Timestamp
int64 5
10.5M
| Model
stringclasses 2
values | Request tokens
int64 0
31.4k
| Response tokens
int64 0
12.5k
| Total tokens
int64 0
31.9k
| Log Type
stringclasses 2
values |
---|---|---|---|---|---|
5 |
ChatGPT
| 472 | 18 | 490 |
Conversation log
|
45 |
ChatGPT
| 1,087 | 230 | 1,317 |
Conversation log
|
118 |
GPT-4
| 417 | 276 | 693 |
Conversation log
|
185 |
ChatGPT
| 1,360 | 647 | 2,007 |
Conversation log
|
214 |
ChatGPT
| 185 | 215 | 400 |
Conversation log
|
233 |
GPT-4
| 586 | 293 | 879 |
Conversation log
|
261 |
ChatGPT
| 37 | 1,656 | 1,693 |
Conversation log
|
267 |
ChatGPT
| 54 | 503 | 557 |
Conversation log
|
410 |
ChatGPT
| 1,528 | 414 | 1,942 |
Conversation log
|
535 |
ChatGPT
| 89 | 370 | 459 |
Conversation log
|
560 |
GPT-4
| 549 | 362 | 911 |
Conversation log
|
638 |
ChatGPT
| 172 | 69 | 241 |
Conversation log
|
686 |
GPT-4
| 969 | 206 | 1,175 |
Conversation log
|
741 |
ChatGPT
| 97 | 137 | 234 |
Conversation log
|
771 |
GPT-4
| 1,574 | 501 | 2,075 |
Conversation log
|
821 |
ChatGPT
| 253 | 239 | 492 |
Conversation log
|
966 |
ChatGPT
| 23 | 344 | 367 |
Conversation log
|
974 |
ChatGPT
| 509 | 207 | 716 |
Conversation log
|
1,028 |
ChatGPT
| 387 | 349 | 736 |
Conversation log
|
1,072 |
ChatGPT
| 733 | 180 | 913 |
Conversation log
|
1,106 |
ChatGPT
| 0 | 0 | 0 |
Conversation log
|
1,129 |
ChatGPT
| 1,305 | 477 | 1,782 |
Conversation log
|
1,278 |
ChatGPT
| 17 | 382 | 399 |
Conversation log
|
1,449 |
ChatGPT
| 601 | 557 | 1,158 |
Conversation log
|
1,611 |
GPT-4
| 1,327 | 239 | 1,566 |
Conversation log
|
1,780 |
ChatGPT
| 1,437 | 181 | 1,618 |
Conversation log
|
2,069 |
ChatGPT
| 1,336 | 245 | 1,581 |
Conversation log
|
2,173 |
ChatGPT
| 19 | 440 | 459 |
Conversation log
|
2,273 |
GPT-4
| 92 | 95 | 187 |
Conversation log
|
2,293 |
ChatGPT
| 507 | 448 | 955 |
Conversation log
|
2,579 |
ChatGPT
| 938 | 263 | 1,201 |
Conversation log
|
2,584 |
ChatGPT
| 1,544 | 608 | 2,152 |
Conversation log
|
2,608 |
GPT-4
| 1,840 | 378 | 2,218 |
Conversation log
|
2,684 |
ChatGPT
| 991 | 462 | 1,453 |
Conversation log
|
2,826 |
ChatGPT
| 1,109 | 329 | 1,438 |
Conversation log
|
3,009 |
ChatGPT
| 1,476 | 443 | 1,919 |
Conversation log
|
3,091 |
ChatGPT
| 14 | 11 | 25 |
Conversation log
|
3,232 |
GPT-4
| 1,741 | 428 | 2,169 |
Conversation log
|
4,525 |
GPT-4
| 0 | 0 | 0 |
Conversation log
|
4,574 |
ChatGPT
| 1,306 | 267 | 1,573 |
Conversation log
|
4,608 |
GPT-4
| 0 | 0 | 0 |
Conversation log
|
4,725 |
GPT-4
| 0 | 0 | 0 |
Conversation log
|
4,798 |
GPT-4
| 614 | 323 | 937 |
Conversation log
|
5,812 |
ChatGPT
| 1,960 | 136 | 2,096 |
Conversation log
|
6,049 |
ChatGPT
| 1,698 | 627 | 2,325 |
Conversation log
|
6,263 |
ChatGPT
| 1,907 | 616 | 2,523 |
Conversation log
|
6,499 |
ChatGPT
| 137 | 225 | 362 |
Conversation log
|
6,882 |
GPT-4
| 20 | 86 | 106 |
Conversation log
|
6,998 |
GPT-4
| 127 | 268 | 395 |
Conversation log
|
7,442 |
GPT-4
| 665 | 167 | 832 |
Conversation log
|
7,982 |
GPT-4
| 855 | 297 | 1,152 |
Conversation log
|
8,052 |
GPT-4
| 1,191 | 30 | 1,221 |
Conversation log
|
8,126 |
GPT-4
| 18 | 67 | 85 |
Conversation log
|
8,208 |
GPT-4
| 101 | 148 | 249 |
Conversation log
|
8,211 |
ChatGPT
| 112 | 336 | 448 |
Conversation log
|
8,258 |
GPT-4
| 264 | 76 | 340 |
Conversation log
|
8,681 |
ChatGPT
| 82 | 343 | 425 |
Conversation log
|
8,782 |
ChatGPT
| 506 | 343 | 849 |
Conversation log
|
8,989 |
ChatGPT
| 530 | 339 | 869 |
Conversation log
|
9,015 |
ChatGPT
| 942 | 396 | 1,338 |
Conversation log
|
9,418 |
ChatGPT
| 1,364 | 416 | 1,780 |
Conversation log
|
10,205 |
ChatGPT
| 122 | 496 | 618 |
Conversation log
|
10,414 |
ChatGPT
| 24 | 63 | 87 |
Conversation log
|
10,443 |
ChatGPT
| 698 | 258 | 956 |
Conversation log
|
10,577 |
ChatGPT
| 103 | 76 | 179 |
Conversation log
|
10,600 |
ChatGPT
| 1,073 | 129 | 1,202 |
Conversation log
|
10,603 |
ChatGPT
| 200 | 95 | 295 |
Conversation log
|
10,636 |
ChatGPT
| 1,282 | 188 | 1,470 |
Conversation log
|
10,669 |
ChatGPT
| 1,762 | 418 | 2,180 |
Conversation log
|
10,740 |
ChatGPT
| 1,625 | 268 | 1,893 |
Conversation log
|
10,760 |
ChatGPT
| 25 | 326 | 351 |
Conversation log
|
10,760 |
ChatGPT
| 1,639 | 188 | 1,827 |
Conversation log
|
10,812 |
ChatGPT
| 42 | 197 | 239 |
Conversation log
|
10,825 |
ChatGPT
| 1,637 | 231 | 1,868 |
Conversation log
|
10,949 |
ChatGPT
| 1,701 | 381 | 2,082 |
Conversation log
|
10,995 |
ChatGPT
| 383 | 319 | 702 |
Conversation log
|
11,096 |
ChatGPT
| 266 | 246 | 512 |
Conversation log
|
11,411 |
ChatGPT
| 1,450 | 497 | 1,947 |
Conversation log
|
11,517 |
ChatGPT
| 1,631 | 422 | 2,053 |
Conversation log
|
11,539 |
ChatGPT
| 540 | 285 | 825 |
Conversation log
|
11,642 |
ChatGPT
| 1,797 | 577 | 2,374 |
Conversation log
|
11,738 |
ChatGPT
| 0 | 0 | 0 |
Conversation log
|
11,817 |
ChatGPT
| 20 | 310 | 330 |
Conversation log
|
11,853 |
ChatGPT
| 352 | 298 | 650 |
Conversation log
|
12,560 |
ChatGPT
| 726 | 334 | 1,060 |
Conversation log
|
14,618 |
ChatGPT
| 870 | 269 | 1,139 |
Conversation log
|
19,020 |
ChatGPT
| 66 | 342 | 408 |
Conversation log
|
19,108 |
ChatGPT
| 478 | 296 | 774 |
Conversation log
|
19,499 |
ChatGPT
| 837 | 292 | 1,129 |
Conversation log
|
19,601 |
ChatGPT
| 1,152 | 237 | 1,389 |
Conversation log
|
20,288 |
ChatGPT
| 42 | 17 | 59 |
Conversation log
|
26,939 |
ChatGPT
| 29 | 69 | 98 |
Conversation log
|
27,037 |
ChatGPT
| 136 | 74 | 210 |
Conversation log
|
27,162 |
ChatGPT
| 229 | 69 | 298 |
Conversation log
|
27,307 |
ChatGPT
| 326 | 66 | 392 |
Conversation log
|
27,894 |
ChatGPT
| 408 | 322 | 730 |
Conversation log
|
27,948 |
ChatGPT
| 667 | 79 | 746 |
Conversation log
|
28,389 |
ChatGPT
| 657 | 192 | 849 |
Conversation log
|
28,436 |
ChatGPT
| 788 | 292 | 1,080 |
Conversation log
|
28,571 |
ChatGPT
| 1,035 | 227 | 1,262 |
Conversation log
|
A ChatGPT(GPT-3.5) & GPT-4 Workload Trace to Optimize LLM Serving Systems
🚧 Traces with new columns
SessionID
andElapsed time
are under collection now and will be available soon!
This repository contains public releases of a real-world trace dataset of LLM serving workloads for the benefit of the research and academic community.
This LLM serving is powered by Microsoft Azure.
There are currently 4 files in Release v1.1:
BurstGPT_1.csv
contains all of our trace in the first 2 months with some failure thatResponse tokens
are0
s. Totally 1429.7k lines.BurstGPT_without_fails_1.csv
contains all of our trace in the first 2 months without failure. Totally 1404.3k lines.BurstGPT_2.csv
contains all of our trace in the second 2 months with some failure thatResponse tokens
are0
s. Totally 3858.4k lines.BurstGPT_without_fails_2.csv
contains all of our trace in the second 2 months without failure. Totally 3784.2k lines.
BurstGPT_1.csv
is also in /data
for you to use.
Usage
- You may scale the average Requests Per Second (RPS) in the trace according to your evaluation setups.
- You may also model the patterns in the trace as indicated in our paper and scale the parameters in the models.
- Check our simple request generator demo in
example/
. If you have some specific needs, we are eager to assist you in exploring and leveraging the trace to its fullest potential. Please let us know of any issues or questions by sending email to mailing list.
Future Plans
- We will continue to update the time range of the trace and add the end time of each request.
- We will update the conversation log, including the session IDs, time stamps, etc, in each conversation, for researchers to optimize conversation services.
- We will open-source the full benchmark suite for LLM inference soon.
Paper
If the trace is utilized in your research, please ensure to reference our paper:
@inproceedings{BurstGPT,
author = {Yuxin Wang and Yuhan Chen and Zeyu Li and Xueze Kang and Yuchu Fang and Yeju Zhou and Yang Zheng and Zhenheng Tang and Xin He and Rui Guo and Xin Wang and Qiang Wang and Amelie Chi Zhou and Xiaowen Chu},
title = {{BurstGPT}: A Real-World Workload Dataset to Optimize LLM Serving Systems},
booktitle = {Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25)},
year = {2025},
address = {Toronto, ON, Canada},
publisher = {ACM},
doi = {https://doi.org/10.1145/3711896.3737413},
url = {https://doi.org/10.1145/3711896.3737413},
}
Main characteristics
- Duration: 121 consecutive days in 4 consecutive months.
- Dataset size: ~5.29M lines, ~188MB.
Schema
Timestamp
: request submission time, seconds from0:00:00
on the first day.Model
: called models, includingChatGPT
(GPT-3.5) andGPT-4
.Request tokens
: Request tokens length.Response tokens
: Response tokens length.Total tokens
: Request tokens length plus response tokens length.Log Type
: the way users call the model, in conversation mode or using API, includingConversation log
andAPI log
.
Data Overview (First 2 Months)

Figure 1: Weekly Periodicity in BurstGPT.

Figure 2: Daily Periodicity in BurstGPT.

Figure 3: Average Daily Request and Response Throughput in BurstGPT.

Figure 4: Statistics of Request and Response Tokens in BurstGPT.
- Downloads last month
- 108