0.091186) | 0.111792 / 0.176557 (-0.064765) | 0.163677 / 0.737135 (-0.573459) | 0.116864 / 0.296338 (-0.179474) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447532 / 0.215209 (0.232323) | 4.468770 / 2.077655 (2.391116) | 2.403820 / 1.504120 (0.899700) | 2.273640 / 1.541195 (0.732445) | 2.337505 / 1.468490 (0.869015) | 0.560729 / 4.584777 (-4.024048) | 3.389165 / 3.745712 (-0.356547) | 2.697614 / 5.269862 (-2.572247) | 1.351909 / 4.565676 (-3.213768) | 0.068089 / 0.424275 (-0.356186) | 0.011639 / 0.007607 (0.004032) | 0.555277 / 0.226044 (0.329233) | 5.559291 / 2.268929 (3.290363) | 2.657609 / 55.444624 (-52.787015) | 2.346667 / 6.876477 (-4.529809) | 2.615823 / 2.142072 (0.473751) | 0.668662 / 4.805227 (-4.136566) | 0.136593 / 6.500664 (-6.364071) | 0.068384 / 0.075469 (-0.007085) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312089 / 1.841788 (-0.529699) | 14.477510 / 8.074308 (6.403202) | 14.231432 / 10.191392 (4.040040) | 0.132015 / 0.680424 (-0.548409) | 0.016908 / 0.534201 (-0.517293) | 0.368315 / 0.579283 (-0.210968) | 0.397964 / 0.434364 (-0.036400) | 0.432446 / 0.540337 (-0.107891) | 0.526349 / 1.386936 (-0.860587) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#78b4d55c3cfc60e309eb033d3ed0aba5e796b6ce \"CML watermark\")\n"
] | 2023-06-09T08:18:36 | 2023-06-14T12:30:59 | 2023-06-14T12:23:57 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5937",
"html_url": "https://github.com/huggingface/datasets/pull/5937",
"diff_url": "https://github.com/huggingface/datasets/pull/5937.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5937.patch",
"merged_at": "2023-06-14T12:23:57"
} | Avoid parallel redownload in cache by retrying inside the lock if path exists. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5937/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5937/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5936 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5936/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5936/comments | https://api.github.com/repos/huggingface/datasets/issues/5936/events | https://github.com/huggingface/datasets/issues/5936 | 1,748,424,388 | I_kwDODunzps5oNtbE | 5,936 | Sequence of array not supported for most dtype | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Related, `float16` is the only dtype not supported by `Array2D` (probably by every `ArrayND`):\r\n\r\n```python\r\nfrom datasets import Array2D, Features, Dataset\r\n\r\nimport numpy as np\r\n\r\nfor dtype in [\r\n \"bool\", # ok\r\n \"int8\", # ok\r\n \"int16\", # ok\r\n \"int32\", # ok\r\n \"int64\", # ok\r\n \"uint8\", # ok\r\n \"uint16\", # ok\r\n \"uint32\", # ok\r\n \"uint64\", # ok\r\n \"float16\", # failed\r\n \"float32\", # ok\r\n \"float64\", # ok\r\n]:\r\n features = Features({\"foo\": Array2D(dtype=dtype, shape=(3, 4))})\r\n array = np.zeros((3, 4), dtype=dtype)\r\n try:\r\n dataset = Dataset.from_dict({\"foo\": [array]}, features=features)\r\n except Exception as e:\r\n print(f\"Failed for dtype={dtype}\")\r\n```",
"Here's something I can't explain:\r\n\r\nWhen an array is encoded in the `from_dict` method, the numpy array is converted to a list (thus losing the original dtype, which is transfromed to the nearest builtin Python type)\r\n\r\nhttps://github.com/huggingface/datasets/blob/6ee61e6e695b1df9f232d47faf3a5e2b30b33737/src/datasets/features/features.py#L524-L525\r\n\r\nHowever, later on, this same data is written to memory, and it seems authorized that the data is an array (or in this case, a list of arrays). \r\n\r\nhttps://github.com/huggingface/datasets/blob/6ee61e6e695b1df9f232d47faf3a5e2b30b33737/src/datasets/arrow_writer.py#L185-L186\r\n\r\nSo the question is: why convert it to a Python list? This seems to be quite expensive both in terms of write time (all data is copied) and memory (e.g., an int8 is converted to an int64).\r\n\r\nFinally, if I try to remove this step, it solves all the previous problems, and it seems to me that it doesn't break anything (the CI passes without problem).",
"Arrow only support 1d numpy arrays, so we convert multidim arrays to lists of 1s arrays (and keep the dtype).\r\n\r\nThough you noticed that it's concerting to lists and lose the dtype. If it's the case then it's a bug.",
"Ok the conversion to list shouldn't be there indeed ! Could you open a PR to remove it ?"
] | 2023-06-08T18:18:07 | 2023-06-14T15:03:34 | 2023-06-14T15:03:34 | CONTRIBUTOR | null | null | null | ### Describe the bug
Create a dataset composed of sequence of array fails for most dtypes (see code below).
### Steps to reproduce the bug
```python
from datasets import Sequence, Array2D, Features, Dataset
import numpy as np
for dtype in [
"bool", # ok
"int8", # failed
"int16", # failed
"int32", # failed
"int64", # ok
"uint8", # failed
"uint16", # failed
"uint32", # failed
"uint64", # failed
"float16", # failed
"float32", # failed
"float64", # ok
]:
features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))})
sequence = [
[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]],
]
array = np.array(sequence, dtype=dtype)
try:
dataset = Dataset.from_dict({"foo": [array]}, features=features)
except Exception as e:
print(f"Failed for dtype={dtype}")
```
Traceback for `dtype="int8"`:
```
Traceback (most recent call last):
File "/home/qgallouedec/datasets/a.py", line 29, in <module>
raise e
File "/home/qgallouedec/datasets/a.py", line 26, in <module>
dataset = Dataset.from_dict({"foo": [array]}, features=features)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict
pa_table = InMemoryTable.from_pydict(mapping=mapping)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict
return cls(pa.Table.from_pydict(*args, **kwargs))
File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict
File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict
File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray
File "pyarrow/array.pxi", line 236, in pyarrow.lib.array
File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__
out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper
return func(array, *args, **kwargs)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature
casted_values = _c(array.values, feature.feature)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper
return func(array, *args, **kwargs)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature
return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper
return func(array, *args, **kwargs)
File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast
return pa_type.wrap_array(array)
File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array
TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>>
```
### Expected behavior
Not to fail.
### Environment info
- Python 3.10.6
- datasets: master branch
- Numpy: 1.23.4 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5936/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5936/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5935 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5935/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5935/comments | https://api.github.com/repos/huggingface/datasets/issues/5935/events | https://github.com/huggingface/datasets/pull/5935 | 1,748,090,220 | PR_kwDODunzps5Sh9Mg | 5,935 | Better row group size in push_to_hub | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007489 / 0.011353 (-0.003864) | 0.004914 / 0.011008 (-0.006095) | 0.111626 / 0.038508 (0.073117) | 0.037920 / 0.023109 (0.014811) | 0.350571 / 0.275898 (0.074673) | 0.389667 / 0.323480 (0.066187) | 0.006309 / 0.007986 (-0.001676) | 0.005488 / 0.004328 (0.001160) | 0.083962 / 0.004250 (0.079712) | 0.050728 / 0.037052 (0.013675) | 0.360997 / 0.258489 (0.102508) | 0.392736 / 0.293841 (0.098895) | 0.031975 / 0.128546 (-0.096571) | 0.009941 / 0.075646 (-0.065705) | 0.379840 / 0.419271 (-0.039432) | 0.056522 / 0.043533 (0.012989) | 0.359379 / 0.255139 (0.104240) | 0.384487 / 0.283200 (0.101287) | 0.117523 / 0.141683 (-0.024160) | 1.683639 / 1.452155 (0.231485) | 1.791645 / 1.492716 (0.298929) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236862 / 0.018006 (0.218856) | 0.481208 / 0.000490 (0.480719) | 0.007455 / 0.000200 (0.007255) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030854 / 0.037411 (-0.006557) | 0.126892 / 0.014526 (0.112367) | 0.139207 / 0.176557 (-0.037350) | 0.206447 / 0.737135 (-0.530689) | 0.143095 / 0.296338 (-0.153244) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474677 / 0.215209 (0.259468) | 4.699534 / 2.077655 (2.621879) | 2.152102 / 1.504120 (0.647983) | 1.934815 / 1.541195 (0.393620) | 1.986448 / 1.468490 (0.517958) | 0.607184 / 4.584777 (-3.977593) | 4.480385 / 3.745712 (0.734673) | 2.074729 / 5.269862 (-3.195132) | 1.182383 / 4.565676 (-3.383294) | 0.075624 / 0.424275 (-0.348651) | 0.014046 / 0.007607 (0.006439) | 0.598859 / 0.226044 (0.372814) | 5.959551 / 2.268929 (3.690622) | 2.700851 / 55.444624 (-52.743773) | 2.303775 / 6.876477 (-4.572702) | 2.456441 / 2.142072 (0.314369) | 0.747185 / 4.805227 (-4.058042) | 0.165787 / 6.500664 (-6.334878) | 0.075817 / 0.075469 (0.000348) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.411859 / 1.841788 (-0.429928) | 17.375495 / 8.074308 (9.301187) | 15.187098 / 10.191392 (4.995706) | 0.169953 / 0.680424 (-0.510471) | 0.020204 / 0.534201 (-0.513997) | 0.461424 / 0.579283 (-0.117859) | 0.494443 / 0.434364 (0.060080) | 0.544583 / 0.540337 (0.004246) | 0.648231 / 1.386936 (-0.738705) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007785 / 0.011353 (-0.003568) | 0.005314 / 0.011008 (-0.005694) | 0.087273 / 0.038508 (0.048765) | 0.037810 / 0.023109 (0.014701) | 0.425473 / 0.275898 (0.149575) | 0.459976 / 0.323480 (0.136497) | 0.007270 / 0.007986 (-0.000716) | 0.004631 / 0.004328 (0.000303) | 0.087063 / 0.004250 (0.082812) | 0.052630 / 0.037052 (0.015578) | 0.432384 / 0.258489 (0.173895) | 0.500291 / 0.293841 (0.206450) | 0.033144 / 0.128546 (-0.095402) | 0.010101 / 0.075646 (-0.065545) | 0.096068 / 0.419271 (-0.323204) | 0.062750 / 0.043533 (0.019217) | 0.419308 / 0.255139 (0.164169) | 0.437099 / 0.283200 (0.153900) | 0.122289 / 0.141683 (-0.019394) | 1.737829 / 1.452155 (0.285674) | 1.851481 / 1.492716 (0.358765) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.014277 / 0.018006 (-0.003729) | 0.489835 / 0.000490 (0.489345) | 0.008423 / 0.000200 (0.008223) | 0.000188 / 0.000054 (0.000134) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032966 / 0.037411 (-0.004445) | 0.130069 / 0.014526 (0.115544) | 0.144372 / 0.176557 (-0.032185) | 0.200400 / 0.737135 (-0.536735) | 0.149384 / 0.296338 (-0.146954) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.511542 / 0.215209 (0.296333) | 5.093879 / 2.077655 (3.016225) | 2.572088 / 1.504120 (1.067968) | 2.339118 / 1.541195 (0.797923) | 2.441637 / 1.468490 (0.973147) | 0.614818 / 4.584777 (-3.969959) | 4.724441 / 3.745712 (0.978729) | 5.431978 / 5.269862 (0.162116) | 2.257794 / 4.565676 (-2.307883) | 0.078109 / 0.424275 (-0.346166) | 0.013821 / 0.007607 (0.006214) | 0.639232 / 0.226044 (0.413188) | 6.424623 / 2.268929 (4.155694) | 3.163018 / 55.444624 (-52.281606) | 2.756786 / 6.876477 (-4.119690) | 2.808655 / 2.142072 (0.666583) | 0.745843 / 4.805227 (-4.059385) | 0.165562 / 6.500664 (-6.335102) | 0.076610 / 0.075469 (0.001141) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.738630 / 1.841788 (-0.103158) | 18.073573 / 8.074308 (9.999265) | 16.482820 / 10.191392 (6.291428) | 0.213233 / 0.680424 (-0.467191) | 0.022839 / 0.534201 (-0.511362) | 0.487043 / 0.579283 (-0.092240) | 0.512518 / 0.434364 (0.078154) | 0.549365 / 0.540337 (0.009028) | 0.656612 / 1.386936 (-0.730324) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#288e92b03bd4ec91c10c8a529b32631cfaba9fb7 \"CML watermark\")\n",
"Good idea!\r\n\r\nI was wondering: if we want to optimize the balance between the size of downloading a row group, and the number of rows in the group, would it make sense to compute the row group size by checking the average size of the rows?\r\n\r\neg. 32x32 images could have a larger row group size than full HD images, no? Relying on the size would even remove the need to check the column types.\r\n\r\n(in this proposal, we could use the computed row group size, eg 837, or use the nearest row group size in a list of values: 10, 100, 1000, 10000)",
"Probably, but I would go for a simpler solution first :p",
"Sure! I wanted to understand if the idea made sense or not, but it's not for this PR.",
"I think it will be more useful for people who use the viewer and won't impact sequential io that much.",
"DuckDB [paragraph](https://duckdb.org/docs/data/parquet/tips.html#selecting-a-row_group_size) that explains how to choose the `row_group_size`. Our default shard size is 500 MB in `push_to_hub`, so, ideally, we should aim for 64 MB row groups (and make this part configurable for power users 🙂).\r\n\r\nSo, before merging this PR, let's add a TODO or open an issue as a reminder that this can be improved.",
"I moved the config values, improved the features check and mentioned the improvements we could do in the docstring :)",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006211 / 0.011353 (-0.005141) | 0.004244 / 0.011008 (-0.006764) | 0.097941 / 0.038508 (0.059433) | 0.028564 / 0.023109 (0.005455) | 0.299651 / 0.275898 (0.023753) | 0.340694 / 0.323480 (0.017214) | 0.005161 / 0.007986 (-0.002824) | 0.004764 / 0.004328 (0.000435) | 0.075505 / 0.004250 (0.071255) | 0.039656 / 0.037052 (0.002603) | 0.309242 / 0.258489 (0.050753) | 0.350783 / 0.293841 (0.056942) | 0.025145 / 0.128546 (-0.103401) | 0.008498 / 0.075646 (-0.067148) | 0.317657 / 0.419271 (-0.101615) | 0.043926 / 0.043533 (0.000394) | 0.305915 / 0.255139 (0.050776) | 0.331630 / 0.283200 (0.048430) | 0.088564 / 0.141683 (-0.053119) | 1.533175 / 1.452155 (0.081021) | 1.581017 / 1.492716 (0.088301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206032 / 0.018006 (0.188025) | 0.433446 / 0.000490 (0.432956) | 0.003955 / 0.000200 (0.003755) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023468 / 0.037411 (-0.013943) | 0.103292 / 0.014526 (0.088766) | 0.107234 / 0.176557 (-0.069322) | 0.168525 / 0.737135 (-0.568610) | 0.113218 / 0.296338 (-0.183120) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431085 / 0.215209 (0.215875) | 4.302082 / 2.077655 (2.224427) | 2.068290 / 1.504120 (0.564171) | 1.850718 / 1.541195 (0.309523) | 1.964261 / 1.468490 (0.495771) | 0.547562 / 4.584777 (-4.037215) | 3.410739 / 3.745712 (-0.334974) | 1.779640 / 5.269862 (-3.490221) | 1.005466 / 4.565676 (-3.560210) | 0.066250 / 0.424275 (-0.358025) | 0.011877 / 0.007607 (0.004270) | 0.525185 / 0.226044 (0.299141) | 5.234786 / 2.268929 (2.965857) | 2.398045 / 55.444624 (-53.046580) | 2.073020 / 6.876477 (-4.803457) | 2.210753 / 2.142072 (0.068680) | 0.654897 / 4.805227 (-4.150331) | 0.134639 / 6.500664 (-6.366025) | 0.067050 / 0.075469 (-0.008419) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180210 / 1.841788 (-0.661577) | 13.613091 / 8.074308 (5.538783) | 13.441837 / 10.191392 (3.250445) | 0.146048 / 0.680424 (-0.534376) | 0.016505 / 0.534201 (-0.517696) | 0.363210 / 0.579283 (-0.216073) | 0.405484 / 0.434364 (-0.028880) | 0.428712 / 0.540337 (-0.111625) | 0.522300 / 1.386936 (-0.864636) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006147 / 0.011353 (-0.005206) | 0.004161 / 0.011008 (-0.006847) | 0.075861 / 0.038508 (0.037353) | 0.027948 / 0.023109 (0.004839) | 0.362466 / 0.275898 (0.086568) | 0.398227 / 0.323480 (0.074747) | 0.005014 / 0.007986 (-0.002972) | 0.004772 / 0.004328 (0.000444) | 0.075674 / 0.004250 (0.071423) | 0.039158 / 0.037052 (0.002106) | 0.363567 / 0.258489 (0.105078) | 0.410378 / 0.293841 (0.116537) | 0.025510 / 0.128546 (-0.103036) | 0.008528 / 0.075646 (-0.067118) | 0.081803 / 0.419271 (-0.337468) | 0.040954 / 0.043533 (-0.002579) | 0.358492 / 0.255139 (0.103353) | 0.381345 / 0.283200 (0.098145) | 0.092347 / 0.141683 (-0.049336) | 1.567695 / 1.452155 (0.115540) | 1.668412 / 1.492716 (0.175696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203367 / 0.018006 (0.185360) | 0.424642 / 0.000490 (0.424152) | 0.002451 / 0.000200 (0.002251) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026129 / 0.037411 (-0.011282) | 0.102564 / 0.014526 (0.088039) | 0.110583 / 0.176557 (-0.065973) | 0.164332 / 0.737135 (-0.572804) | 0.115706 / 0.296338 (-0.180632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468925 / 0.215209 (0.253716) | 4.657266 / 2.077655 (2.579612) | 2.423280 / 1.504120 (0.919160) | 2.236284 / 1.541195 (0.695089) | 2.323019 / 1.468490 (0.854529) | 0.548120 / 4.584777 (-4.036657) | 3.455602 / 3.745712 (-0.290110) | 1.730421 / 5.269862 (-3.539441) | 1.006089 / 4.565676 (-3.559588) | 0.067478 / 0.424275 (-0.356797) | 0.011465 / 0.007607 (0.003857) | 0.574235 / 0.226044 (0.348190) | 5.744404 / 2.268929 (3.475475) | 2.882225 / 55.444624 (-52.562400) | 2.618246 / 6.876477 (-4.258231) | 2.642920 / 2.142072 (0.500847) | 0.661441 / 4.805227 (-4.143787) | 0.137358 / 6.500664 (-6.363306) | 0.070372 / 0.075469 (-0.005097) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.333815 / 1.841788 (-0.507973) | 14.689667 / 8.074308 (6.615359) | 14.362294 / 10.191392 (4.170902) | 0.152011 / 0.680424 (-0.528413) | 0.016869 / 0.534201 (-0.517332) | 0.370433 / 0.579283 (-0.208851) | 0.399642 / 0.434364 (-0.034722) | 0.433759 / 0.540337 (-0.106578) | 0.525443 / 1.386936 (-0.861493) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#09e9f9a88edd9055b5c540e3d83b5a11d48f8ba8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006564 / 0.011353 (-0.004789) | 0.004350 / 0.011008 (-0.006658) | 0.096277 / 0.038508 (0.057769) | 0.032956 / 0.023109 (0.009847) | 0.303675 / 0.275898 (0.027777) | 0.336384 / 0.323480 (0.012904) | 0.005789 / 0.007986 (-0.002197) | 0.003957 / 0.004328 (-0.000371) | 0.073990 / 0.004250 (0.069740) | 0.050974 / 0.037052 (0.013922) | 0.321754 / 0.258489 (0.063265) | 0.349489 / 0.293841 (0.055648) | 0.031138 / 0.128546 (-0.097409) | 0.009000 / 0.075646 (-0.066646) | 0.325445 / 0.419271 (-0.093826) | 0.070173 / 0.043533 (0.026640) | 0.304706 / 0.255139 (0.049567) | 0.321803 / 0.283200 (0.038603) | 0.109405 / 0.141683 (-0.032278) | 1.489812 / 1.452155 (0.037657) | 1.577729 / 1.492716 (0.085013) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287187 / 0.018006 (0.269181) | 0.527625 / 0.000490 (0.527135) | 0.006533 / 0.000200 (0.006333) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026659 / 0.037411 (-0.010752) | 0.106236 / 0.014526 (0.091710) | 0.118615 / 0.176557 (-0.057941) | 0.173156 / 0.737135 (-0.563979) | 0.122883 / 0.296338 (-0.173456) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407189 / 0.215209 (0.191980) | 4.055732 / 2.077655 (1.978078) | 1.865594 / 1.504120 (0.361474) | 1.664325 / 1.541195 (0.123130) | 1.668961 / 1.468490 (0.200471) | 0.521207 / 4.584777 (-4.063570) | 3.740424 / 3.745712 (-0.005288) | 3.431973 / 5.269862 (-1.837889) | 1.636669 / 4.565676 (-2.929008) | 0.065271 / 0.424275 (-0.359005) | 0.012151 / 0.007607 (0.004544) | 0.514233 / 0.226044 (0.288189) | 5.110150 / 2.268929 (2.841222) | 2.264340 / 55.444624 (-53.180284) | 1.940428 / 6.876477 (-4.936049) | 2.042286 / 2.142072 (-0.099787) | 0.639200 / 4.805227 (-4.166028) | 0.139537 / 6.500664 (-6.361127) | 0.063195 / 0.075469 (-0.012274) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.179501 / 1.841788 (-0.662286) | 14.600133 / 8.074308 (6.525825) | 14.902137 / 10.191392 (4.710745) | 0.144509 / 0.680424 (-0.535915) | 0.017449 / 0.534201 (-0.516752) | 0.393135 / 0.579283 (-0.186148) | 0.413103 / 0.434364 (-0.021261) | 0.459897 / 0.540337 (-0.080440) | 0.552602 / 1.386936 (-0.834334) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006891 / 0.011353 (-0.004462) | 0.004633 / 0.011008 (-0.006375) | 0.073093 / 0.038508 (0.034585) | 0.032509 / 0.023109 (0.009399) | 0.348332 / 0.275898 (0.072434) | 0.381920 / 0.323480 (0.058440) | 0.005978 / 0.007986 (-0.002007) | 0.005360 / 0.004328 (0.001032) | 0.074307 / 0.004250 (0.070056) | 0.049668 / 0.037052 (0.012615) | 0.354713 / 0.258489 (0.096224) | 0.398521 / 0.293841 (0.104681) | 0.032013 / 0.128546 (-0.096534) | 0.008890 / 0.075646 (-0.066756) | 0.080013 / 0.419271 (-0.339259) | 0.051820 / 0.043533 (0.008288) | 0.349730 / 0.255139 (0.094591) | 0.369267 / 0.283200 (0.086067) | 0.103874 / 0.141683 (-0.037809) | 1.484148 / 1.452155 (0.031993) | 1.573927 / 1.492716 (0.081211) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.009699 / 0.018006 (-0.008307) | 0.511176 / 0.000490 (0.510686) | 0.002938 / 0.000200 (0.002738) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027847 / 0.037411 (-0.009564) | 0.111565 / 0.014526 (0.097039) | 0.120625 / 0.176557 (-0.055932) | 0.172130 / 0.737135 (-0.565006) | 0.125949 / 0.296338 (-0.170389) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430634 / 0.215209 (0.215424) | 4.315377 / 2.077655 (2.237722) | 2.070764 / 1.504120 (0.566644) | 1.881962 / 1.541195 (0.340767) | 1.904053 / 1.468490 (0.435563) | 0.524973 / 4.584777 (-4.059804) | 3.718359 / 3.745712 (-0.027353) | 3.415344 / 5.269862 (-1.854518) | 1.224568 / 4.565676 (-3.341108) | 0.065593 / 0.424275 (-0.358682) | 0.011643 / 0.007607 (0.004036) | 0.537050 / 0.226044 (0.311006) | 5.352155 / 2.268929 (3.083226) | 2.557361 / 55.444624 (-52.887263) | 2.217770 / 6.876477 (-4.658707) | 2.194975 / 2.142072 (0.052902) | 0.635142 / 4.805227 (-4.170085) | 0.140642 / 6.500664 (-6.360022) | 0.064690 / 0.075469 (-0.010779) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266125 / 1.841788 (-0.575663) | 14.836413 / 8.074308 (6.762105) | 14.446870 / 10.191392 (4.255478) | 0.191545 / 0.680424 (-0.488878) | 0.017433 / 0.534201 (-0.516768) | 0.392296 / 0.579283 (-0.186987) | 0.420698 / 0.434364 (-0.013666) | 0.463225 / 0.540337 (-0.077112) | 0.556127 / 1.386936 (-0.830809) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7fcbe5b1575c8d162b65b9397b3dfda995a4e048 \"CML watermark\")\n"
] | 2023-06-08T15:01:15 | 2023-06-09T17:47:37 | 2023-06-09T17:40:09 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5935",
"html_url": "https://github.com/huggingface/datasets/pull/5935",
"diff_url": "https://github.com/huggingface/datasets/pull/5935.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5935.patch",
"merged_at": "2023-06-09T17:40:09"
} | This is a very simple change that improves `to_parquet` to use a more reasonable row group size for image and audio datasets.
This is especially useful for `push_to_hub` and will provide a better experience with the dataset viewer on HF | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5935/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5935/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5934 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5934/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5934/comments | https://api.github.com/repos/huggingface/datasets/issues/5934/events | https://github.com/huggingface/datasets/pull/5934 | 1,747,904,840 | PR_kwDODunzps5ShUxQ | 5,934 | Modify levels of some logging messages | {
"login": "Laurent2916",
"id": 21087104,
"node_id": "MDQ6VXNlcjIxMDg3MTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/21087104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Laurent2916",
"html_url": "https://github.com/Laurent2916",
"followers_url": "https://api.github.com/users/Laurent2916/followers",
"following_url": "https://api.github.com/users/Laurent2916/following{/other_user}",
"gists_url": "https://api.github.com/users/Laurent2916/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Laurent2916/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Laurent2916/subscriptions",
"organizations_url": "https://api.github.com/users/Laurent2916/orgs",
"repos_url": "https://api.github.com/users/Laurent2916/repos",
"events_url": "https://api.github.com/users/Laurent2916/events{/privacy}",
"received_events_url": "https://api.github.com/users/Laurent2916/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I've addressed this as part of #6019, so feel free to close this PR. ",
"Thanks !"
] | 2023-06-08T13:31:44 | 2023-07-12T18:21:03 | 2023-07-12T18:21:02 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5934",
"html_url": "https://github.com/huggingface/datasets/pull/5934",
"diff_url": "https://github.com/huggingface/datasets/pull/5934.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5934.patch",
"merged_at": null
} | Some warning messages didn't quite sound like warnings so I modified their logging levels to info. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5934/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5934/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5933 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5933/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5933/comments | https://api.github.com/repos/huggingface/datasets/issues/5933/events | https://github.com/huggingface/datasets/pull/5933 | 1,747,382,500 | PR_kwDODunzps5Sfi5J | 5,933 | Fix `to_numpy` when None values in the sequence | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I just added the same test with dynamic shape",
"_The documentation is not available anymore as the PR was closed or merged._",
"Awesome ! I'm merging now if you don't mind :)\r\nWe should probably give you permissions to merge your own PRs when you have an approval",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009980 / 0.011353 (-0.001373) | 0.005709 / 0.011008 (-0.005300) | 0.132185 / 0.038508 (0.093677) | 0.039299 / 0.023109 (0.016190) | 0.400168 / 0.275898 (0.124270) | 0.470582 / 0.323480 (0.147102) | 0.007753 / 0.007986 (-0.000233) | 0.005196 / 0.004328 (0.000868) | 0.093698 / 0.004250 (0.089448) | 0.052631 / 0.037052 (0.015579) | 0.430347 / 0.258489 (0.171858) | 0.460162 / 0.293841 (0.166321) | 0.057511 / 0.128546 (-0.071035) | 0.013944 / 0.075646 (-0.061702) | 0.459008 / 0.419271 (0.039737) | 0.075532 / 0.043533 (0.031999) | 0.405165 / 0.255139 (0.150026) | 0.456142 / 0.283200 (0.172942) | 0.117309 / 0.141683 (-0.024374) | 1.945787 / 1.452155 (0.493633) | 2.067162 / 1.492716 (0.574446) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.285755 / 0.018006 (0.267749) | 0.619965 / 0.000490 (0.619476) | 0.005071 / 0.000200 (0.004871) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031112 / 0.037411 (-0.006299) | 0.128514 / 0.014526 (0.113988) | 0.137161 / 0.176557 (-0.039396) | 0.211363 / 0.737135 (-0.525772) | 0.151045 / 0.296338 (-0.145293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.609361 / 0.215209 (0.394152) | 6.124844 / 2.077655 (4.047189) | 2.440757 / 1.504120 (0.936637) | 2.034495 / 1.541195 (0.493300) | 2.047192 / 1.468490 (0.578702) | 0.883171 / 4.584777 (-3.701606) | 5.470552 / 3.745712 (1.724840) | 4.401696 / 5.269862 (-0.868165) | 2.378674 / 4.565676 (-2.187003) | 0.108065 / 0.424275 (-0.316210) | 0.013239 / 0.007607 (0.005632) | 0.830957 / 0.226044 (0.604913) | 8.090659 / 2.268929 (5.821731) | 3.289203 / 55.444624 (-52.155422) | 2.500777 / 6.876477 (-4.375700) | 2.561440 / 2.142072 (0.419367) | 1.064893 / 4.805227 (-3.740334) | 0.220486 / 6.500664 (-6.280178) | 0.079507 / 0.075469 (0.004038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.544334 / 1.841788 (-0.297454) | 17.878997 / 8.074308 (9.804689) | 18.952191 / 10.191392 (8.760799) | 0.245166 / 0.680424 (-0.435258) | 0.028022 / 0.534201 (-0.506179) | 0.517828 / 0.579283 (-0.061455) | 0.618988 / 0.434364 (0.184624) | 0.589742 / 0.540337 (0.049405) | 0.670902 / 1.386936 (-0.716034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009616 / 0.011353 (-0.001737) | 0.006098 / 0.011008 (-0.004911) | 0.100301 / 0.038508 (0.061793) | 0.037792 / 0.023109 (0.014683) | 0.484667 / 0.275898 (0.208769) | 0.519286 / 0.323480 (0.195806) | 0.007427 / 0.007986 (-0.000558) | 0.007172 / 0.004328 (0.002844) | 0.104429 / 0.004250 (0.100179) | 0.056567 / 0.037052 (0.019515) | 0.502641 / 0.258489 (0.244152) | 0.549629 / 0.293841 (0.255788) | 0.049574 / 0.128546 (-0.078972) | 0.015223 / 0.075646 (-0.060424) | 0.113947 / 0.419271 (-0.305324) | 0.064585 / 0.043533 (0.021053) | 0.512962 / 0.255139 (0.257823) | 0.507218 / 0.283200 (0.224019) | 0.122194 / 0.141683 (-0.019488) | 1.927821 / 1.452155 (0.475667) | 2.051161 / 1.492716 (0.558445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291350 / 0.018006 (0.273344) | 0.588099 / 0.000490 (0.587610) | 0.001368 / 0.000200 (0.001168) | 0.000153 / 0.000054 (0.000099) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030604 / 0.037411 (-0.006807) | 0.126810 / 0.014526 (0.112285) | 0.139309 / 0.176557 (-0.037248) | 0.208030 / 0.737135 (-0.529105) | 0.138985 / 0.296338 (-0.157353) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.681254 / 0.215209 (0.466045) | 6.753856 / 2.077655 (4.676201) | 2.780704 / 1.504120 (1.276585) | 2.475205 / 1.541195 (0.934010) | 2.486784 / 1.468490 (1.018294) | 0.879223 / 4.584777 (-3.705554) | 5.662294 / 3.745712 (1.916582) | 2.698705 / 5.269862 (-2.571156) | 1.660620 / 4.565676 (-2.905057) | 0.112218 / 0.424275 (-0.312057) | 0.014211 / 0.007607 (0.006604) | 0.796957 / 0.226044 (0.570913) | 8.180897 / 2.268929 (5.911969) | 3.540419 / 55.444624 (-51.904205) | 2.899467 / 6.876477 (-3.977010) | 2.870306 / 2.142072 (0.728233) | 1.069537 / 4.805227 (-3.735690) | 0.211281 / 6.500664 (-6.289383) | 0.078898 / 0.075469 (0.003429) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.666790 / 1.841788 (-0.174998) | 18.302127 / 8.074308 (10.227819) | 21.317546 / 10.191392 (11.126153) | 0.242795 / 0.680424 (-0.437629) | 0.026754 / 0.534201 (-0.507447) | 0.493375 / 0.579283 (-0.085908) | 0.605400 / 0.434364 (0.171036) | 0.586888 / 0.540337 (0.046550) | 0.722809 / 1.386936 (-0.664127) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce2328e7b1d62998b22510492530af55d4493b73 \"CML watermark\")\n"
] | 2023-06-08T08:38:56 | 2023-06-09T13:49:41 | 2023-06-09T13:23:48 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5933",
"html_url": "https://github.com/huggingface/datasets/pull/5933",
"diff_url": "https://github.com/huggingface/datasets/pull/5933.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5933.patch",
"merged_at": "2023-06-09T13:23:48"
} | Closes #5927
I've realized that the error was overlooked during testing due to the presence of only one None value in the sequence.
Unfortunately, it was the only case where the function works as expected. When the sequence contained more than one None value, the function failed. Consequently, I've updated the tests to include sequences with multiple None values. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5933/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5933/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5932 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5932/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5932/comments | https://api.github.com/repos/huggingface/datasets/issues/5932/events | https://github.com/huggingface/datasets/pull/5932 | 1,746,249,161 | PR_kwDODunzps5Sbrzo | 5,932 | [doc build] Use secrets | {
"login": "mishig25",
"id": 11827707,
"node_id": "MDQ6VXNlcjExODI3NzA3",
"avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mishig25",
"html_url": "https://github.com/mishig25",
"followers_url": "https://api.github.com/users/mishig25/followers",
"following_url": "https://api.github.com/users/mishig25/following{/other_user}",
"gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mishig25/subscriptions",
"organizations_url": "https://api.github.com/users/mishig25/orgs",
"repos_url": "https://api.github.com/users/mishig25/repos",
"events_url": "https://api.github.com/users/mishig25/events{/privacy}",
"received_events_url": "https://api.github.com/users/mishig25/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.006155 / 0.011008 (-0.004853) | 0.124032 / 0.038508 (0.085524) | 0.037337 / 0.023109 (0.014228) | 0.389274 / 0.275898 (0.113376) | 0.427736 / 0.323480 (0.104257) | 0.006929 / 0.007986 (-0.001057) | 0.005017 / 0.004328 (0.000689) | 0.096356 / 0.004250 (0.092105) | 0.055694 / 0.037052 (0.018642) | 0.391417 / 0.258489 (0.132928) | 0.448098 / 0.293841 (0.154257) | 0.042442 / 0.128546 (-0.086105) | 0.013456 / 0.075646 (-0.062190) | 0.423502 / 0.419271 (0.004230) | 0.062919 / 0.043533 (0.019386) | 0.384317 / 0.255139 (0.129178) | 0.410851 / 0.283200 (0.127652) | 0.112807 / 0.141683 (-0.028875) | 1.746050 / 1.452155 (0.293895) | 1.977974 / 1.492716 (0.485257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306382 / 0.018006 (0.288375) | 0.620310 / 0.000490 (0.619820) | 0.009309 / 0.000200 (0.009109) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026900 / 0.037411 (-0.010511) | 0.140125 / 0.014526 (0.125599) | 0.136295 / 0.176557 (-0.040261) | 0.207721 / 0.737135 (-0.529414) | 0.146328 / 0.296338 (-0.150011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616712 / 0.215209 (0.401503) | 6.237820 / 2.077655 (4.160166) | 2.503809 / 1.504120 (0.999689) | 2.129739 / 1.541195 (0.588544) | 2.160768 / 1.468490 (0.692277) | 0.971273 / 4.584777 (-3.613504) | 5.687161 / 3.745712 (1.941449) | 2.738148 / 5.269862 (-2.531713) | 1.692695 / 4.565676 (-2.872981) | 0.113701 / 0.424275 (-0.310574) | 0.014809 / 0.007607 (0.007202) | 0.774795 / 0.226044 (0.548750) | 7.660012 / 2.268929 (5.391083) | 3.253036 / 55.444624 (-52.191588) | 2.607498 / 6.876477 (-4.268979) | 2.681678 / 2.142072 (0.539606) | 1.095275 / 4.805227 (-3.709952) | 0.239078 / 6.500664 (-6.261586) | 0.081034 / 0.075469 (0.005565) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.574547 / 1.841788 (-0.267240) | 18.323566 / 8.074308 (10.249258) | 19.274482 / 10.191392 (9.083090) | 0.210275 / 0.680424 (-0.470149) | 0.031843 / 0.534201 (-0.502358) | 0.514843 / 0.579283 (-0.064440) | 0.633782 / 0.434364 (0.199418) | 0.588569 / 0.540337 (0.048232) | 0.721401 / 1.386936 (-0.665535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008866 / 0.011353 (-0.002487) | 0.006460 / 0.011008 (-0.004548) | 0.121337 / 0.038508 (0.082829) | 0.033896 / 0.023109 (0.010786) | 0.455702 / 0.275898 (0.179804) | 0.509685 / 0.323480 (0.186205) | 0.007650 / 0.007986 (-0.000336) | 0.005578 / 0.004328 (0.001250) | 0.098505 / 0.004250 (0.094255) | 0.056122 / 0.037052 (0.019069) | 0.478483 / 0.258489 (0.219994) | 0.560008 / 0.293841 (0.266167) | 0.044926 / 0.128546 (-0.083620) | 0.014562 / 0.075646 (-0.061085) | 0.115027 / 0.419271 (-0.304244) | 0.066494 / 0.043533 (0.022961) | 0.463434 / 0.255139 (0.208296) | 0.513856 / 0.283200 (0.230656) | 0.126436 / 0.141683 (-0.015247) | 1.874729 / 1.452155 (0.422575) | 1.925080 / 1.492716 (0.432364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012672 / 0.018006 (-0.005334) | 0.615797 / 0.000490 (0.615307) | 0.001606 / 0.000200 (0.001406) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031104 / 0.037411 (-0.006307) | 0.130107 / 0.014526 (0.115581) | 0.140587 / 0.176557 (-0.035970) | 0.205081 / 0.737135 (-0.532054) | 0.144068 / 0.296338 (-0.152270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646549 / 0.215209 (0.431340) | 6.403962 / 2.077655 (4.326307) | 2.812594 / 1.504120 (1.308474) | 2.478480 / 1.541195 (0.937285) | 2.552385 / 1.468490 (1.083895) | 0.991987 / 4.584777 (-3.592790) | 5.777917 / 3.745712 (2.032205) | 5.697830 / 5.269862 (0.427969) | 2.370583 / 4.565676 (-2.195094) | 0.109905 / 0.424275 (-0.314370) | 0.013801 / 0.007607 (0.006193) | 0.799932 / 0.226044 (0.573888) | 8.155672 / 2.268929 (5.886743) | 3.711662 / 55.444624 (-51.732963) | 3.042164 / 6.876477 (-3.834312) | 3.073549 / 2.142072 (0.931477) | 1.137515 / 4.805227 (-3.667712) | 0.231266 / 6.500664 (-6.269398) | 0.080893 / 0.075469 (0.005424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.669210 / 1.841788 (-0.172577) | 18.747144 / 8.074308 (10.672836) | 21.084589 / 10.191392 (10.893197) | 0.241379 / 0.680424 (-0.439045) | 0.029473 / 0.534201 (-0.504728) | 0.524605 / 0.579283 (-0.054678) | 0.622852 / 0.434364 (0.188488) | 0.604941 / 0.540337 (0.064604) | 0.715978 / 1.386936 (-0.670958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#142484a60b1330359d7713e906fc9e5e30aa9f64 \"CML watermark\")\n",
"Cool ! what about `.github/workflows/build_pr_documentation.yml` and `.github/workflows/delete_doc_comment.yml` ?",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005973 / 0.011353 (-0.005380) | 0.004389 / 0.011008 (-0.006620) | 0.096076 / 0.038508 (0.057568) | 0.031569 / 0.023109 (0.008460) | 0.328300 / 0.275898 (0.052402) | 0.359356 / 0.323480 (0.035876) | 0.005378 / 0.007986 (-0.002607) | 0.003703 / 0.004328 (-0.000625) | 0.075251 / 0.004250 (0.071000) | 0.042340 / 0.037052 (0.005287) | 0.346103 / 0.258489 (0.087614) | 0.379896 / 0.293841 (0.086055) | 0.027493 / 0.128546 (-0.101053) | 0.009033 / 0.075646 (-0.066613) | 0.327829 / 0.419271 (-0.091442) | 0.064074 / 0.043533 (0.020541) | 0.337703 / 0.255139 (0.082564) | 0.355335 / 0.283200 (0.072136) | 0.101179 / 0.141683 (-0.040504) | 1.471738 / 1.452155 (0.019584) | 1.539031 / 1.492716 (0.046315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194097 / 0.018006 (0.176091) | 0.434190 / 0.000490 (0.433701) | 0.005730 / 0.000200 (0.005530) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025634 / 0.037411 (-0.011778) | 0.105080 / 0.014526 (0.090555) | 0.116508 / 0.176557 (-0.060049) | 0.173867 / 0.737135 (-0.563269) | 0.117749 / 0.296338 (-0.178590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401566 / 0.215209 (0.186357) | 4.003558 / 2.077655 (1.925903) | 1.802756 / 1.504120 (0.298636) | 1.604222 / 1.541195 (0.063027) | 1.656617 / 1.468490 (0.188127) | 0.523385 / 4.584777 (-4.061392) | 3.744292 / 3.745712 (-0.001420) | 1.794295 / 5.269862 (-3.475567) | 1.044690 / 4.565676 (-3.520987) | 0.064992 / 0.424275 (-0.359284) | 0.011542 / 0.007607 (0.003935) | 0.507830 / 0.226044 (0.281785) | 5.061574 / 2.268929 (2.792645) | 2.252896 / 55.444624 (-53.191729) | 1.912551 / 6.876477 (-4.963926) | 2.073510 / 2.142072 (-0.068562) | 0.642148 / 4.805227 (-4.163079) | 0.140151 / 6.500664 (-6.360513) | 0.062623 / 0.075469 (-0.012846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180367 / 1.841788 (-0.661421) | 14.263475 / 8.074308 (6.189167) | 12.917251 / 10.191392 (2.725859) | 0.143815 / 0.680424 (-0.536608) | 0.017286 / 0.534201 (-0.516915) | 0.388411 / 0.579283 (-0.190872) | 0.430512 / 0.434364 (-0.003851) | 0.466595 / 0.540337 (-0.073742) | 0.564545 / 1.386936 (-0.822391) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006059 / 0.011353 (-0.005294) | 0.004419 / 0.011008 (-0.006590) | 0.074206 / 0.038508 (0.035697) | 0.031180 / 0.023109 (0.008071) | 0.380031 / 0.275898 (0.104133) | 0.410373 / 0.323480 (0.086893) | 0.005397 / 0.007986 (-0.002589) | 0.003952 / 0.004328 (-0.000376) | 0.074426 / 0.004250 (0.070176) | 0.046256 / 0.037052 (0.009203) | 0.385543 / 0.258489 (0.127054) | 0.430724 / 0.293841 (0.136883) | 0.028052 / 0.128546 (-0.100494) | 0.008810 / 0.075646 (-0.066836) | 0.080749 / 0.419271 (-0.338522) | 0.046746 / 0.043533 (0.003214) | 0.380325 / 0.255139 (0.125186) | 0.398901 / 0.283200 (0.115701) | 0.099607 / 0.141683 (-0.042076) | 1.433343 / 1.452155 (-0.018812) | 1.520447 / 1.492716 (0.027730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202232 / 0.018006 (0.184225) | 0.431342 / 0.000490 (0.430852) | 0.001020 / 0.000200 (0.000820) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028762 / 0.037411 (-0.008649) | 0.111777 / 0.014526 (0.097251) | 0.119283 / 0.176557 (-0.057273) | 0.168151 / 0.737135 (-0.568985) | 0.126093 / 0.296338 (-0.170245) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442689 / 0.215209 (0.227480) | 4.369202 / 2.077655 (2.291547) | 2.167703 / 1.504120 (0.663583) | 1.960580 / 1.541195 (0.419385) | 2.001459 / 1.468490 (0.532969) | 0.527169 / 4.584777 (-4.057608) | 3.738987 / 3.745712 (-0.006726) | 1.819002 / 5.269862 (-3.450860) | 1.082786 / 4.565676 (-3.482891) | 0.066209 / 0.424275 (-0.358066) | 0.011549 / 0.007607 (0.003942) | 0.545959 / 0.226044 (0.319915) | 5.466655 / 2.268929 (3.197727) | 2.671448 / 55.444624 (-52.773176) | 2.340968 / 6.876477 (-4.535509) | 2.358805 / 2.142072 (0.216733) | 0.649456 / 4.805227 (-4.155771) | 0.142009 / 6.500664 (-6.358655) | 0.064199 / 0.075469 (-0.011270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259819 / 1.841788 (-0.581969) | 14.456988 / 8.074308 (6.382680) | 14.478982 / 10.191392 (4.287590) | 0.163156 / 0.680424 (-0.517268) | 0.017090 / 0.534201 (-0.517111) | 0.391339 / 0.579283 (-0.187944) | 0.422021 / 0.434364 (-0.012343) | 0.465340 / 0.540337 (-0.074997) | 0.564517 / 1.386936 (-0.822419) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#97358c88f996a65f49923ec215358044e4146a95 \"CML watermark\")\n",
"> .github/workflows/delete_doc_comment.yml \r\n\r\nis already updated https://github.com/huggingface/datasets/pull/5932/files\r\n\r\n> .github/workflows/build_pr_documentation.yml\r\n\r\nindeed no changes are needed"
] | 2023-06-07T16:09:39 | 2023-06-09T10:16:58 | 2023-06-09T09:53:16 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5932",
"html_url": "https://github.com/huggingface/datasets/pull/5932",
"diff_url": "https://github.com/huggingface/datasets/pull/5932.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5932.patch",
"merged_at": "2023-06-09T09:53:16"
} | Companion pr to https://github.com/huggingface/doc-builder/pull/379 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5932/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5932/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5931 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5931/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5931/comments | https://api.github.com/repos/huggingface/datasets/issues/5931/events | https://github.com/huggingface/datasets/issues/5931 | 1,745,408,784 | I_kwDODunzps5oCNMQ | 5,931 | `datasets.map` not reusing cached copy by default | {
"login": "bhavitvyamalik",
"id": 19718818,
"node_id": "MDQ6VXNlcjE5NzE4ODE4",
"avatar_url": "https://avatars.githubusercontent.com/u/19718818?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhavitvyamalik",
"html_url": "https://github.com/bhavitvyamalik",
"followers_url": "https://api.github.com/users/bhavitvyamalik/followers",
"following_url": "https://api.github.com/users/bhavitvyamalik/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavitvyamalik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavitvyamalik/subscriptions",
"organizations_url": "https://api.github.com/users/bhavitvyamalik/orgs",
"repos_url": "https://api.github.com/users/bhavitvyamalik/repos",
"events_url": "https://api.github.com/users/bhavitvyamalik/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhavitvyamalik/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This can happen when a map transform cannot be hashed deterministically (e.g., an object referenced by the transform changes its state after the first call - an issue with fast tokenizers). The solution is to provide `cache_file_name` in the `map` call to check this file for the cached result instead of relying on the default caching mechanism."
] | 2023-06-07T09:03:33 | 2023-06-21T16:15:40 | 2023-06-21T16:15:40 | CONTRIBUTOR | null | null | null | ### Describe the bug
When I load the dataset from local directory, it's cached copy is picked up after first time. However, for `map` operation, the operation is applied again and cached copy is not picked up. Is there any way to pick cached copy instead of processing it again? The only solution I could think of was to use `save_to_disk` after my last transform and then use that in my DataLoader pipeline. Are there any other solutions for the same?
One more thing, my dataset is occupying 6GB storage memory after I use `map`, is there any way I can reduce that memory usage?
### Steps to reproduce the bug
```
# make sure that dataset decodes audio with correct sampling rate
dataset_sampling_rate = next(iter(self.raw_datasets.values())).features["audio"].sampling_rate
if dataset_sampling_rate != self.feature_extractor.sampling_rate:
self.raw_datasets = self.raw_datasets.cast_column(
"audio", datasets.features.Audio(sampling_rate=self.feature_extractor.sampling_rate)
)
vectorized_datasets = self.raw_datasets.map(
self.prepare_dataset,
remove_columns=next(iter(self.raw_datasets.values())).column_names,
num_proc=self.num_workers,
desc="preprocess datasets",
)
# filter data that is longer than max_input_length
self.vectorized_datasets = vectorized_datasets.filter(
self.is_audio_in_length_range,
num_proc=self.num_workers,
input_columns=["input_length"],
)
def prepare_dataset(self, batch):
# load audio
sample = batch["audio"]
inputs = self.feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
batch["input_values"] = inputs.input_values[0]
batch["input_length"] = len(batch["input_values"])
batch["labels"] = self.tokenizer(batch["target_text"]).input_ids
return batch
```
### Expected behavior
`map` to use cached copy and if possible an alternative technique to reduce memory usage after using `map`
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.8.16
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5931/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5931/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5930 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5930/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5930/comments | https://api.github.com/repos/huggingface/datasets/issues/5930/events | https://github.com/huggingface/datasets/issues/5930 | 1,745,184,395 | I_kwDODunzps5oBWaL | 5,930 | loading private custom dataset script - authentication error | {
"login": "flckv",
"id": 103381497,
"node_id": "U_kgDOBil5-Q",
"avatar_url": "https://avatars.githubusercontent.com/u/103381497?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/flckv",
"html_url": "https://github.com/flckv",
"followers_url": "https://api.github.com/users/flckv/followers",
"following_url": "https://api.github.com/users/flckv/following{/other_user}",
"gists_url": "https://api.github.com/users/flckv/gists{/gist_id}",
"starred_url": "https://api.github.com/users/flckv/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/flckv/subscriptions",
"organizations_url": "https://api.github.com/users/flckv/orgs",
"repos_url": "https://api.github.com/users/flckv/repos",
"events_url": "https://api.github.com/users/flckv/events{/privacy}",
"received_events_url": "https://api.github.com/users/flckv/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This issue seems to have been resolved, so I'm closing it."
] | 2023-06-07T06:58:23 | 2023-06-15T14:49:21 | 2023-06-15T14:49:20 | NONE | null | null | null | ### Describe the bug
Train model with my custom dataset stored in HuggingFace and loaded with the loading script requires authentication but I am not sure how ?
I am logged in in the terminal, in the browser. I receive this error:
/python3.8/site-packages/datasets/utils/file_utils.py", line 566, in get_from_cache
raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})")
ConnectionError: Couldn't reach https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels `(ConnectionError('Unauthorized for URL `https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels. Please use the parameter `**`use_auth_token=True`**` after logging in with `**`huggingface-cli login`**`'))
when I added: `use_auth_token=True` and logged in via terminal then I received error:
or the same error in different format:
raise ConnectionError(f"`Couldn't reach {url} (error {response.status_code}`)")
ConnectionError: Couldn't reach https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels (`error 401`)
### Steps to reproduce the bug
1. cloned transformers library locally:
https://huggingface.co/docs/transformers/v4.15.0/examples :
> git clone https://github.com/huggingface/transformers
> cd transformers
> pip install .
> cd /transformers/examples/pytorch/audio-classification
> pip install -r requirements.txt
2. created **loading script**
> https://huggingface.co/docs/datasets/dataset_script added next to dataset:
3. uploaded **private custom dataset** with loading script to HuggingFace
> https://huggingface.co/docs/datasets/dataset_script
4. added dataset loading script to **local directory** in the above cloned transformers library:
> cd /transformers/examples/pytorch/audio-classification
5. logged in to HuggingFace on local terminal with :
> **huggingface-cli login**
6. run the model with the custom dataset stored on HuggingFace with code: https://github.com/huggingface/transformers/blob/main/examples/pytorch/audio-classification/README.md
cd /transformers/examples/pytorch/audio-classification
> python run_audio_classification.py \
> --model_name_or_path facebook/wav2vec2-base \
> --output_dir l/users/flck/outputs/wav2vec2-base-s \
> --overwrite_output_dir \
> --dataset_name s \
> --dataset_config_name s \
> --remove_unused_columns False \
> --do_train \
> --do_eval \
> --fp16 \
> --learning_rate 3e-5 \
> --max_length_seconds 1 \
> --attention_mask False \
> --warmup_ratio 0.1 \
> --num_train_epochs 5 \
> --per_device_train_batch_size 32 \
> --gradient_accumulation_steps 4 \
> --per_device_eval_batch_size 32 \
> --dataloader_num_workers 4 \
> --logging_strategy steps \
> --logging_steps 10 \
> --evaluation_strategy epoch \
> --save_strategy epoch \
> --load_best_model_at_end True \
> --metric_for_best_model accuracy \
> --save_total_limit 3 \
> --seed 0 \
> --push_to_hub \
> **--use_auth_token=True**
### Expected behavior
Be able to train a model the https://github.com/huggingface/transformers/blob/main/examples/pytorch/audio-classification/ run_audio_classification.py with private custom dataset stored on HuggingFace.
### Environment info
- datasets version: 2.12.0
- `transformers` version: 4.30.0.dev0
- Platform: Linux-5.4.204-ql-generic-12.0-19-x86_64-with-glibc2.17
- Python version: 3.8.12
- Huggingface_hub version: 0.15.1
- Safetensors version: 0.3.1
- PyTorch version (GPU?): 2.0.1+cu117 (True)
Versions of relevant libraries:
[pip3] numpy==1.24.3
[pip3] torch==2.0.1
[pip3] torchaudio==2.0.2
[conda] numpy 1.24.3 pypi_0 pypi
[conda] torch 2.0.1 pypi_0 pypi
[conda] torchaudio 2.0.2 pypi_0 pypi
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5930/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5930/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5929 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5929/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5929/comments | https://api.github.com/repos/huggingface/datasets/issues/5929/events | https://github.com/huggingface/datasets/issues/5929 | 1,744,478,456 | I_kwDODunzps5n-qD4 | 5,929 | Importing PyTorch reduces multiprocessing performance for map | {
"login": "Maxscha",
"id": 12814709,
"node_id": "MDQ6VXNlcjEyODE0NzA5",
"avatar_url": "https://avatars.githubusercontent.com/u/12814709?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Maxscha",
"html_url": "https://github.com/Maxscha",
"followers_url": "https://api.github.com/users/Maxscha/followers",
"following_url": "https://api.github.com/users/Maxscha/following{/other_user}",
"gists_url": "https://api.github.com/users/Maxscha/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Maxscha/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Maxscha/subscriptions",
"organizations_url": "https://api.github.com/users/Maxscha/orgs",
"repos_url": "https://api.github.com/users/Maxscha/repos",
"events_url": "https://api.github.com/users/Maxscha/events{/privacy}",
"received_events_url": "https://api.github.com/users/Maxscha/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! The times match when I run this code locally or on Colab.\r\n\r\nAlso, we use `multiprocess`, not `multiprocessing`, for parallelization, and torch's `__init__.py` (executed on `import torch` ) slightly modifies the latter.",
"Hey Mariosasko,\r\n\r\nThanks for looking into it. We further did some investigations after your comment and figured out it's only affecting some hardware/software configurations with the `pytorch` installation of `conda-forge`. Based on this we found the following issue in PyTorch: https://github.com/pytorch/pytorch/issues/102269 with a quick fix for now.\r\n\r\nSince it seems to be a deeper issue with forking processes, the difference between`multiprocess` and `multiprocessing` didn't make a difference.\r\n\r\nClosing this, since the issue comes from `pytorch` not `dataset`. \r\n"
] | 2023-06-06T19:42:25 | 2023-06-16T13:09:12 | 2023-06-16T13:09:12 | NONE | null | null | null | ### Describe the bug
I noticed that the performance of my dataset preprocessing with `map(...,num_proc=32)` decreases when PyTorch is imported.
### Steps to reproduce the bug
I created two example scripts to reproduce this behavior:
```
import datasets
datasets.disable_caching()
from datasets import Dataset
import time
PROC=32
if __name__ == "__main__":
dataset = [True] * 10000000
dataset = Dataset.from_dict({'train': dataset})
start = time.time()
dataset.map(lambda x: x, num_proc=PROC)
end = time.time()
print(end - start)
```
Takes around 4 seconds on my machine.
While the same code, but with an `import torch`:
```
import datasets
datasets.disable_caching()
from datasets import Dataset
import time
import torch
PROC=32
if __name__ == "__main__":
dataset = [True] * 10000000
dataset = Dataset.from_dict({'train': dataset})
start = time.time()
dataset.map(lambda x: x, num_proc=PROC)
end = time.time()
print(end - start)
```
takes around 22 seconds.
### Expected behavior
I would expect that the import of torch to not have such a significant effect on the performance of map using multiprocessing.
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.35
- Python version: 3.11.3
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.2
- torch: 2.0.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5929/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5929/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5928 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5928/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5928/comments | https://api.github.com/repos/huggingface/datasets/issues/5928/events | https://github.com/huggingface/datasets/pull/5928 | 1,744,098,371 | PR_kwDODunzps5SUXPC | 5,928 | Fix link to quickstart docs in README.md | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006693 / 0.011353 (-0.004660) | 0.004331 / 0.011008 (-0.006677) | 0.098022 / 0.038508 (0.059514) | 0.032764 / 0.023109 (0.009654) | 0.295812 / 0.275898 (0.019914) | 0.325029 / 0.323480 (0.001550) | 0.005779 / 0.007986 (-0.002206) | 0.005381 / 0.004328 (0.001052) | 0.075785 / 0.004250 (0.071535) | 0.048759 / 0.037052 (0.011707) | 0.308986 / 0.258489 (0.050497) | 0.348000 / 0.293841 (0.054159) | 0.027686 / 0.128546 (-0.100860) | 0.008839 / 0.075646 (-0.066807) | 0.328389 / 0.419271 (-0.090883) | 0.062173 / 0.043533 (0.018640) | 0.312257 / 0.255139 (0.057119) | 0.325024 / 0.283200 (0.041824) | 0.103886 / 0.141683 (-0.037797) | 1.440215 / 1.452155 (-0.011940) | 1.528665 / 1.492716 (0.035948) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210082 / 0.018006 (0.192076) | 0.442480 / 0.000490 (0.441990) | 0.006559 / 0.000200 (0.006359) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026774 / 0.037411 (-0.010637) | 0.108362 / 0.014526 (0.093837) | 0.117631 / 0.176557 (-0.058926) | 0.176657 / 0.737135 (-0.560478) | 0.124154 / 0.296338 (-0.172184) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428136 / 0.215209 (0.212927) | 4.270287 / 2.077655 (2.192632) | 2.014728 / 1.504120 (0.510608) | 1.806772 / 1.541195 (0.265577) | 1.946284 / 1.468490 (0.477794) | 0.525542 / 4.584777 (-4.059235) | 3.667025 / 3.745712 (-0.078687) | 1.878751 / 5.269862 (-3.391111) | 1.048321 / 4.565676 (-3.517356) | 0.065550 / 0.424275 (-0.358725) | 0.011881 / 0.007607 (0.004274) | 0.529873 / 0.226044 (0.303829) | 5.289641 / 2.268929 (3.020712) | 2.489403 / 55.444624 (-52.955221) | 2.141037 / 6.876477 (-4.735440) | 2.230735 / 2.142072 (0.088662) | 0.639781 / 4.805227 (-4.165447) | 0.141410 / 6.500664 (-6.359254) | 0.064374 / 0.075469 (-0.011095) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.159462 / 1.841788 (-0.682325) | 14.524730 / 8.074308 (6.450422) | 13.578070 / 10.191392 (3.386678) | 0.152138 / 0.680424 (-0.528286) | 0.017255 / 0.534201 (-0.516946) | 0.387607 / 0.579283 (-0.191676) | 0.413652 / 0.434364 (-0.020712) | 0.453644 / 0.540337 (-0.086693) | 0.550051 / 1.386936 (-0.836885) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006668 / 0.011353 (-0.004685) | 0.004677 / 0.011008 (-0.006331) | 0.075950 / 0.038508 (0.037442) | 0.032439 / 0.023109 (0.009329) | 0.381839 / 0.275898 (0.105941) | 0.419411 / 0.323480 (0.095931) | 0.005813 / 0.007986 (-0.002172) | 0.004090 / 0.004328 (-0.000238) | 0.075052 / 0.004250 (0.070802) | 0.048453 / 0.037052 (0.011401) | 0.388076 / 0.258489 (0.129587) | 0.431793 / 0.293841 (0.137952) | 0.028408 / 0.128546 (-0.100138) | 0.009028 / 0.075646 (-0.066618) | 0.082569 / 0.419271 (-0.336702) | 0.046772 / 0.043533 (0.003239) | 0.380182 / 0.255139 (0.125043) | 0.401828 / 0.283200 (0.118629) | 0.105388 / 0.141683 (-0.036294) | 1.453356 / 1.452155 (0.001201) | 1.561483 / 1.492716 (0.068767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.008922 / 0.018006 (-0.009084) | 0.444112 / 0.000490 (0.443623) | 0.002756 / 0.000200 (0.002556) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030408 / 0.037411 (-0.007003) | 0.112924 / 0.014526 (0.098399) | 0.124625 / 0.176557 (-0.051932) | 0.176915 / 0.737135 (-0.560220) | 0.129141 / 0.296338 (-0.167198) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448197 / 0.215209 (0.232987) | 4.476548 / 2.077655 (2.398893) | 2.243977 / 1.504120 (0.739857) | 2.054060 / 1.541195 (0.512865) | 2.130680 / 1.468490 (0.662190) | 0.526815 / 4.584777 (-4.057962) | 3.759312 / 3.745712 (0.013600) | 3.333618 / 5.269862 (-1.936244) | 1.579611 / 4.565676 (-2.986065) | 0.065714 / 0.424275 (-0.358561) | 0.011939 / 0.007607 (0.004332) | 0.550313 / 0.226044 (0.324269) | 5.476946 / 2.268929 (3.208018) | 2.726521 / 55.444624 (-52.718104) | 2.364977 / 6.876477 (-4.511499) | 2.450624 / 2.142072 (0.308551) | 0.647174 / 4.805227 (-4.158053) | 0.141265 / 6.500664 (-6.359399) | 0.065493 / 0.075469 (-0.009976) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249702 / 1.841788 (-0.592085) | 15.205647 / 8.074308 (7.131338) | 14.678310 / 10.191392 (4.486918) | 0.141539 / 0.680424 (-0.538884) | 0.017323 / 0.534201 (-0.516878) | 0.387602 / 0.579283 (-0.191681) | 0.415106 / 0.434364 (-0.019258) | 0.458146 / 0.540337 (-0.082192) | 0.553318 / 1.386936 (-0.833618) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#55127d7bf399fd2f3a8713db9822e8cb47cdbbed \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008567 / 0.011353 (-0.002786) | 0.005245 / 0.011008 (-0.005763) | 0.115074 / 0.038508 (0.076566) | 0.032567 / 0.023109 (0.009458) | 0.352297 / 0.275898 (0.076399) | 0.393403 / 0.323480 (0.069923) | 0.006402 / 0.007986 (-0.001583) | 0.004353 / 0.004328 (0.000025) | 0.087903 / 0.004250 (0.083653) | 0.048424 / 0.037052 (0.011372) | 0.370078 / 0.258489 (0.111588) | 0.410192 / 0.293841 (0.116351) | 0.042396 / 0.128546 (-0.086150) | 0.014426 / 0.075646 (-0.061220) | 0.411358 / 0.419271 (-0.007914) | 0.059546 / 0.043533 (0.016013) | 0.364721 / 0.255139 (0.109582) | 0.385100 / 0.283200 (0.101901) | 0.100572 / 0.141683 (-0.041111) | 1.741457 / 1.452155 (0.289302) | 1.933134 / 1.492716 (0.440418) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217177 / 0.018006 (0.199171) | 0.510399 / 0.000490 (0.509909) | 0.005542 / 0.000200 (0.005342) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026852 / 0.037411 (-0.010559) | 0.125580 / 0.014526 (0.111054) | 0.132164 / 0.176557 (-0.044392) | 0.189073 / 0.737135 (-0.548063) | 0.135980 / 0.296338 (-0.160358) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.601924 / 0.215209 (0.386715) | 5.891397 / 2.077655 (3.813743) | 2.389494 / 1.504120 (0.885375) | 2.044013 / 1.541195 (0.502818) | 2.019367 / 1.468490 (0.550877) | 0.883807 / 4.584777 (-3.700970) | 5.141349 / 3.745712 (1.395636) | 2.607415 / 5.269862 (-2.662446) | 1.567268 / 4.565676 (-2.998409) | 0.102738 / 0.424275 (-0.321537) | 0.013480 / 0.007607 (0.005873) | 0.744979 / 0.226044 (0.518934) | 7.404182 / 2.268929 (5.135254) | 2.983406 / 55.444624 (-52.461219) | 2.331847 / 6.876477 (-4.544630) | 2.465119 / 2.142072 (0.323047) | 1.106725 / 4.805227 (-3.698502) | 0.205779 / 6.500664 (-6.294885) | 0.081019 / 0.075469 (0.005550) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.527840 / 1.841788 (-0.313947) | 16.989487 / 8.074308 (8.915179) | 18.016123 / 10.191392 (7.824731) | 0.216157 / 0.680424 (-0.464266) | 0.025393 / 0.534201 (-0.508808) | 0.496743 / 0.579283 (-0.082540) | 0.575365 / 0.434364 (0.141002) | 0.559978 / 0.540337 (0.019641) | 0.677474 / 1.386936 (-0.709462) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008913 / 0.011353 (-0.002440) | 0.005540 / 0.011008 (-0.005469) | 0.100001 / 0.038508 (0.061493) | 0.034432 / 0.023109 (0.011323) | 0.419824 / 0.275898 (0.143926) | 0.443566 / 0.323480 (0.120086) | 0.006372 / 0.007986 (-0.001614) | 0.004405 / 0.004328 (0.000077) | 0.094927 / 0.004250 (0.090677) | 0.050300 / 0.037052 (0.013248) | 0.424806 / 0.258489 (0.166317) | 0.480793 / 0.293841 (0.186952) | 0.050869 / 0.128546 (-0.077677) | 0.015899 / 0.075646 (-0.059747) | 0.111413 / 0.419271 (-0.307859) | 0.058093 / 0.043533 (0.014560) | 0.430575 / 0.255139 (0.175436) | 0.483786 / 0.283200 (0.200586) | 0.106878 / 0.141683 (-0.034805) | 1.763576 / 1.452155 (0.311422) | 1.837750 / 1.492716 (0.345033) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011565 / 0.018006 (-0.006441) | 0.484411 / 0.000490 (0.483922) | 0.004869 / 0.000200 (0.004669) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030706 / 0.037411 (-0.006706) | 0.126901 / 0.014526 (0.112375) | 0.130367 / 0.176557 (-0.046190) | 0.206568 / 0.737135 (-0.530567) | 0.146505 / 0.296338 (-0.149834) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627266 / 0.215209 (0.412057) | 6.314049 / 2.077655 (4.236394) | 2.582920 / 1.504120 (1.078800) | 2.249401 / 1.541195 (0.708206) | 2.244960 / 1.468490 (0.776470) | 0.907770 / 4.584777 (-3.677007) | 5.349622 / 3.745712 (1.603910) | 4.591244 / 5.269862 (-0.678618) | 2.301612 / 4.565676 (-2.264064) | 0.108813 / 0.424275 (-0.315462) | 0.013187 / 0.007607 (0.005580) | 0.806071 / 0.226044 (0.580027) | 7.843903 / 2.268929 (5.574974) | 3.405968 / 55.444624 (-52.038656) | 2.564301 / 6.876477 (-4.312176) | 2.652208 / 2.142072 (0.510135) | 1.168142 / 4.805227 (-3.637086) | 0.218551 / 6.500664 (-6.282113) | 0.078120 / 0.075469 (0.002651) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.562517 / 1.841788 (-0.279271) | 17.519325 / 8.074308 (9.445017) | 20.727083 / 10.191392 (10.535691) | 0.207135 / 0.680424 (-0.473288) | 0.028208 / 0.534201 (-0.505993) | 0.496157 / 0.579283 (-0.083126) | 0.569239 / 0.434364 (0.134875) | 0.566137 / 0.540337 (0.025799) | 0.704208 / 1.386936 (-0.682728) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8eb3f34d876da98e722d866be90d7f26135ea9e3 \"CML watermark\")\n"
] | 2023-06-06T15:23:01 | 2023-06-06T15:52:34 | 2023-06-06T15:43:53 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5928",
"html_url": "https://github.com/huggingface/datasets/pull/5928",
"diff_url": "https://github.com/huggingface/datasets/pull/5928.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5928.patch",
"merged_at": "2023-06-06T15:43:53"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5928/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5928/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5927 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5927/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5927/comments | https://api.github.com/repos/huggingface/datasets/issues/5927/events | https://github.com/huggingface/datasets/issues/5927 | 1,744,009,032 | I_kwDODunzps5n83dI | 5,927 | `IndexError` when indexing `Sequence` of `Array2D` with `None` values | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Easy fix would be to add:\r\n\r\n```python\r\nnull_indices -= np.arange(len(null_indices))\r\n```\r\n\r\nbefore L279, but I'm not sure it's the most intuitive way to fix it.",
"Same issue here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/7fcbe5b1575c8d162b65b9397b3dfda995a4e048/src/datasets/features/features.py#L1398\r\n\r\nFixed in #5948 "
] | 2023-06-06T14:36:22 | 2023-06-13T12:39:39 | 2023-06-09T13:23:50 | CONTRIBUTOR | null | null | null | ### Describe the bug
Having `None` values in a `Sequence` of `ArrayND` fails.
### Steps to reproduce the bug
```python
from datasets import Array2D, Dataset, Features, Sequence
data = [
[
[[0]],
None,
None,
]
]
feature = Sequence(Array2D((1, 1), dtype="int64"))
dataset = Dataset.from_dict({"a": data}, features=Features({"a": feature}))
dataset[0] # error raised only when indexing
```
```
Traceback (most recent call last):
File "/Users/quentingallouedec/gia/c.py", line 13, in <module>
dataset[0] # error raised only when indexing
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2658, in __getitem__
return self._getitem(key)
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2643, in _getitem
formatted_output = format_table(
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 634, in format_table
return formatter(pa_table, query_type=query_type)
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 406, in __call__
return self.format_row(pa_table)
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 441, in format_row
row = self.python_arrow_extractor().extract_row(pa_table)
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 144, in extract_row
return _unnest(pa_table.to_pydict())
File "pyarrow/table.pxi", line 4146, in pyarrow.lib.Table.to_pydict
File "pyarrow/table.pxi", line 1312, in pyarrow.lib.ChunkedArray.to_pylist
File "pyarrow/array.pxi", line 1521, in pyarrow.lib.Array.to_pylist
File "pyarrow/scalar.pxi", line 675, in pyarrow.lib.ListScalar.as_py
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/features/features.py", line 760, in to_pylist
return self.to_numpy(zero_copy_only=zero_copy_only).tolist()
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/features/features.py", line 725, in to_numpy
numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0)
File "<__array_function__ internals>", line 200, in insert
File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/numpy/lib/function_base.py", line 5426, in insert
old_mask[indices] = False
IndexError: index 3 is out of bounds for axis 0 with size 3
```
AFAIK, the problem only occurs when you use a `Sequence` of `ArrayND`.
I strongly suspect that the problem comes from this line, or `np.insert` is misused:
https://github.com/huggingface/datasets/blob/02ee418831aba68d0be93227bce8b3f42ef8980f/src/datasets/features/features.py#L729
To put t simply, you want something that do that:
```python
import numpy as np
numpy_arr = np.zeros((1, 1, 1))
null_indices = np.array([1, 2])
np.insert(numpy_arr, null_indices, np.nan, axis=0)
# raise an error, instead of outputting
# array([[[ 0.]],
# [[nan]],
# [[nan]]])
```
### Expected behavior
The previous code should not raise an error.
### Environment info
- Python 3.10.11
- datasets 2.10.0
- pyarrow 12.0.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5927/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5927/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5926 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5926/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5926/comments | https://api.github.com/repos/huggingface/datasets/issues/5926/events | https://github.com/huggingface/datasets/issues/5926 | 1,743,922,028 | I_kwDODunzps5n8iNs | 5,926 | Uncaught exception when generating the splits from a dataset that miss data | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @severo.\r\n\r\nThis is a known issue with `fsspec`:\r\n- #5862\r\n- https://github.com/fsspec/filesystem_spec/issues/1265"
] | 2023-06-06T13:51:01 | 2023-06-07T07:53:16 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Dataset https://huggingface.co/datasets/blog_authorship_corpus has an issue with its hosting platform, since https://drive.google.com/u/0/uc?id=1cGy4RNDV87ZHEXbiozABr9gsSrZpPaPz&export=download returns 404 error.
But when trying to generate the split names, we get an exception which is now correctly caught.
Seen originally in https://github.com/huggingface/datasets-server/blob/adbdcd6710ffed4e2eb2e4cd905b5e0dff530a15/services/worker/src/worker/job_runners/config/parquet_and_info.py#L435
### Steps to reproduce the bug
```python
>>> from datasets import StreamingDownloadManager, load_dataset_builder
>>> builder = load_dataset_builder(path="blog_authorship_corpus")
Downloading builder script: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.60k/5.60k [00:00<00:00, 23.1MB/s]
Downloading metadata: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.81k/2.81k [00:00<00:00, 14.7MB/s]
Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.30k/7.30k [00:00<00:00, 30.8MB/s]
>>> dl_manager = StreamingDownloadManager(base_path=builder.base_path)
>>> builder._split_generators(dl_manager)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/blog_authorship_corpus/6f5d78241afd8313111956f877a57db7a0e9fc6718255dc85df0928197feb683/blog_authorship_corpus.py", line 79, in _split_generators
data = dl_manager.download_and_extract(_DATA_URL)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 1087, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 1039, in extract
urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 435, in map_nested
return function(data_struct)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 1044, in _extract
protocol = _get_extraction_protocol(urlpath, use_auth_token=self.download_config.use_auth_token)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 433, in _get_extraction_protocol
with fsspec.open(urlpath, **kwargs) as f:
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 439, in open
return open_files(
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 194, in __getitem__
out = super().__getitem__(item)
IndexError: list index out of range
```
### Expected behavior
We should have an Exception raised by the datasets library.
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.19.0-1026-aws-x86_64-with-glibc2.35
- Python version: 3.9.15
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5926/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5926/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5925 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5925/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5925/comments | https://api.github.com/repos/huggingface/datasets/issues/5925/events | https://github.com/huggingface/datasets/issues/5925 | 1,741,941,436 | I_kwDODunzps5n0-q8 | 5,925 | Breaking API change in datasets.list_datasets caused by change in HfApi.list_datasets | {
"login": "mtkinit",
"id": 78868366,
"node_id": "MDQ6VXNlcjc4ODY4MzY2",
"avatar_url": "https://avatars.githubusercontent.com/u/78868366?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mtkinit",
"html_url": "https://github.com/mtkinit",
"followers_url": "https://api.github.com/users/mtkinit/followers",
"following_url": "https://api.github.com/users/mtkinit/following{/other_user}",
"gists_url": "https://api.github.com/users/mtkinit/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mtkinit/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mtkinit/subscriptions",
"organizations_url": "https://api.github.com/users/mtkinit/orgs",
"repos_url": "https://api.github.com/users/mtkinit/repos",
"events_url": "https://api.github.com/users/mtkinit/events{/privacy}",
"received_events_url": "https://api.github.com/users/mtkinit/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-06-05T14:46:04 | 2023-06-19T17:22:43 | 2023-06-19T17:22:43 | NONE | null | null | null | ### Describe the bug
Hi all,
after an update of the `datasets` library, we observer crashes in our code. We relied on `datasets.list_datasets` returning a `list`. Now, after the API of the HfApi.list_datasets was changed and it returns a `list` instead of an `Iterable`, the `datasets.list_datasets` now sometimes returns a `list` and somesimes an `Iterable`.
It would be helpful to indicate that by the return type of the `datasets.list_datasets` function.
Thanks,
Martin
### Steps to reproduce the bug
Here, the code crashed after we updated the `datasets` library:
```python
# list_datasets no longer returns a list, which leads to an error when one tries to slice it
for datasets.list_datasets(with_details=True)[:limit]:
...
```
### Expected behavior
It would be helpful to indicate that by the return type of the `datasets.list_datasets` function.
### Environment info
Ubuntu 22.04
datasets 2.12.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5925/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5925/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5924 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5924/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5924/comments | https://api.github.com/repos/huggingface/datasets/issues/5924/events | https://github.com/huggingface/datasets/pull/5924 | 1,738,889,236 | PR_kwDODunzps5SCiFv | 5,924 | Add parallel module using joblib for Spark | {
"login": "es94129",
"id": 12763339,
"node_id": "MDQ6VXNlcjEyNzYzMzM5",
"avatar_url": "https://avatars.githubusercontent.com/u/12763339?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/es94129",
"html_url": "https://github.com/es94129",
"followers_url": "https://api.github.com/users/es94129/followers",
"following_url": "https://api.github.com/users/es94129/following{/other_user}",
"gists_url": "https://api.github.com/users/es94129/gists{/gist_id}",
"starred_url": "https://api.github.com/users/es94129/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/es94129/subscriptions",
"organizations_url": "https://api.github.com/users/es94129/orgs",
"repos_url": "https://api.github.com/users/es94129/repos",
"events_url": "https://api.github.com/users/es94129/events{/privacy}",
"received_events_url": "https://api.github.com/users/es94129/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi @lhoestq, I added the `parallel` part according to the discussion we had. Could you take a look to see if this is aligned with your proposal?\r\n\r\nMeanwhile I'm working on adding a `parallel_backend` parameter to `load_datasets` so that it can be used like:\r\n```python\r\nwith parallel_backend('spark', steps=['downloading']) as backend:\r\n ds = load_dataset(..., parallel_backend=backend)\r\n```\r\nwhere `parallel_backend` is a `ParallelBackend` class.",
"_The documentation is not available anymore as the PR was closed or merged._",
"@lhoestq Thanks for the comments!\r\nWith your suggestion, no changes made to `load_dataset` and I validated that downloading with spark is working now with this:\r\n```py\r\nwith parallel_backend('spark', steps=[\"download\"]):\r\n dataset = load_dataset(..., num_proc=2)\r\n```",
"@lhoestq Can a maintainer help trigger the tests again?\r\n> One idea is to decorate the download method to set the current global step to \"download\", and then only use joblib if the current step is one of the steps provided in parallel_backend.\r\n\r\nYes I think this is doable in a subsequent PR.\r\nFor throwing `NotImplementedError` I also think it can be done in a subsequent PR, because I'm not sure if `Dataset.map` is the only function that a user would expect to run using `with parallel_backend`.",
"Just triggered the tests :)\r\n\r\n> Yes I think this is doable in a subsequent PR.\r\nFor throwing NotImplementedError I also think it can be done in a subsequent PR, because I'm not sure if Dataset.map is the only function that a user would expect to run using with parallel_backend.\r\n\r\nI think any Dataset method that has a `num_proc` argument: Dataset.map (the other methods like filter or cast or based on map), and later we can see for the to_xxx methods (to_csv, to_parquet, etc.)",
"Hi maintainers, I've just addressed most of the comments, please take another look, thank you.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008422 / 0.011353 (-0.002931) | 0.005658 / 0.011008 (-0.005350) | 0.135372 / 0.038508 (0.096864) | 0.044766 / 0.023109 (0.021657) | 0.417876 / 0.275898 (0.141978) | 0.462785 / 0.323480 (0.139305) | 0.005485 / 0.007986 (-0.002501) | 0.005640 / 0.004328 (0.001311) | 0.105020 / 0.004250 (0.100770) | 0.049114 / 0.037052 (0.012062) | 0.490450 / 0.258489 (0.231961) | 0.467693 / 0.293841 (0.173852) | 0.050929 / 0.128546 (-0.077617) | 0.014644 / 0.075646 (-0.061002) | 0.452373 / 0.419271 (0.033101) | 0.074897 / 0.043533 (0.031364) | 0.425816 / 0.255139 (0.170677) | 0.420415 / 0.283200 (0.137215) | 0.134121 / 0.141683 (-0.007561) | 1.927744 / 1.452155 (0.475589) | 2.014417 / 1.492716 (0.521701) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254811 / 0.018006 (0.236805) | 0.550011 / 0.000490 (0.549521) | 0.004913 / 0.000200 (0.004714) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032644 / 0.037411 (-0.004768) | 0.135672 / 0.014526 (0.121146) | 0.158984 / 0.176557 (-0.017572) | 0.218267 / 0.737135 (-0.518869) | 0.150348 / 0.296338 (-0.145991) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.625723 / 0.215209 (0.410514) | 6.247559 / 2.077655 (4.169905) | 2.626785 / 1.504120 (1.122666) | 2.195224 / 1.541195 (0.654030) | 2.232140 / 1.468490 (0.763650) | 0.943082 / 4.584777 (-3.641695) | 5.799262 / 3.745712 (2.053550) | 2.849411 / 5.269862 (-2.420450) | 1.744160 / 4.565676 (-2.821516) | 0.119056 / 0.424275 (-0.305219) | 0.014233 / 0.007607 (0.006626) | 0.795238 / 0.226044 (0.569194) | 7.569586 / 2.268929 (5.300657) | 3.179481 / 55.444624 (-52.265143) | 2.519772 / 6.876477 (-4.356704) | 2.714570 / 2.142072 (0.572498) | 1.107197 / 4.805227 (-3.698030) | 0.229986 / 6.500664 (-6.270678) | 0.087993 / 0.075469 (0.012524) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.535610 / 1.841788 (-0.306178) | 18.639369 / 8.074308 (10.565061) | 21.081844 / 10.191392 (10.890452) | 0.253247 / 0.680424 (-0.427177) | 0.026711 / 0.534201 (-0.507490) | 0.503790 / 0.579283 (-0.075493) | 0.600124 / 0.434364 (0.165760) | 0.617944 / 0.540337 (0.077607) | 0.766947 / 1.386936 (-0.619989) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007885 / 0.011353 (-0.003468) | 0.004761 / 0.011008 (-0.006248) | 0.097995 / 0.038508 (0.059487) | 0.033624 / 0.023109 (0.010515) | 0.504307 / 0.275898 (0.228409) | 0.534803 / 0.323480 (0.211323) | 0.006048 / 0.007986 (-0.001937) | 0.005042 / 0.004328 (0.000714) | 0.102288 / 0.004250 (0.098038) | 0.048695 / 0.037052 (0.011643) | 0.559086 / 0.258489 (0.300597) | 0.553233 / 0.293841 (0.259392) | 0.044596 / 0.128546 (-0.083950) | 0.013696 / 0.075646 (-0.061950) | 0.109875 / 0.419271 (-0.309397) | 0.059993 / 0.043533 (0.016460) | 0.485579 / 0.255139 (0.230440) | 0.519835 / 0.283200 (0.236635) | 0.123504 / 0.141683 (-0.018179) | 1.820506 / 1.452155 (0.368351) | 1.963448 / 1.492716 (0.470732) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292663 / 0.018006 (0.274656) | 0.557783 / 0.000490 (0.557293) | 0.001330 / 0.000200 (0.001130) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036890 / 0.037411 (-0.000522) | 0.140373 / 0.014526 (0.125847) | 0.140176 / 0.176557 (-0.036381) | 0.237378 / 0.737135 (-0.499757) | 0.160186 / 0.296338 (-0.136152) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.673599 / 0.215209 (0.458390) | 6.510280 / 2.077655 (4.432625) | 2.981617 / 1.504120 (1.477497) | 2.684664 / 1.541195 (1.143469) | 2.760471 / 1.468490 (1.291981) | 0.975413 / 4.584777 (-3.609364) | 5.708933 / 3.745712 (1.963220) | 2.772069 / 5.269862 (-2.497793) | 1.763627 / 4.565676 (-2.802049) | 0.111632 / 0.424275 (-0.312643) | 0.013223 / 0.007607 (0.005616) | 0.791545 / 0.226044 (0.565500) | 8.063287 / 2.268929 (5.794359) | 3.671920 / 55.444624 (-51.772704) | 3.057248 / 6.876477 (-3.819229) | 3.083569 / 2.142072 (0.941497) | 1.118136 / 4.805227 (-3.687092) | 0.214655 / 6.500664 (-6.286009) | 0.083074 / 0.075469 (0.007605) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.761731 / 1.841788 (-0.080056) | 18.874200 / 8.074308 (10.799892) | 22.383693 / 10.191392 (12.192301) | 0.240292 / 0.680424 (-0.440132) | 0.028850 / 0.534201 (-0.505351) | 0.557334 / 0.579283 (-0.021949) | 0.627732 / 0.434364 (0.193369) | 0.634484 / 0.540337 (0.094146) | 0.767372 / 1.386936 (-0.619564) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#accaaf2e69fbb5dc5e50229d2eb1591b8ad982b6 \"CML watermark\")\n"
] | 2023-06-02T22:25:25 | 2023-06-14T10:25:10 | 2023-06-14T10:15:46 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5924",
"html_url": "https://github.com/huggingface/datasets/pull/5924",
"diff_url": "https://github.com/huggingface/datasets/pull/5924.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5924.patch",
"merged_at": "2023-06-14T10:15:46"
} | Discussion in https://github.com/huggingface/datasets/issues/5798 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5924/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5924/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5923 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5923/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5923/comments | https://api.github.com/repos/huggingface/datasets/issues/5923/events | https://github.com/huggingface/datasets/issues/5923 | 1,737,436,227 | I_kwDODunzps5njyxD | 5,923 | Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility | {
"login": "ehuangc",
"id": 71412682,
"node_id": "MDQ6VXNlcjcxNDEyNjgy",
"avatar_url": "https://avatars.githubusercontent.com/u/71412682?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ehuangc",
"html_url": "https://github.com/ehuangc",
"followers_url": "https://api.github.com/users/ehuangc/followers",
"following_url": "https://api.github.com/users/ehuangc/following{/other_user}",
"gists_url": "https://api.github.com/users/ehuangc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ehuangc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ehuangc/subscriptions",
"organizations_url": "https://api.github.com/users/ehuangc/orgs",
"repos_url": "https://api.github.com/users/ehuangc/repos",
"events_url": "https://api.github.com/users/ehuangc/events{/privacy}",
"received_events_url": "https://api.github.com/users/ehuangc/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Based on https://github.com/rapidsai/cudf/issues/10187, this probably means your `pyarrow` installation is not compatible with `datasets`.\r\n\r\nCan you please execute the following commands in the terminal and paste the output here?\r\n```\r\nconda list | grep arrow\r\n``` \r\n```\r\npython -c \"import pyarrow; print(pyarrow.__file__)\"\r\n```\r\n\r\n\r\n",
"> Based on [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187), this probably means your `pyarrow` installation is not compatible with `datasets`.\r\n> \r\n> Can you please execute the following commands in the terminal and paste the output here?\r\n> \r\n> ```\r\n> conda list | grep arrow\r\n> ```\r\n> \r\n> ```\r\n> python -c \"import pyarrow; print(pyarrow.__file__)\"\r\n> ```\r\n\r\n\r\nHere is the output to the first command:\r\n```\r\narrow-cpp 11.0.0 py39h7f74497_0 \r\npyarrow 12.0.0 pypi_0 pypi\r\n```\r\nand the second:\r\n```\r\n/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/__init__.py\r\n```\r\nThanks!\r\n\r\n\r\n\r\n",
"after installing pytesseract 0.3.10, I got the above error. FYI ",
"RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback):\r\npyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject",
"I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n\r\nDo we need to update dependencies? ",
"Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291",
"For conda with python3.8.16 this solved my problem! thanks!\r\n\r\n> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n> \r\n> Do we need to update dependencies? I can work on that if no one else is working on it.\r\n\r\n",
"Thanks for replying. I am not sure about those environments but it seems like pyarrow-12.0.0 does not work for conda with python 3.8.16. \r\n\r\n> Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291\r\n\r\n",
"Got the same error with:\r\n\r\n```\r\narrow-cpp 11.0.0 py310h7516544_0 \r\npyarrow 12.0.0 pypi_0 pypi\r\n\r\npython 3.10.11 h7a1cb2a_2 \r\n\r\ndatasets 2.13.0 pyhd8ed1ab_0 conda-forge\r\n```",
"> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n> \r\n> Do we need to update dependencies?\r\n\r\nThis solved the issue for me as well.",
"> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n> \r\n> Do we need to update dependencies?\r\n\r\nSolved it for me also",
"> 基于 [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187),这可能意味着您的安装与 不兼容。`pyarrow``datasets`\r\n> \r\n> 您能否在终端中执行以下命令并将输出粘贴到此处?\r\n> \r\n> ```\r\n> conda list | grep arrow\r\n> ```\r\n> \r\n> ```\r\n> python -c \"import pyarrow; print(pyarrow.__file__)\"\r\n> ```\r\n\r\narrow-cpp 11.0.0 py310h7516544_0 \r\npyarrow 12.0.1 pypi_0 pypi\r\n\r\n/root/miniconda3/lib/python3.10/site-packages/pyarrow/__init__.py",
"Got the same problem with\r\n\r\narrow-cpp 11.0.0 py310h1fc3239_0 \r\npyarrow 12.0.1 pypi_0 pypi\r\n\r\nminiforge3/envs/mlp/lib/python3.10/site-packages/pyarrow/__init__.py\r\n\r\nReverting back to pyarrow 11 solved the problem.\r\n",
"Solved with `pip install pyarrow==11.0.0`"
] | 2023-06-02T04:16:32 | 2023-08-07T08:59:34 | null | NONE | null | null | null | ### Describe the bug
When trying to import datasets, I get a pyarrow ValueError:
Traceback (most recent call last):
File "/Users/edward/test/test.py", line 1, in <module>
import datasets
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module>
from .arrow_dataset import Dataset
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module>
from .arrow_reader import ArrowReader
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module>
import pyarrow.parquet as pq
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module>
from .core import *
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module>
from pyarrow.fs import (LocalFileSystem, FileSystem, FileType,
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module>
from pyarrow._gcsfs import GcsFileSystem # noqa
File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs
ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject
### Steps to reproduce the bug
`import datasets`
### Expected behavior
Successful import
### Environment info
Conda environment, MacOS
python 3.9.12
datasets 2.12.0
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5923/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5923/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5922 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5922/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5922/comments | https://api.github.com/repos/huggingface/datasets/issues/5922/events | https://github.com/huggingface/datasets/issues/5922 | 1,736,898,953 | I_kwDODunzps5nhvmJ | 5,922 | Length of table does not accurately reflect the split | {
"login": "amogkam",
"id": 8068268,
"node_id": "MDQ6VXNlcjgwNjgyNjg=",
"avatar_url": "https://avatars.githubusercontent.com/u/8068268?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/amogkam",
"html_url": "https://github.com/amogkam",
"followers_url": "https://api.github.com/users/amogkam/followers",
"following_url": "https://api.github.com/users/amogkam/following{/other_user}",
"gists_url": "https://api.github.com/users/amogkam/gists{/gist_id}",
"starred_url": "https://api.github.com/users/amogkam/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/amogkam/subscriptions",
"organizations_url": "https://api.github.com/users/amogkam/orgs",
"repos_url": "https://api.github.com/users/amogkam/repos",
"events_url": "https://api.github.com/users/amogkam/events{/privacy}",
"received_events_url": "https://api.github.com/users/amogkam/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"As already replied by @lhoestq (private channel):\r\n> `.train_test_split` (as well as `.shard`, `.select`) doesn't create a new arrow table to save time and disk space. Instead, it uses an indices mapping on top of the table that locate which examples are part of train or test.",
"This is an optimization that we don't plan to \"fix\", so I'm closing this issue."
] | 2023-06-01T18:56:26 | 2023-06-02T16:13:31 | 2023-06-02T16:13:31 | NONE | null | null | null | ### Describe the bug
I load a Huggingface Dataset and do `train_test_split`. I'm expecting the underlying table for the dataset to also be split, but it's not.
### Steps to reproduce the bug
![image](https://github.com/huggingface/datasets/assets/8068268/83e5768f-8b4c-422a-945c-832a7585afff)
### Expected behavior
The expected behavior is when `len(hf_dataset["train"].data)` should match the length of the train split, and not be the entire unsplit dataset.
### Environment info
datasets 2.10.1
python 3.10.11 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5922/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5922/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5921 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5921/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5921/comments | https://api.github.com/repos/huggingface/datasets/issues/5921/events | https://github.com/huggingface/datasets/pull/5921 | 1,736,563,023 | PR_kwDODunzps5R6j-y | 5,921 | Fix streaming parquet with image feature in schema | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007088 / 0.011353 (-0.004265) | 0.005216 / 0.011008 (-0.005793) | 0.097572 / 0.038508 (0.059064) | 0.036510 / 0.023109 (0.013401) | 0.316885 / 0.275898 (0.040987) | 0.348541 / 0.323480 (0.025061) | 0.006513 / 0.007986 (-0.001473) | 0.004579 / 0.004328 (0.000251) | 0.073779 / 0.004250 (0.069529) | 0.057500 / 0.037052 (0.020448) | 0.329840 / 0.258489 (0.071351) | 0.357530 / 0.293841 (0.063690) | 0.028515 / 0.128546 (-0.100031) | 0.009156 / 0.075646 (-0.066491) | 0.328340 / 0.419271 (-0.090932) | 0.068400 / 0.043533 (0.024867) | 0.313692 / 0.255139 (0.058553) | 0.329170 / 0.283200 (0.045971) | 0.111969 / 0.141683 (-0.029714) | 1.422096 / 1.452155 (-0.030059) | 1.550042 / 1.492716 (0.057326) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.285113 / 0.018006 (0.267107) | 0.546788 / 0.000490 (0.546298) | 0.006992 / 0.000200 (0.006792) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026841 / 0.037411 (-0.010570) | 0.108413 / 0.014526 (0.093887) | 0.118375 / 0.176557 (-0.058181) | 0.174889 / 0.737135 (-0.562246) | 0.122781 / 0.296338 (-0.173558) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404187 / 0.215209 (0.188978) | 4.039673 / 2.077655 (1.962019) | 1.894616 / 1.504120 (0.390496) | 1.729182 / 1.541195 (0.187987) | 1.772917 / 1.468490 (0.304427) | 0.524046 / 4.584777 (-4.060731) | 3.628111 / 3.745712 (-0.117601) | 1.866075 / 5.269862 (-3.403787) | 1.026435 / 4.565676 (-3.539242) | 0.065328 / 0.424275 (-0.358947) | 0.012717 / 0.007607 (0.005110) | 0.505821 / 0.226044 (0.279777) | 5.049518 / 2.268929 (2.780589) | 2.338486 / 55.444624 (-53.106139) | 2.002874 / 6.876477 (-4.873602) | 2.193049 / 2.142072 (0.050976) | 0.664638 / 4.805227 (-4.140589) | 0.151323 / 6.500664 (-6.349341) | 0.063774 / 0.075469 (-0.011695) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.168168 / 1.841788 (-0.673620) | 15.289200 / 8.074308 (7.214891) | 13.614249 / 10.191392 (3.422857) | 0.167950 / 0.680424 (-0.512474) | 0.017522 / 0.534201 (-0.516679) | 0.393480 / 0.579283 (-0.185803) | 0.420549 / 0.434364 (-0.013815) | 0.461425 / 0.540337 (-0.078912) | 0.563583 / 1.386936 (-0.823353) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006859 / 0.011353 (-0.004493) | 0.004864 / 0.011008 (-0.006144) | 0.075084 / 0.038508 (0.036576) | 0.033989 / 0.023109 (0.010880) | 0.372512 / 0.275898 (0.096614) | 0.394725 / 0.323480 (0.071246) | 0.006382 / 0.007986 (-0.001604) | 0.004521 / 0.004328 (0.000193) | 0.076422 / 0.004250 (0.072172) | 0.055383 / 0.037052 (0.018331) | 0.400974 / 0.258489 (0.142485) | 0.411570 / 0.293841 (0.117729) | 0.028264 / 0.128546 (-0.100282) | 0.009123 / 0.075646 (-0.066523) | 0.081257 / 0.419271 (-0.338015) | 0.048147 / 0.043533 (0.004614) | 0.390735 / 0.255139 (0.135596) | 0.376426 / 0.283200 (0.093226) | 0.108164 / 0.141683 (-0.033518) | 1.429667 / 1.452155 (-0.022488) | 1.556291 / 1.492716 (0.063575) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289514 / 0.018006 (0.271508) | 0.532860 / 0.000490 (0.532370) | 0.003810 / 0.000200 (0.003611) | 0.000121 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031292 / 0.037411 (-0.006119) | 0.116530 / 0.014526 (0.102005) | 0.127624 / 0.176557 (-0.048932) | 0.178276 / 0.737135 (-0.558859) | 0.133742 / 0.296338 (-0.162597) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431505 / 0.215209 (0.216296) | 4.309206 / 2.077655 (2.231551) | 2.174779 / 1.504120 (0.670659) | 1.998122 / 1.541195 (0.456927) | 2.126478 / 1.468490 (0.657988) | 0.528971 / 4.584777 (-4.055806) | 3.797608 / 3.745712 (0.051895) | 1.876275 / 5.269862 (-3.393586) | 1.087458 / 4.565676 (-3.478218) | 0.066940 / 0.424275 (-0.357335) | 0.012432 / 0.007607 (0.004825) | 0.538346 / 0.226044 (0.312301) | 5.370968 / 2.268929 (3.102039) | 2.613718 / 55.444624 (-52.830906) | 2.246585 / 6.876477 (-4.629892) | 2.375695 / 2.142072 (0.233622) | 0.652227 / 4.805227 (-4.153001) | 0.143246 / 6.500664 (-6.357418) | 0.066163 / 0.075469 (-0.009306) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291263 / 1.841788 (-0.550524) | 16.532281 / 8.074308 (8.457973) | 15.038471 / 10.191392 (4.847079) | 0.168139 / 0.680424 (-0.512285) | 0.017724 / 0.534201 (-0.516477) | 0.391636 / 0.579283 (-0.187648) | 0.429690 / 0.434364 (-0.004674) | 0.474941 / 0.540337 (-0.065396) | 0.579461 / 1.386936 (-0.807475) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#db690affa0373b08f7cef04e25fe2113ee831ef5 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006083 / 0.011353 (-0.005269) | 0.004085 / 0.011008 (-0.006923) | 0.098337 / 0.038508 (0.059829) | 0.027573 / 0.023109 (0.004464) | 0.305688 / 0.275898 (0.029790) | 0.341767 / 0.323480 (0.018287) | 0.005143 / 0.007986 (-0.002842) | 0.003396 / 0.004328 (-0.000932) | 0.076925 / 0.004250 (0.072674) | 0.041027 / 0.037052 (0.003975) | 0.307877 / 0.258489 (0.049388) | 0.346559 / 0.293841 (0.052718) | 0.025183 / 0.128546 (-0.103363) | 0.008575 / 0.075646 (-0.067071) | 0.319449 / 0.419271 (-0.099823) | 0.043378 / 0.043533 (-0.000154) | 0.304563 / 0.255139 (0.049424) | 0.332019 / 0.283200 (0.048819) | 0.087725 / 0.141683 (-0.053958) | 1.484904 / 1.452155 (0.032749) | 1.582780 / 1.492716 (0.090064) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197503 / 0.018006 (0.179497) | 0.410370 / 0.000490 (0.409880) | 0.003840 / 0.000200 (0.003640) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024179 / 0.037411 (-0.013232) | 0.098876 / 0.014526 (0.084350) | 0.106189 / 0.176557 (-0.070367) | 0.168964 / 0.737135 (-0.568171) | 0.109723 / 0.296338 (-0.186616) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429453 / 0.215209 (0.214244) | 4.295584 / 2.077655 (2.217929) | 2.014330 / 1.504120 (0.510210) | 1.841119 / 1.541195 (0.299924) | 1.928378 / 1.468490 (0.459888) | 0.554571 / 4.584777 (-4.030206) | 3.431769 / 3.745712 (-0.313943) | 1.716204 / 5.269862 (-3.553658) | 0.995054 / 4.565676 (-3.570622) | 0.067374 / 0.424275 (-0.356902) | 0.012557 / 0.007607 (0.004950) | 0.533785 / 0.226044 (0.307740) | 5.363360 / 2.268929 (3.094431) | 2.535190 / 55.444624 (-52.909434) | 2.191646 / 6.876477 (-4.684831) | 2.400799 / 2.142072 (0.258727) | 0.663961 / 4.805227 (-4.141266) | 0.135992 / 6.500664 (-6.364672) | 0.067378 / 0.075469 (-0.008092) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235110 / 1.841788 (-0.606678) | 13.820695 / 8.074308 (5.746387) | 13.667202 / 10.191392 (3.475810) | 0.143025 / 0.680424 (-0.537399) | 0.016757 / 0.534201 (-0.517444) | 0.356262 / 0.579283 (-0.223021) | 0.401871 / 0.434364 (-0.032493) | 0.423928 / 0.540337 (-0.116410) | 0.514598 / 1.386936 (-0.872338) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006260 / 0.011353 (-0.005093) | 0.004159 / 0.011008 (-0.006850) | 0.076780 / 0.038508 (0.038272) | 0.027899 / 0.023109 (0.004789) | 0.412756 / 0.275898 (0.136858) | 0.455145 / 0.323480 (0.131665) | 0.005029 / 0.007986 (-0.002956) | 0.003482 / 0.004328 (-0.000847) | 0.076148 / 0.004250 (0.071898) | 0.038969 / 0.037052 (0.001917) | 0.429975 / 0.258489 (0.171486) | 0.465880 / 0.293841 (0.172039) | 0.025555 / 0.128546 (-0.102991) | 0.008612 / 0.075646 (-0.067034) | 0.082604 / 0.419271 (-0.336667) | 0.039690 / 0.043533 (-0.003842) | 0.403644 / 0.255139 (0.148505) | 0.440438 / 0.283200 (0.157238) | 0.090984 / 0.141683 (-0.050699) | 1.465915 / 1.452155 (0.013760) | 1.564227 / 1.492716 (0.071511) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010502 / 0.018006 (-0.007504) | 0.410573 / 0.000490 (0.410083) | 0.000384 / 0.000200 (0.000184) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025726 / 0.037411 (-0.011686) | 0.101760 / 0.014526 (0.087235) | 0.110102 / 0.176557 (-0.066454) | 0.161321 / 0.737135 (-0.575815) | 0.112507 / 0.296338 (-0.183832) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.469925 / 0.215209 (0.254716) | 4.718740 / 2.077655 (2.641085) | 2.466272 / 1.504120 (0.962152) | 2.267357 / 1.541195 (0.726162) | 2.331343 / 1.468490 (0.862853) | 0.553448 / 4.584777 (-4.031329) | 3.464228 / 3.745712 (-0.281484) | 3.060957 / 5.269862 (-2.208905) | 1.387261 / 4.565676 (-3.178415) | 0.067989 / 0.424275 (-0.356286) | 0.012349 / 0.007607 (0.004741) | 0.575046 / 0.226044 (0.349001) | 5.740322 / 2.268929 (3.471394) | 2.925666 / 55.444624 (-52.518958) | 2.606535 / 6.876477 (-4.269942) | 2.658144 / 2.142072 (0.516072) | 0.655157 / 4.805227 (-4.150071) | 0.138520 / 6.500664 (-6.362144) | 0.069442 / 0.075469 (-0.006027) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306523 / 1.841788 (-0.535265) | 14.400380 / 8.074308 (6.326072) | 14.231519 / 10.191392 (4.040127) | 0.146194 / 0.680424 (-0.534230) | 0.016632 / 0.534201 (-0.517569) | 0.361151 / 0.579283 (-0.218132) | 0.388838 / 0.434364 (-0.045526) | 0.419337 / 0.540337 (-0.121001) | 0.500483 / 1.386936 (-0.886453) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c0429e9806bf7065d03dc5858c039a30c5af716c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009430 / 0.011353 (-0.001923) | 0.006673 / 0.011008 (-0.004335) | 0.125151 / 0.038508 (0.086643) | 0.038258 / 0.023109 (0.015149) | 0.426383 / 0.275898 (0.150485) | 0.432327 / 0.323480 (0.108847) | 0.006964 / 0.007986 (-0.001022) | 0.005140 / 0.004328 (0.000811) | 0.100767 / 0.004250 (0.096517) | 0.058663 / 0.037052 (0.021610) | 0.424709 / 0.258489 (0.166220) | 0.453049 / 0.293841 (0.159208) | 0.051042 / 0.128546 (-0.077505) | 0.015291 / 0.075646 (-0.060355) | 0.456549 / 0.419271 (0.037278) | 0.067106 / 0.043533 (0.023573) | 0.408959 / 0.255139 (0.153820) | 0.445067 / 0.283200 (0.161867) | 0.115590 / 0.141683 (-0.026092) | 1.929439 / 1.452155 (0.477284) | 2.045709 / 1.492716 (0.552992) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250726 / 0.018006 (0.232720) | 0.598976 / 0.000490 (0.598486) | 0.007542 / 0.000200 (0.007342) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030317 / 0.037411 (-0.007094) | 0.133177 / 0.014526 (0.118651) | 0.152761 / 0.176557 (-0.023795) | 0.233708 / 0.737135 (-0.503428) | 0.147303 / 0.296338 (-0.149036) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.633562 / 0.215209 (0.418353) | 6.235021 / 2.077655 (4.157366) | 2.652573 / 1.504120 (1.148454) | 2.223363 / 1.541195 (0.682168) | 2.231022 / 1.468490 (0.762531) | 0.942218 / 4.584777 (-3.642559) | 6.068661 / 3.745712 (2.322949) | 2.778604 / 5.269862 (-2.491257) | 1.787939 / 4.565676 (-2.777737) | 0.117749 / 0.424275 (-0.306526) | 0.015613 / 0.007607 (0.008006) | 0.810222 / 0.226044 (0.584177) | 7.931509 / 2.268929 (5.662581) | 3.260679 / 55.444624 (-52.183945) | 2.609085 / 6.876477 (-4.267391) | 2.867838 / 2.142072 (0.725766) | 1.144672 / 4.805227 (-3.660555) | 0.224379 / 6.500664 (-6.276285) | 0.084490 / 0.075469 (0.009021) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.650608 / 1.841788 (-0.191179) | 18.919748 / 8.074308 (10.845440) | 20.163162 / 10.191392 (9.971770) | 0.229427 / 0.680424 (-0.450997) | 0.033090 / 0.534201 (-0.501111) | 0.535549 / 0.579283 (-0.043734) | 0.658629 / 0.434364 (0.224265) | 0.631526 / 0.540337 (0.091189) | 0.748701 / 1.386936 (-0.638235) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009157 / 0.011353 (-0.002196) | 0.006153 / 0.011008 (-0.004856) | 0.106294 / 0.038508 (0.067786) | 0.040947 / 0.023109 (0.017837) | 0.493242 / 0.275898 (0.217344) | 0.563525 / 0.323480 (0.240045) | 0.007256 / 0.007986 (-0.000730) | 0.006757 / 0.004328 (0.002429) | 0.105151 / 0.004250 (0.100901) | 0.056262 / 0.037052 (0.019209) | 0.573341 / 0.258489 (0.314852) | 0.591125 / 0.293841 (0.297284) | 0.047935 / 0.128546 (-0.080611) | 0.015385 / 0.075646 (-0.060262) | 0.119457 / 0.419271 (-0.299814) | 0.066510 / 0.043533 (0.022977) | 0.485622 / 0.255139 (0.230483) | 0.540929 / 0.283200 (0.257730) | 0.132619 / 0.141683 (-0.009064) | 1.916905 / 1.452155 (0.464750) | 2.152722 / 1.492716 (0.660006) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.294823 / 0.018006 (0.276817) | 0.569371 / 0.000490 (0.568882) | 0.000642 / 0.000200 (0.000442) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034321 / 0.037411 (-0.003090) | 0.134165 / 0.014526 (0.119639) | 0.157871 / 0.176557 (-0.018685) | 0.210753 / 0.737135 (-0.526382) | 0.152961 / 0.296338 (-0.143377) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.686810 / 0.215209 (0.471601) | 6.890432 / 2.077655 (4.812778) | 3.182875 / 1.504120 (1.678755) | 2.770836 / 1.541195 (1.229641) | 2.790785 / 1.468490 (1.322295) | 0.938145 / 4.584777 (-3.646632) | 5.861093 / 3.745712 (2.115381) | 2.719862 / 5.269862 (-2.550000) | 1.760834 / 4.565676 (-2.804842) | 0.111317 / 0.424275 (-0.312958) | 0.015722 / 0.007607 (0.008115) | 0.863032 / 0.226044 (0.636988) | 8.482433 / 2.268929 (6.213504) | 3.892621 / 55.444624 (-51.552003) | 3.207370 / 6.876477 (-3.669106) | 3.344412 / 2.142072 (1.202339) | 1.133903 / 4.805227 (-3.671324) | 0.223456 / 6.500664 (-6.277209) | 0.084335 / 0.075469 (0.008866) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.794116 / 1.841788 (-0.047672) | 19.077447 / 8.074308 (11.003139) | 23.102309 / 10.191392 (12.910917) | 0.268806 / 0.680424 (-0.411617) | 0.027709 / 0.534201 (-0.506492) | 0.540488 / 0.579283 (-0.038796) | 0.658478 / 0.434364 (0.224114) | 0.604769 / 0.540337 (0.064431) | 0.722768 / 1.386936 (-0.664168) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e52021c66666e6953d5be0bd45a079e3ddb8c3f \"CML watermark\")\n"
] | 2023-06-01T15:23:10 | 2023-06-02T10:02:54 | 2023-06-02T09:53:11 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5921",
"html_url": "https://github.com/huggingface/datasets/pull/5921",
"diff_url": "https://github.com/huggingface/datasets/pull/5921.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5921.patch",
"merged_at": "2023-06-02T09:53:11"
} | It was not reading the feature type from the parquet arrow schema | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5921/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5921/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5920 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5920/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5920/comments | https://api.github.com/repos/huggingface/datasets/issues/5920/events | https://github.com/huggingface/datasets/pull/5920 | 1,736,196,991 | PR_kwDODunzps5R5TRB | 5,920 | Optimize IterableDataset.from_file using ArrowExamplesIterable | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007439 / 0.011353 (-0.003914) | 0.004884 / 0.011008 (-0.006124) | 0.098750 / 0.038508 (0.060242) | 0.040723 / 0.023109 (0.017613) | 0.347242 / 0.275898 (0.071344) | 0.381202 / 0.323480 (0.057722) | 0.006814 / 0.007986 (-0.001171) | 0.004543 / 0.004328 (0.000215) | 0.075338 / 0.004250 (0.071088) | 0.058976 / 0.037052 (0.021924) | 0.344746 / 0.258489 (0.086257) | 0.406761 / 0.293841 (0.112920) | 0.028961 / 0.128546 (-0.099585) | 0.009531 / 0.075646 (-0.066115) | 0.337324 / 0.419271 (-0.081947) | 0.051071 / 0.043533 (0.007538) | 0.341251 / 0.255139 (0.086112) | 0.362773 / 0.283200 (0.079573) | 0.109423 / 0.141683 (-0.032260) | 1.457420 / 1.452155 (0.005266) | 1.588824 / 1.492716 (0.096108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288620 / 0.018006 (0.270614) | 0.568975 / 0.000490 (0.568485) | 0.003350 / 0.000200 (0.003150) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028732 / 0.037411 (-0.008680) | 0.117820 / 0.014526 (0.103294) | 0.120180 / 0.176557 (-0.056376) | 0.178736 / 0.737135 (-0.558399) | 0.126399 / 0.296338 (-0.169939) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428357 / 0.215209 (0.213148) | 4.251989 / 2.077655 (2.174334) | 2.005239 / 1.504120 (0.501119) | 1.784009 / 1.541195 (0.242815) | 1.883763 / 1.468490 (0.415272) | 0.555429 / 4.584777 (-4.029348) | 3.868146 / 3.745712 (0.122434) | 2.081896 / 5.269862 (-3.187965) | 1.126047 / 4.565676 (-3.439629) | 0.069496 / 0.424275 (-0.354779) | 0.012926 / 0.007607 (0.005318) | 0.536989 / 0.226044 (0.310944) | 5.256052 / 2.268929 (2.987124) | 2.526802 / 55.444624 (-52.917822) | 2.233346 / 6.876477 (-4.643131) | 2.389063 / 2.142072 (0.246990) | 0.677107 / 4.805227 (-4.128120) | 0.147212 / 6.500664 (-6.353452) | 0.067061 / 0.075469 (-0.008408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210651 / 1.841788 (-0.631137) | 17.236898 / 8.074308 (9.162589) | 14.427301 / 10.191392 (4.235909) | 0.207194 / 0.680424 (-0.473229) | 0.018079 / 0.534201 (-0.516122) | 0.398355 / 0.579283 (-0.180929) | 0.462453 / 0.434364 (0.028089) | 0.484544 / 0.540337 (-0.055794) | 0.590119 / 1.386936 (-0.796817) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007392 / 0.011353 (-0.003961) | 0.005614 / 0.011008 (-0.005394) | 0.075587 / 0.038508 (0.037079) | 0.040429 / 0.023109 (0.017320) | 0.389901 / 0.275898 (0.114003) | 0.429466 / 0.323480 (0.105986) | 0.006790 / 0.007986 (-0.001196) | 0.006627 / 0.004328 (0.002299) | 0.075227 / 0.004250 (0.070976) | 0.060298 / 0.037052 (0.023246) | 0.391905 / 0.258489 (0.133416) | 0.449385 / 0.293841 (0.155544) | 0.028794 / 0.128546 (-0.099753) | 0.009461 / 0.075646 (-0.066185) | 0.083386 / 0.419271 (-0.335886) | 0.057968 / 0.043533 (0.014435) | 0.377327 / 0.255139 (0.122188) | 0.402825 / 0.283200 (0.119626) | 0.125477 / 0.141683 (-0.016206) | 1.462986 / 1.452155 (0.010832) | 1.595959 / 1.492716 (0.103243) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304179 / 0.018006 (0.286173) | 0.543113 / 0.000490 (0.542623) | 0.004136 / 0.000200 (0.003936) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032617 / 0.037411 (-0.004794) | 0.123596 / 0.014526 (0.109070) | 0.128714 / 0.176557 (-0.047842) | 0.176344 / 0.737135 (-0.560792) | 0.132525 / 0.296338 (-0.163813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446041 / 0.215209 (0.230832) | 4.438799 / 2.077655 (2.361144) | 2.210815 / 1.504120 (0.706695) | 2.052025 / 1.541195 (0.510830) | 2.204687 / 1.468490 (0.736197) | 0.535219 / 4.584777 (-4.049558) | 3.858407 / 3.745712 (0.112695) | 3.826043 / 5.269862 (-1.443819) | 1.334149 / 4.565676 (-3.231527) | 0.067454 / 0.424275 (-0.356821) | 0.012566 / 0.007607 (0.004958) | 0.551597 / 0.226044 (0.325553) | 5.520054 / 2.268929 (3.251126) | 2.817976 / 55.444624 (-52.626649) | 2.528074 / 6.876477 (-4.348403) | 2.622391 / 2.142072 (0.480319) | 0.657632 / 4.805227 (-4.147595) | 0.147039 / 6.500664 (-6.353625) | 0.069603 / 0.075469 (-0.005866) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.300140 / 1.841788 (-0.541648) | 17.303907 / 8.074308 (9.229599) | 15.657887 / 10.191392 (5.466495) | 0.168991 / 0.680424 (-0.511433) | 0.021332 / 0.534201 (-0.512869) | 0.487261 / 0.579283 (-0.092022) | 0.450073 / 0.434364 (0.015709) | 0.465865 / 0.540337 (-0.074473) | 0.565501 / 1.386936 (-0.821435) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1723ab75a6b3a5e156ea0a41651e80e91fa9cc6 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.004254 / 0.011008 (-0.006755) | 0.095387 / 0.038508 (0.056878) | 0.032885 / 0.023109 (0.009776) | 0.298580 / 0.275898 (0.022682) | 0.319771 / 0.323480 (-0.003709) | 0.005510 / 0.007986 (-0.002476) | 0.003891 / 0.004328 (-0.000437) | 0.073763 / 0.004250 (0.069513) | 0.041625 / 0.037052 (0.004573) | 0.294896 / 0.258489 (0.036407) | 0.341308 / 0.293841 (0.047467) | 0.027898 / 0.128546 (-0.100648) | 0.008837 / 0.075646 (-0.066809) | 0.325055 / 0.419271 (-0.094216) | 0.050652 / 0.043533 (0.007119) | 0.298756 / 0.255139 (0.043617) | 0.318261 / 0.283200 (0.035061) | 0.098927 / 0.141683 (-0.042756) | 1.450356 / 1.452155 (-0.001798) | 1.508034 / 1.492716 (0.015318) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209009 / 0.018006 (0.191003) | 0.439154 / 0.000490 (0.438665) | 0.004299 / 0.000200 (0.004099) | 0.000142 / 0.000054 (0.000087) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025938 / 0.037411 (-0.011473) | 0.105954 / 0.014526 (0.091429) | 0.113858 / 0.176557 (-0.062698) | 0.168887 / 0.737135 (-0.568249) | 0.121292 / 0.296338 (-0.175046) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402050 / 0.215209 (0.186841) | 4.002310 / 2.077655 (1.924655) | 1.816190 / 1.504120 (0.312070) | 1.634404 / 1.541195 (0.093209) | 1.713632 / 1.468490 (0.245142) | 0.519633 / 4.584777 (-4.065144) | 3.740291 / 3.745712 (-0.005421) | 1.787602 / 5.269862 (-3.482260) | 1.038844 / 4.565676 (-3.526833) | 0.064973 / 0.424275 (-0.359302) | 0.012475 / 0.007607 (0.004868) | 0.498152 / 0.226044 (0.272108) | 4.970941 / 2.268929 (2.702013) | 2.287429 / 55.444624 (-53.157195) | 1.998050 / 6.876477 (-4.878427) | 2.091903 / 2.142072 (-0.050169) | 0.630363 / 4.805227 (-4.174864) | 0.138623 / 6.500664 (-6.362041) | 0.063293 / 0.075469 (-0.012176) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.201802 / 1.841788 (-0.639986) | 14.073836 / 8.074308 (5.999528) | 12.968665 / 10.191392 (2.777273) | 0.144653 / 0.680424 (-0.535771) | 0.017613 / 0.534201 (-0.516588) | 0.392067 / 0.579283 (-0.187216) | 0.416955 / 0.434364 (-0.017409) | 0.471492 / 0.540337 (-0.068845) | 0.554576 / 1.386936 (-0.832360) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006408 / 0.011353 (-0.004945) | 0.004452 / 0.011008 (-0.006556) | 0.073648 / 0.038508 (0.035140) | 0.032536 / 0.023109 (0.009427) | 0.358546 / 0.275898 (0.082648) | 0.387330 / 0.323480 (0.063850) | 0.005542 / 0.007986 (-0.002444) | 0.003882 / 0.004328 (-0.000447) | 0.073867 / 0.004250 (0.069617) | 0.044798 / 0.037052 (0.007746) | 0.362303 / 0.258489 (0.103814) | 0.400496 / 0.293841 (0.106655) | 0.028244 / 0.128546 (-0.100302) | 0.008931 / 0.075646 (-0.066715) | 0.080617 / 0.419271 (-0.338654) | 0.046575 / 0.043533 (0.003043) | 0.364283 / 0.255139 (0.109145) | 0.373215 / 0.283200 (0.090015) | 0.100080 / 0.141683 (-0.041603) | 1.430047 / 1.452155 (-0.022108) | 1.530957 / 1.492716 (0.038240) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221061 / 0.018006 (0.203055) | 0.441753 / 0.000490 (0.441263) | 0.003626 / 0.000200 (0.003426) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029509 / 0.037411 (-0.007902) | 0.109578 / 0.014526 (0.095053) | 0.121009 / 0.176557 (-0.055548) | 0.168950 / 0.737135 (-0.568185) | 0.124475 / 0.296338 (-0.171864) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431355 / 0.215209 (0.216146) | 4.295507 / 2.077655 (2.217852) | 2.167514 / 1.504120 (0.663394) | 2.013073 / 1.541195 (0.471879) | 1.973730 / 1.468490 (0.505240) | 0.529778 / 4.584777 (-4.054999) | 3.794702 / 3.745712 (0.048989) | 3.062940 / 5.269862 (-2.206922) | 1.503426 / 4.565676 (-3.062251) | 0.066692 / 0.424275 (-0.357583) | 0.011682 / 0.007607 (0.004075) | 0.539311 / 0.226044 (0.313266) | 5.406342 / 2.268929 (3.137414) | 2.652709 / 55.444624 (-52.791916) | 2.260066 / 6.876477 (-4.616410) | 2.295752 / 2.142072 (0.153680) | 0.647199 / 4.805227 (-4.158029) | 0.142981 / 6.500664 (-6.357683) | 0.065082 / 0.075469 (-0.010387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279788 / 1.841788 (-0.562000) | 14.982845 / 8.074308 (6.908536) | 14.277166 / 10.191392 (4.085774) | 0.145082 / 0.680424 (-0.535342) | 0.017885 / 0.534201 (-0.516316) | 0.392071 / 0.579283 (-0.187212) | 0.420425 / 0.434364 (-0.013939) | 0.461244 / 0.540337 (-0.079093) | 0.559956 / 1.386936 (-0.826980) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#651d96c1c4083a206c65f11602712d75f1f0453d \"CML watermark\")\n"
] | 2023-06-01T12:14:36 | 2023-06-01T12:42:10 | 2023-06-01T12:35:14 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5920",
"html_url": "https://github.com/huggingface/datasets/pull/5920",
"diff_url": "https://github.com/huggingface/datasets/pull/5920.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5920.patch",
"merged_at": "2023-06-01T12:35:14"
} | following https://github.com/huggingface/datasets/pull/5893 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5920/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5920/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5919 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5919/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5919/comments | https://api.github.com/repos/huggingface/datasets/issues/5919/events | https://github.com/huggingface/datasets/pull/5919 | 1,735,519,227 | PR_kwDODunzps5R2_EK | 5,919 | add support for storage_options for load_dataset API | {
"login": "janineguo",
"id": 59083384,
"node_id": "MDQ6VXNlcjU5MDgzMzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/59083384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/janineguo",
"html_url": "https://github.com/janineguo",
"followers_url": "https://api.github.com/users/janineguo/followers",
"following_url": "https://api.github.com/users/janineguo/following{/other_user}",
"gists_url": "https://api.github.com/users/janineguo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/janineguo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/janineguo/subscriptions",
"organizations_url": "https://api.github.com/users/janineguo/orgs",
"repos_url": "https://api.github.com/users/janineguo/repos",
"events_url": "https://api.github.com/users/janineguo/events{/privacy}",
"received_events_url": "https://api.github.com/users/janineguo/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"hi @lhoestq,\r\nI saw some errors in my test and found all the failed reasons are `FileNotFoundError` about `test_load_streaming_private_dataset_with_zipped_data` and `test_load_dataset_private_zipped_images` in `test_load.py `, I run pytest on my own Wins and Ubuntu system all the test in `test_load.py ` are succeed. could you help me to check the test environment of our server?\r\n\r\n`2023-06-08T16:50:48.0828281Z FAILED tests/test_load.py::test_load_streaming_private_dataset_with_zipped_data - FileNotFoundError: Couldn't find a dataset script at D:\\a\\datasets\\datasets\\__DUMMY_TRANSFORMERS_USER__\\repo_zipped_txt_data-16862429577813\\repo_zipped_txt_data-16862429577813.py or any data file in the same directory. Couldn't find '__DUMMY_TRANSFORMERS_USER__/repo_zipped_txt_data-16862429577813' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in __DUMMY_TRANSFORMERS_USER__/repo_zipped_txt_data-16862429577813`\r\n`2023-06-08T16:50:48.0830602Z FAILED tests/test_load.py::test_load_dataset_private_zipped_images[False-False] - FileNotFoundError: Couldn't find a dataset script at D:\\a\\datasets\\datasets\\__DUMMY_TRANSFORMERS_USER__\\repo_zipped_img_data-16862429594168\\repo_zipped_img_data-16862429594168.py or any data file in the same directory. Couldn't find '__DUMMY_TRANSFORMERS_USER__/repo_zipped_img_data-16862429594168' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in __DUMMY_TRANSFORMERS_USER__/repo_zipped_img_data-16862429594168`",
"I just re-ran the CI, hopefully it's fixed",
"_The documentation is not available anymore as the PR was closed or merged._",
"> I just re-ran the CI, hopefully it's fixed\r\n\r\nI just checked, still has the same error, maybe need someone to fix it",
"I think the issue comes from this PR somehow, since the CI fail is related to loading private repositories and this PR touches authentication related code. Let me check what's the issue, and I'll also review your PR later (sorry I don't have a ton of bandwidth atm)",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5919). All of your documentation changes will be reflected on that endpoint.",
"@lhoestq Hi sorry to bother you, the CI check_code_quality failed and it said `would reformat /home/runner/work/datasets/datasets/src/datasets/download/streaming_download_manager.py` but I cant see any changes when I run `python3 -m black --check tests src benchmarks metrics` and `python3 -m ruff tests src benchmarks metrics` on my own computer, is there any version requirements on the tools? I didn't specific the version.",
"I just ran `make style` and pushed the changes.\r\nYou can install the right versions of black and ruff using `pip install -e .[quality]` ;)",
"I am working on this issue right now https://github.com/huggingface/datasets/issues/6017 which is strongly connected to your PR, and I might end up cherry-picking some of your commits (keeping attribution of course !). Would you be ok with that ?",
"it's totally ok for me, I just wish the S3 File system could support streaming too.\r\n",
"\r\nI already adjust the code and test on my local Mac, you can check it now, and you can make any changes to it.",
"Closing this PR in favor of https://github.com/huggingface/datasets/pull/6028 which includes your contribution :)"
] | 2023-06-01T05:52:32 | 2023-07-18T06:14:32 | 2023-07-17T17:02:00 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5919",
"html_url": "https://github.com/huggingface/datasets/pull/5919",
"diff_url": "https://github.com/huggingface/datasets/pull/5919.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5919.patch",
"merged_at": null
} | to solve the issue in #5880
1. add s3 support in the link check step, previous we only check `http` and `https`,
2. change the parameter of `use_auth_token` to `download_config` to support both `storage_options` and `use_auth_token` parameter when trying to handle(list, open, read, etc,.) the remote files.
3. integrate the check part's duplicate code to make adding or deleting other sources easier. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5919/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5919/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5918 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5918/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5918/comments | https://api.github.com/repos/huggingface/datasets/issues/5918/events | https://github.com/huggingface/datasets/issues/5918 | 1,735,313,549 | I_kwDODunzps5nbsiN | 5,918 | File not found for audio dataset | {
"login": "RobertBaruch",
"id": 1783950,
"node_id": "MDQ6VXNlcjE3ODM5NTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/1783950?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RobertBaruch",
"html_url": "https://github.com/RobertBaruch",
"followers_url": "https://api.github.com/users/RobertBaruch/followers",
"following_url": "https://api.github.com/users/RobertBaruch/following{/other_user}",
"gists_url": "https://api.github.com/users/RobertBaruch/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RobertBaruch/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RobertBaruch/subscriptions",
"organizations_url": "https://api.github.com/users/RobertBaruch/orgs",
"repos_url": "https://api.github.com/users/RobertBaruch/repos",
"events_url": "https://api.github.com/users/RobertBaruch/events{/privacy}",
"received_events_url": "https://api.github.com/users/RobertBaruch/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"load_dataset () did not work for loading local files either "
] | 2023-06-01T02:15:29 | 2023-06-11T06:02:25 | null | NONE | null | null | null | ### Describe the bug
After loading an audio dataset, and looking at a sample entry, the `path` element, which is supposed to be the path to the audio file, doesn't actually exist.
### Steps to reproduce the bug
Run bug.py:
```py
import os.path
from datasets import load_dataset
def run() -> None:
cv13 = load_dataset(
"mozilla-foundation/common_voice_13_0",
"hi",
split="train",
)
print(cv13[0])
audio_file = cv13[0]["path"]
if not os.path.exists(audio_file):
raise ValueError(f'File {audio_file} does not exist.')
if __name__ == "__main__":
run()
```
The result (on my machine):
```json
{'client_id': '0f018a99663f33afbb7d38aee281fb1afcfd07f9e7acd00383f604e1e17c38d6ed8adf1bd2ccbf927a52c5adefb8ac4b158ce27a7c2ed9581e71202eb302dfb3', 'path': 'C:\\Users\\rober\\.cache\\huggingface\\datasets\\downloads\\extracted\\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\\common_voice_hi_26008353.mp3', 'audio': {'path': 'C:\\Users\\rober\\.cache\\huggingface\\datasets\\downloads\\extracted\\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\\common_voice_hi_26008353.mp3', 'array': array([ 6.46234854e-26, -1.35709319e-25, -8.07793567e-26, ...,
1.06425944e-07, 4.46417090e-08, 2.61451660e-09]), 'sampling_rate': 48000}, 'sentence': 'हमने उसका जन्मदिन मनाया।', 'up_votes': 2, 'down_votes': 0, 'age': '', 'gender': '', 'accent': '', 'locale': 'hi', 'segment': '' ', 'variant': ''}
```
```txt
Traceback (most recent call last):
File "F:\eo-reco\bug.py", line 18, in <module>
run()
File "F:\eo-reco\bug.py", line 15, in run
raise ValueError(f'File {audio_file} does not exist.')
ValueError: File C:\Users\rober\.cache\huggingface\datasets\downloads\extracted\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\common_voice_hi_26008353.mp3 does not exist.
```
### Expected behavior
The `path` element points to the correct file, which happens to be:
```
C:\Users\rober\.cache\huggingface\datasets\downloads\extracted\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\hi_train_0\common_voice_hi_26008353.mp3
```
That is, there's an extra directory `hi_train_0` that is not in the `path` element.
### Environment info
- `datasets` version: 2.12.0
- Platform: Windows-10-10.0.22621-SP0
- Python version: 3.11.3
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.1
- | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5918/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5918/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5917 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5917/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5917/comments | https://api.github.com/repos/huggingface/datasets/issues/5917/events | https://github.com/huggingface/datasets/pull/5917 | 1,733,661,588 | PR_kwDODunzps5RwoRU | 5,917 | Refactor extensions | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008358 / 0.011353 (-0.002995) | 0.005673 / 0.011008 (-0.005335) | 0.124034 / 0.038508 (0.085526) | 0.037550 / 0.023109 (0.014441) | 0.331301 / 0.275898 (0.055403) | 0.383542 / 0.323480 (0.060062) | 0.006940 / 0.007986 (-0.001046) | 0.005959 / 0.004328 (0.001631) | 0.084670 / 0.004250 (0.080419) | 0.054214 / 0.037052 (0.017162) | 0.359897 / 0.258489 (0.101408) | 0.383260 / 0.293841 (0.089419) | 0.047642 / 0.128546 (-0.080904) | 0.013902 / 0.075646 (-0.061744) | 0.380232 / 0.419271 (-0.039040) | 0.077790 / 0.043533 (0.034257) | 0.376648 / 0.255139 (0.121509) | 0.387536 / 0.283200 (0.104336) | 0.104644 / 0.141683 (-0.037038) | 1.618560 / 1.452155 (0.166406) | 1.742569 / 1.492716 (0.249853) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257218 / 0.018006 (0.239212) | 0.636801 / 0.000490 (0.636311) | 0.000634 / 0.000200 (0.000434) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037874 / 0.037411 (0.000462) | 0.107454 / 0.014526 (0.092928) | 0.117855 / 0.176557 (-0.058702) | 0.204067 / 0.737135 (-0.533068) | 0.134029 / 0.296338 (-0.162310) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583657 / 0.215209 (0.368447) | 5.761289 / 2.077655 (3.683635) | 2.280201 / 1.504120 (0.776081) | 2.033442 / 1.541195 (0.492247) | 2.035343 / 1.468490 (0.566853) | 0.868122 / 4.584777 (-3.716655) | 5.352591 / 3.745712 (1.606879) | 2.432814 / 5.269862 (-2.837047) | 1.560765 / 4.565676 (-3.004911) | 0.098793 / 0.424275 (-0.325482) | 0.017327 / 0.007607 (0.009720) | 0.734676 / 0.226044 (0.508631) | 7.070318 / 2.268929 (4.801390) | 2.972701 / 55.444624 (-52.471924) | 2.442189 / 6.876477 (-4.434288) | 2.604379 / 2.142072 (0.462307) | 1.028853 / 4.805227 (-3.776374) | 0.210390 / 6.500664 (-6.290274) | 0.069329 / 0.075469 (-0.006140) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.469586 / 1.841788 (-0.372202) | 16.570305 / 8.074308 (8.495997) | 19.187845 / 10.191392 (8.996453) | 0.219162 / 0.680424 (-0.461262) | 0.026356 / 0.534201 (-0.507845) | 0.447370 / 0.579283 (-0.131913) | 0.555893 / 0.434364 (0.121529) | 0.574958 / 0.540337 (0.034621) | 0.639166 / 1.386936 (-0.747770) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008166 / 0.011353 (-0.003187) | 0.005577 / 0.011008 (-0.005431) | 0.103578 / 0.038508 (0.065070) | 0.040563 / 0.023109 (0.017454) | 0.441996 / 0.275898 (0.166098) | 0.483594 / 0.323480 (0.160114) | 0.007329 / 0.007986 (-0.000657) | 0.004546 / 0.004328 (0.000218) | 0.090471 / 0.004250 (0.086220) | 0.052740 / 0.037052 (0.015688) | 0.442197 / 0.258489 (0.183708) | 0.524310 / 0.293841 (0.230469) | 0.042487 / 0.128546 (-0.086060) | 0.012917 / 0.075646 (-0.062730) | 0.103992 / 0.419271 (-0.315280) | 0.060570 / 0.043533 (0.017037) | 0.441956 / 0.255139 (0.186817) | 0.477084 / 0.283200 (0.193885) | 0.103815 / 0.141683 (-0.037868) | 1.696963 / 1.452155 (0.244809) | 1.747849 / 1.492716 (0.255132) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292465 / 0.018006 (0.274458) | 0.571518 / 0.000490 (0.571028) | 0.000476 / 0.000200 (0.000276) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028697 / 0.037411 (-0.008714) | 0.111671 / 0.014526 (0.097145) | 0.138826 / 0.176557 (-0.037731) | 0.189697 / 0.737135 (-0.547439) | 0.125454 / 0.296338 (-0.170884) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.619273 / 0.215209 (0.404064) | 6.138669 / 2.077655 (4.061015) | 2.558622 / 1.504120 (1.054502) | 2.201550 / 1.541195 (0.660356) | 2.279034 / 1.468490 (0.810544) | 0.850752 / 4.584777 (-3.734025) | 5.438185 / 3.745712 (1.692473) | 2.529343 / 5.269862 (-2.740518) | 1.572178 / 4.565676 (-2.993499) | 0.100768 / 0.424275 (-0.323507) | 0.013902 / 0.007607 (0.006295) | 0.726660 / 0.226044 (0.500616) | 7.794918 / 2.268929 (5.525990) | 3.311695 / 55.444624 (-52.132930) | 2.729167 / 6.876477 (-4.147310) | 2.630984 / 2.142072 (0.488911) | 1.018534 / 4.805227 (-3.786693) | 0.194602 / 6.500664 (-6.306062) | 0.070876 / 0.075469 (-0.004593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.573005 / 1.841788 (-0.268783) | 17.042710 / 8.074308 (8.968401) | 19.615320 / 10.191392 (9.423928) | 0.229405 / 0.680424 (-0.451019) | 0.027560 / 0.534201 (-0.506641) | 0.447984 / 0.579283 (-0.131299) | 0.598392 / 0.434364 (0.164028) | 0.571769 / 0.540337 (0.031431) | 0.653025 / 1.386936 (-0.733911) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9dca2ff89a8589595313e9535d16597ce10e3700 \"CML watermark\")\n"
] | 2023-05-31T08:33:02 | 2023-05-31T13:34:35 | 2023-05-31T13:25:57 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5917",
"html_url": "https://github.com/huggingface/datasets/pull/5917",
"diff_url": "https://github.com/huggingface/datasets/pull/5917.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5917.patch",
"merged_at": "2023-05-31T13:25:57"
} | Related to:
- #5850 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5917/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5917/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5916 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5916/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5916/comments | https://api.github.com/repos/huggingface/datasets/issues/5916/events | https://github.com/huggingface/datasets/pull/5916 | 1,732,456,392 | PR_kwDODunzps5RskTb | 5,916 | Unpin responses | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006113 / 0.011353 (-0.005239) | 0.004195 / 0.011008 (-0.006813) | 0.098103 / 0.038508 (0.059595) | 0.027970 / 0.023109 (0.004860) | 0.300992 / 0.275898 (0.025094) | 0.335402 / 0.323480 (0.011922) | 0.005079 / 0.007986 (-0.002906) | 0.003516 / 0.004328 (-0.000813) | 0.077311 / 0.004250 (0.073061) | 0.037863 / 0.037052 (0.000810) | 0.302638 / 0.258489 (0.044149) | 0.346554 / 0.293841 (0.052713) | 0.025218 / 0.128546 (-0.103328) | 0.008630 / 0.075646 (-0.067017) | 0.319748 / 0.419271 (-0.099523) | 0.049182 / 0.043533 (0.005650) | 0.306233 / 0.255139 (0.051094) | 0.331040 / 0.283200 (0.047840) | 0.089203 / 0.141683 (-0.052480) | 1.496104 / 1.452155 (0.043949) | 1.567878 / 1.492716 (0.075162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215774 / 0.018006 (0.197768) | 0.436810 / 0.000490 (0.436320) | 0.000307 / 0.000200 (0.000107) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024102 / 0.037411 (-0.013310) | 0.095459 / 0.014526 (0.080933) | 0.106564 / 0.176557 (-0.069992) | 0.169894 / 0.737135 (-0.567241) | 0.109152 / 0.296338 (-0.187186) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429066 / 0.215209 (0.213857) | 4.297385 / 2.077655 (2.219730) | 2.054854 / 1.504120 (0.550734) | 1.846844 / 1.541195 (0.305649) | 1.840807 / 1.468490 (0.372317) | 0.553193 / 4.584777 (-4.031584) | 3.366788 / 3.745712 (-0.378924) | 1.727337 / 5.269862 (-3.542525) | 0.994357 / 4.565676 (-3.571319) | 0.067790 / 0.424275 (-0.356485) | 0.012002 / 0.007607 (0.004395) | 0.533335 / 0.226044 (0.307291) | 5.341341 / 2.268929 (3.072412) | 2.543581 / 55.444624 (-52.901043) | 2.220374 / 6.876477 (-4.656103) | 2.321656 / 2.142072 (0.179583) | 0.654408 / 4.805227 (-4.150819) | 0.134693 / 6.500664 (-6.365971) | 0.066926 / 0.075469 (-0.008544) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209463 / 1.841788 (-0.632325) | 13.568221 / 8.074308 (5.493913) | 13.965418 / 10.191392 (3.774026) | 0.145049 / 0.680424 (-0.535375) | 0.016936 / 0.534201 (-0.517265) | 0.371587 / 0.579283 (-0.207696) | 0.386363 / 0.434364 (-0.048001) | 0.437137 / 0.540337 (-0.103201) | 0.514779 / 1.386936 (-0.872157) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006245 / 0.011353 (-0.005108) | 0.004232 / 0.011008 (-0.006776) | 0.075682 / 0.038508 (0.037174) | 0.027858 / 0.023109 (0.004749) | 0.425325 / 0.275898 (0.149427) | 0.466732 / 0.323480 (0.143253) | 0.005240 / 0.007986 (-0.002745) | 0.003506 / 0.004328 (-0.000823) | 0.075294 / 0.004250 (0.071044) | 0.041677 / 0.037052 (0.004624) | 0.426552 / 0.258489 (0.168063) | 0.469452 / 0.293841 (0.175611) | 0.025443 / 0.128546 (-0.103104) | 0.008526 / 0.075646 (-0.067120) | 0.082190 / 0.419271 (-0.337081) | 0.040906 / 0.043533 (-0.002626) | 0.428406 / 0.255139 (0.173267) | 0.446795 / 0.283200 (0.163595) | 0.093837 / 0.141683 (-0.047846) | 1.518639 / 1.452155 (0.066484) | 1.620214 / 1.492716 (0.127498) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223259 / 0.018006 (0.205253) | 0.425077 / 0.000490 (0.424588) | 0.001980 / 0.000200 (0.001780) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025813 / 0.037411 (-0.011599) | 0.103062 / 0.014526 (0.088536) | 0.108958 / 0.176557 (-0.067598) | 0.161591 / 0.737135 (-0.575544) | 0.112130 / 0.296338 (-0.184209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472843 / 0.215209 (0.257634) | 4.713281 / 2.077655 (2.635626) | 2.458216 / 1.504120 (0.954096) | 2.272467 / 1.541195 (0.731273) | 2.324456 / 1.468490 (0.855965) | 0.554686 / 4.584777 (-4.030091) | 3.445079 / 3.745712 (-0.300634) | 3.451896 / 5.269862 (-1.817966) | 1.431065 / 4.565676 (-3.134612) | 0.067868 / 0.424275 (-0.356407) | 0.012093 / 0.007607 (0.004486) | 0.573571 / 0.226044 (0.347526) | 5.820452 / 2.268929 (3.551523) | 2.934858 / 55.444624 (-52.509767) | 2.602719 / 6.876477 (-4.273758) | 2.645999 / 2.142072 (0.503927) | 0.660688 / 4.805227 (-4.144540) | 0.137490 / 6.500664 (-6.363174) | 0.068311 / 0.075469 (-0.007158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.321709 / 1.841788 (-0.520079) | 14.592346 / 8.074308 (6.518038) | 14.520748 / 10.191392 (4.329356) | 0.132689 / 0.680424 (-0.547735) | 0.016422 / 0.534201 (-0.517779) | 0.370071 / 0.579283 (-0.209212) | 0.397091 / 0.434364 (-0.037273) | 0.431979 / 0.540337 (-0.108358) | 0.509965 / 1.386936 (-0.876971) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8bcd061ab2082a0862f30329bc52f6e0d321805c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006182 / 0.011353 (-0.005171) | 0.004153 / 0.011008 (-0.006855) | 0.095715 / 0.038508 (0.057207) | 0.032457 / 0.023109 (0.009347) | 0.314961 / 0.275898 (0.039063) | 0.353696 / 0.323480 (0.030216) | 0.005256 / 0.007986 (-0.002729) | 0.004870 / 0.004328 (0.000541) | 0.072442 / 0.004250 (0.068192) | 0.046102 / 0.037052 (0.009050) | 0.324410 / 0.258489 (0.065921) | 0.366861 / 0.293841 (0.073020) | 0.027088 / 0.128546 (-0.101458) | 0.008572 / 0.075646 (-0.067075) | 0.325988 / 0.419271 (-0.093284) | 0.049494 / 0.043533 (0.005961) | 0.311221 / 0.255139 (0.056082) | 0.359720 / 0.283200 (0.076521) | 0.095101 / 0.141683 (-0.046581) | 1.472821 / 1.452155 (0.020667) | 1.516157 / 1.492716 (0.023441) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210456 / 0.018006 (0.192450) | 0.439440 / 0.000490 (0.438950) | 0.003764 / 0.000200 (0.003564) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024076 / 0.037411 (-0.013335) | 0.104886 / 0.014526 (0.090360) | 0.114164 / 0.176557 (-0.062393) | 0.167289 / 0.737135 (-0.569847) | 0.116457 / 0.296338 (-0.179882) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400039 / 0.215209 (0.184830) | 3.973243 / 2.077655 (1.895588) | 1.801991 / 1.504120 (0.297871) | 1.592017 / 1.541195 (0.050822) | 1.612564 / 1.468490 (0.144074) | 0.527475 / 4.584777 (-4.057302) | 3.676246 / 3.745712 (-0.069466) | 1.806423 / 5.269862 (-3.463438) | 1.176921 / 4.565676 (-3.388756) | 0.065902 / 0.424275 (-0.358373) | 0.012245 / 0.007607 (0.004638) | 0.490883 / 0.226044 (0.264838) | 4.905270 / 2.268929 (2.636341) | 2.218694 / 55.444624 (-53.225930) | 1.903074 / 6.876477 (-4.973403) | 1.979505 / 2.142072 (-0.162567) | 0.644415 / 4.805227 (-4.160812) | 0.142433 / 6.500664 (-6.358231) | 0.063564 / 0.075469 (-0.011905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193756 / 1.841788 (-0.648032) | 14.673103 / 8.074308 (6.598795) | 13.410951 / 10.191392 (3.219559) | 0.159175 / 0.680424 (-0.521249) | 0.017076 / 0.534201 (-0.517125) | 0.388880 / 0.579283 (-0.190403) | 0.409974 / 0.434364 (-0.024390) | 0.454494 / 0.540337 (-0.085844) | 0.556873 / 1.386936 (-0.830063) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006107 / 0.011353 (-0.005246) | 0.004433 / 0.011008 (-0.006575) | 0.073892 / 0.038508 (0.035384) | 0.032386 / 0.023109 (0.009277) | 0.370339 / 0.275898 (0.094441) | 0.388996 / 0.323480 (0.065516) | 0.005438 / 0.007986 (-0.002548) | 0.003875 / 0.004328 (-0.000454) | 0.073867 / 0.004250 (0.069617) | 0.048350 / 0.037052 (0.011298) | 0.380328 / 0.258489 (0.121839) | 0.411373 / 0.293841 (0.117532) | 0.028183 / 0.128546 (-0.100363) | 0.008924 / 0.075646 (-0.066723) | 0.082484 / 0.419271 (-0.336787) | 0.047321 / 0.043533 (0.003788) | 0.371702 / 0.255139 (0.116563) | 0.380535 / 0.283200 (0.097335) | 0.100772 / 0.141683 (-0.040911) | 1.475038 / 1.452155 (0.022883) | 1.564293 / 1.492716 (0.071577) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214589 / 0.018006 (0.196583) | 0.437193 / 0.000490 (0.436703) | 0.003676 / 0.000200 (0.003476) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027991 / 0.037411 (-0.009421) | 0.111154 / 0.014526 (0.096628) | 0.120365 / 0.176557 (-0.056191) | 0.173601 / 0.737135 (-0.563535) | 0.126244 / 0.296338 (-0.170094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442848 / 0.215209 (0.227639) | 4.398336 / 2.077655 (2.320681) | 2.217058 / 1.504120 (0.712938) | 2.011155 / 1.541195 (0.469960) | 2.123086 / 1.468490 (0.654596) | 0.525857 / 4.584777 (-4.058920) | 3.730191 / 3.745712 (-0.015521) | 3.517680 / 5.269862 (-1.752181) | 1.557940 / 4.565676 (-3.007736) | 0.066309 / 0.424275 (-0.357967) | 0.011788 / 0.007607 (0.004181) | 0.548506 / 0.226044 (0.322462) | 5.483615 / 2.268929 (3.214687) | 2.663784 / 55.444624 (-52.780840) | 2.325744 / 6.876477 (-4.550732) | 2.344179 / 2.142072 (0.202106) | 0.644217 / 4.805227 (-4.161010) | 0.141546 / 6.500664 (-6.359118) | 0.063730 / 0.075469 (-0.011739) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296032 / 1.841788 (-0.545756) | 14.903729 / 8.074308 (6.829421) | 14.505409 / 10.191392 (4.314017) | 0.170478 / 0.680424 (-0.509946) | 0.017876 / 0.534201 (-0.516325) | 0.401047 / 0.579283 (-0.178236) | 0.417855 / 0.434364 (-0.016509) | 0.472138 / 0.540337 (-0.068200) | 0.570859 / 1.386936 (-0.816077) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5a4d530965eb35c66955ef89df79210c66b7f5e6 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008495 / 0.011353 (-0.002858) | 0.005322 / 0.011008 (-0.005686) | 0.125471 / 0.038508 (0.086962) | 0.034604 / 0.023109 (0.011495) | 0.419831 / 0.275898 (0.143933) | 0.415707 / 0.323480 (0.092227) | 0.007471 / 0.007986 (-0.000515) | 0.005441 / 0.004328 (0.001112) | 0.095412 / 0.004250 (0.091162) | 0.053865 / 0.037052 (0.016812) | 0.375257 / 0.258489 (0.116768) | 0.438114 / 0.293841 (0.144273) | 0.046183 / 0.128546 (-0.082363) | 0.013663 / 0.075646 (-0.061984) | 0.438317 / 0.419271 (0.019045) | 0.065665 / 0.043533 (0.022133) | 0.387640 / 0.255139 (0.132501) | 0.431350 / 0.283200 (0.148150) | 0.112841 / 0.141683 (-0.028842) | 1.778639 / 1.452155 (0.326484) | 1.891948 / 1.492716 (0.399232) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284371 / 0.018006 (0.266365) | 0.598247 / 0.000490 (0.597758) | 0.013674 / 0.000200 (0.013474) | 0.000483 / 0.000054 (0.000428) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032437 / 0.037411 (-0.004974) | 0.120547 / 0.014526 (0.106021) | 0.129845 / 0.176557 (-0.046711) | 0.203455 / 0.737135 (-0.533680) | 0.140039 / 0.296338 (-0.156300) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.596549 / 0.215209 (0.381340) | 6.138766 / 2.077655 (4.061111) | 2.515506 / 1.504120 (1.011386) | 2.124472 / 1.541195 (0.583277) | 2.160812 / 1.468490 (0.692322) | 0.898965 / 4.584777 (-3.685812) | 5.588152 / 3.745712 (1.842440) | 2.717580 / 5.269862 (-2.552282) | 1.683641 / 4.565676 (-2.882036) | 0.108045 / 0.424275 (-0.316230) | 0.014089 / 0.007607 (0.006481) | 0.749567 / 0.226044 (0.523523) | 7.518051 / 2.268929 (5.249123) | 3.198238 / 55.444624 (-52.246386) | 2.575156 / 6.876477 (-4.301321) | 2.725818 / 2.142072 (0.583745) | 1.149338 / 4.805227 (-3.655889) | 0.220443 / 6.500664 (-6.280221) | 0.081452 / 0.075469 (0.005983) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.624462 / 1.841788 (-0.217325) | 18.204963 / 8.074308 (10.130655) | 21.379169 / 10.191392 (11.187777) | 0.248520 / 0.680424 (-0.431903) | 0.030121 / 0.534201 (-0.504080) | 0.499542 / 0.579283 (-0.079741) | 0.599783 / 0.434364 (0.165419) | 0.597642 / 0.540337 (0.057305) | 0.681948 / 1.386936 (-0.704988) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008431 / 0.011353 (-0.002921) | 0.006143 / 0.011008 (-0.004865) | 0.107531 / 0.038508 (0.069023) | 0.036308 / 0.023109 (0.013199) | 0.480555 / 0.275898 (0.204657) | 0.556407 / 0.323480 (0.232927) | 0.007614 / 0.007986 (-0.000372) | 0.004749 / 0.004328 (0.000421) | 0.105734 / 0.004250 (0.101484) | 0.051619 / 0.037052 (0.014567) | 0.514821 / 0.258489 (0.256332) | 0.562143 / 0.293841 (0.268302) | 0.042957 / 0.128546 (-0.085589) | 0.015142 / 0.075646 (-0.060505) | 0.143161 / 0.419271 (-0.276111) | 0.061910 / 0.043533 (0.018377) | 0.496923 / 0.255139 (0.241784) | 0.556302 / 0.283200 (0.273102) | 0.136700 / 0.141683 (-0.004983) | 1.886184 / 1.452155 (0.434029) | 2.004087 / 1.492716 (0.511371) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235530 / 0.018006 (0.217523) | 0.600796 / 0.000490 (0.600306) | 0.009074 / 0.000200 (0.008874) | 0.000203 / 0.000054 (0.000149) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036345 / 0.037411 (-0.001066) | 0.126112 / 0.014526 (0.111586) | 0.143369 / 0.176557 (-0.033188) | 0.211381 / 0.737135 (-0.525755) | 0.151095 / 0.296338 (-0.145243) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.695022 / 0.215209 (0.479813) | 6.685981 / 2.077655 (4.608326) | 3.104521 / 1.504120 (1.600401) | 2.758323 / 1.541195 (1.217128) | 2.706286 / 1.468490 (1.237796) | 0.941182 / 4.584777 (-3.643595) | 5.715839 / 3.745712 (1.970127) | 5.089636 / 5.269862 (-0.180226) | 2.594739 / 4.565676 (-1.970937) | 0.112621 / 0.424275 (-0.311655) | 0.014001 / 0.007607 (0.006394) | 0.812990 / 0.226044 (0.586945) | 8.060890 / 2.268929 (5.791961) | 3.832506 / 55.444624 (-51.612119) | 3.148051 / 6.876477 (-3.728425) | 3.110096 / 2.142072 (0.968023) | 1.105050 / 4.805227 (-3.700178) | 0.219835 / 6.500664 (-6.280829) | 0.078600 / 0.075469 (0.003131) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.707551 / 1.841788 (-0.134237) | 19.238194 / 8.074308 (11.163885) | 22.167076 / 10.191392 (11.975684) | 0.233458 / 0.680424 (-0.446966) | 0.025131 / 0.534201 (-0.509070) | 0.525241 / 0.579283 (-0.054042) | 0.649666 / 0.434364 (0.215303) | 0.602941 / 0.540337 (0.062603) | 0.718472 / 1.386936 (-0.668464) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ac3a42c525d91cb630273702a0c110a71c9bf54b \"CML watermark\")\n"
] | 2023-05-30T14:59:48 | 2023-05-30T18:03:10 | 2023-05-30T17:53:29 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5916",
"html_url": "https://github.com/huggingface/datasets/pull/5916",
"diff_url": "https://github.com/huggingface/datasets/pull/5916.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5916.patch",
"merged_at": "2023-05-30T17:53:29"
} | Fix #5906 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5916/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5916/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5915 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5915/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5915/comments | https://api.github.com/repos/huggingface/datasets/issues/5915/events | https://github.com/huggingface/datasets/pull/5915 | 1,732,389,984 | PR_kwDODunzps5RsVzj | 5,915 | Raise error in `DatasetBuilder.as_dataset` when `file_format` is not `"arrow"` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006416 / 0.011353 (-0.004937) | 0.004278 / 0.011008 (-0.006731) | 0.097562 / 0.038508 (0.059054) | 0.029488 / 0.023109 (0.006379) | 0.308648 / 0.275898 (0.032750) | 0.339879 / 0.323480 (0.016399) | 0.005288 / 0.007986 (-0.002697) | 0.005033 / 0.004328 (0.000704) | 0.074666 / 0.004250 (0.070416) | 0.034888 / 0.037052 (-0.002164) | 0.309960 / 0.258489 (0.051471) | 0.344276 / 0.293841 (0.050435) | 0.025564 / 0.128546 (-0.102982) | 0.008579 / 0.075646 (-0.067067) | 0.319796 / 0.419271 (-0.099476) | 0.044786 / 0.043533 (0.001253) | 0.308888 / 0.255139 (0.053749) | 0.334001 / 0.283200 (0.050802) | 0.089917 / 0.141683 (-0.051766) | 1.456696 / 1.452155 (0.004541) | 1.542273 / 1.492716 (0.049557) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213236 / 0.018006 (0.195230) | 0.425139 / 0.000490 (0.424650) | 0.008831 / 0.000200 (0.008631) | 0.000209 / 0.000054 (0.000155) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023990 / 0.037411 (-0.013421) | 0.096787 / 0.014526 (0.082261) | 0.105783 / 0.176557 (-0.070774) | 0.167182 / 0.737135 (-0.569954) | 0.108896 / 0.296338 (-0.187442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419844 / 0.215209 (0.204635) | 4.201909 / 2.077655 (2.124254) | 1.910784 / 1.504120 (0.406664) | 1.685183 / 1.541195 (0.143988) | 1.716927 / 1.468490 (0.248437) | 0.548261 / 4.584777 (-4.036516) | 3.414168 / 3.745712 (-0.331544) | 1.695446 / 5.269862 (-3.574415) | 0.989668 / 4.565676 (-3.576008) | 0.067328 / 0.424275 (-0.356948) | 0.012084 / 0.007607 (0.004477) | 0.523799 / 0.226044 (0.297754) | 5.240589 / 2.268929 (2.971661) | 2.331618 / 55.444624 (-53.113007) | 1.996094 / 6.876477 (-4.880383) | 2.105450 / 2.142072 (-0.036623) | 0.654614 / 4.805227 (-4.150613) | 0.134721 / 6.500664 (-6.365943) | 0.066227 / 0.075469 (-0.009242) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196266 / 1.841788 (-0.645521) | 13.990045 / 8.074308 (5.915737) | 13.928126 / 10.191392 (3.736734) | 0.142600 / 0.680424 (-0.537824) | 0.016462 / 0.534201 (-0.517739) | 0.363113 / 0.579283 (-0.216170) | 0.428590 / 0.434364 (-0.005773) | 0.452594 / 0.540337 (-0.087743) | 0.551678 / 1.386936 (-0.835258) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005992 / 0.011353 (-0.005361) | 0.004161 / 0.011008 (-0.006847) | 0.076098 / 0.038508 (0.037589) | 0.028559 / 0.023109 (0.005450) | 0.411696 / 0.275898 (0.135798) | 0.444519 / 0.323480 (0.121040) | 0.004965 / 0.007986 (-0.003021) | 0.003452 / 0.004328 (-0.000876) | 0.075107 / 0.004250 (0.070857) | 0.037305 / 0.037052 (0.000252) | 0.429728 / 0.258489 (0.171239) | 0.444313 / 0.293841 (0.150472) | 0.025278 / 0.128546 (-0.103268) | 0.008527 / 0.075646 (-0.067120) | 0.081502 / 0.419271 (-0.337770) | 0.041237 / 0.043533 (-0.002296) | 0.417848 / 0.255139 (0.162709) | 0.426615 / 0.283200 (0.143415) | 0.094641 / 0.141683 (-0.047041) | 1.525141 / 1.452155 (0.072987) | 1.615608 / 1.492716 (0.122892) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192867 / 0.018006 (0.174861) | 0.414979 / 0.000490 (0.414490) | 0.000815 / 0.000200 (0.000615) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025354 / 0.037411 (-0.012058) | 0.102085 / 0.014526 (0.087559) | 0.107930 / 0.176557 (-0.068626) | 0.160483 / 0.737135 (-0.576652) | 0.112341 / 0.296338 (-0.183997) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446938 / 0.215209 (0.231728) | 4.480057 / 2.077655 (2.402402) | 2.154825 / 1.504120 (0.650705) | 1.942774 / 1.541195 (0.401580) | 1.996418 / 1.468490 (0.527928) | 0.556728 / 4.584777 (-4.028049) | 3.441228 / 3.745712 (-0.304484) | 3.004179 / 5.269862 (-2.265683) | 1.314104 / 4.565676 (-3.251573) | 0.068670 / 0.424275 (-0.355606) | 0.011972 / 0.007607 (0.004365) | 0.556604 / 0.226044 (0.330560) | 5.561783 / 2.268929 (3.292855) | 2.631262 / 55.444624 (-52.813363) | 2.262143 / 6.876477 (-4.614333) | 2.364243 / 2.142072 (0.222170) | 0.660621 / 4.805227 (-4.144607) | 0.137371 / 6.500664 (-6.363293) | 0.069104 / 0.075469 (-0.006365) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305706 / 1.841788 (-0.536081) | 14.015932 / 8.074308 (5.941624) | 14.353580 / 10.191392 (4.162187) | 0.146172 / 0.680424 (-0.534251) | 0.016699 / 0.534201 (-0.517502) | 0.357970 / 0.579283 (-0.221313) | 0.389067 / 0.434364 (-0.045297) | 0.415470 / 0.540337 (-0.124867) | 0.501359 / 1.386936 (-0.885577) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2b837b4e7267db9e32d2613d8bf8d70d2ce0b47 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006800 / 0.011353 (-0.004552) | 0.004721 / 0.011008 (-0.006287) | 0.097760 / 0.038508 (0.059252) | 0.034192 / 0.023109 (0.011083) | 0.298240 / 0.275898 (0.022342) | 0.331119 / 0.323480 (0.007639) | 0.005826 / 0.007986 (-0.002160) | 0.003968 / 0.004328 (-0.000360) | 0.073833 / 0.004250 (0.069582) | 0.046288 / 0.037052 (0.009236) | 0.303018 / 0.258489 (0.044529) | 0.342163 / 0.293841 (0.048322) | 0.028504 / 0.128546 (-0.100042) | 0.009031 / 0.075646 (-0.066615) | 0.331617 / 0.419271 (-0.087655) | 0.060911 / 0.043533 (0.017379) | 0.304044 / 0.255139 (0.048905) | 0.328959 / 0.283200 (0.045759) | 0.113174 / 0.141683 (-0.028509) | 1.424652 / 1.452155 (-0.027502) | 1.531392 / 1.492716 (0.038676) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206175 / 0.018006 (0.188169) | 0.435916 / 0.000490 (0.435426) | 0.002587 / 0.000200 (0.002387) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026996 / 0.037411 (-0.010415) | 0.106722 / 0.014526 (0.092196) | 0.117655 / 0.176557 (-0.058902) | 0.176969 / 0.737135 (-0.560166) | 0.122577 / 0.296338 (-0.173762) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396086 / 0.215209 (0.180877) | 3.972465 / 2.077655 (1.894811) | 1.800798 / 1.504120 (0.296678) | 1.616747 / 1.541195 (0.075552) | 1.680711 / 1.468490 (0.212221) | 0.526479 / 4.584777 (-4.058298) | 3.791528 / 3.745712 (0.045816) | 2.989518 / 5.269862 (-2.280344) | 1.463221 / 4.565676 (-3.102455) | 0.065649 / 0.424275 (-0.358626) | 0.012155 / 0.007607 (0.004548) | 0.500241 / 0.226044 (0.274197) | 5.008895 / 2.268929 (2.739966) | 2.315288 / 55.444624 (-53.129336) | 1.959409 / 6.876477 (-4.917067) | 2.102371 / 2.142072 (-0.039701) | 0.639611 / 4.805227 (-4.165617) | 0.140101 / 6.500664 (-6.360563) | 0.063599 / 0.075469 (-0.011870) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206729 / 1.841788 (-0.635059) | 15.127250 / 8.074308 (7.052942) | 14.397228 / 10.191392 (4.205836) | 0.148802 / 0.680424 (-0.531622) | 0.017628 / 0.534201 (-0.516573) | 0.396150 / 0.579283 (-0.183133) | 0.435826 / 0.434364 (0.001462) | 0.471215 / 0.540337 (-0.069122) | 0.559413 / 1.386936 (-0.827523) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006479 / 0.011353 (-0.004874) | 0.004520 / 0.011008 (-0.006488) | 0.074395 / 0.038508 (0.035887) | 0.033400 / 0.023109 (0.010291) | 0.388411 / 0.275898 (0.112513) | 0.396714 / 0.323480 (0.073234) | 0.005736 / 0.007986 (-0.002250) | 0.004038 / 0.004328 (-0.000291) | 0.073595 / 0.004250 (0.069345) | 0.045207 / 0.037052 (0.008155) | 0.378096 / 0.258489 (0.119607) | 0.417830 / 0.293841 (0.123989) | 0.028365 / 0.128546 (-0.100181) | 0.008887 / 0.075646 (-0.066760) | 0.080766 / 0.419271 (-0.338505) | 0.046923 / 0.043533 (0.003390) | 0.376190 / 0.255139 (0.121051) | 0.385875 / 0.283200 (0.102675) | 0.107542 / 0.141683 (-0.034141) | 1.409257 / 1.452155 (-0.042898) | 1.518475 / 1.492716 (0.025759) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223299 / 0.018006 (0.205292) | 0.440640 / 0.000490 (0.440150) | 0.000397 / 0.000200 (0.000197) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031388 / 0.037411 (-0.006024) | 0.113078 / 0.014526 (0.098552) | 0.124398 / 0.176557 (-0.052159) | 0.173802 / 0.737135 (-0.563333) | 0.129555 / 0.296338 (-0.166783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440220 / 0.215209 (0.225011) | 4.398052 / 2.077655 (2.320398) | 2.188396 / 1.504120 (0.684276) | 1.997811 / 1.541195 (0.456616) | 2.093338 / 1.468490 (0.624847) | 0.519597 / 4.584777 (-4.065180) | 3.885795 / 3.745712 (0.140083) | 2.896327 / 5.269862 (-2.373534) | 1.245785 / 4.565676 (-3.319891) | 0.065675 / 0.424275 (-0.358600) | 0.011729 / 0.007607 (0.004121) | 0.541526 / 0.226044 (0.315482) | 5.406763 / 2.268929 (3.137834) | 2.722914 / 55.444624 (-52.721711) | 2.471111 / 6.876477 (-4.405366) | 2.541488 / 2.142072 (0.399415) | 0.633566 / 4.805227 (-4.171661) | 0.139622 / 6.500664 (-6.361042) | 0.064220 / 0.075469 (-0.011249) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296097 / 1.841788 (-0.545690) | 15.095320 / 8.074308 (7.021012) | 14.300821 / 10.191392 (4.109429) | 0.145470 / 0.680424 (-0.534954) | 0.017496 / 0.534201 (-0.516705) | 0.400589 / 0.579283 (-0.178694) | 0.423091 / 0.434364 (-0.011273) | 0.468258 / 0.540337 (-0.072079) | 0.570873 / 1.386936 (-0.816063) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aee6c67034d6ff298b2153a2fcdab97f14ee6d66 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005918 / 0.011353 (-0.005435) | 0.004393 / 0.011008 (-0.006615) | 0.091677 / 0.038508 (0.053169) | 0.033546 / 0.023109 (0.010437) | 0.344682 / 0.275898 (0.068784) | 0.388906 / 0.323480 (0.065426) | 0.005412 / 0.007986 (-0.002574) | 0.004909 / 0.004328 (0.000580) | 0.082589 / 0.004250 (0.078339) | 0.045242 / 0.037052 (0.008190) | 0.339191 / 0.258489 (0.080702) | 0.349673 / 0.293841 (0.055832) | 0.026805 / 0.128546 (-0.101742) | 0.007529 / 0.075646 (-0.068117) | 0.319108 / 0.419271 (-0.100164) | 0.049482 / 0.043533 (0.005949) | 0.320013 / 0.255139 (0.064874) | 0.342059 / 0.283200 (0.058859) | 0.096623 / 0.141683 (-0.045060) | 1.458204 / 1.452155 (0.006049) | 1.571172 / 1.492716 (0.078455) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235171 / 0.018006 (0.217165) | 0.479678 / 0.000490 (0.479188) | 0.006627 / 0.000200 (0.006427) | 0.000257 / 0.000054 (0.000202) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025716 / 0.037411 (-0.011696) | 0.107730 / 0.014526 (0.093204) | 0.111595 / 0.176557 (-0.064962) | 0.171316 / 0.737135 (-0.565819) | 0.118962 / 0.296338 (-0.177377) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.376318 / 0.215209 (0.161109) | 4.039484 / 2.077655 (1.961829) | 1.811548 / 1.504120 (0.307428) | 1.646728 / 1.541195 (0.105533) | 1.688071 / 1.468490 (0.219581) | 0.551256 / 4.584777 (-4.033520) | 4.153931 / 3.745712 (0.408218) | 3.424154 / 5.269862 (-1.845707) | 1.734860 / 4.565676 (-2.830816) | 0.067753 / 0.424275 (-0.356522) | 0.012699 / 0.007607 (0.005092) | 0.505722 / 0.226044 (0.279677) | 4.997321 / 2.268929 (2.728392) | 2.258755 / 55.444624 (-53.185869) | 1.954382 / 6.876477 (-4.922095) | 1.967545 / 2.142072 (-0.174527) | 0.630489 / 4.805227 (-4.174738) | 0.138738 / 6.500664 (-6.361926) | 0.064907 / 0.075469 (-0.010562) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209634 / 1.841788 (-0.632154) | 15.055062 / 8.074308 (6.980754) | 12.721606 / 10.191392 (2.530214) | 0.164908 / 0.680424 (-0.515516) | 0.019528 / 0.534201 (-0.514673) | 0.400136 / 0.579283 (-0.179147) | 0.451640 / 0.434364 (0.017276) | 0.466272 / 0.540337 (-0.074065) | 0.553258 / 1.386936 (-0.833679) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006341 / 0.011353 (-0.005011) | 0.004617 / 0.011008 (-0.006391) | 0.077953 / 0.038508 (0.039445) | 0.031104 / 0.023109 (0.007995) | 0.360328 / 0.275898 (0.084430) | 0.408403 / 0.323480 (0.084923) | 0.005704 / 0.007986 (-0.002282) | 0.003588 / 0.004328 (-0.000741) | 0.071441 / 0.004250 (0.067190) | 0.043520 / 0.037052 (0.006468) | 0.375798 / 0.258489 (0.117309) | 0.400955 / 0.293841 (0.107114) | 0.028166 / 0.128546 (-0.100381) | 0.008578 / 0.075646 (-0.067068) | 0.086673 / 0.419271 (-0.332598) | 0.046424 / 0.043533 (0.002891) | 0.367276 / 0.255139 (0.112137) | 0.414550 / 0.283200 (0.131351) | 0.097355 / 0.141683 (-0.044328) | 1.465191 / 1.452155 (0.013036) | 1.555028 / 1.492716 (0.062312) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196642 / 0.018006 (0.178636) | 0.464221 / 0.000490 (0.463731) | 0.002726 / 0.000200 (0.002526) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028078 / 0.037411 (-0.009333) | 0.110762 / 0.014526 (0.096236) | 0.122212 / 0.176557 (-0.054344) | 0.164758 / 0.737135 (-0.572377) | 0.133969 / 0.296338 (-0.162370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448134 / 0.215209 (0.232925) | 4.339335 / 2.077655 (2.261680) | 2.129209 / 1.504120 (0.625089) | 1.957805 / 1.541195 (0.416611) | 1.994038 / 1.468490 (0.525548) | 0.497101 / 4.584777 (-4.087676) | 4.114432 / 3.745712 (0.368720) | 3.437305 / 5.269862 (-1.832556) | 1.692810 / 4.565676 (-2.872866) | 0.071077 / 0.424275 (-0.353198) | 0.012735 / 0.007607 (0.005128) | 0.534393 / 0.226044 (0.308348) | 5.217445 / 2.268929 (2.948517) | 2.594858 / 55.444624 (-52.849766) | 2.317464 / 6.876477 (-4.559012) | 2.337974 / 2.142072 (0.195902) | 0.622291 / 4.805227 (-4.182936) | 0.144934 / 6.500664 (-6.355730) | 0.068524 / 0.075469 (-0.006945) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310601 / 1.841788 (-0.531187) | 15.771527 / 8.074308 (7.697219) | 13.952032 / 10.191392 (3.760640) | 0.212473 / 0.680424 (-0.467951) | 0.017963 / 0.534201 (-0.516238) | 0.400755 / 0.579283 (-0.178528) | 0.439817 / 0.434364 (0.005453) | 0.472614 / 0.540337 (-0.067724) | 0.558410 / 1.386936 (-0.828526) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b51429d02a0da1ff798873afe655309136c5689 \"CML watermark\")\n"
] | 2023-05-30T14:27:55 | 2023-05-31T13:31:21 | 2023-05-31T13:23:54 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5915",
"html_url": "https://github.com/huggingface/datasets/pull/5915",
"diff_url": "https://github.com/huggingface/datasets/pull/5915.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5915.patch",
"merged_at": "2023-05-31T13:23:54"
} | Raise an error in `DatasetBuilder.as_dataset` when `file_format != "arrow"` (and fix the docstring)
Fix #5874 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5915/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5915/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5914 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5914/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5914/comments | https://api.github.com/repos/huggingface/datasets/issues/5914/events | https://github.com/huggingface/datasets/issues/5914 | 1,731,483,996 | I_kwDODunzps5nNFlc | 5,914 | array is too big; `arr.size * arr.dtype.itemsize` is larger than the maximum possible size in Datasets | {
"login": "ravenouse",
"id": 85110830,
"node_id": "MDQ6VXNlcjg1MTEwODMw",
"avatar_url": "https://avatars.githubusercontent.com/u/85110830?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ravenouse",
"html_url": "https://github.com/ravenouse",
"followers_url": "https://api.github.com/users/ravenouse/followers",
"following_url": "https://api.github.com/users/ravenouse/following{/other_user}",
"gists_url": "https://api.github.com/users/ravenouse/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ravenouse/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ravenouse/subscriptions",
"organizations_url": "https://api.github.com/users/ravenouse/orgs",
"repos_url": "https://api.github.com/users/ravenouse/repos",
"events_url": "https://api.github.com/users/ravenouse/events{/privacy}",
"received_events_url": "https://api.github.com/users/ravenouse/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-05-30T04:25:00 | 2023-05-30T04:25:00 | null | NONE | null | null | null | ### Describe the bug
When using the `filter` or `map` function to preprocess a dataset, a ValueError is encountered with the error message "array is too big; arr.size * arr.dtype.itemsize is larger than the maximum possible size."
Detailed error message:
Traceback (most recent call last):
File "data_processing.py", line 26, in <module>
processed_dataset[split] = samromur_children[split].map(prepare_dataset, cache_file_name=cache_dict[split],writer_batch_size = 50)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2405, in map
desc=desc,
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 557, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 524, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/fingerprint.py", line 480, in wrapper
out = func(self, *args, **kwargs)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2756, in _map_single
example = apply_function_on_filtered_inputs(example, i, offset=offset)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2655, in apply_function_on_filtered_inputs
processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2347, in decorated
result = f(decorated_item, *args, **kwargs)
File "data_processing.py", line 11, in prepare_dataset
audio = batch["audio"]
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 123, in __getitem__
value = decode_nested_example(self.features[key], value) if value is not None else None
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/features/features.py", line 1260, in decode_nested_example
return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/features/audio.py", line 156, in decode_example
array, sampling_rate = self._decode_non_mp3_path_like(path, token_per_repo_id=token_per_repo_id)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/datasets/features/audio.py", line 257, in _decode_non_mp3_path_like
array, sampling_rate = librosa.load(f, sr=self.sampling_rate, mono=self.mono)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/librosa/core/audio.py", line 176, in load
y, sr_native = __soundfile_load(path, offset, duration, dtype)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/librosa/core/audio.py", line 222, in __soundfile_load
y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/soundfile.py", line 891, in read
out = self._create_empty_array(frames, always_2d, dtype)
File "/projects/zhwa3087/software/anaconda/envs/mycustomenv/lib/python3.7/site-packages/soundfile.py", line 1323, in _create_empty_array
return np.empty(shape, dtype, order='C')
ValueError: array is too big; `arr.size * arr.dtype.itemsize` is larger than the maximum possible size.
### Steps to reproduce the bug
```python
from datasets import load_dataset, DatasetDict
from transformers import WhisperFeatureExtractor
from transformers import WhisperTokenizer
samromur_children= load_dataset("language-and-voice-lab/samromur_children")
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small")
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="icelandic", task="transcribe")
def prepare_dataset(batch):
# load and resample audio data from 48 to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = feature_extractor(audio["array"], sampling_rate=16000).input_features[0]
# encode target text to label ids
batch["labels"] = tokenizer(batch["normalized_text"]).input_ids
return batch
cache_dict = {"train": "./cache/audio_train.cache", \
"validation": "./cache/audio_validation.cache", \
"test": "./cache/audio_test.cache"}
filter_cache_dict = {"train": "./cache/filter_train.arrow", \
"validation": "./cache/filter_validation.arrow", \
"test": "./cache/filter_test.arrow"}
print("before filtering")
print(samromur_children)
#filter the dataset to only include examples with more than 2 seconds of audio
samromur_children = samromur_children.filter(lambda example: example["audio"]["array"].shape[0] > 16000*2, cache_file_names=filter_cache_dict)
print("after filtering")
print(samromur_children)
processed_dataset = DatasetDict()
# processed_dataset = samromur_children.map(prepare_dataset, cache_file_names=cache_dict, num_proc=10,)
for split in ["train", "validation", "test"]:
processed_dataset[split] = samromur_children[split].map(prepare_dataset, cache_file_name=cache_dict[split])
```
### Expected behavior
The dataset is successfully processed and ready to train the model.
### Environment info
Python version: 3.7.13
datasets package version: 2.4.0
librosa package version: 0.10.0.post2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5914/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5914/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5913 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5913/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5913/comments | https://api.github.com/repos/huggingface/datasets/issues/5913/events | https://github.com/huggingface/datasets/issues/5913 | 1,731,427,484 | I_kwDODunzps5nM3yc | 5,913 | I tried to load a custom dataset using the following statement: dataset = load_dataset('json', data_files=data_files). The dataset contains 50 million text-image pairs, but an error occurred. | {
"login": "cjt222",
"id": 17508662,
"node_id": "MDQ6VXNlcjE3NTA4NjYy",
"avatar_url": "https://avatars.githubusercontent.com/u/17508662?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cjt222",
"html_url": "https://github.com/cjt222",
"followers_url": "https://api.github.com/users/cjt222/followers",
"following_url": "https://api.github.com/users/cjt222/following{/other_user}",
"gists_url": "https://api.github.com/users/cjt222/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cjt222/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cjt222/subscriptions",
"organizations_url": "https://api.github.com/users/cjt222/orgs",
"repos_url": "https://api.github.com/users/cjt222/repos",
"events_url": "https://api.github.com/users/cjt222/events{/privacy}",
"received_events_url": "https://api.github.com/users/cjt222/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for reporting, @cjt222.\r\n\r\nWhat is the structure of your JSON files. Please note that it is normally simpler if the data file format is JSON-Lines instead. ",
"> Thanks for reporting, @cjt222.\r\n> \r\n> What is the structure of your JSON files. Please note that it is normally simpler if the data file format is JSON-Lines instead.\r\n\r\nThanks! I have encountered similar problems. I modify the json format from list to line and works!"
] | 2023-05-30T02:55:26 | 2023-07-24T12:00:38 | 2023-07-24T12:00:38 | NONE | null | null | null | ### Describe the bug
File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
Downloading and preparing dataset json/default to /home/kas/diffusers/examples/dreambooth/cache_data/datasets/json/default-acf423d8c6ef99d0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s] Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 84.35it/s]
Extracting data files: 0%| | 0/1 [00:00<?, ?it/s] for _, table in generator:
File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/packaged_modules/json/json.py", line 114, in _generate_tables
io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size)
File "pyarrow/_json.pyx", line 258, in pyarrow._json.read_json
Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 27.72it/s]
Generating train split: 0 examples [00:00, ? examples/s] File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 125, in pyarrow.lib.check_status
pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 2390448764
### Steps to reproduce the bug
1、data_files = ["1.json", "2.json", "3.json"]
2、dataset = load_dataset('json', data_files=data_files)
### Expected behavior
Read the dataset normally.
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-4.15.0-29-generic-x86_64-with-debian-buster-sid
- Python version: 3.7.16
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 1.3.5 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5913/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5913/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5912 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5912/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5912/comments | https://api.github.com/repos/huggingface/datasets/issues/5912/events | https://github.com/huggingface/datasets/issues/5912 | 1,730,299,852 | I_kwDODunzps5nIkfM | 5,912 | Missing elements in `map` a batched dataset | {
"login": "sachinruk",
"id": 1410927,
"node_id": "MDQ6VXNlcjE0MTA5Mjc=",
"avatar_url": "https://avatars.githubusercontent.com/u/1410927?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinruk",
"html_url": "https://github.com/sachinruk",
"followers_url": "https://api.github.com/users/sachinruk/followers",
"following_url": "https://api.github.com/users/sachinruk/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinruk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinruk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinruk/subscriptions",
"organizations_url": "https://api.github.com/users/sachinruk/orgs",
"repos_url": "https://api.github.com/users/sachinruk/repos",
"events_url": "https://api.github.com/users/sachinruk/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinruk/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! in your code batching is **only used within** `map`, to process examples in batch. The dataset itself however is not batched and returns elements one by one.\r\n\r\nTo iterate on batches, you can do\r\n```python\r\nfor batch in dataset.iter(batch_size=8):\r\n ...\r\n```"
] | 2023-05-29T08:09:19 | 2023-07-26T15:48:15 | 2023-07-26T15:48:15 | NONE | null | null | null | ### Describe the bug
As outlined [here](https://discuss.huggingface.co/t/length-error-using-map-with-datasets/40969/3?u=sachin), the following collate function drops 5 out of possible 6 elements in the batch (it is 6 because out of the eight, two are bad links in laion). A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here.
The weirdest part is when inspecting the sizes of the tensors as shown below, both `tokenized_captions["input_ids"]` and `image_features` show the correct shapes. Simply the output only has one element (with the batch dimension squeezed out).
```python
class CollateFn:
def get_image(self, url):
try:
response = requests.get(url)
return Image.open(io.BytesIO(response.content)).convert("RGB")
except PIL.UnidentifiedImageError:
logger.info(f"Reading error: Could not transform f{url}")
return None
except requests.exceptions.ConnectionError:
logger.info(f"Connection error: Could not transform f{url}")
return None
def __call__(self, batch):
images = [self.get_image(url) for url in batch["url"]]
captions = [caption for caption, image in zip(batch["caption"], images) if image is not None]
images = [image for image in images if image is not None]
tokenized_captions = tokenizer(
captions,
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
image_features = torch.stack([torch.Tensor(feature_extractor(image)["pixel_values"][0]) for image in images])
# import pdb; pdb.set_trace()
return {"input_ids": tokenized_captions["input_ids"], "images": image_features}
collate_fn = CollateFn()
laion_ds = datasets.load_dataset("laion/laion400m", split="train", streaming=True)
laion_ds_batched = laion_ds.map(collate_fn, batched=True, batch_size=8, remove_columns=next(iter(laion_ds)).keys())
```
### Steps to reproduce the bug
A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here.
### Expected behavior
Would expect `next(iter(laion_ds_batched))` to produce two tensors of shape `(batch_size, 77)` and `batch_size, image_shape`.
### Environment info
datasets==2.12.0
python==3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5912/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5912/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5910 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5910/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5910/comments | https://api.github.com/repos/huggingface/datasets/issues/5910/events | https://github.com/huggingface/datasets/issues/5910 | 1,728,909,790 | I_kwDODunzps5nDRHe | 5,910 | Cannot use both set_format and set_transform | {
"login": "ybouane",
"id": 14046002,
"node_id": "MDQ6VXNlcjE0MDQ2MDAy",
"avatar_url": "https://avatars.githubusercontent.com/u/14046002?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ybouane",
"html_url": "https://github.com/ybouane",
"followers_url": "https://api.github.com/users/ybouane/followers",
"following_url": "https://api.github.com/users/ybouane/following{/other_user}",
"gists_url": "https://api.github.com/users/ybouane/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ybouane/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ybouane/subscriptions",
"organizations_url": "https://api.github.com/users/ybouane/orgs",
"repos_url": "https://api.github.com/users/ybouane/repos",
"events_url": "https://api.github.com/users/ybouane/events{/privacy}",
"received_events_url": "https://api.github.com/users/ybouane/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Currently, it's not possible to chain `set_format`/`set_transform` calls (plus, this is a breaking change if we decide to implement it), so I see two possible solutions:\r\n* using `set_format`/`set_transform` for the 1st transform and then passing the transformed example/batch to the 2nd transform\r\n* implementing and registering a custom formatter (the relevant code is [here](https://github.com/huggingface/datasets/tree/main/src/datasets/formatting))\r\n\r\nBtw, your example requires a single `set_format` call:\r\n```python\r\nds.set_format(\"torch\", columns=[\"image\"], output_all_columns=True, dtype=torch.double)\r\n```",
"Hey Mario,\r\nThanks, for getting back to me. the toDouble was just an example my real life case requires many more transforms.\r\n\r\nWhat do you mean by:\r\n> using set_format/set_transform for the 1st transform and then passing the transformed example/batch to the 2nd transform\r\n\r\nHow would that go, I thought you can't chain them?\r\n\r\nAs for the custom formatter, is it possible to reference an existing formatter, in my case `torch_formatter` inside of my custom formatter?\r\n\r\nmaybe I can inherit from it and just call `super.recursive_tensorize()`?",
"> How would that go, I thought you can't chain them?\r\n\r\nYes, they cannot be chained. This is what I meant:\r\n```python\r\nds.set_transform(first_transform)\r\n# calling the 2nd transform on each accessed batch\r\nsecond_transform(ds[2:3])\r\n```\r\n\r\n> As for the custom formatter, is it possible to reference an existing formatter, in my case torch_formatter inside of my custom formatter?\r\n>\r\n>maybe I can inherit from it and just call super.recursive_tensorize()?\r\n\r\nYes, subclassing makes the most sense.",
"Great, thank you for the details.",
"https://github.com/huggingface/datasets/issues/6012"
] | 2023-05-27T19:22:23 | 2023-07-09T21:40:54 | 2023-06-16T14:41:24 | NONE | null | null | null | ### Describe the bug
I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it.
I don't see anywhere in the documentation something that says that both methods cannot be used at the same time.
### Steps to reproduce the bug
```
from datasets import load_dataset
ds = load_dataset("mnist", split="train")
ds.set_format(type="torch")
def transform(entry):
return entry["image"].double()
ds.set_transform(transform)
print(ds[0])
```
### Expected behavior
It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor.
### Environment info
Latest versions.
### Note:
It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function.
Something like:
```
from datasets import load_dataset, do_format
ds = load_dataset("mnist", split="train")
def transform(entry):
entry = do_format(entry, type="torch")
return entry["image"].double()
ds.set_transform(transform)
print(ds[0])
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5910/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5910/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5909 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5909/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5909/comments | https://api.github.com/repos/huggingface/datasets/issues/5909/events | https://github.com/huggingface/datasets/pull/5909 | 1,728,900,068 | PR_kwDODunzps5Rgga6 | 5,909 | Use more efficient and idiomatic way to construct list. | {
"login": "ttsugriy",
"id": 172294,
"node_id": "MDQ6VXNlcjE3MjI5NA==",
"avatar_url": "https://avatars.githubusercontent.com/u/172294?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ttsugriy",
"html_url": "https://github.com/ttsugriy",
"followers_url": "https://api.github.com/users/ttsugriy/followers",
"following_url": "https://api.github.com/users/ttsugriy/following{/other_user}",
"gists_url": "https://api.github.com/users/ttsugriy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ttsugriy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ttsugriy/subscriptions",
"organizations_url": "https://api.github.com/users/ttsugriy/orgs",
"repos_url": "https://api.github.com/users/ttsugriy/repos",
"events_url": "https://api.github.com/users/ttsugriy/events{/privacy}",
"received_events_url": "https://api.github.com/users/ttsugriy/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008156 / 0.011353 (-0.003197) | 0.005563 / 0.011008 (-0.005445) | 0.118319 / 0.038508 (0.079810) | 0.044305 / 0.023109 (0.021195) | 0.366221 / 0.275898 (0.090323) | 0.407585 / 0.323480 (0.084105) | 0.006961 / 0.007986 (-0.001024) | 0.004841 / 0.004328 (0.000513) | 0.089949 / 0.004250 (0.085698) | 0.062197 / 0.037052 (0.025144) | 0.360721 / 0.258489 (0.102232) | 0.415332 / 0.293841 (0.121491) | 0.035709 / 0.128546 (-0.092837) | 0.010617 / 0.075646 (-0.065030) | 0.397454 / 0.419271 (-0.021817) | 0.063490 / 0.043533 (0.019958) | 0.374289 / 0.255139 (0.119150) | 0.382827 / 0.283200 (0.099628) | 0.121014 / 0.141683 (-0.020669) | 1.729933 / 1.452155 (0.277779) | 1.896222 / 1.492716 (0.403506) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254030 / 0.018006 (0.236023) | 0.491225 / 0.000490 (0.490736) | 0.018933 / 0.000200 (0.018734) | 0.000413 / 0.000054 (0.000358) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033085 / 0.037411 (-0.004327) | 0.132837 / 0.014526 (0.118311) | 0.143275 / 0.176557 (-0.033282) | 0.215800 / 0.737135 (-0.521335) | 0.149802 / 0.296338 (-0.146536) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474688 / 0.215209 (0.259479) | 4.743223 / 2.077655 (2.665569) | 2.163107 / 1.504120 (0.658988) | 1.946396 / 1.541195 (0.405201) | 2.057538 / 1.468490 (0.589047) | 0.618836 / 4.584777 (-3.965941) | 4.605934 / 3.745712 (0.860222) | 2.201537 / 5.269862 (-3.068324) | 1.275758 / 4.565676 (-3.289919) | 0.077782 / 0.424275 (-0.346493) | 0.014830 / 0.007607 (0.007223) | 0.593372 / 0.226044 (0.367328) | 5.927000 / 2.268929 (3.658072) | 2.687293 / 55.444624 (-52.757331) | 2.301797 / 6.876477 (-4.574679) | 2.489928 / 2.142072 (0.347856) | 0.756779 / 4.805227 (-4.048449) | 0.168065 / 6.500664 (-6.332600) | 0.077276 / 0.075469 (0.001807) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.608169 / 1.841788 (-0.233619) | 19.048790 / 8.074308 (10.974482) | 16.100228 / 10.191392 (5.908836) | 0.215346 / 0.680424 (-0.465077) | 0.022293 / 0.534201 (-0.511907) | 0.535899 / 0.579283 (-0.043384) | 0.533729 / 0.434364 (0.099365) | 0.562697 / 0.540337 (0.022360) | 0.764082 / 1.386936 (-0.622854) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010087 / 0.011353 (-0.001266) | 0.005357 / 0.011008 (-0.005651) | 0.092678 / 0.038508 (0.054170) | 0.041207 / 0.023109 (0.018098) | 0.437464 / 0.275898 (0.161566) | 0.527867 / 0.323480 (0.204387) | 0.006861 / 0.007986 (-0.001125) | 0.006131 / 0.004328 (0.001802) | 0.093741 / 0.004250 (0.089490) | 0.064142 / 0.037052 (0.027090) | 0.433577 / 0.258489 (0.175088) | 0.537148 / 0.293841 (0.243307) | 0.035339 / 0.128546 (-0.093207) | 0.010432 / 0.075646 (-0.065214) | 0.102838 / 0.419271 (-0.316434) | 0.057905 / 0.043533 (0.014372) | 0.437956 / 0.255139 (0.182817) | 0.509562 / 0.283200 (0.226362) | 0.120620 / 0.141683 (-0.021063) | 1.798686 / 1.452155 (0.346531) | 2.013290 / 1.492716 (0.520574) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249067 / 0.018006 (0.231061) | 0.462219 / 0.000490 (0.461729) | 0.000476 / 0.000200 (0.000276) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033988 / 0.037411 (-0.003424) | 0.135863 / 0.014526 (0.121337) | 0.144082 / 0.176557 (-0.032474) | 0.201715 / 0.737135 (-0.535421) | 0.152079 / 0.296338 (-0.144259) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522820 / 0.215209 (0.307611) | 5.216723 / 2.077655 (3.139068) | 2.582355 / 1.504120 (1.078235) | 2.352799 / 1.541195 (0.811604) | 2.451943 / 1.468490 (0.983453) | 0.620381 / 4.584777 (-3.964396) | 4.537841 / 3.745712 (0.792129) | 2.206431 / 5.269862 (-3.063431) | 1.269865 / 4.565676 (-3.295811) | 0.078744 / 0.424275 (-0.345531) | 0.014375 / 0.007607 (0.006768) | 0.648215 / 0.226044 (0.422171) | 6.482809 / 2.268929 (4.213881) | 3.210670 / 55.444624 (-52.233954) | 2.847485 / 6.876477 (-4.028992) | 2.820946 / 2.142072 (0.678873) | 0.762711 / 4.805227 (-4.042516) | 0.171235 / 6.500664 (-6.329429) | 0.080230 / 0.075469 (0.004761) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.646840 / 1.841788 (-0.194948) | 19.400451 / 8.074308 (11.326142) | 16.758845 / 10.191392 (6.567453) | 0.171377 / 0.680424 (-0.509046) | 0.020400 / 0.534201 (-0.513801) | 0.467675 / 0.579283 (-0.111608) | 0.529745 / 0.434364 (0.095381) | 0.605989 / 0.540337 (0.065652) | 0.694659 / 1.386936 (-0.692277) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#006bf33ac5c308f9c70f4df4868abd539eb6c366 \"CML watermark\")\n",
"It's faster because all the items are the same object, but this also means modifying one of them will alter each unless these items are immutable, and they are in this case (tuples). So we should be careful when using this idiom."
] | 2023-05-27T18:54:47 | 2023-05-31T15:37:11 | 2023-05-31T13:28:29 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5909",
"html_url": "https://github.com/huggingface/datasets/pull/5909",
"diff_url": "https://github.com/huggingface/datasets/pull/5909.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5909.patch",
"merged_at": "2023-05-31T13:28:28"
} | Using `*` is ~2X faster according to [benchmark](https://colab.research.google.com/gist/ttsugriy/c964a2604edf70c41911b10335729b6a/for-vs-mult.ipynb) with just 4 patterns. This doesn't matter much since this tiny difference is not going to be noticeable, but why not? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5909/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5909/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5908 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5908/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5908/comments | https://api.github.com/repos/huggingface/datasets/issues/5908/events | https://github.com/huggingface/datasets/issues/5908 | 1,728,653,935 | I_kwDODunzps5nCSpv | 5,908 | Unbearably slow sorting on big mapped datasets | {
"login": "maximxlss",
"id": 29152154,
"node_id": "MDQ6VXNlcjI5MTUyMTU0",
"avatar_url": "https://avatars.githubusercontent.com/u/29152154?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/maximxlss",
"html_url": "https://github.com/maximxlss",
"followers_url": "https://api.github.com/users/maximxlss/followers",
"following_url": "https://api.github.com/users/maximxlss/following{/other_user}",
"gists_url": "https://api.github.com/users/maximxlss/gists{/gist_id}",
"starred_url": "https://api.github.com/users/maximxlss/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/maximxlss/subscriptions",
"organizations_url": "https://api.github.com/users/maximxlss/orgs",
"repos_url": "https://api.github.com/users/maximxlss/repos",
"events_url": "https://api.github.com/users/maximxlss/events{/privacy}",
"received_events_url": "https://api.github.com/users/maximxlss/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! `shard` currently returns a slow dataset by default, with examples evenly distributed in the dataset.\r\n\r\nYou can get a fast dataset using `contiguous=True` (which should be the default imo):\r\n\r\n```python\r\ndataset = dataset.shard(10, 0, contiguous=True)\r\n```\r\n\r\nThis way you don't need to flatten_indices() and sort should be fast as well",
"@lhoestq \r\n\r\n> contiguous=True (which should be the default imo)\r\n\r\nFor `IterableDataset`, it's not possible to implement contiguous sharding without knowing the number of examples in advance, so setting the default value to `contiguous=True` would result in an inconsistency between `Dataset` and `IterableDataset` (when we add `IterableDataset.shard`)",
"Actually sharded iterable datasets are made of sub iterables that generally yield contiguous data no ? So in a way it's possible to shard an iterable dataset contiguously.\r\n\r\nIf the dataset is made of one shard it's indeed not possible to shard it contiguously though",
"> Actually sharded iterable datasets are made of sub iterables that generally yield contiguous data no ? So in a way it's possible to shard an iterable dataset contiguously.\r\n\r\nBut sharding an iterable dataset by sharding its `gen_kwargs` would still yield approximate shards(not equal to `Dataset.shard`), no? ",
"Yes indeed !",
"I understand the issue doesn't exist with non-mapped datasets, but if flattening is so much more efficient than sorting the indices, that's an issue in itself.\n\nThere are plenty of issues people posted for which the root cause turns out to be the same. It seems like mapped datasets are terribly inefficient. I think I saw some issue like that somewhere (about the mapped datasets in general), but can't find it now.\n\nMaybe indices should be flattened before any additional processing, then."
] | 2023-05-27T11:08:32 | 2023-06-13T17:45:10 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute).
### Steps to reproduce the bug
```Python
from datasets import load_dataset
import time
dataset = load_dataset("xnli", "en", split="train")
dataset = dataset.shard(10, 0)
print(len(dataset))
t = time.time()
# dataset = dataset.flatten_indices() # uncomment this line and it's fast
dataset = dataset.sort("label", reverse=True, load_from_cache_file=False)
print(f"finished in {time.time() - t:.4f} seconds")
```
### Expected behavior
Expect sorting to take the same or less time than flattening and then sorting.
### Environment info
- `datasets` version: 2.12.1.dev0 (same with 2.12.0 too)
- Platform: Windows-10-10.0.22621-SP0
- Python version: 3.10.10
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5908/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5908/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5907 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5907/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5907/comments | https://api.github.com/repos/huggingface/datasets/issues/5907/events | https://github.com/huggingface/datasets/pull/5907 | 1,728,648,560 | PR_kwDODunzps5RfqUU | 5,907 | Add `flatten_indices` to `DatasetDict` | {
"login": "maximxlss",
"id": 29152154,
"node_id": "MDQ6VXNlcjI5MTUyMTU0",
"avatar_url": "https://avatars.githubusercontent.com/u/29152154?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/maximxlss",
"html_url": "https://github.com/maximxlss",
"followers_url": "https://api.github.com/users/maximxlss/followers",
"following_url": "https://api.github.com/users/maximxlss/following{/other_user}",
"gists_url": "https://api.github.com/users/maximxlss/gists{/gist_id}",
"starred_url": "https://api.github.com/users/maximxlss/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/maximxlss/subscriptions",
"organizations_url": "https://api.github.com/users/maximxlss/orgs",
"repos_url": "https://api.github.com/users/maximxlss/repos",
"events_url": "https://api.github.com/users/maximxlss/events{/privacy}",
"received_events_url": "https://api.github.com/users/maximxlss/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006192 / 0.011353 (-0.005161) | 0.004410 / 0.011008 (-0.006598) | 0.095990 / 0.038508 (0.057482) | 0.032662 / 0.023109 (0.009553) | 0.322827 / 0.275898 (0.046929) | 0.352542 / 0.323480 (0.029062) | 0.005398 / 0.007986 (-0.002588) | 0.003926 / 0.004328 (-0.000403) | 0.075131 / 0.004250 (0.070880) | 0.046205 / 0.037052 (0.009153) | 0.330957 / 0.258489 (0.072468) | 0.360166 / 0.293841 (0.066325) | 0.027880 / 0.128546 (-0.100666) | 0.008813 / 0.075646 (-0.066833) | 0.327316 / 0.419271 (-0.091955) | 0.050071 / 0.043533 (0.006539) | 0.319939 / 0.255139 (0.064800) | 0.331593 / 0.283200 (0.048393) | 0.096745 / 0.141683 (-0.044938) | 1.445165 / 1.452155 (-0.006990) | 1.515538 / 1.492716 (0.022821) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209365 / 0.018006 (0.191358) | 0.437007 / 0.000490 (0.436518) | 0.003207 / 0.000200 (0.003007) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027261 / 0.037411 (-0.010151) | 0.105101 / 0.014526 (0.090575) | 0.117163 / 0.176557 (-0.059394) | 0.176237 / 0.737135 (-0.560898) | 0.122559 / 0.296338 (-0.173779) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406792 / 0.215209 (0.191583) | 4.060831 / 2.077655 (1.983176) | 1.829691 / 1.504120 (0.325571) | 1.633155 / 1.541195 (0.091960) | 1.704817 / 1.468490 (0.236327) | 0.525325 / 4.584777 (-4.059452) | 3.752907 / 3.745712 (0.007194) | 1.857513 / 5.269862 (-3.412349) | 1.222237 / 4.565676 (-3.343439) | 0.065941 / 0.424275 (-0.358334) | 0.012498 / 0.007607 (0.004891) | 0.495009 / 0.226044 (0.268965) | 4.968074 / 2.268929 (2.699145) | 2.277898 / 55.444624 (-53.166727) | 1.936656 / 6.876477 (-4.939821) | 1.970698 / 2.142072 (-0.171374) | 0.635221 / 4.805227 (-4.170006) | 0.140539 / 6.500664 (-6.360125) | 0.064111 / 0.075469 (-0.011358) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.238151 / 1.841788 (-0.603637) | 14.681262 / 8.074308 (6.606954) | 13.405525 / 10.191392 (3.214133) | 0.163225 / 0.680424 (-0.517199) | 0.017282 / 0.534201 (-0.516918) | 0.395526 / 0.579283 (-0.183757) | 0.429156 / 0.434364 (-0.005208) | 0.470806 / 0.540337 (-0.069531) | 0.571290 / 1.386936 (-0.815646) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006444 / 0.011353 (-0.004909) | 0.004388 / 0.011008 (-0.006621) | 0.075004 / 0.038508 (0.036496) | 0.032904 / 0.023109 (0.009795) | 0.375360 / 0.275898 (0.099462) | 0.413684 / 0.323480 (0.090204) | 0.005854 / 0.007986 (-0.002132) | 0.005504 / 0.004328 (0.001175) | 0.075049 / 0.004250 (0.070799) | 0.047973 / 0.037052 (0.010920) | 0.377943 / 0.258489 (0.119454) | 0.427039 / 0.293841 (0.133198) | 0.028248 / 0.128546 (-0.100298) | 0.008972 / 0.075646 (-0.066674) | 0.081848 / 0.419271 (-0.337424) | 0.047935 / 0.043533 (0.004402) | 0.377980 / 0.255139 (0.122841) | 0.407856 / 0.283200 (0.124656) | 0.103454 / 0.141683 (-0.038229) | 1.469051 / 1.452155 (0.016896) | 1.590657 / 1.492716 (0.097941) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192380 / 0.018006 (0.174374) | 0.440995 / 0.000490 (0.440505) | 0.004082 / 0.000200 (0.003882) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029584 / 0.037411 (-0.007828) | 0.110051 / 0.014526 (0.095525) | 0.121196 / 0.176557 (-0.055361) | 0.172249 / 0.737135 (-0.564886) | 0.125380 / 0.296338 (-0.170958) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435218 / 0.215209 (0.220009) | 4.354811 / 2.077655 (2.277156) | 2.102050 / 1.504120 (0.597930) | 1.913454 / 1.541195 (0.372260) | 1.974624 / 1.468490 (0.506134) | 0.529975 / 4.584777 (-4.054802) | 3.801605 / 3.745712 (0.055893) | 3.162408 / 5.269862 (-2.107454) | 1.599576 / 4.565676 (-2.966101) | 0.066710 / 0.424275 (-0.357565) | 0.012158 / 0.007607 (0.004551) | 0.549187 / 0.226044 (0.323142) | 5.489930 / 2.268929 (3.221002) | 2.646787 / 55.444624 (-52.797837) | 2.311915 / 6.876477 (-4.564562) | 2.335645 / 2.142072 (0.193572) | 0.641067 / 4.805227 (-4.164160) | 0.142227 / 6.500664 (-6.358437) | 0.065303 / 0.075469 (-0.010166) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283209 / 1.841788 (-0.558579) | 15.241809 / 8.074308 (7.167501) | 14.131471 / 10.191392 (3.940079) | 0.143921 / 0.680424 (-0.536503) | 0.017497 / 0.534201 (-0.516704) | 0.402236 / 0.579283 (-0.177047) | 0.418917 / 0.434364 (-0.015447) | 0.461745 / 0.540337 (-0.078593) | 0.560212 / 1.386936 (-0.826724) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7098922130cabfbfa6b8a3885ff2e6f032d6203d \"CML watermark\")\n"
] | 2023-05-27T10:55:44 | 2023-06-01T11:46:35 | 2023-06-01T11:39:36 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5907",
"html_url": "https://github.com/huggingface/datasets/pull/5907",
"diff_url": "https://github.com/huggingface/datasets/pull/5907.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5907.patch",
"merged_at": "2023-06-01T11:39:35"
} | Add `flatten_indices` to `DatasetDict` for convinience | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5907/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5907/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5906 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5906/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5906/comments | https://api.github.com/repos/huggingface/datasets/issues/5906/events | https://github.com/huggingface/datasets/issues/5906 | 1,728,171,113 | I_kwDODunzps5nAcxp | 5,906 | Could you unpin responses version? | {
"login": "kenimou",
"id": 47789026,
"node_id": "MDQ6VXNlcjQ3Nzg5MDI2",
"avatar_url": "https://avatars.githubusercontent.com/u/47789026?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kenimou",
"html_url": "https://github.com/kenimou",
"followers_url": "https://api.github.com/users/kenimou/followers",
"following_url": "https://api.github.com/users/kenimou/following{/other_user}",
"gists_url": "https://api.github.com/users/kenimou/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kenimou/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kenimou/subscriptions",
"organizations_url": "https://api.github.com/users/kenimou/orgs",
"repos_url": "https://api.github.com/users/kenimou/repos",
"events_url": "https://api.github.com/users/kenimou/events{/privacy}",
"received_events_url": "https://api.github.com/users/kenimou/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-05-26T20:02:14 | 2023-05-30T17:53:31 | 2023-05-30T17:53:31 | NONE | null | null | null | ### Describe the bug
Could you unpin [this](https://github.com/huggingface/datasets/blob/main/setup.py#L139) or move it to test requirements? This is a testing library and we also use it for our tests as well. We do not want to use a very outdated version.
### Steps to reproduce the bug
could not install this library due to dependency conflict.
### Expected behavior
can install datasets
### Environment info
linux 64 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5906/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5906/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5905 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5905/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5905/comments | https://api.github.com/repos/huggingface/datasets/issues/5905/events | https://github.com/huggingface/datasets/issues/5905 | 1,727,541,392 | I_kwDODunzps5m-DCQ | 5,905 | Offer an alternative to Iterable Dataset that allows lazy loading and processing while skipping batches efficiently | {
"login": "Hubert-Bonisseur",
"id": 48770768,
"node_id": "MDQ6VXNlcjQ4NzcwNzY4",
"avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Hubert-Bonisseur",
"html_url": "https://github.com/Hubert-Bonisseur",
"followers_url": "https://api.github.com/users/Hubert-Bonisseur/followers",
"following_url": "https://api.github.com/users/Hubert-Bonisseur/following{/other_user}",
"gists_url": "https://api.github.com/users/Hubert-Bonisseur/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Hubert-Bonisseur/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Hubert-Bonisseur/subscriptions",
"organizations_url": "https://api.github.com/users/Hubert-Bonisseur/orgs",
"repos_url": "https://api.github.com/users/Hubert-Bonisseur/repos",
"events_url": "https://api.github.com/users/Hubert-Bonisseur/events{/privacy}",
"received_events_url": "https://api.github.com/users/Hubert-Bonisseur/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"We plan to improve this eventually (see https://github.com/huggingface/datasets/issues/5454 and https://github.com/huggingface/datasets/issues/5380).\r\n\r\n> Is it possible to lazily load samples of a mapped dataset ? I'm used to [dataset scripts](https://huggingface.co/docs/datasets/dataset_script), maybe something can be done there.\r\nIf not, I could do it using a plain Pytorch dataset. Then I would need to convert it to a datasets' dataset to get all the features of datasets. Is it something possible ?\r\n\r\nYes, by creating a mapped dataset that stores audio URLs. Indexing a dataset in such format only downloads and decodes the bytes of the accessed samples (without storing them on disk).\r\n\r\nYou can do the following to create this dataset:\r\n```python\r\n\r\ndef gen():\r\n # Generator that yields (audio URL, text) pairs as dict\r\n ...\r\n yield {\"audio\": \"audio_url\", \"text\": \"some text\"}\r\n\r\nfeatures = Features({\"audio\": datasets.Audio(), \"text\": datasets.Value(\"string\")})\r\nds = Dataset.from_generator(gen, features=features)\r\nds[2:5] # downloads and decodes the samples each time they are accessed\r\n```"
] | 2023-05-26T12:33:02 | 2023-06-15T13:34:18 | null | CONTRIBUTOR | null | null | null | ### Feature request
I would like a way to resume training from a checkpoint without waiting for a very long time when using an iterable dataset.
### Motivation
I am training models on the speech-recognition task. I have very large datasets that I can't comfortably store on a disk and also quite computationally intensive audio processing to do. As a result I want to load data from my remote when it is needed and perform all processing on the fly.
I am currently using the iterable dataset feature of _datasets_. It does everything I need with one exception. My issue is that when resuming training at a step n, we have to download all the data and perform the processing of steps < n, just to get the iterable at the right step. In my case it takes almost as long as training for the same steps, which make resuming training from a checkpoint useless in practice.
I understand that the nature of iterators make it probably nearly impossible to quickly resume training.
I thought about a possible solution nonetheless :
I could in fact index my large dataset and make it a mapped dataset. Then I could use set_transform to perform the processing on the fly. Finally, if I'm not mistaken, the _accelerate_ package allows to [skip steps efficiently](https://github.com/huggingface/accelerate/blob/a73898027a211c3f6dc4460351b0ec246aa824aa/src/accelerate/data_loader.py#L827) for a mapped dataset.
Is it possible to lazily load samples of a mapped dataset ? I'm used to [dataset scripts](https://huggingface.co/docs/datasets/dataset_script), maybe something can be done there.
If not, I could do it using a plain _Pytorch_ dataset. Then I would need to convert it to a _datasets_' dataset to get all the features of _datasets_. Is it something possible ?
### Your contribution
I could provide a PR to allow lazy loading of mapped dataset or the conversion of a mapped _Pytorch_ dataset into a _Datasets_ dataset if you think it is an useful new feature. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5905/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5905/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5904 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5904/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5904/comments | https://api.github.com/repos/huggingface/datasets/issues/5904/events | https://github.com/huggingface/datasets/pull/5904 | 1,727,415,626 | PR_kwDODunzps5Rbfks | 5,904 | Validate name parameter in make_file_instructions | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007401 / 0.011353 (-0.003952) | 0.005198 / 0.011008 (-0.005810) | 0.112317 / 0.038508 (0.073809) | 0.038406 / 0.023109 (0.015297) | 0.358008 / 0.275898 (0.082110) | 0.395350 / 0.323480 (0.071870) | 0.006201 / 0.007986 (-0.001785) | 0.004368 / 0.004328 (0.000039) | 0.087718 / 0.004250 (0.083467) | 0.055299 / 0.037052 (0.018247) | 0.350481 / 0.258489 (0.091992) | 0.419876 / 0.293841 (0.126035) | 0.032459 / 0.128546 (-0.096087) | 0.010635 / 0.075646 (-0.065011) | 0.383282 / 0.419271 (-0.035989) | 0.059241 / 0.043533 (0.015708) | 0.365101 / 0.255139 (0.109962) | 0.378144 / 0.283200 (0.094944) | 0.114287 / 0.141683 (-0.027396) | 1.680870 / 1.452155 (0.228715) | 1.788183 / 1.492716 (0.295467) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242919 / 0.018006 (0.224913) | 0.489850 / 0.000490 (0.489360) | 0.011408 / 0.000200 (0.011208) | 0.000444 / 0.000054 (0.000389) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030742 / 0.037411 (-0.006669) | 0.123092 / 0.014526 (0.108566) | 0.138246 / 0.176557 (-0.038311) | 0.207299 / 0.737135 (-0.529836) | 0.142647 / 0.296338 (-0.153691) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472553 / 0.215209 (0.257344) | 4.671763 / 2.077655 (2.594108) | 2.119986 / 1.504120 (0.615866) | 1.891851 / 1.541195 (0.350656) | 1.979094 / 1.468490 (0.510604) | 0.617956 / 4.584777 (-3.966821) | 4.969418 / 3.745712 (1.223706) | 4.672083 / 5.269862 (-0.597779) | 2.119049 / 4.565676 (-2.446627) | 0.077466 / 0.424275 (-0.346809) | 0.014434 / 0.007607 (0.006827) | 0.580746 / 0.226044 (0.354701) | 5.805458 / 2.268929 (3.536530) | 2.622498 / 55.444624 (-52.822126) | 2.259499 / 6.876477 (-4.616978) | 2.362078 / 2.142072 (0.220006) | 0.719911 / 4.805227 (-4.085317) | 0.164939 / 6.500664 (-6.335725) | 0.074762 / 0.075469 (-0.000707) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.496709 / 1.841788 (-0.345079) | 18.247499 / 8.074308 (10.173191) | 15.397075 / 10.191392 (5.205683) | 0.181163 / 0.680424 (-0.499261) | 0.022604 / 0.534201 (-0.511597) | 0.462791 / 0.579283 (-0.116492) | 0.504473 / 0.434364 (0.070109) | 0.582254 / 0.540337 (0.041917) | 0.673849 / 1.386936 (-0.713087) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007633 / 0.011353 (-0.003720) | 0.004859 / 0.011008 (-0.006149) | 0.091194 / 0.038508 (0.052686) | 0.038255 / 0.023109 (0.015146) | 0.460972 / 0.275898 (0.185074) | 0.470441 / 0.323480 (0.146961) | 0.006482 / 0.007986 (-0.001504) | 0.004500 / 0.004328 (0.000172) | 0.089998 / 0.004250 (0.085748) | 0.055470 / 0.037052 (0.018418) | 0.459188 / 0.258489 (0.200699) | 0.491255 / 0.293841 (0.197414) | 0.032200 / 0.128546 (-0.096346) | 0.010372 / 0.075646 (-0.065274) | 0.097429 / 0.419271 (-0.321843) | 0.052469 / 0.043533 (0.008936) | 0.452492 / 0.255139 (0.197353) | 0.475210 / 0.283200 (0.192010) | 0.116976 / 0.141683 (-0.024707) | 1.752742 / 1.452155 (0.300587) | 1.849535 / 1.492716 (0.356819) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229822 / 0.018006 (0.211816) | 0.472259 / 0.000490 (0.471770) | 0.000455 / 0.000200 (0.000255) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033796 / 0.037411 (-0.003615) | 0.136151 / 0.014526 (0.121625) | 0.144015 / 0.176557 (-0.032542) | 0.199337 / 0.737135 (-0.537798) | 0.150024 / 0.296338 (-0.146315) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522737 / 0.215209 (0.307528) | 5.165223 / 2.077655 (3.087568) | 2.630334 / 1.504120 (1.126214) | 2.392383 / 1.541195 (0.851188) | 2.488966 / 1.468490 (1.020476) | 0.608981 / 4.584777 (-3.975796) | 4.711545 / 3.745712 (0.965833) | 2.121537 / 5.269862 (-3.148325) | 1.205477 / 4.565676 (-3.360199) | 0.078277 / 0.424275 (-0.345998) | 0.014175 / 0.007607 (0.006568) | 0.640720 / 0.226044 (0.414675) | 6.391173 / 2.268929 (4.122245) | 3.265131 / 55.444624 (-52.179493) | 2.939188 / 6.876477 (-3.937289) | 2.919217 / 2.142072 (0.777145) | 0.745095 / 4.805227 (-4.060132) | 0.164065 / 6.500664 (-6.336599) | 0.076993 / 0.075469 (0.001524) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.539971 / 1.841788 (-0.301817) | 18.597296 / 8.074308 (10.522988) | 16.899330 / 10.191392 (6.707938) | 0.169005 / 0.680424 (-0.511419) | 0.020447 / 0.534201 (-0.513754) | 0.465862 / 0.579283 (-0.113421) | 0.522819 / 0.434364 (0.088455) | 0.547111 / 0.540337 (0.006773) | 0.657777 / 1.386936 (-0.729159) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#56aff9ecb4e565eb95faad525558914648cc22f1 \"CML watermark\")\n"
] | 2023-05-26T11:12:46 | 2023-05-31T07:43:32 | 2023-05-31T07:34:57 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5904",
"html_url": "https://github.com/huggingface/datasets/pull/5904",
"diff_url": "https://github.com/huggingface/datasets/pull/5904.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5904.patch",
"merged_at": "2023-05-31T07:34:57"
} | Validate `name` parameter in `make_file_instructions`.
This way users get more informative error messages, instead of:
```stacktrace
.../huggingface/datasets/src/datasets/arrow_reader.py in make_file_instructions(name, split_infos, instruction, filetype_suffix, prefix_path)
110 name2len = {info.name: info.num_examples for info in split_infos}
111 name2shard_lengths = {info.name: info.shard_lengths for info in split_infos}
--> 112 name2filenames = {
113 info.name: filenames_for_dataset_split(
114 path=prefix_path,
.../huggingface/datasets/src/datasets/arrow_reader.py in <dictcomp>(.0)
111 name2shard_lengths = {info.name: info.shard_lengths for info in split_infos}
112 name2filenames = {
--> 113 info.name: filenames_for_dataset_split(
114 path=prefix_path,
115 dataset_name=name,
.../huggingface/datasets/src/datasets/naming.py in filenames_for_dataset_split(path, dataset_name, split, filetype_suffix, shard_lengths)
68
69 def filenames_for_dataset_split(path, dataset_name, split, filetype_suffix=None, shard_lengths=None):
---> 70 prefix = filename_prefix_for_split(dataset_name, split)
71 prefix = os.path.join(path, prefix)
72
.../huggingface/datasets/src/datasets/naming.py in filename_prefix_for_split(name, split)
52
53 def filename_prefix_for_split(name, split):
---> 54 if os.path.basename(name) != name:
55 raise ValueError(f"Should be a dataset name, not a path: {name}")
56 if not re.match(_split_re, split):
.../lib/python3.9/posixpath.py in basename(p)
140 def basename(p):
141 """Returns the final component of a pathname"""
--> 142 p = os.fspath(p)
143 sep = _get_sep(p)
144 i = p.rfind(sep) + 1
TypeError: expected str, bytes or os.PathLike object, not NoneType
```
Related to #5895. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5904/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5904/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5903 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5903/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5903/comments | https://api.github.com/repos/huggingface/datasets/issues/5903/events | https://github.com/huggingface/datasets/pull/5903 | 1,727,372,549 | PR_kwDODunzps5RbV82 | 5,903 | Relax `ci.yml` trigger for `pull_request` based on modified paths | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Also this could be extended to the rest of the GitHub Action `yml` files, so let me know whether you want me to have a look into it! 🤗",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5903). All of your documentation changes will be reflected on that endpoint."
] | 2023-05-26T10:46:52 | 2023-05-26T10:51:37 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5903",
"html_url": "https://github.com/huggingface/datasets/pull/5903",
"diff_url": "https://github.com/huggingface/datasets/pull/5903.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5903.patch",
"merged_at": null
} | ## What's in this PR?
As of a previous PR at #5902, I've seen that the CI was automatically trigger on any file, in that case when modifying a Jupyter Notebook (.ipynb), which IMO could be skipped, as the modification on the Jupyter Notebook has no effect/impact on the `ci.yml` outcome. So this PR controls the paths that trigger the `ci.yml` to avoid wasting resources when not needed.
## What's pending in this PR?
I would like to confirm whether this should affect both `push` and `pull_request`, since just modifications in those files won't change the `ci.yml` outcome, so maybe it's worth skipping it too in the `push` trigger. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5903/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5903/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5902 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5902/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5902/comments | https://api.github.com/repos/huggingface/datasets/issues/5902/events | https://github.com/huggingface/datasets/pull/5902 | 1,727,342,194 | PR_kwDODunzps5RbPS9 | 5,902 | Fix `Overview.ipynb` & detach Jupyter Notebooks from `datasets` repository | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Random fact: previous run was showing that the Hub was hosting 13336 datasets, while the most recent run shows 36662 👀🎉",
"_The documentation is not available anymore as the PR was closed or merged._",
"Thanks! \r\n\r\nHowever, I think we should stop linking this notebook and use the notebook version of the Quickstart doc page instead of it for easier maintenance (we would have the \"Open in Colab\" button in the Quickstart doc as Transformers [does](https://huggingface.co/docs/transformers/quicktour)). \r\n\r\n@stevhliu should be able to help with this. If I'm not mistaken, this can be done by adding the `[[open in colab]]` marker to the doc page.\r\n\r\nAlso, if some useful info from the Overview notebook is not in the docs, feel free to add it so we don't lose it 🙂.",
"Cool, makes sense @mariosasko, then I'll check both notebooks and see whether there's something in `Overview.ipynb` worth including in the `docs/source/quickstart.mdx` and remove `Overview.ipynb` and update references in favour of `docs/source/quickstart.mdx`\r\n\r\nAre you OK if I do that @stevhliu @mariosasko? Thanks 🤗 ",
"For the moment I've just updated the `quickstart.mdx` to be more similar to [quicktour.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.mdx), but regarding the `Overview.ipynb` notebook I was planning to create a PR in https://github.com/huggingface/notebooks to add it there, does that make sense @stevhliu? And then to create a `README.md` in this repository in `notebooks/` as `transformers` does to point to the related notebooks hosted in https://github.com/huggingface/notebooks, WDYT? 🤗 ",
"Hi @stevhliu thanks for the feedback! Already applied your suggestions, I'll also add the pointers to both audio and image datasets in the \"What's next\" section.\r\n\r\nBesides that, let me know if I can help with the notebook being hosted in `huggingface/notebooks` instead, and I'll happily do so!",
"Thanks a lot for the detailed feedback @mariosasko, I'll apply the changes today!",
"> Besides that, let me know if I can help with the notebook being hosted in `huggingface/notebooks` instead, and I'll happily do so!\r\n\r\nAwesome! If you're up for it, I think you can go ahead and open a PR with the changes I've outlined [here](https://github.com/huggingface/datasets/pull/5902#pullrequestreview-1475236887) to add the notebook building workflow. ",
"Hi @stevhliu @mariosasko, sorry for the delay I had a busy week, I'll tackle this either today or tomorrow to ideally close it before the weekend, thanks again for the help and guidance 😄 ",
"Hi guys @stevhliu @mariosasko sorry for the delay! I've resolved all the comments and applied your reviews 👍🏻 Let me know if this works and we can finally close this PR, thanks for the help in the meantime!",
"> Thanks for iterating on this and wrapping it up! 🤗\r\n\r\nNo need to! Always a pleasure to collaborate with you guys 🤗 ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009814 / 0.011353 (-0.001539) | 0.004632 / 0.011008 (-0.006376) | 0.103059 / 0.038508 (0.064551) | 0.090277 / 0.023109 (0.067167) | 0.389344 / 0.275898 (0.113446) | 0.464536 / 0.323480 (0.141056) | 0.008196 / 0.007986 (0.000210) | 0.003872 / 0.004328 (-0.000457) | 0.081912 / 0.004250 (0.077662) | 0.073197 / 0.037052 (0.036145) | 0.407545 / 0.258489 (0.149056) | 0.458035 / 0.293841 (0.164194) | 0.037485 / 0.128546 (-0.091061) | 0.010141 / 0.075646 (-0.065505) | 0.365998 / 0.419271 (-0.053273) | 0.065218 / 0.043533 (0.021685) | 0.414091 / 0.255139 (0.158952) | 0.435617 / 0.283200 (0.152417) | 0.028850 / 0.141683 (-0.112833) | 1.883510 / 1.452155 (0.431355) | 1.979986 / 1.492716 (0.487269) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236623 / 0.018006 (0.218616) | 0.467128 / 0.000490 (0.466638) | 0.008273 / 0.000200 (0.008074) | 0.000699 / 0.000054 (0.000645) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033061 / 0.037411 (-0.004350) | 0.101381 / 0.014526 (0.086856) | 0.110862 / 0.176557 (-0.065695) | 0.180982 / 0.737135 (-0.556154) | 0.113791 / 0.296338 (-0.182548) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450805 / 0.215209 (0.235596) | 4.478374 / 2.077655 (2.400719) | 2.190814 / 1.504120 (0.686694) | 1.976726 / 1.541195 (0.435532) | 2.078527 / 1.468490 (0.610037) | 0.569150 / 4.584777 (-4.015627) | 4.557790 / 3.745712 (0.812078) | 3.794964 / 5.269862 (-1.474898) | 2.555689 / 4.565676 (-2.009987) | 0.067380 / 0.424275 (-0.356896) | 0.008741 / 0.007607 (0.001134) | 0.536913 / 0.226044 (0.310868) | 5.364588 / 2.268929 (3.095659) | 2.725602 / 55.444624 (-52.719022) | 2.332012 / 6.876477 (-4.544465) | 2.560550 / 2.142072 (0.418477) | 0.672490 / 4.805227 (-4.132738) | 0.153629 / 6.500664 (-6.347035) | 0.070583 / 0.075469 (-0.004886) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620083 / 1.841788 (-0.221704) | 23.094248 / 8.074308 (15.019939) | 17.797625 / 10.191392 (7.606233) | 0.167993 / 0.680424 (-0.512430) | 0.021151 / 0.534201 (-0.513050) | 0.470216 / 0.579283 (-0.109067) | 0.515492 / 0.434364 (0.081128) | 0.666359 / 0.540337 (0.126021) | 0.772928 / 1.386936 (-0.614008) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007853 / 0.011353 (-0.003500) | 0.004627 / 0.011008 (-0.006381) | 0.079803 / 0.038508 (0.041295) | 0.091562 / 0.023109 (0.068453) | 0.488537 / 0.275898 (0.212639) | 0.579207 / 0.323480 (0.255728) | 0.006579 / 0.007986 (-0.001406) | 0.003946 / 0.004328 (-0.000382) | 0.080224 / 0.004250 (0.075973) | 0.074499 / 0.037052 (0.037446) | 0.488292 / 0.258489 (0.229803) | 0.569246 / 0.293841 (0.275405) | 0.039994 / 0.128546 (-0.088553) | 0.012867 / 0.075646 (-0.062780) | 0.092563 / 0.419271 (-0.326709) | 0.061656 / 0.043533 (0.018124) | 0.488271 / 0.255139 (0.233132) | 0.550651 / 0.283200 (0.267451) | 0.032078 / 0.141683 (-0.109605) | 1.874440 / 1.452155 (0.422286) | 1.973480 / 1.492716 (0.480763) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238789 / 0.018006 (0.220782) | 0.460237 / 0.000490 (0.459748) | 0.000500 / 0.000200 (0.000300) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034961 / 0.037411 (-0.002450) | 0.102696 / 0.014526 (0.088170) | 0.117772 / 0.176557 (-0.058784) | 0.183865 / 0.737135 (-0.553270) | 0.119216 / 0.296338 (-0.177122) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.528894 / 0.215209 (0.313685) | 5.303954 / 2.077655 (3.226300) | 2.897505 / 1.504120 (1.393385) | 2.475898 / 1.541195 (0.934703) | 2.553479 / 1.468490 (1.084988) | 0.625847 / 4.584777 (-3.958930) | 4.656595 / 3.745712 (0.910882) | 3.745170 / 5.269862 (-1.524691) | 2.470922 / 4.565676 (-2.094755) | 0.066908 / 0.424275 (-0.357367) | 0.009172 / 0.007607 (0.001565) | 0.572695 / 0.226044 (0.346650) | 5.753428 / 2.268929 (3.484499) | 3.033226 / 55.444624 (-52.411398) | 2.677280 / 6.876477 (-4.199197) | 2.908857 / 2.142072 (0.766785) | 0.681595 / 4.805227 (-4.123632) | 0.154602 / 6.500664 (-6.346062) | 0.072608 / 0.075469 (-0.002861) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.738550 / 1.841788 (-0.103237) | 25.090637 / 8.074308 (17.016329) | 18.371478 / 10.191392 (8.180086) | 0.207357 / 0.680424 (-0.473067) | 0.023396 / 0.534201 (-0.510805) | 0.505663 / 0.579283 (-0.073620) | 0.503137 / 0.434364 (0.068773) | 0.598015 / 0.540337 (0.057678) | 0.714122 / 1.386936 (-0.672814) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#971e33ec81b1013654e845b1c2e33cb43cda5558 \"CML watermark\")\n",
"Just as a heads up @mariosasko, the `quickstart.ipynb` Jupyter Notebook has been built at https://github.com/huggingface/notebooks/blob/main/datasets_doc/en/quickstart.ipynb, while the URLs in here point to https://github.com/huggingface/notebooks/blob/main/datasets_doc/quickstart.ipynb instead, should we update that?"
] | 2023-05-26T10:25:01 | 2023-07-25T13:50:06 | 2023-07-25T13:38:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5902",
"html_url": "https://github.com/huggingface/datasets/pull/5902",
"diff_url": "https://github.com/huggingface/datasets/pull/5902.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5902.patch",
"merged_at": "2023-07-25T13:38:33"
} | ## What's in this PR?
This PR solves #5887 since there was a mismatch between the tokenizer and the model used, since the tokenizer was `bert-base-cased` while the model was `distilbert-base-case` both for the PyTorch and TensorFlow alternatives. Since DistilBERT doesn't use/need the `token_type_ids`, the `**batch` was failing, as the batch contained `input_ids`, `attention_mask`, `token_type_ids`, `start_positions` and `end_positions`, and `token_type_ids` was not required.
Besides that, at the end `seqeval` was being used to evaluate the model predictions, and just `evaluate` was being installed, so I've also included the `seqeval` installation.
Finally, I've re-run everything in Google Colab, and every cell was successfully executed!
## What was done on top of the original PR?
Based on the comments from @mariosasko and @stevhliu, I've updated the contents of this PR to also review the `quickstart.mdx` and update what was needed, besides that, we may eventually move the `Overview.ipynb` dataset to `huggingface/notebooks` following @stevhliu suggestions. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5902/reactions",
"total_count": 2,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5902/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5901 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5901/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5901/comments | https://api.github.com/repos/huggingface/datasets/issues/5901/events | https://github.com/huggingface/datasets/pull/5901 | 1,727,179,016 | PR_kwDODunzps5Rarux | 5,901 | Make prepare_split more robust if errors in metadata dataset_info splits | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008809 / 0.011353 (-0.002544) | 0.005641 / 0.011008 (-0.005367) | 0.124986 / 0.038508 (0.086477) | 0.037311 / 0.023109 (0.014202) | 0.388915 / 0.275898 (0.113017) | 0.430123 / 0.323480 (0.106643) | 0.007447 / 0.007986 (-0.000538) | 0.009593 / 0.004328 (0.005264) | 0.099148 / 0.004250 (0.094898) | 0.052393 / 0.037052 (0.015341) | 0.399779 / 0.258489 (0.141290) | 0.439109 / 0.293841 (0.145268) | 0.043409 / 0.128546 (-0.085137) | 0.016286 / 0.075646 (-0.059360) | 0.431198 / 0.419271 (0.011927) | 0.064932 / 0.043533 (0.021400) | 0.390650 / 0.255139 (0.135511) | 0.432883 / 0.283200 (0.149684) | 0.110978 / 0.141683 (-0.030705) | 1.796121 / 1.452155 (0.343967) | 1.960097 / 1.492716 (0.467381) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286292 / 0.018006 (0.268286) | 0.659495 / 0.000490 (0.659005) | 0.008294 / 0.000200 (0.008094) | 0.000485 / 0.000054 (0.000431) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029325 / 0.037411 (-0.008086) | 0.125454 / 0.014526 (0.110928) | 0.136459 / 0.176557 (-0.040097) | 0.221075 / 0.737135 (-0.516060) | 0.140281 / 0.296338 (-0.156058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602401 / 0.215209 (0.387192) | 6.124553 / 2.077655 (4.046898) | 2.453141 / 1.504120 (0.949021) | 2.038611 / 1.541195 (0.497416) | 2.073611 / 1.468490 (0.605121) | 0.938040 / 4.584777 (-3.646737) | 5.755972 / 3.745712 (2.010260) | 4.450935 / 5.269862 (-0.818926) | 2.337219 / 4.565676 (-2.228457) | 0.107118 / 0.424275 (-0.317157) | 0.015201 / 0.007607 (0.007594) | 0.785833 / 0.226044 (0.559788) | 7.732984 / 2.268929 (5.464055) | 3.236892 / 55.444624 (-52.207733) | 2.696402 / 6.876477 (-4.180074) | 2.805036 / 2.142072 (0.662964) | 1.108612 / 4.805227 (-3.696616) | 0.221067 / 6.500664 (-6.279597) | 0.085538 / 0.075469 (0.010068) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.600311 / 1.841788 (-0.241476) | 18.528118 / 8.074308 (10.453810) | 21.107199 / 10.191392 (10.915807) | 0.219489 / 0.680424 (-0.460934) | 0.028927 / 0.534201 (-0.505274) | 0.503446 / 0.579283 (-0.075837) | 0.619833 / 0.434364 (0.185469) | 0.582454 / 0.540337 (0.042117) | 0.709154 / 1.386936 (-0.677782) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008516 / 0.011353 (-0.002837) | 0.006090 / 0.011008 (-0.004918) | 0.104574 / 0.038508 (0.066066) | 0.042676 / 0.023109 (0.019566) | 0.458623 / 0.275898 (0.182725) | 0.568479 / 0.323480 (0.244999) | 0.008374 / 0.007986 (0.000389) | 0.004677 / 0.004328 (0.000349) | 0.105946 / 0.004250 (0.101695) | 0.055256 / 0.037052 (0.018204) | 0.511036 / 0.258489 (0.252547) | 0.598383 / 0.293841 (0.304542) | 0.043612 / 0.128546 (-0.084934) | 0.014707 / 0.075646 (-0.060940) | 0.116350 / 0.419271 (-0.302921) | 0.061413 / 0.043533 (0.017880) | 0.477785 / 0.255139 (0.222646) | 0.542643 / 0.283200 (0.259443) | 0.120431 / 0.141683 (-0.021252) | 1.994083 / 1.452155 (0.541928) | 2.100600 / 1.492716 (0.607883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298480 / 0.018006 (0.280474) | 0.601921 / 0.000490 (0.601432) | 0.000445 / 0.000200 (0.000245) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034784 / 0.037411 (-0.002627) | 0.133555 / 0.014526 (0.119029) | 0.138541 / 0.176557 (-0.038015) | 0.203114 / 0.737135 (-0.534021) | 0.153477 / 0.296338 (-0.142861) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.780484 / 0.215209 (0.565275) | 7.150876 / 2.077655 (5.073222) | 3.168590 / 1.504120 (1.664470) | 2.698746 / 1.541195 (1.157552) | 2.695678 / 1.468490 (1.227188) | 1.037706 / 4.584777 (-3.547071) | 5.672631 / 3.745712 (1.926918) | 2.798137 / 5.269862 (-2.471725) | 1.738588 / 4.565676 (-2.827088) | 0.111160 / 0.424275 (-0.313115) | 0.013878 / 0.007607 (0.006271) | 0.800191 / 0.226044 (0.574146) | 8.546676 / 2.268929 (6.277748) | 4.116852 / 55.444624 (-51.327773) | 3.331271 / 6.876477 (-3.545206) | 3.307410 / 2.142072 (1.165337) | 1.191019 / 4.805227 (-3.614208) | 0.248953 / 6.500664 (-6.251711) | 0.086632 / 0.075469 (0.011162) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.795057 / 1.841788 (-0.046730) | 18.038785 / 8.074308 (9.964476) | 21.865566 / 10.191392 (11.674174) | 0.211058 / 0.680424 (-0.469366) | 0.026956 / 0.534201 (-0.507245) | 0.518855 / 0.579283 (-0.060428) | 0.618105 / 0.434364 (0.183741) | 0.569227 / 0.540337 (0.028889) | 0.705431 / 1.386936 (-0.681505) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#074925b9b7c1dfd33b8675aa99c07cc26375665c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008900 / 0.011353 (-0.002453) | 0.005726 / 0.011008 (-0.005283) | 0.131747 / 0.038508 (0.093239) | 0.040585 / 0.023109 (0.017476) | 0.420531 / 0.275898 (0.144633) | 0.459430 / 0.323480 (0.135950) | 0.007642 / 0.007986 (-0.000344) | 0.006750 / 0.004328 (0.002421) | 0.099147 / 0.004250 (0.094897) | 0.055852 / 0.037052 (0.018799) | 0.423653 / 0.258489 (0.165164) | 0.453304 / 0.293841 (0.159463) | 0.045247 / 0.128546 (-0.083300) | 0.016034 / 0.075646 (-0.059612) | 0.443115 / 0.419271 (0.023843) | 0.078853 / 0.043533 (0.035320) | 0.417508 / 0.255139 (0.162369) | 0.440936 / 0.283200 (0.157736) | 0.115603 / 0.141683 (-0.026080) | 1.844610 / 1.452155 (0.392456) | 1.998497 / 1.492716 (0.505781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272622 / 0.018006 (0.254616) | 0.598045 / 0.000490 (0.597556) | 0.007088 / 0.000200 (0.006888) | 0.000159 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032976 / 0.037411 (-0.004436) | 0.143970 / 0.014526 (0.129444) | 0.142172 / 0.176557 (-0.034384) | 0.216747 / 0.737135 (-0.520389) | 0.146004 / 0.296338 (-0.150334) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.687507 / 0.215209 (0.472298) | 6.549524 / 2.077655 (4.471870) | 2.924142 / 1.504120 (1.420022) | 2.504471 / 1.541195 (0.963277) | 2.496280 / 1.468490 (1.027790) | 0.959054 / 4.584777 (-3.625723) | 5.851742 / 3.745712 (2.106030) | 4.983357 / 5.269862 (-0.286504) | 2.627403 / 4.565676 (-1.938274) | 0.112955 / 0.424275 (-0.311320) | 0.016206 / 0.007607 (0.008599) | 0.819158 / 0.226044 (0.593114) | 8.416949 / 2.268929 (6.148020) | 3.776765 / 55.444624 (-51.667859) | 3.002397 / 6.876477 (-3.874080) | 3.158852 / 2.142072 (1.016779) | 1.197099 / 4.805227 (-3.608129) | 0.280654 / 6.500664 (-6.220010) | 0.099471 / 0.075469 (0.024002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687007 / 1.841788 (-0.154781) | 19.411976 / 8.074308 (11.337668) | 22.053482 / 10.191392 (11.862090) | 0.228038 / 0.680424 (-0.452386) | 0.028226 / 0.534201 (-0.505975) | 0.527695 / 0.579283 (-0.051588) | 0.635911 / 0.434364 (0.201547) | 0.618205 / 0.540337 (0.077868) | 0.735164 / 1.386936 (-0.651772) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009450 / 0.011353 (-0.001903) | 0.006566 / 0.011008 (-0.004442) | 0.108919 / 0.038508 (0.070411) | 0.050010 / 0.023109 (0.026900) | 0.505168 / 0.275898 (0.229270) | 0.552190 / 0.323480 (0.228710) | 0.007569 / 0.007986 (-0.000417) | 0.006807 / 0.004328 (0.002478) | 0.116621 / 0.004250 (0.112371) | 0.060374 / 0.037052 (0.023321) | 0.515165 / 0.258489 (0.256676) | 0.572125 / 0.293841 (0.278284) | 0.046561 / 0.128546 (-0.081986) | 0.016159 / 0.075646 (-0.059487) | 0.114568 / 0.419271 (-0.304704) | 0.064689 / 0.043533 (0.021157) | 0.497870 / 0.255139 (0.242731) | 0.567332 / 0.283200 (0.284132) | 0.126254 / 0.141683 (-0.015429) | 1.954074 / 1.452155 (0.501919) | 2.057682 / 1.492716 (0.564966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.013857 / 0.018006 (-0.004149) | 0.601561 / 0.000490 (0.601071) | 0.002897 / 0.000200 (0.002697) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038480 / 0.037411 (0.001069) | 0.142480 / 0.014526 (0.127954) | 0.160479 / 0.176557 (-0.016077) | 0.217942 / 0.737135 (-0.519194) | 0.159908 / 0.296338 (-0.136431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.697926 / 0.215209 (0.482717) | 6.869754 / 2.077655 (4.792100) | 3.125463 / 1.504120 (1.621343) | 2.729123 / 1.541195 (1.187928) | 2.855747 / 1.468490 (1.387257) | 1.015345 / 4.584777 (-3.569432) | 5.839176 / 3.745712 (2.093463) | 5.019678 / 5.269862 (-0.250184) | 2.080489 / 4.565676 (-2.485187) | 0.118884 / 0.424275 (-0.305391) | 0.021381 / 0.007607 (0.013774) | 0.877847 / 0.226044 (0.651803) | 8.714561 / 2.268929 (6.445633) | 3.933399 / 55.444624 (-51.511226) | 3.281809 / 6.876477 (-3.594668) | 3.330342 / 2.142072 (1.188269) | 1.235005 / 4.805227 (-3.570222) | 0.239686 / 6.500664 (-6.260978) | 0.093546 / 0.075469 (0.018077) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.787916 / 1.841788 (-0.053872) | 20.094828 / 8.074308 (12.020520) | 22.902101 / 10.191392 (12.710709) | 0.249315 / 0.680424 (-0.431109) | 0.028058 / 0.534201 (-0.506143) | 0.524960 / 0.579283 (-0.054323) | 0.643881 / 0.434364 (0.209517) | 0.621203 / 0.540337 (0.080866) | 0.723337 / 1.386936 (-0.663599) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#074925b9b7c1dfd33b8675aa99c07cc26375665c \"CML watermark\")\n"
] | 2023-05-26T08:48:22 | 2023-06-02T06:06:38 | 2023-06-01T13:39:40 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5901",
"html_url": "https://github.com/huggingface/datasets/pull/5901",
"diff_url": "https://github.com/huggingface/datasets/pull/5901.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5901.patch",
"merged_at": "2023-06-01T13:39:39"
} | This PR uses `split_generator.split_info` as default value for `split_info` if any exception is raised while trying to get `split_generator.name` from `self.info.splits` (this may happen if there is any error in the metadata dataset_info splits).
Please note that `split_info` is only used by the logger.
Fix #5895 if passed `verification_mode="no_checks"`:
```python
ds = load_dataset(
"ArmelR/stack-exchange-instruction",
data_dir="data/finetune",
split="train",
verification_mode="no_checks",
revision="c609f1caade5cfbf3b9fe9cfa17d7cb000b457bd",
)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5901/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5901/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5900 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5900/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5900/comments | https://api.github.com/repos/huggingface/datasets/issues/5900/events | https://github.com/huggingface/datasets/pull/5900 | 1,727,129,617 | PR_kwDODunzps5RahTR | 5,900 | Fix minor typo in docs loading.mdx | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006763 / 0.011353 (-0.004589) | 0.004548 / 0.011008 (-0.006460) | 0.095631 / 0.038508 (0.057123) | 0.034046 / 0.023109 (0.010936) | 0.298064 / 0.275898 (0.022166) | 0.330391 / 0.323480 (0.006911) | 0.006058 / 0.007986 (-0.001928) | 0.004163 / 0.004328 (-0.000165) | 0.073260 / 0.004250 (0.069010) | 0.048885 / 0.037052 (0.011832) | 0.304651 / 0.258489 (0.046162) | 0.345882 / 0.293841 (0.052042) | 0.028061 / 0.128546 (-0.100485) | 0.008823 / 0.075646 (-0.066823) | 0.325620 / 0.419271 (-0.093651) | 0.064480 / 0.043533 (0.020948) | 0.303373 / 0.255139 (0.048234) | 0.321672 / 0.283200 (0.038472) | 0.116353 / 0.141683 (-0.025330) | 1.442327 / 1.452155 (-0.009827) | 1.567553 / 1.492716 (0.074837) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213042 / 0.018006 (0.195035) | 0.457646 / 0.000490 (0.457156) | 0.003989 / 0.000200 (0.003789) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028068 / 0.037411 (-0.009344) | 0.114791 / 0.014526 (0.100265) | 0.120870 / 0.176557 (-0.055686) | 0.183006 / 0.737135 (-0.554130) | 0.126772 / 0.296338 (-0.169567) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406438 / 0.215209 (0.191229) | 4.041890 / 2.077655 (1.964235) | 1.839967 / 1.504120 (0.335847) | 1.646857 / 1.541195 (0.105662) | 1.729372 / 1.468490 (0.260882) | 0.525540 / 4.584777 (-4.059237) | 3.809996 / 3.745712 (0.064284) | 1.842598 / 5.269862 (-3.427263) | 1.062815 / 4.565676 (-3.502862) | 0.065301 / 0.424275 (-0.358974) | 0.012027 / 0.007607 (0.004420) | 0.505459 / 0.226044 (0.279415) | 5.051177 / 2.268929 (2.782248) | 2.354368 / 55.444624 (-53.090256) | 2.035482 / 6.876477 (-4.840995) | 2.120493 / 2.142072 (-0.021579) | 0.642233 / 4.805227 (-4.162994) | 0.141690 / 6.500664 (-6.358974) | 0.063933 / 0.075469 (-0.011536) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.186261 / 1.841788 (-0.655527) | 14.919653 / 8.074308 (6.845345) | 14.534003 / 10.191392 (4.342611) | 0.183165 / 0.680424 (-0.497259) | 0.017581 / 0.534201 (-0.516620) | 0.397284 / 0.579283 (-0.181999) | 0.431363 / 0.434364 (-0.003001) | 0.510774 / 0.540337 (-0.029564) | 0.614421 / 1.386936 (-0.772516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006682 / 0.011353 (-0.004671) | 0.004558 / 0.011008 (-0.006450) | 0.076272 / 0.038508 (0.037764) | 0.034285 / 0.023109 (0.011176) | 0.395594 / 0.275898 (0.119696) | 0.402702 / 0.323480 (0.079222) | 0.006093 / 0.007986 (-0.001893) | 0.005538 / 0.004328 (0.001209) | 0.075797 / 0.004250 (0.071547) | 0.051638 / 0.037052 (0.014585) | 0.396071 / 0.258489 (0.137582) | 0.409282 / 0.293841 (0.115441) | 0.028193 / 0.128546 (-0.100354) | 0.008827 / 0.075646 (-0.066819) | 0.083182 / 0.419271 (-0.336089) | 0.047605 / 0.043533 (0.004072) | 0.391148 / 0.255139 (0.136009) | 0.386784 / 0.283200 (0.103584) | 0.115303 / 0.141683 (-0.026380) | 1.463666 / 1.452155 (0.011512) | 1.566147 / 1.492716 (0.073431) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213846 / 0.018006 (0.195839) | 0.454769 / 0.000490 (0.454279) | 0.004767 / 0.000200 (0.004567) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030369 / 0.037411 (-0.007042) | 0.115585 / 0.014526 (0.101059) | 0.125181 / 0.176557 (-0.051376) | 0.179247 / 0.737135 (-0.557888) | 0.129336 / 0.296338 (-0.167003) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446040 / 0.215209 (0.230831) | 4.462644 / 2.077655 (2.384989) | 2.254511 / 1.504120 (0.750392) | 2.062679 / 1.541195 (0.521484) | 2.180766 / 1.468490 (0.712276) | 0.530928 / 4.584777 (-4.053849) | 3.781392 / 3.745712 (0.035680) | 3.522539 / 5.269862 (-1.747322) | 1.506960 / 4.565676 (-3.058717) | 0.067101 / 0.424275 (-0.357174) | 0.012011 / 0.007607 (0.004404) | 0.546407 / 0.226044 (0.320362) | 5.429894 / 2.268929 (3.160965) | 2.702244 / 55.444624 (-52.742381) | 2.367559 / 6.876477 (-4.508917) | 2.556032 / 2.142072 (0.413960) | 0.639690 / 4.805227 (-4.165538) | 0.144538 / 6.500664 (-6.356126) | 0.067822 / 0.075469 (-0.007647) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284977 / 1.841788 (-0.556811) | 15.546489 / 8.074308 (7.472181) | 14.747519 / 10.191392 (4.556127) | 0.160044 / 0.680424 (-0.520380) | 0.017746 / 0.534201 (-0.516454) | 0.390140 / 0.579283 (-0.189143) | 0.420342 / 0.434364 (-0.014021) | 0.459788 / 0.540337 (-0.080549) | 0.556360 / 1.386936 (-0.830576) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d646afbac7ea3dc0996fa2cb6ffd8a98e158e742 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006493 / 0.011353 (-0.004860) | 0.004532 / 0.011008 (-0.006476) | 0.096509 / 0.038508 (0.058001) | 0.033084 / 0.023109 (0.009974) | 0.297802 / 0.275898 (0.021904) | 0.345880 / 0.323480 (0.022400) | 0.005461 / 0.007986 (-0.002525) | 0.005282 / 0.004328 (0.000954) | 0.073719 / 0.004250 (0.069469) | 0.045035 / 0.037052 (0.007983) | 0.295504 / 0.258489 (0.037015) | 0.345400 / 0.293841 (0.051559) | 0.027880 / 0.128546 (-0.100666) | 0.008804 / 0.075646 (-0.066842) | 0.328017 / 0.419271 (-0.091255) | 0.050169 / 0.043533 (0.006637) | 0.299642 / 0.255139 (0.044503) | 0.313573 / 0.283200 (0.030374) | 0.103359 / 0.141683 (-0.038323) | 1.482145 / 1.452155 (0.029990) | 1.554584 / 1.492716 (0.061867) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212860 / 0.018006 (0.194853) | 0.444823 / 0.000490 (0.444334) | 0.003014 / 0.000200 (0.002815) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026906 / 0.037411 (-0.010506) | 0.108056 / 0.014526 (0.093530) | 0.118721 / 0.176557 (-0.057835) | 0.176646 / 0.737135 (-0.560489) | 0.123285 / 0.296338 (-0.173053) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430157 / 0.215209 (0.214948) | 4.279362 / 2.077655 (2.201707) | 1.999732 / 1.504120 (0.495612) | 1.803787 / 1.541195 (0.262592) | 1.868322 / 1.468490 (0.399832) | 0.529314 / 4.584777 (-4.055463) | 3.785101 / 3.745712 (0.039389) | 2.812608 / 5.269862 (-2.457254) | 1.373460 / 4.565676 (-3.192216) | 0.066208 / 0.424275 (-0.358067) | 0.012173 / 0.007607 (0.004566) | 0.528716 / 0.226044 (0.302672) | 5.295003 / 2.268929 (3.026074) | 2.450188 / 55.444624 (-52.994437) | 2.114560 / 6.876477 (-4.761917) | 2.268468 / 2.142072 (0.126395) | 0.651706 / 4.805227 (-4.153521) | 0.142185 / 6.500664 (-6.358479) | 0.064862 / 0.075469 (-0.010607) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.184933 / 1.841788 (-0.656854) | 14.503903 / 8.074308 (6.429595) | 13.928965 / 10.191392 (3.737573) | 0.156788 / 0.680424 (-0.523636) | 0.017320 / 0.534201 (-0.516881) | 0.391366 / 0.579283 (-0.187918) | 0.416261 / 0.434364 (-0.018103) | 0.461951 / 0.540337 (-0.078387) | 0.553496 / 1.386936 (-0.833440) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006623 / 0.011353 (-0.004730) | 0.004617 / 0.011008 (-0.006392) | 0.075579 / 0.038508 (0.037071) | 0.033863 / 0.023109 (0.010754) | 0.357097 / 0.275898 (0.081199) | 0.396177 / 0.323480 (0.072697) | 0.005712 / 0.007986 (-0.002274) | 0.004232 / 0.004328 (-0.000097) | 0.074669 / 0.004250 (0.070418) | 0.048253 / 0.037052 (0.011201) | 0.362453 / 0.258489 (0.103964) | 0.405423 / 0.293841 (0.111582) | 0.028709 / 0.128546 (-0.099837) | 0.008884 / 0.075646 (-0.066763) | 0.083042 / 0.419271 (-0.336230) | 0.048074 / 0.043533 (0.004541) | 0.355314 / 0.255139 (0.100175) | 0.372536 / 0.283200 (0.089336) | 0.111548 / 0.141683 (-0.030135) | 1.466353 / 1.452155 (0.014198) | 1.555077 / 1.492716 (0.062361) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217016 / 0.018006 (0.199010) | 0.450145 / 0.000490 (0.449655) | 0.001910 / 0.000200 (0.001711) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029787 / 0.037411 (-0.007624) | 0.115282 / 0.014526 (0.100756) | 0.121962 / 0.176557 (-0.054595) | 0.173424 / 0.737135 (-0.563711) | 0.127519 / 0.296338 (-0.168819) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438211 / 0.215209 (0.223002) | 4.346352 / 2.077655 (2.268697) | 2.140197 / 1.504120 (0.636077) | 1.957890 / 1.541195 (0.416696) | 2.044300 / 1.468490 (0.575810) | 0.527958 / 4.584777 (-4.056819) | 3.805079 / 3.745712 (0.059367) | 2.601763 / 5.269862 (-2.668098) | 1.359469 / 4.565676 (-3.206208) | 0.065358 / 0.424275 (-0.358917) | 0.011571 / 0.007607 (0.003964) | 0.538513 / 0.226044 (0.312469) | 5.363508 / 2.268929 (3.094580) | 2.640495 / 55.444624 (-52.804129) | 2.335930 / 6.876477 (-4.540547) | 2.407782 / 2.142072 (0.265710) | 0.641637 / 4.805227 (-4.163590) | 0.142196 / 6.500664 (-6.358468) | 0.065041 / 0.075469 (-0.010428) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296031 / 1.841788 (-0.545757) | 14.950424 / 8.074308 (6.876115) | 14.371304 / 10.191392 (4.179912) | 0.148157 / 0.680424 (-0.532267) | 0.017506 / 0.534201 (-0.516695) | 0.392037 / 0.579283 (-0.187246) | 0.423238 / 0.434364 (-0.011126) | 0.464608 / 0.540337 (-0.075730) | 0.563876 / 1.386936 (-0.823060) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#04b1d0371408beb0c7bc587a69c382bd8d0bec36 \"CML watermark\")\n"
] | 2023-05-26T08:10:54 | 2023-05-26T09:34:15 | 2023-05-26T09:25:12 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5900",
"html_url": "https://github.com/huggingface/datasets/pull/5900",
"diff_url": "https://github.com/huggingface/datasets/pull/5900.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5900.patch",
"merged_at": "2023-05-26T09:25:12"
} | Minor fix. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5900/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5900/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5899 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5899/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5899/comments | https://api.github.com/repos/huggingface/datasets/issues/5899/events | https://github.com/huggingface/datasets/pull/5899 | 1,726,279,011 | PR_kwDODunzps5RXods | 5,899 | canonicalize data dir in config ID hash | {
"login": "kylrth",
"id": 5044802,
"node_id": "MDQ6VXNlcjUwNDQ4MDI=",
"avatar_url": "https://avatars.githubusercontent.com/u/5044802?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kylrth",
"html_url": "https://github.com/kylrth",
"followers_url": "https://api.github.com/users/kylrth/followers",
"following_url": "https://api.github.com/users/kylrth/following{/other_user}",
"gists_url": "https://api.github.com/users/kylrth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kylrth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kylrth/subscriptions",
"organizations_url": "https://api.github.com/users/kylrth/orgs",
"repos_url": "https://api.github.com/users/kylrth/repos",
"events_url": "https://api.github.com/users/kylrth/events{/privacy}",
"received_events_url": "https://api.github.com/users/kylrth/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009137 / 0.011353 (-0.002216) | 0.006119 / 0.011008 (-0.004889) | 0.136530 / 0.038508 (0.098022) | 0.038434 / 0.023109 (0.015325) | 0.427900 / 0.275898 (0.152002) | 0.449757 / 0.323480 (0.126277) | 0.007673 / 0.007986 (-0.000313) | 0.007147 / 0.004328 (0.002818) | 0.108029 / 0.004250 (0.103778) | 0.055072 / 0.037052 (0.018020) | 0.439245 / 0.258489 (0.180756) | 0.477285 / 0.293841 (0.183444) | 0.044838 / 0.128546 (-0.083708) | 0.020814 / 0.075646 (-0.054832) | 0.436098 / 0.419271 (0.016826) | 0.067459 / 0.043533 (0.023926) | 0.427470 / 0.255139 (0.172331) | 0.443260 / 0.283200 (0.160060) | 0.125466 / 0.141683 (-0.016216) | 1.996756 / 1.452155 (0.544601) | 2.100679 / 1.492716 (0.607962) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278407 / 0.018006 (0.260401) | 0.625855 / 0.000490 (0.625365) | 0.005544 / 0.000200 (0.005344) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033495 / 0.037411 (-0.003916) | 0.134718 / 0.014526 (0.120192) | 0.150151 / 0.176557 (-0.026406) | 0.221385 / 0.737135 (-0.515751) | 0.150932 / 0.296338 (-0.145406) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.668845 / 0.215209 (0.453636) | 6.678436 / 2.077655 (4.600781) | 2.714074 / 1.504120 (1.209954) | 2.275784 / 1.541195 (0.734589) | 2.332852 / 1.468490 (0.864361) | 1.014877 / 4.584777 (-3.569900) | 6.086455 / 3.745712 (2.340743) | 2.990029 / 5.269862 (-2.279832) | 1.862236 / 4.565676 (-2.703441) | 0.122179 / 0.424275 (-0.302096) | 0.015706 / 0.007607 (0.008099) | 0.873473 / 0.226044 (0.647429) | 8.580109 / 2.268929 (6.311180) | 3.458360 / 55.444624 (-51.986264) | 2.738801 / 6.876477 (-4.137676) | 2.918428 / 2.142072 (0.776356) | 1.224910 / 4.805227 (-3.580317) | 0.243006 / 6.500664 (-6.257658) | 0.087121 / 0.075469 (0.011652) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.757802 / 1.841788 (-0.083986) | 19.447999 / 8.074308 (11.373691) | 24.518157 / 10.191392 (14.326765) | 0.245013 / 0.680424 (-0.435411) | 0.032290 / 0.534201 (-0.501911) | 0.542043 / 0.579283 (-0.037240) | 0.708154 / 0.434364 (0.273790) | 0.660584 / 0.540337 (0.120247) | 0.794868 / 1.386936 (-0.592068) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009496 / 0.011353 (-0.001857) | 0.005842 / 0.011008 (-0.005166) | 0.112813 / 0.038508 (0.074305) | 0.039120 / 0.023109 (0.016011) | 0.489717 / 0.275898 (0.213819) | 0.532586 / 0.323480 (0.209107) | 0.007681 / 0.007986 (-0.000304) | 0.005337 / 0.004328 (0.001009) | 0.107244 / 0.004250 (0.102994) | 0.056847 / 0.037052 (0.019794) | 0.499447 / 0.258489 (0.240958) | 0.548995 / 0.293841 (0.255154) | 0.058047 / 0.128546 (-0.070499) | 0.015468 / 0.075646 (-0.060179) | 0.124600 / 0.419271 (-0.294671) | 0.060940 / 0.043533 (0.017407) | 0.488370 / 0.255139 (0.233231) | 0.518540 / 0.283200 (0.235341) | 0.124147 / 0.141683 (-0.017536) | 1.902922 / 1.452155 (0.450767) | 2.033519 / 1.492716 (0.540803) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319527 / 0.018006 (0.301521) | 0.629641 / 0.000490 (0.629152) | 0.000721 / 0.000200 (0.000521) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033150 / 0.037411 (-0.004262) | 0.134250 / 0.014526 (0.119724) | 0.161273 / 0.176557 (-0.015283) | 0.211471 / 0.737135 (-0.525664) | 0.155326 / 0.296338 (-0.141012) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.705244 / 0.215209 (0.490035) | 7.043040 / 2.077655 (4.965386) | 3.308948 / 1.504120 (1.804828) | 2.885050 / 1.541195 (1.343855) | 2.810260 / 1.468490 (1.341770) | 1.027095 / 4.584777 (-3.557682) | 6.111398 / 3.745712 (2.365686) | 5.385545 / 5.269862 (0.115684) | 2.521668 / 4.565676 (-2.044009) | 0.122419 / 0.424275 (-0.301856) | 0.016376 / 0.007607 (0.008768) | 0.830856 / 0.226044 (0.604811) | 8.952199 / 2.268929 (6.683271) | 4.207875 / 55.444624 (-51.236749) | 3.346624 / 6.876477 (-3.529853) | 3.395316 / 2.142072 (1.253244) | 1.351816 / 4.805227 (-3.453411) | 0.303056 / 6.500664 (-6.197608) | 0.098713 / 0.075469 (0.023244) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.841903 / 1.841788 (0.000116) | 20.472125 / 8.074308 (12.397817) | 23.433200 / 10.191392 (13.241808) | 0.242599 / 0.680424 (-0.437825) | 0.030701 / 0.534201 (-0.503500) | 0.541614 / 0.579283 (-0.037669) | 0.657827 / 0.434364 (0.223463) | 0.652448 / 0.540337 (0.112111) | 0.773743 / 1.386936 (-0.613193) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02ee418831aba68d0be93227bce8b3f42ef8980f \"CML watermark\")\n"
] | 2023-05-25T18:17:10 | 2023-06-02T16:02:15 | 2023-06-02T15:52:04 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5899",
"html_url": "https://github.com/huggingface/datasets/pull/5899",
"diff_url": "https://github.com/huggingface/datasets/pull/5899.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5899.patch",
"merged_at": "2023-06-02T15:52:04"
} | fixes #5871
The second commit is optional but improves readability. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5899/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5899/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5898 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5898/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5898/comments | https://api.github.com/repos/huggingface/datasets/issues/5898/events | https://github.com/huggingface/datasets/issues/5898 | 1,726,190,481 | I_kwDODunzps5m45OR | 5,898 | Loading The flores data set for specific language | {
"login": "106AbdulBasit",
"id": 36159918,
"node_id": "MDQ6VXNlcjM2MTU5OTE4",
"avatar_url": "https://avatars.githubusercontent.com/u/36159918?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/106AbdulBasit",
"html_url": "https://github.com/106AbdulBasit",
"followers_url": "https://api.github.com/users/106AbdulBasit/followers",
"following_url": "https://api.github.com/users/106AbdulBasit/following{/other_user}",
"gists_url": "https://api.github.com/users/106AbdulBasit/gists{/gist_id}",
"starred_url": "https://api.github.com/users/106AbdulBasit/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/106AbdulBasit/subscriptions",
"organizations_url": "https://api.github.com/users/106AbdulBasit/orgs",
"repos_url": "https://api.github.com/users/106AbdulBasit/repos",
"events_url": "https://api.github.com/users/106AbdulBasit/events{/privacy}",
"received_events_url": "https://api.github.com/users/106AbdulBasit/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"got that the syntax is like this\r\n\r\ndataset = load_dataset(\"facebook/flores\", \"ace_Arab\")"
] | 2023-05-25T17:08:55 | 2023-05-25T17:21:38 | 2023-05-25T17:21:37 | NONE | null | null | null | ### Describe the bug
I am trying to load the Flores data set
the code which is given is
```
from datasets import load_dataset
dataset = load_dataset("facebook/flores")
```
This gives the error of config name
""ValueError: Config name is missing"
Now if I add some config it gives me the some error
"HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: 'facebook/flores, 'ace_Arab''.
"
How I can load the data of the specific language ?
Couldn't find any tutorial
any one can help me out?
### Steps to reproduce the bug
step one load the data set
`from datasets import load_dataset
dataset = load_dataset("facebook/flores")`
it gives the error of config
once config is given
it gives the error of
"HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: 'facebook/flores, 'ace_Arab''.
"
### Expected behavior
Data set should be loaded but I am receiving error
### Environment info
Datasets , python , | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5898/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5898/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5897 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5897/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5897/comments | https://api.github.com/repos/huggingface/datasets/issues/5897/events | https://github.com/huggingface/datasets/pull/5897 | 1,726,135,494 | PR_kwDODunzps5RXJaY | 5,897 | Fix `FixedSizeListArray` casting | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006213 / 0.011353 (-0.005140) | 0.004230 / 0.011008 (-0.006778) | 0.098014 / 0.038508 (0.059506) | 0.028659 / 0.023109 (0.005550) | 0.303272 / 0.275898 (0.027374) | 0.337186 / 0.323480 (0.013706) | 0.005126 / 0.007986 (-0.002860) | 0.003563 / 0.004328 (-0.000765) | 0.075295 / 0.004250 (0.071045) | 0.036836 / 0.037052 (-0.000216) | 0.309612 / 0.258489 (0.051123) | 0.346484 / 0.293841 (0.052643) | 0.025714 / 0.128546 (-0.102832) | 0.008562 / 0.075646 (-0.067085) | 0.323475 / 0.419271 (-0.095796) | 0.044072 / 0.043533 (0.000539) | 0.308261 / 0.255139 (0.053122) | 0.330903 / 0.283200 (0.047703) | 0.091805 / 0.141683 (-0.049878) | 1.517011 / 1.452155 (0.064856) | 1.570815 / 1.492716 (0.078099) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211265 / 0.018006 (0.193259) | 0.438860 / 0.000490 (0.438370) | 0.001127 / 0.000200 (0.000927) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023337 / 0.037411 (-0.014074) | 0.096243 / 0.014526 (0.081717) | 0.103529 / 0.176557 (-0.073028) | 0.161171 / 0.737135 (-0.575964) | 0.105904 / 0.296338 (-0.190435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417042 / 0.215209 (0.201833) | 4.155067 / 2.077655 (2.077412) | 1.879657 / 1.504120 (0.375537) | 1.669341 / 1.541195 (0.128146) | 1.717623 / 1.468490 (0.249133) | 0.556246 / 4.584777 (-4.028531) | 3.484535 / 3.745712 (-0.261177) | 1.728845 / 5.269862 (-3.541017) | 0.997477 / 4.565676 (-3.568199) | 0.068355 / 0.424275 (-0.355920) | 0.012445 / 0.007607 (0.004837) | 0.519023 / 0.226044 (0.292978) | 5.173506 / 2.268929 (2.904577) | 2.332435 / 55.444624 (-53.112190) | 1.986348 / 6.876477 (-4.890129) | 2.076885 / 2.142072 (-0.065187) | 0.656738 / 4.805227 (-4.148489) | 0.135308 / 6.500664 (-6.365356) | 0.065486 / 0.075469 (-0.009984) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208874 / 1.841788 (-0.632914) | 13.994200 / 8.074308 (5.919892) | 14.160978 / 10.191392 (3.969586) | 0.146009 / 0.680424 (-0.534415) | 0.016573 / 0.534201 (-0.517628) | 0.356082 / 0.579283 (-0.223202) | 0.387766 / 0.434364 (-0.046598) | 0.419130 / 0.540337 (-0.121208) | 0.508634 / 1.386936 (-0.878302) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006238 / 0.011353 (-0.005115) | 0.004221 / 0.011008 (-0.006788) | 0.075155 / 0.038508 (0.036646) | 0.028491 / 0.023109 (0.005382) | 0.355606 / 0.275898 (0.079708) | 0.388986 / 0.323480 (0.065506) | 0.005941 / 0.007986 (-0.002044) | 0.003510 / 0.004328 (-0.000819) | 0.074905 / 0.004250 (0.070655) | 0.039111 / 0.037052 (0.002059) | 0.358492 / 0.258489 (0.100003) | 0.398763 / 0.293841 (0.104922) | 0.025535 / 0.128546 (-0.103012) | 0.008580 / 0.075646 (-0.067067) | 0.080461 / 0.419271 (-0.338811) | 0.041381 / 0.043533 (-0.002152) | 0.355498 / 0.255139 (0.100359) | 0.379163 / 0.283200 (0.095963) | 0.096450 / 0.141683 (-0.045233) | 1.503248 / 1.452155 (0.051093) | 1.595616 / 1.492716 (0.102900) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238065 / 0.018006 (0.220058) | 0.422800 / 0.000490 (0.422311) | 0.002274 / 0.000200 (0.002074) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025746 / 0.037411 (-0.011665) | 0.103319 / 0.014526 (0.088793) | 0.112155 / 0.176557 (-0.064401) | 0.163034 / 0.737135 (-0.574101) | 0.113377 / 0.296338 (-0.182962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440522 / 0.215209 (0.225313) | 4.398123 / 2.077655 (2.320468) | 2.143538 / 1.504120 (0.639418) | 1.946084 / 1.541195 (0.404890) | 1.996556 / 1.468490 (0.528066) | 0.550108 / 4.584777 (-4.034669) | 3.455774 / 3.745712 (-0.289938) | 2.862474 / 5.269862 (-2.407387) | 1.213446 / 4.565676 (-3.352230) | 0.067987 / 0.424275 (-0.356288) | 0.012413 / 0.007607 (0.004806) | 0.543990 / 0.226044 (0.317945) | 5.454807 / 2.268929 (3.185879) | 2.669195 / 55.444624 (-52.775429) | 2.332948 / 6.876477 (-4.543528) | 2.383870 / 2.142072 (0.241797) | 0.652017 / 4.805227 (-4.153210) | 0.135508 / 6.500664 (-6.365156) | 0.068238 / 0.075469 (-0.007231) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322669 / 1.841788 (-0.519118) | 14.368136 / 8.074308 (6.293828) | 14.167431 / 10.191392 (3.976039) | 0.159371 / 0.680424 (-0.521052) | 0.016638 / 0.534201 (-0.517563) | 0.357106 / 0.579283 (-0.222177) | 0.392491 / 0.434364 (-0.041873) | 0.419458 / 0.540337 (-0.120880) | 0.504662 / 1.386936 (-0.882274) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bf764819ba6754cb7edf15899db517be0548676f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006296 / 0.011353 (-0.005057) | 0.004185 / 0.011008 (-0.006823) | 0.096170 / 0.038508 (0.057662) | 0.029212 / 0.023109 (0.006102) | 0.315356 / 0.275898 (0.039458) | 0.335214 / 0.323480 (0.011734) | 0.005108 / 0.007986 (-0.002877) | 0.003634 / 0.004328 (-0.000694) | 0.074186 / 0.004250 (0.069936) | 0.038716 / 0.037052 (0.001663) | 0.311041 / 0.258489 (0.052551) | 0.341202 / 0.293841 (0.047361) | 0.025584 / 0.128546 (-0.102962) | 0.008499 / 0.075646 (-0.067148) | 0.318660 / 0.419271 (-0.100611) | 0.043745 / 0.043533 (0.000212) | 0.314824 / 0.255139 (0.059685) | 0.328117 / 0.283200 (0.044917) | 0.093425 / 0.141683 (-0.048258) | 1.478732 / 1.452155 (0.026578) | 1.531743 / 1.492716 (0.039027) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203484 / 0.018006 (0.185478) | 0.416131 / 0.000490 (0.415641) | 0.007352 / 0.000200 (0.007152) | 0.000211 / 0.000054 (0.000156) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022908 / 0.037411 (-0.014503) | 0.098641 / 0.014526 (0.084115) | 0.103426 / 0.176557 (-0.073131) | 0.161658 / 0.737135 (-0.575477) | 0.106506 / 0.296338 (-0.189832) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430781 / 0.215209 (0.215572) | 4.315677 / 2.077655 (2.238022) | 2.022302 / 1.504120 (0.518182) | 1.832043 / 1.541195 (0.290849) | 1.789302 / 1.468490 (0.320812) | 0.560484 / 4.584777 (-4.024293) | 3.448204 / 3.745712 (-0.297508) | 1.725016 / 5.269862 (-3.544846) | 1.002649 / 4.565676 (-3.563027) | 0.068480 / 0.424275 (-0.355795) | 0.012617 / 0.007607 (0.005010) | 0.532291 / 0.226044 (0.306246) | 5.319352 / 2.268929 (3.050423) | 2.520730 / 55.444624 (-52.923894) | 2.213881 / 6.876477 (-4.662596) | 2.352477 / 2.142072 (0.210404) | 0.662516 / 4.805227 (-4.142711) | 0.136481 / 6.500664 (-6.364183) | 0.066597 / 0.075469 (-0.008872) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224537 / 1.841788 (-0.617251) | 13.849920 / 8.074308 (5.775612) | 14.026358 / 10.191392 (3.834966) | 0.131018 / 0.680424 (-0.549405) | 0.016756 / 0.534201 (-0.517445) | 0.358091 / 0.579283 (-0.221192) | 0.397709 / 0.434364 (-0.036655) | 0.450024 / 0.540337 (-0.090314) | 0.542609 / 1.386936 (-0.844327) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006179 / 0.011353 (-0.005174) | 0.004145 / 0.011008 (-0.006863) | 0.077482 / 0.038508 (0.038974) | 0.028005 / 0.023109 (0.004896) | 0.400010 / 0.275898 (0.124112) | 0.408206 / 0.323480 (0.084726) | 0.005049 / 0.007986 (-0.002937) | 0.003608 / 0.004328 (-0.000721) | 0.076841 / 0.004250 (0.072590) | 0.036714 / 0.037052 (-0.000338) | 0.406020 / 0.258489 (0.147531) | 0.412392 / 0.293841 (0.118551) | 0.025626 / 0.128546 (-0.102920) | 0.008560 / 0.075646 (-0.067087) | 0.084088 / 0.419271 (-0.335183) | 0.039707 / 0.043533 (-0.003826) | 0.396909 / 0.255139 (0.141770) | 0.403623 / 0.283200 (0.120424) | 0.095137 / 0.141683 (-0.046546) | 1.515670 / 1.452155 (0.063515) | 1.568379 / 1.492716 (0.075662) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.181802 / 0.018006 (0.163795) | 0.408778 / 0.000490 (0.408289) | 0.000393 / 0.000200 (0.000193) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025940 / 0.037411 (-0.011471) | 0.099992 / 0.014526 (0.085466) | 0.106280 / 0.176557 (-0.070276) | 0.161729 / 0.737135 (-0.575406) | 0.108625 / 0.296338 (-0.187713) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459802 / 0.215209 (0.244593) | 4.603002 / 2.077655 (2.525347) | 2.406851 / 1.504120 (0.902732) | 2.265422 / 1.541195 (0.724227) | 2.306305 / 1.468490 (0.837815) | 0.553903 / 4.584777 (-4.030874) | 3.482052 / 3.745712 (-0.263660) | 2.969855 / 5.269862 (-2.300007) | 1.309285 / 4.565676 (-3.256391) | 0.068130 / 0.424275 (-0.356145) | 0.012189 / 0.007607 (0.004582) | 0.571299 / 0.226044 (0.345254) | 5.711420 / 2.268929 (3.442492) | 2.716748 / 55.444624 (-52.727876) | 2.369869 / 6.876477 (-4.506608) | 2.544240 / 2.142072 (0.402167) | 0.659955 / 4.805227 (-4.145272) | 0.136684 / 6.500664 (-6.363980) | 0.068962 / 0.075469 (-0.006507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.297659 / 1.841788 (-0.544129) | 14.012758 / 8.074308 (5.938449) | 14.324644 / 10.191392 (4.133252) | 0.144894 / 0.680424 (-0.535530) | 0.016751 / 0.534201 (-0.517450) | 0.361547 / 0.579283 (-0.217736) | 0.396595 / 0.434364 (-0.037769) | 0.422375 / 0.540337 (-0.117962) | 0.508209 / 1.386936 (-0.878727) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ba5f81357b53099b1bedfbb277211dba3952257b \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006303 / 0.011353 (-0.005050) | 0.004043 / 0.011008 (-0.006965) | 0.096239 / 0.038508 (0.057731) | 0.029608 / 0.023109 (0.006498) | 0.321058 / 0.275898 (0.045160) | 0.367066 / 0.323480 (0.043587) | 0.005236 / 0.007986 (-0.002749) | 0.003342 / 0.004328 (-0.000987) | 0.074407 / 0.004250 (0.070157) | 0.038810 / 0.037052 (0.001757) | 0.332597 / 0.258489 (0.074108) | 0.363562 / 0.293841 (0.069721) | 0.025460 / 0.128546 (-0.103086) | 0.008426 / 0.075646 (-0.067221) | 0.316998 / 0.419271 (-0.102273) | 0.043621 / 0.043533 (0.000088) | 0.338043 / 0.255139 (0.082904) | 0.366441 / 0.283200 (0.083241) | 0.092061 / 0.141683 (-0.049622) | 1.461531 / 1.452155 (0.009376) | 1.538047 / 1.492716 (0.045331) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206796 / 0.018006 (0.188790) | 0.517959 / 0.000490 (0.517469) | 0.002745 / 0.000200 (0.002545) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022902 / 0.037411 (-0.014510) | 0.097901 / 0.014526 (0.083375) | 0.103664 / 0.176557 (-0.072893) | 0.163516 / 0.737135 (-0.573619) | 0.108561 / 0.296338 (-0.187778) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418964 / 0.215209 (0.203755) | 4.159113 / 2.077655 (2.081458) | 1.843946 / 1.504120 (0.339827) | 1.641083 / 1.541195 (0.099888) | 1.686848 / 1.468490 (0.218358) | 0.554583 / 4.584777 (-4.030194) | 3.409862 / 3.745712 (-0.335850) | 2.647904 / 5.269862 (-2.621958) | 1.355424 / 4.565676 (-3.210253) | 0.068229 / 0.424275 (-0.356046) | 0.012217 / 0.007607 (0.004610) | 0.515895 / 0.226044 (0.289851) | 5.144920 / 2.268929 (2.875991) | 2.298046 / 55.444624 (-53.146579) | 1.964735 / 6.876477 (-4.911741) | 2.075580 / 2.142072 (-0.066492) | 0.657104 / 4.805227 (-4.148123) | 0.134759 / 6.500664 (-6.365905) | 0.067545 / 0.075469 (-0.007924) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.233075 / 1.841788 (-0.608713) | 13.896762 / 8.074308 (5.822454) | 14.055143 / 10.191392 (3.863751) | 0.145507 / 0.680424 (-0.534917) | 0.016702 / 0.534201 (-0.517499) | 0.365157 / 0.579283 (-0.214126) | 0.385842 / 0.434364 (-0.048522) | 0.459993 / 0.540337 (-0.080344) | 0.547115 / 1.386936 (-0.839821) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006174 / 0.011353 (-0.005179) | 0.004191 / 0.011008 (-0.006817) | 0.078311 / 0.038508 (0.039803) | 0.028038 / 0.023109 (0.004928) | 0.360056 / 0.275898 (0.084158) | 0.398081 / 0.323480 (0.074602) | 0.005069 / 0.007986 (-0.002916) | 0.003464 / 0.004328 (-0.000864) | 0.077858 / 0.004250 (0.073608) | 0.039420 / 0.037052 (0.002367) | 0.361743 / 0.258489 (0.103254) | 0.404829 / 0.293841 (0.110988) | 0.025604 / 0.128546 (-0.102943) | 0.008573 / 0.075646 (-0.067074) | 0.084944 / 0.419271 (-0.334328) | 0.042652 / 0.043533 (-0.000881) | 0.368549 / 0.255139 (0.113410) | 0.385682 / 0.283200 (0.102482) | 0.099085 / 0.141683 (-0.042598) | 1.495815 / 1.452155 (0.043661) | 1.548168 / 1.492716 (0.055452) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193737 / 0.018006 (0.175730) | 0.421871 / 0.000490 (0.421381) | 0.002306 / 0.000200 (0.002106) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025928 / 0.037411 (-0.011483) | 0.103410 / 0.014526 (0.088885) | 0.107931 / 0.176557 (-0.068626) | 0.157127 / 0.737135 (-0.580008) | 0.111892 / 0.296338 (-0.184446) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477562 / 0.215209 (0.262353) | 4.772711 / 2.077655 (2.695056) | 2.458725 / 1.504120 (0.954605) | 2.269871 / 1.541195 (0.728676) | 2.365502 / 1.468490 (0.897012) | 0.556182 / 4.584777 (-4.028595) | 3.408016 / 3.745712 (-0.337697) | 1.730639 / 5.269862 (-3.539222) | 1.000973 / 4.565676 (-3.564704) | 0.068293 / 0.424275 (-0.355982) | 0.012119 / 0.007607 (0.004512) | 0.581281 / 0.226044 (0.355236) | 5.811930 / 2.268929 (3.543001) | 2.890337 / 55.444624 (-52.554288) | 2.592156 / 6.876477 (-4.284321) | 2.687764 / 2.142072 (0.545691) | 0.664282 / 4.805227 (-4.140946) | 0.136029 / 6.500664 (-6.364635) | 0.067493 / 0.075469 (-0.007976) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.330723 / 1.841788 (-0.511064) | 14.379172 / 8.074308 (6.304864) | 14.153286 / 10.191392 (3.961894) | 0.142942 / 0.680424 (-0.537482) | 0.016698 / 0.534201 (-0.517503) | 0.361044 / 0.579283 (-0.218239) | 0.393174 / 0.434364 (-0.041190) | 0.423107 / 0.540337 (-0.117231) | 0.514299 / 1.386936 (-0.872637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1cb02285358ab4be6386e0a2aae40d267ff561fc \"CML watermark\")\n"
] | 2023-05-25T16:26:33 | 2023-05-26T12:22:04 | 2023-05-26T11:57:16 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5897",
"html_url": "https://github.com/huggingface/datasets/pull/5897",
"diff_url": "https://github.com/huggingface/datasets/pull/5897.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5897.patch",
"merged_at": "2023-05-26T11:57:16"
} | Fix cast on sliced `FixedSizeListArray`s.
Fix #5866 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5897/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5897/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5896 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5896/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5896/comments | https://api.github.com/repos/huggingface/datasets/issues/5896/events | https://github.com/huggingface/datasets/issues/5896 | 1,726,022,500 | I_kwDODunzps5m4QNk | 5,896 | HuggingFace does not cache downloaded files aggressively/early enough | {
"login": "geajack",
"id": 2124157,
"node_id": "MDQ6VXNlcjIxMjQxNTc=",
"avatar_url": "https://avatars.githubusercontent.com/u/2124157?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/geajack",
"html_url": "https://github.com/geajack",
"followers_url": "https://api.github.com/users/geajack/followers",
"following_url": "https://api.github.com/users/geajack/following{/other_user}",
"gists_url": "https://api.github.com/users/geajack/gists{/gist_id}",
"starred_url": "https://api.github.com/users/geajack/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/geajack/subscriptions",
"organizations_url": "https://api.github.com/users/geajack/orgs",
"repos_url": "https://api.github.com/users/geajack/repos",
"events_url": "https://api.github.com/users/geajack/events{/privacy}",
"received_events_url": "https://api.github.com/users/geajack/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-05-25T15:14:36 | 2023-05-25T15:14:36 | null | NONE | null | null | null | ### Describe the bug
I wrote the following script:
```
import datasets
dataset = datasets.load.load_dataset("wikipedia", "20220301.en", split="train[:10000]")
```
I ran it and spent 90 minutes downloading a 20GB file. Then I saw:
```
Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20.3G/20.3G [1:30:29<00:00, 3.73MB/s]
Traceback (most recent call last):
File "/home/jack/Code/Projects/Transformers/Codebase/main.py", line 5, in <module>
dataset = datasets.load.load_dataset("wikipedia", "20220301.en", split="train[:10000]")
File "/home/jack/.local/lib/python3.10/site-packages/datasets/load.py", line 1782, in load_dataset
builder_instance.download_and_prepare(
File "/home/jack/.local/lib/python3.10/site-packages/datasets/builder.py", line 883, in download_and_prepare
self._save_info()
File "/home/jack/.local/lib/python3.10/site-packages/datasets/builder.py", line 2037, in _save_info
import apache_beam as beam
ModuleNotFoundError: No module named 'apache_beam'
```
And the 20GB of data was seemingly instantly gone forever, because when I ran the script again, it had to do the download again.
### Steps to reproduce the bug
See above
### Expected behavior
See above
### Environment info
datasets 2.10.1
Python 3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5896/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5896/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5895 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5895/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5895/comments | https://api.github.com/repos/huggingface/datasets/issues/5895/events | https://github.com/huggingface/datasets/issues/5895 | 1,725,467,252 | I_kwDODunzps5m2Ip0 | 5,895 | The dir name and split strings are confused when loading ArmelR/stack-exchange-instruction dataset | {
"login": "DongHande",
"id": 45357817,
"node_id": "MDQ6VXNlcjQ1MzU3ODE3",
"avatar_url": "https://avatars.githubusercontent.com/u/45357817?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/DongHande",
"html_url": "https://github.com/DongHande",
"followers_url": "https://api.github.com/users/DongHande/followers",
"following_url": "https://api.github.com/users/DongHande/following{/other_user}",
"gists_url": "https://api.github.com/users/DongHande/gists{/gist_id}",
"starred_url": "https://api.github.com/users/DongHande/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/DongHande/subscriptions",
"organizations_url": "https://api.github.com/users/DongHande/orgs",
"repos_url": "https://api.github.com/users/DongHande/repos",
"events_url": "https://api.github.com/users/DongHande/events{/privacy}",
"received_events_url": "https://api.github.com/users/DongHande/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for reporting, @DongHande.\r\n\r\nI think the issue is caused by the metadata in the dataset card: in the header of the `README.md`, they state that the dataset has 4 splits (\"finetune\", \"reward\", \"rl\", \"evaluation\"). \r\n```yaml\r\n splits:\r\n - name: finetune\r\n num_bytes: 6674567576\r\n num_examples: 3000000\r\n - name: reward\r\n num_bytes: 6674341521\r\n num_examples: 3000000\r\n - name: rl\r\n num_bytes: 6679279968\r\n num_examples: 3000000\r\n - name: evaluation\r\n num_bytes: 4022714493\r\n num_examples: 1807695\r\n```\r\n\r\n\r\nI guess the user wanted to define these as configs, instead of splits. This is not yet supported for no-script datasets, but will be soon supported. See:\r\n- #5331\r\n\r\nI think we should contact the dataset author to inform about the issue with the split names, as you already did: https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/discussions/1\r\nLet's continue the discussion there!",
"Thank you! It has been fixed. "
] | 2023-05-25T09:39:06 | 2023-05-29T02:32:12 | 2023-05-29T02:32:12 | NONE | null | null | null | ### Describe the bug
When I load the ArmelR/stack-exchange-instruction dataset, I encounter a bug that may be raised by confusing the dir name string and the split string about the dataset.
When I use the script "datasets.load_dataset('ArmelR/stack-exchange-instruction', data_dir="data/finetune", split="train", use_auth_token=True)", it fails. But it succeeds when I add the "streaming = True" parameter.
The website of the dataset is https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/ .
The traceback logs are as below:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/load.py", line 1797, in load_dataset
builder_instance.download_and_prepare(
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 890, in download_and_prepare
self._download_and_prepare(
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 985, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 1706, in _prepare_split
split_info = self.info.splits[split_generator.name]
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/splits.py", line 530, in __getitem__
instructions = make_file_instructions(
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/arrow_reader.py", line 112, in make_file_instructions
name2filenames = {
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/arrow_reader.py", line 113, in <dictcomp>
info.name: filenames_for_dataset_split(
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/naming.py", line 70, in filenames_for_dataset_split
prefix = filename_prefix_for_split(dataset_name, split)
File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/naming.py", line 54, in filename_prefix_for_split
if os.path.basename(name) != name:
File "/home/xxx/miniconda3/envs/code/lib/python3.9/posixpath.py", line 142, in basename
p = os.fspath(p)
TypeError: expected str, bytes or os.PathLike object, not NoneType
### Steps to reproduce the bug
1. import datasets library function: ```from datasets import load_dataset```
2. load dataset: ```ds=load_dataset('ArmelR/stack-exchange-instruction', data_dir="data/finetune", split="train", use_auth_token=True)```
### Expected behavior
The dataset can be loaded successfully without the streaming setting.
### Environment info
Linux,
python=3.9
datasets=2.12.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5895/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5895/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5894 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5894/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5894/comments | https://api.github.com/repos/huggingface/datasets/issues/5894/events | https://github.com/huggingface/datasets/pull/5894 | 1,724,774,910 | PR_kwDODunzps5RSjot | 5,894 | Force overwrite existing filesystem protocol | {
"login": "baskrahmer",
"id": 24520725,
"node_id": "MDQ6VXNlcjI0NTIwNzI1",
"avatar_url": "https://avatars.githubusercontent.com/u/24520725?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/baskrahmer",
"html_url": "https://github.com/baskrahmer",
"followers_url": "https://api.github.com/users/baskrahmer/followers",
"following_url": "https://api.github.com/users/baskrahmer/following{/other_user}",
"gists_url": "https://api.github.com/users/baskrahmer/gists{/gist_id}",
"starred_url": "https://api.github.com/users/baskrahmer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/baskrahmer/subscriptions",
"organizations_url": "https://api.github.com/users/baskrahmer/orgs",
"repos_url": "https://api.github.com/users/baskrahmer/repos",
"events_url": "https://api.github.com/users/baskrahmer/events{/privacy}",
"received_events_url": "https://api.github.com/users/baskrahmer/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009139 / 0.011353 (-0.002214) | 0.005634 / 0.011008 (-0.005374) | 0.129587 / 0.038508 (0.091079) | 0.038298 / 0.023109 (0.015189) | 0.428149 / 0.275898 (0.152251) | 0.443744 / 0.323480 (0.120264) | 0.007501 / 0.007986 (-0.000485) | 0.005999 / 0.004328 (0.001671) | 0.100796 / 0.004250 (0.096546) | 0.053236 / 0.037052 (0.016184) | 0.423868 / 0.258489 (0.165379) | 0.460110 / 0.293841 (0.166269) | 0.041255 / 0.128546 (-0.087291) | 0.013790 / 0.075646 (-0.061856) | 0.438398 / 0.419271 (0.019127) | 0.063086 / 0.043533 (0.019553) | 0.414826 / 0.255139 (0.159687) | 0.460652 / 0.283200 (0.177453) | 0.121223 / 0.141683 (-0.020460) | 1.754430 / 1.452155 (0.302275) | 1.900037 / 1.492716 (0.407320) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.027222 / 0.018006 (0.009216) | 0.617666 / 0.000490 (0.617176) | 0.022443 / 0.000200 (0.022243) | 0.000820 / 0.000054 (0.000766) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030397 / 0.037411 (-0.007014) | 0.125732 / 0.014526 (0.111206) | 0.149805 / 0.176557 (-0.026752) | 0.234048 / 0.737135 (-0.503087) | 0.143108 / 0.296338 (-0.153231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.631189 / 0.215209 (0.415980) | 6.182871 / 2.077655 (4.105216) | 2.635730 / 1.504120 (1.131610) | 2.231429 / 1.541195 (0.690235) | 2.438360 / 1.468490 (0.969870) | 0.861170 / 4.584777 (-3.723607) | 5.785984 / 3.745712 (2.040272) | 2.758358 / 5.269862 (-2.511504) | 1.678095 / 4.565676 (-2.887582) | 0.105961 / 0.424275 (-0.318314) | 0.013659 / 0.007607 (0.006052) | 0.762943 / 0.226044 (0.536898) | 7.774399 / 2.268929 (5.505471) | 3.319027 / 55.444624 (-52.125598) | 2.700248 / 6.876477 (-4.176229) | 3.008581 / 2.142072 (0.866509) | 1.122522 / 4.805227 (-3.682705) | 0.214832 / 6.500664 (-6.285832) | 0.085281 / 0.075469 (0.009811) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.647610 / 1.841788 (-0.194177) | 18.178316 / 8.074308 (10.104008) | 21.199177 / 10.191392 (11.007785) | 0.247063 / 0.680424 (-0.433361) | 0.030443 / 0.534201 (-0.503758) | 0.512527 / 0.579283 (-0.066757) | 0.640758 / 0.434364 (0.206394) | 0.639986 / 0.540337 (0.099649) | 0.760113 / 1.386936 (-0.626823) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008293 / 0.011353 (-0.003060) | 0.005360 / 0.011008 (-0.005648) | 0.102932 / 0.038508 (0.064424) | 0.037457 / 0.023109 (0.014347) | 0.444114 / 0.275898 (0.168216) | 0.512855 / 0.323480 (0.189375) | 0.007030 / 0.007986 (-0.000956) | 0.004954 / 0.004328 (0.000625) | 0.095757 / 0.004250 (0.091507) | 0.051239 / 0.037052 (0.014187) | 0.471118 / 0.258489 (0.212629) | 0.517764 / 0.293841 (0.223923) | 0.041953 / 0.128546 (-0.086593) | 0.013748 / 0.075646 (-0.061898) | 0.118089 / 0.419271 (-0.301182) | 0.060159 / 0.043533 (0.016626) | 0.466011 / 0.255139 (0.210872) | 0.489180 / 0.283200 (0.205980) | 0.123250 / 0.141683 (-0.018433) | 1.714738 / 1.452155 (0.262584) | 1.838571 / 1.492716 (0.345855) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267792 / 0.018006 (0.249785) | 0.624313 / 0.000490 (0.623824) | 0.007315 / 0.000200 (0.007115) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033751 / 0.037411 (-0.003661) | 0.122819 / 0.014526 (0.108293) | 0.148270 / 0.176557 (-0.028286) | 0.198581 / 0.737135 (-0.538554) | 0.144845 / 0.296338 (-0.151494) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620631 / 0.215209 (0.405422) | 6.224665 / 2.077655 (4.147010) | 2.856592 / 1.504120 (1.352473) | 2.525089 / 1.541195 (0.983894) | 2.600198 / 1.468490 (1.131708) | 0.872038 / 4.584777 (-3.712739) | 5.571650 / 3.745712 (1.825937) | 5.907643 / 5.269862 (0.637782) | 2.348770 / 4.565676 (-2.216906) | 0.111665 / 0.424275 (-0.312610) | 0.013886 / 0.007607 (0.006278) | 0.762154 / 0.226044 (0.536109) | 7.792686 / 2.268929 (5.523758) | 3.601122 / 55.444624 (-51.843503) | 2.939412 / 6.876477 (-3.937064) | 2.973430 / 2.142072 (0.831358) | 1.065016 / 4.805227 (-3.740211) | 0.221701 / 6.500664 (-6.278963) | 0.088157 / 0.075469 (0.012688) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.771061 / 1.841788 (-0.070727) | 18.826926 / 8.074308 (10.752618) | 21.283830 / 10.191392 (11.092438) | 0.239233 / 0.680424 (-0.441191) | 0.026159 / 0.534201 (-0.508042) | 0.487074 / 0.579283 (-0.092209) | 0.623241 / 0.434364 (0.188877) | 0.600506 / 0.540337 (0.060169) | 0.691271 / 1.386936 (-0.695665) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1bbe2c3496498a6415765b517ac4bc600a02ad06 \"CML watermark\")\n"
] | 2023-05-24T21:41:53 | 2023-05-25T06:52:08 | 2023-05-25T06:42:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5894",
"html_url": "https://github.com/huggingface/datasets/pull/5894",
"diff_url": "https://github.com/huggingface/datasets/pull/5894.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5894.patch",
"merged_at": "2023-05-25T06:42:33"
} | Fix #5876 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5894/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5894/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5893 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5893/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5893/comments | https://api.github.com/repos/huggingface/datasets/issues/5893/events | https://github.com/huggingface/datasets/pull/5893 | 1,722,519,056 | PR_kwDODunzps5RK40K | 5,893 | Load cached dataset as iterable | {
"login": "mariusz-jachimowicz-83",
"id": 10278877,
"node_id": "MDQ6VXNlcjEwMjc4ODc3",
"avatar_url": "https://avatars.githubusercontent.com/u/10278877?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariusz-jachimowicz-83",
"html_url": "https://github.com/mariusz-jachimowicz-83",
"followers_url": "https://api.github.com/users/mariusz-jachimowicz-83/followers",
"following_url": "https://api.github.com/users/mariusz-jachimowicz-83/following{/other_user}",
"gists_url": "https://api.github.com/users/mariusz-jachimowicz-83/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariusz-jachimowicz-83/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariusz-jachimowicz-83/subscriptions",
"organizations_url": "https://api.github.com/users/mariusz-jachimowicz-83/orgs",
"repos_url": "https://api.github.com/users/mariusz-jachimowicz-83/repos",
"events_url": "https://api.github.com/users/mariusz-jachimowicz-83/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariusz-jachimowicz-83/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"@lhoestq Could you please look into that and review?",
"_The documentation is not available anymore as the PR was closed or merged._",
"@lhoestq I refactored the code. Could you please check is it what you requested?",
"@lhoestq Thanks for a review. Excellent tips. All tips applied. ",
"I think there is just PythonFormatter that needs to be imported in the test file and we should be good to merge",
"@lhoestq that is weird. I have linter error when I do it.",
"@lhoestq Now it should work properly.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006152 / 0.011353 (-0.005201) | 0.004169 / 0.011008 (-0.006839) | 0.097968 / 0.038508 (0.059460) | 0.028325 / 0.023109 (0.005216) | 0.308958 / 0.275898 (0.033060) | 0.341832 / 0.323480 (0.018352) | 0.005098 / 0.007986 (-0.002887) | 0.004721 / 0.004328 (0.000393) | 0.075067 / 0.004250 (0.070817) | 0.040514 / 0.037052 (0.003462) | 0.308355 / 0.258489 (0.049866) | 0.351063 / 0.293841 (0.057222) | 0.025261 / 0.128546 (-0.103285) | 0.008483 / 0.075646 (-0.067163) | 0.321219 / 0.419271 (-0.098052) | 0.058258 / 0.043533 (0.014725) | 0.312572 / 0.255139 (0.057433) | 0.330667 / 0.283200 (0.047467) | 0.091047 / 0.141683 (-0.050635) | 1.536541 / 1.452155 (0.084387) | 1.606566 / 1.492716 (0.113850) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213234 / 0.018006 (0.195228) | 0.494801 / 0.000490 (0.494311) | 0.003764 / 0.000200 (0.003564) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023653 / 0.037411 (-0.013758) | 0.097176 / 0.014526 (0.082650) | 0.102961 / 0.176557 (-0.073595) | 0.164285 / 0.737135 (-0.572851) | 0.107586 / 0.296338 (-0.188753) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421402 / 0.215209 (0.206193) | 4.195828 / 2.077655 (2.118174) | 1.884664 / 1.504120 (0.380544) | 1.679750 / 1.541195 (0.138556) | 1.719725 / 1.468490 (0.251235) | 0.552290 / 4.584777 (-4.032486) | 3.386337 / 3.745712 (-0.359375) | 1.771527 / 5.269862 (-3.498334) | 1.133327 / 4.565676 (-3.432349) | 0.067911 / 0.424275 (-0.356364) | 0.012572 / 0.007607 (0.004965) | 0.518004 / 0.226044 (0.291960) | 5.192381 / 2.268929 (2.923453) | 2.316032 / 55.444624 (-53.128592) | 1.993264 / 6.876477 (-4.883212) | 2.071009 / 2.142072 (-0.071063) | 0.655062 / 4.805227 (-4.150165) | 0.135488 / 6.500664 (-6.365177) | 0.067273 / 0.075469 (-0.008196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.217731 / 1.841788 (-0.624056) | 13.812927 / 8.074308 (5.738619) | 13.137886 / 10.191392 (2.946494) | 0.143102 / 0.680424 (-0.537322) | 0.016884 / 0.534201 (-0.517317) | 0.370106 / 0.579283 (-0.209178) | 0.392349 / 0.434364 (-0.042015) | 0.424501 / 0.540337 (-0.115837) | 0.509830 / 1.386936 (-0.877106) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006210 / 0.011353 (-0.005142) | 0.004215 / 0.011008 (-0.006793) | 0.076129 / 0.038508 (0.037621) | 0.027825 / 0.023109 (0.004716) | 0.403973 / 0.275898 (0.128075) | 0.441089 / 0.323480 (0.117609) | 0.005420 / 0.007986 (-0.002566) | 0.004870 / 0.004328 (0.000542) | 0.075558 / 0.004250 (0.071308) | 0.039464 / 0.037052 (0.002411) | 0.404329 / 0.258489 (0.145840) | 0.447213 / 0.293841 (0.153372) | 0.025877 / 0.128546 (-0.102669) | 0.008660 / 0.075646 (-0.066987) | 0.081849 / 0.419271 (-0.337422) | 0.044551 / 0.043533 (0.001018) | 0.379102 / 0.255139 (0.123963) | 0.403104 / 0.283200 (0.119905) | 0.094754 / 0.141683 (-0.046929) | 1.460772 / 1.452155 (0.008617) | 1.569531 / 1.492716 (0.076815) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183923 / 0.018006 (0.165917) | 0.420708 / 0.000490 (0.420219) | 0.002091 / 0.000200 (0.001891) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026180 / 0.037411 (-0.011231) | 0.101529 / 0.014526 (0.087003) | 0.108739 / 0.176557 (-0.067818) | 0.160702 / 0.737135 (-0.576433) | 0.111739 / 0.296338 (-0.184600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448671 / 0.215209 (0.233462) | 4.469287 / 2.077655 (2.391632) | 2.244335 / 1.504120 (0.740215) | 2.107495 / 1.541195 (0.566301) | 2.224763 / 1.468490 (0.756272) | 0.554006 / 4.584777 (-4.030771) | 3.390109 / 3.745712 (-0.355603) | 1.744189 / 5.269862 (-3.525673) | 1.008515 / 4.565676 (-3.557161) | 0.067904 / 0.424275 (-0.356371) | 0.012243 / 0.007607 (0.004636) | 0.557635 / 0.226044 (0.331590) | 5.610383 / 2.268929 (3.341454) | 2.687326 / 55.444624 (-52.757298) | 2.405262 / 6.876477 (-4.471214) | 2.527300 / 2.142072 (0.385227) | 0.662282 / 4.805227 (-4.142945) | 0.136225 / 6.500664 (-6.364439) | 0.068136 / 0.075469 (-0.007334) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310791 / 1.841788 (-0.530997) | 14.370381 / 8.074308 (6.296072) | 14.122675 / 10.191392 (3.931283) | 0.152302 / 0.680424 (-0.528122) | 0.016624 / 0.534201 (-0.517577) | 0.359395 / 0.579283 (-0.219888) | 0.392131 / 0.434364 (-0.042233) | 0.423796 / 0.540337 (-0.116542) | 0.511387 / 1.386936 (-0.875549) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d6a61a1af1502677a6f2333896a6ffeede9ca21b \"CML watermark\")\n"
] | 2023-05-23T17:40:35 | 2023-06-01T11:58:24 | 2023-06-01T11:51:29 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5893",
"html_url": "https://github.com/huggingface/datasets/pull/5893",
"diff_url": "https://github.com/huggingface/datasets/pull/5893.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5893.patch",
"merged_at": "2023-06-01T11:51:29"
} | To be used to train models it allows to load an IterableDataset from the cached Arrow file.
See https://github.com/huggingface/datasets/issues/5481 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5893/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5893/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5892 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5892/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5892/comments | https://api.github.com/repos/huggingface/datasets/issues/5892/events | https://github.com/huggingface/datasets/issues/5892 | 1,722,503,824 | I_kwDODunzps5mq1KQ | 5,892 | User access requests with manual review do not notify the dataset owner | {
"login": "leondz",
"id": 121934,
"node_id": "MDQ6VXNlcjEyMTkzNA==",
"avatar_url": "https://avatars.githubusercontent.com/u/121934?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/leondz",
"html_url": "https://github.com/leondz",
"followers_url": "https://api.github.com/users/leondz/followers",
"following_url": "https://api.github.com/users/leondz/following{/other_user}",
"gists_url": "https://api.github.com/users/leondz/gists{/gist_id}",
"starred_url": "https://api.github.com/users/leondz/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/leondz/subscriptions",
"organizations_url": "https://api.github.com/users/leondz/orgs",
"repos_url": "https://api.github.com/users/leondz/repos",
"events_url": "https://api.github.com/users/leondz/events{/privacy}",
"received_events_url": "https://api.github.com/users/leondz/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"cc @SBrandeis",
"I think this has been addressed.\r\n\r\nPlease open a new issue if you are still not getting notified."
] | 2023-05-23T17:27:46 | 2023-07-21T13:55:37 | 2023-07-21T13:55:36 | CONTRIBUTOR | null | null | null | ### Describe the bug
When a user access requests are enabled, and new requests are set to Manual Review, the dataset owner should be notified of the pending requests. However, instead, currently nothing happens, and so the dataset request can go unanswered for quite some time until the owner happens to check that particular dataset's Settings pane.
### Steps to reproduce the bug
1. Enable a dataset's user access requests
2. Set to Manual Review
3. Ask another HF user to request access to the dataset
4. Dataset owner is not notified
### Expected behavior
The dataset owner should receive some kind of notification, perhaps in their HF site inbox, or by email, when a dataset access request is made and manual review is enabled.
### Environment info
n/a | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5892/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5892/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5891 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5891/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5891/comments | https://api.github.com/repos/huggingface/datasets/issues/5891/events | https://github.com/huggingface/datasets/pull/5891 | 1,722,384,135 | PR_kwDODunzps5RKchn | 5,891 | Make split slicing consisten with list slicing | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5891). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006916 / 0.011353 (-0.004437) | 0.004749 / 0.011008 (-0.006259) | 0.096086 / 0.038508 (0.057578) | 0.035448 / 0.023109 (0.012338) | 0.299645 / 0.275898 (0.023747) | 0.331279 / 0.323480 (0.007799) | 0.006018 / 0.007986 (-0.001968) | 0.004210 / 0.004328 (-0.000118) | 0.072998 / 0.004250 (0.068747) | 0.050082 / 0.037052 (0.013030) | 0.297714 / 0.258489 (0.039225) | 0.365523 / 0.293841 (0.071682) | 0.028081 / 0.128546 (-0.100465) | 0.009072 / 0.075646 (-0.066574) | 0.327628 / 0.419271 (-0.091643) | 0.051165 / 0.043533 (0.007633) | 0.295091 / 0.255139 (0.039952) | 0.320052 / 0.283200 (0.036852) | 0.109841 / 0.141683 (-0.031842) | 1.467867 / 1.452155 (0.015712) | 1.572600 / 1.492716 (0.079884) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281490 / 0.018006 (0.263484) | 0.499259 / 0.000490 (0.498770) | 0.000691 / 0.000200 (0.000491) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027548 / 0.037411 (-0.009863) | 0.106592 / 0.014526 (0.092066) | 0.118654 / 0.176557 (-0.057902) | 0.174313 / 0.737135 (-0.562822) | 0.124491 / 0.296338 (-0.171848) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399674 / 0.215209 (0.184465) | 3.984092 / 2.077655 (1.906437) | 1.790935 / 1.504120 (0.286815) | 1.593612 / 1.541195 (0.052417) | 1.694595 / 1.468490 (0.226105) | 0.517588 / 4.584777 (-4.067189) | 3.724353 / 3.745712 (-0.021359) | 3.244807 / 5.269862 (-2.025054) | 1.602929 / 4.565676 (-2.962748) | 0.065334 / 0.424275 (-0.358941) | 0.012259 / 0.007607 (0.004652) | 0.501355 / 0.226044 (0.275311) | 4.996546 / 2.268929 (2.727618) | 2.279333 / 55.444624 (-53.165291) | 1.940126 / 6.876477 (-4.936351) | 2.122945 / 2.142072 (-0.019128) | 0.626104 / 4.805227 (-4.179123) | 0.141278 / 6.500664 (-6.359386) | 0.064522 / 0.075469 (-0.010947) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195351 / 1.841788 (-0.646436) | 15.258932 / 8.074308 (7.184624) | 14.627623 / 10.191392 (4.436231) | 0.266897 / 0.680424 (-0.413527) | 0.017557 / 0.534201 (-0.516644) | 0.392932 / 0.579283 (-0.186351) | 0.416409 / 0.434364 (-0.017955) | 0.469100 / 0.540337 (-0.071237) | 0.556247 / 1.386936 (-0.830689) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006880 / 0.011353 (-0.004473) | 0.004837 / 0.011008 (-0.006171) | 0.074518 / 0.038508 (0.036010) | 0.034204 / 0.023109 (0.011095) | 0.365100 / 0.275898 (0.089202) | 0.394976 / 0.323480 (0.071496) | 0.006364 / 0.007986 (-0.001621) | 0.004269 / 0.004328 (-0.000060) | 0.073531 / 0.004250 (0.069281) | 0.051334 / 0.037052 (0.014281) | 0.373904 / 0.258489 (0.115415) | 0.413662 / 0.293841 (0.119821) | 0.028779 / 0.128546 (-0.099767) | 0.009292 / 0.075646 (-0.066354) | 0.081574 / 0.419271 (-0.337698) | 0.046531 / 0.043533 (0.002998) | 0.368995 / 0.255139 (0.113856) | 0.376938 / 0.283200 (0.093739) | 0.112576 / 0.141683 (-0.029107) | 1.458880 / 1.452155 (0.006725) | 1.550918 / 1.492716 (0.058202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319521 / 0.018006 (0.301515) | 0.510146 / 0.000490 (0.509656) | 0.000438 / 0.000200 (0.000238) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033082 / 0.037411 (-0.004329) | 0.118009 / 0.014526 (0.103483) | 0.127108 / 0.176557 (-0.049448) | 0.176600 / 0.737135 (-0.560535) | 0.133790 / 0.296338 (-0.162549) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437360 / 0.215209 (0.222151) | 4.367426 / 2.077655 (2.289771) | 2.193646 / 1.504120 (0.689526) | 2.025002 / 1.541195 (0.483808) | 2.142347 / 1.468490 (0.673856) | 0.525497 / 4.584777 (-4.059280) | 3.751275 / 3.745712 (0.005563) | 1.912271 / 5.269862 (-3.357590) | 1.087286 / 4.565676 (-3.478390) | 0.066328 / 0.424275 (-0.357947) | 0.011904 / 0.007607 (0.004297) | 0.545870 / 0.226044 (0.319825) | 5.434481 / 2.268929 (3.165552) | 2.719745 / 55.444624 (-52.724880) | 2.445001 / 6.876477 (-4.431476) | 2.500205 / 2.142072 (0.358133) | 0.645735 / 4.805227 (-4.159492) | 0.144210 / 6.500664 (-6.356455) | 0.065688 / 0.075469 (-0.009781) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273522 / 1.841788 (-0.568265) | 15.771778 / 8.074308 (7.697470) | 14.685261 / 10.191392 (4.493869) | 0.176523 / 0.680424 (-0.503900) | 0.017877 / 0.534201 (-0.516324) | 0.392687 / 0.579283 (-0.186596) | 0.449992 / 0.434364 (0.015628) | 0.462851 / 0.540337 (-0.077487) | 0.560178 / 1.386936 (-0.826758) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0fa3ef6eba906ee1214e0596d15a78fc358909f4 \"CML watermark\")\n"
] | 2023-05-23T16:04:33 | 2023-05-23T16:11:12 | null | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5891",
"html_url": "https://github.com/huggingface/datasets/pull/5891",
"diff_url": "https://github.com/huggingface/datasets/pull/5891.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5891.patch",
"merged_at": null
} | Fix #1774, fix #5875
TODO: a test | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5891/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5891/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5889 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5889/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5889/comments | https://api.github.com/repos/huggingface/datasets/issues/5889/events | https://github.com/huggingface/datasets/issues/5889 | 1,722,373,618 | I_kwDODunzps5mqVXy | 5,889 | Token Alignment for input and output data over train and test batch/dataset. | {
"login": "akesh1235",
"id": 125154243,
"node_id": "U_kgDOB3Wzww",
"avatar_url": "https://avatars.githubusercontent.com/u/125154243?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/akesh1235",
"html_url": "https://github.com/akesh1235",
"followers_url": "https://api.github.com/users/akesh1235/followers",
"following_url": "https://api.github.com/users/akesh1235/following{/other_user}",
"gists_url": "https://api.github.com/users/akesh1235/gists{/gist_id}",
"starred_url": "https://api.github.com/users/akesh1235/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/akesh1235/subscriptions",
"organizations_url": "https://api.github.com/users/akesh1235/orgs",
"repos_url": "https://api.github.com/users/akesh1235/repos",
"events_url": "https://api.github.com/users/akesh1235/events{/privacy}",
"received_events_url": "https://api.github.com/users/akesh1235/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-05-23T15:58:55 | 2023-05-23T15:58:55 | null | NONE | null | null | null | `data`
> DatasetDict({
train: Dataset({
features: ['input', 'output'],
num_rows: 4500
})
test: Dataset({
features: ['input', 'output'],
num_rows: 500
})
})
**# input (in-correct sentence)**
`data['train'][0]['input']`
**>>** 'We are meet sunday 10am12pmET in Crown Heights Brooklyn New York'
**# output (correct sentence)**
`data['train'][0]['output']`
**>>** 'We meet Sundays 10am-12pmET in Crown Heights, Brooklyn, New York.'
**I Want to align the output tokens with input**
```
`# tokenize both inputs and targets
def tokenize_fn(batch):
# tokenize the input sequence first
# this populates input_ids, attention_mask, etc.
tokenized_inputs = tokenizer(
batch['input']
)
labels_batch = tokenizer.tokenize(batch['output']) # original targets
aligned_labels_batch = []
for i, labels in enumerate(labels_batch):
word_ids = tokenized_inputs[i].word_ids()
aligned_labels_batch.append(align_targets(labels, word_ids)) # align_targets is another user defined function which is been called here
# recall: the 'target' must be stored in key called 'labels'
tokenized_inputs['labels'] = aligned_labels_batch
return tokenized_inputs`
```
```
data.map(
tokenize_fn,
batched=True,
remove_columns=data['train'].column_names,
)
```
When this user defined function is mapped to every records of train and test batch am getting following error:
**1.** **raise DatasetTransformationNotAllowedError(
3457 "Using `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn't create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it."**
**2.** **TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]** | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5889/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5889/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5887 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5887/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5887/comments | https://api.github.com/repos/huggingface/datasets/issues/5887/events | https://github.com/huggingface/datasets/issues/5887 | 1,722,166,382 | I_kwDODunzps5mpixu | 5,887 | HuggingsFace dataset example give error | {
"login": "donhuvy",
"id": 1328316,
"node_id": "MDQ6VXNlcjEzMjgzMTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/1328316?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/donhuvy",
"html_url": "https://github.com/donhuvy",
"followers_url": "https://api.github.com/users/donhuvy/followers",
"following_url": "https://api.github.com/users/donhuvy/following{/other_user}",
"gists_url": "https://api.github.com/users/donhuvy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/donhuvy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/donhuvy/subscriptions",
"organizations_url": "https://api.github.com/users/donhuvy/orgs",
"repos_url": "https://api.github.com/users/donhuvy/repos",
"events_url": "https://api.github.com/users/donhuvy/events{/privacy}",
"received_events_url": "https://api.github.com/users/donhuvy/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Nice catch @donhuvy, that's because some models don't need the `token_type_ids`, as in this case, as the example is using `distilbert-base-cased`, and according to the DistilBert documentation at https://huggingface.co/transformers/v3.0.2/model_doc/distilbert.html, `DistilBert doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just separate your segments with the separation token tokenizer.sep_token (or [SEP])`. `token_type_ids` are neither required in some other well known models such as RoBERTa. \r\n\r\nHere the issue comes due to a mismatch between the tokenizer and the model, as the Colab is using a BERT tokenizer (`bert-base-cased`), while the model is a DistilBERT (`distilbert-base-cased`), so aligning the tokenizer and the model solves it!",
"#self-assign",
"@donhuvy I've created https://github.com/huggingface/datasets/pull/5902 to solve it! 🤗",
"This has been addressed in #5902.\r\n\r\nThe Quicktour notebook is deprecated now - please use the notebook version of the [Quickstart doc page](https://huggingface.co/docs/datasets/main/en/quickstart) instead (\"Open in Colab\" button)."
] | 2023-05-23T14:09:05 | 2023-07-25T14:01:01 | 2023-07-25T14:01:00 | NONE | null | null | null | ### Describe the bug
![image](https://github.com/huggingface/datasets/assets/1328316/1f4f0086-3db9-4c79-906b-05a375357cce)
![image](https://github.com/huggingface/datasets/assets/1328316/733ebd3d-89b9-4ece-b80a-00ab5b0a4122)
### Steps to reproduce the bug
Use link as reference document written https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb#scrollTo=biqDH9vpvSVz
```python
# Now let's train our model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.train().to(device)
for i, batch in enumerate(dataloader):
batch.to(device)
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
model.zero_grad()
print(f'Step {i} - loss: {loss:.3}')
if i > 5:
break
```
Error
```python
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
[<ipython-input-44-7040b885f382>](https://localhost:8080/#) in <cell line: 5>()
5 for i, batch in enumerate(dataloader):
6 batch.to(device)
----> 7 outputs = model(**batch)
8 loss = outputs.loss
9 loss.backward()
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
TypeError: DistilBertForQuestionAnswering.forward() got an unexpected keyword argument 'token_type_ids'
```
https://github.com/huggingface/datasets/assets/1328316/5d8b1d61-9337-4d59-8423-4f37f834c156
### Expected behavior
Run success on Google Colab (free)
### Environment info
Windows 11 x64, Google Colab free (my Google Drive just empty about 200 MB, but I don't think it cause problem) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5887/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5887/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5886 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5886/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5886/comments | https://api.github.com/repos/huggingface/datasets/issues/5886/events | https://github.com/huggingface/datasets/issues/5886 | 1,721,070,225 | I_kwDODunzps5mlXKR | 5,886 | Use work-stealing algorithm when parallel computing | {
"login": "1014661165",
"id": 46060451,
"node_id": "MDQ6VXNlcjQ2MDYwNDUx",
"avatar_url": "https://avatars.githubusercontent.com/u/46060451?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/1014661165",
"html_url": "https://github.com/1014661165",
"followers_url": "https://api.github.com/users/1014661165/followers",
"following_url": "https://api.github.com/users/1014661165/following{/other_user}",
"gists_url": "https://api.github.com/users/1014661165/gists{/gist_id}",
"starred_url": "https://api.github.com/users/1014661165/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/1014661165/subscriptions",
"organizations_url": "https://api.github.com/users/1014661165/orgs",
"repos_url": "https://api.github.com/users/1014661165/repos",
"events_url": "https://api.github.com/users/1014661165/events{/privacy}",
"received_events_url": "https://api.github.com/users/1014661165/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"Alternatively we could set the number of shards to be a factor than the number of processes (current they're equal) - this way it will be less likely to end up with a shard that is significantly slower than all the other ones."
] | 2023-05-23T03:08:44 | 2023-05-24T15:30:09 | null | NONE | null | null | null | ### Feature request
when i used Dataset.map api to process data concurrently, i found that
it gets slower and slower as it gets closer to completion. Then i read the source code of arrow_dataset.py and found that it shard the dataset and use multiprocessing pool to execute each shard.It may cause the slowest task to drag out the entire program's execution time,especially when processing huge dataset.
### Motivation
using work-stealing algorithm instead of sharding and parallel computing to optimize performance.
### Your contribution
just an idea. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5886/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5886/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5885 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5885/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5885/comments | https://api.github.com/repos/huggingface/datasets/issues/5885/events | https://github.com/huggingface/datasets/pull/5885 | 1,720,954,440 | PR_kwDODunzps5RFjTL | 5,885 | Modify `is_remote_filesystem` to return True for FUSE-mounted paths | {
"login": "maddiedawson",
"id": 106995444,
"node_id": "U_kgDOBmCe9A",
"avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/maddiedawson",
"html_url": "https://github.com/maddiedawson",
"followers_url": "https://api.github.com/users/maddiedawson/followers",
"following_url": "https://api.github.com/users/maddiedawson/following{/other_user}",
"gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions",
"organizations_url": "https://api.github.com/users/maddiedawson/orgs",
"repos_url": "https://api.github.com/users/maddiedawson/repos",
"events_url": "https://api.github.com/users/maddiedawson/events{/privacy}",
"received_events_url": "https://api.github.com/users/maddiedawson/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5885). All of your documentation changes will be reflected on that endpoint.",
"@lhoestq would you or another maintainer be able to review please? :)",
"Why you do need to support FUSE mounted paths ?\r\n\r\n`datasets` uses data that live on disk for fast lookups - FUSE mounted disks would lead to poor performance and I wouldn't recomment using it.",
"Fuse is commonly used to mount remote file systems (e.g. S3, DBFS) as a local directory. Since it's slower than using an actual local device, it's better to treat it as remote to reduce latency.",
"I think people would be confused if they don't have the same dataset behavior depending on the disk type.\r\n\r\nIf they want to use a remote bucket they should use the remote URI instead, e.g. `s3://...`. Advancements on this are tracked at #5281 "
] | 2023-05-23T01:04:54 | 2023-05-25T08:50:48 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5885",
"html_url": "https://github.com/huggingface/datasets/pull/5885",
"diff_url": "https://github.com/huggingface/datasets/pull/5885.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5885.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5885/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5885/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5888 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5888/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5888/comments | https://api.github.com/repos/huggingface/datasets/issues/5888/events | https://github.com/huggingface/datasets/issues/5888 | 1,722,290,363 | I_kwDODunzps5mqBC7 | 5,888 | A way to upload and visualize .mp4 files (millions of them) as part of a dataset | {
"login": "AntreasAntoniou",
"id": 10792502,
"node_id": "MDQ6VXNlcjEwNzkyNTAy",
"avatar_url": "https://avatars.githubusercontent.com/u/10792502?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/AntreasAntoniou",
"html_url": "https://github.com/AntreasAntoniou",
"followers_url": "https://api.github.com/users/AntreasAntoniou/followers",
"following_url": "https://api.github.com/users/AntreasAntoniou/following{/other_user}",
"gists_url": "https://api.github.com/users/AntreasAntoniou/gists{/gist_id}",
"starred_url": "https://api.github.com/users/AntreasAntoniou/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AntreasAntoniou/subscriptions",
"organizations_url": "https://api.github.com/users/AntreasAntoniou/orgs",
"repos_url": "https://api.github.com/users/AntreasAntoniou/repos",
"events_url": "https://api.github.com/users/AntreasAntoniou/events{/privacy}",
"received_events_url": "https://api.github.com/users/AntreasAntoniou/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! \r\n\r\nYou want to use `push_to_hub` (creates Parquet files) instead of `save_to_disk` (creates Arrow files) when creating a Hub dataset. Parquet is designed for long-term storage and takes less space than the Arrow format, and, most importantly, `load_dataset` can parse it, which should fix the viewer. \r\n\r\nRegarding the dataset generation, `Dataset.from_generator` with the video data represented as `datasets.Value(\"binary\")` followed by `push_to_hub` should work (if the `push_to_hub` step times out, restart it to resume uploading)\r\n\r\nPS: Once the dataset is uploaded, to make working with the dataset easier, it's a good idea to add a [transform](https://huggingface.co/docs/datasets/main/en/process#format-transform) to the README that shows how to decode the binary video data into something a model can understand. Also, if you get an `ArrowInvalid` error (can happen when working with large binary data) in `Dataset.from_generator`, reduce the value of `writer_batch_size` (the default is 1000) to fix it.",
"One issue here is that Dataset.from_generator can work well for the non 'infinite sampling' version of the dataset. The training set for example is often sampled dynamically given the video files that I have uploaded. I worry that storing the video data as binary means that I'll end up duplicating a lot of the data. Furthermore, storing video data as anything but .mp4 would quickly make the dataset size from 1.9TB to 1PB. ",
"> storing video data as anything but .mp4\r\n\r\nWhat I mean by storing as `datasets.Value(\"binary\")` is embedding raw MP4 bytes in the Arrow table, but, indeed, this would waste a lot of space if there are duplicates.\r\n\r\nSo I see two options:\r\n* if one video is not mapped to too many samples, you can embed the video bytes and do \"group by\" on the rest of the columns (this would turn them into lists) to avoid duplicating them (then, it should be easy to define a `map` in the README that samples the video data to \"unpack\" the samples)\r\n* you can create a dataset script that downloads the video files and embeds their file paths into the Arrow file\r\n\r\nAlso, I misread MP4 as MP3. We need to add a `Video` feature to the `datasets` lib to support MP4 files in the viewer (a bit trickier to implement than the `Image` feature due to the Arrow limitations).",
"I'm transferring this issue to the `datasets` repo, as it's not related to `huggingface_hub`",
"@mariosasko Right. If I want my dataset to be streamable, what are the necessary requirements to achieve that within the context of .mp4 binaries like we have here? I guess your second point here would not support that right?",
"The streaming would work, but the video paths would require using `fsspec.open` to get the content.",
"Are there any plans to make video playable on the hub?",
"Not yet. The (open source) tooling for video is not great in terms of ease of use/performance, so we are discussing internally the best way to support it (one option is creating a new library for video IO, but this will require a lot of work)",
"True. I spend a good 4 months just mixing and matching existing solutions so I could get performance that would not IO bound my model training. \r\n\r\nThis is what I ended up with, in case it's useful\r\n\r\nhttps://github.com/AntreasAntoniou/TALI/blob/045cf9e5aa75b1bf2c6d5351fb910fa10e3ff32c/tali/data/data_plus.py#L85"
] | 2023-05-22T18:05:26 | 2023-06-23T03:37:16 | null | NONE | null | null | null | **Is your feature request related to a problem? Please describe.**
I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI
It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files.
Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem.
My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload.
So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things.
**Describe the solution you'd like**
A native way to upload large datasets that include .mp4 or other video types.
**Describe alternatives you've considered**
Already explained earlier
**Additional context**
https://huggingface.co/datasets/Antreas/TALI
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5888/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5888/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5884 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5884/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5884/comments | https://api.github.com/repos/huggingface/datasets/issues/5884/events | https://github.com/huggingface/datasets/issues/5884 | 1,719,548,172 | I_kwDODunzps5mfjkM | 5,884 | `Dataset.to_tf_dataset` fails when strings cannot be encoded as `np.bytes_` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"May eventually be solved in #5883 ",
"#self-assign"
] | 2023-05-22T12:03:06 | 2023-06-09T16:04:56 | 2023-06-09T16:04:55 | CONTRIBUTOR | null | null | null | ### Describe the bug
When loading any dataset that contains a column with strings that are not ASCII-compatible, looping over those records raises the following exception e.g. for `é` character `UnicodeEncodeError: 'ascii' codec can't encode character '\xe9' in position 0: ordinal not in range(128)`.
### Steps to reproduce the bug
Running the following script will eventually fail, when reaching to the batch that contains non-ASCII compatible strings.
```python
from datasets import load_dataset
ds = load_dataset("imdb", split="train")
tfds = ds.to_tf_dataset(batch_size=16)
for batch in tfds:
print(batch)
>>> UnicodeEncodeError: 'ascii' codec can't encode character '\xe9' in position 0: ordinal not in range(128)
```
### Expected behavior
The following script to run properly, making sure that the strings are either `numpy.unicode_` or `numpy.string` instead of `numpy.bytes_` since some characters are not ASCII compatible and that would lead to an issue when applying the `map`.
```python
from datasets import load_dataset
ds = load_dataset("imdb", split="train")
tfds = ds.to_tf_dataset(batch_size=16)
for batch in tfds:
print(batch)
```
### Environment info
- `datasets` version: 2.12.1.dev0
- Platform: macOS-13.3.1-arm64-arm-64bit
- Python version: 3.10.11
- Huggingface_hub version: 0.14.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5884/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5884/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5883 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5883/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5883/comments | https://api.github.com/repos/huggingface/datasets/issues/5883/events | https://github.com/huggingface/datasets/pull/5883 | 1,719,527,597 | PR_kwDODunzps5RAkYi | 5,883 | Fix string-encoding, make `batch_size` optional, and minor improvements in `Dataset.to_tf_dataset` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"To showcase the current issue, here's a Colab Gist, that shows that the `imdb` dataset cannot be read/iterated, since one or more samples contain a non-ascii character that is being converted to `numpy.bytes_`, and so on fails.\r\n\r\nColab Gist at https://gist.github.com/alvarobartt/1746959d1abb9a33e0c593f3bd82a2fb\r\n\r\nAlso, here's a quick sample of what's happening:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"imdb\", split=\"train\")\r\ntfds = ds.to_tf_dataset(batch_size=16)\r\nfor batch in tfds:\r\n print(batch)\r\n>>> UnicodeEncodeError: 'ascii' codec can't encode character '\\xe9' in position 0: ordinal not in range(128)\r\n```\r\n\r\nA more detailed version of it:\r\n\r\n```python\r\nfrom datasets import Dataset\r\n\r\nds = Dataset.from_dict(\r\n {\r\n \"a\": [1],\r\n \"b\": [\"é\"],\r\n }\r\n)\r\ntfds = ds.to_tf_dataset(batch_size=1)\r\nfor batch in tfds:\r\n print(batch)\r\n>>> UnicodeEncodeError: 'ascii' codec can't encode character '\\xe9' in position 0: ordinal not in range(128)\r\n```\r\n\r\nThe original issue comes from https://github.com/tensorflow/tensorflow/blob/388d952114e59a1aeda440ed4737b29f8b7c6e8a/tensorflow/python/ops/script_ops.py#LL234C4-L234C4, which could easily be solved by replacing that line with `return result.astype(np.unicode_)` but they are mentioning that it may lead to issues.\r\n\r\nEven the following fails in `numpy`:\r\n\r\n```python\r\nimport numpy as np\r\n\r\nx = np.array([\"é\"]).astype(np.bytes_)\r\n```",
"cc. @lhoestq :hugs:",
"cc @Rocketknight1 ",
"> Nice ! Could you add some tests to make sure that batch_size=None works as expected ?\r\n\r\nSure, I'll add the tests for everything, including the string-encoding issue to make sure it's solved!",
"Thanks for the review @lhoestq and @Rocketknight1! I do understand that processing it in batches is always more efficient than processing it one-by-one, it was just to make `batch_size` optional. What we can do is default it to a certain batch size e.g. 16 as before, and that's it, but I think it can still remain optional.",
"@Rocketknight1 then I'll add the integration tests for the optional `batch_size` as well as for the encoding of non-ASCII compatible characters 😄 Do we set the default `batch_size` to 16 instead of `None`?",
"@alvarobartt I think 16 is a reasonable default, yep!",
"I think default should be None, not 16.\r\nUsers won't expect to have it batched by default.",
"Then I'll leave it as is, and add the unit/integration tests, thanks @Rocketknight1 and @lhoestq ",
"Hi @Rocketknight1 @lhoestq! So the string-encoding issue is already solved, but I've got one doubt about the `batch_size` being optional in the multiprocessing approach, since in that case I assume the `batch_size` should be mandatory, for the moment I'm assuming it is/should be mandatory, but let me know if you want me to add a check to disallow `batch_size=None` when `num_workers>1`. Thanks!",
"> To showcase the current issue, here's a Colab Gist, that shows that the `imdb` dataset cannot be read/iterated, since one or more samples contain a non-ascii character that is being converted to `numpy.bytes_`, and so on fails.\r\n> \r\n> Colab Gist at https://gist.github.com/alvarobartt/1746959d1abb9a33e0c593f3bd82a2fb\r\n\r\nI've used the Colab shared above for testing purposes, and it works fine, plus the unit/integration tests are passing. I've also trained a `KerasNLP` model with incoming data from 🤗`datasets` with no issue at all!",
"> in the multiprocessing approach, since in that case I assume the batch_size should be mandatory,\r\n\r\nNo I think they're quite orthogonal, no need to have it mandatory",
"> No I think they're quite orthogonal, no need to have it mandatory\r\n\r\nBut it will break if `batch_size=None` as the multiprocessing approach will aim to prepare batches and distribute those to every worker, and assuming `batch_size=1` when `batch_size=None` I guess is not a good assumption, right?",
"Ah I see. Multiprocessing should support batch_size=None indeed. If you have ideas you can do it in this PR, or raise a NotImplementedError and we can see later",
"Sure @lhoestq, I can add a `NotImplementedError` for the moment, and prepare the next PR straight-away to tackle the multiprocessing approach with `batch_size=None`, but not sure if that may eventually collide with @Rocketknight1 PR at https://github.com/huggingface/datasets/pull/5863",
"Yes, let me merge the PR at #5863 after this one, and then we can open another to improve the behaviour with multiprocessing and `batch_size=None`!",
"Sure @Rocketknight1 makes complete sense to me! Do you want me to add the `raise NotImplementedError` and then we merge this PR? Or you prefer to directly merge the current?",
"`raise NotImplementedError` for now with an error telling the user that multiprocessing needs them to specify a batch size, I think!",
"Since you recently approved @Rocketknight1, are we ready to merge? Thanks 🤗",
"Ah actually it looks like `minimal_tf_collate_fn` doesn't support batch_size=None",
"Hi @lhoestq so I didn't include the call to `collate_fn`, as we won't need to collate the incoming data e.g. \"str\" should remain a \"str\" not a [\"str\"], and the `minimal_collate_fn` was indeed putting everything into a list, so the output was not un-batched, but batched with size 1",
"What if the user passes a collate_fn ? The torch DataLoader still applies it if batch_size=None for example.\r\n\r\nDoes my last change look of to you ? If so I think we can merge",
"> What if the user passes a collate_fn ? The torch DataLoader still applies it if batch_size=None for example.\r\n> \r\n> Does my last change look of to you ? If so I think we can merge\r\n\r\nI think we're good, since it won't batch it under the scenario of `str` being provided instead of `List[str]`, and the unit/integration tests are passing, so I'm OK to merge. Maybe we can double check with Matt? cc @Rocketknight1 ",
"Yes, and sorry for the delay! I'm happy to merge.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006555 / 0.011353 (-0.004798) | 0.004521 / 0.011008 (-0.006487) | 0.096633 / 0.038508 (0.058125) | 0.032859 / 0.023109 (0.009750) | 0.294632 / 0.275898 (0.018734) | 0.325140 / 0.323480 (0.001660) | 0.005676 / 0.007986 (-0.002310) | 0.005252 / 0.004328 (0.000924) | 0.074349 / 0.004250 (0.070099) | 0.045836 / 0.037052 (0.008784) | 0.302919 / 0.258489 (0.044430) | 0.340686 / 0.293841 (0.046845) | 0.028398 / 0.128546 (-0.100148) | 0.008942 / 0.075646 (-0.066704) | 0.326994 / 0.419271 (-0.092278) | 0.049556 / 0.043533 (0.006023) | 0.293883 / 0.255139 (0.038744) | 0.316522 / 0.283200 (0.033322) | 0.097385 / 0.141683 (-0.044298) | 1.405334 / 1.452155 (-0.046821) | 1.521529 / 1.492716 (0.028812) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212269 / 0.018006 (0.194263) | 0.445692 / 0.000490 (0.445203) | 0.004930 / 0.000200 (0.004730) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026907 / 0.037411 (-0.010504) | 0.108607 / 0.014526 (0.094081) | 0.116806 / 0.176557 (-0.059751) | 0.178428 / 0.737135 (-0.558707) | 0.122326 / 0.296338 (-0.174012) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404211 / 0.215209 (0.189002) | 4.045374 / 2.077655 (1.967719) | 1.877237 / 1.504120 (0.373117) | 1.706276 / 1.541195 (0.165081) | 1.750610 / 1.468490 (0.282120) | 0.522331 / 4.584777 (-4.062446) | 3.742286 / 3.745712 (-0.003426) | 1.791285 / 5.269862 (-3.478577) | 1.043872 / 4.565676 (-3.521805) | 0.065176 / 0.424275 (-0.359099) | 0.011821 / 0.007607 (0.004214) | 0.507374 / 0.226044 (0.281329) | 5.088803 / 2.268929 (2.819875) | 2.282742 / 55.444624 (-53.161882) | 1.950737 / 6.876477 (-4.925740) | 2.042262 / 2.142072 (-0.099810) | 0.636525 / 4.805227 (-4.168702) | 0.140837 / 6.500664 (-6.359827) | 0.063223 / 0.075469 (-0.012246) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188070 / 1.841788 (-0.653718) | 14.622681 / 8.074308 (6.548372) | 13.247988 / 10.191392 (3.056596) | 0.165858 / 0.680424 (-0.514566) | 0.017476 / 0.534201 (-0.516725) | 0.391973 / 0.579283 (-0.187310) | 0.433326 / 0.434364 (-0.001038) | 0.467163 / 0.540337 (-0.073175) | 0.568359 / 1.386936 (-0.818577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006076 / 0.011353 (-0.005276) | 0.004439 / 0.011008 (-0.006570) | 0.074496 / 0.038508 (0.035988) | 0.031396 / 0.023109 (0.008287) | 0.372237 / 0.275898 (0.096339) | 0.403412 / 0.323480 (0.079932) | 0.005430 / 0.007986 (-0.002555) | 0.003846 / 0.004328 (-0.000483) | 0.074403 / 0.004250 (0.070153) | 0.045398 / 0.037052 (0.008346) | 0.394133 / 0.258489 (0.135644) | 0.421769 / 0.293841 (0.127928) | 0.027936 / 0.128546 (-0.100610) | 0.008962 / 0.075646 (-0.066685) | 0.083158 / 0.419271 (-0.336113) | 0.044863 / 0.043533 (0.001331) | 0.393834 / 0.255139 (0.138695) | 0.391537 / 0.283200 (0.108337) | 0.097971 / 0.141683 (-0.043712) | 1.496632 / 1.452155 (0.044477) | 1.585511 / 1.492716 (0.092795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010094 / 0.018006 (-0.007913) | 0.437811 / 0.000490 (0.437321) | 0.000963 / 0.000200 (0.000763) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028864 / 0.037411 (-0.008547) | 0.112480 / 0.014526 (0.097954) | 0.120938 / 0.176557 (-0.055619) | 0.170888 / 0.737135 (-0.566247) | 0.125903 / 0.296338 (-0.170435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426716 / 0.215209 (0.211507) | 4.238380 / 2.077655 (2.160725) | 2.052889 / 1.504120 (0.548769) | 1.871043 / 1.541195 (0.329848) | 1.890405 / 1.468490 (0.421915) | 0.522059 / 4.584777 (-4.062718) | 3.813331 / 3.745712 (0.067619) | 2.891651 / 5.269862 (-2.378210) | 1.323836 / 4.565676 (-3.241841) | 0.065124 / 0.424275 (-0.359151) | 0.011498 / 0.007607 (0.003891) | 0.525102 / 0.226044 (0.299057) | 5.245190 / 2.268929 (2.976261) | 2.531149 / 55.444624 (-52.913476) | 2.197323 / 6.876477 (-4.679153) | 2.197314 / 2.142072 (0.055241) | 0.633423 / 4.805227 (-4.171804) | 0.140248 / 6.500664 (-6.360416) | 0.064432 / 0.075469 (-0.011037) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270639 / 1.841788 (-0.571149) | 14.856678 / 8.074308 (6.782369) | 14.337631 / 10.191392 (4.146239) | 0.195319 / 0.680424 (-0.485105) | 0.017628 / 0.534201 (-0.516573) | 0.393984 / 0.579283 (-0.185299) | 0.421987 / 0.434364 (-0.012376) | 0.459245 / 0.540337 (-0.081092) | 0.557786 / 1.386936 (-0.829150) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a129219a48c1b07c06d4bc1db32c317bf513089d \"CML watermark\")\n",
"Will you eventually need help with your PR @Rocketknight1? I'll be happy to help if needed 😄 ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007577 / 0.011353 (-0.003776) | 0.004960 / 0.011008 (-0.006048) | 0.113622 / 0.038508 (0.075114) | 0.037981 / 0.023109 (0.014872) | 0.355312 / 0.275898 (0.079414) | 0.393384 / 0.323480 (0.069904) | 0.006575 / 0.007986 (-0.001411) | 0.005941 / 0.004328 (0.001612) | 0.085976 / 0.004250 (0.081726) | 0.053784 / 0.037052 (0.016732) | 0.369358 / 0.258489 (0.110869) | 0.399402 / 0.293841 (0.105561) | 0.032155 / 0.128546 (-0.096391) | 0.010448 / 0.075646 (-0.065199) | 0.389009 / 0.419271 (-0.030263) | 0.057377 / 0.043533 (0.013844) | 0.354968 / 0.255139 (0.099829) | 0.382404 / 0.283200 (0.099204) | 0.111056 / 0.141683 (-0.030627) | 1.807986 / 1.452155 (0.355832) | 1.866070 / 1.492716 (0.373354) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244439 / 0.018006 (0.226432) | 0.491942 / 0.000490 (0.491452) | 0.001910 / 0.000200 (0.001710) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031024 / 0.037411 (-0.006387) | 0.129674 / 0.014526 (0.115148) | 0.142974 / 0.176557 (-0.033583) | 0.213568 / 0.737135 (-0.523568) | 0.147794 / 0.296338 (-0.148545) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480333 / 0.215209 (0.265124) | 4.792901 / 2.077655 (2.715246) | 2.233145 / 1.504120 (0.729025) | 2.036291 / 1.541195 (0.495096) | 2.109631 / 1.468490 (0.641140) | 0.624546 / 4.584777 (-3.960231) | 4.543511 / 3.745712 (0.797799) | 3.961345 / 5.269862 (-1.308517) | 1.903634 / 4.565676 (-2.662042) | 0.076584 / 0.424275 (-0.347691) | 0.014590 / 0.007607 (0.006983) | 0.593195 / 0.226044 (0.367151) | 5.928740 / 2.268929 (3.659811) | 2.781164 / 55.444624 (-52.663460) | 2.364303 / 6.876477 (-4.512173) | 2.510139 / 2.142072 (0.368067) | 0.770886 / 4.805227 (-4.034341) | 0.167995 / 6.500664 (-6.332669) | 0.076622 / 0.075469 (0.001153) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.402398 / 1.841788 (-0.439390) | 17.921233 / 8.074308 (9.846925) | 17.036738 / 10.191392 (6.845346) | 0.168997 / 0.680424 (-0.511427) | 0.020259 / 0.534201 (-0.513941) | 0.465322 / 0.579283 (-0.113962) | 0.500435 / 0.434364 (0.066071) | 0.546846 / 0.540337 (0.006509) | 0.658130 / 1.386936 (-0.728806) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007624 / 0.011353 (-0.003729) | 0.005265 / 0.011008 (-0.005744) | 0.086886 / 0.038508 (0.048377) | 0.038235 / 0.023109 (0.015126) | 0.463969 / 0.275898 (0.188071) | 0.502451 / 0.323480 (0.178971) | 0.006285 / 0.007986 (-0.001701) | 0.004525 / 0.004328 (0.000197) | 0.086557 / 0.004250 (0.082307) | 0.052414 / 0.037052 (0.015362) | 0.482167 / 0.258489 (0.223678) | 0.513684 / 0.293841 (0.219843) | 0.032929 / 0.128546 (-0.095618) | 0.010249 / 0.075646 (-0.065397) | 0.093377 / 0.419271 (-0.325895) | 0.054114 / 0.043533 (0.010582) | 0.466116 / 0.255139 (0.210977) | 0.488977 / 0.283200 (0.205777) | 0.115446 / 0.141683 (-0.026237) | 1.762912 / 1.452155 (0.310757) | 1.874191 / 1.492716 (0.381475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012666 / 0.018006 (-0.005341) | 0.485962 / 0.000490 (0.485473) | 0.002621 / 0.000200 (0.002421) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033661 / 0.037411 (-0.003751) | 0.135395 / 0.014526 (0.120869) | 0.147230 / 0.176557 (-0.029326) | 0.205847 / 0.737135 (-0.531288) | 0.151496 / 0.296338 (-0.144842) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.514097 / 0.215209 (0.298887) | 5.134093 / 2.077655 (3.056438) | 2.496775 / 1.504120 (0.992655) | 2.268078 / 1.541195 (0.726883) | 2.342153 / 1.468490 (0.873663) | 0.623130 / 4.584777 (-3.961647) | 4.601787 / 3.745712 (0.856075) | 3.414249 / 5.269862 (-1.855613) | 1.849603 / 4.565676 (-2.716073) | 0.078350 / 0.424275 (-0.345925) | 0.013785 / 0.007607 (0.006178) | 0.638783 / 0.226044 (0.412739) | 6.378356 / 2.268929 (4.109427) | 3.072867 / 55.444624 (-52.371757) | 2.668123 / 6.876477 (-4.208354) | 2.693905 / 2.142072 (0.551833) | 0.764583 / 4.805227 (-4.040644) | 0.166854 / 6.500664 (-6.333810) | 0.076883 / 0.075469 (0.001414) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502003 / 1.841788 (-0.339784) | 18.674205 / 8.074308 (10.599897) | 16.837759 / 10.191392 (6.646367) | 0.176995 / 0.680424 (-0.503428) | 0.020126 / 0.534201 (-0.514075) | 0.464480 / 0.579283 (-0.114803) | 0.516477 / 0.434364 (0.082113) | 0.549818 / 0.540337 (0.009481) | 0.659927 / 1.386936 (-0.727009) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a129219a48c1b07c06d4bc1db32c317bf513089d \"CML watermark\")\n",
"@alvarobartt Yes, I'll ping you for a review once it's ready!"
] | 2023-05-22T11:51:07 | 2023-06-08T11:09:03 | 2023-06-06T16:49:15 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5883",
"html_url": "https://github.com/huggingface/datasets/pull/5883",
"diff_url": "https://github.com/huggingface/datasets/pull/5883.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5883.patch",
"merged_at": "2023-06-06T16:49:15"
} | ## What's in this PR?
This PR addresses some minor fixes and general improvements in the `to_tf_dataset` method of `datasets.Dataset`, to convert a 🤗HuggingFace Dataset as a TensorFlow Dataset.
The main bug solved in this PR comes with the string-encoding, since for safety purposes the internal conversion of `numpy.arrays` when `dtype` is unicode/string, is to convert it into `numpy.bytes`, more information in the docstring of https://github.com/tensorflow/tensorflow/blob/388d952114e59a1aeda440ed4737b29f8b7c6e8a/tensorflow/python/ops/script_ops.py#L210. That's triggered when using `tensorflow.numpy_function` as it's applying another type cast besides the one that `datasets` does, so the casting is applied at least twice per entry/batch. So this means that the definition of the `numpy.unicode_` dtype when the data in the batch is a string, is ignored, and replaced by `numpy.bytes_`.
Besides that, some other minor things have been fixed:
* Made `batch_size` an optional parameter in `to_tf_dataset`
* Map the `tensorflow` output dtypes just once, and not in every `tf.function` call during `map`
* Keep `numpy` formatting in the `datasets.Dataset` if already formatted like it, no need to format it again as `numpy`
* Docstring indentation in `dataset_to_tf` and `multiprocess_dataset_to_tf`
## What's missing in this PR?
I can include some integration tests if needed, to validate that `batch_size` is optional, and that the tensors in the TF-Dataset can be looped over with no issues as before. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5883/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5883/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5881 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5881/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5881/comments | https://api.github.com/repos/huggingface/datasets/issues/5881/events | https://github.com/huggingface/datasets/issues/5881 | 1,719,402,643 | I_kwDODunzps5mfACT | 5,881 | Split dataset by node: index error when sharding iterable dataset | {
"login": "sanchit-gandhi",
"id": 93869735,
"node_id": "U_kgDOBZhWpw",
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanchit-gandhi",
"html_url": "https://github.com/sanchit-gandhi",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"cc @lhoestq in case you have any ideas here! Might need a multi-host set-up to debug (can give you access to a JAX one if you need)"
] | 2023-05-22T10:36:13 | 2023-05-23T08:32:14 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Context: we're splitting an iterable dataset by node and then passing it to a torch data loader with multiple workers
When we iterate over it for 5 steps, we don't get an error
When we instead iterate over it for 8 steps, we get an `IndexError` when fetching the data if we have too many workers
### Steps to reproduce the bug
Here, we have 2 JAX processes (`jax.process_count() = 2`) which we split the dataset over. The dataset loading script can be found here: https://huggingface.co/datasets/distil-whisper/librispeech_asr/blob/c6a1e805cbfeed5057400ac5937327d7e30281b8/librispeech_asr.py#L310
<details>
<summary> Code to reproduce </summary>
```python
from datasets import load_dataset
import jax
from datasets.distributed import split_dataset_by_node
from torch.utils.data import DataLoader
from tqdm import tqdm
# load an example dataset (https://huggingface.co/datasets/distil-whisper/librispeech_asr)
dataset = load_dataset("distil-whisper/librispeech_asr", "all", split="train.clean.100", streaming=True)
# just keep the text column -> no need to define a collator
dataset_text = dataset.remove_columns(set(dataset.features.keys()) - {"text"})
# define some constants
batch_size = 256
num_examples = 5 # works for 5 examples, doesn't for 8
num_workers = dataset_text.n_shards
# try with multiple workers
dataloader = DataLoader(dataset_text, batch_size=batch_size, num_workers=num_workers, drop_last=True)
for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Multiple workers"):
if i == num_examples:
break
# try splitting by node (we can't do this with `dataset_text` since `split_dataset_by_node` expects the Audio column for an ASR dataset)
dataset = split_dataset_by_node(dataset, rank=jax.process_index(), world_size=jax.process_count())
# remove the text column again
dataset_text = dataset.remove_columns(set(dataset.features.keys()) - {"text"})
dataloader = DataLoader(dataset_text, batch_size=16, num_workers=num_workers // 2, drop_last=True)
for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Split by node"):
if i == num_examples:
break
# too many workers
dataloader = DataLoader(dataset_text, batch_size=256, num_workers=num_workers, drop_last=True)
for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Too many workers"):
if i == num_examples:
break
```
</details>
<details>
<summary> With 5 examples: </summary>
```
Multiple workers: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.33s/it]
Assigning 7 shards (or data sources) of the dataset to each node.
Split by node: 100%|██████████████████████████████████████████████████████████████████████| 5/5 [00:13<00:00, 2.76s/it]
Assigning 7 shards (or data sources) of the dataset to each node.
Too many dataloader workers: 14 (max is dataset.n_shards=7). Stopping 7 dataloader workers.
To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary t
o have a number of workers greater than dataset.n_shards=7. To enable more parallelism, please split the dataset in more
files than 7.
Too many workers: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:15<00:00, 3.03s/it]
```
</details>
<details>
<summary> With 7 examples: </summary>
```
Multiple workers: 100%|███████████████████████████████████████████████████████████████████| 8/8 [00:13<00:00, 1.71s/it]
Assigning 7 shards (or data sources) of the dataset to each node.
Split by node: 100%|██████████████████████████████████████████████████████████████████████| 8/8 [00:11<00:00, 1.38s/it]
Assigning 7 shards (or data sources) of the dataset to each node.
Too many dataloader workers: 14 (max is dataset.n_shards=7). Stopping 7 dataloader workers.
To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary to have a number of workers greater than dataset.n_shards=7. To enable more parallelism, please split the dataset in more files than 7.
Too many workers: 88%|██████████████████████████████████████████████████████████▋ | 7/8 [00:13<00:01, 1.89s/it]
Traceback (most recent call last):
File "distil-whisper/test_librispeech.py", line 36, in <module>
for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Too many workers"):
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/tqdm/std.py", line 1178, in __iter__
for obj in iterable:
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 633, in __next__
data = self._next_data()
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1325, in _next_data
return self._process_data(data)
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data
data.reraise()
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/_utils.py", line 644, in reraise
raise exception
IndexError: Caught IndexError in DataLoader worker process 7.
Original Traceback (most recent call last):
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop
data = fetcher.fetch(index)
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 32, in fetch
data.append(next(self.dataset_iter))
File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 986, in __iter__
yield from self._iter_pytorch(ex_iterable)
File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 920, in _iter_pytorch
for key, example in ex_iterable.shard_data_sources(worker_info.id, worker_info.num_workers):
File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 540, in shard_data_sources
self.ex_iterable.shard_data_sources(worker_id, num_workers),
File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 796, in shard_data_sources
self.ex_iterable.shard_data_sources(worker_id, num_workers),
File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 126, in shard_data_sources
requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
File "/home/sanchitgandhi/datasets/src/datasets/utils/sharding.py", line 76, in _merge_gen_kwargs
for key in gen_kwargs_list[0]
IndexError: list index out of range
```
</details>
### Expected behavior
Should pass for both 5 and 7 examples
### Environment info
- `datasets` version: 2.12.1.dev0
- Platform: Linux-5.13.0-1023-gcp-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5881/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5881/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5880 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5880/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5880/comments | https://api.github.com/repos/huggingface/datasets/issues/5880/events | https://github.com/huggingface/datasets/issues/5880 | 1,719,090,101 | I_kwDODunzps5mdzu1 | 5,880 | load_dataset from s3 file system through streaming can't not iterate data | {
"login": "janineguo",
"id": 59083384,
"node_id": "MDQ6VXNlcjU5MDgzMzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/59083384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/janineguo",
"html_url": "https://github.com/janineguo",
"followers_url": "https://api.github.com/users/janineguo/followers",
"following_url": "https://api.github.com/users/janineguo/following{/other_user}",
"gists_url": "https://api.github.com/users/janineguo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/janineguo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/janineguo/subscriptions",
"organizations_url": "https://api.github.com/users/janineguo/orgs",
"repos_url": "https://api.github.com/users/janineguo/repos",
"events_url": "https://api.github.com/users/janineguo/events{/privacy}",
"received_events_url": "https://api.github.com/users/janineguo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"This sounds related to #5281.\r\n\r\nCan you try passing `storage_options=s3_client.storage_options` instead passing it to `use_auth_token=` ?",
"I tried `storage_options` before, but it doesn't work, I checked our source code and I found that we even didn't pass this parameter to the following process. if I use `storage_options` instead of `use_auth_token`, then I also need to change another place of the code. the last line of `streaming_download_manager.py`. our code only passes the `use_auth_token` to the following handler, but does nothing to the `storage_options`\r\n<img width=\"1050\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/59083384/5be90933-3331-4ecf-9e11-34f9852d8f92\">\r\n",
"Cloud storage support is still experimental indeed and you can expect some bugs.\r\n\r\nI think we need to pass the storage options anywhere use_auth_token is passed in indeed. Let me know if you'd be interested in contributing a fix !",
"Oh, that's great, I really like to fix it. because datasets is really useful and most of our projects need to use it, but we can store our data on the internet due to security reasons. fix it not only make our own work more efficient but also can benefit others who use it."
] | 2023-05-22T07:40:27 | 2023-05-26T12:52:08 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it
<img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0">
<img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1">
we can change 4 lines to fix this bug, you can check whether it is ok for us.
<img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3">
### Steps to reproduce the bug
1. storage a file in you s3 file system
2. use load_dataset to read it through streaming
3. iterate it
### Expected behavior
can iterate it successfully
### Environment info
- `datasets` version: 2.12.0
- Platform: macOS-10.16-x86_64-i386-64bit
- Python version: 3.8.16
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.1
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5880/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 1
} | https://api.github.com/repos/huggingface/datasets/issues/5880/timeline | null | null | false |