cantemist / README.md
masaenger's picture
Convert dataset to Parquet
b763ea7 verified
|
raw
history blame
4.57 kB
---
language:
- es
license: cc-by-4.0
multilinguality: monolingual
pretty_name: CANTEMIST
bigbio_language:
- Spanish
bigbio_license_shortname: CC_BY_4p0
homepage: https://temu.bsc.es/cantemist/?p=4338
bigbio_pubmed: false
bigbio_public: true
bigbio_tasks:
- NAMED_ENTITY_RECOGNITION
- NAMED_ENTITY_DISAMBIGUATION
- TEXT_CLASSIFICATION
dataset_info:
config_name: cantemist_source
features:
- name: id
dtype: string
- name: document_id
dtype: string
- name: text
dtype: string
- name: labels
list: string
- name: text_bound_annotations
list:
- name: offsets
sequence:
list: int32
- name: text
sequence: string
- name: type
dtype: string
- name: id
dtype: string
- name: events
list:
- name: trigger
dtype: string
- name: id
dtype: string
- name: type
dtype: string
- name: arguments
sequence:
- name: role
dtype: string
- name: ref_id
dtype: string
- name: relations
list:
- name: id
dtype: string
- name: head
struct:
- name: ref_id
dtype: string
- name: role
dtype: string
- name: tail
struct:
- name: ref_id
dtype: string
- name: role
dtype: string
- name: type
dtype: string
- name: equivalences
list:
- name: id
dtype: string
- name: ref_ids
sequence: string
- name: attributes
list:
- name: id
dtype: string
- name: type
dtype: string
- name: ref_id
dtype: string
- name: value
dtype: string
- name: normalizations
list:
- name: id
dtype: string
- name: type
dtype: string
- name: ref_id
dtype: string
- name: resource_name
dtype: string
- name: cuid
dtype: string
- name: text
dtype: string
- name: notes
list:
- name: id
dtype: string
- name: type
dtype: string
- name: ref_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 3451245
num_examples: 501
- name: test
num_bytes: 1892436
num_examples: 300
- name: validation
num_bytes: 3126466
num_examples: 500
download_size: 3927340
dataset_size: 8470147
configs:
- config_name: cantemist_source
data_files:
- split: train
path: cantemist_source/train-*
- split: test
path: cantemist_source/test-*
- split: validation
path: cantemist_source/validation-*
default: true
---
# Dataset Card for CANTEMIST
## Dataset Description
- **Homepage:** https://temu.bsc.es/cantemist/?p=4338
- **Pubmed:** False
- **Public:** True
- **Tasks:** NER,NED,TXTCLASS
Collection of 1301 oncological clinical case reports written in Spanish, with tumor morphology mentions manually annotated and mapped by clinical experts to a controlled terminology. Every tumor morphology mention is linked to an eCIE-O code (the Spanish equivalent of ICD-O).
The original dataset is distributed in Brat format, and was randomly sampled into 3 subsets. The training, development and test sets contain 501, 500 and 300 documents each, respectively.
This dataset was designed for the CANcer TExt Mining Shared Task, sponsored by Plan-TL. The task is divided in 3 subtasks: CANTEMIST-NER, CANTEMIST_NORM and CANTEMIST-CODING.
CANTEMIST-NER track: requires finding automatically tumor morphology mentions. All tumor morphology mentions are defined by their corresponding character offsets in UTF-8 plain text medical documents.
CANTEMIST-NORM track: clinical concept normalization or named entity normalization task that requires to return all tumor morphology entity mentions together with their corresponding eCIE-O-3.1 codes i.e. finding and normalizing tumor morphology mentions.
CANTEMIST-CODING track: requires returning for each of document a ranked list of its corresponding ICD-O-3 codes. This it is essentially a sort of indexing or multi-label classification task or oncology clinical coding.
For further information, please visit https://temu.bsc.es/cantemist or send an email to encargo-pln-life@bsc.es
## Citation Information
```
@article{miranda2020named,
title={Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.},
author={Miranda-Escalada, Antonio and Farr{'e}, Eul{\`a}lia and Krallinger, Martin},
journal={IberLEF@ SEPLN},
pages={303--323},
year={2020}
}
```