Search is not available for this dataset
psnr
float64 10.8
30.9
| average_vgg
float64 0.04
0.28
| lpips_alex
float64 0.04
0.34
| masked_lpips_vgg
float64 0.02
0.29
| ssim
float64 0.49
0.94
| masked_psnr
float64 12.1
29.7
| masked_ssim
float64 0.58
0.97
| masked_average_vgg
float64 0.02
0.21
| lpips_vgg
float64 0.11
0.38
| masked_average_alex
float64 0.01
0.2
| average_alex
float64 0.03
0.27
| masked_lpips_alex
float64 0.01
0.21
|
---|---|---|---|---|---|---|---|---|---|---|---|
15.612605 | 0.182912 | 0.250766 | 0.110639 | 0.647386 | 19.720907 | 0.844382 | 0.091308 | 0.349011 | 0.083099 | 0.164105 | 0.079593 |
23.136719 | 0.089039 | 0.237383 | 0.116084 | 0.827529 | 21.450104 | 0.906795 | 0.065839 | 0.328666 | 0.067094 | 0.079956 | 0.123028 |
26.953545 | 0.061328 | 0.147889 | 0.064454 | 0.855635 | 25.483364 | 0.906916 | 0.041913 | 0.246764 | 0.037565 | 0.051993 | 0.045019 |
13.42104 | 0.232605 | 0.281022 | 0.292008 | 0.485001 | 14.469901 | 0.577335 | 0.189938 | 0.381917 | 0.170937 | 0.209752 | 0.213411 |
20.332878 | 0.090468 | 0.114014 | 0.030439 | 0.888065 | 23.640903 | 0.956012 | 0.031614 | 0.178288 | 0.027801 | 0.078152 | 0.020702 |
15.832437 | 0.156163 | 0.171201 | 0.147175 | 0.695472 | 17.465902 | 0.76982 | 0.110531 | 0.245631 | 0.096954 | 0.138636 | 0.099359 |
17.168257 | 0.133136 | 0.162101 | 0.101384 | 0.751055 | 23.259663 | 0.831322 | 0.059638 | 0.227315 | 0.050964 | 0.119059 | 0.063112 |
16.05372 | 0.155693 | 0.164555 | 0.18322 | 0.684855 | 18.277168 | 0.755703 | 0.112182 | 0.253515 | 0.096716 | 0.134952 | 0.117107 |
14.607919 | 0.177269 | 0.224431 | 0.148699 | 0.663664 | 18.956442 | 0.763475 | 0.100532 | 0.248887 | 0.096491 | 0.171504 | 0.130384 |
17.286722 | 0.124715 | 0.146373 | 0.1074 | 0.778992 | 22.024189 | 0.84892 | 0.0672 | 0.207764 | 0.060776 | 0.111043 | 0.078853 |
10.782827 | 0.282848 | 0.34057 | 0.222224 | 0.527205 | 12.067881 | 0.673081 | 0.207727 | 0.376662 | 0.199453 | 0.273651 | 0.196358 |
26.00028 | 0.072439 | 0.182626 | 0.046619 | 0.778757 | 26.335566 | 0.931163 | 0.034106 | 0.282038 | 0.031497 | 0.062867 | 0.035525 |
20.721743 | 0.080817 | 0.100333 | 0.034019 | 0.887107 | 22.658798 | 0.941635 | 0.036364 | 0.162234 | 0.033724 | 0.068766 | 0.026959 |
19.087677 | 0.105109 | 0.119125 | 0.094617 | 0.786322 | 22.366161 | 0.847124 | 0.063304 | 0.18924 | 0.055618 | 0.090138 | 0.062936 |
18.605896 | 0.106482 | 0.158349 | 0.041696 | 0.854243 | 20.099861 | 0.929528 | 0.049473 | 0.197407 | 0.046761 | 0.098808 | 0.035428 |
21.054716 | 0.09939 | 0.140906 | 0.060436 | 0.785014 | 27.103441 | 0.915542 | 0.033921 | 0.249205 | 0.026554 | 0.082291 | 0.028559 |
25.612026 | 0.063554 | 0.148581 | 0.064783 | 0.869743 | 23.89645 | 0.935976 | 0.043517 | 0.2346 | 0.044266 | 0.054655 | 0.067813 |
27.471127 | 0.053152 | 0.103209 | 0.053083 | 0.864302 | 26.920633 | 0.9171 | 0.035283 | 0.190299 | 0.031339 | 0.043577 | 0.03537 |
16.743391 | 0.144037 | 0.158867 | 0.171084 | 0.677456 | 17.66081 | 0.731082 | 0.118028 | 0.231358 | 0.104542 | 0.12749 | 0.118222 |
25.522343 | 0.046451 | 0.05167 | 0.027167 | 0.929437 | 26.165056 | 0.960814 | 0.02588 | 0.134786 | 0.021705 | 0.034399 | 0.0159 |
17.752598 | 0.115163 | 0.115291 | 0.097736 | 0.77778 | 21.171738 | 0.83991 | 0.06976 | 0.180864 | 0.059167 | 0.099873 | 0.059163 |
22.086767 | 0.077259 | 0.093023 | 0.083733 | 0.845673 | 24.96306 | 0.879685 | 0.047236 | 0.167984 | 0.040218 | 0.064136 | 0.051194 |
18.210844 | 0.118349 | 0.127605 | 0.139301 | 0.761475 | 19.401304 | 0.808443 | 0.093361 | 0.198977 | 0.081856 | 0.102465 | 0.093513 |
17.597433 | 0.118843 | 0.154948 | 0.114638 | 0.790134 | 19.841152 | 0.841538 | 0.081607 | 0.196178 | 0.077975 | 0.110439 | 0.099185 |
23.41309 | 0.063362 | 0.076208 | 0.073158 | 0.869683 | 25.410969 | 0.899182 | 0.045388 | 0.140009 | 0.039713 | 0.052644 | 0.047994 |
16.915365 | 0.117634 | 0.109895 | 0.080209 | 0.804557 | 20.234909 | 0.86625 | 0.068283 | 0.161282 | 0.060208 | 0.105264 | 0.054518 |
29.438812 | 0.050774 | 0.110009 | 0.031058 | 0.837293 | 28.244579 | 0.943626 | 0.026617 | 0.21047 | 0.024296 | 0.041571 | 0.02253 |
25.627495 | 0.045361 | 0.051938 | 0.026855 | 0.924561 | 25.480103 | 0.956219 | 0.026121 | 0.123718 | 0.023517 | 0.034439 | 0.019493 |
22.56492 | 0.071248 | 0.073708 | 0.07185 | 0.837402 | 25.058378 | 0.878737 | 0.048758 | 0.148793 | 0.041458 | 0.057079 | 0.042113 |
25.626848 | 0.045479 | 0.056164 | 0.026323 | 0.928316 | 24.396992 | 0.956843 | 0.028243 | 0.125018 | 0.024645 | 0.034923 | 0.017655 |
26.410034 | 0.060401 | 0.095297 | 0.049022 | 0.846149 | 29.095221 | 0.932106 | 0.026092 | 0.226345 | 0.019701 | 0.045443 | 0.020847 |
29.450077 | 0.039386 | 0.086091 | 0.053405 | 0.920402 | 26.204363 | 0.955126 | 0.030649 | 0.183023 | 0.029983 | 0.030647 | 0.049967 |
30.5319 | 0.03656 | 0.078075 | 0.048557 | 0.906829 | 28.347792 | 0.935646 | 0.027262 | 0.167928 | 0.023551 | 0.028301 | 0.031199 |
18.659431 | 0.110866 | 0.122441 | 0.141959 | 0.743151 | 19.224331 | 0.782055 | 0.092943 | 0.194633 | 0.080352 | 0.09519 | 0.091708 |
25.845377 | 0.046457 | 0.047954 | 0.021472 | 0.940632 | 28.711506 | 0.972658 | 0.017356 | 0.130252 | 0.013222 | 0.033608 | 0.009471 |
21.673559 | 0.073949 | 0.07089 | 0.07521 | 0.843405 | 23.050653 | 0.876575 | 0.051866 | 0.13965 | 0.042564 | 0.059429 | 0.041376 |
24.568323 | 0.054584 | 0.060801 | 0.061452 | 0.891342 | 27.120859 | 0.911278 | 0.033603 | 0.133057 | 0.027695 | 0.042453 | 0.033869 |
21.772087 | 0.073561 | 0.073703 | 0.092905 | 0.847974 | 23.258148 | 0.882287 | 0.054619 | 0.141073 | 0.044463 | 0.059724 | 0.049437 |
20.398712 | 0.089413 | 0.114969 | 0.089242 | 0.838152 | 22.643755 | 0.880764 | 0.056164 | 0.159939 | 0.051098 | 0.080691 | 0.066323 |
25.883759 | 0.044234 | 0.050278 | 0.056916 | 0.9106 | 27.849375 | 0.929649 | 0.029853 | 0.114235 | 0.024807 | 0.033921 | 0.032889 |
21.301495 | 0.068154 | 0.065986 | 0.064017 | 0.875362 | 22.729145 | 0.89857 | 0.048232 | 0.120095 | 0.041211 | 0.05591 | 0.040804 |
30.918505 | 0.037406 | 0.070411 | 0.024552 | 0.878878 | 29.683823 | 0.961235 | 0.01852 | 0.165441 | 0.016265 | 0.02844 | 0.01625 |
25.91861 | 0.043211 | 0.045749 | 0.021703 | 0.938527 | 27.002739 | 0.967375 | 0.020198 | 0.116586 | 0.017476 | 0.031759 | 0.013938 |
25.26935 | 0.051299 | 0.052994 | 0.055248 | 0.881623 | 28.48703 | 0.914924 | 0.029411 | 0.125082 | 0.022747 | 0.038771 | 0.025084 |
26.47788 | 0.040547 | 0.044629 | 0.019798 | 0.938763 | 27.061953 | 0.96517 | 0.020027 | 0.112714 | 0.016492 | 0.029942 | 0.011231 |
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
SparseCraft
[ECCV'24] SparseCraft: Few-Shot Neural Reconstruction through Stereopsis Guided Geometric Linearization
Project
DTU Dataset
We provide preprocessed DTU data and results for the tasks of novel view synthesis and surface reconstruction.
It contains the following directories:
sparsecraft_data
├── nvs # Novel View Synthesis task data and results
│ └── mvs_data
│ ├── scan103
│ ├── ...
│ └── results # Results for training using 3, 6, and 9 views
│ ├── 3v
│ │ ├── scan103
│ │ ├── ...
│ ├── 6v
│ │ ├── scan103
│ │ ├── ...
│ └── 9v
│ ├── scan103
│ ├── ...
└── reconstruction # Surface Reconstruction task data and results
└── mvs_data # Surface reconstruction data uses a different set of scans and views than the novel view synthesis task
├── set0
│ ├── scan105
│ ├── ...
└── set1
├── scan105
├── ...
└── results
├── set0
│ ├── scan105
│ ├── ...
└── set1
├── scan105
Note
The DTU dataset was preprocessed as follows:
- The original data is from the NeuS Project. We use the same camera poses and intrinsics as the original data.
- To obtain MVS data, we used the Colmap initialized with the original camera poses and intrinsics.
- We provide a script that achieves this in
scripts
that you can run using the following command. Note that you will need to have Colmap installed on your machine:
- Downloads last month
- 10