sst2_pt / sst2_pt.py
Hugo Abonizio
Fix docstring
6ae9381
raw
history blame
2.59 kB
"""The Stanford Sentiment Treebank translated to Portuguese."""
import csv
import datasets
from datasets.tasks import TextClassification
_DESCRIPTION = """\
The Stanford Sentiment Treebank consists of sentences from movie reviews and
human annotations of their sentiment. The task is to predict the sentiment of a
given sentence. We use the two-way (positive/negative) class split, and use only
sentence-level labels.
"""
_CITATION = """\
@inproceedings{socher2013recursive,
title={Recursive deep models for semantic compositionality over a sentiment treebank},
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
pages={1631--1642},
year={2013}
}
"""
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
_DOWNLOAD_URL = "https://huggingface.co/datasets/maritaca-ai/sst2_pt/resolve/main"
class SST2(datasets.GeneratorBasedBuilder):
"""The Stanford Sentiment Treebank translated to Portuguese."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["negativo", "positivo"])}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/train.csv")
validation_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/validation.csv")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path, "split": "validation"}
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
)
next(csv_reader) # Skip header (first line)
for row in csv_reader:
idx, text, label = row
yield idx, {"text": text, "label": label}